WorldWideScience

Sample records for central serotonergic neurons

  1. Subset specification of central serotonergic neurons

    Marten P Smidt

    2013-10-01

    Full Text Available The last decade the serotonin (5-hydroxytryptamine; 5-HT system has received enormous attention due to its role in regulation of behavior, exemplified by the discovery that increased 5-HT tone in the central nervous system is able to alleviate affective disorders. Here, we review the developmental processes, with a special emphasis on subset specification, leading to the formation of the 5-HT system in the brain. Molecular classification of 5-HT neuronal groups leads to the definition of two independent rostral groups positioned in rhombomere 1 and 2/3 and a caudal group in rhombomere 5-8. In addition, more disperse refinement of these subsets is present as shown by the selective expression of the 5-HT1A autoreceptor, indicating functional diversity between 5-HT subsets. The functional significance of the molecular coding differences is not well known and the molecular basis of described specific connectivity patterns remain to be elucidated. Recent developments in genetic lineage tracing models will provide these data and form a major step-up towards the full understanding of the importance of developmental programming and function of 5-HT neuronal subsets.

  2. Adenoviral vectors for highly selective gene expression in central serotonergic neurons reveal quantal characteristics of serotonin release in the rat brain

    Teschemacher Anja G

    2009-03-01

    Full Text Available Abstract Background 5-hydroxytryptamine (5 HT, serotonin is one of the key neuromodulators in mammalian brain, but many fundamental properties of serotonergic neurones and 5 HT release remain unknown. The objective of this study was to generate an adenoviral vector system for selective targeting of serotonergic neurones and apply it to study quantal characteristics of 5 HT release in the rat brain. Results We have generated adenoviral vectors which incorporate a 3.6 kb fragment of the rat tryptophan hydroxylase-2 (TPH-2 gene which selectively (97% co-localisation with TPH-2 target raphe serotonergic neurones. In order to enhance the level of expression a two-step transcriptional amplification strategy was employed. This allowed direct visualization of serotonergic neurones by EGFP fluorescence. Using these vectors we have performed initial characterization of EGFP-expressing serotonergic neurones in rat organotypic brain slice cultures. Fluorescent serotonergic neurones were identified and studied using patch clamp and confocal Ca2+ imaging and had features consistent with those previously reported using post-hoc identification approaches. Fine processes of serotonergic neurones could also be visualized in un-fixed tissue and morphometric analysis suggested two putative types of axonal varicosities. We used micro-amperometry to analyse the quantal characteristics of 5 HT release and found that central 5 HT exocytosis occurs predominantly in quanta of ~28000 molecules from varicosities and ~34000 molecules from cell bodies. In addition, in somata, we observed a minority of large release events discharging on average ~800000 molecules. Conclusion For the first time quantal release of 5 HT from somato-dendritic compartments and axonal varicosities in mammalian brain has been demonstrated directly and characterised. Release from somato-dendritic and axonal compartments might have different physiological functions. Novel vectors generated in this

  3. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

    Gabriela Fabbiani

    2018-03-01

    Full Text Available Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+ increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU and did not express the proliferating cell nuclear antigen (PCNA indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process.

  4. Emergence of Serotonergic Neurons After Spinal Cord Injury in Turtles

    Fabbiani, Gabriela; Rehermann, María I.; Aldecosea, Carina; Trujillo-Cenóz, Omar; Russo, Raúl E.

    2018-01-01

    Plasticity of neural circuits takes many forms and plays a fundamental role in regulating behavior to changing demands while maintaining stability. For example, during spinal cord development neurotransmitter identity in neurons is dynamically adjusted in response to changes in the activity of spinal networks. It is reasonable to speculate that this type of plasticity might occur also in mature spinal circuits in response to injury. Because serotonergic signaling has a central role in spinal cord functions, we hypothesized that spinal cord injury (SCI) in the fresh water turtle Trachemys scripta elegans may trigger homeostatic changes in serotonergic innervation. To test this possibility we performed immunohistochemistry for serotonin (5-HT) and key molecules involved in the determination of the serotonergic phenotype before and after SCI. We found that as expected, in the acute phase after injury the dense serotonergic innervation was strongly reduced. However, 30 days after SCI the population of serotonergic cells (5-HT+) increased in segments caudal to the lesion site. These cells expressed the neuronal marker HuC/D and the transcription factor Nkx6.1. The new serotonergic neurons did not incorporate the thymidine analog 5-bromo-2′-deoxyuridine (BrdU) and did not express the proliferating cell nuclear antigen (PCNA) indicating that novel serotonergic neurons were not newborn but post-mitotic cells that have changed their neurochemical identity. Switching towards a serotonergic neurotransmitter phenotype may be a spinal cord homeostatic mechanism to compensate for the loss of descending serotonergic neuromodulation, thereby helping the outstanding functional recovery displayed by turtles. The 5-HT1A receptor agonist (±)-8-Hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) blocked the increase in 5-HT+ cells suggesting 5-HT1A receptors may trigger the respecification process. PMID:29593503

  5. Selective serotonergic excitation of callosal projection neurons

    Daniel eAvesar

    2012-03-01

    Full Text Available Serotonin (5-HT acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs of the mouse medial prefrontal cortex (mPFC, and found 3 distinct response types: long-lasting 5-HT1A (1A receptor-dependent inhibitory responses (84% of L5PNs, 5-HT2A (2A receptor-dependent excitatory responses (9%, and biphasic responses in which 2A-dependent excitation followed brief inhibition (5%. Relative to 5-HT-inhibited neurons, those excited by 5-HT had physiological properties characteristic of callosal/commissural (COM neurons that project to the contralateral cortex. We tested whether serotonergic responses in cortical pyramidal neurons are correlated with their axonal projection pattern using retrograde fluorescent labeling of COM and corticopontine-projecting (CPn neurons. 5-HT generated excitatory or biphasic responses in all 5-HT-responsive layer 5 COM neurons. Conversely, CPn neurons were universally inhibited by 5-HT. Serotonergic excitation of COM neurons was blocked by the 2A antagonist MDL 11939, while serotonergic inhibition of CPn neurons was blocked by the 1A antagonist WAY 100635, confirming a role for these two receptor subtypes in regulating pyramidal neuron activity. Selective serotonergic excitation of COM neurons was not layer-specific, as COM neurons in layer 2/3 were also selectively excited by 5-HT relative to their non-labeled pyramidal neuron neighbors. Because neocortical 2A receptors are implicated in the etiology and pathophysiology of schizophrenia, we propose that COM neurons may represent a novel cellular target for intervention in psychiatric disease.

  6. Tetracycline inducible gene manipulation in serotonergic neurons.

    Tillmann Weber

    Full Text Available The serotonergic (5-HT neuronal system has important and diverse physiological functions throughout development and adulthood. Its dysregulation during development or later in adulthood has been implicated in many neuropsychiatric disorders. Transgenic animal models designed to study the contribution of serotonergic susceptibility genes to a pathological phenotype should ideally allow to study candidate gene overexpression or gene knockout selectively in serotonergic neurons at any desired time during life. For this purpose, conditional expression systems such as the tet-system are preferable. Here, we generated a transactivator (tTA mouse line (TPH2-tTA that allows temporal and spatial control of tetracycline (Ptet controlled transgene expression as well as gene deletion in 5-HT neurons. The tTA cDNA was inserted into a 196 kb PAC containing a genomic mouse Tph2 fragment (177 kb by homologous recombination in E. coli. For functional analysis of Ptet-controlled transgene expression, TPH2-tTA mice were crossed to a Ptet-regulated lacZ reporter line (Ptet-nLacZ. In adult double-transgenic TPH2-tTA/Ptet-nLacZ mice, TPH2-tTA founder line L62-20 showed strong serotonergic β-galactosidase expression which could be completely suppressed with doxycycline (Dox. Furthermore, Ptet-regulated gene expression could be reversibly activated or inactivated when Dox was either withdrawn or added to the system. For functional analysis of Ptet-controlled, Cre-mediated gene deletion, TPH2-tTA mice (L62-20 were crossed to double transgenic Ptet-Cre/R26R reporter mice to generate TPH2-tTA/Ptet-Cre/R26R mice. Without Dox, 5-HT specific recombination started at E12.5. With permanent Dox administration, Ptet-controlled Cre-mediated recombination was absent. Dox withdrawal either postnatally or during adulthood induced efficient recombination in serotonergic neurons of all raphe nuclei, respectively. In the enteric nervous system, recombination could not be detected. We

  7. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis.

    McGlashon, Jacob M; Gorecki, Michelle C; Kozlowski, Amanda E; Thirnbeck, Caitlin K; Markan, Kathleen R; Leslie, Kirstie L; Kotas, Maya E; Potthoff, Matthew J; Richerson, George B; Gillum, Matthew P

    2015-05-05

    Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids. Serotonin (5-HT) neurons in the CNS are essential for thermoregulation and accordingly may control metabolic activity of thermogenic fat. To test this, we generated mice in which the human diphtheria toxin receptor (DTR) was selectively expressed in central 5-HT neurons. Treatment with diphtheria toxin (DT) eliminated 5-HT neurons and caused loss of thermoregulation, brown adipose tissue (BAT) steatosis, and a >50% decrease in uncoupling protein 1 (Ucp1) expression in BAT and inguinal white adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold, and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1b(f/f)ePet1(Cre) mice in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating glucose and lipid homeostasis, in part through recruitment and metabolic activation of brown and beige adipocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Synaptic glutamate release by postnatal rat serotonergic neurons in microculture.

    Johnson, M D

    1994-02-01

    Serotonergic neurons are thought to play a role in depression and obsessive compulsive disorder. However, their functional transmitter repertoire is incompletely known. To investigate this repertoire, intracellular recordings were obtained from 132 cytochemically identified rat mesopontine serotonergic neurons that had re-established synapses in microcultures. Approximately 60% of the neurons evoked excitatory glutamatergic potentials in themselves or in target neurons. Glutamatergic transmission was frequently observed in microcultures containing a solitary serotonergic neuron. Evidence for co-release of serotonin and glutamate from single raphe neurons was also obtained. However, evidence for gamma-aminobutyric acid release by serotonergic neurons was observed in only two cases. These findings indicate that many cultured serotonergic neurons form glutamatergic synapses and may explain several observations in slices and in vivo.

  9. Harmane inhibits serotonergic dorsal raphe neurons in the rat.

    Touiki, Khalid; Rat, Pascal; Molimard, Robert; Chait, Abderrahman; de Beaurepaire, Renaud

    2005-11-01

    Harmane and norharmane (two beta-carbolines) are tobacco components or products. The effects of harmane and norharmane on serotonergic raphe neurons remain unknown. Harmane and norharmane are inhibitors of the monoamine oxidases A (MAO-A) and B (MAO-B), respectively. To study the effects of harmane, norharmane, befloxatone (MAOI-A), and selegiline (MAOI-B) on the firing of serotonergic neurons. To compare the effects of these compounds to those of nicotine (whose inhibitory action on serotonergic neurons has been previously described). The effects of cotinine, a metabolite of nicotine known to interact with serotonergic systems, are also tested. In vivo electrophysiological recordings of serotonergic dorsal raphe neurons in the anaesthetized rat. Nicotine, harmane, and befloxatone inhibited serotonergic dorsal raphe neurons. The other compounds had no effects. The inhibitory effect of harmane (rapid and long-lasting inhibition) differed from that of nicotine (short and rapidly reversed inhibition) and from that of befloxatone (slow, progressive, and long-lasting inhibition). The inhibitory effects of harmane and befloxatone were reversed by the 5-HT1A antagonist WAY 100 635. Pretreatment of animals with p-chlorophenylalanine abolished the inhibitory effect of befloxatone, but not that of harmane. Nicotine, harmane, and befloxatone inhibit the activity of raphe serotonergic neurons. Therefore, at least two tobacco compounds, nicotine and harmane, inhibit the activity of serotonergic neurons. The mechanism by which harmane inhibits serotonergic dorsal raphe neurons is likely unrelated to a MAO-A inhibitory effect.

  10. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis

    McGlashon, Jacob M; Gorecki, Michelle C; Kozlowski, Amanda E

    2015-01-01

    Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids. Serotonin (5-HT) neurons in the CNS are essential for thermoregulation and accordingly may control metabolic activity of thermogenic fat. To test this, we generated mice in which the human...... adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold, and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1b(f/f)ePet1(Cre) mice in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating...

  11. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors

    Anne Teissier

    2015-12-01

    Full Text Available Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function.

  12. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors.

    Teissier, Anne; Chemiakine, Alexei; Inbar, Benjamin; Bagchi, Sneha; Ray, Russell S; Palmiter, Richard D; Dymecki, Susan M; Moore, Holly; Ansorge, Mark S

    2015-12-01

    Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Characterization of Induced Pluripotent Stem Cell-derived Human Serotonergic Neurons

    Lining Cao

    2017-05-01

    Full Text Available In the brain, the serotonergic neurons located in the raphe nucleus are the unique resource of the neurotransmitter serotonin, which plays a pivotal role in the regulation of brain development and functions. Dysfunction of the serotonin system is present in many psychiatric disorders. Lack of in vitro functional human model limits the understanding of human central serotonergic system and its related diseases and clinical applications. Previously, we have developed a method generating human serotonergic neurons from induced pluripotent stem cells (iPSCs. In this study, we analyzed the features of these human iPSCs-derived serotonergic neurons both in vitro and in vivo. We found that these human serotonergic neurons are sensitive to the selective neurotoxin 5, 7-Dihydroxytryptamine (5,7-DHT in vitro. After being transplanted into newborn mice, the cells not only expressed their typical molecular markers, but also showed the migration and projection to the host’s cerebellum, hindbrain and spinal cord. The data demonstrate that these human iPSCs-derived neurons exhibit the typical features as the serotonergic neurons in the brain, which provides a solid foundation for studying on human serotonin system and its related disorders.

  14. Serotonergic neurons signal reward and punishment on multiple timescales

    Cohen, Jeremiah Y; Amoroso, Mackenzie W; Uchida, Naoshige

    2015-01-01

    Serotonin's function in the brain is unclear. One challenge in testing the numerous hypotheses about serotonin's function has been observing the activity of identified serotonergic neurons in animals engaged in behavioral tasks. We recorded the activity of dorsal raphe neurons while mice experienced a task in which rewards and punishments varied across blocks of trials. We ‘tagged’ serotonergic neurons with the light-sensitive protein channelrhodopsin-2 and identified them based on their responses to light. We found three main features of serotonergic neuron activity: (1) a large fraction of serotonergic neurons modulated their tonic firing rates over the course of minutes during reward vs punishment blocks; (2) most were phasically excited by punishments; and (3) a subset was phasically excited by reward-predicting cues. By contrast, dopaminergic neurons did not show firing rate changes across blocks of trials. These results suggest that serotonergic neurons signal information about reward and punishment on multiple timescales. DOI: http://dx.doi.org/10.7554/eLife.06346.001 PMID:25714923

  15. A Single Pair of Serotonergic Neurons Counteracts Serotonergic Inhibition of Ethanol Attraction in Drosophila.

    Xu, Li; He, Jianzheng; Kaiser, Andrea; Gräber, Nikolas; Schläger, Laura; Ritze, Yvonne; Scholz, Henrike

    2016-01-01

    Attraction to ethanol is common in both flies and humans, but the neuromodulatory mechanisms underlying this innate attraction are not well understood. Here, we dissect the function of the key regulator of serotonin signaling-the serotonin transporter-in innate olfactory attraction to ethanol in Drosophila melanogaster. We generated a mutated version of the serotonin transporter that prolongs serotonin signaling in the synaptic cleft and is targeted via the Gal4 system to different sets of serotonergic neurons. We identified four serotonergic neurons that inhibit the olfactory attraction to ethanol and two additional neurons that counteract this inhibition by strengthening olfactory information. Our results reveal that compensation can occur on the circuit level and that serotonin has a bidirectional function in modulating the innate attraction to ethanol. Given the evolutionarily conserved nature of the serotonin transporter and serotonin, the bidirectional serotonergic mechanisms delineate a basic principle for how random behavior is switched into targeted approach behavior.

  16. Neurogenin3 restricts serotonergic neuron differentiation to the hindbrain.

    Carcagno, Abel L; Di Bella, Daniela J; Goulding, Martyn; Guillemot, Francois; Lanuza, Guillermo M

    2014-11-12

    The development of the nervous system is critically dependent on the production of functionally diverse neuronal cell types at their correct locations. In the embryonic neural tube, dorsoventral signaling has emerged as a fundamental mechanism for generating neuronal diversity. In contrast, far less is known about how different neuronal cell types are organized along the rostrocaudal axis. In the developing mouse and chick neural tube, hindbrain serotonergic neurons and spinal glutamatergic V3 interneurons are produced from ventral p3 progenitors, which possess a common transcriptional identity but are confined to distinct anterior-posterior territories. In this study, we show that the expression of the transcription factor Neurogenin3 (Neurog3) in the spinal cord controls the correct specification of p3-derived neurons. Gain- and loss-of-function manipulations in the chick and mouse embryo show that Neurog3 switches ventral progenitors from a serotonergic to V3 differentiation program by repressing Ascl1 in spinal p3 progenitors through a mechanism dependent on Hes proteins. In this way, Neurog3 establishes the posterior boundary of the serotonergic system by actively suppressing serotonergic specification in the spinal cord. These results explain how equivalent p3 progenitors within the hindbrain and the spinal cord produce functionally distinct neuron cell types. Copyright © 2014 the authors 0270-6474/14/3415223-11$15.00/0.

  17. Neuropeptides as endogenous neuronal growth regulatory factors on serotonergic maturation

    Davila-Garcia, M.I.

    1989-01-01

    Products of the proopiomelanocortin molecule as well as leu- and met-enkephalin were tested for their effects on serotonergic neuronal maturation. High affinity uptake of ( 3 H)5-HT and morphometrics using immunocytochemistry specific for serotonergic neurons were used to monitor neuronal maturation. Cultured brainstem raphe neurons from 14 day fetuses, in the presence or absence of target tissue, were administered neuropeptides at various concentrations for 1,3 or 5 days in culture. ACTH peptides stimulate neurite length and, with the endorphins, the expression of ( 3 H)5-HT uptake by serotonergic fetal neurons cultured alone but had no effect when these neurons were cocultured with hippocampal target cells. A daily dose of leu-enkephalin to these cells inhibited neuronal uptake after 5 days of exposure and decreased neurite cell length in 24 hr cultures. In contrast, a single dose of leu-enkephalin at plating stimulated uptake after 5 days while co-administration of bacitracin inhibited uptake expression. Naloxone reversed the opioid effect and stimulated uptake when administered alone. Desulfated-CCK, which resembles leu-enkephalin, was equally potent as leu-enkephalin in inhibiting uptake

  18. Neuropeptides as endogenous neuronal growth regulatory factors on serotonergic maturation

    Davila-Garcia, M.I.

    1989-01-01

    Products of the proopiomelanocortin molecule as well as leu- and met-enkephalin were tested for their effects on serotonergic neuronal maturation. High affinity uptake of ({sup 3}H)5-HT and morphometrics using immunocytochemistry specific for serotonergic neurons were used to monitor neuronal maturation. Cultured brainstem raphe neurons from 14 day fetuses, in the presence or absence of target tissue, were administered neuropeptides at various concentrations for 1,3 or 5 days in culture. ACTH peptides stimulate neurite length and, with the endorphins, the expression of ({sup 3}H)5-HT uptake by serotonergic fetal neurons cultured alone but had no effect when these neurons were cocultured with hippocampal target cells. A daily dose of leu-enkephalin to these cells inhibited neuronal uptake after 5 days of exposure and decreased neurite cell length in 24 hr cultures. In contrast, a single dose of leu-enkephalin at plating stimulated uptake after 5 days while co-administration of bacitracin inhibited uptake expression. Naloxone reversed the opioid effect and stimulated uptake when administered alone. Desulfated-CCK, which resembles leu-enkephalin, was equally potent as leu-enkephalin in inhibiting uptake.

  19. A Subset of Serotonergic Neurons Evokes Hunger in Adult Drosophila.

    Albin, Stephanie D; Kaun, Karla R; Knapp, Jon-Michael; Chung, Phuong; Heberlein, Ulrike; Simpson, Julie H

    2015-09-21

    Hunger is a complex motivational state that drives multiple behaviors. The sensation of hunger is caused by an imbalance between energy intake and expenditure. One immediate response to hunger is increased food consumption. Hunger also modulates behaviors related to food seeking such as increased locomotion and enhanced sensory sensitivity in both insects and vertebrates. In addition, hunger can promote the expression of food-associated memory. Although progress is being made, how hunger is represented in the brain and how it coordinates these behavioral responses is not fully understood in any system. Here, we use Drosophila melanogaster to identify neurons encoding hunger. We found a small group of neurons that, when activated, induced a fed fly to eat as though it were starved, suggesting that these neurons are downstream of the metabolic regulation of hunger. Artificially activating these neurons also promotes appetitive memory performance in sated flies, indicating that these neurons are not simply feeding command neurons but likely play a more general role in encoding hunger. We determined that the neurons relevant for the feeding effect are serotonergic and project broadly within the brain, suggesting a possible mechanism for how various responses to hunger are coordinated. These findings extend our understanding of the neural circuitry that drives feeding and enable future exploration of how state influences neural activity within this circuit. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.

    Annina Huser

    Full Text Available The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.

  1. Electrophysical properties, synaptic transmission and neuromodulation in serotonergic caudal raphe neurons.

    Li, Y W; Bayliss, D A

    1998-06-01

    1. We studied electrophysiological properties, synaptic transmission and modulation by 5-hydroxytryptamine (5-HT) of caudal raphe neurons using whole-cell recording in a neonatal rat brain slice preparation; recorded neurons were identified as serotonergic by post-hoc immunohistochemical detection of tryptophan hydroxylase, the 5-HT-synthesizing enzyme. 2. Serotonergic neurons fired spontaneously (approximately 1 Hz), with maximal steady state firing rates of < 4 Hz. 5-Hydroxytryptamine caused hyperpolarization and cessation of spike activity in these neurons by activating inwardly rectifying K+ conductance via somatodendritic 5-HT1A receptors. 3. Unitary glutamatergic excitatory post-synaptic potentials (EPSP) and currents (EPSC) were evoked in serotonergic neurons by local electrical stimulation. Evoked EPSC were potently inhibited by 5-HT, an effect mediated by presynaptic 5-HT1B receptors. 4. In conclusion, serotonergic caudal raphe neurons are spontaneously active in vitro; they receive prominent glutamatergic synaptic inputs. 5-Hydroxytryptamine regulates serotonergic neuronal activity of the caudal raphe by decreasing spontaneous activity via somatodendritic 5-HT1A receptors and by inhibiting excitatory synaptic transmission onto these neurons via presynaptic 5-HT1B receptors. These local modulatory mechanisms provide multiple levels of feedback autoregulation of serotonergic raphe neurons by 5-HT.

  2. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons

    Chowdhury, Srikanta; Yamanaka, Akihiro

    2016-01-01

    Orexin/hypocretin neurons play a crucial role in the regulation of sleep/wakefulness, primarily in the maintenance of wakefulness. These neurons innervate wide areas of the brain and receive diverse synaptic inputs including those from serotonergic (5-HT) neurons in the raphe nucleus. Previously we showed that pharmacological application of 5-HT directly inhibited orexin neurons via 5-HT1A receptors. However, it was still unclear how 5-HT neurons regulated orexin neurons since 5-HT neurons co...

  3. Central serotonergic and noradrenergic receptors in functional dyspepsia

    S O'Mahony; TG Dinan; PW Keeling; ASB Chua

    2006-01-01

    Functional dyspepsia is a symptom complex characterised by upper abdominal discomfort or pain, early satiety,motor abnormalities, abdominal bloating and nausea in the absence of organic disease. The central nervous system plays an important role in the conducting and processing of visceral signals. Alterations in brain processing of pain, perception and affective responses may be key factors in the pathogenesis of functional dyspepsia. Central serotonergic and noradrenergic receptor systems are involved in the processing of motor,sensory and secretory activities of the gastrointestinal tract. Visceral hypersensitivity is currently regarded as the mechanism responsible for both motor alterations and abdominal pain in functional dyspepsia. Some studies suggest that there are alterations in central serotonergic and noradrenergic systems which may partially explain some of the symptoms of functional dyspepsia. Alterations in the autonomic nervous system may be implicated in the motor abnormalities and increases in visceral sensitivity in these patients.Noradrenaline is the main neurotransmitter in the sympathetic nervous system and again alterations in the functioning of this system may lead to changes in motor function. Functional dyspepsia causes considerable burden on the patient and society. The pathophysiology of functional dyspepsia is not fully understood but alterations in central processing by the serotonergic and noradrenergic systems may provide plausible explanations for at least some of the symptoms and offer possible treatment targets for the future.

  4. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus

    Li Zhou

    2017-03-01

    Full Text Available Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN.

  5. A transcription factor collective defines the HSN serotonergic neuron regulatory landscape.

    Lloret-Fernández, Carla; Maicas, Miren; Mora-Martínez, Carlos; Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter; Flames, Nuria

    2018-03-22

    Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis -regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans . Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. © 2018, Lloret-Fernández et al.

  6. [Local GABA-ergic modulation of serotonergic neuron activity in the nucleus raphe magnus].

    Iniushkin, A N; Merkulova, N A; Orlova, A O; Iniushkina, E M

    2009-07-01

    In voltage-clamp experimental on slices of the rat brainstem the effects of 5-HT and GABA on serotonergic neurons of nucleus raphe magnus were investigated. Local applications of 5-HT induced an increase in IPCSs frequency and amplitude in 45% of serotonergic cells. The effect suppressed by the blocker of fast sodium channels tetradotoxin. Antagonist of GABA receptor gabazine blocked IPSCs in neurons both sensitive and non-sensitive to 5-HT action. Applications of GABA induced a membrane current (I(GABA)), which was completely blocked by gabazine. The data suggest self-control of the activity of serotonergic neurons in nucleus raphe magnus by negative feedback loop via local GABAergic interneurons.

  7. Role of serotonergic neurons in the Drosophila larval response to light

    Campos Ana

    2009-06-01

    Full Text Available Abstract Background Drosophila larval locomotion consists of forward peristalsis interrupted by episodes of pausing, turning and exploratory behavior (head swinging. This behavior can be regulated by visual input as seen by light-induced increase in pausing, head swinging and direction change as well as reduction of linear speed that characterizes the larval photophobic response. During 3rd instar stage, Drosophila larvae gradually cease to be repelled by light and are photoneutral by the time they wander in search for a place to undergo metamorphosis. Thus, Drosophila larval photobehavior can be used to study control of locomotion. Results We used targeted neuronal silencing to assess the role of candidate neurons in the regulation of larval photobehavior. Inactivation of DOPA decarboxylase (Ddc neurons increases the response to light throughout larval development, including during the later stages of the 3rd instar characterized by photoneutral response. Increased response to light is characterized by increase in light-induced direction change and associated pause, and reduction of linear movement. Amongst Ddc neurons, suppression of the activity of corazonergic and serotonergic but not dopaminergic neurons increases the photophobic response observed during 3rd instar stage. Silencing of serotonergic neurons does not disrupt larval locomotion or the response to mechanical stimuli. Reduced serotonin (5-hydroxytryptamine, 5-HT signaling within serotonergic neurons recapitulates the results obtained with targeted neuronal silencing. Ablation of serotonergic cells in the ventral nerve cord (VNC does not affect the larval response to light. Similarly, disruption of serotonergic projections that contact the photoreceptor termini in the brain hemispheres does not impact the larval response to light. Finally, pan-neural over-expression of 5-HT1ADro receptors, but not of any other 5-HT receptor subtype, causes a significant decrease in the response to

  8. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels

    Takashi eMaejima

    2013-05-01

    Full Text Available Serotonergic neurons project to virtually all regions of the CNS and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing and reproductive success. Therefore serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.

  9. Drugs of abuse specifically sensitize noradrenergic and serotonergic neurons via a non-dopaminergic mechanism.

    Lanteri, Christophe; Salomon, Lucas; Torrens, Yvette; Glowinski, Jacques; Tassin, Jean-Pol

    2008-06-01

    A challenge in drug dependence is to delineate long-term neurochemical modifications induced by drugs of abuse. Repeated d-amphetamine was recently shown to disrupt a mutual regulatory link between noradrenergic and serotonergic neurons, thus inducing long-term increased responses to d-amphetamine and para-chloroamphetamine, respectively. We show here that such a sensitization of noradrenergic and serotonergic neurons also occurs following repeated treatment with cocaine, morphine, or alcohol, three compounds belonging to main groups of addictive substances. In all cases, this sensitization is prevented by alpha 1b-adrenergic and 5-HT2A receptors blockade, indicating the critical role of these receptors on long-term effects of drugs of abuse. However, repeated treatments with two non-addictive antidepressants, venlafaxine, and clorimipramine, which nevertheless inhibit noradrenergic and serotonergic reuptake, do not induce noradrenergic and serotonergic neurons sensitization. Similarly, this sensitization does not occur following repeated treatments with a specific inhibitor of dopamine (DA) reuptake, GBR12783. Moreover, we show that the effects of SCH23390, a D1 receptor antagonist known to inhibit development of d-amphetamine behavioral sensitization, are due to its 5-HT2C receptor agonist property. SCH23390 blocks amphetamine-induced release of norepinephrine and RS102221, a 5-HT2C antagonist, can reverse this inhibition as well as inhibition of noradrenergic sensitization and development of behavioral sensitization induced by repeated d-amphetamine. We propose that noradrenergic/serotonergic uncoupling is a common neurochemical consequence of repeated consumption of drugs of abuse, unrelated with DA release. Our data also suggest that compounds able to restore the link between noradrenergic and serotonergic modulatory systems could represent important therapeutic targets for investigation.

  10. Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus.

    Zhou, Li; Liu, Ming-Zhe; Li, Qing; Deng, Juan; Mu, Di; Sun, Yan-Gang

    2017-03-21

    Serotonergic neurons play key roles in various biological processes. However, circuit mechanisms underlying tight control of serotonergic neurons remain largely unknown. Here, we systematically investigated the organization of long-range synaptic inputs to serotonergic neurons and GABAergic neurons in the dorsal raphe nucleus (DRN) of mice with a combination of viral tracing, slice electrophysiological, and optogenetic techniques. We found that DRN serotonergic neurons and GABAergic neurons receive largely comparable synaptic inputs from six major upstream brain areas. Upon further analysis of the fine functional circuit structures, we found both bilateral and ipsilateral patterns of topographic connectivity in the DRN for the axons from different inputs. Moreover, the upstream brain areas were found to bidirectionally control the activity of DRN serotonergic neurons by recruiting feedforward inhibition or via a push-pull mechanism. Our study provides a framework for further deciphering the functional roles of long-range circuits controlling the activity of serotonergic neurons in the DRN. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. [Functional organization and structure of the serotonergic neuronal network of terrestrial snail].

    Nikitin, E S; Balaban, P M

    2011-01-01

    The extension of knowledge how the brain works requires permanent improvement of methods of recording of neuronal activity and increase in the number of neurons recorded simultaneously to better understand the collective work of neuronal networks and assemblies. Conventional methods allow simultaneous intracellular recording up to 2-5 neurons and their membrane potentials, currents or monosynaptic connections or observation of spiking of neuronal groups with subsequent discrimination of individual spikes with loss of details of the dynamics of membrane potential. We recorded activity of a compact group of serotonergic neurons (up to 56 simultaneously) in the ganglion of a terrestrial mollusk using the method of optical recording of membrane potential that allowed to record individual action potentials in details with action potential parameters and to reveal morphology of the neurons rcorded. We demonstrated clear clustering in the group in relation with the dynamics of action potentials and phasic or tonic components in the neuronal responses to external electrophysiological and tactile stimuli. Also, we showed that identified neuron Pd2 could induce activation of a significant number of neurons in the group whereas neuron Pd4 did not induce any activation. However, its activation is delayed with regard to activation of the reacting group of neurons. Our data strongly support the concept of possible delegation of the integrative function by the network to a single neuron.

  12. Impacts of brain serotonin deficiency following Tph2 inactivation on development and raphe neuron serotonergic specification.

    Lise Gutknecht

    Full Text Available Brain serotonin (5-HT is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2. Tph2 inactivation (Tph2-/- resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/- mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT(1A and 5-HT(1B receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis.

  13. Biophysical properties and computational modeling of calcium spikes in serotonergic neurons of the dorsal raphe nucleus.

    Tuckwell, Henry C

    2013-06-01

    Serotonergic neurons of the dorsal raphe nuclei, with their extensive innervation of nearly the whole brain have important modulatory effects on many cognitive and physiological processes. They play important roles in clinical depression and other psychiatric disorders. In order to quantify the effects of serotonergic transmission on target cells it is desirable to construct computational models and to this end these it is necessary to have details of the biophysical and spike properties of the serotonergic neurons. Here several basic properties are reviewed with data from several studies since the 1960s to the present. The quantities included are input resistance, resting membrane potential, membrane time constant, firing rate, spike duration, spike and afterhyperpolarization (AHP) amplitude, spike threshold, cell capacitance, soma and somadendritic areas. The action potentials of these cells are normally triggered by a combination of sodium and calcium currents which may result in autonomous pacemaker activity. We here analyse the mechanisms of high-threshold calcium spikes which have been demonstrated in these cells the presence of TTX (tetrodotoxin). The parameters for calcium dynamics required to give calcium spikes are quite different from those for regular spiking which suggests the involvement of restricted parts of the soma-dendritic surface as has been found, for example, in hippocampal neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Mechanisms Underlying Serotonergic Excitation of Callosal Projection Neurons in the Mouse Medial Prefrontal Cortex

    Emily K. Stephens

    2018-01-01

    Full Text Available Serotonin (5-HT selectively excites subpopulations of pyramidal neurons in the neocortex via activation of 5-HT2A (2A receptors coupled to Gq subtype G-protein alpha subunits. Gq-mediated excitatory responses have been attributed primarily to suppression of potassium conductances, including those mediated by KV7 potassium channels (i.e., the M-current, or activation of non-specific cation conductances that underlie calcium-dependent afterdepolarizations (ADPs. However, 2A-dependent excitation of cortical neurons has not been extensively studied, and no consensus exists regarding the underlying ionic effector(s involved. In layer 5 of the mouse medial prefrontal cortex, we tested potential mechanisms of serotonergic excitation in commissural/callosal (COM projection neurons, a subpopulation of pyramidal neurons that exhibits 2A-dependent excitation in response to 5-HT. In baseline conditions, 5-HT enhanced the rate of action potential generation in COM neurons experiencing suprathreshold somatic current injection. This serotonergic excitation was occluded by activation of muscarinic acetylcholine (ACh receptors, confirming that 5-HT acts via the same Gq-signaling cascades engaged by ACh. Like ACh, 5-HT promoted the generation of calcium-dependent ADPs following spike trains. However, calcium was not necessary for serotonergic excitation, as responses to 5-HT were enhanced (by >100%, rather than reduced, by chelation of intracellular calcium with 10 mM BAPTA. This suggests intracellular calcium negatively regulates additional ionic conductances gated by 2A receptors. Removal of extracellular calcium had no effect when intracellular calcium signaling was intact, but suppressed 5-HT response amplitudes, by about 50%, when BAPTA was included in patch pipettes. This suggests that 2A excitation involves activation of a non-specific cation conductance that is both calcium-sensitive and calcium-permeable. M-current suppression was found to be a third

  15. Intraspinal serotonergic neurons consist of two, temporally distinct populations in developing zebrafish.

    Montgomery, Jacob E; Wiggin, Timothy D; Rivera-Perez, Luis M; Lillesaar, Christina; Masino, Mark A

    2016-06-01

    Zebrafish intraspinal serotonergic neuron (ISN) morphology and distribution have been examined in detail at different ages; however, some aspects of the development of these cells remain unclear. Although antibodies to serotonin (5-HT) have detected ISNs in the ventral spinal cord of embryos, larvae, and adults, the only tryptophan hydroxylase (tph) transcript that has been described in the spinal cord is tph1a. Paradoxically, spinal tph1a is only expressed transiently in embryos, which brings the source of 5-HT in the ISNs of larvae and adults into question. Because the pet1 and tph2 promoters drive transgene expression in the spinal cord, we hypothesized that tph2 is expressed in spinal cords of zebrafish larvae. We confirmed this hypothesis through in situ hybridization. Next, we used 5-HT antibody labeling and transgenic markers of tph2-expressing neurons to identify a transient population of ISNs in embryos that was distinct from ISNs that appeared later in development. The existence of separate ISN populations may not have been recognized previously due to their shared location in the ventral spinal cord. Finally, we used transgenic markers and immunohistochemical labeling to identify the transient ISN population as GABAergic Kolmer-Agduhr double-prime (KA″) neurons. Altogether, this study revealed a novel developmental paradigm in which KA″ neurons are transiently serotonergic before the appearance of a stable population of tph2-expressing ISNs. © 2015 Wiley Periodicals, Inc.

  16. Brain Aromatase Modulates Serotonergic Neuron by Regulating Serotonin Levels in Zebrafish Embryos and Larvae

    Zulvikar Syambani Ulhaq

    2018-05-01

    Full Text Available Teleost fish are known to express two isoforms of P450 aromatase, a key enzyme for estrogen synthesis. One of the isoforms, brain aromatase (AroB, cyp19a1b, is highly expressed during early development of zebrafish, thereby suggesting its role in brain development. On the other hand, early development of serotonergic neuron, one of the major monoamine neurons, is considered to play an important role in neurogenesis. Therefore, in this study, we investigated the role of AroB in development of serotonergic neuron by testing the effects of (1 estradiol (E2 exposure and (2 morpholino (MO-mediated AroB knockdown. When embryos were exposed to E2, the effects were biphasic. The low dose of E2 (0.005 µM significantly increased serotonin (5-HT positive area at 48 hour post-fertilization (hpf detected by immunohistochemistry and relative mRNA levels of tryptophan hydroxylase isoforms (tph1a, tph1b, and tph2 at 96 hpf measured by semi-quantitative PCR. To test the effects on serotonin transmission, heart rate and thigmotaxis, an indicator of anxiety, were analyzed. The low dose also significantly increased heart rate at 48 hpf and decreased thigmotaxis. The high dose of E2 (1 µM exhibited opposite effects in all parameters. The effects of both low and high doses were reversed by addition of estrogen receptor (ER blocker, ICI 182,780, thereby suggesting that the effects were mediated through ER. When AroB MO was injected to fertilized eggs, 5-HT-positive area was significantly decreased, while the significant decrease in relative tph mRNA levels was found only with tph2 but not with two other isoforms. AroB MO also decreased heart rate and increased thigmotaxis. All the effects were rescued by co-injection with AroB mRNA and by exposure to E2. Taken together, this study demonstrates the role of brain aromatase in development of serotonergic neuron in zebrafish embryos and larvae, implying that brain-formed estrogen is an important factor to

  17. GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon

    Ducray, Angélique; Krebs, Sandra H:; Schaller, Benoft

    2006-01-01

    Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about...... factors for VM GABAergic and serotonergic neurons, demonstrating characteristic individual action profiles emphasizing their important and distinct roles during brain development....

  18. The evolution of the serotonergic nervous system

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  19. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  20. Serotonergic versus Nonserotonergic Dorsal Raphe Projection Neurons: Differential Participation in Reward Circuitry

    Ross A. McDevitt

    2014-09-01

    Full Text Available The dorsal raphe nucleus (DRN contains the largest group of serotonin-producing neurons in the brain and projects to regions controlling reward. Although pharmacological studies suggest that serotonin inhibits reward seeking, electrical stimulation of the DRN strongly reinforces instrumental behavior. Here, we provide a targeted assessment of the behavioral, anatomical, and electrophysiological contributions of serotonergic and nonserotonergic DRN neurons to reward processes. To explore DRN heterogeneity, we used a simultaneous two-vector knockout/optogenetic stimulation strategy, as well as cre-induced and cre-silenced vectors in several cre-expressing transgenic mouse lines. We found that the DRN is capable of reinforcing behavior primarily via nonserotonergic neurons, for which the main projection target is the ventral tegmental area (VTA. Furthermore, these nonserotonergic projections provide glutamatergic excitation of VTA dopamine neurons and account for a large majority of the DRN-VTA pathway. These findings help to resolve apparent discrepancies between the roles of serotonin versus the DRN in behavioral reinforcement.

  1. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats.

    Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S

    2015-01-01

    Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic-GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP-GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP-GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP-GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP-GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.

  2. Early-life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats

    Tomoko eSoga

    2015-11-01

    Full Text Available Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinising hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic–GnIH neuronal system using enhanced green fluorescent protein (EGFP-tagged GnIH-transgenic rats. Socially isolated rats were observed for anxious and depressive behaviours. Using immunohistochemistry, we examined c-Fos protein expression in EGFP–GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group -housing. We also inspected serotonergic fibre juxtapositions in EGFP–GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviours. The total number of EGFP–GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fibre juxtapositions on EGFP–GnIH neurons was also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure.

  3. Comparative morphology of serotonergic-like immunoreactive elements in the central nervous system of kinorhynchs (Kinorhyncha, Cyclorhagida).

    Herranz, María; Pardos, Fernando; Boyle, Michael J

    2013-03-01

    Cycloneuralian taxa exhibit similar organ system architectures, providing informative characters of metazoan evolution, yet very few modern comparative descriptions of cellular and molecular homologies within and among those taxa are available. We immunolabeled and characterized elements of the serotonergic nervous system in the kinorhynchs Echinoderes spinifurca, Antygomonas paulae, and Zelinkaderes brightae using confocal laser scanning microscopy. Fluorescent markers targeting DNA were combined with observations of auto-fluorescent structures to guide interpretations of the internal and external anatomy in each species. Results show a common pattern of the central nervous system with a circumenteric brain divided into ring-shaped anterior and posterior neuronal somata and a central neuropil connected to a multi-stringed, longitudinal ventral nerve cord. Structural similarities and differences in the nervous systems of these species were observed and described, stressing the incomplete ring nature of the anterior region of the kinorhynch brain, the functional relationship between the brain and the movable introvert, and the number and arrangement of nerve strings and somata of the ventral nerve cord. The ventral cord ends in two ventrolateral cell bodies in E. spinifurca, and forms a terminal loop associated with a midterminal spine in A. paulae and Z. brightae. The possible functional and phylogenetic significance of these features and arrangements are discussed. Copyright © 2012 Wiley Periodicals, Inc.

  4. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells.

    Dina Popova

    Full Text Available 3,4-methylenedioxymethamphetamine (MDMA; ecstasy is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT, that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A. The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.

  5. Non-Serotonergic Neurotoxicity by MDMA (Ecstasy) in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells.

    Popova, Dina; Forsblad, Andréas; Hashemian, Sanaz; Jacobsson, Stig O P

    2016-01-01

    3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants α-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (ΔΨm) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction.

  6. The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types.

    Zhang, Feifan; Bhattacharya, Abhishek; Nelson, Jessica C; Abe, Namiko; Gordon, Patricia; Lloret-Fernandez, Carla; Maicas, Miren; Flames, Nuria; Mann, Richard S; Colón-Ramos, Daniel A; Hobert, Oliver

    2014-01-01

    Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain transcription factor ttx-3, which acts as a terminal selector to drive the terminal differentiation program of the cholinergic AIY interneuron class. Using a panel of different terminal differentiation markers, including neurotransmitter synthesizing enzymes, neurotransmitter receptors and neuropeptides, we show that ttx-3 also controls the terminal differentiation program of two additional, distinct neuron types, namely the cholinergic AIA interneurons and the serotonergic NSM neurons. We show that the type of differentiation program that is controlled by ttx-3 in different neuron types is specified by a distinct set of collaborating transcription factors. One of the collaborating transcription factors is the POU homeobox gene unc-86, which collaborates with ttx-3 to determine the identity of the serotonergic NSM neurons. unc-86 in turn operates independently of ttx-3 in the anterior ganglion where it collaborates with the ARID-type transcription factor cfi-1 to determine the cholinergic identity of the IL2 sensory and URA motor neurons. In conclusion, transcription factors operate as terminal selectors in distinct combinations in different neuron types, defining neuron type-specific identity features.

  7. Ventilatory response to hypercapnia and hypoxia after extensive lesion of medullary serotonergic neurons in newborn conscious piglets.

    Penatti, E M; Berniker, A V; Kereshi, B; Cafaro, C; Kelly, M L; Niblock, M M; Gao, H G; Kinney, H C; Li, A; Nattie, E E

    2006-10-01

    Acute inhibition of serotonergic (5-HT) neurons in the medullary raphé (MR) using a 5-HT(1A) receptor agonist had an age-dependent impact on the "CO(2) response" of piglets (33). Our present study explored the effect of chronic 5-HT neuron lesions in the MR and extra-raphé on the ventilatory response to hypercapnia and hypoxia in piglets, with possible implications on the role of 5-HT in the sudden infant death syndrome. We established four experimental groups. Group 1 (n = 11) did not undergo any treatment. Groups 2, 3, and 4 were injected with either vehicle or the neurotoxin 5,7-dihydroxytryptamine in the cisterna magna during the first week of life (group 2, n = 9; group 4, n = 11) or second week of life (group 3, n = 10). Ventilation was recorded in response to 5% CO(2) (all groups) and 12% O(2) (group 2) during wakefulness and sleep up to postnatal day 25. Surprisingly, the piglets did not reveal changes in their CO(2) sensitivity during early postnatal development. Overall, considerable lesions of 5-HT neurons (up to 65% decrease) in the MR and extra-raphé had no impact on the CO(2) response, regardless of injection time. Postlesion raphé plasticity could explain why we observed no effect. 5,7-Dihydroxytryptamine-treated males, however, did present a lower CO(2) response during sleep. Hypoxia significantly altered the frequency during sleep in lesioned piglets. Further studies are necessary to elucidate the role of plasticity, sex, and 5-HT abnormalities in sudden infant death syndrome.

  8. Extrasynaptic glycine receptors of rodent dorsal raphe serotonergic neurons:a sensitive target for ethanol

    Maguire, Edward P.; Mitchell, Elizabeth A.; Greig, Scott J.; Corteen, Nicole; Balfour, David J. K.; Swinny, Jerome; Lambert, Jeremy J.; Belelli, Delia

    2014-01-01

    Alcohol abuse is a significant medical and social problem. Several neurotransmitter systems are implicated in ethanol's actions, with certain receptors and ion channels emerging as putative targets. The dorsal raphe (DR) nucleus is associated with the behavioral actions of alcohol, but ethanol actions on these neurons are not well understood. Here, using immunohistochemistry and electrophysiology we characterize DR inhibitory transmission and its sensitivity to ethanol. DR neurons exhibit inh...

  9. Central auditory neurons have composite receptive fields.

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-02

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.

  10. Altered depression-related behavior and neurochemical changes in serotonergic neurons in mutant R406W human tau transgenic mice.

    Egashira, Nobuaki; Iwasaki, Katsunori; Takashima, Akihiko; Watanabe, Takuya; Kawabe, Hideyuki; Matsuda, Tomomi; Mishima, Kenichi; Chidori, Shozo; Nishimura, Ryoji; Fujiwara, Michihiro

    2005-10-12

    Mutant R406W human tau was originally identified in frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) and causes a hereditary tauopathy that clinically resembles Alzheimer's disease (AD). In the current study, we examined the performance of R406W transgenic (Tg) mice in the forced swimming test, a test with high predictivity of antidepressant efficacy in human depression, and found an enhancement of the immobility time. In contrast, the motor function and anxiety-related emotional response of R406W Tg mice were normal. Furthermore, a selective serotonin reuptake inhibitor (SSRI), fluvoxamine (100 mg/kg, p.o.), significantly reduced this enhancement of the immobility time, whereas a noradrenaline reuptake inhibitor, desipramine, had no effect. In an in vivo microdialysis study, R406W Tg mice exhibited a significantly decreased extracellular 5-hydroxyindoleacetic acid (5-HIAA) level in the frontal cortex and also exhibited a tendency toward a decreased extracellular 5-hydroxytryptamine (5-HT) level. Moreover, fluvoxamine, which reduced the enhancement of the immobility time, significantly increased the extracellular 5-HT level in R406W Tg mice. These results suggest that R406W Tg mice exhibit changes in depression-related behavior involving serotonergic neurons and provide an animal model for investigating AD with depression.

  11. Monorail/Foxa2 regulates floorplate differentiation and specification of oligodendrocytes, serotonergic raphé neurones and cranial motoneurones.

    Norton, Will H; Mangoli, Maryam; Lele, Zsolt; Pogoda, Hans-Martin; Diamond, Brianne; Mercurio, Sara; Russell, Claire; Teraoka, Hiroki; Stickney, Heather L; Rauch, Gerd-Jörg; Heisenberg, Carl-Philipp; Houart, Corinne; Schilling, Thomas F; Frohnhoefer, Hans-Georg; Rastegar, Sepand; Neumann, Carl J; Gardiner, R Mark; Strähle, Uwe; Geisler, Robert; Rees, Michelle; Talbot, William S; Wilson, Stephen W

    2005-02-01

    In this study, we elucidate the roles of the winged-helix transcription factor Foxa2 in ventral CNS development in zebrafish. Through cloning of monorail (mol), which we find encodes the transcription factor Foxa2, and phenotypic analysis of mol-/- embryos, we show that floorplate is induced in the absence of Foxa2 function but fails to further differentiate. In mol-/- mutants, expression of Foxa and Hh family genes is not maintained in floorplate cells and lateral expansion of the floorplate fails to occur. Our results suggest that this is due to defects both in the regulation of Hh activity in medial floorplate cells as well as cell-autonomous requirements for Foxa2 in the prospective laterally positioned floorplate cells themselves. Foxa2 is also required for induction and/or patterning of several distinct cell types in the ventral CNS. Serotonergic neurones of the raphenucleus and the trochlear motor nucleus are absent in mol-/- embryos, and oculomotor and facial motoneurones ectopically occupy ventral CNS midline positions in the midbrain and hindbrain. There is also a severe reduction of prospective oligodendrocytes in the midbrain and hindbrain. Finally, in the absence of Foxa2, at least two likely Hh pathway target genes are ectopically expressed in more dorsal regions of the midbrain and hindbrain ventricular neuroepithelium, raising the possibility that Foxa2 activity may normally be required to limit the range of action of secreted Hh proteins.

  12. Anxiogenic drug administration and elevated plus-maze exposure in rats activate populations of relaxin-3 neurons in the nucleus incertus and serotonergic neurons in the dorsal raphe nucleus.

    Lawther, A J; Clissold, M L; Ma, S; Kent, S; Lowry, C A; Gundlach, A L; Hale, M W

    2015-09-10

    Anxiety is a complex and adaptive emotional state controlled by a distributed and interconnected network of brain regions, and disruption of these networks is thought to give rise to the behavioral symptoms associated with anxiety disorders in humans. The dorsal raphe nucleus (DR), which contains the majority of forebrain-projecting serotonergic neurons, is implicated in the control of anxiety states and anxiety-related behavior via neuromodulatory effects on these networks. Relaxin-3 is the native neuropeptide ligand for the Gi/o-protein-coupled receptor, RXFP3, and is primarily expressed in the nucleus incertus (NI), a tegmental region immediately caudal to the DR. RXFP3 activation has been shown to modulate anxiety-related behavior in rodents, and RXFP3 mRNA is expressed in the DR. In this study, we examined the response of relaxin-3-containing neurons in the NI and serotonergic neurons in the DR following pharmacologically induced anxiety and exposure to an aversive environment. We administered the anxiogenic drug FG-7142 or vehicle to adult male Wistar rats and, 30 min later, exposed them to either the elevated plus-maze or home cage control conditions. Immunohistochemical detection of c-Fos was used to determine activation of serotonergic neurons in the DR and relaxin-3 neurons in the NI, measured 2h following drug injection. Analysis revealed that FG-7142 administration and exposure to the elevated plus-maze are both associated with an increase in c-Fos expression in relaxin-3-containing neurons in the NI and in serotonergic neurons in dorsal and ventrolateral regions of the DR. These data are consistent with the hypothesis that relaxin-3 systems in the NI and serotonin systems in the DR interact to form part of a network involved in the control of anxiety-related behavior. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Involvement of serotonergic pathways in mediating the neuronal activity and genetic transcription of neuroendocrine corticotropin-releasing factor in the brain of systemically endotoxin-challenged rats

    Laflamme, N.; Feuvrier, E.; Richard, D.; Rivest, S. [Laboratory of Molecular Endocrinology, CHUL Research Center and Department of Anatomy and Physiology, Laval University, 2705 boul. Laurier, Ste-Foy Quebec (Canada)

    1999-01-01

    -releasing factor transcription and plasma corticosterone release. Indeed, lipopolysaccharide caused a selective expression of corticotropin-releasing factor primary transcript in the paraventricular nucleus of the hypothalamus and this effect was significantly reduced by treatment with the serotonin inhibitor. However, basal expression of corticotropin-releasing factor messenger RNA across the brain (bed nucleus of the stria terminalis, medial preoptic area, paraventricular nucleus of the hypothalamus, central nucleus of the amygdala, etc.) was not affected by the para-chlorophenylalanine treatment. These results suggest that the integrity of serotonin pathways plays a role in the neuronal activity triggered by the systemic endotoxin insult. The fact that serotonin depletion largely prevented activation of neurosecretory parvocellular neurons of the paraventricular nucleus of the hypothalamus and neuroendocrine corticotropin-releasing factor gene transcription in response to immunogenic challenge provides the evidence that serotonergic system is part of the brain circuitry involved in the corticotroph axis-immune interface. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Somatic influences on subjective well-being and affective disorders: the convergence of thermosensory and central serotonergic systems

    Charles L Raison

    2015-01-01

    Full Text Available Current theories suggest that the brain is the sole source of mental illness. However, affective disorders, and major depressive disorder (MDD in particular, may be better conceptualized as brain-body disorders that involve peripheral systems as well. This perspective emphasizes the embodied, multifaceted physiology of well-being, and suggests that afferent signals from the body may contribute to cognitive and emotional states. In this review, we focus on evidence from preclinical and clinical studies suggesting that afferent thermosensory signals contribute to well-being and depression. Although thermoregulatory systems have traditionally been conceptualized as serving primarily homeostatic functions, increasing evidence suggests neural pathways responsible for regulating body temperature may be linked more closely with emotional states than previously recognized, an affective warmth hypothesis. Human studies indicate that increasing physical warmth activates brain circuits associated with cognitive and affective functions, promotes interpersonal warmth and prosocial behaviour, and has antidepressant effects. Consistent with these effects, preclinical studies in rodents demonstrate that physical warmth activates brain serotonergic neurons implicated in antidepressant-like effects. Together, these studies suggest that 1 thermosensory pathways interact with brain systems that control affective function, 2 these pathways are dysregulated in affective disorders, and 3 activating warm thermosensory pathways promotes a sense of well-being and has therapeutic potential in the treatment of affective disorders.

  15. Arsenic Trioxide Modulates the Central Snail Neuron Action Potential

    Guan-Ling Lu

    2009-09-01

    Conclusion: As2O3 at 10 mM elicits BoPs in central snail neurons and this effect may relate to the PLC activity of the neuron, rather than protein kinase A activity, or calcium influxes of the neuron. As2O3 at higher concentration irreversibly abolishes the spontaneous action potentials of the neuron.

  16. Hypocretin/Orexin Peptides Alter Spike Encoding by Serotonergic Dorsal Raphe Neurons through Two Distinct Mechanisms That Increase the Late Afterhyperpolarization.

    Ishibashi, Masaru; Gumenchuk, Iryna; Miyazaki, Kenichi; Inoue, Takafumi; Ross, William N; Leonard, Christopher S

    2016-09-28

    Orexins (hypocretins) are neuropeptides that regulate multiple homeostatic processes, including reward and arousal, in part by exciting serotonergic dorsal raphe neurons, the major source of forebrain serotonin. Here, using mouse brain slices, we found that, instead of simply depolarizing these neurons, orexin-A altered the spike encoding process by increasing the postspike afterhyperpolarization (AHP) via two distinct mechanisms. This orexin-enhanced AHP (oeAHP) was mediated by both OX1 and OX2 receptors, required Ca(2+) influx, reversed near EK, and decayed with two components, the faster of which resulted from enhanced SK channel activation, whereas the slower component decayed like a slow AHP (sAHP), but was not blocked by UCL2077, an antagonist of sAHPs in some neurons. Intracellular phospholipase C inhibition (U73122) blocked the entire oeAHP, but neither component was sensitive to PKC inhibition or altered PKA signaling, unlike classical sAHPs. The enhanced SK current did not depend on IP3-mediated Ca(2+) release but resulted from A-current inhibition and the resultant spike broadening, which increased Ca(2+) influx and Ca(2+)-induced-Ca(2+) release, whereas the slower component was insensitive to these factors. Functionally, the oeAHP slowed and stabilized orexin-induced firing compared with firing produced by a virtual orexin conductance lacking the oeAHP. The oeAHP also reduced steady-state firing rate and firing fidelity in response to stimulation, without affecting the initial rate or fidelity. Collectively, these findings reveal a new orexin action in serotonergic raphe neurons and suggest that, when orexin is released during arousal and reward, it enhances the spike encoding of phasic over tonic inputs, such as those related to sensory, motor, and reward events. Orexin peptides are known to excite neurons via slow postsynaptic depolarizations. Here we elucidate a significant new orexin action that increases and prolongs the postspike

  17. Neuronal NOS inhibitor 1-(2-trifluoromethylphenyl)-imidazole augment the effects of antidepressants acting via serotonergic system in the forced swimming test in rats.

    Ulak, Güner; Mutlu, Oguz; Akar, Füruzan Yildiz; Komsuoğlu, F Ipek; Tanyeri, Pelin; Erden, B Faruk

    2008-10-01

    Treatment-resistant depression has necessitated new therapeutic strategies in augmenting the therapeutic actions of currently existing antidepressant drugs. The aim of this study was to investigate the possibility of synergistic interaction between 1-(2-trifluoromethylphenyl)-imidazole (TRIM), a novel neuronal nitric oxide synthase (nNOS) inhibitor and conventional antidepressants of different classes in the forced swimming test (FST) in rats. TRIM decreased the immobility time at 50 mg/kg doses in the FST in rats. Treatment with a behaviourally subeffective dose of TRIM (20 mg/kg) augmented the behavioural effect of tricyclic antidepressant imipramine, selective serotonin re-uptake inhibitor (SSRI) citalopram and fluoxetine or selective serotonin reuptake enhancer tianeptine but failed to augment the antidepressant effect of reboxetine, a noradrenaline re-uptake inhibitor, in this test. Therefore inhibition of NOS augments the effects of antidepressants acting on serotonergic system in the FST. Neither TRIM (10-50 mg/kg) nor other drug treatments affected the locomotor activity of animals. These findings are in agreement with the view that antidepressant effects or augmentation of these effects in the FST may be explained with inhibition of NOS activity and this may be a new approach in offering greater therapeutic efficacy of antidepressants acting via serotonergic system.

  18. The association between serum lipid levels, suicide ideation, and central serotonergic activity in patients with major depressive disorder.

    Park, Young-Min; Lee, Bun-Hee; Lee, Seung-Hwan

    2014-04-01

    There is some evidence that low lipid levels cause suicide in depressed patients. The purpose of this study was to identify whether low serum lipid levels are associated with suicide ideation or are correlated with central serotonin function. Auditory processing for the loudness dependence of auditory evoked potentials (LDAEP) was measured in 73 outpatients with major depressive disorder. The Hamilton Depression Rating Scale (HAMD) and the Beck Depression Inventory (BDI) were administered on the same day as measurement of the LDAEP. In addition, serum levels of total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels were measured. All subjects had received antidepressant monotherapy. The depressed subjects were divided into those with and without suicide ideation according to the score for HAMD item 3 or BDI item 9. TG levels differed significantly between the two groups, whereas body mass index (BMI), total cholesterol, LDL, HDL, and LDAEP did not. The scores for HAMD item 3 and BDI item 9 were negatively correlated with TG levels (p=0.045 and 0.026, respectively). The LDAEP was negatively correlated with TG levels (p=0.012). Although there was tendency toward a negative correlation between the LDAEP and serum LDL, it did not reach statistical significance (p=0.068). The cross-sectional design of this study means that baseline serum lipid levels were not measured. The findings of this study revealed a relationship between TG and suicide ideation that is independent of both BMI and body weight. Furthermore, serum lipid levels were associated with central serotonergic activity, as assessed using the LDAEP. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The effects of increased central serotonergic activity on prepulse inhibition and habituation of the human startle response

    Frederiksen, Kristian Steen; Oranje, Bob; Wienberg, Malene

    2007-01-01

    Sensorimotor gating is critical to normal brain functioning, and disruptions are associated with certain mental illnesses, such as schizophrenia. Prepulse inhibition of the acoustic startle reflex (ASR) (PPI) is an operational measure of sensorimotor gating, of which evidence for a serotonergic...

  20. GDNF family ligands display distinct action profiles on cultured GABAergic and serotonergic neurons of rat ventral mesencephalon

    Ducray, Angélique; Krebs, Sandra H:; Schaller, Benoft

    2006-01-01

    the effects of GFLs on other neuronal populations in the VM is essential for their potential application as therapeutic molecules for Parkinson's disease. Hence, in a comparative study, we investigated the effects of GFLs on cell densities and morphological differentiation of gamma-aminobutyric acid......Glial-cell-line-derived neurotrophic factor (GDNF), neurturin (NRTN), artemin (ARTN) and persephin (PSPN), known as the GDNF family ligands (GFLs), influence the development, survival and differentiation of cultured dopaminergic neurons from ventral mesencephalon (VM). Detailed knowledge about......-immunoreactive (GABA-ir) and serotonin-ir (5-HT-ir) neurons in primary cultures of E14 rat VM. We observed that all GFLs [10 ng/ml] significantly increased GABA-ir cell densities (1.6-fold) as well as neurite length/neuron. However, only GDNF significantly increased the number of primary neurites/neuron, and none...

  1. Serotonergic Chemosensory Neurons Modify the C. elegans Immune Response by Regulating G-Protein Signaling in Epithelial Cells

    Anderson, Alexandra; Laurenson-Schafer, Henry; Partridge, Frederick A.; Hodgkin, Jonathan; McMullan, Rachel

    2013-01-01

    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food. PMID:24348250

  2. How does early maternal separation and chronic stress in adult rats affect the immunoreactivity of serotonergic neurons within the dorsal raphe nucleus?

    Pollano, Antonella; Trujillo, Verónica; Suárez, Marta M

    2018-01-01

    Vulnerability to emotional disorders like depression derives from interactions between early and late environments, including stressful conditions. The serotonin (5HT) system is strongly affected by stress and chronic unpredictable stress can alter the 5HT system. We evaluated the distribution of active serotonergic neurons in the dorsal raphe nucleus (DR) through immunohistochemistry in maternally separated and chronically stressed rats treated with an antidepressant, tianeptine, whose mechanism of action is still under review. Male Wistar rats were subjected to daily maternal separation (MS) for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50-74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle. We found an interaction between the effects of MS and chronic unpredictable stress on Fos-5HT immunoreactive cells at mid-caudal level of the DR. MS-chronically stressed rats showed an increase of Fos-5HT immunoreactive cells compared with AFR-chronically stressed rats. The ventrolateral (DRL/VLPAG) and dorsal (DRD) subdivisions of the DR were significantly more active than the ventral part (DRV). At the rostral level of the DR, tianeptine decreased the number of Fos-5HT cells in DR in the AFR groups, both unstressed and stressed. Overall, our results support the idea of a match in phenotype exhibited when the early and the adult environment correspond.

  3. Mammalian motor neurons corelease glutamate and acetylcholine at central synapses

    Nishimaru, Hiroshi; Restrepo, Carlos Ernesto; Ryge, Jesper

    2005-01-01

    Motor neurons (MNs) are the principal neurons in the mammalian spinal cord whose activities cause muscles to contract. In addition to their peripheral axons, MNs have central collaterals that contact inhibitory Renshaw cells and other MNs. Since its original discovery > 60 years ago, it has been...

  4. Mechanisms of magnetic stimulation of central nervous system neurons.

    Tamar Pashut

    2011-03-01

    Full Text Available Transcranial magnetic stimulation (TMS is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.

  5. Mechanisms of magnetic stimulation of central nervous system neurons.

    Pashut, Tamar; Wolfus, Shuki; Friedman, Alex; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon

    2011-03-01

    Transcranial magnetic stimulation (TMS) is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS) is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS) with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.

  6. Central analgesic activity of the aqueous and ethanolic extracts of the leaves of Albizia lebbeck: role of the GABAergic and serotonergic pathways.

    Meshram, Girish G; Kumar, Anil; Rizvi, Waseem; Tripathi, C D; Khan, R A

    2015-01-01

    Albizia lebbeck Benth. is extensively used in Indian traditional medicine for treating several painful and inflammatory disorders. The possible central analgesic activity and the underlying mechanism of action of the aqueous (AE) and ethanolic extracts (EE) of the leaves of A. lebbeck were investigated in Wistar rats using Eddy's hot plate and the tail flick tests. In order to investigate the underlying mechanism of action, rats were pretreated with naloxone, bicuculline or methysergide and then were administered a per os (p.o.) dose of AE or EE. AE and EE caused a significant (p<0.05) elevation in the mean basal reaction time in the hot plate method and an increase in the latency time in the tail flick method. In rats pretreated with bicuculline and methysergide, a significant (p<0.05) reduction in the analgesic activity was observed in comparison to AE and EE. Thus, AE and EE exhibited significant central analgesic activity and act possibly via the GABAergic and serotonergic pathways. The flavonoids and saponins found in the leaves could be responsible for the observed effect.

  7. GABA-ergic neurons in the leach central nervous system

    Cline, H.T.

    1985-01-01

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10 -5 M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by 3 H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites

  8. Exposure to a High-Fat Diet during Early Development Programs Behavior and Impairs the Central Serotonergic System in Juvenile Non-Human Primates

    Jacqueline R. Thompson

    2017-07-01

    Full Text Available Perinatal exposure to maternal obesity and high-fat diet (HFD consumption not only poses metabolic risks to offspring but also impacts brain development and mental health. Using a non-human primate model, we observed a persistent increase in anxiety in juvenile offspring exposed to a maternal HFD. Postweaning HFD consumption also increased anxiety and independently increased stereotypic behaviors. These behavioral changes were associated with modified cortisol stress response and impairments in the development of the central serotonin synthesis, with altered tryptophan hydroxylase-2 mRNA expression in the dorsal and median raphe. Postweaning HFD consumption decreased serotonergic immunoreactivity in area 10 of the prefrontal cortex. These results suggest that perinatal exposure to HFD consumption programs development of the brain and endocrine system, leading to behavioral impairments associated with mental health and neurodevelopmental disorders. Also, an early nutritional intervention (consumption of the control diet at weaning was not sufficient to ameliorate many of the behavioral changes, such as increased anxiety, that were induced by maternal HFD consumption. Given the level of dietary fat consumption and maternal obesity in developed nations these findings have important implications for the mental health of future generations.

  9. Imaging living central neurones using viral gene transfer.

    Teschemacher, A G; Paton, J F R; Kasparov, S

    2005-01-02

    Studies of central neurones and other cellular components of the brain, such as glial and vascular cells, can be greatly advanced by the use of the modern optical techniques such as confocal live cell imaging. Fluorescent proteins have allowed imaging of particular cell types or intracellular elements to be visualised and distinguished from irrelevant background structures. To introduce the genetic information encoding for fluorescent proteins into relevant cellular targets, molecular tools are required. Viral vectors are one of the best ways of gene delivery into differentiated postnatal brain neurones and glia. Current progress in this field allows targeting of various cell types and therefore makes it possible to express a variety of fluorescent constructs in selected subpopulations of neurones, for example. In this review, we will discuss and compare the properties of the most popular viral gene delivery systems and the advantages of different brain cell preparations to illustrate how they can be used for high-resolution live cell confocal imaging in order to study new aspects of central nervous system (CNS) structure and function.

  10. Generation of Pet1210-Cre Transgenic Mouse Line Reveals Non-Serotonergic Expression Domains of Pet1 Both in CNS and Periphery

    Pelosi, Barbara; Migliarini, Sara; Pacini, Giulia; Pratelli, Marta; Pasqualetti, Massimo

    2014-01-01

    Neurons producing serotonin (5-hydroxytryptamine, 5-HT) constitute one of the most widely distributed neuronal networks in the mammalian central nervous system (CNS) and exhibit a profuse innervation throughout the CNS already at early stages of development. Serotonergic neuron specification is controlled by a combination of secreted molecules and transcription factors such as Shh, Fgf4/8, Nkx2.2, Lmx1b and Pet1. In the mouse, Pet1 mRNA expression appears between 10 and 11 days post coitum (dpc) in serotonergic post-mitotic precursors and persists in serotonergic neurons up to adulthood, where it promotes the expression of genes defining the mature serotonergic phenotype such as tryptophan hydroxylase 2 (Tph2) and serotonin transporter (SERT). Hence, the generation of genetic tools based on Pet1 specific expression represents a valuable approach to study the development and function of the serotonergic system. Here, we report the generation of a Pet1210-Cre transgenic mouse line in which the Cre recombinase is expressed under the control of a 210 kb fragment from the Pet1 genetic locus to ensure a reliable and faithful control of somatic recombination in Pet1 cell lineage. Besides Cre-mediated recombination accurately occurred in the serotonergic system as expected and according to previous studies, Pet1210-Cre transgenic mouse line allowed us to identify novel, so far uncharacterized, Pet1 expression domains. Indeed, we showed that in the raphe Pet1 is expressed also in a non-serotonergic neuronal population intermingled with Tph2-expressing cells and mostly localized in the B8 and B9 nuclei. Moreover, we detected Cre-mediated recombination also in the developing pancreas and in the ureteric bud derivatives of the kidney, where it reflected a specific Pet1 expression. Thus, Pet1210-Cre transgenic mouse line faithfully drives Cre-mediated recombination in all Pet1 expression domains representing a valuable tool to genetically manipulate serotonergic and non-serotonergic

  11. Causes and consequences of hyperexcitation in central clock neurons.

    Casey O Diekman

    Full Text Available Hyperexcited states, including depolarization block and depolarized low amplitude membrane oscillations (DLAMOs, have been observed in neurons of the suprachiasmatic nuclei (SCN, the site of the central mammalian circadian (~24-hour clock. The causes and consequences of this hyperexcitation have not yet been determined. Here, we explore how individual ionic currents contribute to these hyperexcited states, and how hyperexcitation can then influence molecular circadian timekeeping within SCN neurons. We developed a mathematical model of the electrical activity of SCN neurons, and experimentally verified its prediction that DLAMOs depend on post-synaptic L-type calcium current. The model predicts that hyperexcited states cause high intracellular calcium concentrations, which could trigger transcription of clock genes. The model also predicts that circadian control of certain ionic currents can induce hyperexcited states. Putting it all together into an integrative model, we show how membrane potential and calcium concentration provide a fast feedback that can enhance rhythmicity of the intracellular circadian clock. This work puts forward a novel role for electrical activity in circadian timekeeping, and suggests that hyperexcited states provide a general mechanism for linking membrane electrical dynamics to transcription activation in the nucleus.

  12. Involvement of autophagy upregulation in 3,4-methylenedioxymethamphetamine ('ecstasy')-induced serotonergic neurotoxicity.

    Li, I-Hsun; Ma, Kuo-Hsing; Kao, Tzu-Jen; Lin, Yang-Yi; Weng, Shao-Ju; Yen, Ting-Yin; Chen, Lih-Chi; Huang, Yuahn-Sieh

    2016-01-01

    It has been suggested that autophagy plays pathogenetic roles in cerebral ischemia, brain trauma, and neurodegenerative disorders. 3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) is an illicit drug that causes long-term serotonergic neurotoxicity in the brain. Apoptosis and necrosis have been implicated in MDMA-induced neurotoxicity, but the role of autophagy in MDMA-elicited serotonergic toxicity has not been investigated. The present study aimed to examine the contribution of autophagy to neurotoxicity in serotonergic neurons in in vitro and in vivo animal models challenged with MDMA. Here, we demonstrated that in cultured rat serotonergic neurons, MDMA exposure induced LC3B-densely stained autophagosome formation, accompanying by a decrease in neurite outgrowth. Autophagy inhibitor 3-methyladenine (3-MA) significantly attenuated MDMA-induced autophagosome accumulation, and ameliorated MDMA-triggered serotonergic neurite damage and neuron death. In contrast, enhanced autophagy flux by rapamycin or impaired autophagosome clearance by bafilomycin A1 led to more autophagosome accumulation in serotonergic neurons and aggravated neurite degeneration. In addition, MDMA-induced autophagy activation in cultured serotonergic neurons might be mediated by serotonin transporter (SERT). In an in vivo animal model administered MDMA, neuroimaging showed that 3-MA protected the serotonin system against MDMA-induced downregulation of SERT evaluated by animal-PET with 4-[(18)F]-ADAM, a SERT radioligand. Taken together, our results demonstrated that MDMA triggers upregulation of autophagy in serotonergic neurons, which appears to be detrimental to neuronal growth. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Distribution and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the Egyptian rousette flying fox, Rousettus aegyptiacus.

    Maseko, Busisiwe C; Bourne, James A; Manger, Paul R

    2007-11-01

    Over the past decade much controversy has surrounded the hypothesis that the megachiroptera, or megabats, share unique neural characteristics with the primates. These observations, which include similarities in visual pathways, have suggested that the megabats are more closely related to the primates than to the other group of the Chiropteran order, the microbats, and suggests a diphyletic origin of the Chiroptera. To contribute data relevant to this debate, we used immunohistochemical techniques to reveal the architecture of the neuromodulatory systems of the Egyptian rousette (Rousettus aegypticus), an echolocating megabat. Our findings revealed many similarities in the nuclear parcellation of the cholinergic, putative catecholaminergic and serotonergic systems with that seen in other mammals including the microbat. However, there were 11 discrete nuclei forming part of these systems in the brain of the megabat studied that were not evident in an earlier study of a microbat. The occurrence of these nuclei align the megabat studied more closely with primates than any other mammalian group and clearly distinguishes them from the microbat, which aligns with the insectivores. The neural systems investigated are not related to such Chiropteran specializations as echolocation, flight, vision or olfaction. If neural characteristics are considered strong indicators of phylogenetic relationships, then the data of the current study strongly supports the diphyletic origin of Chiroptera and aligns the megabat most closely with primates in agreement with studies of other neural characters.

  14. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis.

    Nordström, Viola; Willershäuser, Monja; Herzer, Silke; Rozman, Jan; von Bohlen Und Halbach, Oliver; Meldner, Sascha; Rothermel, Ulrike; Kaden, Sylvia; Roth, Fabian C; Waldeck, Clemens; Gretz, Norbert; de Angelis, Martin Hrabě; Draguhn, Andreas; Klingenspor, Martin; Gröne, Hermann-Josef; Jennemann, Richard

    2013-01-01

    Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis.

  15. Central Artery Stiffness, Baroreflex Sensitivity, and Brain White Matter Neuronal Fiber Integrity in Older Adults

    Tarumi, Takashi; de Jong, Daan L.K.; Zhu, David C.; Tseng, Benjamin Y.; Liu, Jie; Hill, Candace; Riley, Jonathan; Womack, Kyle B.; Kerwin, Diana R.; Lu, Hanzhang; Cullum, C. Munro; Zhang, Rong

    2015-01-01

    Cerebral hypoperfusion elevates the risk of brain white matter (WM) lesions and cognitive impairment. Central artery stiffness impairs baroreflex, which controls systemic arterial perfusion, and may deteriorate neuronal fiber integrity of brain WM. The purpose of this study was to examine the associations among brain WM neuronal fiber integrity, baroreflex sensitivity (BRS), and central artery stiffness in older adults. Fifty-four adults (65±6 years) with normal cognitive function or mild cog...

  16. Distribution and morphology of serotonin-immunoreactive neurons in the brainstem of the New Zealand white rabbit

    Bjarkam, C R; Sørensen, J C; Geneser, F A

    1997-01-01

    The aim of the present study was to demonstrate the morphology and distribution of the serotonergic neurons in the brainstem of the New Zealand white rabbit by using a highly specific immunocytochemical procedure. It was possible to divide the serotonergic neurons into a rostral group, which......, which were large and multipolar, were morphologically different from the serotonergic neurons in the midline, which were mostly small and relatively nonpolar. The serotonergic system of the New Zealand white rabbit has undergone a major lateralization, like the serotonergic system of man and higher...... and morphology, and this possible subspecialization of the serotonergic system is discussed in the context of present knowledge of serotonergic anatomy and function....

  17. Why does serotonergic activity drastically decrease during REM sleep?

    Sato, Kohji

    2013-10-01

    Here, I postulate two hypotheses that can explain the missing link between sleep and the serotonergic system in terms of spine homeostasis and memory consolidation. As dendritic spines contain many kinds of serotonin receptors, and the activation of serotonin receptors generally increases the number of spines in the cortex and hippocampus, I postulate that serotonin neurons are down-regulated during sleep to decrease spine number, which consequently maintains the total spine number at a constant level. Furthermore, since synaptic consolidation during REM sleep needs long-term potentiation (LTP), and serotonin is reported to inhibit LTP in the cortex, I postulate that serotonergic activity must drastically decrease during REM sleep to induce LTP and do memory consolidation. Until now, why serotonergic neurons show these dramatic changes in the sleep-wake cycle remains unexplained; however, making these hypotheses, I can confer physiological meanings on these dramatic changes of serotonergic neurons in terms of spine homeostasis and memory consolidation. Copyright © 2013. Published by Elsevier Ltd.

  18. Sustained neurochemical plasticity in central terminals of mouse DRG neurons following colitis.

    Benson, Jessica R; Xu, Jiameng; Moynes, Derek M; Lapointe, Tamia K; Altier, Christophe; Vanner, Stephen J; Lomax, Alan E

    2014-05-01

    Sensitization of dorsal root ganglia (DRG) neurons is an important mechanism underlying the expression of chronic abdominal pain caused by intestinal inflammation. Most studies have focused on changes in the peripheral terminals of DRG neurons in the inflamed intestine but recent evidence suggests that the sprouting of central nerve terminals in the dorsal horn is also important. Therefore, we examine the time course and reversibility of changes in the distribution of immunoreactivity for substance P (SP), a marker of the central terminals of DRG neurons, in the spinal cord during and following dextran sulphate sodium (DSS)-induced colitis in mice. Acute and chronic treatment with DSS significantly increased SP immunoreactivity in thoracic and lumbosacral spinal cord segments. This increase developed over several weeks and was evident in both the superficial laminae of the dorsal horn and in lamina X. These increases persisted for 5 weeks following cessation of both the acute and chronic models. The increase in SP immunoreactivity was not observed in segments of the cervical spinal cord, which were not innervated by the axons of colonic afferent neurons. DRG neurons dissociated following acute DSS-colitis exhibited increased neurite sprouting compared with neurons dissociated from control mice. These data suggest significant colitis-induced enhancements in neuropeptide expression in DRG neuron central terminals. Such neurotransmitter plasticity persists beyond the period of active inflammation and might contribute to a sustained increase in nociceptive signaling following the resolution of inflammation.

  19. From Structure to Activity: Using Centrality Measures to Predict Neuronal Activity.

    Fletcher, Jack McKay; Wennekers, Thomas

    2018-03-01

    It is clear that the topological structure of a neural network somehow determines the activity of the neurons within it. In the present work, we ask to what extent it is possible to examine the structural features of a network and learn something about its activity? Specifically, we consider how the centrality (the importance of a node in a network) of a neuron correlates with its firing rate. To investigate, we apply an array of centrality measures, including In-Degree, Closeness, Betweenness, Eigenvector, Katz, PageRank, Hyperlink-Induced Topic Search (HITS) and NeuronRank to Leaky-Integrate and Fire neural networks with different connectivity schemes. We find that Katz centrality is the best predictor of firing rate given the network structure, with almost perfect correlation in all cases studied, which include purely excitatory and excitatory-inhibitory networks, with either homogeneous connections or a small-world structure. We identify the properties of a network which will cause this correlation to hold. We argue that the reason Katz centrality correlates so highly with neuronal activity compared to other centrality measures is because it nicely captures disinhibition in neural networks. In addition, we argue that these theoretical findings are applicable to neuroscientists who apply centrality measures to functional brain networks, as well as offer a neurophysiological justification to high level cognitive models which use certain centrality measures.

  20. Effects of zoxazolamine and related centrally acting muscle relaxants on nigrostriatal dopaminergic neurons.

    Matthews, R T; McMillen, B A; Speciale, S G; Jarrah, H; Shore, P A; Sanghera, M K; Shepard, P D; German, D C

    1984-05-01

    The effects of zoxazolamine (ZOX) and related centrally acting muscle relaxants on striatal dopamine (DA) metabolism and turnover, and substantia nigra zona compacta DA neuronal impulse flow were studied in rats. ZOX, chlorzoxazone and mephenesin, but not meprobamate, chloral hydrate, diazepam, pentobarbital, ethanol or dantrolene, decreased striatal DA metabolism without affecting striatal DA concentrations. More specifically, ZOX, as a representative muscle relaxant, was shown to decrease striatal DA turnover without directly affecting DA synthesis, catabolism, reuptake, or release. ZOX decreased nigral DA neuronal firing rates and dramatically decreased firing rate variability (normally many of the cells fire with bursting firing patterns but after ZOX the cells often fired with a very regular pacemaker-like firing pattern). ZOX and related centrally acting muscle relaxants appear to decrease striatal DA turnover by decreasing both neuronal firing rate and firing rate variability. The possible relationships between DA neuronal activity and muscle tone are discussed.

  1. The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights into Central Nervous System Function

    Llinas, Rodolfo R.

    1988-12-01

    This article reviews the electroresponsive properties of single neurons in the mammalian central nervous system (CNS). In some of these cells the ionic conductances responsible for their excitability also endow them with autorhythmic electrical oscillatory properties. Chemical or electrical synaptic contacts between these neurons often result in network oscillations. In such networks, autorhytmic neurons may act as true oscillators (as pacemakers) or as resonators (responding preferentially to certain firing frequencies). Oscillations and resonance in the CNS are proposed to have diverse functional roles, such as (i) determining global functional states (for example, sleep-wakefulness or attention), (ii) timing in motor coordination, and (iii) specifying connectivity during development. Also, oscillation, especially in the thalamo-cortical circuits, may be related to certain neurological and psychiatric disorders. This review proposes that the autorhythmic electrical properties of central neurons and their connectivity form the basis for an intrinsic functional coordinate system that provides internal context to sensory input.

  2. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs.

    Gunaratne, Charuni A; Sakurai, Akira; Katz, Paul S

    2014-03-01

    The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs. Copyright © 2013 Wiley Periodicals, Inc.

  3. Suppression of grasshopper sound production by nitric oxide-releasing neurons of the central complex

    Weinrich, Anja; Kunst, Michael; Wirmer, Andrea; Holstein, Gay R.

    2008-01-01

    The central complex of acridid grasshoppers integrates sensory information pertinent to reproduction-related acoustic communication. Activation of nitric oxide (NO)/cyclic GMP-signaling by injection of NO donors into the central complex of restrained Chorthippus biguttulus females suppresses muscarine-stimulated sound production. In contrast, sound production is released by aminoguanidine (AG)-mediated inhibition of nitric oxide synthase (NOS) in the central body, suggesting a basal release of NO that suppresses singing in this situation. Using anti-citrulline immunocytochemistry to detect recent NO production, subtypes of columnar neurons with somata located in the pars intercerebralis and tangential neurons with somata in the ventro-median protocerebrum were distinctly labeled. Their arborizations in the central body upper division overlap with expression patterns for NOS and with the site of injection where NO donors suppress sound production. Systemic application of AG increases the responsiveness of unrestrained females to male calling songs. Identical treatment with the NOS inhibitor that increased male song-stimulated sound production in females induced a marked reduction of citrulline accumulation in central complex columnar and tangential neurons. We conclude that behavioral situations that are unfavorable for sound production (like being restrained) activate NOS-expressing central body neurons to release NO and elevate the behavioral threshold for sound production in female grasshoppers. PMID:18574586

  4. Gaze-Stabilizing Central Vestibular Neurons Project Asymmetrically to Extraocular Motoneuron Pools.

    Schoppik, David; Bianco, Isaac H; Prober, David A; Douglass, Adam D; Robson, Drew N; Li, Jennifer M B; Greenwood, Joel S F; Soucy, Edward; Engert, Florian; Schier, Alexander F

    2017-11-22

    Within reflex circuits, specific anatomical projections allow central neurons to relay sensations to effectors that generate movements. A major challenge is to relate anatomical features of central neural populations, such as asymmetric connectivity, to the computations the populations perform. To address this problem, we mapped the anatomy, modeled the function, and discovered a new behavioral role for a genetically defined population of central vestibular neurons in rhombomeres 5-7 of larval zebrafish. First, we found that neurons within this central population project preferentially to motoneurons that move the eyes downward. Concordantly, when the entire population of asymmetrically projecting neurons was stimulated collectively, only downward eye rotations were observed, demonstrating a functional correlate of the anatomical bias. When these neurons are ablated, fish failed to rotate their eyes following either nose-up or nose-down body tilts. This asymmetrically projecting central population thus participates in both upward and downward gaze stabilization. In addition to projecting to motoneurons, central vestibular neurons also receive direct sensory input from peripheral afferents. To infer whether asymmetric projections can facilitate sensory encoding or motor output, we modeled differentially projecting sets of central vestibular neurons. Whereas motor command strength was independent of projection allocation, asymmetric projections enabled more accurate representation of nose-up stimuli. The model shows how asymmetric connectivity could enhance the representation of imbalance during nose-up postures while preserving gaze stabilization performance. Finally, we found that central vestibular neurons were necessary for a vital behavior requiring maintenance of a nose-up posture: swim bladder inflation. These observations suggest that asymmetric connectivity in the vestibular system facilitates representation of ethologically relevant stimuli without

  5. Central control of circadian phase in arousal-promoting neurons.

    Carrie E Mahoney

    Full Text Available Cells of the dorsomedial/lateral hypothalamus (DMH/LH that produce hypocretin (HCRT promote arousal in part by activation of cells of the locus coeruleus (LC which express tyrosine hydroxylase (TH. The suprachiasmatic nucleus (SCN drives endogenous daily rhythms, including those of sleep and wakefulness. These circadian oscillations are generated by a transcriptional-translational feedback loop in which the Period (Per genes constitute critical components. This cell-autonomous molecular clock operates not only within the SCN but also in neurons of other brain regions. However, the phenotype of such neurons and the nature of the phase controlling signal from the pacemaker are largely unknown. We used dual fluorescent in situ hybridization to assess clock function in vasopressin, HCRT and TH cells of the SCN, DMH/LH and LC, respectively, of male Syrian hamsters. In the first experiment, we found that Per1 expression in HCRT and TH oscillated in animals held in constant darkness with a peak phase that lagged that in AVP cells of the SCN by several hours. In the second experiment, hamsters induced to split their locomotor rhythms by exposure to constant light had asymmetric Per1 expression within cells of the middle SCN at 6 h before activity onset (AO and in HCRT cells 9 h before and at AO. We did not observe evidence of lateralization of Per1 expression in the LC. We conclude that the SCN communicates circadian phase to HCRT cells via lateralized neural projections, and suggests that Per1 expression in the LC may be regulated by signals of a global or bilateral nature.

  6. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS),

  7. Serotonergic synaptic input to facial motoneurons: localization by electron-microscopic autoradiography

    Aghajanian, G K; McCall, R B [Yale Univ., New Haven, CT (USA). School of Medicine

    1980-12-01

    Serotonergic nerve terminals in the facial motor nucleus were labelled with (/sup 3/H)5-hydroxytryptamine. When serotonergic nerve terminals were destroyed (by the selective neurotoxin 5,7-dihydroxytryptamine) the labelling was lost. By electron-microscopic autoradiography, labelled serotonergic terminals were found to make axo-dendritic or axo-somatic junctions with facial motor neurons. No axo-axonic junctions were observed. These morphological findings are consistent with physiological studies which indicate that 5-hydroxytryptamine facilitates the excitation of facial motoneurons through a direct postsynaptic action.

  8. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep

    Salin Paul

    2003-09-01

    Full Text Available Abstract Background Peptidergic neurons containing the melanin-concentrating hormone (MCH and the hypocretins (or orexins are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. Results Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats. Further, we show that ICV administration of MCH induces a dose-dependant increase in PS (up to 200% and slow wave sleep (up to 70% quantities. Conclusion These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.

  9. Effects of procaine on a central neuron of the snail, Achatina fulica Ferussac.

    Lin, Chia-Hsien; Tsai, Ming-Cheng

    2005-02-18

    Effects of procaine on a central neuron (RP1) of the giant African snail (Achatina fulica Ferussac) were studied pharmacologically. The RP1 neuron showed spontaneous firing of action potential. Extra-cellular application of procaine (10 mM) reversibly elicited bursts of potential. The bursts of potential elicited by procaine were not blocked after administration of (1) prazosin, propranolol, atropine, d-tubocurarine, (2) calcium-free solution, (3) ryanodine (4) pretreatment with KT-5720 or chelerythrine. The bursts of potential elicited by procaine were blocked by adding U73122 (10 microM) and the bursts of potential were decreased if physiological sodium ion was replaced with lithium ion or incubated with either neomycin (3.5 mM) or high magnesium solution (30 mM). Preatment with U73122 (10 microM) blocked the initiation of bursts of potential. Ruthenium red (100 microM) or caffeine (10 mM) facilitated the procaine-elicited bursts of potential. It is concluded that procaine reversibly elicits bursts of potential in the central snail neuron. This effect was not directly related to (1) the extra-cellular calcium ion fluxes, (2) the ryanodine sensitive calcium channels in the neuron, or (3) the PKC or PKA related messenger systems. The procaine-elicited bursts of potential were associated with the phospholipase activity and the calcium mobilization in the neuron.

  10. Theoretical perspectives on central chemosensitivity: CO2/H+-sensitive neurons in the locus coeruleus.

    Maria C Quintero

    2017-12-01

    Full Text Available Central chemoreceptors are highly sensitive neurons that respond to changes in pH and CO2 levels. An increase in CO2/H+ typically reflects a rise in the firing rate of these neurons, which stimulates an increase in ventilation. Here, we present an ionic current model that reproduces the basic electrophysiological activity of individual CO2/H+-sensitive neurons from the locus coeruleus (LC. We used this model to explore chemoreceptor discharge patterns in response to electrical and chemical stimuli. The modeled neurons showed both stimulus-evoked activity and spontaneous activity under physiological parameters. Neuronal responses to electrical and chemical stimulation showed specific firing patterns of spike frequency adaptation, postinhibitory rebound, and post-stimulation recovery. Conversely, the response to chemical stimulation alone (based on physiological CO2/H+ changes, in the absence of external depolarizing stimulation, showed no signs of postinhibitory rebound or post-stimulation recovery, and no depolarizing sag. A sensitivity analysis for the firing-rate response to the different stimuli revealed that the contribution of an applied stimulus current exceeded that of the chemical signals. The firing-rate response increased indefinitely with injected depolarizing current, but reached saturation with chemical stimuli. Our computational model reproduced the regular pacemaker-like spiking pattern, action potential shape, and most of the membrane properties that characterize CO2/H+-sensitive neurons from the locus coeruleus. This validates the model and highlights its potential as a tool for studying the cellular mechanisms underlying the altered central chemosensitivity present in a variety of disorders such as sudden infant death syndrome, depression, and anxiety. In addition, the model results suggest that small external electrical signals play a greater role in determining the chemosensitive response to changes in CO2/H+ than previously

  11. Cell Death, Neuronal Plasticity and Functional Loading in the Development of the Central Nervous System

    Keefe, J. R.

    1985-01-01

    Research on the precise timing and regulation of neuron production and maturation in the vestibular and visual systems of Wistar rats and several inbred strains of mice (C57B16 and Pallid mutant) concentrated upon establishing a timing baseline for mitotic development of the neurons of the vestibular nuclei and the peripheral vestibular sensory structures (maculae, cristae). This involved studies of the timing and site of neuronal cell birth and preliminary studies of neuronal cell death in both central and peripheral elements of the mammalian vestibular system. Studies on neuronal generation and maturation in the retina were recently added to provide a mechanism for more properly defining the in utero' developmental age of the individual fetal subject and to closely monitor potential transplacental effects of environmentally stressed maternal systems. Information is given on current efforts concentrating upon the (1) perinatal period of development (E18 thru P14) and (2) the role of cell death in response to variation in the functional loading of the vestibular and proprioreceptive systems in developing mammalian organisms.

  12. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity

    Dieter Wicher

    2007-12-01

    Full Text Available The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR, we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH: PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage.

  13. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons

    Shi, Xuemei; Zhou, Fuguo; Li, Xiaojie; Chang, Benny; Li, Depei; Wang, Yi; Tong, Qingchun; Xu, Yong; Fukuda, Makoto; Zhao, Jean J.; Li, Defa; Burrin, Douglas G.; Chan, Lawrence; Guan, Xinfu

    2013-01-01

    Glucagon-like peptides (GLP-1/2) are co-produced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We show that mice lacking GLP-2 receptor (GLP-2R) in POMC neurons display glucose intolerance and hepatic insulin resistance. GLP-2R activation in POMC neurons is required for GLP-2 to enhance insulin-mediated suppression of hepatic glucose production (HGP) and gluconeogenesis. GLP-2 directly modulates excitability of POMC neurons in GLP-2R- and PI3K-dependent manners. GLP-2 initiates GLP-2R-p85α interaction and facilitates PI3K-Akt-dependent FoxO1 nuclear exclusion in POMC neurons. Central GLP-2 suppresses basal HGP and enhances insulin sensitivity, which are abolished in POMC-p110α KO mice. Thus, CNS GLP-2 plays a key physiological role in the control of hepatic glucose production through activating PI3K-dependent modulation of membrane excitability and nuclear transcription of POMC neurons in the brain. PMID:23823479

  14. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons.

    Shi, Xuemei; Zhou, Fuguo; Li, Xiaojie; Chang, Benny; Li, Depei; Wang, Yi; Tong, Qingchun; Xu, Yong; Fukuda, Makoto; Zhao, Jean J; Li, Defa; Burrin, Douglas G; Chan, Lawrence; Guan, Xinfu

    2013-07-02

    Glucagon-like peptides (GLP-1/GLP-2) are coproduced and highlighted as key modulators to improve glucose homeostasis and insulin sensitivity after bariatric surgery. However, it is unknown if CNS GLP-2 plays any physiological role in the control of glucose homeostasis and insulin sensitivity. We show that mice lacking GLP-2 receptor (GLP-2R) in POMC neurons display glucose intolerance and hepatic insulin resistance. GLP-2R activation in POMC neurons is required for GLP-2 to enhance insulin-mediated suppression of hepatic glucose production (HGP) and gluconeogenesis. GLP-2 directly modulates excitability of POMC neurons in GLP-2R- and PI3K-dependent manners. GLP-2 initiates GLP-2R-p85α interaction and facilitates PI3K-Akt-dependent FoxO1 nuclear exclusion in POMC neurons. Central GLP-2 suppresses basal HGP and enhances insulin sensitivity, which are abolished in POMC-p110α KO mice. Thus, CNS GLP-2 plays a key physiological role in the control of HGP through activating PI3K-dependent modulation of membrane excitability and nuclear transcription of POMC neurons in the brain. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping

    Vito Salvador Hernandez

    2016-11-01

    Full Text Available The arginine-vasopressin (AVP-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs are known for their role in hydro-electrolytic balance control via their projections to neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula, and other brain regions, in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA. The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS, consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN and supraoptic (SON nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptors mRNA were not detected, using the same method. Water-deprivation for 24 hrs, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze test, and this effect was mimicked by bilateral microinfusion of VP into the CeA. Anxious behavior induced by either water deprivation or VP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of central amygdala inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.

  16. Neurofilament protein synthesis in DRG neurons decreases more after peripheral axotomy than after central axotomy

    Greenberg, S.G.; Lasek, R.J.

    1988-01-01

    Cytoskeletal protein synthesis was studied in DRG neurons after transecting either their peripheral or their central branch axons. Specifically, the axons were transected 5-10 mm from the lumbar-5 ganglion on one side of the animal; the DRGs from the transected side and contralateral control side were labeled with radiolabeled amino acids in vitro; radiolabeled proteins were separated by 2-dimensional (2D) PAGE; and the amounts of radiolabel in certain proteins of the experimental and control ganglia were quantified and compared. We focused on the neurofilament proteins because they are neuron-specific. If either the peripheral or central axons were cut, the amounts of radiolabeled neurofilament protein synthesized by the DRG neurons decreased between 1 and 10 d after transection. Neurofilament protein labeling decreased more after transection of the peripheral axons than after transection of the central axons. In contrast to axonal transections, sham operations or heat shock did not decrease the radiolabeling of the neurofilament proteins, and these procedures also affected the labeling of actin, tubulin, and the heat-shock proteins differently from transection. These results and others indicate that axonal transection leads to specific changes in the synthesis of cytoskeletal proteins of DRG neurons, and that these changes differ from those produced by stress to the animal or ganglia. Studies of the changes in neurofilament protein synthesis from 1 to 40 d after axonal transection indicate that the amounts of radiolabeled neurofilament protein synthesis were decreased during axonal elongation, but that they returned toward control levels when the axons reached cells that stopped elongation

  17. Central Artery Stiffness, Baroreflex Sensitivity, and Brain White Matter Neuronal Fiber Integrity in Older Adults

    Tarumi, Takashi; de Jong, Daan L.K.; Zhu, David C.; Tseng, Benjamin Y.; Liu, Jie; Hill, Candace; Riley, Jonathan; Womack, Kyle B.; Kerwin, Diana R.; Lu, Hanzhang; Cullum, C. Munro; Zhang, Rong

    2015-01-01

    Cerebral hypoperfusion elevates the risk of brain white matter (WM) lesions and cognitive impairment. Central artery stiffness impairs baroreflex, which controls systemic arterial perfusion, and may deteriorate neuronal fiber integrity of brain WM. The purpose of this study was to examine the associations among brain WM neuronal fiber integrity, baroreflex sensitivity (BRS), and central artery stiffness in older adults. Fifty-four adults (65±6 years) with normal cognitive function or mild cognitive impairment (MCI) were tested. The neuronal fiber integrity of brain WM was assessed from diffusion metrics acquired by diffusion tensor imaging. BRS was measured in response to acute changes in blood pressure induced by bolus injections of vasoactive drugs. Central artery stiffness was measured by carotid-femoral pulse wave velocity (cfPWV). The WM diffusion metrics including fractional anisotropy (FA) and radial (RD) and axial (AD) diffusivities, BRS, and cfPWV were not different between the control and MCI groups. Thus, the data from both groups were combined for subsequent analyses. Across WM, fiber tracts with decreased FA and increased RD were associated with lower BRS and higher cfPWV, with many of the areas presenting spatial overlap. In particular, the BRS assessed during hypotension was strongly correlated with FA and RD when compared with hypertension. Executive function performance was associated with FA and RD in the areas that correlated with cfPWV and BRS. These findings suggest that baroreflex-mediated control of systemic arterial perfusion, especially during hypotension, may play a crucial role in maintaining neuronal fiber integrity of brain WM in older adults. PMID:25623500

  18. Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds

    Carlin, Michael A.; Elhilali, Mounya

    2013-01-01

    The processing characteristics of neurons in the central auditory system are directly shaped by and reflect the statistics of natural acoustic environments, but the principles that govern the relationship between natural sound ensembles and observed responses in neurophysiological studies remain unclear. In particular, accumulating evidence suggests the presence of a code based on sustained neural firing rates, where central auditory neurons exhibit strong, persistent responses to their prefe...

  19. Fragile X Mental Retardation Protein Restricts Small Dye Iontophoresis Entry into Central Neurons.

    Kennedy, Tyler; Broadie, Kendal

    2017-10-11

    Fragile X mental retardation protein (FMRP) loss causes Fragile X syndrome (FXS), a major disorder characterized by autism, intellectual disability, hyperactivity, and seizures. FMRP is both an RNA- and channel-binding regulator, with critical roles in neural circuit formation and function. However, it remains unclear how these FMRP activities relate to each other and how dysfunction in their absence underlies FXS neurological symptoms. In testing circuit level defects in the Drosophila FXS model, we discovered a completely unexpected and highly robust neuronal dye iontophoresis phenotype in the well mapped giant fiber (GF) circuit. Controlled dye injection into the GF interneuron results in a dramatic increase in dye uptake in neurons lacking FMRP. Transgenic wild-type FMRP reintroduction rescues the mutant defect, demonstrating a specific FMRP requirement. This phenotype affects only small dyes, but is independent of dye charge polarity. Surprisingly, the elevated dye iontophoresis persists in shaking B mutants that eliminate gap junctions and dye coupling among GF circuit neurons. We therefore used a wide range of manipulations to investigate the dye uptake defect, including timed injection series, pharmacology and ion replacement, and optogenetic activity studies. The results show that FMRP strongly limits the rate of dye entry via a cytosolic mechanism. This study reveals an unexpected new phenotype in a physical property of central neurons lacking FMRP that could underlie aspects of FXS disruption of neural function. SIGNIFICANCE STATEMENT FXS is a leading heritable cause of intellectual disability and autism spectrum disorders. Although researchers established the causal link with FMRP loss >;25 years ago, studies continue to reveal diverse FMRP functions. The Drosophila FXS model is key to discovering new FMRP roles, because of its genetic malleability and individually identified neuron maps. Taking advantage of a well characterized Drosophila neural

  20. Different types of centrally acting antihypertensives and their targets in the central nervous system

    van Zwieten, P. A.; Chalmers, J. P.

    1994-01-01

    The central regulation of blood pressure and other cardiovascular parameters may involve the baroreceptor reflex are, including both adrenergic and serotonergic pathways, as well as amino acids, as neurotransmitters. Both adrenergic and serotonergic pathways have been recognized as targets for

  1. Exercise-induced neuronal plasticity in central autonomic networks: role in cardiovascular control.

    Michelini, Lisete C; Stern, Javier E

    2009-09-01

    It is now well established that brain plasticity is an inherent property not only of the developing but also of the adult brain. Numerous beneficial effects of exercise, including improved memory, cognitive function and neuroprotection, have been shown to involve an important neuroplastic component. However, whether major adaptive cardiovascular adjustments during exercise, needed to ensure proper blood perfusion of peripheral tissues, also require brain neuroplasticity, is presently unknown. This review will critically evaluate current knowledge on proposed mechanisms that are likely to underlie the continuous resetting of baroreflex control of heart rate during/after exercise and following exercise training. Accumulating evidence indicates that not only somatosensory afferents (conveyed by skeletal muscle receptors, baroreceptors and/or cardiopulmonary receptors) but also projections arising from central command neurons (in particular, peptidergic hypothalamic pre-autonomic neurons) converge into the nucleus tractus solitarii (NTS) in the dorsal brainstem, to co-ordinate complex cardiovascular adaptations during dynamic exercise. This review focuses in particular on a reciprocally interconnected network between the NTS and the hypothalamic paraventricular nucleus (PVN), which is proposed to act as a pivotal anatomical and functional substrate underlying integrative feedforward and feedback cardiovascular adjustments during exercise. Recent findings supporting neuroplastic adaptive changes within the NTS-PVN reciprocal network (e.g. remodelling of afferent inputs, structural and functional neuronal plasticity and changes in neurotransmitter content) will be discussed within the context of their role as important underlying cellular mechanisms supporting the tonic activation and improved efficacy of these central pathways in response to circulatory demand at rest and during exercise, both in sedentary and in trained individuals. We hope this review will stimulate

  2. Action potential bursts in central snail neurons elicited by paeonol: roles of ionic currents

    Chen, Yi-hung; Lin, Pei-lin; Hsu, Hui-yu; Wu, Ya-ting; Yang, Han-yin; Lu, Dah-yuu; Huang, Shiang-suo; Hsieh, Ching-liang; Lin, Jaung-geng

    2010-01-01

    Aim: To investigate the effects of 2′-hydroxy-4′-methoxyacetophenone (paeonol) on the electrophysiological behavior of a central neuron (right parietal 4; RP4) of the giant African snail (Achatina fulica Ferussac). Methods: Intracellular recordings and the two-electrode voltage clamp method were used to study the effects of paeonol on the RP4 neuron. Results: The RP4 neuron generated spontaneous action potentials. Bath application of paeonol at a concentration of ≥500 μmol/L reversibly elicited action potential bursts in a concentration-dependent manner. Immersing the neurons in Co2+-substituted Ca2+-free solution did not block paeonol-elicited bursting. Pretreatment with the protein kinase A (PKA) inhibitor KT-5720 or the protein kinase C (PKC) inhibitor Ro 31-8220 did not affect the action potential bursts. Voltage-clamp studies revealed that paeonol at a concentration of 500 μmol/L had no remarkable effects on the total inward currents, whereas paeonol decreased the delayed rectifying K+ current (IKD) and the fast-inactivating K+ current (IA). Application of 4-aminopyridine (4-AP 5 mmol/L), an inhibitor of IA, or charybdotoxin 250 nmol/L, an inhibitor of the Ca2+-activated K+ current (IK(Ca)), failed to elicit action potential bursts, whereas tetraethylammonium chloride (TEA 50 mmol/L), an IKD blocker, successfully elicited action potential bursts. At a lower concentration of 5 mmol/L, TEA facilitated the induction of action potential bursts elicited by paeonol. Conclusion: Paeonol elicited a bursting firing pattern of action potentials in the RP4 neuron and this activity relates closely to the inhibitory effects of paeonol on the IKD. PMID:21042287

  3. Ultrastructure of GABA- and tachykinin-immunoreactive neurons in the lower division of the central body of the desert locust

    Uwe Homberg

    2016-12-01

    Full Text Available The central complex, a group of neuropils spanning the midline of the insect brain, plays a key role in spatial orientation and navigation. In the desert locust and other species, many neurons of the central complex are sensitive to the oscillation plane of polarized light above the animal and are likely involved in the coding of compass directions derived from the polarization pattern of the sky. Polarized light signals enter the locust central complex primarily through two types of -aminobutyric acid (GABA-immunoreactive tangential neurons, termed TL2 and TL3 that innervate specific layers of the lower division of the central body (CBL. Candidate postsynaptic partners are columnar neurons (CL1 connecting the CBL to the protocerebral bridge. Subsets of CL1 neurons are immunoreactive to antisera against locustatachykinin (LomTK. To better understand the synaptic connectivities of tangential and columnar neurons in the CBL, we studied its ultrastructural organization in the desert locust, both with conventional electron microscopy and in preparations immunolabeled for GABA or LomTK. Neuronal profiles in the CBL were rich in mitochondria and vesicles. Three types of vesicles were distinguished: small clear vesicles with diameters of 20-40 nm, dark dense-core vesicles (diameter 70-120 nm, and granular dense-core vesicles (diameter 70-80 nm. Neurons were connected via divergent dyads and, less frequently, through convergent dyads. GABA-immunoreactive neurons contained small clear vesicles and small numbers of dark dense core vesicles. They had both pre- and postsynaptic contacts but output synapses were observed more frequently than input synapses. LomTK immunostaining was concentrated on large granular vesicles; neurons had pre- and postsynaptic connections often with neurons assumed to be GABAergic. The data suggest that GABA-immunoreactive tangential neurons provide signals to postsynaptic neurons in the CBL, including LomTK-immunolabeled CL1

  4. Distribution and morphology of serotonin-immunoreactive neurons in the brainstem of the New Zealand white rabbit

    Bjarkam, C R; Sørensen, J C; Geneser, F A

    1997-01-01

    The aim of the present study was to demonstrate the morphology and distribution of the serotonergic neurons in the brainstem of the New Zealand white rabbit by using a highly specific immunocytochemical procedure. It was possible to divide the serotonergic neurons into a rostral group, which......, which were large and multipolar, were morphologically different from the serotonergic neurons in the midline, which were mostly small and relatively nonpolar. The serotonergic system of the New Zealand white rabbit has undergone a major lateralization, like the serotonergic system of man and higher...

  5. Loss of serotonin 2A receptors exceeds loss of serotonergic projections in early Alzheimer's disease

    Marner, Lisbeth; Frøkjær, Vibe; Kalbitzer, Jan

    2012-01-01

    and the serotonin transporter binding, the latter as a measure of serotonergic projections and neurons. Twelve patients with AD (average Mini Mental State Examination [MMSE]: 24) and 11 healthy age-matched subjects underwent positron emission tomography (PET) scanning with [(18)F]altanserin and [(11)C...

  6. Apoptosis of supraoptic AVP neurons is involved in the development of central diabetes insipidus after hypophysectomy in rats

    Huang Lijin

    2008-06-01

    Full Text Available Abstract Background It has been reported that various types of axonal injury of hypothalamo-neurohypophyseal tract can result in degeneration of the magnocellular neurons (MCNs in hypothalamus and development of central diabetes insipidus (CDI. However, the mechanism of the degeneration and death of MCNs after hypophysectomy in vivo is still unclear. This present study was aimed to disclose it and to figure out the dynamic change of central diabetes insipidus after hypophysectomy. Results The analysis on the dynamic change of daily water consumption (DWC, daily urine volume(DUV, specific gravity of urine(USG and plasma vasopressin concentration showed that the change pattern of them was triphasic and neuron counting showed that the degeneration of vasopressin neurons began at 10 d, aggravated at 20 d and then stabilized at 30 d after hypophysectomy. There was marked upregulation of cleaved Caspase-3 expression of vasopressin neurons in hypophysectomy rats. A "ladder" pattern of migration of DNA internucleosomal fragments was detected and apoptotic ultrastructure was found in these neurons. There was time correlation among the occurrence of diabetes insipidus, the changes of plasma vasopressin concentration and the degeneration of vasopressin neurons after hypophysectomy. Conclusion This study firstly demonstrated that apoptosis was involved in degeneration of supraoptic vasopressin neurons after hypophysectomy in vivo and development of CDI. Our study on time course and correlations among water metabolism, degeneration and apoptosis of vasopressin neurons suggested that there should be an efficient therapeutic window in which irreversible CDI might be prevented by anti-apoptosis.

  7. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.

    Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O

    2015-12-01

    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.

  8. Serotonergic control of the developing cerebellum

    Oostland, M.

    2013-01-01

    The work described in this thesis gives insights in the mechanism behind the serotonergic control of the cerebellum during postnatal development. The findings present a powerful role for serotonin in the physiology of the developing cerebellum. The effects of the serotonergic control extend both

  9. Differential serotonergic innervation of the amygdala in bonobos and chimpanzees.

    Stimpson, Cheryl D; Barger, Nicole; Taglialatela, Jared P; Gendron-Fitzpatrick, Annette; Hof, Patrick R; Hopkins, William D; Sherwood, Chet C

    2016-03-01

    Humans' closest living relatives are bonobos (Pan paniscus) and chimpanzees (Pan troglodytes), yet these great ape species differ considerably from each other in terms of social behavior. Bonobos are more tolerant of conspecifics in competitive contexts and often use sexual behavior to mediate social interactions. Chimpanzees more frequently employ aggression during conflicts and actively patrol territories between communities. Regulation of emotional responses is facilitated by the amygdala, which also modulates social decision-making, memory and attention. Amygdala responsiveness is further regulated by the neurotransmitter serotonin. We hypothesized that the amygdala of bonobos and chimpanzees would differ in its neuroanatomical organization and serotonergic innervation. We measured volumes of regions and the length density of serotonin transporter-containing axons in the whole amygdala and its lateral, basal, accessory basal and central nuclei. Results showed that accessory basal nucleus volume was larger in chimpanzees than in bonobos. Of particular note, the amygdala of bonobos had more than twice the density of serotonergic axons than chimpanzees, with the most pronounced differences in the basal and central nuclei. These findings suggest that variation in serotonergic innervation of the amygdala may contribute to mediating the remarkable differences in social behavior exhibited by bonobos and chimpanzees. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  10. Serotonergic mechanisms in the migraine brain

    Christensen, Marie Deen; Christensen, Casper Emil; Hougaard, Anders

    2017-01-01

    role of brain serotonergic mechanisms remains a matter of controversy. Methods We systematically searched PubMed for studies investigating the serotonergic system in the migraine brain by either molecular neuroimaging or electrophysiological methods. Results The literature search resulted in 59 papers......, of which 13 were eligible for review. The reviewed papers collectively support the notion that migraine patients have alterations in serotonergic neurotransmission. Most likely, migraine patients have a low cerebral serotonin level between attacks, which elevates during a migraine attack. Conclusion...... This review suggests that novel methods of investigating the serotonergic system in the migraine brain are warranted. Uncovering the serotonergic mechanisms in migraine pathophysiology could prove useful for the development of future migraine drugs....

  11. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.

    Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H

    2012-10-25

    Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in

  12. Disruption of the Serotonergic System after Neonatal Hypoxia-Ischemia in a Rodent Model

    Kathryn M. Buller

    2012-01-01

    Full Text Available Identifying which specific neuronal phenotypes are vulnerable to neonatal hypoxia-ischemia, where in the brain they are damaged, and the mechanisms that produce neuronal losses are critical to determine the anatomical substrates responsible for neurological impairments in hypoxic-ischemic brain-injured neonates. Here we describe our current work investigating how the serotonergic network in the brain is disrupted in a rodent model of preterm hypoxia-ischemia. One week after postnatal day 3 hypoxia-ischemia, losses of serotonergic raphé neurons, reductions in serotonin levels in the brain, and reduced serotonin transporter expression are evident. These changes can be prevented using two anti-inflammatory interventions; the postinsult administration of minocycline or ibuprofen. However, each drug has its own limitations and benefits for use in neonates to stem damage to the serotonergic network after hypoxia-ischemia. By understanding the fundamental mechanisms underpinning hypoxia-ischemia-induced serotonergic damage we will hopefully move closer to developing a successful clinical intervention to treat neonatal brain injury.

  13. Opposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex

    Daniel W. Sparks

    2018-01-01

    Full Text Available Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh and serotonin (5-HT have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.

  14. Opposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex.

    Sparks, Daniel W; Tian, Michael K; Sargin, Derya; Venkatesan, Sridevi; Intson, Katheron; Lambe, Evelyn K

    2017-01-01

    Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh) and serotonin (5-HT) have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.

  15. Modulation of anxiety circuits by serotonergic systems

    Lowry, Christopher A; Johnson, Philip L; Hay-Schmidt, Anders

    2005-01-01

    of emotionally salient events, often when both rewarding and aversive outcomes are possible. In this review, we highlight recent advances in our understanding of the neural circuits regulating anxiety states and anxiety-related behavior with an emphasis on the role of brainstem serotonergic systems in modulating...... anxiety-related circuits. In particular, we explore the possibility that the regulation of anxiety states and anxiety-related behavior by serotonergic systems is dependent on a specific, topographically organized mesolimbocortical serotonergic system that originates in the mid-rostrocaudal and caudal...

  16. Serotonergic neurotransmission in emotional processing

    Laursen, Helle Ruff; Henningsson, Susanne; Macoveanu, Julian

    2016-01-01

    ,4-methylene-dioxymethamphetamine [MDMA]) induces alterations in serotonergic neurotransmission that are comparable to those observed in a depleted state. In this functional magnetic resonance imaging (fMRI) study, we investigated the responsiveness of the amygdala to emotional face stimuli in recreational...... ecstasy users as a model of long-term serotonin depletion. Fourteen ecstasy users and 12 non-using controls underwent fMRI to measure the regional neural activity elicited in the amygdala by male or female faces expressing anger, disgust, fear, sadness, or no emotion. During fMRI, participants made a sex...... judgement on each face stimulus. Positron emission tomography with (11)C-DASB was additionally performed to assess serotonin transporter (SERT) binding in the brain. In the ecstasy users, SERT binding correlated negatively with amygdala activity, and accumulated lifetime intake of ecstasy tablets...

  17. A novel CaV2.2 channel inhibition by piracetam in peripheral and central neurons.

    Bravo-Martínez, Jorge; Arenas, Isabel; Vivas, Oscar; Rebolledo-Antúnez, Santiago; Vázquez-García, Mario; Larrazolo, Arturo; García, David E

    2012-10-01

    No mechanistic actions for piracetam have been documented to support its nootropic effects. Voltage-gated calcium channels have been proposed as a promising pharmacological target of nootropic drugs. In this study, we investigated the effect of piracetam on Ca(V)2.2 channels in peripheral neurons, using patch-clamp recordings from cultured superior cervical ganglion neurons. In addition, we tested if Ca(V)2.2 channel inhibition could be related with the effects of piracetam on central neurons. We found that piracetam inhibited native Ca(V)2.2 channels in superior cervical ganglion neurons in a dose-dependent manner, with an IC(50) of 3.4 μmol/L and a Hill coefficient of 1.1. GDPβS dialysis did not prevent piracetam-induced inhibition of Ca(V)2.2 channels and G-protein-coupled receptor activation by noradrenaline did not occlude the piracetam effect. Piracetam altered the biophysical characteristics of Ca(V)2.2 channel such as facilitation ratio. In hippocampal slices, piracetam and ω-conotoxin GVIA diminished the frequency of excitatory postsynaptic potentials and action potentials. Our results provide evidence of piracetam's actions on Ca(V)2.2 channels in peripheral neurons, which might explain some of its nootropic effects in central neurons.

  18. Localization of Motor Neurons and Central Pattern Generators for Motor Patterns Underlying Feeding Behavior in Drosophila Larvae.

    Sebastian Hückesfeld

    Full Text Available Motor systems can be functionally organized into effector organs (muscles and glands, the motor neurons, central pattern generators (CPG and higher control centers of the brain. Using genetic and electrophysiological methods, we have begun to deconstruct the motor system driving Drosophila larval feeding behavior into its component parts. In this paper, we identify distinct clusters of motor neurons that execute head tilting, mouth hook movements, and pharyngeal pumping during larval feeding. This basic anatomical scaffold enabled the use of calcium-imaging to monitor the neural activity of motor neurons within the central nervous system (CNS that drive food intake. Simultaneous nerve- and muscle-recordings demonstrate that the motor neurons innervate the cibarial dilator musculature (CDM ipsi- and contra-laterally. By classical lesion experiments we localize a set of CPGs generating the neuronal pattern underlying feeding movements to the subesophageal zone (SEZ. Lesioning of higher brain centers decelerated all feeding-related motor patterns, whereas lesioning of ventral nerve cord (VNC only affected the motor rhythm underlying pharyngeal pumping. These findings provide a basis for progressing upstream of the motor neurons to identify higher regulatory components of the feeding motor system.

  19. A central pattern generator producing alternative outputs: phase relations of leech heart motor neurons with respect to premotor synaptic input.

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts: synchronous and peristaltic. Using extracellular techniques, we recorded, in 61 isolated nerve cords, the activity of motor neurons in conjunction with the phase reference premotor heart interneuron, HN(4), and another premotor interneuron that allowed us to assess the coordination mode. These data were then coupled with a previous description of the temporal pattern of premotor interneuron activity in the two coordination modes to synthesize a global phase diagram for the known elements of the CPG and the entire motor neuron ensemble. These average data reveal the stereotypical side-to-side asymmetric patterns of intersegmental coordination among the motor neurons and show how this pattern meshes with the activity pattern of premotor interneurons. Analysis of animal-to-animal variability in this coordination indicates that the intersegmental phase progression of motor neuron activity in the midbody in the peristaltic coordination mode is the most stereotypical feature of the fictive motor pattern. Bilateral recordings from motor neurons corroborate the main features of the asymmetric motor pattern.

  20. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits.

    Wolff, Tanya; Iyer, Nirmala A; Rubin, Gerald M

    2015-05-01

    Insects exhibit an elaborate repertoire of behaviors in response to environmental stimuli. The central complex plays a key role in combining various modalities of sensory information with an insect's internal state and past experience to select appropriate responses. Progress has been made in understanding the broad spectrum of outputs from the central complex neuropils and circuits involved in numerous behaviors. Many resident neurons have also been identified. However, the specific roles of these intricate structures and the functional connections between them remain largely obscure. Significant gains rely on obtaining a comprehensive catalog of the neurons and associated GAL4 lines that arborize within these brain regions, and on mapping neuronal pathways connecting these structures. To this end, small populations of neurons in the Drosophila melanogaster central complex were stochastically labeled using the multicolor flip-out technique and a catalog was created of the neurons, their morphologies, trajectories, relative arrangements, and corresponding GAL4 lines. This report focuses on one structure of the central complex, the protocerebral bridge, and identifies just 17 morphologically distinct cell types that arborize in this structure. This work also provides new insights into the anatomical structure of the four components of the central complex and its accessory neuropils. Most strikingly, we found that the protocerebral bridge contains 18 glomeruli, not 16, as previously believed. Revised wiring diagrams that take into account this updated architectural design are presented. This updated map of the Drosophila central complex will facilitate a deeper behavioral and physiological dissection of this sophisticated set of structures. © 2014 Wiley Periodicals, Inc.

  1. Resibufogenin and cinobufagin activate central neurons through an ouabain-like action.

    Ze-Jun Wang

    Full Text Available Cinobufagin and resibufogenin are two major effective bufadienolides of Chan su (toad venom, which is a Chinese medicine obtained from the skin venom gland of toads and is used as a cardiotonic and central nervous system (CNS respiratory agent, an analgesic and anesthetic, and as a remedy for ulcers. Many clinical cases showed that Chan su has severe side-effects on the CNS, causing shortness of breath, breathlessness, seizure, coma and cardiac arrhythmia. We used whole-cell recordings from brain slices to determine the effects of bufadienolides on excitability of a principal neuron in main olfactory bulb (MOB, mitral cells (MCs, and the cellular mechanism underlying the excitation. At higher concentrations, cinobufagin and resibufogenin induced irreversible over-excitation of MCs indicating a toxic effect. At lower concentrations, they concentration-dependently increased spontaneous firing rate, depolarized the membrane potential of MCs, and elicited inward currents. The excitatory effects were due to a direct action on MCs rather than an indirect phasic action. Bufadienolides and ouabain had similar effects on firing of MCs which suggested that bufadienolides activated neuron through a ouabain-like effect, most likely by inhibiting Na+/K+-ATPase. The direct action of bufadienolide on brain Na+ channels was tested by recordings from stably Nav1.2-transfected cells. Bufadienolides failed to make significant changes of the main properties of Nav1.2 channels in current amplitude, current-voltage (I-V relationships, activation and inactivation. Our results suggest that inhibition of Na+/K+-ATPase may be involved in both the pharmacological and toxic effects of bufadienolide-evoked CNS excitation.

  2. A central pattern generator producing alternative outputs: pattern, strength, and dynamics of premotor synaptic input to leech heart motor neurons.

    Norris, Brian J; Weaver, Adam L; Wenning, Angela; García, Paul S; Calabrese, Ronald L

    2007-11-01

    The central pattern generator (CPG) for heartbeat in medicinal leeches consists of seven identified pairs of segmental heart interneurons and one unidentified pair. Four of the identified pairs and the unidentified pair of interneurons make inhibitory synaptic connections with segmental heart motor neurons. The CPG produces a side-to-side asymmetric pattern of intersegmental coordination among ipsilateral premotor interneurons corresponding to a similarly asymmetric fictive motor pattern in heart motor neurons, and asymmetric constriction pattern of the two tubular hearts, synchronous and peristaltic. Using extracellular recordings from premotor interneurons and voltage-clamp recordings of ipsilateral segmental motor neurons in 69 isolated nerve cords, we assessed the strength and dynamics of premotor inhibitory synaptic output onto the entire ensemble of heart motor neurons and the associated conduction delays in both coordination modes. We conclude that premotor interneurons establish a stereotypical pattern of intersegmental synaptic connectivity, strengths, and dynamics that is invariant across coordination modes, despite wide variations among preparations. These data coupled with a previous description of the temporal pattern of premotor interneuron activity and relative phasing of motor neuron activity in the two coordination modes enable a direct assessment of how premotor interneurons through their temporal pattern of activity and their spatial pattern of synaptic connectivity, strengths, and dynamics coordinate segmental motor neurons into a functional pattern of activity.

  3. Iodine 125-lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells

    Yagaloff, K.A.; Hartig, P.R.

    1985-01-01

    125 I-Lysergic acid diethylamide ( 125 I-LSD) binds with high affinity to serotonergic sites on rat choroid plexus. These sites were localized to choroid plexus epithelial cells by use of a novel high resolution stripping film technique for light microscopic autoradiography. In membrane preparations from rat choroid plexus, the serotonergic site density was 3100 fmol/mg of protein, which is 10-fold higher than the density of any other serotonergic site in brain homogenates. The choroid plexus site exhibits a novel pharmacology that does not match the properties of 5-hydroxytryptamine-1a (5-HT1a), 5-HT1b, or 5-HT2 serotonergic sites. 125 I-LSD binding to the choroid plexus site is potently inhibited by mianserin, serotonin, and (+)-LSD. Other serotonergic, dopaminergic, and adrenergic agonists and antagonists exhibit moderate to weak affinities for this site. The rat choroid plexus 125 I-LSD binding site appears to represent a new type of serotonergic site which is located on non-neuronal cells in this tissue

  4. Frameworking memory and serotonergic markers.

    Meneses, Alfredo

    2017-07-26

    The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals' species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7 receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.

  5. Mangiferin Upregulates Glyoxalase 1 Through Activation of Nrf2/ARE Signaling in Central Neurons Cultured with High Glucose.

    Liu, Yao-Wu; Cheng, Ya-Qin; Liu, Xiao-Li; Hao, Yun-Chao; Li, Yu; Zhu, Xia; Zhang, Fan; Yin, Xiao-Xing

    2017-08-01

    Mangiferin, a natural C-glucoside xanthone, has anti-inflammatory, anti-oxidative, neuroprotective actions. Our previous study showed that mangiferin could attenuate diabetes-associated cognitive impairment of rats by enhancing the function of glyoxalase 1 (Glo-1) in brain. The aim of this study was to investigate whether Glo-1 upregulation by mangiferin in central neurons exposed to chronic high glucose may be related to activation of Nrf2/ARE pathway. Compared with normal glucose (25 mmol/L) culture, Glo-1 protein, mRNA, and activity levels were markedly decreased in primary hippocampal and cerebral cortical neurons cultured with high glucose (50 mmol/L) for 72 h, accompanied by the declined Nrf2 nuclear translocation and protein expression of Nrf2 in cell nucleus, as well as protein expression and mRNA level of γ-glutamylcysteine synthetase (γ-GCS) and superoxide dismutase activity, target genes of Nrf2/ARE signaling. Nonetheless, high glucose cotreating with mangiferin or sulforaphane, a typical inducer of Nrf2 activation, attenuated the above changes in both central neurons. In addition, mangiferin and sulforaphane significantly prevented the formation of advanced glycation end-products (AGEs) reflecting Glo-1 activity, while elevated the level of glutathione, a cofactor of Glo-1 activity and production of γ-GCS, in high glucose cultured central neurons. These findings demonstrated that Glo-1 was greatly downregulated in central neurons exposed to chronic high glucose, which is expected to lead the formation of AGEs and oxidative stress damages. We also proved that mangiferin enhanced the function of Glo-1 under high glucose condition by inducing activation of Nrf2/ARE signaling pathway.

  6. Exposure to an open-field arena increases c-Fos expression in a subpopulation of neurons in the dorsal raphe nucleus, including neurons projecting to the basolateral amygdaloid complex

    Hale, M.W.; Hay-Schmidt, A.; Mikkelsen, J.D.

    2008-01-01

    Serotonergic systems in the dorsal raphe nucleus are thought to play an important role in the regulation of anxiety states. To investigate responses of neurons in the dorsal raphe nucleus to a mild anxiety-related stimulus, we exposed rats to an open-field, under low-light or high-light conditions....... Treatment effects on c-Fos expression in serotonergic and non-serotonergic cells in the midbrain raphe nuclei were determined 2 h following open-field exposure or home cage control (CO) conditions. Rats tested under both light conditions responded with increases in c-Fos expression in serotonergic neurons...... within subdivisions of the midbrain raphe nuclei compared with CO rats. However, the total numbers of serotonergic neurons involved were small suggesting that exposure to the open-field may affect a subpopulation of serotonergic neurons. To determine if exposure to the open-field activates a subset...

  7. Valproic acid silencing of ascl1b/Ascl1 results in the failure of serotonergic differentiation in a zebrafish model of fetal valproate syndrome

    John Jacob

    2014-01-01

    Full Text Available Fetal valproate syndrome (FVS is caused by in utero exposure to the drug sodium valproate. Valproate is used worldwide for the treatment of epilepsy, as a mood stabiliser and for its pain-relieving properties. In addition to birth defects, FVS is associated with an increased risk of autism spectrum disorder (ASD, which is characterised by abnormal behaviours. Valproate perturbs multiple biochemical pathways and alters gene expression through its inhibition of histone deacetylases. Which, if any, of these mechanisms is relevant to the genesis of its behavioural side effects is unclear. Neuroanatomical changes associated with FVS have been reported and, among these, altered serotonergic neuronal differentiation is a consistent finding. Altered serotonin homeostasis is also associated with autism. Here we have used a chemical-genetics approach to investigate the underlying molecular defect in a zebrafish FVS model. Valproate causes the selective failure of zebrafish central serotonin expression. It does so by downregulating the proneural gene ascl1b, an ortholog of mammalian Ascl1, which is a known determinant of serotonergic identity in the mammalian brainstem. ascl1b is sufficient to rescue serotonin expression in valproate-treated embryos. Chemical and genetic blockade of the histone deacetylase Hdac1 downregulates ascl1b, consistent with the Hdac1-mediated silencing of ascl1b expression by valproate. Moreover, tonic Notch signalling is crucial for ascl1b repression by valproate. Concomitant blockade of Notch signalling restores ascl1b expression and serotonin expression in both valproate-exposed and hdac1 mutant embryos. Together, these data provide a molecular explanation for serotonergic defects in FVS and highlight an epigenetic mechanism for genome-environment interaction in disease.

  8. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats.

    Lemon, Christian H; Wilson, David M; Brasser, Susan M

    2011-12-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S(1)) or relatively low (S(0)) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S(1) neurons that were larger than those in S(0) cells. Although responses to ethanol by S(1) cells did not differ between lines, neuronal firing rates to ethanol in S(0) cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol.

  9. Effects of penicillin on procaine-elicited bursts of potential in central neuron of snail, Achatina fulica.

    Chen, Yi-Hung; Lu, Kuan-Ling; Hsiao, Ru-Wan; Lee, Ya-Ling; Tsai, Hong-Chieh; Lin, Chia Hsien; Tsai, Ming-Cheng

    2008-08-01

    Effects of penicillin on changes in procaine-elicited bursts of potential (BoP) were studied in a central neuron (RP4) of snail, Achatina fulica Ferussac. Procaine elicited BoP in the RP4 neuron while penicillin elicited depolarization of the neuron. Penicillin decreased the BoP elicited by procaine in a concentration-dependent manner. The effect of penicillin on the procaine-elicited BoP was not altered in the preparations treated with ascorbate or L-NAME (N-nitro-L-arginine methyl ester). However, the inhibitory effect of penicillin on the procaine-elicited BoP was enhanced with a decrease in extracellular sodium ion. Sodium ion was one of the important ions contributing to the action potential of the neuron. Two-electrode voltage-clamp studies revealed that penicillin decreased the fast sodium inward current of the neuron. It is concluded that penicillin inhibited the BoP elicited by procaine and sodium ion altered the effect of penicillin on procaine-elicited BoP.

  10. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep

    Masahiro eYamaguchi

    2013-08-01

    Full Text Available Plastic changes in neuronal circuits often occur in association with specific behavioral states. In this review, we focus on an emerging view that neuronal circuits in the olfactory system are reorganized along the wake-sleep cycle. Olfaction is crucial to sustaining the animals’ life, and odor-guided behaviors have to be newly acquired or updated to successfully cope with a changing odor world. It is therefore likely that neuronal circuits in the olfactory system are highly plastic and undergo repeated reorganization in daily life. A remarkably plastic feature of the olfactory system is that newly generated neurons are continually integrated into neuronal circuits of the olfactory bulb (OB throughout life. New neurons in the OB undergo an extensive selection process, during which many are eliminated by apoptosis for the fine tuning of neuronal circuits. The life and death decision of new neurons occurs extensively during a short time window of sleep after food consumption (postprandial sleep, a typical daily olfactory behavior. We review recent studies that explain how olfactory information is transferred between the OB and the olfactory cortex (OC along the course of the wake-sleep cycle. Olfactory sensory input is effectively transferred from the OB to the OC during waking, while synchronized top-down inputs from the OC to the OB are promoted during the slow-wave sleep. We discuss possible neuronal circuit mechanisms for the selection of new neurons in the OB, which involves the encoding of olfactory sensory inputs and memory trace formation during waking and internally generated activities in the OC and OB during subsequent sleep. The plastic changes in the OB and OC are well coordinated along the course of olfactory behavior during wakefulness and postbehavioral rest and sleep. We therefore propose that the olfactory system provides an excellent model in which to understand behavioral state-dependent plastic mechanisms of the neuronal

  11. Distribution of serotonergic and dopaminergic nerve fibers in the salivary gland complex of the cockroach Periplaneta americana

    Kühnel Dana

    2002-06-01

    Full Text Available Abstract Background The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. Results The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. Conclusion Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin.

  12. Calcitonin gene-related peptide promotes cellular changes in trigeminal neurons and glia implicated in peripheral and central sensitization

    Cady Ryan J

    2011-12-01

    Full Text Available Abstract Background Calcitonin gene-related peptide (CGRP, a neuropeptide released from trigeminal nerves, is implicated in the underlying pathology of temporomandibular joint disorder (TMD. Elevated levels of CGRP in the joint capsule correlate with inflammation and pain. CGRP mediates neurogenic inflammation in peripheral tissues by increasing blood flow, recruiting immune cells, and activating sensory neurons. The goal of this study was to investigate the capability of CGRP to promote peripheral and central sensitization in a model of TMD. Results Temporal changes in protein expression in trigeminal ganglia and spinal trigeminal nucleus were determined by immunohistochemistry following injection of CGRP in the temporomandibular joint (TMJ capsule of male Sprague-Dawley rats. CGRP stimulated expression of the active forms of the MAP kinases p38 and ERK, and PKA in trigeminal ganglia at 2 and 24 hours. CGRP also caused a sustained increase in the expression of c-Fos neurons in the spinal trigeminal nucleus. In contrast, levels of P2X3 in spinal neurons were only significantly elevated at 2 hours in response to CGRP. In addition, CGRP stimulated expression of GFAP in astrocytes and OX-42 in microglia at 2 and 24 hours post injection. Conclusions Our results demonstrate that an elevated level of CGRP in the joint, which is associated with TMD, stimulate neuronal and glial expression of proteins implicated in the development of peripheral and central sensitization. Based on our findings, we propose that inhibition of CGRP-mediated activation of trigeminal neurons and glial cells with selective non-peptide CGRP receptor antagonists would be beneficial in the treatment of TMD.

  13. Premature ejaculation and serotonergic antidepressants-induced delayed ejaculation : the involvement of the serotonergic system

    Waldinger, MD; Berendsen, HHG; Blok, BFM; Olivier, B; Holstege, G

    Premature ejaculation has generally been considered a psychosexual disorder with psychogenic aetiology. Although still mainly treated by behavioural therapy, in recent years double-blind studies have indicated the beneficial effects of some of the serotonergic antidepressants (SSRIs) in delaying

  14. Differential radioautographic visualization of central catecholaminergic neurons following intracisternal or intraventricular injection of tritiated norepinephrine

    Nowaczyk, T.; Pujol, J.F.; Valatx, J.L.; Bobillier, P.

    1978-01-01

    The differential [ 3 H]NE labeling of CA groups following cerebrospinal fluid (CSF) injection procedures seems to be accounted by the dynamics of CSF formation and circulation, which is similar in the rat to that known in man. Following intraventricular injection there was a lack of labeling of CA neurons located at a distance from the cerebrospinal cavities. Labeled neurons were also visualized outside known CA groups, questioning the nature and functional significance of these cells. (C.F.)

  15. Detection and Characterization of Autoantibodies to Neuronal Cell-Surface Antigens in the Central Nervous System

    Marleen eVan Coevorden-Hameete

    2016-05-01

    Full Text Available Autoimmune encephalitis (AIE is a group of disorders in which autoantibodies directed at antigens located on the plasma membrane of neurons induce severe neurological symptoms. In contrast to classical paraneoplastic disorders, AIE patients respond well to immunotherapy. The detection of neuronal surface autoantibodies in patients’ serum or CSF therefore has serious consequences for the patients’ treatment and follow-up and requires the availability of sensitive and specific diagnostic tests. This mini-review provides a guideline for both diagnostic and research laboratories that work on the detection of known surface autoantibodies and/or the identification of novel surface antigens. We discuss the strengths and pitfalls of different techniques for anti-neuronal antibody detection: 1 Immunohistochemistry and immunofluorescence on rat/ primate brain sections, 2 Immunocytochemistry of living cultured hippocampal neurons, 3 Cell Based Assay (CBA. In addition, we discuss the use of immunoprecipitation and mass spectrometry analysis for the detection of novel neuronal surface antigens, which is a crucial step in further disease classification and the development of novel CBAs.

  16. Ketogenic diet metabolites reduce firing in central neurons by opening K(ATP) channels.

    Ma, Weiyuan; Berg, Jim; Yellen, Gary

    2007-04-04

    A low-carbohydrate ketogenic diet remains one of the most effective (but mysterious) treatments for severe pharmacoresistant epilepsy. We have tested for an acute effect of physiological ketone bodies on neuronal firing rates and excitability, to discover possible therapeutic mechanisms of the ketogenic diet. Physiological concentrations of ketone bodies (beta-hydroxybutyrate or acetoacetate) reduced the spontaneous firing rate of neurons in slices from rat or mouse substantia nigra pars reticulata. This region is thought to act as a "seizure gate," controlling seizure generalization. Consistent with an anticonvulsant role, the ketone body effect is larger for cells that fire more rapidly. The effect of ketone bodies was abolished by eliminating the metabolically sensitive K(ATP) channels pharmacologically or by gene knock-out. We propose that ketone bodies or glycolytic restriction treat epilepsy by augmenting a natural activity-limiting function served by K(ATP) channels in neurons.

  17. Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs

    Abrams, J K; Johnson, P L; Hay-Schmidt, Anders

    2005-01-01

    Serotonergic systems play important roles in modulating behavioral arousal, including behavioral arousal and vigilance associated with anxiety states. To further our understanding of the neural systems associated with increases in anxiety states, we investigated the effects of multiple anxiogenic...... and vigilance behaviors consistent with an increase in anxiety state. In addition, these anxiogenic drugs, excluding yohimbine, had convergent actions on an anatomically-defined subset of serotonergic neurons within the middle and caudal, dorsal subdivision of the DR. High resolution topographical analysis...... nucleus, a forebrain structure important for emotional appraisal and modulation of anxiety-related physiological and behavioral responses. Together these findings support the hypothesis that there is a functional topographical organization in the DR and are consistent with the hypothesis that anxiogenic...

  18. Retrograde axoplasmic flow of serotonin in central mono-aminergic neurons

    Leger, Lucienne; Pujol, J.-F.; Bobillier, Pierre; Jouvet, Michel

    1977-01-01

    Following an injection of 3 H-5 HT in the neostriatum of the Rat, the tracer is transported by axoplasmic retrograde flow to the cell groups containing mono-aminergic neurons which are known or thought to have afferences to this structure: substantia nigra, dopaminergic group A8 and n. raphe dorsalis [fr

  19. Transcription factor expression uniquely identifies most postembryonic neuronal lineages in the Drosophila thoracic central nervous system.

    Lacin, Haluk; Zhu, Yi; Wilson, Beth A; Skeath, James B

    2014-03-01

    Most neurons of the adult Drosophila ventral nerve cord arise from a burst of neurogenesis during the third larval instar stage. Most of this growth occurs in thoracic neuromeres, which contain 25 individually identifiable postembryonic neuronal lineages. Initially, each lineage consists of two hemilineages--'A' (Notch(On)) and 'B' (Notch(Off))--that exhibit distinct axonal trajectories or fates. No reliable method presently exists to identify these lineages or hemilineages unambiguously other than labor-intensive lineage-tracing methods. By combining mosaic analysis with a repressible cell marker (MARCM) analysis with gene expression studies, we constructed a gene expression map that enables the rapid, unambiguous identification of 23 of the 25 postembryonic lineages based on the expression of 15 transcription factors. Pilot genetic studies reveal that these transcription factors regulate the specification and differentiation of postembryonic neurons: for example, Nkx6 is necessary and sufficient to direct axonal pathway selection in lineage 3. The gene expression map thus provides a descriptive foundation for the genetic and molecular dissection of adult-specific neurogenesis and identifies many transcription factors that are likely to regulate the development and differentiation of discrete subsets of postembryonic neurons.

  20. Central projections of gustatory receptor neurons in the medial and the lateral sensilla styloconica of Helicoverpa armigera larvae.

    Qing-Bo Tang

    Full Text Available Food selection behavior of lepidopteran larvae is predominantly governed by the activation of taste neurons present in two sensilla styloconica located on the galea of the maxilla. In this study, we present the ultrastructure of the sensilla styloconica and the central projection pattern of their associated receptor neurons in larvae of the heliothine moth, Helicoverpa armigera. By means of light microscopy and scanning electron microscopy, the previous findings of two morphologically fairly similar sensilla comprising a socketed conic tip inserted into a large peg were confirmed. However, the peg size of the medial sensillum was found to be significantly bigger than that of the lateral sensillum. The sensory neurons derived from each sensillum styloconicum were mapped separately using anterograde staining experiments combined with confocal laser-scanning microscopy. For determining the afferents' target regions relative to each other, we reconstructed the labeled axons and placed them into a common reference framework. The sensory axons from both sensilla projected via the ipsilateral maxillary nerve to the suboesophageal ganglion and further through the ipsilateral circumoesophageal connective to the brain. In the suboesophageal ganglion, the sensory projections targeted two areas of the ipsilateral maxillary neuropil, one located in the ventrolateral neuromere and the other adjacent to the neuromere midline. In the brain, the axon terminals targeted the dorso-anterior area of the ipsilateral tritocerebrum. As confirmed by the three-dimensional reconstructions, the target regions of the neural projections originating from each of the two sensilla styloconica were identical.

  1. Central projections of gustatory receptor neurons in the medial and the lateral sensilla styloconica of Helicoverpa armigera larvae.

    Tang, Qing-Bo; Zhan, Huan; Cao, Huan; Berg, Bente G; Yan, Feng-Ming; Zhao, Xin-Cheng

    2014-01-01

    Food selection behavior of lepidopteran larvae is predominantly governed by the activation of taste neurons present in two sensilla styloconica located on the galea of the maxilla. In this study, we present the ultrastructure of the sensilla styloconica and the central projection pattern of their associated receptor neurons in larvae of the heliothine moth, Helicoverpa armigera. By means of light microscopy and scanning electron microscopy, the previous findings of two morphologically fairly similar sensilla comprising a socketed conic tip inserted into a large peg were confirmed. However, the peg size of the medial sensillum was found to be significantly bigger than that of the lateral sensillum. The sensory neurons derived from each sensillum styloconicum were mapped separately using anterograde staining experiments combined with confocal laser-scanning microscopy. For determining the afferents' target regions relative to each other, we reconstructed the labeled axons and placed them into a common reference framework. The sensory axons from both sensilla projected via the ipsilateral maxillary nerve to the suboesophageal ganglion and further through the ipsilateral circumoesophageal connective to the brain. In the suboesophageal ganglion, the sensory projections targeted two areas of the ipsilateral maxillary neuropil, one located in the ventrolateral neuromere and the other adjacent to the neuromere midline. In the brain, the axon terminals targeted the dorso-anterior area of the ipsilateral tritocerebrum. As confirmed by the three-dimensional reconstructions, the target regions of the neural projections originating from each of the two sensilla styloconica were identical.

  2. An overview on benzylisoquinoline derivatives with dopaminergic and serotonergic activities.

    Cabedo, N; Berenguer, I; Figadère, B; Cortes, D

    2009-01-01

    Dopamine and serotonin are important neurotransmitters in the mammalian central nervous system (CNS) involved in numerous physiological and behavioural disorders such as schizophrenia, major depression, anxiety, Parkinson's and Huntington's diseases, and attention deficit hyperactivity disorder. Several natural and synthetic benzylisoquinoline derivatives have displayed affinity for dopamine and serotonin receptors in nanomolar or micromolar ranges. This review covers the last three decades of dopaminergic and serotonergic activities, and especially focuses on structure-activity relationships of natural and synthetic benzylisoquinoline derivatives. We have included aporphines, 1-benzyltetrahydroisoquinolines, bis-benzylisoquinolines, protoberberines, cularines and other structural analogues. Further molecular modelling calculations have been considered as important tools to not only obtain structural information of both neurotransmitter receptors, but to also identify their pharmacophore features. The development of selective potential ligands like benzylisoquinoline derivatives may help in the therapy of diseases related to CNS dysfunction.

  3. Trpv4 Mediates Hypotonic Inhibition of Central Osmosensory Neurons via Taurine Gliotransmission

    Sorana Ciura

    2018-05-01

    Full Text Available Summary: The maintenance of hydromineral homeostasis requires bidirectional detection of changes in extracellular fluid osmolality by primary osmosensory neurons (ONs in the organum vasculosum laminae terminalis (OVLT. Hypertonicity excites ONs in part through the mechanical activation of a variant transient receptor potential vanilloid-1 channel (dn-Trpv1. However, the mechanism by which local hypotonicity inhibits ONs in the OVLT remains unknown. Here, we show that hypotonicity can reduce the basal activity of dn-Trpv1 channels and hyperpolarize acutely isolated ONs. Surprisingly, we found that mice lacking dn-Trpv1 maintain normal inhibitory responses to hypotonicity when tested in situ. In the intact setting, hypotonicity inhibits ONs through a non-cell-autonomous mechanism that involves glial release of the glycine receptor agonist taurine through hypotonicity activated anion channels (HAAC that are activated subsequent to Ca2+ influx through Trpv4 channels. Our study clarifies how Trpv4 channels contribute to the inhibition of OVLT ONs during hypotonicity in situ. : Ciura et al. show that osmosensory neurons in organum vasculosum lamina terminalis are inhibited by hypotonicity. This effect is triggered by activation of Trpv4 channels and Ca2+ accumulation in astrocytes, causing these cells to release taurine through anion channels. Taurine inhibits firing by activating glycine receptors on the osmosensory neurons. Keywords: hyptonicity, taurine, TRPV, osmosensitive, gliotransmission, swelling

  4. Bone Injury and Repair Trigger Central and Peripheral NPY Neuronal Pathways.

    Cecília J Alves

    Full Text Available Bone repair is a specialized type of wound repair controlled by complex multi-factorial events. The nervous system is recognized as one of the key regulators of bone mass, thereby suggesting a role for neuronal pathways in bone homeostasis. However, in the context of bone injury and repair, little is known on the interplay between the nervous system and bone. Here, we addressed the neuropeptide Y (NPY neuronal arm during the initial stages of bone repair encompassing the inflammatory response and ossification phases in femoral-defect mouse model. Spatial and temporal analysis of transcriptional and protein levels of NPY and its receptors, Y1R and Y2R, reported to be involved in bone homeostasis, was performed in bone, dorsal root ganglia (DRG and hypothalamus after femoral injury. The results showed that NPY system activity is increased in a time- and space-dependent manner during bone repair. Y1R expression was trigged in both bone and DRG throughout the inflammatory phase, while a Y2R response was restricted to the hypothalamus and at a later stage, during the ossification step. Our results provide new insights into the involvement of NPY neuronal pathways in bone repair.

  5. [Method of immunocytochemical demonstration of cholinergic neurons in the central nervous system of laboratory animals].

    Korzhevskiĭ, D E; Grigor'ev, I P; Kirik, O V; Zelenkova, N M; Sukhorukova, E G

    2013-01-01

    A protocol of immunocytochemical demonstration of choline acetyltransferase (ChAT), a key enzyme of acetylcholine synthesis, in paraffin sections of the brain of some laboratory animals, is presented. The method is simple, gives fairly reproducible results and allows for demonstration of ChAT in neurons, nerve fibers, and terminals in preparations of at least three species of laboratory animals including rat, rabbit, and cat. Different kinds of fixation (10% formalin, 4% paraformaldehyde, or zinc-ethanol-formaldehyde) were found suitable for immunocytochemical visualization of ChAT, however, optimal results were obtained with the application of zinc-ethanol-formaldehyde

  6. An Elongin-Cullin-SOCS Box Complex Regulates Stress-Induced Serotonergic Neuromodulation

    Xicotencatl Gracida

    2017-12-01

    Full Text Available Neuromodulatory cells transduce environmental information into long-lasting behavioral responses. However, the mechanisms governing how neuronal cells influence behavioral plasticity are difficult to characterize. Here, we adapted the translating ribosome affinity purification (TRAP approach in C. elegans to profile ribosome-associated mRNAs from three major tissues and the neuromodulatory dopaminergic and serotonergic cells. We identified elc-2, an Elongin C ortholog, specifically expressed in stress-sensing amphid neuron dual ciliated sensory ending (ADF serotonergic sensory neurons, and we found that it plays a role in mediating a long-lasting change in serotonin-dependent feeding behavior induced by heat stress. We demonstrate that ELC-2 and the von Hippel-Lindau protein VHL-1, components of an Elongin-Cullin-SOCS box (ECS E3 ubiquitin ligase, modulate this behavior after experiencing stress. Also, heat stress induces a transient redistribution of ELC-2, becoming more nuclearly enriched. Together, our results demonstrate dynamic regulation of an E3 ligase and a role for an ECS complex in neuromodulation and control of lasting behavioral states.

  7. Descending serotonergic facilitation and the antinociceptive effects of pregabalin in a rat model of osteoarthritic pain

    Dolphin Annette C

    2009-08-01

    descending serotonergic facilitation plays a role in mediating the brush and innocuous mechanical punctate evoked neuronal responses in MIA rats, suggesting an adaptive change in the excitatory serotonergic drive modulating low threshold evoked neuronal responses in MIA-induced OA pain. This alteration in excitatory serotonergic drive, alongside an increase in α2δ-1 mRNA levels, may underlie pregabalin's state dependent effects in this model of chronic pain.

  8. Different Serotonergic Expression in Nevomelanocytic Tumors

    Naimi-Akbar, Clara; Ritter, Markus; Demel, Sasika; El-Nour, Husameldin; Hedblad, Mari-Anne [Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna (Sweden); Azmitia, Efrain C. [Department of Biology and Psychiatry, New York University, NY (United States); Nordlind, Klas, E-mail: klas.nordlind@karolinska.se [Dermatology and Venereology Unit, Department of Medicine, Solna, Karolinska Institutet, Karolinska University Hospital, Solna (Sweden)

    2010-06-07

    The neuromediator serotonin (5-hydroxytryptamine; 5-HT) has been proposed to play a role in tumor progression. Thus, the aim of the present investigation was to determine whether alterations in the serotonergic system occur in nevomelanocytic tumors. For this purpose, paraffin-embedded biopsies of superficial spreading malignant melanoma (SSM), dysplastic compound nevi (DN) and benign compound nevi (BCN) were characterized with regard to their expression of 5-HT, the 5-HT1A and 5-HT2A receptors, and the serotonin transporter protein (SERT), by immunohistochemical analysis. Melanocytes in the region surrounding the tumor were found to express both the 5-HT1A and 5-HT2A receptors. Tumor cells that immunostained positively for the different serotonergic markers were observed in the suprabasal epidermis of DN tissue and, to an even greater extent, in the case of SSM. Furthermore, some of these latter cells expressed both 5-HT1AR and 5-HT2AR. The level of expression of 5-HT1AR at the junctional area was lower for SSM than for DN or BCN. As the degree of atypia increased, the intensity of tumor cell staining in the dermis for 5-HT1AR and SERT declined. Vessel immunoreactivity for 5-HT2A was more intense in SSM than in BCN tissue. Round-to-dendritic cells that expressed both SERT and 5-HT1AR were seen to infiltrate into the dermal region of the tumor, this infiltration being more evident in the case of DN and SSM. These latter cells were also tryptase-positive, indicating that they are mast cells. Thus, alterations in serotonergic system may be involved in nevomelanocytic tumors and mast cells may play an important role in this connection.

  9. [Gradient of serotonergic innervation of internal organs].

    Lychkova, A E

    2004-01-01

    The unidirectional synergistic effect of the vegetative nervous system departments was studied at the regulation of the activity of internal organs. It was shown that the sympathetic nerve intensification of the vagal stimulation of EMA of stomach, urinary bladder, ureters, uteruss, fallopian tubes and deferent duct is realized by means of activation of serotonergic fibrae preganglionares that transmit the activation to 5-NTS,4 serotonin receptors of intramural ganglia that, in their turn, activate 5-NT1,2 serotonin receptors of effector cells.

  10. The serotonergic system and cognitive function

    Švob Štrac Dubravka

    2016-01-01

    Full Text Available Symptoms of cognitive dysfunction like memory loss, poor concentration, impaired learning and executive functions are characteristic features of both schizophrenia and Alzheimer’s disease (AD. The neurobiological mechanisms underlying cognition in healthy subjects and neuropsychiatric patients are not completely understood. Studies have focused on serotonin (5-hydroxytryptamine, 5-HT as one of the possible cognitionrelated biomarkers. The aim of this review is to provide a summary of the current literature on the role of the serotonergic (5-HTergic system in cognitive function, particularly in AD and schizophrenia.

  11. Serotonergic modulation of reward and punishment

    Macoveanu, Julian

    2014-01-01

    Until recently, the bulk of research on the human reward system was focused on studying the dopaminergic and opioid neurotransmitter systems. However, extending the initial data from animal studies on reward, recent pharmacological brain imaging studies on human participants bring a new line......-related processing and may also provide a neural correlated for the emotional blunting observed in the clinical treatment of psychiatric disorders with selective serotonin reuptake inhibitors. Given the unique profile of action of each serotonergic receptor subtype, future pharmacological studies may favor receptor...

  12. Serotonergic drugs in the treatment of depressive and anxiety disorders

    Den Boer, JA; Bosker, FJ; Slaap, BR

    Serotonergic dysfunction has been implicated in the aetiology of several psychiatric conditions, including depressive and anxiety disorders. Much of the evidence for the role of serotonin (5-HT) in these disorders comes from treatment studies with serotonergic drugs, including selective serotonin

  13. Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat

    Asante, Curtis O.; Dickenson, Anthony H.

    2010-01-01

    We have recently reported the importance of spinal rapamycin-sensitive pathways in maintaining persistent pain-like states. A descending facilitatory drive mediated through spinal 5-HT3 receptors (5-HT3Rs) originating from superficial dorsal horn NK1-expressing neurons and that relays through the parabrachial nucleus and the rostroventral medial medulla to act on deep dorsal horn neurons is known be important in maintaining these pain-like states. To determine if spinal rapamycin-sensitive pathways are activated by a descending serotonergic drive, we investigated the effects of spinally administered rapamycin on responses of deep dorsal horn neurons that had been pre-treated with the selective 5-HT3R antagonist ondansetron. We also investigated the effects of spinally administered cell cycle inhibitor (CCI)-779 (a rapamycin ester analogue) on deep dorsal horn neurons from rats with carrageenan-induced inflammation of the hind paw. Unlike some other models of persistent pain, this model does not involve an altered 5-HT3R-mediated descending serotonergic drive. We found that the inhibitory effects of rapamycin were significantly reduced for neuronal responses to mechanical and thermal stimuli when the spinal cord was pre-treated with ondansetron. Furthermore, CCI-779 was found to be ineffective in attenuating spinal neuronal responses to peripheral stimuli in carrageenan-treated rats. Therefore, we conclude that 5-HT3R-mediated descending facilitation is one requirement for activation of rapamycin-sensitive pathways that contribute to persistent pain-like states. PMID:20709148

  14. Dual orexin receptor antagonist 12 inhibits expression of proteins in neurons and glia implicated in peripheral and central sensitization.

    Cady, R J; Denson, J E; Sullivan, L Q; Durham, P L

    2014-06-06

    Sensitization and activation of trigeminal nociceptors is implicated in prevalent and debilitating orofacial pain conditions including temporomandibular joint (TMJ) disorders. Orexins are excitatory neuropeptides that function to regulate many physiological processes and are reported to modulate nociception. To determine the role of orexins in an inflammatory model of trigeminal activation, the effects of a dual orexin receptor antagonist (DORA-12) on levels of proteins that promote peripheral and central sensitization and changes in nocifensive responses were investigated. In adult male Sprague-Dawley rats, mRNA for orexin receptor 1 (OX₁R) and receptor 2 (OX₂R) were detected in trigeminal ganglia and spinal trigeminal nucleus (STN). OX₁R immunoreactivity was localized primarily in neuronal cell bodies in the V3 region of the ganglion and in laminas I-II of the STN. Animals injected bilaterally with complete Freund's adjuvant (CFA) in the TMJ capsule exhibited increased expression of P-p38, P-ERK, and lba1 in trigeminal ganglia and P-ERK and lba1 in the STN at 2 days post injection. However, levels of each of these proteins in rats receiving daily oral DORA-12 were inhibited to near basal levels. Similarly, administration of DORA-12 on days 3 and 4 post CFA injection in the TMJ effectively inhibited the prolonged stimulated expression of protein kinase A, NFkB, and Iba1 in the STN on day 5 post injection. While injection of CFA mediated a nocifensive response to mechanical stimulation of the orofacial region at 2h and 3 and 5 days post injection, treatment with DORA-12 suppressed the nocifensive response on day 5. Somewhat surprisingly, nocifensive responses were again observed on day 10 post CFA stimulation in the absence of daily DORA-12 administration. Our results provide evidence that DORA-12 can inhibit CFA-induced stimulation of trigeminal sensory neurons by inhibiting expression of proteins associated with sensitization of peripheral and central

  15. Assessment of serotonergic system in formation of memory and learning

    J. C. da Silva

    2017-11-01

    Full Text Available Abstract We evaluated the involvement of the serotonergic system on memory formation and learning processes in healthy adults Wistar rats. Fifty-seven rats of 5 groups had one serotonergic nuclei damaged by an electric current. Electrolytic lesion was carried out using a continuous current of 2mA during two seconds by stereotactic surgery. Animals were submitted to learning and memory tests. Rats presented different responses in the memory tests depending on the serotonergic nucleus involved. Both explicit and implicit memory may be affected after lesion although some groups showed significant difference and others did not. A damage in the serotonergic nucleus was able to cause impairment in the memory of Wistar. The formation of implicit and explicit memory is impaired after injury in some serotonergic nuclei.

  16. The rise and fall of mesodiencephalic dopaminergic neurons : Molecular programming by transcription factors Engrailed 1, Pitx3, and Nkx2.9 during the development of mesodiencephalic neurons

    Kouwenhoven, W.M.

    2016-01-01

    The mid- and hindbrain harbor two essential monoaminergic neuronal populations: the mesodiencephalic dopaminergic (mdDA) neurons in the midbrain and the serotonergic (5HT) neurons in the hindbrain. Both systems innervate multiple regions in the forebrain and are involved in the guidance of our mood,

  17. The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats

    Jana eBurianová

    2015-03-01

    Full Text Available In the present study, an unbiased stereological method was used to determine the number of all neurons in Nissl stained sections of the inferior colliculus (IC, medial geniculate body (MGB and auditory cortex (AC in rats (strains Long Evans and Fischer 344 and their changes with aging. In addition, using the optical fractionator and western blot technique, we also evaluated the number of SMI-32-immunoreactive(-ir neurons and levels of non-phosphorylated neurofilament proteins in the IC, MGB, AC, and visual cortex (VC of young and old rats of the two strains. The SMI-32 positive neuronal population comprises about 10% of all neurons in the rat IC, MGB and AC and represents a prevalent population of large neurons with highly myelinated and projecting processes. In both Long Evans and Fischer 344 rats, the total number of neurons in the IC was roughly similar to that in the AC. With aging, we found a rather mild and statistically non-significant decline in the total number of neurons in all three analyzed auditory regions in both rat strains. In contrast to this, the absolute number of SMI-32-ir neurons in both Long Evans and Fischer 344 rats significantly decreased with aging in all the examined structures. The western blot technique also revealed a significant age-related decline in the levels of non-phosphorylated neurofilaments in the auditory brain structures, 30-35%. Our results demonstrate that presbycusis in rats is not likely to be primarily associated with changes in the total number of neurons. On the other hand, the pronounced age-related decline in the number of neurons containing non-phosphorylated neurofilaments as well as their protein levels in the central auditory system may contribute to age-related deterioration of hearing function.

  18. Affective spectrum disorders and role of serotonergic system of the brain

    Timotijević Ivana P.

    2014-01-01

    Full Text Available Affective spectrum disorders include mood and anxiety disorders, whereas the term functional somatic syndromes describes disorders in which the main symptom is chronic pain, with no pathognomonic tissue damage, such as fibromyalgia, irritable colon, tension headache. Pain as a symptom is often present in patients with depression and anxiety, and similarly, depressed mood, anxiety and other psychiatric symptoms are common in patients with functional somatic syndromes. This explains attitudes that affective disorders and functional somatic syndromes should be found along the same spectrum, due to a similar neurobiochemicalmehanism and dysfunction of these CNS structures and neurotransmitter systems, which lead to similar symptoms in both groups. The symptoms of affective disorders, including somatic are associated with serotonin and serotonergic transmission in the CNS. The existence of depressive and anxiety disorders, such as fatigue, sleep disorders, cognitive disorders, depressed mood, anxiety, and functional somatic syndromes code indicate a similar mechanism of origin. Hypothesis of central neuropathic pain explains the possibility of the descending inhibitory pain mechanisms, including serotonergic and noradrenergic projections and their receptors. Central suprasegmental senzitization in nociceptive pathways, also at the level of the thalamus and the sensory cortex, trigered by an emotional stressors can cause painful symptoms in both groups of disorders. Serotonergic and noradrenergic pathways and voltage sensitive channels of their receptors are included in the mechanism. Modern psychopharmacology can no longer ignore the existence of painful symptoms in affective disorder or depressive and anxiety symptoms in functional somatic syndromes and their treatment can improve. Therapeutic effects of SSRI and SNRI antidepressants and alpha 2 delta ligands for all kinds of painful symptoms in affective disorders - serotonergic spectrum is

  19. The use of serotonergic drugs to treat obesity – is there any hope?

    Nicholas T Bello

    2011-02-01

    Full Text Available Nicholas T Bello1, Nu-Chu Liang21Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA; 2Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USAAbstract: Surgical interventional strategies for the treatment of obesity are being implemented at an increasing rate. The safety and feasibility of these procedures are questionable for most overweight or obese individuals. The use of long-term pharmacotherapy options, on the other hand, can target a greater portion of the obese population and provide early intervention to help individuals maintain a healthy lifestyle to promote weight loss. Medications that act on the central serotonergic pathways have been a relative mainstay for the treatment of obesity for the last 35 years. The clinical efficacy of these drugs, however, has been encumbered by the potential for drug-associated complications. Two drugs that act, albeit by different mechanisms, on the central serotonergic system to reduce food intake and decrease body weight are sibutramine and lorcaserin. Sibutramine is a serotonin and norepinephrine reuptake inhibitor, whereas lorcaserin is a selective 5HT2C receptor agonist. The recent worldwide withdrawal of sibutramine and FDA rejection of lorcaserin has changed the landscape not only for serotonin-based therapeutics specifically, but for obesity pharmacotherapy in general. The purpose of this review is to focus on the importance of the serotonergic system in the control of feeding and its potential as a target for obesity pharmacotherapy. Advances in refining and screening more selective receptor agonists and a better understanding of the potential off-target effects of serotonergic drugs are needed to produce beneficial pharmacotherapy.Keywords: 5-hydroxytryptamine, serotonin 1B, fenfluramine, dexfenfluramine, satiety, dorsal raphe

  20. Serotonergic contribution to boys' behavioral regulation.

    Nantel-Vivier, Amélie; Pihl, Robert O; Young, Simon N; Parent, Sophie; Bélanger, Stacey Ageranioti; Sutton, Rachel; Dubois, Marie-Eve; Tremblay, Richard E; Séguin, Jean R

    2011-01-01

    Animal and human adult studies reveal a contribution of serotonin to behavior regulation. Whether these findings apply to children is unclear. The present study investigated serotonergic functioning in boys with a history of behavior regulation difficulties through a double-blind, acute tryptophan supplementation procedure. Participants were 23 boys (age 10 years) with a history of elevated physical aggression, recruited from a community sample. Eleven were given a chocolate milkshake supplemented with 500 mg tryptophan, and 12 received a chocolate milkshake without tryptophan. Boys engaged in a competitive reaction time game against a fictitious opponent, which assessed response to provocation, impulsivity, perspective taking, and sharing. Impulsivity was further assessed through a Go/No-Go paradigm. A computerized emotion recognition task and a staged instrumental help incident were also administered. Boys, regardless of group, responded similarly to high provocation by the fictitious opponent. However, boys in the tryptophan group adjusted their level of responding optimally as a function of the level of provocation, whereas boys in the control group significantly decreased their level of responding towards the end of the competition. Boys in the tryptophan group tended to show greater perspective taking, tended to better distinguish facial expressions of fear and happiness, and tended to provide greater instrumental help to the experimenter. The present study provides initial evidence for the feasibility of acute tryptophan supplementation in children and some effect of tryptophan supplementation on children's behaviors. Further studies are warranted to explore the potential impact of increased serotonergic functioning on boys' dominant and affiliative behaviors.

  1. Mapping of neurons in the central nervous system of the guinea pig by use of antisera specific to the molluscan neuropeptide FMRFamide

    Triepel, J; Grimmelikhuijzen, C J

    1984-01-01

    Immunoreactive neurons were mapped in the central nervous system of colchicine-treated and untreated guinea pigs with the use of two antisera to the molluscan neuropeptide FMRFamide. These antisera were especially selected for their incapability to react with peptides of the pancreatic polypeptide...

  2. Localization of serotonin and ultrastructure of serotonergic neutrons in the nervous system of fasciola hepatica

    Huang Shile; Cheng Bing; Rong Yaofang

    1993-01-01

    Rabbits antisera were raised against an antigen prepared by coupling 5-HT to bovine serum albumin (BSA) using formaldehyde as a coupling reagent. The fresh adult Fasciola hepatica were fixed with 4% formaldehyde and sectioned on a cryostat. The sections were stained by indirect immunofluorescence technique. Abundant immunofluorescence specific for 5-HT was observed in ganglion cell bodies and their processes, the transverse commissure that connects two ganglia and longitudinal axes extending from the ganglia. Immuno-reactivity to 5-HT was also found in the nerve fibre innervating tegument, gut wall, the epithelium of testes or ovary, the musculature of uterus and ootype, etc. The ultrastructure of serotonergic neurons was visualized. As in other invertebrates, the serotonergic neutrons of Fasciola hepatica consisted of cell bodies, axons, synapses, herring bodies and neuromuscular junctions. The nerve cell bodies were aggregatively located in ganglia and many dispersed spherical granular vesicles were present in cytoplasm. The nerve axons branched out to the muscles forming synapses, where synaptic vesicles contained 5-HT dense-core granules were found. The distribution of 5-HT within the neurons strongly suggested that 5-HT was functioning as a neurotrasmitter in Fasciola hepatica

  3. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism

    Jae Hoon Jeong

    2015-06-01

    Conclusion: DMH cholinergic neurons directly send efferent signals to sympathetic premotor neurons in the Rpa. Elevated cholinergic input to this area reduces BAT activity through activation of M2 mAChRs on serotonergic neurons. Therefore, the direct DMHACh–Rpa5-HT pathway may mediate physiological heat-defense responses to elevated environmental temperature.

  4. Serotonergic modulation of reward and punishment: evidence from pharmacological fMRI studies.

    Macoveanu, Julian

    2014-03-27

    Until recently, the bulk of research on the human reward system was focused on studying the dopaminergic and opioid neurotransmitter systems. However, extending the initial data from animal studies on reward, recent pharmacological brain imaging studies on human participants bring a new line of evidence on the key role serotonin plays in reward processing. The reviewed research has revealed how central serotonin availability and receptor specific transmission modulates the neural response to both appetitive (rewarding) and aversive (punishing) stimuli in putative reward-related brain regions. Thus, serotonin is suggested to be involved in behavioral control when there is a prospect of reward or punishment. The new findings may have implications in understanding psychiatric disorders such as major depression which is characterized by abnormal serotonergic function and reward-related processing and may also provide a neural correlated for the emotional blunting observed in the clinical treatment of psychiatric disorders with selective serotonin reuptake inhibitors. Given the unique profile of action of each serotonergic receptor subtype, future pharmacological studies may favor receptor specific investigations to complement present research mainly focused on global serotonergic manipulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Requirement for tyrosine phosphatase during serotonergic neuromodulation by protein kinase C.

    Catarsi, S; Drapeau, P

    1997-08-01

    Tyrosine kinases and phosphatases are abundant in the nervous system, where they signal cellular differentiation, mediate the responses to growth factors, and direct neurite outgrowth during development. Tyrosine phosphorylation can also alter ion channel activity, but its physiological significance remains unclear. In an identified leech mechanosensory neuron, the ubiquitous neuromodulator serotonin increases the activity of a cation channel by activating protein kinase C (PKC), resulting in membrane depolarization and modulation of the receptive field properties. We observed that the effects on isolated neurons and channels were blocked by inhibiting tyrosine phosphatases. Serotonergic stimulation of PKC thus activates a tyrosine phosphatase activity associated with the channels, which reverses their constitutive inhibition by tyrosine phosphorylation, representing a novel form of neuromodulation.

  6. Nerve growth factor-inducible large external (NILE) glycoprotein: studies of a central and peripheral neuronal marker.

    Salton, S R; Richter-Landsberg, C; Greene, L A; Shelanski, M L

    1983-03-01

    The PC12 clone of pheochromocytoma cells undergoes neuronal differentiation in the presence of nerve growth factor (NGF). Concomitant with this is a significant induction in the incorporation of radiolabeled fucose or glucosamine into a 230,000-dalton cell surface glycoprotein named the NGF-Inducible Large External, or NILE, glycoprotein (GP) (McGuire, J. C., L. A. Greene, and A. V. Furano (1978) Cell 15: 357-365). In the current studies NILE GP was purified from PC12 cells using wheat germ agglutinin-agarose affinity chromatography and SDS-polyacrylamide gel electrophoresis (PAGE). Polyclonal antisera were raised against purified NILE GP and were found to selectively immunoprecipitate a single 230,000-dalton protein from detergent extracts of PC12 cells metabolically labeled with either [3H]fucose, [3H]glucosamine, or [35S]methionine. These antisera stained the surfaces of PC12 cells by indirect immunofluorescence and were cytotoxic to PC12 cells in the presence of complement. Limited treatment of PC12 cells with either trypsin or pronase produced a fucosylated 90,000-dalton immunoreactive fragment of NILE GP which remained in the membrane. Using quantitative immunoelectrophoresis, the action of NGF on NILE GP was represent an increase in the amount of protein, rather than a selective increase in carbohydrate incorporation. Immunofluorescent staining of primary cell cultures and tissue whole mounts revealed that immunologically cross-reactive NILE GP appears to be expressed on the cell surfaces (somas and neurites) of most if not all peripheral and central neurons examined. Immunoprecipitation of radiolabeled cultures showed that the cross-reactive material had an apparent molecular weight by SDS-PAGE of 225,000 to 230,000 in the peripheral nervous system and 200,000 to 210,000 in the central nervous system. NILE-cross-reactive material was also found to a small extent on Schwann cell surfaces, but not at all on a variety of other cell types. These results suggest

  7. Serotonergic Drugs and Valvular Heart Disease

    Rothman, Richard B.; Baumann, Michael H.

    2009-01-01

    Background The serotonin (5-HT) releasers (±)-fenfluramine and (+)-fenfluramine were withdrawn from clinical use due to increased risk of valvular heart disease. One prevailing hypothesis (i.e., the “5-HT hypothesis”) suggests that fenfluramine-induced increases in plasma 5-HT underlie the disease. Objective Here we critically evaluate the possible mechanisms responsible for fenfluramine-associated valve disease. Methods Findings from in vitro and in vivo experiments performed in our laboratory are reviewed. The data are integrated with existing literature to address the validity of the 5-HT hypothesis and suggest alternative explanations. Conclusions The overwhelming majority of evidence refutes the 5-HT hypothesis. A more likely cause of fenfluramine-induced valvulopathy is activation of 5-HT2B receptors on heart valves by the metabolite norfenfluramine. Future serotonergic medications should be designed to lack 5-HT2B agonist activity. PMID:19505264

  8. Serotonergic contribution to boys' behavioral regulation.

    Amélie Nantel-Vivier

    Full Text Available Animal and human adult studies reveal a contribution of serotonin to behavior regulation. Whether these findings apply to children is unclear. The present study investigated serotonergic functioning in boys with a history of behavior regulation difficulties through a double-blind, acute tryptophan supplementation procedure.Participants were 23 boys (age 10 years with a history of elevated physical aggression, recruited from a community sample. Eleven were given a chocolate milkshake supplemented with 500 mg tryptophan, and 12 received a chocolate milkshake without tryptophan. Boys engaged in a competitive reaction time game against a fictitious opponent, which assessed response to provocation, impulsivity, perspective taking, and sharing. Impulsivity was further assessed through a Go/No-Go paradigm. A computerized emotion recognition task and a staged instrumental help incident were also administered.Boys, regardless of group, responded similarly to high provocation by the fictitious opponent. However, boys in the tryptophan group adjusted their level of responding optimally as a function of the level of provocation, whereas boys in the control group significantly decreased their level of responding towards the end of the competition. Boys in the tryptophan group tended to show greater perspective taking, tended to better distinguish facial expressions of fear and happiness, and tended to provide greater instrumental help to the experimenter.The present study provides initial evidence for the feasibility of acute tryptophan supplementation in children and some effect of tryptophan supplementation on children's behaviors. Further studies are warranted to explore the potential impact of increased serotonergic functioning on boys' dominant and affiliative behaviors.

  9. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila.

    Eric C Kong

    2010-04-01

    Full Text Available Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.

  10. Pregabalin Suppresses Spinal Neuronal Hyperexcitability and Visceral Hypersensitivity in the Absence of Peripheral Pathophysiology

    Bannister, Kirsty; Sikandar, Shafaq; Bauer, Claudia S.; Dolphin, Annette C.; Porreca, Frank; Dickenson, Anthony H.

    2011-01-01

    Background Opioid induced hyperalgesia is recognised in the laboratory and the clinic, generating central hyperexcitability in the absence of peripheral pathology. We investigated pregabalin, indicated for neuropathic pain, and ondansetron, a drug that disrupts descending serotonergic processing in the central nervous system, on spinal neuronal hyperexcitability and visceral hypersensitivity in a rat model of opioid induced hyperalgesia. Methods Sprague-Dawley rats (180-200 g) were implanted with morphine (90μg · μl−1 · hr−1) or saline (0.9% w/v) filled osmotic mini-pumps. On days 7-10 in isoflurane anaesthetized animals we evaluated the effects of (a) systemic pregabalin on spinal neuronal and visceromotor responses and (b) spinal ondansetron on dorsal horn neuronal responses. The messenger RNA levels of α2δ-1, 5HT3A and mu-opioid receptor in the dorsal root ganglia of all animals were analysed. Results In morphine-treated animals the evoked spinal neuronal responses were enhanced to a sub-set of thermal and mechanical stimuli. This activity was attenuated by pregabalin (by at least 71%) and ondansetron (37%), and the visceromotor response to a sub-set of colorectal distension pressures was attenuated by pregabalin (52.8%) (n = 8 for all measures, P < 0.05). Messenger RNA levels were unchanged. Conclusions The inhibitory action of pregabalin in opioid induced hyperalgesia animals is not neuropathy-dependent nor reliant on up-regulation of the α2δ-1 subunit of voltage gated calcium channels, mechanisms proposed essential for pregabalin’s efficacy in neuropathy. In opioid induced hyperalgesia, which extends to colonic distension, a serotonergic facilitatory system may be upregulated creating an environment that’s permissive for pregabalin-mediated analgesia without peripheral pathology. PMID:21602662

  11. Neuroanatomic Relationships between the GABAergic and Serotonergic Systems in the Developing Human Medulla

    Broadbelt, Kevin G.; Paterson, David S.; Rivera, Keith D.; Trachtenberg, Felicia L.; Kinney, Hannah C.

    2010-01-01

    γ-Amino butyric (GABA) critically influences serotonergic (5-HT) neurons in the raphé and extra-raphé of the medulla oblongata. In this study we hypothesize there are marked changes in the developmental profile of markers of the human medullary GABAergic system relative to the 5-HT system in early life. We used single- and double-label immunocytochemistry and tissue receptor autoradiography in 15 human medullae from fetal and infant cases ranging from 15 gestational weeks to 10 postnatal months, and compared our findings with an extensive 5-HT-related database in our laboratory. In the raphé obscurus, we identified two subsets of GABAergic neurons using glutamic acid decarboxylase (GAD65/67) immunostaining: one comprised of small, round neurons; the other, medium, spindle-shaped neurons. In three term medullae cases, positive immunoflorescent neurons for both tryptophan hydroxylase and GAD65/67 were counted within the raphé obscurus. This revealed approximately 6% of the total neurons counted in this nucleus expressed both GAD65/67 and TPOH suggesting co-production of GABA by a subset of 5-HT neurons. The distribution of GABAA binding was ubiquitous across medullary nuclei, with highest binding in the raphé obscurus. GABAA receptor subtypes α1 and α3 were expressed by 5-HT neurons, indicating the site of interaction of GABA with 5-HT neurons. These receptor subtypes and KCC2, a major chloride transporter, were differentially expressed across early development, from mid-gestation (20wks) and thereafter. The developmental profile of GABAergic markers changed dramatically relative to the 5-HT markers. These data provide baseline information for medullary studies of human pediatric disorders, such as sudden infant death syndrome. PMID:19926534

  12. Restoration of Motor Defects Caused by Loss of Drosophila TDP-43 by Expression of the Voltage-Gated Calcium Channel, Cacophony, in Central Neurons.

    Lembke, Kayly M; Scudder, Charles; Morton, David B

    2017-09-27

    Defects in the RNA-binding protein, TDP-43, are known to cause a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. A variety of experimental systems have shown that neurons are sensitive to TDP-43 expression levels, yet the specific functional defects resulting from TDP-43 dysregulation have not been well described. Using the Drosophila TDP-43 ortholog TBPH, we previously showed that TBPH-null animals display locomotion defects as third instar larvae. Furthermore, loss of TBPH caused a reduction in cacophony , a Type II voltage-gated calcium channel, expression and that genetically restoring cacophony in motor neurons in TBPH mutant animals was sufficient to rescue the locomotion defects. In the present study, we examined the relative contributions of neuromuscular junction physiology and the motor program to the locomotion defects and identified subsets of neurons that require cacophony expression to rescue the defects. At the neuromuscular junction, we showed mEPP amplitudes and frequency require TBPH. Cacophony expression in motor neurons rescued mEPP frequency but not mEPP amplitude. We also showed that TBPH mutants displayed reduced motor neuron bursting and coordination during crawling and restoring cacophony selectively in two pairs of cells located in the brain, the AVM001b/2b neurons, also rescued the locomotion and motor defects, but not the defects in neuromuscular junction physiology. These results suggest that the behavioral defects associated with loss of TBPH throughout the nervous system can be associated with defects in a small number of genes in a limited number of central neurons, rather than peripheral defects. SIGNIFICANCE STATEMENT TDP-43 dysfunction is a common feature in neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal lobar dementia, and Alzheimer's disease. Loss- and gain-of-function models have shown that neurons are sensitive to TDP-43

  13. Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn

    Black Joel A

    2012-11-01

    Full Text Available Abstract Background Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since loss-of-function mutations in SCN9A, the gene that encodes Nav1.7, are associated with a syndrome of congenital insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from peripheral terminals in the skin to central terminals in the spinal cord dorsal horn. Results Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in a subpopulation of Aδ-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within skin, intraepidermal nerve fibers (IENF, exhibit robust Nav1.7 immunolabeling. The central projections of DRG neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to presynaptic terminals. Conclusions The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of presynaptic axons. The findings presented here may be important for pharmaceutical development, where target engagement in the right compartment is essential.

  14. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

    Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K

    2013-12-01

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

  15. Involvement of 5-HT(2) serotonergic receptors of the nucleus raphe magnus and nucleus reticularis gigantocellularis/paragigantocellularis complex neural networks in the antinociceptive phenomenon that follows the post-ictal immobility syndrome.

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Ferreira, Célio Marcos Dos Reis; Coimbra, Norberto Cysne

    2006-09-01

    The post-ictal immobility syndrome is followed by a significant increase in the nociceptive thresholds in animals and men. In this interesting post-ictal behavioral response, endogenous opioid peptides-mediated mechanisms, as well as cholinergic-mediated antinociceptive processes, have been suggested. However, considering that many serotonergic descending pathways have been implicated in antinociceptive reactions, the aim of the present work is to investigate the involvement of 5-HT(2)-serotonergic receptor subfamily in the post-ictal antinociception. The analgesia was measured by the tail-flick test in seven or eight Wistar rats per group. Convulsions were followed by statistically significant increase in the tail-flick latencies (TFL), at least for 120 min of the post-ictal period. Male Wistar rats were submitted to stereotaxic surgery for introduction of a guide-cannula in the rhombencephalon, aiming either the nucleus raphe magnus (NRM) or the gigantocellularis complex. In independent groups of animals, these nuclei were neurochemically lesioned with a unilateral microinjection of ibotenic acid (1.0 microg/0.2 microL). The neuronal damage of either the NRM or nucleus reticularis gigantocellularis/paragigantocellularis complex decreased the post-ictal analgesia. Also, in other independent groups, central administration of ritanserin (5.0 microg/0.2 microL) or physiological saline into each of the reticular formation nuclei studied caused a statistically significant decrease in the TFL of seizing animals, as compared to controls, in all post-ictal periods studied. These results indicate that serotonin input-connected neurons of the pontine and medullarly reticular nuclei may be involved in the post-ictal analgesia.

  16. The modulation effects of d-amphetamine and procaine on the spontaneously generated action potentials in the central neuron of snail, Achatina fulica Ferussac.

    Lin, Chia-Hsien; Tsai, Ming-Cheng

    2005-05-01

    The modulation effects of d-amphetamine and procaine on the spontaneously generated action potentials were studied on the RP1 central neuron of giant African snails (Achatina fulica Ferussac). Extra-cellular application of d-amphetamine or procaine reversibly elicited bursts of potential (BoP). Prazosin, propranolol, atropine or d-tubocurarine did not alter the BoP elicited by either d-amphetamine or procaine. KT-5720 or H89 (protein kinase A inhibitors) blocked d-amphetamine-elicited BoP, whereas they did not block the procaine-elicited BoP. U73122, neomycin (phospholipase C inhibitors) blocked the procaine-elicited BoP, whereas they did not block the d-amphetamine-elicited BoP in the same neuron. These results suggest that BoP elicited by d-amphetamine or procaine were associated with protein kinase A and phospholipase C activity in the neuron.

  17. A population of kisspeptin/neurokinin B neurons in the arcuate nucleus may be the central target of the male effect phenomenon in goats.

    Sakamoto, Kohei; Wakabayashi, Yoshihiro; Yamamura, Takashi; Tanaka, Tomomi; Takeuchi, Yukari; Mori, Yuji; Okamura, Hiroaki

    2013-01-01

    Exposure of females to a male pheromone accelerates pulsatile gonadotropin-releasing hormone (GnRH) secretion in goats. Recent evidence has suggested that neurons in the arcuate nucleus (ARC) containing kisspeptin and neurokinin B (NKB) play a pivotal role in the control of GnRH secretion. Therefore, we hypothesized that these neurons may be the central target of the male pheromone. To test this hypothesis, we examined whether NKB signaling is involved in the pheromone action, and whether ARC kisspeptin/NKB neurons receive input from the medial nucleus of the amygdala (MeA)--the nucleus suggested to relay pheromone signals. Ovariectomized goats were implanted with a recording electrode aimed at a population of ARC kisspeptin/NKB neurons, and GnRH pulse generator activity, represented by characteristic increases in multiple-unit activity (MUA) volleys, was measured. Pheromone exposure induced an MUA volley and luteinizing hormone (LH) pulse in control animals, whereas the MUA and LH responses to the pheromone were completely suppressed by the treatment with an NKB receptor antagonist. These results indicate that NKB signaling is a prerequisite for pheromone action. In ovariectomized goats, an anterograde tracer was injected into the MeA, and possible connections between the MeA and ARC kisspeptin/NKB neurons were examined. Histochemical observations demonstrated that a subset of ARC kisspeptin/NKB neurons receive efferent projections from the MeA. These results suggest that the male pheromone signal is conveyed via the MeA to ARC kisspeptin neurons, wherein the signal stimulates GnRH pulse generator activity through an NKB signaling-mediated mechanism in goats.

  18. Ethanol induced antidepressant-like effect in the mouse forced swimming test: modulation by serotonergic system.

    Jain, Nishant S; Kannamwar, Uday; Verma, Lokesh

    2017-02-01

    The present investigation explored the modulatory role of serotonergic transmission in the acute ethanol-induced effects on immobility time in the mouse forced swim test (FST). Acute i.p. administration of ethanol (20% w/v, 2 or 2.5 g/kg, i.p.) decreased the immobility time in FST of mice, indicating its antidepressant-like effect while lower doses of ethanol (1, 1.5 g/kg, i.p.) were devoid of any effect in the FST. The mice pre-treated with a sub-effective dose of 5-HT 2A agonist, DOI (10 μg/mouse, i.c.v.) or 5-HT 1A receptor antagonist, WAY 100635 (0.1 μg/mouse, i.c.v.) but not with the 5-HT 2A/2C antagonist, ketanserin (1.5 μg/mouse, i.c.v.) exhibited a synergistic reduction in the immobility time induced by sub-effective dose of ethanol (1.5 g/kg, i.p.). On the other hand, ethanol (2.5 g/kg, i.p.) failed to decrease the immobility time in mice, pre-treated with 5-HT 1A agonist, 8-OH-DPAT (0.1 μg/mouse, i.c.v.) or ketanserin (1.5 μg/mouse, i.c.v.). In addition, pre-treatment with a 5-HT neuronal synthesis inhibitor, p-CPA (300 mg/kg, i.p. × 3 days) attenuated the anti-immobility effect ethanol (2.5 g/kg, i.p.) in mouse FST. Thus, the results of the present study points towards the essentiality of the central 5-HT transmission at the synapse for the ethanol-induced antidepressant-like effect in the FST wherein the regulatory role of the 5-HT 1A receptor or contributory role of the 5-HT 2A/2C receptor-mediated mechanism is proposed in the anti-immobility effect of acute ethanol in mouse FST.

  19. Effects of serotonergic system on the sleeping time and EEG in rats

    Alaei H

    2001-08-01

    Full Text Available The phenomenon of sleep is an active nervous and biologic rhythm, which is under influence of neurotransmitters of central nervous system. In this study, the influence of serotonergic system on sleeping time have been assessed by agonist-antagonist drugs using two methods of induction and non-induction behavioral and electrophysiology. The method used for measurement of total sleeing time was Angle method. For assessment of drugs impact on brain waves, after opening two holes in frontal and temporal regions, two non-polarized silvery electrodes were fixed in above regions and was connected to physiograph and computer by linkers for waves analysis. Injection intra-ventriculary is done by stereotax apparatus. Results indicate that diazepam (2.5 mg/kg increases sleeping time in two stages of induction and non-induction (P<0.01. 5-HTP (15, 45 mg/kg increases dose-dependence sleeping time. p-CPA (150, 300 mg/kg shows biphasic influence on sleeping time. The 300 mg/kg dose of p-CPA reduces sleeping time while 150 mg/kg dose inverts sleeping time (P<0.05. Interferential affects of drugs with (5-HTP 45 mg/kg and p-CPA (300 mg/kg doses are similar to control groups. Injection of 5-HTP inverts p-CPA affect. Intra-ventriculary Injection of 5-HTP in 150 µg/kg and 300 µg/kg doses, decreases frequency of delta waves and significantly increases the frequencies of other waves but conversely, 500 µg/kg decreases it. Due to findings of this study, interferential affects of agonist-antagonist of 5-HTP, can not invert p-CPA affect. Supported by GABA affects, diazepam induces its inhibitory affect in per-synaptic and post-synaptic membrane through ascending reticular both systems and blocking stimulation of brain cortical and limbic system. Affects of two other drugs on sleeping time and brain waves are probably caused by increment of released serotonin in pre-synaptic neurons. Although their interferential affects with other neurotransmitter system should be

  20. Starting of the steam generator of a fossil fuel power plant, using predictive control based in a neuronal model; Arranque del generador de vapor de una central termoelectrica, usando control predictivo basado en un modelo neuronal

    Gallardo Dominguez, Tonatiuh

    2004-09-15

    In this thesis work it is presented the design and implementation of a simulator of total scope of a predictive controller based in the neuronal model of the temperature in two stages of the heating of the steam generator of a fossil fuel power plant. An implemented control scheme is detailed, as well as the methodology for the identification of a neuronal model utilized for the control. Finally the results of the implementation in the simulator located at the Instituto de Investigaciones Electricas (IIE) are shown to be satisfactory. This control structure is not applied directly in closed circuit, but provides the value of the control actions to a human operator. [Spanish] En este trabajo de tesis se presenta el diseno e implementacion, en un simulador de alcance total, de un controlador predictivo basado en un modelo neuronal para el control de la temperatura en dos etapas del calentamiento del generador de vapor de una central termoelectrica. Se detalla el esquema de control implementado, asi como la metodologia de identificacion de un modelo neuronal utilizado para la sintesis del control. Finalmente se muestran los resultados de la implementacion en el simulador que se encuentra en el Instituto de Investigaciones Electricas (IIE); dichos resultados fueron satisfactorios. Esta estructura de control no se aplica directamente en lazo cerrado, sino que provee el valor de las acciones de control a un operador humano.

  1. An Investigation into the Effects of Peptide Neurotransmitters and Intracellular Second Messengers in Rat Central Neurons in Culture.

    1988-02-04

    Purkinje neurons. 3. Neuromodulation of synaptic efficacy in an invertebrate preparation that may be a useful model system for the actions of histamine in...neurotransmitters, neuromodulators , affect brain function. Nerve cells are the functional units of the brain, and changes in neuronal activity are ultimately

  2. Single-cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks involved In the Central Circadian Clock

    James Park

    2016-10-01

    Full Text Available Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN. Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies towards understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.

  3. Evidence that central dopamine receptors modulate sympathetic neuronal activity to the adrenal medulla to alter glucoregulatory mechanisms.

    Arnerić, S P; Chow, S A; Bhatnagar, R K; Webb, R L; Fischer, L J; Long, J P

    1984-02-01

    Previous reports suggest that analogs of dopamine (DA) can produce hyperglycemia in rats by interacting with DA receptors. Experiments reported here indicate the site of action and describe the metabolic sequalae associated with the hyperglycemic effect of apomorphine (APO), produced in conscious unrestrained rats. Apomorphine was more potent when administered by intracerebroventricular (i.c.v.) injection than when given subcutaneously (s.c.). Very small doses of the DA receptor antagonist pimozide, given intraventricularly, blocked the hyperglycemic effect of apomorphine administered subcutaneously. Sectioning of the spinal cord at thoracic vertebra T1-2 or sectioning the greater splanchnic nerve blocked apomorphine-induced hyperglycemia; whereas section of the superior colliculus or section at T5-6 had no effect. A dose of apomorphine or epinephrine (EPI) producing a similar degree of hyperglycemia elevated the concentration of EPI in serum to a similar degree, and the increase in EPI in serum preceded the increase in glucose in serum. Fasting animals for 2 or 18 hr had no significant effect on EPI- or apomorphine-induced hyperglycemia despite a reduction (91-93%) of the glycogen content of liver and skeletal muscle during the 18 hr fast. 5-Methoxyindole-2-carboxylic acid (MICA), an inhibitor of gluconeogenesis, blocked EPI- and apomorphine-induced hyperglycemia in rats fasted for 18 hr. However, 5-methoxyindole-2-carboxylic acid was ineffective in blocking hyperglycemia in animals fasted for 2 hr. Changes in insulin or glucagon in serum alone cannot account for the hyperglycemic action of apomorphine. These data demonstrate that apomorphine interacts with central DA receptors located in the hindbrain to activate sympathetic neuronal activity to the adrenal gland which subsequently releases epinephrine to alter homeostasis of glucose. Epinephrine may then, depending on the nutritional status, facilitate glycogenolytic or gluconeogenic processes to produce

  4. Serotonergic and dopaminergic modulation of attentional processes.

    Boulougouris, Vasileios; Tsaltas, Eleftheria

    2008-01-01

    Disturbances in attentional processes are a common feature of several psychiatric disorders such as schizophrenia, attention deficit/hyperactivity disorder and Huntington's disease. The use of animal models has been useful in defining various candidate neural systems thus enabling us to translate basic laboratory science to the clinic and vice-versa. In this chapter, a comparative and integrated account is provided on the neuroanatomical and neurochemical modulation of basic behavioural operations such as selective attention, vigilance, set-shifting and executive control focusing on the comparative functions of the serotonin and dopamine systems in the cognitive control exerted by the prefrontal cortex. Specifically, we have reviewed evidence emerging from several behavioural paradigms in experimental animals and humans each of which centres on a different aspect of the attentional function. These paradigms offering both human and animal variants include the five-choice serial reaction time task (5CSRTT), attentional set-shifting and stop-signal reaction time task. In each case, the types of operation that are measured by the given paradigm and their neural correlates are defined. Then, the role of the ascending dopaminergic and serotonergic systems in the neurochemical modulation of its behavioural output are examined, and reference is made to clinical implications for neurological and neuropsychiatric disorders which exhibit deficits in these cognitive tests.

  5. A reassessment of the role of serotonergic system in the control of feeding behavior

    Medeiros Magda A.

    2005-01-01

    Full Text Available The role of serotonergic system in the feeding behaviorwas appraised by electrolytic lesions in the dorsal raphe nucleus (DRN and administration of para-chlorophenylalanine (PCPA, 3 mg/5 mul, icv. Chronic evaluations were accomplished through 120 and 360 days in PCPA-injected and DRN-lesioned rats, respectively. Acute food intake was evaluated in fasted rats and submitted to injection of PCPA and hydroxytryptophan (LHTP, 30 mg/kg, ip. DRN-lesioned rats exhibited 22-80% increase in food intake up to sixth month, whereas the obesity was evident and sustained by whole period. In PCPA-injected rats was observed an initial increase in the food intake followed by hypophagy from 25th to 30th day and a transitory increase of body weight from 5th to 60th day. In the acute study, the LHTP reverted partially the PCPA-induced increase in food intake of fasted rats suggesting a sustained capacity of decarboxylation of precursor by serotonergic neurons. Slow restoration of the levels of food intake in DRN-lesioned rats reveals a neuroplasticity in the systems that regulate feeding behavior. A plateau on the body weight curve in lesioned rats possibly represents the establishment of a new and higher set point of energetic balance.

  6. Serotonergic blunting to meta-chlorophenylpiperazine (m-CPP) highly correlates with sustained childhood abuse in impulsive and autoaggressive female borderline patients

    Rinne, T; Westenberg, HGM; den Boer, JA

    2000-01-01

    Background: Disturbances of affect, impulse regulation and autoaggressive behavior which are all said to be related to an altered function of the central serotonergic (5-HT) system, are prominent features of borderline personality disorder (BPD). A high coincidence of childhood physical and sexual

  7. Serotonergic blunting to meta-chlorophenylpiperazine (m-CPP) highly correlates with sustained childhood abuse in impulsive and autoaggressive female borderline patients

    Rinne, T.; Westenberg, H. G.; den Boer, J. A.; van den Brink, W.

    2000-01-01

    Disturbances of affect, impulse regulation, and autoaggressive behavior, which are all said to be related to an altered function of the central serotonergic (5-HT) system, are prominent features of borderline personality disorder (BPD). A high coincidence of childhood physical and sexual abuse is

  8. Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons.

    Tzu Lin

    2015-11-01

    Full Text Available During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.

  9. Human psychophysics and rodent spinal neurones exhibit peripheral and central mechanisms of inflammatory pain in the UVB and UVB heat rekindling models.

    O'Neill, Jessica; Sikandar, Shafaq; McMahon, Stephen B; Dickenson, Anthony H

    2015-09-01

    Translational research is key to bridging the gaps between preclinical findings and the patients, and a translational model of inflammatory pain will ideally induce both peripheral and central sensitisation, more effectively mimicking clinical pathophysiology in some chronic inflammatory conditions. We conducted a parallel investigation of two models of inflammatory pain, using ultraviolet B (UVB) irradiation alone and UVB irradiation with heat rekindling. We used rodent electrophysiology and human quantitative sensory testing to characterise nociceptive processing in the peripheral and central nervous systems in both models. In both species, UVB irradiation produces peripheral sensitisation measured as augmented evoked activity of rat dorsal horn neurones and increased perceptual responses of human subjects to mechanical and thermal stimuli. In both species, UVB with heat rekindling produces central sensitisation. UVB irradiation alone and UVB with heat rekindling are translational models of inflammation that produce peripheral and central sensitisation, respectively. The predictive value of laboratory models for human pain processing is crucial for improving translational research. The discrepancy between peripheral and central mechanisms of pain is an important consideration for drug targets, and here we describe two models of inflammatory pain that involve ultraviolet B (UVB) irradiation, which can employ peripheral and central sensitisation to produce mechanical and thermal hyperalgesia in rats and humans. We use electrophysiology in rats to measure the mechanically- and thermally-evoked activity of rat spinal neurones and quantitative sensory testing to assess human psychophysical responses to mechanical and thermal stimulation in a model of UVB irradiation and in a model of UVB irradiation with heat rekindling. Our results demonstrate peripheral sensitisation in both species driven by UVB irradiation, with a clear mechanical and thermal hypersensitivity of

  10. Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury.

    Jung, J; Uesugi, N; Jeong, N Y; Park, B S; Konishi, H; Kiyama, H

    2016-01-28

    In the spinal dorsal horn (DH), nerve injury activates microglia and induces neuropathic pain. Several studies clarified an involvement of adenosine triphosphate (ATP) in the microglial activation. However, the origin of ATP together with the release mechanism is unclear. Recent in vitro study revealed that an ATP marker, quinacrine, in lysosomes was released from neurite terminal of dorsal root ganglion (DRG) neurons to extracellular space via lysosomal exocytosis. Here, we demonstrate a possibility that the lysosomal ingredient including ATP released from DRG neurons by lysosomal-exocytosis is an additional source of the glial activation in DH after nerve injury. After rat L5 spinal nerve ligation (SNL), mRNA for transcription factor EB (TFEB), a transcription factor controlling lysosomal activation and exocytosis, was induced in the DRG. Simultaneously both lysosomal protein, LAMP1- and vesicular nuclear transporter (VNUT)-positive vesicles were increased in L5 DRG neurons and ipsilateral DH. The quinacrine staining in DH was increased and co-localized with LAMP1 immunoreactivity after nerve injury. In DH, LAMP1-positive vesicles were also co-localized with a peripheral nerve marker, Isolectin B4 (IB4) lectin. Injection of the adenovirus encoding mCherry-LAMP1 into DRG showed that mCherry-positive lysosomes are transported to the central nerve terminal in DH. These findings suggest that activation of lysosome synthesis including ATP packaging in DRG, the central transportation of the lysosome, and subsequent its exocytosis from the central nerve terminal of DRG neurons in response to nerve injury could be a partial mechanism for activation of microglia in DH. This lysosome-mediated microglia activation mechanism may provide another clue to control nociception and pain. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Acute restriction impairs memory in the elevated T-maze (ETM) and modifies serotonergic activity in the dorsolateral striatum.

    Cruz-Morales, Sara Eugenia; García-Saldívar, Norma Laura; González-López, María Reyes; Castillo-Roberto, Georgina; Monroy, Juana; Domínguez, Roberto

    2008-12-16

    Serotonin (5-HT) is involved in behaviors such as sleep, eating, memory, in mental disorders like anxiety and depression and plays an important role in the modulation of stress. On the other hand, exposure to stress influence learning as well as declarative and non-declarative memory. These effects are dependent on the type of stressor, their magnitude, and the type of memory. The striatum has been associated with non-declarative procedural memory, while the information about stress effects on procedural memory and their relation with striatal serotonin is scarce. The objective of this study was to evaluate the effects of stress on the modifications of the striatal serotonergic system. In Experiment 1, the effects of either 60 min of restraint (R) or exposure to the elevated T-maze (ETM) was assessed. Exposure to ETM decreased 5-HT concentration and to R increased 5-HT activity ([metabolite]/[neurotransmitter]). In Experiment 2, we evaluated the effects of restraint on ETM trained immediately, 24 or 48 h after restraint. No effects were detected in acquisition or escape latencies, while retention latencies were lower in all groups compared with the non-restrained group, although significant effects were detected immediately and 24h after restraint. The memory impairment seems to be associated with changes in striatal serotonergic system, given that 5-HT concentration increased, while serotonergic activity decreased. The differences in the activity of 5-HT detected in each experiment could be explained by the effects of different stressors on the serotonergic neurons ability to synthesize the neurotransmitter. Thus, we suggest that exposure to stress impairs procedural memory and that striatal serotonin modulates this effect.

  12. Neurons other than motor neurons in motor neuron disease.

    Ruffoli, Riccardo; Biagioni, Francesca; Busceti, Carla L; Gaglione, Anderson; Ryskalin, Larisa; Gambardella, Stefano; Frati, Alessandro; Fornai, Francesco

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is typically defined by a loss of motor neurons in the central nervous system. Accordingly, morphological analysis for decades considered motor neurons (in the cortex, brainstem and spinal cord) as the neuronal population selectively involved in ALS. Similarly, this was considered the pathological marker to score disease severity ex vivo both in patients and experimental models. However, the concept of non-autonomous motor neuron death was used recently to indicate the need for additional cell types to produce motor neuron death in ALS. This means that motor neuron loss occurs only when they are connected with other cell types. This concept originally emphasized the need for resident glia as well as non-resident inflammatory cells. Nowadays, the additional role of neurons other than motor neurons emerged in the scenario to induce non-autonomous motor neuron death. In fact, in ALS neurons diverse from motor neurons are involved. These cells play multiple roles in ALS: (i) they participate in the chain of events to produce motor neuron loss; (ii) they may even degenerate more than and before motor neurons. In the present manuscript evidence about multi-neuronal involvement in ALS patients and experimental models is discussed. Specific sub-classes of neurons in the whole spinal cord are reported either to degenerate or to trigger neuronal degeneration, thus portraying ALS as a whole spinal cord disorder rather than a disease affecting motor neurons solely. This is associated with a novel concept in motor neuron disease which recruits abnormal mechanisms of cell to cell communication.

  13. 3-aminopyridazine derivatives with atypical antidepressant, serotonergic, and dopaminergic activities.

    Wermuth, C G; Schlewer, G; Bourguignon, J J; Maghioros, G; Bouchet, M J; Moire, C; Kan, J P; Worms, P; Biziere, K

    1989-03-01

    Minaprine [3-[(beta-morpholinoethyl)amino]-4-methyl-6-phenylpyridazine dihydrochloride] is active in most animal models of depression and exhibits in vivo a dual dopaminomimetic and serotoninomimetic activity profile. In an attempt to dissociate these two effects and to characterize the responsible structural requirements, a series of 47 diversely substituted analogues of minaprine were synthesized and tested for their potential antidepressant, serotonergic, and dopaminergic activities. The structure-activity relationships show that dopaminergic and serotonergic activities can be dissociated. Serotonergic activity appears to be correlated mainly with the substituent in the 4-position of the pyridazine ring whereas the dopaminergic activity appears to be dependent on the presence, or in the formation, of a para-hydroxylated aryl ring in the 6-position of the pyridazine ring.

  14. Serotonergic transmission at Merkel discs: modulation by exogenously applied chemical messengers and involvement of Ih currents.

    Chang, Weipang; Kanda, Hirosato; Ikeda, Ryo; Ling, Jennifer; Gu, Jianguo G

    2017-05-01

    The Merkel disc is a main type of tactile end organ consisting of Merkel cells and Aβ-afferent endings that responds to tactile stimulation with slowly adapting type 1 (SA1) afferent impulses. Our recent study has shown that Merkel discs in whisker hair follicles are serotonergic synapses using endogenous serotonin to transmit tactile signals from Merkel cells to Aβ-afferent endings. In this study, we hypothesize that tactile sensitivity of Merkel discs can be modulated by chemical messengers. We tested this hypothesis by determining whether and how SA1 responses of mouse whisker hair follicles may be affected by exogenously applied chemical messengers. We found that SA1 responses were potentiated by serotonin at low concentration (10 μM) but almost completely occluded by serotonin at high concentration (2 mM). In contrast, SA1 responses were not significantly affected by ATP and its metabolically stable analog α,β-methylene-ATP, glutamate, γ-aminobutyric acid (GABA), and histamine. SA1 responses were also not affected by antagonists for P2X receptors, ionotropic glutamate receptors, and ionotropic GABA and glycine receptors. Whole-cell patch-clamp recordings reconfirm the presence of both ionotropic and metabotropic 5-HT receptors on afferent neurons and their terminals innervating whisker hair follicles. All whisker afferent neurons expressed hyperpolarization-activated inward currents (I h ), which are potentiated by serotonin through the activation of metabotropic 5-HT receptors. Taken together, the findings substantiate the serotonergic mechanism of tactile transmission at Merkel discs and identify the involvement of I h currents in postsynaptic excitatory actions of serotonin. In addition, the findings do not favor any significant involvement of ATP, glutamate, histamine, GABA, or glycine in tactile transmission at the Merkel discs of whisker hair follicles. © 2017 International Society for Neurochemistry.

  15. The anatomy of the serotonergic nervous system of an entoproct creeping-type larva and its phylogenetic implications

    Wanninger, Andreas Wilhelm Georg; Fuchs, Judith; Haszprunar, Gerhard

    2007-01-01

    the anatomy of the serotonergic nervous system of the creeping-type larva of Loxosomella murmanica. The apical organ is very complex and comprises six to eight centrally positioned flask cells and eight bipolar peripheral cells. In addition, a prototroch nerve ring, an anterior nerve loop, a paired buccal...... molluscs and may be diagnostic for a mollusc-entoproct clade. In addition, the larva of Loxosomella expresses a mosaic of certain neural features that are also found in other larval or adult Spiralia, e.g., a prototroch nerve ring, an anterior nerve loop, and a buccal nervous system....... ones, are found along the anterior-posterior axis. The combination of a complex larval serotonergic apical organ and (adult) tetraneury, comprising one pair of ventral and one pair of more dorsally situated lateral longitudinal nerve cords without ganglia, has so far only been reported for basal...

  16. Transient electromyographic findings in serotonergic toxicity due to combination of essitalopram and isoniazid

    Çagdas Erdogan

    2013-01-01

    Full Text Available Here, we report a case of serotonergic toxicity due to combination of essitalopram and isoniazid, which was rarely reported before. Moreover, we observed transient neurogenic denervation potentials in needle electromyography, which disappeared with the treatment of serotonergic toxicity. As to our best knowledge, this is the first case, reporting transient electromyographic changes probably due to serotonergic toxicity.

  17. Development of serotonergic and adrenergic receptors in the rat spinal cord: effects of neonatal chemical lesions and hyperthyroidism.

    Lau, C; Pylypiw, A; Ross, L L

    1985-03-01

    The sympathetic preganglionic neurons in the spinal cord receive dense serotonergic (5-HT) and catecholaminergic (CA) afferent inputs from the descending supraspinal pathways. In the rat spinal cord, the levels of these biogenic amines and their receptors are low at birth, but undergo rapid ontogenetic increases in the ensuing 2-3 postnatal weeks until the adult levels are reached. In many systems it has been shown that denervation of presynaptic neurons leads to an up-regulation of the number of postsynaptic receptors. To determine whether the 5-HT and CA receptors in the developing spinal cord are also subject to such transsynaptic regulation, we examined the ontogeny of serotonergic receptors and alpha- and beta-adrenergic receptors in thoracolumbar spinal cord of rats given neurotoxins which destroy serotonergic (5,7-dihydroxytryptamine (5,7-DHT)) or noradrenergic (6-hydroxydopamine (6-OHDA)) nerve terminals. Intracisternal administration of 5,7-DHT or 6-OHDA at 1 and 6 days of age prevented, respectively, the development of 5-HT and CA levels in the spinal cord. Rats lesioned with 5,7-DHT displayed a marked elevation of 5-HT receptors with a binding of 50% greater than controls at 1 week and a continuing increase to twice normal by 4 weeks. A similar pattern of up-regulation was also detected with the alpha-adrenergic receptor, as rats lesioned with 6-OHDA exhibited persistent increases in receptor concentration. However, in these same animals ontogeny of the beta-adrenergic receptor in the spinal cord remained virtually unaffected by the chemical lesion. In several other parts of the nervous system, it has been demonstrated that the beta-adrenergic sensitivity can be modulated by hormonal signals, particularly that of the thyroid hormones. This phenomenon was examined in the spinal cord and in confirmation with previous studies neonatal treatment of triiodothyronine (0.1 mg/kg, s.c. daily) was capable of evoking persistent increases in beta

  18. Functional link between the hypocretin and serotonin systems in the neural control of breathing and central chemosensitivity.

    Corcoran, Andrea E; Richerson, George B; Harris, Michael B

    2015-07-01

    Serotonin (5-HT)-synthesizing neurons of the medullary raphe are putative central chemoreceptors, proposed to be one of potentially multiple brain stem chemosensitive cell types and loci interacting to produce the respiratory chemoreflex. Hypocretin-synthesizing neurons of the lateral hypothalamus are important contributors to arousal state, thermoregulation, and feeding behavior and are also reportedly involved in the hypercapnic ventilatory response. Recently, a functional interaction was found between the hypocretin system and 5-HT neurons of the dorsal raphe. The validity and potential significance of hypocretin modulation of medullary raphe 5-HT neurons, however, is unknown. As such, the purpose of this study was to explore functional interactions between the hypocretin system and 5-HT system of the medullary raphe on baseline respiratory output and central chemosensitivity. To explore such interactions, we used the neonatal in vitro medullary slice preparation derived from wild-type (WT) mice (normal 5-HT function) and a knockout strain lacking all central 5-HT neurons (Lmx1b(f/f/p) mice). We examined effects of acidosis, hypocretin-1, a hypocretin receptor antagonist (SB-408124), and the effect of the antagonist on the response to acidosis. We confirmed the critical role of 5-HT neurons in central chemosensitivity given that the increased hypoglossal burst frequency with acidosis, characteristic of WT mice, was absent in preparations derived from Lmx1b(f/f/p) mice. We also found that hypocretin facilitated baseline neural ventilatory output in part through 5-HT neurons. Although the impact of hypocretin on 5-HT neuronal sensitivity to acidosis is still unclear, hypocretins did appear to mediate the burst duration response to acidosis via serotonergic mechanisms.

  19. Intermittent hypoxia from obstructive sleep apnea may cause neuronal impairment and dysfunction in central nervous system: the potential roles played by microglia

    Yang Q

    2013-08-01

    Full Text Available Qingchan Yang,1,* Yan Wang,2,* Jing Feng,2 Jie Cao,2 Baoyuan Chen2 1Graduate School of Tianjin Medical University, 2Respiratory Department, Tianjin Medical University General Hospital, Tianjin, People's Republic of China *These authors contributed equally to this work Abstract: Obstructive sleep apnea (OSA is a common condition characterized by repetitive episodes of complete (apnea or partial (hypopnea obstruction of the upper airway during sleep, resulting in oxygen desaturation and arousal from sleep. Intermittent hypoxia (IH resulting from OSA may cause structural neuron damage and dysfunction in the central nervous system (CNS. Clinically, it manifests as neurocognitive and behavioral deficits with oxidative stress and inflammatory impairment as its pathophysiological basis, which are mediated by microglia at the cellular level. Microglia are dominant proinflammatory cells in the CNS. They induce CNS oxidative stress and inflammation, mainly through mitochondria, reduced nicotinamide adenine dinucleotide phosphate oxidase, and the release of excitatory toxic neurotransmitters. The balance between neurotoxic versus protective and anti- versus proinflammatory microglial factors might determine the final roles of microglia after IH exposure from OSA. Microglia inflammatory impairments will continue and cascade persistently upon activation, ultimately resulting in clinically significant neuron damage and dysfunction in the CNS. In this review article, we summarize the mechanisms of structural neuron damage in the CNS and its concomitant dysfunction due to IH from OSA, and the potential roles played by microglia in this process. Keywords: intermittent hypoxia, obstructive sleep apnea, microglia, inflammation, apoptosis

  20. Widespread transduction of astrocytes and neurons in the mouse central nervous system after systemic delivery of a self-complementary AAV-PHP.B vector.

    Rincon, Melvin Y; de Vin, Filip; Duqué, Sandra I; Fripont, Shelly; Castaldo, Stephanie A; Bouhuijzen-Wenger, Jessica; Holt, Matthew G

    2018-04-01

    Until recently, adeno-associated virus 9 (AAV9) was considered the AAV serotype most effective in crossing the blood-brain barrier (BBB) and transducing cells of the central nervous system (CNS), following systemic injection. However, a newly engineered capsid, AAV-PHP.B, is reported to cross the BBB at even higher efficiency. We investigated how much we could boost CNS transgene expression by using AAV-PHP.B carrying a self-complementary (sc) genome. To allow comparison, 6 weeks old C57BL/6 mice received intravenous injections of scAAV2/9-GFP or scAAV2/PHP.B-GFP at equivalent doses. Three weeks postinjection, transgene expression was assessed in brain and spinal cord. We consistently observed more widespread CNS transduction and higher levels of transgene expression when using the scAAV2/PHP.B-GFP vector. In particular, we observed an unprecedented level of astrocyte transduction in the cortex, when using a ubiquitous CBA promoter. In comparison, neuronal transduction was much lower than previously reported. However, strong neuronal expression (including spinal motor neurons) was observed when the human synapsin promoter was used. These findings constitute the first reported use of an AAV-PHP.B capsid, encapsulating a scAAV genome, for gene transfer in adult mice. Our results underscore the potential of this AAV construct as a platform for safer and more efficacious gene therapy vectors for the CNS.

  1. Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury

    Costigan Michael

    2008-12-01

    Full Text Available Abstract Background The role of the neurotrophin regulated polypeptide, VGF, has been investigated in a rat spared injury model of neuropathic pain. This peptide has been shown to be associated with synaptic strengthening and learning in the hippocampus and while it is known that VGFmRNA is upregulated in dorsal root ganglia following peripheral nerve injury, the role of this VGF peptide in neuropathic pain has yet to be investigated. Results Prolonged upregulation of VGF mRNA and protein was observed in injured dorsal root ganglion neurons, central terminals and their target dorsal horn neurons. Intrathecal application of TLQP-62, the C-terminal active portion of VGF (5–50 nmol to naïve rats caused a long-lasting mechanical and cold behavioral allodynia. Direct actions of 50 nM TLQP-62 upon dorsal horn neuron excitability was demonstrated in whole cell patch recordings in spinal cord slices and in receptive field analysis in intact, anesthetized rats where significant actions of VGF were upon spontaneous activity and cold evoked responses. Conclusion VGF expression is therefore highly modulated in nociceptive pathways following peripheral nerve injury and can cause dorsal horn cell excitation and behavioral hypersensitivity in naïve animals. Together the results point to a novel and powerful role for VGF in neuropathic pain.

  2. Peripheral markers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder.

    Croonenberghs, J; Delmeire, L; Verkerk, R; Lin, A H; Meskal, A; Neels, H; Van der Planken, M; Scharpe, S; Deboutte, D; Pison, G; Maes, M

    2000-03-01

    Some studies have suggested that disorders in the peripheral and central metabolism of serotonin (5-HT) and noradrenaline may play a role in the pathophysiology of autistic disorder. This study examines serotonergic and noradrenergic markers in a study group of 13 male, post-pubertal, caucasian autistic patients (age 12-18 y; I.Q. > 55) and 13 matched volunteers. [3H]-paroxetine binding Kd values were significantly higher in patients with autism than in healthy volunteers. Plasma concentrations of tryptophan, the precursor of 5-HT, were significantly lower in autistic patients than in healthy volunteers. There were no significant differences between autistic and normal children in the serum concentrations of 5-HT, or the 24-hr urinary excretion of 5-hydroxy-indoleacetic acid (5-HIAA), adrenaline, noradrenaline, and dopamine. There were no significant differences in [3H]-rauwolscine binding Bmax or Kd values, or in the serum concentrations of tyrosine, the precursor of noradrenaline, between both study groups. There were highly significant positive correlations between age and 24-hr urinary excretion of 5-HIAA and serum tryptophan. The results suggest that: 1) serotonergic disturbances, such as defects in the 5-HT transporter system and lowered plasma tryptophan, may play a role in the pathophysiology of autism; 2) autism is not associated with alterations in the noradrenergic system; and 3) the metabolism of serotonin in humans undergoes significant changes between the ages of 12 and 18 years.

  3. Involvement of adrenergic and serotonergic nervous mechanisms in allethrin-induced tremors in mice.

    Nishimura, M; Obana, N; Yagasaki, O; Yanagiya, I

    1984-05-01

    Oral or intravenous administration of allethrin, a synthetic derivative of the pirethrin-based insecticides, produces neurotoxic symptoms consisting of mild salivation, hyperexcitability, tremors and convulsions which result in death. Intracerebroventricular injection of allethrin to mouse at about one-nineth the dose of intravenous administration, produced qualitatively identical but less prominent symptoms, indicating that at least some of the symptoms may be originated in the central nervous system. To investigate the mechanism of action of the compound, we studied the ability of agents which alter neurotransmission to prevent or potentiate the effect of convulsive doses of technical grade (15.5% cis, 84.5% trans) allethrin. Intraperitoneal pretreatment with drugs which block noradrenergic receptors or norepinephrine synthesis, such as pentobarbital, chlorpromazine, phentolamine, phenoxybenzamine and reserpine, depressed the tremor induced by allethrin. The inhibitory effect of reserpine was reversed by phenylephrine. Both the serotonergic blocker, methysergide, and the serotonin depletor, rho-chlorphenylalanine, potentiated the effect of allethrin. The potentiating effect of methysergide was antagonized by 5-hydroxytryptamine. However, intracerebroventricular administration of methysergide was ineffective in potentiating the effect of allethrin. alpha 2- and beta-adrenoceptor blockers, muscarinic antagonists, GABA mimenergics and morphine had no effect. These results suggest that allethrin produces its neurotoxic responses in mice by acting on the brain and spinal levels. Furthermore, adrenergic excitatory and serotonergic inhibitory mechanisms may be involved in the neural pathway through which the allethrin-induced tremor is evoked.

  4. Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: implication for perception.

    Carriot, Jerome; Jamali, Mohsen; Brooks, Jessica X; Cullen, Kathleen E

    2015-02-25

    Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼ 70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life. Copyright © 2015 the authors 0270-6474/15/353555-11$15.00/0.

  5. Serotonergic outcome, stress and sexual steroid hormones, and growth in a South American cichlid fish fed with an L-tryptophan enriched diet.

    Morandini, Leonel; Ramallo, Martín Roberto; Moreira, Renata Guimarães; Höcht, Christian; Somoza, Gustavo Manuel; Silva, Ana; Pandolfi, Matías

    2015-11-01

    Reared animals for edible or ornamental purposes are frequently exposed to high aggression and stressful situations. These factors generally arise from conspecifics in densely breeding conditions. In vertebrates, serotonin (5-HT) has been postulated as a key neuromodulator and neurotransmitter involved in aggression and stress. The essential amino acid L-tryptophan (trp) is crucial for the synthesis of 5-HT, and so, leaves a gateway for indirectly augmenting brain 5-HT levels by means of a trp-enriched diet. The cichlid fish Cichlasoma dimerus, locally known as chanchita, is an autochthonous, potentially ornamental species and a fruitful laboratory model which behavior and reproduction has been studied over the last 15years. It presents complex social hierarchies, and great asymmetries between subordinate and dominant animals in respect to aggression, stress, and reproductive chance. The first aim of this work was to perform a morphological description of chanchita's brain serotonergic system, in both males and females. Then, we evaluated the effects of a trp-supplemented diet, given during 4weeks, on brain serotonergic activity, stress and sexual steroid hormones, and growth in isolated specimens. Results showed that chanchita's brain serotonergic system is composed of several populations of neurons located in three main areas: pretectum, hypothalamus and raphe, with no clear differences between males and females at a morphological level. Animals fed with trp-enriched diets exhibited higher forebrain serotonergic activity and a significant reduction in their relative cortisol levels, with no effects on sexual steroid plasma levels or growth parameters. Thus, this study points to food trp enrichment as a "neurodietary'' method for elevating brain serotonergic activity and decreasing stress, without affecting growth or sex steroid hormone levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Neurokinin-1 Receptor Immunoreactive Neuronal Elements in the Superficial Dorsal Horn of the Chicken Spinal Cord: With Special Reference to Their Relationship with the Tachykinin-containing Central Axon Terminals in Synaptic Glomeruli

    Sakamoto, Hiroshi; Kawate, Toyoko; Li, Yongnan; Atsumi, Saoko

    2009-01-01

    Synaptic glomeruli that involve tachykinin-containing primary afferent central terminals are numerous in lamina II of the chicken spinal cord. Therefore, a certain amount of noxious information is likely to be modulated in these structures in chickens. In this study, we used immunohistochemistry with confocal and electron microscopy to investigate whether neurokinin-1 receptor (NK-1R)-expressing neuronal elements are in contact with the central primary afferent terminals in synaptic glomeruli of the chicken spinal cord. We also investigated which neuronal elements (axon terminals, dendrites, cell bodies) and which neurons in the spinal cord possess NK-1R, and are possibly influenced by tachykinin in the glomeruli. By confocal microscopy, NK-1R immunoreactivities were seen in a variety of neuronal cell bodies, their dendrites and smaller fibers of unknown origin. Some of the NK-1R immunoreactive profiles also expressed GABA immunoreactivities. A close association was observed between the NK-1R-immunoreactive neurons and tachykinin-immunoreactive axonal varicosities. By electron microscopy, NK-1R immunoreactivity was seen in cell bodies, conventional dendrites and vesicle-containing dendrites in laminae I and II. Among these elements, dendrites and vesicle-containing dendrites made contact with tachykinin-containing central terminals in the synaptic glomeruli. These results indicate that tachykinin-containing central terminals in the chicken spinal cord can modulate second-order neuronal elements in the synaptic glomeruli

  7. Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury

    Liu, Yuan; Tan, Botao; Wang, Li; Long, Zaiyun; Li, Yingyu; Liao, Weihong; Wu, Yamin

    2015-01-01

    Endogenous neural stem cells in central canal of adult mammalian spinal cord exhibit stem cell properties following injury. In the present study, the endogenous neural stem cells were labeled with Dil to track the differentiation of cells after mild spinal cord injury (SCI). Compared with 1 and 14 days post mild injury, the number of endogenous neural stem cells significantly increased at the injured site of spinal cord on 3 and 7 days post-injury. Dil-labeled βIII-tublin and GFAP expressing cells could be detected on 7 days post-injury, which indicated that the endogenous neural stem cells in central canal of spinal cord differentiated into different type of neural cells, but there were more differentiated astrocytes than the neurons after injury. Furthermore, after injury the expression of inhibitory Notch1 and Hes1 mRNA began to increase at 6 hours and was evident at 12 and 24 hours, which maintained high levels up to 7 days post-injury. These results indicated that a mild SCI in rat is sufficient to induce endogenous neural stem cells proliferation and differentiation. However, the ability to differentiate into neurons is limited, which may be, at least in part, due to high expression of inhibitory Notch1 and Hes1 genes after injury. PMID:26097566

  8. The influence of μ-opioid and noradrenaline reuptake inhibition in the modulation of pain responsive neurones in the central amygdala by tapentadol in rats with neuropathy

    Gonçalves, Leonor; Friend, Lauren V.; Dickenson, Anthony H.

    2015-01-01

    Treatments for neuropathic pain are either not fully effective or have problematic side effects. Combinations of drugs are often used. Tapentadol is a newer molecule that produces analgesia in various pain models through two inhibitory mechanisms, namely central μ-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition. These two components interact synergistically, resulting in levels of analgesia similar to opioid analgesics such as oxycodone and morphine, but with more tolerable side effects. The right central nucleus of the amygdala (CeA) is critical for the lateral spinal ascending pain pathway, regulates descending pain pathways and is key in the emotional-affective components of pain. Few studies have investigated the pharmacology of limbic brain areas in pain models. Here we determined the actions of systemic tapentadol on right CeA neurones of animals with neuropathy and which component of tapentadol contributes to its effect. Neuronal responses to multimodal peripheral stimulation of animals with spinal nerve ligation or sham surgery were recorded before and after two doses of tapentadol. After the higher dose of tapentadol either naloxone or yohimbine were administered. Systemic tapentadol resulted in dose-dependent decrease in right CeA neuronal activity only in neuropathy. Both naloxone and yohimbine reversed this effect to an extent that was modality selective. The interactions of the components of tapentadol are not limited to the synergy between the MOR and α2-adrenoceptors seen at spinal levels, but are seen at this supraspinal site where suppression of responses may relate to the ability of the drug to alter affective components of pain. PMID:25576174

  9. The serotonergic anatomy of the developing human medulla oblongata: implications for pediatric disorders of homeostasis.

    Kinney, Hannah C; Broadbelt, Kevin G; Haynes, Robin L; Rognum, Ingvar J; Paterson, David S

    2011-07-01

    The caudal serotonergic (5-HT) system is a critical component of a medullary "homeostatic network" that regulates protective responses to metabolic stressors such as hypoxia, hypercapnia, and hyperthermia. We define anatomically the caudal 5-HT system in the human medulla as 5-HT neuronal cell bodies located in the raphé (raphé obscurus, raphé magnus, and raphé pallidus), extra-raphé (gigantocellularis, paragigantocellularis lateralis, intermediate reticular zone, lateral reticular nucleus, and nucleus subtrigeminalis), and ventral surface (arcuate nucleus). These 5-HT neurons are adjacent to all of the respiratory- and autonomic-related nuclei in the medulla where they are positioned to modulate directly the responses of these effector nuclei. In the following review, we highlight the topography and development of the caudal 5-HT system in the human fetus and infant, and its inter-relationships with nicotinic, GABAergic, and cytokine receptors. We also summarize pediatric disorders in early life which we term "developmental serotonopathies" of the caudal (as well as rostral) 5-HT domain and which are associated with homeostatic imbalances. The delineation of the development and organization of the human caudal 5-HT system provides the critical foundation for the neuropathologic elucidation of its disorders directly in the human brain. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Role of dopaminergic and serotonergic neurotransmitters in behavioral alterations observed in rodent model of hepatic encephalopathy.

    Dhanda, Saurabh; Sandhir, Rajat

    2015-06-01

    The present study was designed to evaluate the role of biogenic amines in behavioral alterations observed in rat model of hepatic encephalopathy (HE) following bile duct ligation (BDL). Male Wistar rats subjected to BDL developed biliary fibrosis after four weeks which was supported by altered liver function tests, increased ammonia levels and histological staining (Sirius red). Animals were assessed for their behavioral performance in terms of cognitive, anxiety and motor functions. The levels of dopamine (DA), serotonin (5-HT), epinephrine and norepinephrine (NE) were estimated in different regions of brain viz. cortex, hippocampus, striatum and cerebellum using HPLC along with activity of monoamine oxidase (MAO). Cognitive assessment of BDL rats revealed a progressive decline in learning, memory formation, retrieval, exploration of novel environment and spontaneous locomotor activity along with decrease in 5-HT and NE levels. This was accompanied by an increase in MAO activity. Motor functions of BDL rats were also altered which were evident from decrease in the time spent on the rotating rod and higher foot faults assessed using narrow beam walk task. A global decrease was observed in the DA content along with an increase in MAO activity. Histopathological studies using hematoxylin-eosin (H&E) and cresyl violet exhibited marked neuronal degeneration, wherein neurons appeared more pyknotic, condensed and damaged. The results reveal that dopaminergic and serotonergic pathways are disturbed in chronic liver failure post-BDL which may be responsible for behavioral impairments observed in HE. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Impairment of Serotonergic Transmission by the Antiparkinsonian Drug L-DOPA: Mechanisms and Clinical Implications

    Cristina Miguelez

    2017-09-01

    Full Text Available The link between the anti-Parkinsonian drug L-3,4-dihydroxyphenylalanine (L-DOPA and the serotonergic (5-HT system has been long established and has received increased attention during the last decade. Most studies have focused on the fact that L-DOPA can be transformed into dopamine (DA and released from 5-HT terminals, which is especially important for the management of L-DOPA-induced dyskinesia. In patients, treatment using L-DOPA also impacts 5-HT neurotransmission; however, few studies have investigated the mechanisms of this effect. The purpose of this review is to summarize the electrophysiological and neurochemical data concerning the effects of L-DOPA on 5-HT cell function. This review will argue that L-DOPA disrupts the link between the electrical activity of 5-HT neurons and 5-HT release as well as that between 5-HT release and extracellular 5-HT levels. These effects are caused by the actions of L-DOPA and DA in 5-HT neurons, which affect 5-HT neurotransmission from the biosynthesis of 5-HT to the impairment of the 5-HT transporter. The interaction between L-DOPA and 5-HT transmission is especially relevant in those Parkinson’s disease (PD patients that suffer dyskinesia, comorbid anxiety or depression, since the efficacy of antidepressants or 5-HT compounds may be affected.

  12. Neuromodulation intrinsic to the central pattern generator for escape swimming in Tritonia.

    Katz, P S

    1998-11-16

    Extrinsic neuromodulatory inputs to central pattern generators (CPGs) can alter the properties and synaptic interactions of neurons in those circuits and thereby modify the output of the CPG. Recent work in a number of systems has now demonstrated that neurons intrinsic to CPG can also evoke neuromodulatory actions on other members of the CPG. Such "intrinsic neuromodulation" plays a role in controlling the CPG underlying the escape swim response of the nudibrach mollusc, Tritonia diomedea. The dorsal swim interneurons (DSIs) are a bilaterally represented set of three serotonergic neurons that participate in the generation of the rhythmic swim motor program. Serotonin released from these CPG neurons functions both as a fast neurotransmitter and as a slower neuromodulator. In its modulatory role, serotonin enhances the release of neurotransmitter from another CPG neuron, C2, and also increases C2 excitability by decreasing spike frequency adaptation. These neuromodulatory actions intrinsic to the CPG may be important for the initial self-configuration of the system into a function CPG and for experience-dependent changes in the output such as behavioral sensitization and habituation.

  13. Feeding motivation as a personality trait in Nile tilapia (Oreochromis niloticus): role of serotonergic neurotransmission

    Silva, P.I.M.; Martins, C.I.M.; Höglund, Erik

    2014-01-01

    Consistent individual variation in behaviour and physiology (i.e. animal personality or coping style) has emerged as a central topic in many biological disciplines. Yet, underlying mechanisms of crucial personality traits like feeding behaviour in novel environments remain unclear. Comparative...... to determine to what degree brain 5-hydroxytryptamine (5-HT, serotonin) activity pertains to this aspect of animal personality, as a correlate to feed anticipatory behaviour and recovery of feed intake after transfer to a novel environment. Crucial to the definition of animal personality, a strong degree...... of individual consistency in different measures of feeding behaviour (feeding latency and feeding score), was demonstrated. Furthermore, low serotonergic activity in the hypothalamus was highly correlated with a personality characterized by high feeding motivation, with feeding motivation represented...

  14. The role of the serotonergic system in suicidal behavior

    Sadkowski, Marta; Dennis, Brittany; Clayden, Robert C; ElSheikh, Wala; Rangarajan, Sumathy; DeJesus, Jane; Samaan, Zainab

    2013-01-01

    Serotonin is a widely investigated neurotransmitter in several psychopathologies, including suicidal behavior (SB); however, its role extends to several physiological functions involving the nervous system, as well as the gastrointestinal and cardiovascular systems. This review summarizes recent research into ten serotonergic genes related to SB. These genes – TPH1, TPH2, SLC6A4, SLC18A2, HTR1A, HTR1B, HTR2A, DDC, MAOA, and MAOB – encode proteins that are vital to serotonergic function: tryptophan hydroxylase; the serotonin transporter 5-HTT; the vesicular transporter VMAT2; the HTR1A, HTR1B, and HTR2A receptors; the L-amino acid decarboxylase; and the monoamine oxidases. This review employed a systematic search strategy and a narrative research methodology to disseminate the current literature investigating the link between SB and serotonin. PMID:24235834

  15. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-01-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the

  16. Long-term omega-3 supplementation modulates behavior, hippocampal fatty acid concentration, neuronal progenitor proliferation and central TNF-α expression in 7 month old unchallenged mice

    Grundy, Trent; Toben, Catherine; Jaehne, Emily J.; Corrigan, Frances; Baune, Bernhard T.

    2014-01-01

    Dietary polyunsaturated fatty acid (PUFA) manipulation is being investigated as a potential therapeutic supplement to reduce the risk of developing age-related cognitive decline (ARCD). Animal studies suggest that high omega (Ω)-3 and low Ω-6 dietary content reduces cognitive decline by decreasing central nervous system (CNS) inflammation and modifying neuroimmune activity. However, no previous studies have investigated the long term effects of Ω-3 and Ω-6 dietary levels in healthy aging mice leaving the important question about the preventive effects of Ω-3 and Ω-6 on behavior and underlying molecular pathways unaddressed. We aimed to investigate the efficacy of long-term Ω-3 and Ω-6 PUFA dietary supplementation in mature adult C57BL/6 mice. We measured the effect of low, medium, and high Ω-3:Ω-6 dietary ratio, given from the age of 3–7 months, on anxiety and cognition-like behavior, hippocampal tissue expression of TNF-α, markers of neuronal progenitor proliferation and gliogenesis and serum cytokine concentration. Our results show that a higher Ω-3:Ω-6 PUFA diet ratio increased hippocampal PUFA, increased anxiety, improved hippocampal dependent spatial memory and reduced hippocampal TNF-α levels compared to a low Ω-3:Ω-6 diet. Furthermore, serum TNF-α concentration was reduced in the higher Ω-3:Ω-6 PUFA ratio supplementation group while expression of the neuronal progenitor proliferation markers KI67 and doublecortin (DCX) was increased in the dentate gyrus as opposed to the low Ω-3:Ω-6 group. Conversely, Ω-3:Ω-6 dietary PUFA ratio had no significant effect on astrocyte or microglia number or cell death in the dentate gyrus. These results suggest that supplementation of PUFAs may delay aging effects on cognitive function in unchallenged mature adult C57BL/6 mice. This effect is possibly induced by increasing neuronal progenitor proliferation and reducing TNF-α. PMID:25484856

  17. Serotonergic neurotoxic metabolites of ecstasy identified in rat brain.

    Jones, Douglas C; Duvauchelle, Christine; Ikegami, Aiko; Olsen, Christopher M; Lau, Serrine S; de la Torre, Rafael; Monks, Terrence J

    2005-04-01

    The selective serotonergic neurotoxicity of 3,4-methylenedioxyamphetamine (MDA) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) depends on their systemic metabolism. We have recently shown that inhibition of brain endothelial cell gamma-glutamyl transpeptidase (gamma-GT) potentiates the neurotoxicity of both MDMA and MDA, indicating that metabolites that are substrates for this enzyme contribute to the neurotoxicity. Consistent with this view, glutathione (GSH) and N-acetylcysteine conjugates of alpha-methyl dopamine (alpha-MeDA) are selective neurotoxicants. However, neurotoxic metabolites of MDMA or MDA have yet to be identified in brain. Using in vivo microdialysis coupled to liquid chromatography-tandem mass spectroscopy and a high-performance liquid chromatography-coulometric electrode array system, we now show that GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA are present in the striatum of rats administered MDMA by subcutaneous injection. Moreover, inhibition of gamma-GT with acivicin increases the concentration of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA in brain dialysate, and there is a direct correlation between the concentrations of metabolites in dialysate and the extent of neurotoxicity, measured by decreases in serotonin (5-HT) and 5-hydroxyindole acetic (5-HIAA) levels. Importantly, the effects of acivicin are independent of MDMA-induced hyperthermia, since acivicin-mediated potentiation of MDMA neurotoxicity occurs in the context of acivicin-mediated decreases in body temperature. Finally, we have synthesized 5-(N-acetylcystein-S-yl)-N-methyl-alpha-MeDA and established that it is a relatively potent serotonergic neurotoxicant. Together, the data support the contention that MDMA-mediated serotonergic neurotoxicity is mediated by the systemic formation of GSH and N-acetylcysteine conjugates of N-methyl-alpha-MeDA (and alpha-MeDA). The mechanisms by which such metabolites access the brain and produce selective

  18. Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect.

    Rabhi, Kaouther K; Deisig, Nina; Demondion, Elodie; Le Corre, Julie; Robert, Guillaume; Tricoire-Leignel, Hélène; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia

    2016-02-10

    Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes. © 2016 The Author(s).

  19. Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System.

    Hauser, Kurt F; Knapp, Pamela E

    2017-01-01

    The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS) regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance) during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.

  20. Neurons in the monoaminergic nuclei of the rat and human central nervous system express FA1/dlk

    Jensen, Charlotte Harken; Meyer, M; Schrøder, Henrik Daa

    2001-01-01

    The gene DLK1 encodes a member of the epidermal growth factor (EGF) superfamily, delta-like (dlk). When exposed in vivo to the action of an unknown protease, this type 1 membrane protein generates a soluble peptide referred to as Fetal antigen 1 (FA1). By acting in juxtacrine as well as paracrine....../autocrine manners, both forms have been shown to be active in the differentiation/proliferation process of various cell types. In adults, FA1/dlk has been demonstrated mainly within (neuro) endocrine tissues. In this study we investigated the presence of FA1/dlk in other parts of the developing and adult rat...... and human CNS. Using immunocytochemistry and in situ hybridization we found that in both species FA1/dlk was expressed in neurons of the Edinger-Westphal's nucleus as well as in substantia nigra, ventral tegmental area (VTA), locus coeruleus and in certain parts of the raphe nuclei....

  1. Region-specific vulnerability to lipid peroxidation and evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the healthy adult human central nervous system.

    Naudí, Alba; Cabré, Rosanna; Dominguez-Gonzalez, Mayelin; Ayala, Victoria; Jové, Mariona; Mota-Martorell, Natalia; Piñol-Ripoll, Gerard; Gil-Villar, Maria Pilar; Rué, Montserrat; Portero-Otín, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2017-05-01

    Lipids played a determinant role in the evolution of the brain. It is postulated that the morphological and functional diversity among neural cells of the human central nervous system (CNS) is projected and achieved through the expression of particular lipid profiles. The present study was designed to evaluate the differential vulnerability to oxidative stress mediated by lipids through a cross-regional comparative approach. To this end, we compared 12 different regions of CNS of healthy adult subjects, and the fatty acid profile and vulnerability to lipid peroxidation, were determined by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS), respectively. In addition, different components involved in PUFA biosynthesis, as well as adaptive defense mechanisms against lipid peroxidation, were also measured by western blot and immunohistochemistry, respectively. We found that: i) four fatty acids (18.1n-9, 22:6n-3, 20:1n-9, and 18:0) are significant discriminators among CNS regions; ii) these differential fatty acid profiles generate a differential selective neural vulnerability (expressed by the peroxidizability index); iii) the cross-regional differences for the fatty acid profiles follow a caudal-cranial gradient which is directly related to changes in the biosynthesis pathways which can be ascribed to neuronal cells; and iv) the higher the peroxidizability index for a given human brain region, the lower concentration of the protein damage markers, likely supported by the presence of adaptive antioxidant mechanisms. In conclusion, our results suggest that there is a region-specific vulnerability to lipid peroxidation and offer evidence of neuronal mechanisms for polyunsaturated fatty acid biosynthesis in the human central nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat.

    Linley, Stephanie B; Olucha-Bordonau, Francisco; Vertes, Robert P

    2017-01-01

    As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT + fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc.

  3. A central role for neuronal adenosine 5'-monophosphate-activated protein kinase in cancer-induced anorexia.

    Ropelle, Eduardo R; Pauli, José R; Zecchin, Karina G; Ueno, Mirian; de Souza, Cláudio T; Morari, Joseane; Faria, Marcel C; Velloso, Lício A; Saad, Mario J A; Carvalheira, José B C

    2007-11-01

    The pathogenesis of cancer anorexia is multifactorial and associated with disturbances of the central physiological mechanisms controlling food intake. However, the neurochemical mechanisms responsible for cancer-induced anorexia are unclear. Here we show that chronic infusion of 5-amino-4imidazolecarboxamide-riboside into the third cerebral ventricle and a chronic peripheral injection of 2 deoxy-d-glucose promotes hypothalamic AMP-activated protein kinase (AMPK) activation, increases food intake, and prolongs the survival of anorexic tumor-bearing (TB) rats. In parallel, the pharmacological activation of hypothalamic AMPK in TB animals markedly reduced the hypothalamic production of inducible nitric oxide synthase, IL-1beta, and TNF-alpha and modulated the expression of proopiomelanocortin, a hypothalamic neuropeptide that is involved in the control of energy homeostasis. Furthermore, the daily oral and intracerebroventricular treatment with biguanide antidiabetic drug metformin also induced AMPK phosphorylation in the central nervous system and increased food intake and life span in anorexic TB rats. Collectively, the findings of this study suggest that hypothalamic AMPK activation reverses cancer anorexia by inhibiting the production of proinflammatory molecules and controlling the neuropeptide expression in the hypothalamus, reflecting in a prolonged life span in TB rats. Thus, our data indicate that hypothalamic AMPK activation presents an attractive opportunity for the treatment of cancer-induced anorexia.

  4. Opiate Drugs with Abuse Liability Hijack the Endogenous Opioid System to Disrupt Neuronal and Glial Maturation in the Central Nervous System

    Kurt F. Hauser

    2018-01-01

    Full Text Available The endogenous opioid system, comprised of multiple opioid neuropeptide and receptor gene families, is highly expressed by developing neural cells and can significantly influence neuronal and glial maturation. In many central nervous system (CNS regions, the expression of opioid peptides and receptors occurs only transiently during development, effectively disappearing with subsequent maturation only to reemerge under pathologic conditions, such as with inflammation or injury. Opiate drugs with abuse liability act to modify growth and development by mimicking the actions of endogenous opioids. Although typically mediated by μ-opioid receptors, opiate drugs can also act through δ- and κ-opioid receptors to modulate growth in a cell-type, region-specific, and developmentally regulated manner. Opioids act as biological response modifiers and their actions are highly contextual, plastic, modifiable, and influenced by other physiological processes or pathophysiological conditions, such as neuro-acquired immunodeficiency syndrome. To date, most studies have considered the acute effects of opiates on cellular maturation. For example, activating opioid receptors typically results in acute growth inhibition in both neurons and glia. However, with sustained opioid exposure, compensatory factors become operative, a concept that has been largely overlooked during CNS maturation. Accordingly, this article surveys prior studies on the effects of opiates on CNS maturation, and also suggests new directions for future research in this area. Identifying the cellular and molecular mechanisms underlying the adaptive responses to chronic opiate exposure (e.g., tolerance during maturation is crucial toward understanding the consequences of perinatal opiate exposure on the CNS.

  5. Anatomical Organization of Urocortin 3-Synthesizing Neurons and Immunoreactive Terminals in the Central Nervous System of Non-Human Primates [Sapajus spp.

    Daniella S. Battagello

    2017-07-01

    Full Text Available Urocortin 3 (UCN3 is a neuropeptide member of the corticotropin-releasing factor (CRF peptide family that acts as a selective endogenous ligand for the CRF, subtype 2 (CRF2 receptor. Immunohistochemistry and in situ hybridization data from rodents revealed UCN3-containing neurons in discrete regions of the central nervous system (CNS, such as the medial preoptic nucleus, the rostral perifornical area (PFA, the medial nucleus of the amygdala and the superior paraolivary nucleus. UCN3-immunoreactive (UCN3-ir terminals are distributed throughout regions that mostly overlap with regions of CRF2 messenger RNA (mRNA expression. Currently, no similar mapping exists for non-human primates. To better understand the role of this neuropeptide, we aimed to study the UCN3 distribution in the brains of New World monkeys of the Sapajus genus. To this end, we analyzed the gene and peptide sequences in these animals and performed immunohistochemistry and in situ hybridization to identify UCN3 synthesis sites and to determine the distribution of UCN3-ir terminals. The sequencing of the Sapajus spp. UCN3-coding gene revealed 88% and 65% identity to the human and rat counterparts, respectively. Additionally, using a probe generated from monkey cDNA and an antiserum raised against human UCN3, we found that labeled cells are mainly located in the hypothalamic and limbic regions. UCN3-ir axons and terminals are primarily distributed in the ventromedial hypothalamic nucleus (VMH and the lateral septal nucleus (LS. Our results demonstrate that UCN3-producing neurons in the CNS of monkeys are phylogenetically conserved compared to those of the rodent brain, that the distribution of fibers agrees with the distribution of CRF2 in other primates and that there is anatomical evidence for the participation of UCN3 in neuroendocrine control in primates.

  6. Serotonergic modulation of receptor occupancy in rats treated with L-DOPA after unilateral 6-OHDA lesioning

    Nahimi, Adjmal; Høltzermann, Mette; Landau, Anne M.

    2012-01-01

    Recent studies suggest that l-3,4 dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID), a severe complication of conventional L-DOPA therapy of Parkinson's disease, may be caused by dopamine (DA) release originating in serotonergic neurons. To evaluate the in vivo effect of a 5-HT(1A) agonist...... [(±)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide, 8-OHDPAT] on the L-DOPA-induced increase in extracellular DA and decrease in [(11) C]raclopride binding in an animal model of advanced Parkinson's disease and LID, we measured extracellular DA in response to L-DOPA or a combination of L......-DOPA and the 5-HT(1A) agonist, 8-OHDPAT, with microdialysis, and determined [(11) C]raclopride binding to DA receptors, with micro-positron emission tomography, as the surrogate marker of DA release. Rats with unilateral 6-hydroxydopamine lesions had micro-positron emission tomography scans with [(11) C...

  7. Increased postpartum haemorrhage, the possible relation with serotonergic and other psychopharmacological drugs: a matched cohort study

    Heller, Hanna M.; Ravelli, Anita C. J.; Bruning, Andrea H. L.; de Groot, Christianne J. M.; Scheele, Fedde; van Pampus, Maria G.; Honig, Adriaan

    2017-01-01

    Postpartum haemorrhage is a major obstetric risk worldwide. Therefore risk factors need to be investigated to control for this serious complication. A recent systematic review and meta-analysis revealed that the use of both serotonergic and non-serotonergic antidepressants in pregnancy are

  8. Differential serotonergic mediation of aggression in roosters selected for resistance and susceptibility to Marek's disease

    Serotonin (5-HT) is a primary regulating neurotransmitter involved in aggressive and impulsive behaviors in mammals. Previous studies have also demonstrated the function of serotonergic system in regulating aggression is affected by both genetic and environmental factors. The serotonergic system m...

  9. Effects of hypergravic fields on serotonergic neuromodulation in the rat hippocampus.

    Horrigan, D J; Fuller, C A; Horowitz, J M

    1997-10-01

    The effects of 7 day exposure to 2G fields on serotonergic modulation at two synapses on a hippocampal pathway were examined by recording dentate gyrus and CA1 pyramidal cell layer electrical activity. Serotonin decreased the amplitude of the population spike (synchronous action potentials in hundreds of neurons) in both the dentate gyrus and CA1 regions of rats exposed to 2G fields for 7 days. The inhibition, averaging 26 +/- 4% (mean +/- SEM) in the dentate gyrus and 80 +/- 5% in the CA1 region, was not significantly different from inhibitory responses observed in 1G controls. The 5-HT1A agonist 8-OH-DPAT mimicked this inhibition in the dentate and CA1 regions of 1G rats. 8-OH-DPAT responses were not affected by exposure to 2G fields. We conclude that the hippocampus contains surplus 5-HT receptors so that decreases in receptor density reported in receptor binding studies do not result in a decrease in modulatory capability. A model to account for the physiological pathway that relates gravitational field strength to 5-HT receptor density without changing the effectiveness of 5-HT neuromodulation is discussed.

  10. The loudness dependence of auditory evoked potentials (LDAEP as an indicator of serotonergic dysfunction in patients with predominant schizophrenic negative symptoms.

    Christine Wyss

    Full Text Available Besides the influence of dopaminergic neurotransmission on negative symptoms in schizophrenia, there is evidence that alterations of serotonin (5-HT system functioning also play a crucial role in the pathophysiology of these disabling symptoms. From post mortem and genetic studies on patients with negative symptoms a 5-HT dysfunction is documented. In addition atypical neuroleptics and some antidepressants improve negative symptoms via serotonergic action. So far no research has been done to directly clarify the association between the serotonergic functioning and the extent of negative symptoms. Therefore, we examined the status of brain 5-HT level in negative symptoms in schizophrenia by means of the loudness dependence of auditory evoked potentials (LDAEP. The LDAEP provides a well established and non-invasive in vivo marker of the central 5-HT activity. We investigated 13 patients with schizophrenia with predominant negative symptoms treated with atypical neuroleptics and 13 healthy age and gender matched controls with a 32-channel EEG. The LDAEP of the N1/P2 component was evaluated by dipole source analysis and single electrode estimation at Cz. Psychopathological parameters, nicotine use and medication were assessed to control for additional influencing factors. Schizophrenic patients showed significantly higher LDAEP in both hemispheres than controls. Furthermore, the LDAEP in the right hemisphere in patients was related to higher scores in scales assessing negative symptoms. A relationship with positive symptoms was not found. These data might suggest a diminished central serotonergic neurotransmission in patients with predominant negative symptoms.

  11. Neurochemistry of bulbospinal presympathetic neurons of the medulla oblongata.

    Stornetta, Ruth L

    2009-11-01

    This review focuses on presympathetic neurons in the medulla oblongata including the adrenergic cell groups C1-C3 in the rostral ventrolateral medulla and the serotonergic, GABAergic and glycinergic neurons in the ventromedial medulla. The phenotypes of these neurons including colocalized neuropeptides (e.g., neuropeptide Y, enkephalin, thyrotropin-releasing hormone, substance P) as well as their relative anatomical location are considered in relation to predicting their function in control of sympathetic outflow, in particular the sympathetic outflows controlling blood pressure and thermoregulation. Several explanations are considered for how the neuroeffectors coexisting in these neurons might be functioning, although their exact purpose remains unknown. Although there is abundant data on potential neurotransmitters and neuropeptides contained in the presympathetic neurons, we are still unable to predict function and physiology based solely on the phenotype of these neurons.

  12. The role of the serotonergic system in suicidal behavior

    Sadkowski M

    2013-11-01

    Full Text Available Marta Sadkowski,1,* Brittany Dennis,2–4,* Robert C Clayden,2 Wala ElSheikh,5 Sumathy Rangarajan,5 Jane DeJesus,5 Zainab Samaan3–6 1Arts and Sciences Program, 2Faculty of Health Sciences, 3Department of Clinical Epidemiology and Biostatistics, 4Population Genomics Program, McMaster University, Hamilton, ON, Canada; 5Population Health Research Institute, Hamilton, ON, Canada; 6Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada *These authors contributed equally to this work Abstract: Serotonin is a widely investigated neurotransmitter in several psychopathologies, including suicidal behavior (SB; however, its role extends to several physiological functions involving the nervous system, as well as the gastrointestinal and cardiovascular systems. This review summarizes recent research into ten serotonergic genes related to SB. These genes – TPH1, TPH2, SLC6A4, SLC18A2, HTR1A, HTR1B, HTR2A, DDC, MAOA, and MAOB – encode proteins that are vital to serotonergic function: tryptophan hydroxylase; the serotonin transporter 5-HTT; the vesicular transporter VMAT2; the HTR1A, HTR1B, and HTR2A receptors; the L-amino acid decarboxylase; and the monoamine oxidases. This review employed a systematic search strategy and a narrative research methodology to disseminate the current literature investigating the link between SB and serotonin. Keywords: serotonin, suicide, genetic

  13. Hypothesis: the regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia.

    Devereux, Diana; Ikomi-Kumm, Julie

    2013-03-01

    The regulation of the partial pressure of oxygen by the serotonergic nervous system in hypoxia is a hypothesis, which proposes an inherent operative system in homo sapiens that allows central nervous system and endocrine-mediated vascular system adaption to variables in partial pressure of oxygen, pH and body composition, while maintaining sufficient oxygen saturation for the immune system and ensuring protection of major organs in hypoxic and suboptimal conditions. While acknowledging the importance of the Henderson-Hasselbalch equation in the regulation of acid base balance, the hypothesis seeks to define the specific neuroendocrine/vascular mechanisms at work in regulating acid base balance in hypoxia and infection. The SIA (serotonin-immune-adrenergic) system is proposed as a working model, which allows central nervous system and endocrine-mediated macro- and micro vascular 'fine tuning'. The neurotransmitter serotonin serves as a 'hypoxic sensor' in concert with other operators to orchestrate homeostatic balance in normal and pathological states. The SIA system finely regulates oxygen, fuel and metabolic buffering systems at local sites to ensure optimum conditions for the immune response. The SIA system is fragile and its operation may be affected by infection, stress, diet, environmental toxins and lack of exercise. The hypothesis provides new insight in the area of neuro-gastroenterology, and emphasizes the importance of diet and nutrition as a complement in the treatment of infection, as well as the normalization of intestinal flora following antibiotic therapy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Development of raphe serotonin neurons from specification to guidance.

    Kiyasova, Vera; Gaspar, Patricia

    2011-11-01

    The main features of the development of the serotonin (5-HT) raphe neurons have been known for many years but more recent molecular studies, using mouse genetics, have since unveiled several intriguing aspects of the specification of the raphe serotonergic system. These studies indicated that, although all 5-HT neurons in the raphe follow the same general program for their specification, there are also clear regional differences in the way that these neurons are specified and are guided towards different brain targets. Here we overview recent progress made in the understanding of the developmental programming of serotonergic neurons in the mouse raphe, emphasizing data showing how heterogeneous subsets of 5-HT neurons may be generated. Serotonergic progenitors are produced in the brainstem in different rhombomeres under the influence of a set of secreted factors, sonic hedgehog and fibroblast growth factors, which determine their position in the neural tube. Two main transcriptional gene networks are involved in the specification of 5-HT identity, with Lmx1b and Pet1 transcription factors as main players. A differential requirement for Pet1 was, however, revealed, which underlies an anatomical and functional diversity. Transcriptional programs controlling 5-HT identity could also impact axon guidance mechanisms directing 5-HT neurons to their targets. Although no direct links have yet been established, a large set of molecular determinants have already been shown to be involved in the growth, axon guidance and targeting of 5-HT raphe neurons, particularly within the forebrain. Alterations in the molecular mechanisms involved in 5-HT development are likely to have significant roles in mood disease predisposition. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. Fluctuating serotonergic function in premenstrual dysphoric disorder and premenstrual syndrome: findings from neuroendocrine challenge tests.

    Inoue, Y; Terao, T; Iwata, N; Okamoto, K; Kojima, H; Okamoto, T; Yoshimura, R; Nakamura, J

    2007-02-01

    Premenstrual dysphoric disorder (PMDD) has been assumed to be a subtype of premenstrual syndrome (PMS) with depressive symptoms, such as depressive mood, tension, anxiety, and mood liability during luteal phase. At present, no conclusion has been established about serotonergic function in PMDD. The purpose of this study was to investigate the serotonergic function of PMDD subjects in comparison to PMS without PMDD subjects and normal controls via neuroendocrine challenge tests. Twenty-four women (seven with PMDD, eight with PMS without PMDD, and nine normal controls) were tested on three occasions (follicular phase, early luteal phase, and late luteal phase) receiving paroxetine 20 mg orally as a serotonergic probe at 8:00 A: .M: . Plasma ACTH and cortisol were measured prior to the administration and every hour for 6 h thereafter. As a whole, there were significant differences in serotonergic function measured by ACTH and cortisol responses to paroxetine challenge across these three groups. PMDD subjects showed higher serotonergic function in follicular phase but lower serotonergic function in luteal phase, compared with women with PMS without PMDD and normal controls. The present findings suggest that PMDD women have fluctuating serotonergic function across their menstrual cycles and that the pattern may be different from PMS without PMDD.

  16. Functional expression of the 5-HT1c receptor in neuronal and nonneuronal cells

    Julius, D.; MacDermott, A.B.; Jessel, T.M.; Huang, K.; Molineaux, S.; Schieren, I.; Axel, R.

    1988-01-01

    The isolation of the genes encoding the multiple serotonin receptor subtypes and the ability to express these receptors in new cellular environments will help to elucidate the molecular mechanisms of action of serotonin in the mammalian brain. The cloning of most neurotransmitter receptors has required the purification of receptor, the determination of partial protein sequence, and the synthesis of oligonucleotide probes with which to obtain cDNA or genomic clones. However, the serotonin receptors have not been purified and antibodies have not been generated. The authors therefore designed a cDNA expression system that permits the identification of functional cDNA clones encoding serotonin receptors in the absence of protein sequence information. They have combined cloning in RNA expression vectors with an electrophysiological assay in oocytes to isolate a functional cDNA clone encoding the entire 5-HT 1c receptor. The sequence of this clone reveals that the 5-HT 1c receptor belongs to a family of G-protein-coupled receptors that are thought to traverse the membrane seven times. Mouse fibroblasts transformed with this clone bind serotonergic ligands and respond to serotonin with an elevation in intracellular calcium. Moreover, in situ hybridization and Northern blot analysis indicate that the 5-HT 1c receptor mRNA is expressed in a wide variety of neurons in the rat central nervous system, suggesting that this receptor plays a prominent role in neuronal function

  17. Recent advances in the neuropsychopharmacology of serotonergic hallucinogens.

    Halberstadt, Adam L

    2015-01-15

    Serotonergic hallucinogens, such as (+)-lysergic acid diethylamide, psilocybin, and mescaline, are somewhat enigmatic substances. Although these drugs are derived from multiple chemical families, they all produce remarkably similar effects in animals and humans, and they show cross-tolerance. This article reviews the evidence demonstrating the serotonin 5-HT2A receptor is the primary site of hallucinogen action. The 5-HT2A receptor is responsible for mediating the effects of hallucinogens in human subjects, as well as in animal behavioral paradigms such as drug discrimination, head twitch response, prepulse inhibition of startle, exploratory behavior, and interval timing. Many recent clinical trials have yielded important new findings regarding the psychopharmacology of these substances. Furthermore, the use of modern imaging and electrophysiological techniques is beginning to help unravel how hallucinogens work in the brain. Evidence is also emerging that hallucinogens may possess therapeutic efficacy. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Putaminal serotonergic innervation: monitoring dyskinesia risk in Parkinson disease.

    Lee, Jee-Young; Seo, Seongho; Lee, Jae Sung; Kim, Han-Joon; Kim, Yu Kyeong; Jeon, Beom S

    2015-09-08

    To explore serotonergic innervation in the basal ganglia in relation to levodopa-induced dyskinesia in patients with Parkinson disease (PD). A total of 30 patients with PD without dementia or depression were divided into 3 matched groups (dyskinetic, nondyskinetic, and drug-naive) for this study. We acquired 2 PET scans and 3T MRI for each patient using [(11)C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile ((11)C-DASB) and N-(3-[(18)F]fluoropropyl)-2-carbomethoxy-3-(4-iodophenyl) nortropane ((18)F-FP-CIT). Then we analyzed binding potentials of the 2 radiotracers at basal ganglia structures and correlations with clinical variables. We observed no difference in (18)F-FP-CIT binding between dyskinetic and nondyskinetic patients, whereas there were differences in (11)C-DASB binding for the caudate and putamen. Binding potential ratios ((11)C-DASB/(18)F-FP-CIT) at the putamen, which indicate serotoninergic fiber innervation relative to dopaminergic fiber availability, were highest in the dyskinetic group, followed by the nondyskinetic and drug-naive PD groups. (11)C-DASB/(18)F-FP-CIT ratios at the putamen and pallidum correlated positively with Unified Parkinson's Disease Rating Scale (UPDRS) total scores and duration of PD, and pallidal binding ratio also correlated with the UPDRS motor scores. Ratios were not dependent on dopaminergic medication dosages for any of the regions studied. Relative serotonergic innervation of the putamen and pallidum increased with clinical PD progression and was highest in patients with established dyskinesia. The serotonin/dopamine transporter ratio might be a potential marker of disease progression and an indicator of risk for levodopa-induced dyskinesia in PD. A prospective evaluation is warranted in the future. © 2015 American Academy of Neurology.

  19. Effect of diet on serotonergic neurotransmission in depression.

    Shabbir, Faisal; Patel, Akash; Mattison, Charles; Bose, Sumit; Krishnamohan, Raathathulaksi; Sweeney, Emily; Sandhu, Sarina; Nel, Wynand; Rais, Afsha; Sandhu, Ranbir; Ngu, Nguasaah; Sharma, Sushil

    2013-02-01

    Depression is characterized by sadness, purposelessness, irritability, and impaired body functions. Depression causes severe symptoms for several weeks, and dysthymia, which may cause chronic, low-grade symptoms. Treatment of depression involves psychotherapy, medications, or phototherapy. Clinical and experimental evidence indicates that an appropriate diet can reduce symptoms of depression. The neurotransmitter, serotonin (5-HT), synthesized in the brain, plays an important role in mood alleviation, satiety, and sleep regulation. Although certain fruits and vegetables are rich in 5-HT, it is not easily accessible to the CNS due to blood brain barrier. However the serotonin precursor, tryptophan, can readily pass through the blood brain barrier. Tryptophan is converted to 5-HT by tryptophan hydroxylase and 5-HTP decarboxylase, respectively, in the presence of pyridoxal phosphate, derived from vitamin B(6). Hence diets poor in tryptophan may induce depression as this essential amino acid is not naturally abundant even in protein-rich foods. Tryptophan-rich diet is important in patients susceptible to depression such as certain females during pre and postmenstrual phase, post-traumatic stress disorder, chronic pain, cancer, epilepsy, Parkinson's disease, Alzheimer's disease, schizophrenia, and drug addiction. Carbohydrate-rich diet triggers insulin response to enhance the bioavailability of tryptophan in the CNS which is responsible for increased craving of carbohydrate diets. Although serotonin reuptake inhibitors (SSRIs) are prescribed to obese patients with depressive symptoms, these agents are incapable of precisely regulating the CNS serotonin and may cause life-threatening adverse effects in the presence of monoamine oxidase inhibitors. However, CNS serotonin synthesis can be controlled by proper intake of tryptophan-rich diet. This report highlights the clinical significance of tryptophan-rich diet and vitamin B(6) to boost serotonergic neurotransmission in

  20. Serotonergic neurons of the Drosophila air-puff-stimulated flight circuit

    2014-07-07

    Jul 7, 2014 ... Tata Institute of Fundamental Research, Bellary Road,. Bangalore, India ... that aid in the study of behaviour by this paradigm have grown, and here we .... Confocal analysis. 576 ..... (movies were recorded at 25 frames per s).

  1. GATA-3 is involved in the development of serotonergic neurons in the caudal raphe nuclei

    J. van der Wees (Jacqueline); A. Karis (Alar); E. Goedknegt; M. Rutteman; F.G. Grosveld (Frank); J.H. van Doorninck (Hikke); C.I. de Zeeuw (Chris)

    1999-01-01

    textabstractAbstract The GATA-3 transcription factor shows a specific and restricted expression pattern in the developing and adult mouse brain. In the present study we investigated the role of GATA-3 in the caudal raphe system, which is known to operate as a modulator of motor activity. We

  2. Immunodetection of the serotonin transporter protein is a more valid marker for serotonergic fibers than serotonin

    Nielsen, Kirsten; Brask, Dorthe; Knudsen, Gitte M.

    2006-01-01

    Tracking serotonergic pathways in the brain through immunodetection of serotonin has widely been used for the anatomical characterization of the serotonergic system. Immunostaining for serotonin is also frequently applied for the visualization of individual serotonin containing fibers...... and quantification of serotonin positive fibers has been widely used to detect changes in the serotonergic innervation. However, particularly in conditions with enhanced serotonin metabolism the detection level of serotonin may lead to an underestimation of the true number of serotonergic fibers. The serotonin...... immunostained for serotonin and SERT protein and colocalization was quantified in several brain areas by confocal microscopy. In comparison with untreated rats, MAO inhibitor treated rats had a significantly higher number (almost 200% increase) of serotonin immunopositive fibers whereas no difference...

  3. Serotonergic 5-HT6 Receptor Antagonists: Heterocyclic Chemistry and Potential Therapeutic Significance.

    Bali, Alka; Singh, Shalu

    2015-01-01

    The serotonin 5-HT(6) receptor (5- HT(6)R) is amongst the recently discovered serotonergic receptors with almost exclusive localization in the brain. Hence, this receptor is fast emerging as a promising target for cognition enhancement in central nervous system (CNS) diseases such as Alzheimer's disease (cognitive function), obesity, schizophrenia and anxiety. The last decade has seen a surge of literature reports on the functional role of this receptor in learning and memory processes and investigations related to the chemistry and pharmacology of 5-HT(6) receptor ligands, especially 5- HT(6) receptor antagonists. Studies show the involvement of multiple neurotransmitter systems in cognitive enhancement by 5-HT(6)R antagonists including cholinergic, glutamatergic, and GABAergic systems. Several of the 5-HT(6)R ligands are indole based agents bearing structural similarity to the endogenous neurotransmitter serotonin. Based on the pharmacophoric models proposed for these agents, drug designing has been carried out incorporating various heterocyclic replacements for the indole nucleus. In this review, we have broadly summarized the medicinal chemistry and current status of this fairly recent class of drugs along with their potential therapeutic applications.

  4. Genetic polymorphisms in the serotonergic system are associated with circadian manifestations of bruxism.

    Oporto, G H; Bornhardt, T; Iturriaga, V; Salazar, L A

    2016-11-01

    Bruxism (BRX) is a condition of great interest for researchers and clinicians in dental and medical areas. BRX has two circadian manifestations; it can occur during sleep (sleep bruxism, SB) or during wakefulness (awake bruxism, WB). However, it can be suffered together. Recent investigations suggest that central nervous system neurotransmitters and their genes could be involved in the genesis of BRX. Serotonin is responsible for the circadian rhythm, maintaining arousal, regulating stress response, muscle tone and breathing. Thus, serotonin could be associated with BRX pathogenesis. The aim of this work was to evaluate the frequency of genetic polymorphisms in the genes HTR1A (rs6295), HTR2A (rs1923884, rs4941573, rs6313, rs2770304), HTR2C (rs17260565) and SLC6A4 (rs63749047) in subjects undergoing BRX treatment. Patients included were classified according to their diagnosis in awake bruxism (61 patients), sleep bruxism (26 patients) and both (43 patients). The control group included 59 healthy patients with no signs of BRX. Data showed significant differences in allelic frequencies for the HTR2A rs2770304 polymorphism, where the C allele was associated with increased risk of SB (odds ratio = 2·13, 95% confidence interval: 1·08-4·21, P = 0·03). Our results suggest that polymorphisms in serotonergic pathways are involved in sleep bruxism. Further research is needed to clarify and increase the current understanding of BRX physiopathology. © 2016 John Wiley & Sons Ltd.

  5. Serotonergic hyperactivity as a potential factor in developmental, acquired and drug-induced synesthesia.

    Brogaard, Berit

    2013-01-01

    Though synesthesia research has seen a huge growth in recent decades, and tremendous progress has been made in terms of understanding the mechanism and cause of synesthesia, we are still left mostly in the dark when it comes to the mechanistic commonalities (if any) among developmental, acquired and drug-induced synesthesia. We know that many forms of synesthesia involve aberrant structural or functional brain connectivity. Proposed mechanisms include direct projection and disinhibited feedback mechanisms, in which information from two otherwise structurally or functionally separate brain regions mix. We also know that synesthesia sometimes runs in families. However, it is unclear what causes its onset. Studies of psychedelic drugs, such as psilocybin, LSD and mescaline, reveal that exposure to these drugs can induce synesthesia. One neurotransmitter suspected to be central to the perceptual changes is serotonin. Excessive serotonin in the brain may cause many of the characteristics of psychedelic intoxication. Excessive serotonin levels may also play a role in synesthesia acquired after brain injury. In brain injury sudden cell death floods local brain regions with serotonin and glutamate. This neurotransmitter flooding could perhaps result in unusual feature binding. Finally, developmental synesthesia that occurs in individuals with autism may be a result of alterations in the serotonergic system, leading to a blockage of regular gating mechanisms. I conclude on these grounds that one commonality among at least some cases of acquired, developmental and drug-induced synesthesia may be the presence of excessive levels of serotonin, which increases the excitability and connectedness of sensory brain regions.

  6. Serotonergic dysfunctions and abnormal iron metabolism: Relevant to mental fatigue of Parkinson disease.

    Zuo, Li-Jun; Yu, Shu-Yang; Hu, Yang; Wang, Fang; Piao, Ying-Shan; Lian, Teng-Hong; Yu, Qiu-Jin; Wang, Rui-Dan; Li, Li-Xia; Guo, Peng; Du, Yang; Zhu, Rong-Yan; Jin, Zhao; Wang, Ya-Jie; Wang, Xiao-Min; Chan, Piu; Chen, Sheng-Di; Wang, Yong-Jun; Zhang, Wei

    2016-12-21

    Fatigue is a very common non-motor symptom in Parkinson disease (PD) patients. It included physical fatigue and mental fatigue. The potential mechanisms of mental fatigue involving serotonergic dysfunction and abnormal iron metabolism are still unknown. Therefore, we evaluated the fatigue symptoms, classified PD patients into fatigue group and non-fatigue group, and detected the levels of serotonin, iron and related proteins in CSF and serum. In CSF, 5-HT level is significantly decreased and the levels of iron and transferrin are dramatically increased in fatigue group. In fatigue group, mental fatigue score is negatively correlated with 5-HT level in CSF, and positively correlated with the scores of depression and excessive daytime sleepiness, and disease duration, also, mental fatigue is positively correlated with the levels of iron and transferrin in CSF. Transferrin level is negatively correlated with 5-HT level in CSF. In serum, the levels of 5-HT and transferrin are markedly decreased in fatigue group; mental fatigue score exhibits a negative correlation with 5-HT level. Thus serotonin dysfunction in both central and peripheral systems may be correlated with mental fatigue through abnormal iron metabolism. Depression, excessive daytime sleepiness and disease duration were the risk factors for mental fatigue of PD.

  7. Social isolation reduces serotonergic fiber density in the inferior colliculus of female, but not male, mice.

    Keesom, Sarah M; Morningstar, Mitchell D; Sandlain, Rebecca; Wise, Bradley M; Hurley, Laura M

    2018-05-12

    Early-life experiences, including maternal deprivation and social isolation during adolescence, have a profound influence on a range of adult social behaviors. Post-weaning social isolation in rodents influences behavior in part through the alteration of neuromodulatory systems, including the serotonergic system. Of significance to social behavior, the serotonergic system richly innervates brain areas involved in vocal communication, including the auditory system. However, the influence of isolation on serotonergic input to the auditory system remains underexplored. Here, we assess whether 4 weeks of post-weaning individual housing alters serotonergic fiber density in the inferior colliculus (IC), an auditory midbrain nucleus in which serotonin alters auditory-evoked activity. Individually housed male and female mice were compared to conspecifics housed socially in groups of three. Serotonergic projections were subsequently visualized with an antibody to the serotonin transporter, which labels serotonergic fibers with relatively high selectivity. Fiber densities were estimated in the three major subregions of the IC using line-scan intensity analysis. Individually housed female mice showed a significantly reduced fiber density relative to socially housed females, which was accompanied by a lower body weight in individually housed females. In contrast, social isolation did not affect serotonergic fiber density in the IC of males. This finding suggests that sensitivity of the serotonergic system to social isolation is sex-dependent, which could be due to a sex difference in the effect of isolation on psychosocial stress. Since serotonin availability depends on social context, this finding further suggests that social isolation can alter the acute social regulation of auditory processing. Copyright © 2018. Published by Elsevier B.V.

  8. Association Between Genetic Polymorphisms in the Serotonergic System and Comorbid Personality Disorders Among Patients with First-Episode Depression

    Bukh, Jens D; Bock, Camilla; Kessing, Lars V

    2014-01-01

    Studies on the association between genetic polymorphisms and personality disorders have provided inconsistent results. Using the "enriched sample method," the authors of the present study aimed to assess the association between polymorphisms in the serotonergic transmitter system and comorbid...... personality disorders in patients recently diagnosed with first-episode depression. A total of 290 participants were systematically recruited via the Danish Psychiatric Central Research Register. Diagnoses of personality disorders were assessed by a SCID-II interview, and polymorphisms in the genes encoding...... the serotonin transporter, serotonin receptors 1A, 2A, 2C, and tryptophan hydroxylase 1 were genotyped. The authors found a significant effect of the length polymorphism in the serotonin transporter gene (5-HTTLPR) on cluster B personality disorder (mainly borderline disorder), but no influence on cluster C...

  9. Morphological changes in neurons of the central nervous system in response to experimental influence of centimeter-range electromagnetic waves on the body

    Belokrinitskiy, V.S.

    1982-08-01

    Experiments on cats and dogs exposed to electromagnetic waves at thermal intensities of 400 to 500 mV/cm/sup 2/ for 1, 10, 20, or 30 days were used to study the effects on brain and spinal cord. Changes occurred in the neurons of animals immediately after irradiation, increasing in magnitude on the 10th, 20th, and 30th day of the study. In the brain, changes were observed in the size and shape of neurons and their components (nuclei, nucleoli, and processes therein), and in the density and location of chromophil and chromatin. The changes varied among neurons located in different regions of the brain. Immediately after irradiation and after prolonged exposure neuron changes were also observed in all sections of the spinal cord. However, each section of the spinal cord was uniquely affected by electromagnetic waves regarding type and number of altered neurons. By the 10th day after irradiation many neurons were in a state of total disintegration, and shadow cells were detected. Beginning with the 7th day after irradiation, the overall condition of the animals gradually worsened. The animals became less active and showed signs of depression. The symptoms were more pronounced in cats than in dogs. None of the animals survived.

  10. Na(+)/K(+) pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches.

    Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L

    2016-09-02

    The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na(+)/K(+) pump current to such bursting activity has not been well studied. We used monensin, a Na(+)/H(+) antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs(+). The decreased period could also occur if the pump was inhibited with strophanthidin or K(+)-free saline. Our monensin results were reproduced in model, which explains the pump's contributions to bursting activity based on Na(+) dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks.

  11. Serotonergic mechanism of the relieving effect of bee venom acupuncture on oxaliplatin-induced neuropathic cold allodynia in rats.

    Lee, Ji-Hye; Li, Dong Xing; Yoon, Heera; Go, Donghyun; Quan, Fu Shi; Min, Byung-Il; Kim, Sun Kwang

    2014-12-06

    Oxaliplatin, an important chemotherapy drug for advanced colorectal cancer, often induces peripheral neuropathy, especially cold allodynia. Our previous study showed that bee venom acupuncture (BVA), which has been traditionally used in Korea to treat various pain symptoms, potently relieves oxaliplatin-induced cold allodynia in rats. However, the mechanism for this anti-allodynic effect of BVA remains poorly understood. We investigated whether and how the central serotonergic system, a well-known pathway for acupuncture analgesia, mediates the relieving effect of BVA on cold allodynia in oxaliplatin-injected rats. The behavioral signs of cold allodynia in Sprague-Dawley (SD) rats were induced by a single injection of oxaliplatin (6 mg/kg, i.p.). Before and after BVA treatment, the cold allodynia signs were evaluated by immersing the rat's tail into cold water (4°C) and measuring the withdrawal latency. For BVA treatment, a diluted BV (0.25 mg/kg) was subcutaneously administered into Yaoyangguan (GV3) acupoint, which is located between the spinous processes of the fourth and the fifth lumbar vertebra. Serotonin was depleted by a daily injection of DL-p-chlorophenylalanine (PCPA, 150 mg/kg, i.p.) for 3 days. The amount of serotonin in the spinal cord was measured by ELISA. Serotonergic receptor antagonists were administered intraperitoneally or intrathecally before BVA treatment. The serotonin levels in the spinal cord were significantly increased by BVA treatment and such increase was significantly reduced by PCPA. This PCPA pretreatment abolished the relieving effect of BVA on oxaliplatin-induced cold allodynia. Either of methysergide (mixed 5-HT1/5-HT2 receptor antagonist, 1 mg/kg, i.p.) or MDL-72222 (5-HT3 receptor antagonist, 1 mg/kg, i.p) blocked the anti-allodynic effect of BVA. Further, an intrathecal injection of MDL-72222 (12 μg) completely blocked the BVA-induced anti-allodynic action, whereas NAN-190 (5-HT1A receptor antagonist, 15 μg, i.t.) or

  12. Dorsal border periaqueductal gray neurons project to the area directly adjacent to the central canal ependyma of the C4-T8 spinal cord in the cat

    Mouton, LJ; Kerstens, L; VanderWant, J; Holstege, G

    In a previous study horseradish peroxidase (HRP) injections in the upper thoracic and cervical spinal cord revealed some faintly labeled small neurons at the dorsal border of the periaqueductal gray (PAG). The present light microscopic and electronmicroscopic tracing study describes the precise

  13. The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats

    Burianová, Jana; Ouda, Ladislav; Syka, Josef

    2015-01-01

    Roč. 7, Mar 11 (2015), s. 27 ISSN 1663-4365 R&D Projects: GA ČR(CZ) GAP304/12/1342; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : SMI-32 * neurofilaments * number of neurons * aging * auditory system Subject RIV: FF - HEENT, Dentistry Impact factor: 4.348, year: 2015

  14. Stress Enables Reinforcement-Elicited Serotonergic Consolidation of Fear Memory.

    Baratta, Michael V; Kodandaramaiah, Suhasa B; Monahan, Patrick E; Yao, Junmei; Weber, Michael D; Lin, Pei-Ann; Gisabella, Barbara; Petrossian, Natalie; Amat, Jose; Kim, Kyungman; Yang, Aimei; Forest, Craig R; Boyden, Edward S; Goosens, Ki A

    2016-05-15

    Prior exposure to stress is a risk factor for developing posttraumatic stress disorder (PTSD) in response to trauma, yet the mechanisms by which this occurs are unclear. Using a rodent model of stress-based susceptibility to PTSD, we investigated the role of serotonin in this phenomenon. Adult mice were exposed to repeated immobilization stress or handling, and the role of serotonin in subsequent fear learning was assessed using pharmacologic manipulation and western blot detection of serotonin receptors, measurements of serotonin, high-speed optogenetic silencing, and behavior. Both dorsal raphe serotonergic activity during aversive reinforcement and amygdala serotonin 2C receptor (5-HT2CR) activity during memory consolidation were necessary for stress enhancement of fear memory, but neither process affected fear memory in unstressed mice. Additionally, prior stress increased amygdala sensitivity to serotonin by promoting surface expression of 5-HT2CR without affecting tissue levels of serotonin in the amygdala. We also showed that the serotonin that drives stress enhancement of associative cued fear memory can arise from paired or unpaired footshock, an effect not predicted by theoretical models of associative learning. Stress bolsters the consequences of aversive reinforcement, not by simply enhancing the neurobiological signals used to encode fear in unstressed animals, but rather by engaging distinct mechanistic pathways. These results reveal that predictions from classical associative learning models do not always hold for stressed animals and suggest that 5-HT2CR blockade may represent a promising therapeutic target for psychiatric disorders characterized by excessive fear responses such as that observed in PTSD. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Serotonergic changes following proestrous treatment with p,p'-DDT

    Uphouse, L.; Eckols, K.; Croissant, D.; Stewart, G.

    1990-01-01

    The effects of 25 and 75 mg/kg p,p'-DDT on the CNS serotonergic system were examined in proestrous female rats. Females were treated with p,p'-DDT on the morning of proestrus and were sacrificed that evening. Levels of serotonin (5-HT) and its major metabolite, 5-hydroxyindoleacetic acid (5-HIAA), were examined in cortex, hippocampus, hypothalamus and preoptic areas. The binding of 3'-8-OH-DPAT [2-hydroxy-2-N, N-(di-propylamino)-tetralin], an agonist for 5-HT1A receptors, was examined in hippocampus and frontal cortex. P,p'-DDT decreased the level of 5-HT in frontal cortex and hippocampus. Elevations in 5-HIAA were present in the hypothalamus but only at the higher dose of p,p'-DDT. The dose of 25 mg/kg p,p'-DDT produced an increase in the Bmax for 3H-8-OH-DPAT binding to frontal cortical and hippocampal membranes. Membrane preparations from females given 75 mg/kg p,p'-DDT fell into two categories. Some were similar to the control but with a slightly higher Kd; others could not be analyzed by traditional linear or nonlinear regression procedures because they showed a constant proportion of bound label, independent of the concentration of 3H-ligand in the reaction. In vitro, p,p'-DDT did not compete with 3H-8-OH-DPAT for binding to cortical membranes so it is unlikely that residual pesticide in the membrane preparation accounted for the binding results. These binding results are particularly interesting because, in previous studies, the dose of 25 mg/kg p,p'-DDT was shown to be more potent than 75 mg/kg p,p'-DDT in reducing female rodent lordosis behavior

  16. Characterization of serotonergic receptors in rabbit, porcine and human conjunctivae.

    Turner, Helen C; Alvarez, Lawrence J; Candia, Oscar A; Bernstein, Audrey M

    2003-10-01

    To characterize the serotonin (5-HT) receptors linked to the modulation of adenylyl cyclase activity in rabbit, porcine and human conjunctivae. Serotonin receptor-subtype expression was examined using reverse transcription-polymerase chain reaction (RT-PCR) and receptor subtype-specific polyclonal antibodies for the immunofluorescent labeling of conjunctival cryosections. In addition, measurements of the effects of serotonergics on the short-circuit current (I(sc)) across rabbit and porcine conjunctivae were contrasted. RT-PCR assays indicated the expression of 5-HT(1B ) and 5-HT(1D) receptors, subtypes negatively coupled to adenylyl cyclase, in the rabbit conjunctiva. This approach also suggested the co-expression of 5-HT(1B), 5-HT(1D), 5-HT(1F), 5-HT(4) and 5-HT(7) mRNA's in the porcine conjunctiva, and 5-HT( 1D), 5-HT(1F) and 5-HT(7) in the human conjunctiva. Since the 5-HT(4) and 5-HT(7) receptors are positively linked to adenylyl cyclase, these results implied that the porcine and human tissues exhibited subtypes both positively and negatively linked to the enzyme. However, immunohistochemical observations, using currently available antibodies solely localized the 5-HT(7) moiety in the porcine and human epithelia, suggested that the 1B/1D forms may be minor elements. Consistent with this prospect, 5-HT was a stimulant of the transepithelial I(sc) across the porcine conjunctiva, an opposite response from earlier findings that demonstrated inhibitory effects by 5-HT on the rabbit I(sc), which are now explained by the localization of the 1B/1D receptors in the rabbit stratified epithelium. The 5-HT receptors expressed by mammalian conjunctivae are not identical. In terms of 5-HT receptor expression, the porcine tissue may be a more appropriate model for human, than is the rabbit, in that 5-HT may serve as a secretagogue in the human epithelium.

  17. The biophysics of neuronal growth

    Franze, Kristian; Guck, Jochen

    2010-01-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  18. Serotonergic Hyperactivity as a Potential Factor in Developmental, Acquired and Drug-Induced Synesthesia

    Berit eBrogaard

    2013-10-01

    Full Text Available Though synesthesia research has seen a huge growth in recent decades, and tremendous progress has been made in terms of understanding the mechanism and cause of synesthesia, we are still left mostly in the dark when it comes to the mechanistic commonalities (if any among developmental, acquired and drug-induced synesthesia. We know that many forms of synesthesia involve aberrant structural or functional brain connectivity. Proposed mechanisms include direct projection and disinhibited feedback mechanisms, in which information from two otherwise structurally or functionally separate brain regions mix. We also know that synesthesia sometimes runs in families. However, it is unclear what causes its onset. Studies of psychedelic drugs, such as psilocybin, LSD and mescaline, reveal that exposure to these drugs can induce synesthesia. One neurotransmitter suspected to be central to the perceptual changes is serotonin. Excessive serotonin in the brain may cause many of the characteristics of psychedelic intoxication. Excessive serotonin levels may also play a role in synesthesia acquired after brain injury. In brain injury sudden cell death floods local brain regions with serotonin and glutamate. This neurotransmitter flooding could perhaps result in unusual feature binding. Finally, developmental synesthesia that occurs in individuals with autism may be a result of alterations in the serotonergic system, leading to a blockage of regular gating mechanisms. I conclude on these grounds that one commonality among at least some cases of acquired, developmental and drug-induced synesthesia may be the presence of excessive levels of serotonin, which increases the excitability and connectedness of sensory brain regions.

  19. The serotonergic system and mysticism: could LSD and the nondrug-induced mystical experience share common neural mechanisms?

    Goodman, Neil

    2002-01-01

    This article aims to explore, through established scientific research and documented accounts of personal experience, the similarities between religious mystical experiences and some effects of D-lysergic diethylamide or LSD. LSD predominantly works upon the serotonergic (serotonin-using neurons) diffuse neuromodulatory system, which projects its axons to virtually all areas of the brain including the neocortex. By its normal action it modulates awareness of the environmental surroundings and filters a high proportion of this information before it can be processed, thereby only allowing the amount of information that is necessary for survival. LSD works to open this filter, and so an increased amount of somatosensory data is processed with a corresponding increase in what is deemed important. This article describes the effects and actions of LSD, and due to the similarities with the nondrug-induced mystical experience the author proposes that the two could have common modes of action upon the brain. This could lead to avenues of research into mysticism and a wealth of knowledge on consciousness and how we perceive the universe.

  20. [Effect of nociceptin on histamine and serotonin release in the central nervous system].

    Gyenge, Melinda; Hantos, Mónika; Laufer, Rudolf; Tekes, Korniléa

    2006-01-01

    Role in pain sensation of both nociceptin (NC), the bioactive heptadecapeptide sequence of preproorphaninFQ and of histamine has been widely evidenced in the central nervous system (CNS). In the current series of experiments effect of intracerebroventricularly (i.c.v.) administered NC (5.5 nmol/rat) on histamine and serotonin levels in blood plasma, CSF and brain areas (hypothalamus and hippocampus) was studies and compared to the effect of the mast cell degranulator Compound 48/80(100microg/kg, i.c.v.) and the neuroactive peptide Substance P (50nmol/rat, i.c.v.). It was found that all the three compounds increased the histamine level in the CNS, however their activity concerning the mast cell-, and neuronal histamine release is different. NC could release histamine from both the mast cells and the neurons and it decreased CNS serotonin levels. Substance P was found the most potent in increasing CNS histamine levels. Compound 48/80 treatment resulted in elevated histamine levels both in the CNS and blood plasma. It is concluded that the histamine releasing effects of i.c.v. administered NC and SP are limited to the CNS, but in the effect of Compound 48/80 its blood-brain barrier impairing activity is also involved. Data also demonstrate that NC has significant effect on both the histaminergic and serotonergic neurotransmission in the CNS.

  1. Na+/K+ pump interacts with the h-current to control bursting activity in central pattern generator neurons of leeches

    Kueh, Daniel; Barnett, William H; Cymbalyuk, Gennady S; Calabrese, Ronald L

    2016-01-01

    The dynamics of different ionic currents shape the bursting activity of neurons and networks that control motor output. Despite being ubiquitous in all animal cells, the contribution of the Na+/K+ pump current to such bursting activity has not been well studied. We used monensin, a Na+/H+ antiporter, to examine the role of the pump on the bursting activity of oscillator heart interneurons in leeches. When we stimulated the pump with monensin, the period of these neurons decreased significantly, an effect that was prevented or reversed when the h-current was blocked by Cs+. The decreased period could also occur if the pump was inhibited with strophanthidin or K+-free saline. Our monensin results were reproduced in model, which explains the pump’s contributions to bursting activity based on Na+ dynamics. Our results indicate that a dynamically oscillating pump current that interacts with the h-current can regulate the bursting activity of neurons and networks. DOI: http://dx.doi.org/10.7554/eLife.19322.001 PMID:27588351

  2. Communication among neurons.

    Marner, Lisbeth

    2012-04-01

    The communication among neurons is the prerequisite for the working brain. To understand the cellular, neurochemical, and structural basis of this communication, and the impacts of aging and disease on brain function, quantitative measures are necessary. This thesis evaluates several quantitative neurobiological methods with respect to possible bias and methodological issues. Stereological methods are suited for the unbiased estimation of number, length, and volumes of components of the nervous system. Stereological estimates of the total length of myelinated nerve fibers were made in white matter of post mortem brains, and the impact of aging and diseases as Schizophrenia and Alzheimer's disease were evaluated. Although stereological methods are in principle unbiased, shrinkage artifacts are difficult to account for. Positron emission tomography (PET) recordings, in conjunction with kinetic modeling, permit the quantitation of radioligand binding in brain. The novel serotonin 5-HT4 antagonist [11C]SB207145 was used as an example of the validation process for quantitative PET receptor imaging. Methods based on reference tissue as well as methods based on an arterial plasma input function were evaluated with respect to precision and accuracy. It was shown that [11C]SB207145 binding had high sensitivity to occupancy by unlabeled ligand, necessitating high specific activity in the radiosynthesis to avoid bias. The established serotonin 5-HT2A ligand [18F]altanersin was evaluated in a two-year follow-up study in elderly subjects. Application of partial volume correction of the PET data diminished the reliability of the measures, but allowed for the correct distinction between changes due to brain atrophy and receptor availability. Furthermore, a PET study of patients with Alzheimer's disease with the serotonin transporter ligand [11C]DASB showed relatively preserved serotonergic projections, despite a marked decrease in 5-HT2A receptor binding. Possible confounders are

  3. Repeated noxious stimulation of the skin enhances cutaneous pain perception of migraine patients in-between attacks: clinical evidence for continuous sub-threshold increase in membrane excitability of central trigeminovascular neurons.

    Weissman-Fogel, Irit; Sprecher, Elliot; Granovsky, Yelena; Yarnitsky, David

    2003-08-01

    Recent clinical studies showed that acute migraine attacks are accompanied by increased periorbital and bodily skin sensitivity to touch, heat and cold. Parallel pre-clinical studies showed that the underlying mechanism is sensitization of primary nociceptors and central trigeminovascular neurons. The present study investigates the sensory state of neuronal pathways that mediate skin pain sensation in migraine patients in between attacks. The assessments of sensory perception included (a) mechanical and thermal pain thresholds of the periorbital area, electrical pain threshold of forearm skin, (b) pain scores to phasic supra-threshold stimuli in the same modalities and areas as above, and (c) temporal summation of pain induced by applying noxious tonic heat pain and brief trains of noxious mechanical and electrical pulses to the above skin areas. Thirty-four pain-free migraine patients and 28 age- and gender-matched controls were studied. Patients did not differ from controls in their pain thresholds for heat (44+/-2.6 vs. 44.6+/-1.9 degrees C), and electrical (4.8+/-1.6 vs. 4.3+/-1.6 mA) stimulation, and in their pain scores for supra-threshold phasic stimuli for all modalities. They did, however, differ in their pain threshold for mechanical stimulation, just by one von Frey filament (P=0.01) and in their pain scores of the temporal summation tests. Increased summation of pain was found in migraineurs for repeated mechanical stimuli (delta visual analog scale (VAS) +2.32+/-0.73 in patients vs. +0.16+/-0.83 in controls, P=0.05) and repeated electrical stimuli (delta VAS +3.83+/-1.91 vs -3.79+/-2.31, P=0.01). Increased summation corresponded with more severe clinical parameters of migraine and tended to depend on interval since last migraine attack. The absence of clinically or overt laboratory expressed allodynia suggests that pain pathways are not sensitized in the pain-free migraine patients. Nevertheless, the increased temporal summation, and the slight

  4. Activity of Tachykinin1-Expressing Pet1 Raphe Neurons Modulates the Respiratory Chemoreflex.

    Hennessy, Morgan L; Corcoran, Andrea E; Brust, Rachael D; Chang, YoonJeung; Nattie, Eugene E; Dymecki, Susan M

    2017-02-15

    Homeostatic control of breathing, heart rate, and body temperature relies on circuits within the brainstem modulated by the neurotransmitter serotonin (5-HT). Mounting evidence points to specialized neuronal subtypes within the serotonergic neuronal system, borne out in functional studies, for the modulation of distinct facets of homeostasis. Such functional differences, read out at the organismal level, are likely subserved by differences among 5-HT neuron subtypes at the cellular and molecular levels, including differences in the capacity to coexpress other neurotransmitters such as glutamate, GABA, thyrotropin releasing hormone, and substance P encoded by the Tachykinin-1 ( Tac1 ) gene. Here, we characterize in mice a 5-HT neuron subtype identified by expression of Tac1 and the serotonergic transcription factor gene Pet1 , referred to as the Tac1-Pet1 neuron subtype. Transgenic cell labeling showed Tac1-Pet1 soma resident largely in the caudal medulla. Chemogenetic [clozapine -N- oxide (CNO)-hM4Di] perturbation of Tac1-Pet1 neuron activity blunted the ventilatory response of the respiratory CO 2 chemoreflex, which normally augments ventilation in response to hypercapnic acidosis to restore normal pH and PCO 2 Tac1-Pet1 axonal boutons were found localized to brainstem areas implicated in respiratory modulation, with highest density in motor regions. These findings demonstrate that the activity of a Pet1 neuron subtype with the potential to release both 5-HT and substance P is necessary for normal respiratory dynamics, perhaps via motor outputs that engage muscles of respiration and maintain airway patency. These Tac1-Pet1 neurons may act downstream of Egr2-Pet1 serotonergic neurons, which were previously established in respiratory chemoreception, but do not innervate respiratory motor nuclei. SIGNIFICANCE STATEMENT Serotonin (5-HT) neurons modulate physiological processes and behaviors as diverse as body temperature, respiration, aggression, and mood. Using

  5. Sexual side effects of serotonergic antidepressants: mediated by inhibition of serotonin on central dopamine release?

    Bijlsma, Elisabeth Y; Chan, Johnny S W; Olivier, Berend; Veening, Jan G; Millan, Mark J; Waldinger, Marcel D; Oosting, Ronald S

    2014-06-01

    Antidepressant-induced sexual dysfunction adversely affects the quality of life of antidepressant users and reduces compliance with treatment. Animal models provide an instructive approach for examining potential sexual side effects of novel drugs. This review discusses the stability and reproducibility of our standardized test procedure that assesses the acute, subchronic and chronic effects of psychoactive compounds in a 30 minute mating test. In addition, we present an overview of the effects of several different (putative) antidepressants on male rat sexual behavior, as tested in our standardized test procedure. By comparing the effects of these mechanistically distinct antidepressants (paroxetine, venlafaxine, bupropion, buspirone, DOV 216,303 and S32006), this review discusses the putative mechanism underlying sexual side effects of antidepressants and their normalization. This review shows that sexual behavior is mainly inhibited by antidepressants that increase serotonin neurotransmission via blockade of serotonin transporters, while those that mainly increase the levels of dopamine and noradrenaline are devoid of sexual side effects. Those sexual disturbances cannot be normalized by simultaneously increasing noradrenaline neurotransmission, but are normalized by increasing both noradrenaline and dopamine neurotransmission. Therefore, it is hypothesized that the sexual side effects of selective serotonin reuptake inhibitors may be mediated by their inhibitory effects on dopamine signaling in sex brain circuits. Clinical development of novel antidepressants should therefore focus on compounds that simultaneously increase both serotonin and dopamine signaling. © 2013 Elsevier Inc. All rights reserved.

  6. Central 5-HT4 receptor binding as biomarker of serotonergic tonus in humans

    Haahr, M E; Fisher, P M; Jensen, Christian Gaden

    2014-01-01

    levels, is associated with a decline in brain 5-HT4R binding. A total of 35 healthy men were studied in a placebo-controlled, randomized, double-blind study. Participants were assigned to receive 3 weeks of oral dosing with placebo or fluoxetine, 40 mg per day. Brain 5-HT4R binding was quantified...... at baseline and at follow-up with [(11)C]SB207145 positron emission tomography (PET). Three weeks of intervention with fluoxetine was associated with a 5.2% reduction in brain 5-HT4R binding (P=0.017), whereas placebo intervention did not change 5-HT4R binding (P=0.52). Our findings are consistent...

  7. Carnosine reverses the aging-induced down regulation of brain regional serotonergic system.

    Banerjee, Soumyabrata; Ghosh, Tushar K; Poddar, Mrinal K

    2015-12-01

    The purpose of the present investigation was to study the role of carnosine, an endogenous dipeptide biomolecule, on brain regional (cerebral cortex, hippocampus, hypothalamus and pons-medulla) serotonergic system during aging. Results showed an aging-induced brain region specific significant (a) increase in Trp (except cerebral cortex) and their 5-HIAA steady state level with an increase in their 5-HIAA accumulation and declination, (b) decrease in their both 5-HT steady state level and 5-HT accumulation (except cerebral cortex). A significant decrease in brain regional 5-HT/Trp ratio (except cerebral cortex) and increase in 5-HIAA/5-HT ratio were also observed during aging. Carnosine at lower dosages (0.5-1.0μg/Kg/day, i.t. for 21 consecutive days) didn't produce any significant response in any of the brain regions, but higher dosages (2.0-2.5μg/Kg/day, i.t. for 21 consecutive days) showed a significant response on those aging-induced brain regional serotonergic parameters. The treatment with carnosine (2.0μg/Kg/day, i.t. for 21 consecutive days), attenuated these brain regional aging-induced serotonergic parameters and restored towards their basal levels that observed in 4 months young control rats. These results suggest that carnosine attenuates and restores the aging-induced brain regional down regulation of serotonergic system towards that observed in young rats' brain regions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Serotonergic modulation of hippocampal pyramidal cells in euthermic, cold-acclimated, and hibernating hamsters

    Horrigan, D. J.; Horwitz, B. A.; Horowitz, J. M.

    1997-01-01

    Serotonergic fibers project to the hippocampus, a brain area previously shown to have distinctive changes in electroencephalograph (EEG) activity during entrance into and arousal from hibernation. The EEG activity is generated by pyramidal cells in both hibernating and nonhibernating species. Using the brain slice preparation, we characterized serotonergic responses of these CA1 pyramidal cells in euthermic, cold-acclimated, and hibernating Syrian hamsters. Stimulation of Shaffer-collateral/commissural fibers evoked fast synaptic excitation of CA1 pyramidal cells, a response monitored by recording population spikes (the synchronous generation of action potentials). Neuromodulation by serotonin (5-HT) decreased population spike amplitude by 54% in cold-acclimated animals, 80% in hibernating hamsters, and 63% in euthermic animals. The depression was significantly greater in slices from hibernators than from cold-acclimated animals. In slices from euthermic animals, changes in extracellular K+ concentration between 2.5 and 5.0 mM did not significantly alter serotonergic responses. The 5-HT1A agonist 8-hydroxy-2(di-n-propylamino)tetralin mimicked serotonergic inhibition in euthermic hamsters. Results show that 5-HT is a robust neuromodulator not only in euthermic animals but also in cold-acclimated and hibernating hamsters.

  9. Channeling the Central Dogma.

    Calabrese, Ronald L

    2014-05-21

    How do neurons and networks achieve their characteristic electrical activity, regulate this activity homeostatically, and yet show population variability in expression? In this issue of Neuron, O'Leary et al. (2014) address some of these thorny questions in this theoretical analysis that starts with the Central Dogma. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Restoration of quinine-stimulated Fos-immunoreactive neurons in the central nucleus of the amygdala and gustatory cortex following reinnervation or cross-reinnervation of the lingual taste nerves in rats.

    King, Camille Tessitore; Garcea, Mircea; Spector, Alan C

    2014-08-01

    Remarkably, when lingual gustatory nerves are surgically rerouted to inappropriate taste fields in the tongue, some taste functions recover. We previously demonstrated that quinine-stimulated oromotor rejection reflexes and neural activity (assessed by Fos immunoreactivity) in subregions of hindbrain gustatory nuclei were restored if the posterior tongue, which contains receptor cells that respond strongly to bitter compounds, was cross-reinnervated by the chorda tympani nerve. Such functional recovery was not seen if instead, the anterior tongue, where receptor cells are less responsive to bitter compounds, was cross-reinnervated by the glossopharyngeal nerve, even though this nerve typically responds robustly to bitter substances. Thus, recovery depended more on the taste field being reinnervated than on the nerve itself. Here, the distribution of quinine-stimulated Fos-immunoreactive neurons in two taste-associated forebrain areas was examined in these same rats. In the central nucleus of the amygdala (CeA), a rostrocaudal gradient characterized the normal quinine-stimulated Fos response, with the greatest number of labeled cells situated rostrally. Quinine-stimulated neurons were found throughout the gustatory cortex, but a "hot spot" was observed in its anterior-posterior center in subregions approximating the dysgranular/agranular layers. Fos neurons here and in the rostral CeA were highly correlated with quinine-elicited gapes. Denervation of the posterior tongue eliminated, and its reinnervation by either nerve restored, numbers of quinine-stimulated labeled cells in the rostralmost CeA and in the subregion approximating the dysgranular gustatory cortex. These results underscore the remarkable plasticity of the gustatory system and also help clarify the functional anatomy of neural circuits activated by bitter taste stimulation. © 2014 Wiley Periodicals, Inc.

  11. Central nervous system resuscitation

    McIntosh, T K; Garde, E; Saatman, K E

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  12. Neurons from the adult human dentate nucleus: neural networks in the neuron classification.

    Grbatinić, Ivan; Marić, Dušica L; Milošević, Nebojša T

    2015-04-07

    Topological (central vs. border neuron type) and morphological classification of adult human dentate nucleus neurons according to their quantified histomorphological properties using neural networks on real and virtual neuron samples. In the real sample 53.1% and 14.1% of central and border neurons, respectively, are classified correctly with total of 32.8% of misclassified neurons. The most important result present 62.2% of misclassified neurons in border neurons group which is even greater than number of correctly classified neurons (37.8%) in that group, showing obvious failure of network to classify neurons correctly based on computational parameters used in our study. On the virtual sample 97.3% of misclassified neurons in border neurons group which is much greater than number of correctly classified neurons (2.7%) in that group, again confirms obvious failure of network to classify neurons correctly. Statistical analysis shows that there is no statistically significant difference in between central and border neurons for each measured parameter (p>0.05). Total of 96.74% neurons are morphologically classified correctly by neural networks and each one belongs to one of the four histomorphological types: (a) neurons with small soma and short dendrites, (b) neurons with small soma and long dendrites, (c) neuron with large soma and short dendrites, (d) neurons with large soma and long dendrites. Statistical analysis supports these results (pneurons can be classified in four neuron types according to their quantitative histomorphological properties. These neuron types consist of two neuron sets, small and large ones with respect to their perykarions with subtypes differing in dendrite length i.e. neurons with short vs. long dendrites. Besides confirmation of neuron classification on small and large ones, already shown in literature, we found two new subtypes i.e. neurons with small soma and long dendrites and with large soma and short dendrites. These neurons are

  13. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System.

    Okaty, Benjamin W; Freret, Morgan E; Rood, Benjamin D; Brust, Rachael D; Hennessy, Morgan L; deBairos, Danielle; Kim, Jun Chul; Cook, Melloni N; Dymecki, Susan M

    2015-11-18

    Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The inhibitory effect of granisetron on ventrolateral medulla neuron responses to colorectal distension in rats.

    Panteleev, Sergey S; Martseva, Alexandra А; Lyubashina, Olga А

    2015-02-15

    Irritable bowel syndrome (IBS) is one of the most widespread functional gastrointestinal disorders characterized by abdominal pain. A key pathophysiological mechanism of abdominal pain is associated with disturbances of serotonergic transmission in feedback control loops of endogenous pain modulation in which the ventrolateral medulla (VLM) plays an important role. The receptors to serotonin (5-HT), and particularly the serotonin 3 (5-HT3) receptors have been extensively used as a potential target for abdominal pain treatment of IBS patients due to antinociceptive features of the 5-HT3 receptor antagonists. The precise mechanisms underlying the antinociceptive action of these antagonists remain unclear. The main objective of our study was to evaluate the involvement of the 5-HT3 receptors in abdominal pain transmission within the VLM. Experiments were carried out on urethane-anaesthetized rats using the animal model of abdominal pain. Noxious colorectal distension (CRD) with a pressure of 80mmHg induced a significant increase in VLM neuron-evoked activity and depressor reactions (171.1±12.7% and 64±1.8% to baseline, accordingly). Selective blockade of the 5-HT3 receptors with granisetron at doses of 1.0 or 2.0mg/kg (i.v) resulted in long-lasting (90min) dose-dependent inhibition of VLM neuron-evoked activity and depressor reactions. When brainstem dorsal surface applications of granisetron (10 or 20µM) were used, the changes were more pronounced. These results suggest involvement of the 5-HT3 receptors in abdominal pain transmission within the VLM, which will be discussed in relation to the central antinociceptive effect of granisetron. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Visual Orientation Memory of "Drosophila" Requires Foraging (PKG) Upstream of Ignorant (RSK2) in Ring Neurons of the Central Complex

    Kuntz, Sara; Poeck, Burkhard; Sokolowski, Marla B.; Strauss, Roland

    2012-01-01

    Orientation and navigation in a complex environment requires path planning and recall to exert goal-driven behavior. Walking "Drosophila" flies possess a visual orientation memory for attractive targets which is localized in the central complex of the adult brain. Here we show that this type of working memory requires the cGMP-dependent protein…

  16. Motor Neurons

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...... in in vitro preparations is far from complete. Nevertheless, a foundation has been provided for pursuing functional significance of intrinsic response properties in motoneurons in vivo during motor behavior at levels from molecules to systems....

  17. Antidepressant-like effect of gallic acid in mice: Dual involvement of serotonergic and catecholaminergic systems.

    Can, Özgür Devrim; Turan, Nazlı; Demir Özkay, Ümide; Öztürk, Yusuf

    2017-12-01

    This study was planned to examine the antidepressant potency of gallic acid (30 and 60mg/kg), a phenolic acid widely distributed in nature, together with its possible underlying monoaminergic mechanisms. Antidepressant-like activity was assessed using the tail suspension (TST) and the modified forced swimming tests (MFST). Locomotor activity was evaluated in an activity cage. Administration of gallic acid at 60mg/kg reduced the immobility duration of mice in both the TST and MFST without any changes in the locomotor activity. The anti-immobility effect observed in the TST was abolished with pre-treatment of p-chlorophenylalanine methyl ester (an inhibitor of serotonin synthesis; 100mg/kg i.p. administered for 4-consecutive days), ketanserin (a 5-HT2A/2C antagonist; 1mg/kg i.p.), ondansetron (a 5-HT3 antagonist; 0.3mg/kg i.p.), α-methyl-para-tyrosine methyl ester (an inhibitor of catecholamine synthesis; 100mg/kg i.p.), phentolamine (non-selective alpha-adrenoceptor antagonist; 5mg/kg i.p.), SCH 23390 (a dopamine D1 antagonist; 0.05mg/kg s.c.), and sulpiride (a dopamine D2/D3 antagonist; 50mg/kg i.p.). However, NAN 190 (a 5-HT1A antagonist; 0.5mg/kg i.p.) and propranolol (a non-selective β-adrenoceptor antagonist; 5mg/kg i.p.) pre-treatments were ineffective at reversing the antidepressant-like effects of gallic acid. The results of the present study indicate that gallic acid seems to have a dual mechanism of action by increasing not only serotonin but also catecholamine levels in synaptic clefts of the central nervous system. Further alpha adrenergic, 5-HT2A/2C and 5-HT3 serotonergic, and D1, D2, and D3 dopaminergic receptors also seem to be involved in this antidepressant-like activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Restoring Serotonergic Homeostasis in the Lateral Hypothalamus Rescues Sleep Disturbances Induced by Early-Life Obesity.

    Gazea, Mary; Patchev, Alexandre V; Anderzhanova, Elmira; Leidmaa, Este; Pissioti, Anna; Flachskamm, Cornelia; Almeida, Osborne F X; Kimura, Mayumi

    2018-01-10

    Early-life obesity predisposes to obesity in adulthood, a condition with broad medical implications including sleep disorders, which can exacerbate metabolic disturbances and disrupt cognitive and affective behaviors. In this study, we examined the long-term impact of transient peripubertal diet-induced obesity (ppDIO, induced between 4 and 10 weeks of age) on sleep-wake behavior in male mice. EEG and EMG recordings revealed that ppDIO increases sleep during the active phase but reduces resting-phase sleep quality. This impaired sleep phenotype persisted for up to 1 year, although animals were returned to a non-obesiogenic diet from postnatal week 11 onwards. To better understand the mechanisms responsible for the ppDIO-induced alterations in sleep, we focused on the lateral hypothalamus (LH). Mice exposed to ppDIO did not show altered mRNA expression levels of orexin and melanin-concentrating hormone, two peptides that are important for sleep-wake behavior and food intake. Conversely, the LH of ppDIO-exposed mice had reduced contents of serotonin (5-hydroxytryptamine, 5-HT), a neurotransmitter involved in both sleep-wake and satiety regulation. Interestingly, an acute peripheral injection of the satiety-signaling peptide YY 3-36 increased 5-HT turnover in the LH and ameliorated the ppDIO-induced sleep disturbances, suggesting the therapeutic potential of this peptide. These findings provide new insights into how sleep-wake behavior is programmed during early life and how peripheral and central signals are integrated to coordinate sleep. SIGNIFICANCE STATEMENT Adult physiology and behavior are strongly influenced by dynamic reorganization of the brain during puberty. The present work shows that obesity during puberty leads to persistently dysregulated patterns of sleep and wakefulness by blunting serotonergic signaling in the lateral hypothalamus. It also shows that pharmacological mimicry of satiety with peptide YY 3-36 can reverse this neurochemical imbalance and

  19. ACETYL-L-CARNITINE AFFECTS THE ELECTRICAL ACTIVITY OF MECHANOSENSORY NEURONS IN HIRUDO MEDICINALIS GANGLIA

    Giovanna Traina

    2017-04-01

    Full Text Available Was previously discovered that in the leech Hirudo medicinalis, acetyl-l-carnitine (ALC affects forms of non-associative learning, such as sensitization and dishabituation, due to nociceptive stimulation of the dorsal skin in the swim induction behavioural paradigm, likely through modulating the activity of the mechanosensory tactile (T neurons, which initiate swimming. Since was found that ALC impaired sensitization and dishabituation, both of which are mediated by the neurotransmitter serotonin, the present study analyzed how ALC may interfere with the sensitizing response. Was already found that ALC reduced the activity of nociceptive (N neurons, which modulate T cell activity through serotonergic mediation.

  20. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  1. Low serotonergic tone and elevated risk for substance misuse.

    Nutt, David

    2011-11-01

    Cox et al's paper addresses an issue that has long been assumed to be a central aspect of brain function - the interplay of different neurotransmitters - but for which we have very little evidence so far. It is currently unclear whether these findings will have implications for the treatment of those with cocaine or other substance dependence.

  2. The principal neuronal gD-type 3-O-sulfotransferases and their products in central and peripheral nervous system tissues

    Lawrence, Roger; Yabe, Tomio; HajMohammadi, Sassan; Rhodes, John; McNeely, Melissa; Liu, Jian; Lamperti, Edward D.; Toselli, Paul A.; Lech, Miroslaw; Spear, Patricia G.; Rosenberg, Robert D.; Shworak, Nicholas W.

    2007-01-01

    Within the nervous system, heparan sulfate (HS) of the cell surface and extracellular matrix influences developmental, physiologic and pathologic processes. HS is a functionally diverse polysaccharide that employs motifs of sulfate groups to selectively bind and modulate various effector proteins. Specific HS activities are modulated by 3-O-sulfated glucosamine residues, which are generated by a family of seven 3-O-sulfotransferases (3-OSTs). Most isoforms we herein designate as gD-type 3-OSTs because they generate HSgD+, 3-O-sulfated motifs that bind the gD envelope protein of herpes simplex virus 1 (HSV-1) and thereby mediate viral cellular entry. Certain gD-type isoforms are anticipated to modulate neurobiologic events, because a Drosophila gD-type 3-OST is essential for a conserved neurogenic signaling pathway regulated by Notch. Information about 3-OST isoforms expressed in the nervous system of mammals is incomplete. Here, we identify the 3-OST isoforms having properties compatible with their participation in neurobiologic events. We show that 3-OST-2 and 3-OST-4 are principal isoforms of brain. We find these are gD-type enzymes, as they produce products similar to a prototypical gD-type isoform, and they can modify HS to generate receptors for HSV-1 entry into cells. Therefore, 3-OST-2 and 3-OST-4 catalyze modifications similar or identical to those made by the Drosophila gD-type 3-OST that has a role in regulating Notch signaling. We also find that 3-OST-2 and 3-OST-4 are the predominant isoforms expressed in neurons of the trigeminal ganglion, and 3-OST-2/4-type 3-O-sulfated residues occur in this ganglion and in select brain regions. Thus, 3-OST-2 and 3-OST-4 are the major neural gD-type 3-OSTs, and so are prime candidates for participating in HS-dependent neurobiologic events. PMID:17482450

  3. Influence of early stress on social abilities and serotonergic functions across generations in mice.

    Tamara B Franklin

    Full Text Available Exposure to adverse environments during early development is a known risk factor for several psychiatric conditions including antisocial behavior and personality disorders. Here, we induced social anxiety and altered social recognition memory in adult mice using unpredictable maternal separation and maternal stress during early postnatal life. We show that these social defects are not only pronounced in the animals directly subjected to stress, but are also transmitted to their offspring across two generations. The defects are associated with impaired serotonergic signaling, in particular, reduced 5HT1A receptor expression in the dorsal raphe nucleus, and increased serotonin level in a dorsal raphe projection area. These findings underscore the susceptibility of social behaviors and serotonergic pathways to early stress, and the persistence of their perturbation across generations.

  4. Neurochemical differences between target-specific populations of rat dorsal raphe projection neurons.

    Prouty, Eric W; Chandler, Daniel J; Waterhouse, Barry D

    2017-11-15

    Serotonin (5-HT)-containing neurons in the dorsal raphe (DR) nucleus project throughout the forebrain and are implicated in many physiological processes and neuropsychiatric disorders. Diversity among these neurons has been characterized in terms of their neurochemistry and anatomical organization, but a clear sense of whether these attributes align with specific brain functions or terminal fields is lacking. DR 5-HT neurons can co-express additional neuroactive substances, increasing the potential for individualized regulation of target circuits. The goal of this study was to link DR neurons to a specific functional role by characterizing cells according to both their neurotransmitter expression and efferent connectivity; specifically, cells projecting to the medial prefrontal cortex (mPFC), a region implicated in cognition, emotion, and responses to stress. Following retrograde tracer injection, brainstem sections from Sprague-Dawley rats were immunohistochemically stained for markers of serotonin, glutamate, GABA, and nitric oxide (NO). 98% of the mPFC-projecting serotonergic neurons co-expressed the marker for glutamate, while the markers for NO and GABA were observed in 60% and less than 1% of those neurons, respectively. To identify potential target-specific differences in co-transmitter expression, we also characterized DR neurons projecting to a visual sensory structure, the lateral geniculate nucleus (LGN). The proportion of serotonergic neurons co-expressing NO was greater amongst cells targeting the mPFC vs LGN (60% vs 22%). The established role of 5-HT in affective disorders and the emerging role of NO in stress signaling suggest that the impact of 5-HT/NO co-localization in DR neurons that regulate mPFC circuit function may be clinically relevant. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [Mirror neurons].

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  6. [Psychotherapy with Adjuvant use of Serotonergic Psychoactive Substances: Possibilities and Challenges].

    Majić, Tomislav; Jungaberle, Henrik; Schmidt, Timo T; Zeuch, Andrea; Hermle, Leo; Gallinat, Jürgen

    2017-07-01

    Background  Recently, scientific interest in the therapeutic potential of serotonergic and psilocybin hallucinogens (psychedelics) such as lysergic acid diethylamide (LSD) and entactogens like 3,4-methylendioxymethamphetamine (MDMA) within the framework of psychotherapy has resumed. The present article provides an overview on the current evidence on substance-assisted psychotherapy with these substances. Method  A selective search was carried out in the PubMed and Cochrane Library including studies investigating the clinical use of serotonergic psychoactive substances since 2000. Results  Studies were found investigating the following indications: alcohol (LSD and psilocybin) and tobacco addiction (psilocybin), anxiety and depression in patients suffering from life-threatening somatic illness (LSD and psilocybin), obsessive-compulsive disorder (OCD) (psilocybin), treatment-resistant major depression (psilocybin), and posttraumatic stress disorder (PTSD) (MDMA). Discussion  Substance use disorders, PTSD and anxiety and depression in patients suffering from life-threatening somatic illness belong to the indications with the best evidence for substance-assisted psychotherapy with serotonergic psychoactive agents. To date, studies indicate efficacy and relatively good tolerability. Further studies are needed to determine whether these substances may represent suitable and effective treatment options for some treatment-resistant psychiatric disorders in the future. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Lateral Parabrachial Nucleus Serotonergic Mechanisms and Salt Appetite Induced by Sodium Depletion

    Menani, Jose Vanderlei; DeLuca, Laurival Antonio, Jr.; Johnson, Alan Kim

    1998-01-01

    This study investigated the effects of bilateral injections of a serotonin (5-HT) receptor agonist into the lateral parabrachial nucleus on the intake of NaCl and water induced by 24-h water deprivation or by sodium depletion followed by 24 h of sodium deprivation (injection of the diuretic furosemide plus 24 h of d sodium-deficient diet). Rats had stainless steel cannulas implanted bilaterally into the LPBN. Bilateral LPBN injections of the serotonergic 5-HT(1/2) receptor antagonist methysergide (4 micro-g/200 nl at each site) increased hypertonic NaCl intake when tested 24 h after sodium depletion and after 24 h of water deprivation. Water intake also increased after bilateral injections of methysergide into the LPBN. In contrast, the intake of a palatable solution (0.06 M sucrose) under body fluid-replete conditions was not changed after bilateral LPBN methysergide injections. The results show that serotonergic mechanisms in the LPBN modulate water and sodium intake induced by volume depletion and sodium loss. The finding that sucrose intake was not affected by LPBN serotonergic blockade suggests that the effects of the methysergide treatment on the intakes of water and NaCl are not due to a mechanism producing a nonspecific enhancement of all ingestive behaviors.

  8. Orexin neurons receive glycinergic innervations.

    Mari Hondo

    Full Text Available Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation.

  9. N-acetylcysteine prevents ketamine-induced adverse effects on development, heart rate and monoaminergic neurons in zebrafish.

    Robinson, Bonnie; Dumas, Melanie; Gu, Qiang; Kanungo, Jyotshna

    2018-06-08

    N-acetylcysteine, a precursor molecule of glutathione, is an antioxidant. Ketamine, a pediatric anesthetic, has been implicated in cardiotoxicity and neurotoxicity including modulation of monoaminergic systems in mammals and zebrafish. Here, we show that N-acetylcysteine prevents ketamine's adverse effects on development and monoaminergic neurons in zebrafish embryos. The effects of ketamine and N-acetylcysteine alone or in combination were measured on the heart rate, body length, brain serotonergic neurons and tyrosine hydroxylase-immunoreactive (TH-IR) neurons. In the absence of N-acetylcysteine, a concentration of ketamine that produces an internal embryo exposure level comparable to human anesthetic plasma concentrations significantly reduced heart rate and body length and those effects were prevented by N-acetylcysteine co-treatment. Ketamine also reduced the areas occupied by serotonergic neurons in the brain, whereas N-acetylcysteine co-exposure counteracted this effect. TH-IR neurons in the embryo brain and TH-IR cells in the trunk were significantly reduced with ketamine treatment, but not in the presence of N-acetylcysteine. In our continued search for compounds that can prevent ketamine toxicity, this study using specific endpoints of developmental toxicity, cardiotoxicity and neurotoxicity, demonstrates protective effects of N-acetylcysteine against ketamine's adverse effects. This is the first study that shows the protective effects of N-acetylcysteine on ketamine-induced developmental defects of monoaminergic neurons as observed in a whole organism. Published by Elsevier B.V.

  10. Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator.

    Katz, P S; Frost, W N

    1997-10-15

    For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate attained by C2 on each cycle of a swim motor program. This resting level of C2 inexcitability is attributable to its own inherent spike frequency adaptation (SFA). Clearly, this property must be altered for the swim behavior to occur. The pathway for initiation of the swimming behavior involves activation of the serotonergic dorsal swim interneurons (DSIs), which are also intrinsic members of the swim CPG. Physiologically appropriate DSI stimulation transiently decreases C2 SFA, allowing C2 to fire at higher rates even when repeatedly depolarized at short intervals. The increased C2 excitability caused by DSI stimulation is mimicked and occluded by serotonin application. Furthermore, the change in excitability is not caused by the depolarization associated with DSI stimulation or serotonin application but is correlated with a decrease in C2 spike afterhyperpolarization. This suggests that the DSIs use serotonin to evoke a neuromodulatory action on a conductance in C2 that regulates its firing rate. This modulatory action of one CPG neuron on another is likely to play a role in configuring the swim circuit into its rhythmic pattern-generating mode and maintaining it in that state.

  11. Positive regulation of raphe serotonin neurons by serotonin 2B receptors.

    Belmer, Arnauld; Quentin, Emily; Diaz, Silvina L; Guiard, Bruno P; Fernandez, Sebastian P; Doly, Stéphane; Banas, Sophie M; Pitychoutis, Pothitos M; Moutkine, Imane; Muzerelle, Aude; Tchenio, Anna; Roumier, Anne; Mameli, Manuel; Maroteaux, Luc

    2018-06-01

    Serotonin is a neurotransmitter involved in many psychiatric diseases. In humans, a lack of 5-HT 2B receptors is associated with serotonin-dependent phenotypes, including impulsivity and suicidality. A lack of 5-HT 2B receptors in mice eliminates the effects of molecules that directly target serotonergic neurons including amphetamine derivative serotonin releasers, and selective serotonin reuptake inhibitor antidepressants. In this work, we tested the hypothesis that 5-HT 2B receptors directly and positively regulate raphe serotonin neuron activity. By ex vivo electrophysiological recordings, we report that stimulation by the 5-HT 2B receptor agonist, BW723C86, increased the firing frequency of serotonin Pet1-positive neurons. Viral overexpression of 5-HT 2B receptors in these neurons increased their excitability. Furthermore, in vivo 5-HT 2B -receptor stimulation by BW723C86 counteracted 5-HT 1A autoreceptor-dependent reduction in firing rate and hypothermic response in wild-type mice. By a conditional genetic ablation that eliminates 5-HT 2B receptor expression specifically and exclusively from Pet1-positive serotonin neurons (Htr2b 5-HTKO mice), we demonstrated that behavioral and sensitizing effects of MDMA (3,4-methylenedioxy-methamphetamine), as well as acute behavioral and chronic neurogenic effects of the antidepressant fluoxetine, require 5-HT 2B receptor expression in serotonergic neurons. In Htr2b 5-HTKO mice, dorsal raphe serotonin neurons displayed a lower firing frequency compared to control Htr2b lox/lox mice as assessed by in vivo extracellular recordings and a stronger hypothermic effect of 5-HT 1A -autoreceptor stimulation was observed. The increase in head-twitch response to DOI (2,5-dimethoxy-4-iodoamphetamine) further confirmed the lower serotonergic tone resulting from the absence of 5-HT 2B receptors in serotonin neurons. Together, these observations indicate that the 5-HT 2B receptor acts as a direct positive modulator of serotonin Pet1

  12. Playing it safe but losing anyway--serotonergic signaling of negative outcomes in dorsomedial prefrontal cortex in the context of risk-aversion.

    Macoveanu, Julian; Rowe, James B; Hornboll, Bettina; Elliott, Rebecca; Paulson, Olaf B; Knudsen, Gitte M; Siebner, Hartwig R

    2013-08-01

    Risk avoidance is an important determinant of human behavior. The neurotransmitter serotonin has been implicated in processing negative outcomes caused by risky decisions. However, it is unclear whether serotonin provides a neurobiological link between making a risk aversive decision and the response to a negative outcome. Using pharmacological fMRI, we manipulated the availability of serotonin in healthy volunteers while performing a gambling task. The same group of participants was studied in three fMRI sessions: (i) during intravenous administration of the SSRI citalopram to increase the serotonergic tone, (ii) after acute tryptophan depletion (ATD) to reduce central serotonin levels, or (iii) without interventions. ATD and citalopram had opposite effects on outcome related activity in dorsomedial prefrontal cortex (dmPFC) and amygdala. Relative to the control condition, ATD increased and citalopram decreased the neural response to negative outcomes in dmPFC. Conversely, ATD decreased and citalopram increased the neural response to negative outcomes in left amygdala. Critically, these pharmacological effects were restricted to negative outcomes that were caused by low-risk decisions and led to a high missed reward. ATD and citalopram did not alter the neural response to positive outcomes in dmPFC, but relative to ATD, citalopram produced a bilateral increase in the amygdala response to large wins caused by high-risk choices. The results show a selective involvement of the serotonergic system in neocortical processing of negative outcomes resulting from risk-averse decisions, thereby linking risk aversion and processing of negative outcomes in goal-directed behaviors. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  13. Imaging of intracranial neuronal and mixed neuronal-glial tumours

    Cui Shimin; Qin Jinxi; Zhang Leili; Liu Meili; Jin Song; Yan Shixin; Liu Li; Dai Weiying; Li Tao; Gao Man

    2001-01-01

    Objective: To investigate the characteristic clinical, imaging , and pathologic findings of intracranial neuronal and mixed neuronal-glial tumours. Methods: The imaging findings of surgery and pathobiology proved intracranial neuronal and mixed neuronal-glial tumours in 14 cases (7 male and 7 female, ranging in age from 6-56 years; mean age 33.8 years) were retrospectively analyzed. Results: Eight gangliogliomas were located in the frontal lobe (4 cases), temporal lobe (1 case), front- temporal lobe (2 cases), and pons (1 case). They appeared as iso-or low density on CT, iso-or low signal intensity on T 1 WI, and high signal intensity on T 2 WI on MR imaging. Two central neurocytomas were located in the supratentorial ventricles. Four desmoplastic gangliogliomas were seen as cystic masses, appearing as low signal intensity on T 1 WI and high signal intensity on T 2 WI. Conclusion: Intracranial neuronal and mixed neuronal-glial tumours had imaging characteristics. Combined with clinical history, it was possible to make a tendency preoperative diagnosis using CT or MR

  14. Serotonergic projections from the raphe nuclei to the subthalamic nucleus; a retrograde- and anterograde neuronal tracing study

    Reznitsky, Martin; Plenge, Per; Hay-Schmidt, Anders

    2016-01-01

    the 5-HT1A and 5-HT2A not were present. Retrograde tracer FluoroGold or Choleratoxin subunit B were iontophoretically delivered in the STN and combined with immunohistochemistry for 5-HT in order to map the topographic organization in the dorsal raphe system. The study showed that approximately 320...

  15. Early life environmental and pharmacological stressors result in persistent dysregulations of the serotonergic system

    Peiyan eWong

    2015-04-01

    Full Text Available Dysregulations in the brain serotonergic system and exposure to environmental stressors have been implicated in the development of major depressive disorder. Here, we investigate the interactions between the stress and serotonergic systems by characterizing the behavioral and biochemical effects of chronic stress applied during early-life or adulthood in wild type (WT mice and mice with deficient tryptophan hydroxylase 2 (TPH2 function. We showed that chronic mild stress applied in adulthood did not affect the behaviors and serotonin levels of WT and TPH2 knock-in (KI mice. Whereas, maternal separation (MS stress increased anxiety- and depressive-like behaviors of WT mice, with no detectable behavioral changes in TPH2 KI mice. Biochemically, we found that MS WT mice had reduced brain serotonin levels, which was attributed to increased expression of monoamine oxidase A (MAO A. The increased MAO A expression was detected in MS WT mice at 4 weeks old and adulthood. No change in TPH2 expression was detected. To determine whether a pharmacological stressor, dexamethasone (Dex, will result in similar biochemical results obtained from MS, we used an in vitro system, SH-SY5Y cells, and found that Dex treatment resulted in increased MAO A expression levels. We then treated WT mice with Dex for 5 days, either during postnatal days 7-11 or adulthood. Both groups of Dex treated WT mice had reduced basal corticosterone and glucocorticoid receptors expression levels. However, only Dex treatment during PND7-11 resulted in reduced serotonin levels and increased MAO A expression. Just as with MS WT mice, TPH2 expression in PND7-11 Dex-treated WT mice was unaffected. Taken together, our findings suggest that both environmental and pharmacological stressors affect the expression of MAO A, and not TPH2, when applied during the critical postnatal period. This leads to long-lasting perturbations in the serotonergic system, and results in anxiety- and depressive

  16. Genetic and biochemical changes of the serotonergic system in migraine pathobiology.

    Gasparini, Claudia Francesca; Smith, Robert Anthony; Griffiths, Lyn Robyn

    2017-12-01

    Migraine is a brain disorder characterized by a piercing headache which affects one side of the head, located mainly at the temples and in the area around the eye. Migraine imparts substantial suffering to the family in addition to the sufferer, particularly as it affects three times more women than men and is most prevalent between the ages of 25 and 45, the years of child rearing. Migraine typically occurs in individuals with a genetic predisposition and is aggravated by specific environmental triggers. Attempts to study the biochemistry of migraine began as early as the 1960s and were primarily directed at serotonin metabolism after an increase of 5-hydroxyindoleacetic acid (5-HIAA), the main metabolite of serotonin was observed in urine of migraineurs. Genetic and biochemical studies have primarily focused on the neurotransmitter serotonin, considering receptor binding, transport and synthesis of serotonin and have investigated serotonergic mediators including enzymes, receptors as well as intermediary metabolites. These studies have been mainly assayed in blood, CSF and urine as the most accessible fluids. More recently PET imaging technology integrated with a metabolomics and a systems biology platform are being applied to study serotonergic biology. The general trend observed is that migraine patients have alterations of neurotransmitter metabolism detected in biological fluids with different biochemistry from controls, however the interpretation of the biological significance of these peripheral changes is unresolved. In this review we present the biology of the serotonergic system and metabolic routes for serotonin and discuss results of biochemical studies with regard to alterations in serotonin in brain, cerebrospinal fluid, saliva, platelets, plasma and urine of migraine patients.

  17. Association Between Serotonergic Antidepressant Use During Pregnancy and Autism Spectrum Disorder in Children.

    Brown, Hilary K; Ray, Joel G; Wilton, Andrew S; Lunsky, Yona; Gomes, Tara; Vigod, Simone N

    2017-04-18

    Previous observations of a higher risk of child autism spectrum disorder with serotonergic antidepressant exposure during pregnancy may have been confounded. To evaluate the association between serotonergic antidepressant exposure during pregnancy and child autism spectrum disorder. Retrospective cohort study. Health administrative data sets were used to study children born to mothers who were receiving public prescription drug coverage during pregnancy in Ontario, Canada, from 2002-2010, reflecting 4.2% of births. Children were followed up until March 31, 2014. Serotonergic antidepressant exposure was defined as 2 or more consecutive maternal prescriptions for a selective serotonin or serotonin-norepinephrine reuptake inhibitor between conception and delivery. Child autism spectrum disorder identified after the age of 2 years. Exposure group differences were addressed by inverse probability of treatment weighting based on derived high-dimensional propensity scores (computerized algorithm used to select a large number of potential confounders) and by comparing exposed children with unexposed siblings. There were 35 906 singleton births at a mean gestational age of 38.7 weeks (50.4% were male, mean maternal age was 26.7 years, and mean duration of follow-up was 4.95 years). In the 2837 pregnancies (7.9%) exposed to antidepressants, 2.0% (95% CI, 1.6%-2.6%) of children were diagnosed with autism spectrum disorder. The incidence of autism spectrum disorder was 4.51 per 1000 person-years among children exposed to antidepressants vs 2.03 per 1000 person-years among unexposed children (between-group difference, 2.48 [95% CI, 2.33-2.62] per 1000 person-years; hazard ratio [HR], 2.16 [95% CI, 1.64-2.86]; adjusted HR, 1.59 [95% CI, 1.17-2.17]). After inverse probability of treatment weighting based on the high-dimensional propensity score, the association was not significant (HR, 1.61 [95% CI, 0.997-2.59]). The association was also not significant when exposed children

  18. Distinct populations of GABAergic neurons in mouse rhombomere 1 express but do not require the homeodomain transcription factor PITX2.

    Waite, Mindy R; Skaggs, Kaia; Kaviany, Parisa; Skidmore, Jennifer M; Causeret, Frédéric; Martin, James F; Martin, Donna M

    2012-01-01

    Hindbrain rhombomere 1 (r1) is located caudal to the isthmus, a critical organizer region, and rostral to rhombomere 2 in the developing mouse brain. Dorsal r1 gives rise to the cerebellum, locus coeruleus, and several brainstem nuclei, whereas cells from ventral r1 contribute to the trochlear and trigeminal nuclei as well as serotonergic and GABAergic neurons of the dorsal raphe. Recent studies have identified several molecular events controlling dorsal r1 development. In contrast, very little is known about ventral r1 gene expression and the genetic mechanisms regulating its formation. Neurons with distinct neurotransmitter phenotypes have been identified in ventral r1 including GABAergic, serotonergic, and cholinergic neurons. Here we show that PITX2 marks a distinct population of GABAergic neurons in mouse embryonic ventral r1. This population appears to retain its GABAergic identity even in the absence of PITX2. We provide a comprehensive map of markers that places these PITX2-positive GABAergic neurons in a region of r1 that intersects and is potentially in communication with the dorsal raphe. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Brief pup exposure induces Fos expression in the lateral habenula and serotonergic caudal dorsal raphe nucleus of paternally experienced male California mice (Peromyscus californicus).

    de Jong, T R; Measor, K R; Chauke, M; Harris, B N; Saltzman, W

    2010-09-01

    Fathers play a substantial role in infant care in a small but significant number of mammalian species, including humans. However, the neural circuitry controlling paternal behavior is much less understood than its female counterpart. In order to characterize brain areas activated by paternal care, male California mice were separated from their female mate and litter for 3 h and then exposed to a pup or a control object (a glass pebble with the approximate size and oblong shape of a newborn pup) for 10 min. All males receiving a pup showed a strong paternal response towards it, whereas males receiving a pebble interacted with it only occasionally. Despite the clear behavioral differences, exposure to a pup did not increase Fos-like immunoreactivity (Fos-LIR) compared to a pebble in brain areas previously found to be associated with parental care, including the medial preoptic nucleus and medial bed nucleus of the stria terminalis. Pup exposure did, however, significantly increase Fos-LIR in the lateral habenula (LHb) and in predominantly serotonergic neurons in the caudal dorsal raphe nucleus (DRC), as compared to pebble exposure. Both the LHb and DRC are known to be involved in the behavioral responses to strong emotional stimuli; therefore, these areas might play a role in controlling parental behavior in male California mice. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Survival motor neuron protein in motor neurons determines synaptic integrity in spinal muscular atrophy.

    Martinez, Tara L; Kong, Lingling; Wang, Xueyong; Osborne, Melissa A; Crowder, Melissa E; Van Meerbeke, James P; Xu, Xixi; Davis, Crystal; Wooley, Joe; Goldhamer, David J; Lutz, Cathleen M; Rich, Mark M; Sumner, Charlotte J

    2012-06-20

    The inherited motor neuron disease spinal muscular atrophy (SMA) is caused by deficient expression of survival motor neuron (SMN) protein and results in severe muscle weakness. In SMA mice, synaptic dysfunction of both neuromuscular junctions (NMJs) and central sensorimotor synapses precedes motor neuron cell death. To address whether this synaptic dysfunction is due to SMN deficiency in motor neurons, muscle, or both, we generated three lines of conditional SMA mice with tissue-specific increases in SMN expression. All three lines of mice showed increased survival, weights, and improved motor behavior. While increased SMN expression in motor neurons prevented synaptic dysfunction at the NMJ and restored motor neuron somal synapses, increased SMN expression in muscle did not affect synaptic function although it did improve myofiber size. Together these data indicate that both peripheral and central synaptic integrity are dependent on motor neurons in SMA, but SMN may have variable roles in the maintenance of these different synapses. At the NMJ, it functions at the presynaptic terminal in a cell-autonomous fashion, but may be necessary for retrograde trophic signaling to presynaptic inputs onto motor neurons. Importantly, SMN also appears to function in muscle growth and/or maintenance independent of motor neurons. Our data suggest that SMN plays distinct roles in muscle, NMJs, and motor neuron somal synapses and that restored function of SMN at all three sites will be necessary for full recovery of muscle power.

  1. Synchronization of motor neurons during locomotion in the neonatal rat

    Tresch, Matthew C.; Kiehn, Ole

    2002-01-01

    We describe here the robust synchronization of motor neurons at a millisecond time scale during locomotor activity in the neonatal rat. Action potential activity of motor neuron pairs was recorded extracellularly using tetrodes during locomotor activity in the in vitro neonatal rat spinal cord....... Approximately 40% of motor neuron pairs recorded in the same spinal segment showed significant synchronization, with the duration of the central peak in cross-correlograms between motor neurons typically ranging between ∼ 30 and 100 msec. The percentage of synchronized motor neuron pairs was considerably higher...... between motor neurons persisted. On the other hand, both local and distant coupling between motor neurons were preserved after antagonism of gap junction coupling between motor neurons. These results demonstrate that motor neuron activity is strongly synchronized at a millisecond time scale during...

  2. Estrogenic mediation of serotonergic and neurotrophic systems: implications for female mood disorders.

    Borrow, Amanda P; Cameron, Nicole M

    2014-10-03

    Clinical research has demonstrated a significant sex difference in the occurrence of depressive disorders. Beginning at pubertal onset, women report a higher incidence of depression than men. Women are also vulnerable to the development of depressive disorders such as premenstrual dysphoric disorder, postpartum depression, and perimenopausal depression. These disorders are associated with reproductive stages involving changes in gonadal hormone levels. Specifically, female depression and female affective behaviors are influenced by estradiol levels. This review argues two major mechanisms by which estrogens influence depression and depressive-like behavior: through interactions with neurotrophic factors and through an influence on the serotonergic system. In particular, estradiol increases brain derived neurotrophic factor (BDNF) levels within the brain, and alters serotonergic expression in a receptor subtype-specific manner. We will take a regional approach, examining these effects of estrogens in the major brain areas implicated in depression. Finally, we will discuss the gaps in our current knowledge of the effects of estrogens on female depression, and the potential utility for estrogen receptor modulators in treatment for this disorder. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Colon preneoplasia after carcinogen exposure is enhanced and colonic serotonergic system is suppressed by food deprivation.

    Kannen, Vinicius; Fernandes, Cleverson R; Stopper, Helga; Zanette, Dalila L; Ferreira, Frederico R; Frajacomo, Fernando T; Carvalho, Milene C; Brandão, Marcus L; Elias Junior, Jorge; Jordão Junior, Alceu Afonso; Uyemura, Sérgio Akira; Waaga-Gasser, Ana Maria; Garcia, Sérgio B

    2013-10-04

    Calorie restriction regimens usually promote health and extend life-span in mammals. This is partially related to their preventive effects against malignancies. However, certain types of nutritional restriction failed to induce beneficial effects. The American Institute of Nutrition defines calorie restriction as diets which have only 40% fewer calories, but provide normal amounts of necessary food components such as protein, vitamins and minerals; whereas, food restriction means 40% less of all dietary ingredients plus 40% less calories. Our study aimed to test the hypothesis that the latter type of food deprivation (40% less food than consumed by standard fed rats) might increase cancer risk instead of reducing it, as is generally assumed for all dietary restrictive regimens. Since the endogenous modulation of the colon serotonergic system has been observed to play a role during the early steps of carcinogenesis we also investigated whether the serotoninergic system could be involved in the food intake modulation of cancer risk. For this, rats were exposed to a carcinogen and subjected to food deprivation for 56 days. Triglyceride levels and visceral adipose tissue were reduced while hepatic and colonic lipid peroxidation was increased. This dietary restriction also decreased serotonin levels in colon, and gene expression of its intestinal transporter and receptors. Finally, the numbers of preneoplastic lesions in the colon tissue of carcinogen-exposed rats were increased. Our data suggest that food deprivation enhances formation of early tumorigenic lesions by suppressing serotonergic activity in colon tissue. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. The Potential Role of Cannabinoids in Modulating Serotonergic Signaling by Their Influence on Tryptophan Metabolism

    Dietmar Fuchs

    2010-08-01

    Full Text Available Phytocannabinoids present in Cannabis plants are well known to exert potent anti-inflammatory and immunomodulatory effects. Previously, we have demonstrated that the psychoactive D9-tetrahydrocannabinol (THC and the non-psychotropic cannabidiol (CBD modulate mitogen-induced Th1-type immune responses in peripheral blood mononuclear cells (PBMC. The suppressive effect of both cannabinoids on mitogen-induced tryptophan degradation mediated by indoleamine-2,3-dioxygenase (IDO, suggests an additional mechanism by which antidepressive effects of cannabinoids might be linked to the serotonergic system. Here, we will review the role of tryptophan metabolism in the course of cell mediated immune responses and the relevance of cannabinoids in serotonergic signaling. We conclude that in particular the non-psychotropic CBD might be useful for the treatment of mood disorders in patients with inflammatory diseases, since this cannabinoid seems to be safe and its effects on activation-induced tryptophan degradation by CBD were more potent as compared to THC.

  5. MDMA, serotonergic neurotoxicity, and the diverse functional deficits of recreational 'Ecstasy' users.

    Parrott, Andrew C

    2013-09-01

    Serotonergic neurotoxicity following MDMA is well-established in laboratory animals, and neuroimaging studies have found lower serotonin transporter (SERT) binding in abstinent Ecstasy/MDMA users. Serotonin is a modulator for many different psychobiological functions, and this review will summarize the evidence for equivalent functional deficits in recreational users. Declarative memory, prospective memory, and higher cognitive skills are often impaired. Neurocognitive deficits are associated with reduced SERT in the hippocampus, parietal cortex, and prefrontal cortex. EEG and ERP studies have shown localised reductions in brain activity during neurocognitive performance. Deficits in sleep, mood, vision, pain, psychomotor skill, tremor, neurohormonal activity, and psychiatric status, have also been demonstrated. The children of mothers who take Ecstasy/MDMA during pregnancy have developmental problems. These psychobiological deficits are wide-ranging, and occur in functions known to be modulated by serotonin. They are often related to lifetime dosage, with light users showing slight changes, and heavy users displaying more pronounced problems. In summary, abstinent Ecstasy/MDMA users can show deficits in a wide range of biobehavioral functions with a serotonergic component. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Mediation by the serotonergic system of U-50,488H-induced antinociception and tolerance

    Ho, Begonia Yeeman.

    1989-01-01

    The antinociceptive action of U-50,488H, a selective {kappa}-opioid receptor agonist, was attenuated by serotonergic but not by noradrenergic receptor antagonists. Intracerebroventricularly (i.c.v.) administered U-50,488H was antagonized by more than two fold by i.c.v. administered pindolol, methysergide, mianserin, ketanserin, pirenperone or ICS-205,930. A similar degree of antagonism of U-50,488H (i.c.v.) was found after intrathecal (i.t.) treatments with pindolol, methysergide or ICS-205,930 but not with mianserin, ketanserin or pirenperone. When U-50,488H and the antagonists were both given i.t., its antinociceptive action was attenuated by pindolol or methysergide, potentiated by mianserin, ketanserin or pirenperone and not affected by ICS-205,930. The release of serotonin was further studied directly by using a superfusion system. A naloxone reversible, concentration- and Ca{sup 2+}- dependent enhancement of release of ({sup 3}H)serotonin by U-50,488H was observed in spinal and brain tissues. Tolerance to the antinociceptive action of U-50,488H was induced in mice using slow release preparations of U-50,488H. Serotonergic receptor antagonists (pindolol or ketanserin) were co-administered with U-50,488H to test for their effects on the development of tolerance to U-50,488H.

  7. Optogenetic activation of dorsal raphe serotonin neurons enhances patience for future rewards.

    Miyazaki, Kayoko W; Miyazaki, Katsuhiko; Tanaka, Kenji F; Yamanaka, Akihiro; Takahashi, Aki; Tabuchi, Sawako; Doya, Kenji

    2014-09-08

    Serotonin is a neuromodulator that is involved extensively in behavioral, affective, and cognitive functions in the brain. Previous recording studies of the midbrain dorsal raphe nucleus (DRN) revealed that the activation of putative serotonin neurons correlates with the levels of behavioral arousal [1], rhythmic motor outputs [2], salient sensory stimuli [3-6], reward, and conditioned cues [5-8]. The classic theory on serotonin states that it opposes dopamine and inhibits behaviors when aversive events are predicted [9-14]. However, the therapeutic effects of serotonin signal-enhancing medications have been difficult to reconcile with this theory [15, 16]. In contrast, a more recent theory states that serotonin facilitates long-term optimal behaviors and suppresses impulsive behaviors [17-21]. To test these theories, we developed optogenetic mice that selectively express channelrhodopsin in serotonin neurons and tested how the activation of serotonergic neurons in the DRN affects animal behavior during a delayed reward task. The activation of serotonin neurons reduced the premature cessation of waiting for conditioned cues and food rewards. In reward omission trials, serotonin neuron stimulation prolonged the time animals spent waiting. This effect was observed specifically when the animal was engaged in deciding whether to keep waiting and was not due to motor inhibition. Control experiments showed that the prolonged waiting times observed with optogenetic stimulation were not due to behavioral inhibition or the reinforcing effects of serotonergic activation. These results show, for the first time, that the timed activation of serotonin neurons during waiting promotes animals' patience to wait for a delayed reward. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Characterization of the serotonin transporter knockout rat : A selective change in the functioning of the serotonergic system

    Homberg, J. R.; Olivier, J.D.A.; Smits, B. M. G.; Mul, J. D.; Mudde, J.; Verheul, M.; Nieuwenhuizen, O. F. M.; Cools, A. R.; Ronken, E; Cremers, Thomas; Schoffelmeere, A. N. M.; Ellenbroeik, B. A.; Cuppen, E.

    2007-01-01

    Serotonergic signaling is involved in many neurobiological processes and disturbed 5-HT homeostasis is implicated in a variety of psychiatric and addictive disorders. Here, we describe the functional characterization of the serotonin transporter (SERT) knockout rat model, that is generated by

  9. Characterization of the serotonin transporter knockout rat: a selective change in the functioning of the serotonergic system.

    Homberg, J.R.; Olivier, J.D.A.; Smits, B.M.; Mul, J.D.; Mudde, J.; Verheul, M.; Nieuwenhuizen, O.F.; Cools, A.R.; Ronken, E.; Cremers, T.; Schoffelmeer, A.N.; Ellenbroek, B.A.; Cuppen, E.

    2007-01-01

    Serotonergic signaling is involved in many neurobiological processes and disturbed 5-HT homeostasis is implicated in a variety of psychiatric and addictive disorders. Here, we describe the functional characterization of the serotonin transporter (SERT) knockout rat model, that is generated by

  10. The Effect of Tongue Exercise on Serotonergic Input to the Hypoglossal Nucleus in Young and Old Rats

    Behan, Mary; Moeser, Adam E.; Thomas, Cathy F.; Russell, John A.; Wang, Hao; Leverson, Glen E.; Connor, Nadine P.

    2012-01-01

    Purpose: Breathing and swallowing problems affect elderly people and may be related to age-associated tongue dysfunction. Hypoglossal motoneurons that innervate the tongue receive a robust, excitatory serotonergic (5HT) input and may be affected by aging. We used a rat model of aging and progressive resistance tongue exercise to determine whether…

  11. Differential serotonergic mediation of aggression in roosters selected for resistance and susceptibility to Marek’s disease

    1. Serotonin (5-HT) is a primary regulating neurotransmitter involved in aggressive and impulsive behaviors in mammals and birds. Previous studies have also demonstrated the function of serotonergic system in regulating aggression is affected by both genetic and environmental factors. 2. Our obje...

  12. The association between concomitant use of serotonergic antidepressants and lithium-induced polyuria. A multicenter medical chart review study.

    Wilting, I; Egberts, A C G; Movig, K L L; Laarhoven, J H M van; Heerdink, E R; Nolen, W A

    2008-07-01

    A previous study aimed at revealing the prevalence and determinants of lithium induced polyuria suggested an increased risk of polyuria (urine volume > or =3 L/24 h) in those using serotonergic antidepressants next to lithium. The objective of our study was to re-evaluate this secondary finding in another study population. We performed a multicenter medical chart review study in patients using lithium in whom a 24-hour urine volume had been determined. We included 116 patients, twelve (26%)of the 46 patients with polyuria used serotonergic antidepressants compared to ten (14%) of the 70 patients without polyuria. We found an increased risk of polyuria in lithium users concurrently using serotonergic antidepressants (oddsratio 2.86; 95% confidence interval 1.00-8.21), adjusted for age, gender, use of antiepileptics and thyreomimetics. Our results confirm the previous secondary finding of an increased risk of polyuria in patients using serotonergic antidepressants next to lithium. Physicians should take this into account when evaluating polyuria in patients using lithium and when choosing an antidepressant in patients using lithium.

  13. The association between concomitant use of serotonergic antidepressants and lithium-induced polyuria. A multicenter medical chart review study

    Wilting, I.; Egberts, A. C. G.; Movig, K. L. L.; van Laarhoven, J. H. M.; Heerdink, E. R.; Nolen, W. A.

    Background: A previous Study aimed at revealing the prevalence and determinants Of lithium induced polyuria Suggested an increased risk of polyuria (urine volume >= 3L/24h) in those using serotonergic antidepressants next to lithium. Objective: The objective of our study was to re-evaluate this

  14. Neuronal migration, apoptosis and bipolar disorder.

    Uribe, Ezequiel; Wix, Richard

    2012-01-01

    Bipolar disorder, like the majority of psychiatric disorders, is considered a neurodevelopment disease of neurodevelopment. There is an increased rate of neuronal birth and death during this development period. In the particular case of the processes that determine neuronal death, it is known that those neurons that establish connections have to be removed from the central nervous system. There is a deficit of GABAergic interneurons in the cerebral cortex in bipolar disorder, accompanied by overexpression of proapoptic genes. There is also an alteration in the expression of molecules that mediate in the migration of these neurons and their inclusion in functional synapsis during the foetal stage. The role of these molecules in the neuronal death pathways by apoptosis will be reviewed here in an attempt to establish biological hypotheses of the genesis of bipolar disorder. Copyright © 2011 SEP y SEPB. Published by Elsevier Espana. All rights reserved.

  15. Reflections on mirror neurons and speech perception

    Lotto, Andrew J.; Hickok, Gregory S.; Holt, Lori L.

    2010-01-01

    The discovery of mirror neurons, a class of neurons that respond when a monkey performs an action and also when the monkey observes others producing the same action, has promoted a renaissance for the Motor Theory (MT) of speech perception. This is because mirror neurons seem to accomplish the same kind of one to one mapping between perception and action that MT theorizes to be the basis of human speech communication. However, this seeming correspondence is superficial, and there are theoretical and empirical reasons to temper enthusiasm about the explanatory role mirror neurons might have for speech perception. In fact, rather than providing support for MT, mirror neurons are actually inconsistent with the central tenets of MT. PMID:19223222

  16. Neuronal involvement in cisplatin neuropathy

    Krarup-Hansen, A; Helweg-Larsen, Susanne Elisabeth; Schmalbruch, H

    2007-01-01

    Although it is well known that cisplatin causes a sensory neuropathy, the primary site of involvement is not established. The clinical symptoms localized in a stocking-glove distribution may be explained by a length dependent neuronopathy or by a distal axonopathy. To study whether the whole neuron...... of the foot evoked by a tactile probe showed similar changes to those observed in SNAPs evoked by electrical stimulation. At these doses, somatosensory evoked potentials (SEPs) from the tibial nerve had increased latencies of peripheral, spinal and central responses suggesting loss of central processes...

  17. Review article: clinical implications of enteric and central D2 receptor blockade by antidopaminergic gastrointestinal prokinetics.

    Tonini, M; Cipollina, L; Poluzzi, E; Crema, F; Corazza, G R; De Ponti, F

    2004-02-15

    Antidopaminergic gastrointestinal prokinetics (bromopride, clebopride, domperidone, levosulpiride and metoclopramide) have been exploited clinically for the management of motor disorders of the upper gastrointestinal tract, including functional dyspepsia, gastric stasis of various origins and emesis. The prokinetic effect of these drugs is mediated through the blockade of enteric (neuronal and muscular) inhibitory D2 receptors. The pharmacological profiles of the marketed compounds differ in terms of their molecular structure, affinity at D2 receptors, ability to interact with other receptor systems [5-hydroxytryptamine-3 (5-HT3) and 5-HT4 receptors for metoclopramide; 5-HT4 receptors for levosulpiride) and ability to permeate the blood-brain barrier (compared with the other compounds, domperidone does not easily cross the barrier). It has been suggested that the serotonergic (5-HT4) component of some antidopaminergic prokinetics may enhance their therapeutic efficacy in gastrointestinal disorders, such as functional dyspepsia and diabetic gastroparesis. The antagonism of central D2 receptors may lead to both therapeutic (e.g. anti-emetic effect due to D2 receptor blockade in the area postrema) and adverse (including hyperprolactinaemia and extrapyramidal dystonic reactions) effects. As the pituitary (as well as the area postrema) is outside the blood-brain barrier, hyperprolactinaemia is a side-effect occurring with all antidopaminergic prokinetics, although to different extents. Extrapyramidal reactions are most commonly observed with compounds crossing the blood-brain barrier, although with some differences amongst the various agents. Prokinetics with a high dissociation constant compared with that of dopamine at the D2 receptor (i.e. compounds that bind loosely to D2 receptors in the nigrostriatal pathway) elicit fewer extrapyramidal signs and symptoms. A knowledge of central and peripheral D2 receptor pharmacology can help the clinician to choose between the

  18. Altered brain serotonergic neurotransmission following caffeine withdrawal produces behavioral deficits in rats.

    Khaliq, Saima; Haider, Saida; Naqvi, Faizan; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Caffeine administration has been shown to enhance performance and memory in rodents and humans while its withdrawal on the other hand produces neurobehavioral deficits which are thought to be mediated by alterations in monoamines neurotransmission. A role of decreased brain 5-HT (5-hydroxytryptamine, serotonin) levels has been implicated in impaired cognitive performance and depression. Memory functions of rats were assessed by Water Maze (WM) and immobility time by Forced Swim Test (FST). The results of this study showed that repeated caffeine administration for 6 days at 30 mg/kg dose significantly increases brain 5-HT (pcaffeine. Withdrawal of caffeine however produced memory deficits and significantly increases the immobility time of rats in FST. The results of this study are linked with caffeine induced alterations in serotonergic neurotransmission and its role in memory and depression.

  19. Sexually dimorphic serotonergic dysfunction in a mouse model of Huntington's disease and depression.

    Thibault Renoir

    Full Text Available Depression is the most common psychiatric disorder in Huntington's disease (HD patients. In the general population, women are more prone to develop depression and such susceptibility might be related to serotonergic dysregulation. There is yet to be a study of sexual dimorphism in the development and presentation of depression in HD patients. We investigated whether 8-week-old male and female R6/1 transgenic HD mice display depressive-like endophenotypes associated with serotonergic impairments. We also studied the behavioral effects of acute treatment with sertraline. We found that only female HD mice exhibited a decreased preference for saccharin as well as impaired emotionality-related behaviors when assessed on the novelty-suppressed feeding test (NSFT and the forced-swimming test (FST. The exaggerated immobility time displayed by female HD in the FST was reduced by acute administration of sertraline. We also report an increased response to the 5-HT(1A receptor agonist 8-OH-DPAT in inducing hypothermia and a decreased 5-HT(2A receptor function in HD animals. While tissue levels of serotonin were reduced in both male and female HD mice, we found that serotonin concentration and hydroxylase-2 (TPH2 mRNA levels were higher in the hippocampus of males compared to female animals. Finally, the antidepressant-like effects of sertraline in the FST were blunted in male HD animals. This study reveals sex-specific depressive-related behaviors during an early stage of HD prior to any cognitive and motor deficits. Our data suggest a crucial role for disrupted serotonin signaling in mediating the sexually dimorphic depression-like phenotype in HD mice.

  20. Cholinergic and serotonergic modulation of visual information processing in monkey V1.

    Shimegi, Satoshi; Kimura, Akihiro; Sato, Akinori; Aoyama, Chisa; Mizuyama, Ryo; Tsunoda, Keisuke; Ueda, Fuyuki; Araki, Sera; Goya, Ryoma; Sato, Hiromichi

    2016-09-01

    The brain dynamically changes its input-output relationship depending on the behavioral state and context in order to optimize information processing. At the molecular level, cholinergic/monoaminergic transmitters have been extensively studied as key players for the state/context-dependent modulation of brain function. In this paper, we review how cortical visual information processing in the primary visual cortex (V1) of macaque monkey, which has a highly differentiated laminar structure, is optimized by serotonergic and cholinergic systems by examining anatomical and in vivo electrophysiological aspects to highlight their similarities and distinctions. We show that these two systems have a similar layer bias for axonal fiber innervation and receptor distribution. The common target sites are the geniculorecipient layers and geniculocortical fibers, where the appropriate gain control is established through a geniculocortical signal transformation. Both systems exert activity-dependent response gain control across layers, but in a manner consistent with the receptor subtype. The serotonergic receptors 5-HT1B and 5HT2A modulate the contrast-response curve in a manner consistent with bi-directional response gain control, where the sign (facilitation/suppression) is switched according to the firing rate and is complementary to the other. On the other hand, cholinergic nicotinic/muscarinic receptors exert mono-directional response gain control without a sign reversal. Nicotinic receptors increase the response magnitude in a multiplicative manner, while muscarinic receptors exert both suppressive and facilitative effects. We discuss the implications of the two neuromodulator systems in hierarchical visual signal processing in V1 on the basis of the developed laminar structure. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Merkel disc is a serotonergic synapse in the epidermis for transmitting tactile signals in mammals.

    Chang, Weipang; Kanda, Hirosato; Ikeda, Ryo; Ling, Jennifer; DeBerry, Jennifer J; Gu, Jianguo G

    2016-09-13

    The evolution of sensory systems has let mammals develop complicated tactile end organs to enable sophisticated sensory tasks, including social interaction, environmental exploration, and tactile discrimination. The Merkel disc, a main type of tactile end organ consisting of Merkel cells (MCs) and Aβ-afferent endings, are highly abundant in fingertips, touch domes, and whisker hair follicles of mammals. The Merkel disc has high tactile acuity for an object's physical features, such as texture, shape, and edges. Mechanisms underlying the tactile function of Merkel discs are obscured as to how MCs transmit tactile signals to Aβ-afferent endings leading to tactile sensations. Using mouse whisker hair follicles, we show herein that tactile stimuli are transduced by MCs into excitatory signals that trigger vesicular serotonin release from MCs. We identify that both ionotropic and metabotropic 5-hydroxytryptamine (5-HT) receptors are expressed on whisker Aβ-afferent endings and that their activation by serotonin released from MCs initiates Aβ-afferent impulses. Moreover, we demonstrate that these ionotropic and metabotropic 5-HT receptors have a synergistic effect that is critical to both electrophysiological and behavioral tactile responses. These findings elucidate that the Merkel disc is a unique serotonergic synapse located in the epidermis and plays a key role in tactile transmission. The epidermal serotonergic synapse may have important clinical implications in sensory dysfunctions, such as the loss of tactile sensitivity and tactile allodynia seen in patients who have diabetes, inflammatory diseases, and undergo chemotherapy. It may also have implications in the exaggerated tactile sensations induced by recreational drugs that act on serotoninergic synapses.

  2. Phrenic motoneuron expression of serotonergic and glutamatergic receptors following upper cervical spinal cord injury

    Mantilla, Carlos B.; Bailey, Jeffrey P.; Zhan, Wen-Zhi; Sieck, Gary C.

    2012-01-01

    Following cervical spinal cord injury at C2 (SH hemisection model) there is progressive recovery of phrenic activity. Neuroplasticity in the postsynaptic expression of neurotransmitter receptors may contribute to functional recovery. Phrenic motoneurons express multiple serotonergic (5-HTR) and glutamatergic (GluR) receptors, but the timing and possible role of these different neurotransmitter receptor subtypes in the neuroplasticity following SH are not clear. The current study was designed to test the hypothesis that there is an increased expression of serotonergic and glutamatergic neurotransmitter receptors within phrenic motoneurons after SH. In adult male rats, phrenic motoneurons were labeled retrogradely by intrapleural injection of Alexa 488-conjugated cholera toxin B. In thin (10 μm) frozen sections of the spinal cord, fluorescently-labeled phrenic motoneurons were visualized for laser capture microdissection (LCM). Using quantitative real-time RT-PCR in LCM samples, the time course of changes in 5-HTR and GluR mRNA expression was determined in phrenic motoneurons up to 21 days post-SH. Expression of 5-HTR subtypes 1b, 2a and 2c and GluR subtypes AMPA, NMDA, mGluR1 and mGluR5 was evident in phrenic motoneurons from control and SH rats. Phrenic motoneuron expression of 5-HTR2a increased ~8-fold (relative to control) at 14 days post-SH, whereas NMDA expression increased ~16-fold by 21-days post-SH. There were no other significant changes in receptor expression at any time post-SH. This is the first study to systematically document changes in motoneuron expression of multiple neurotransmitter receptors involved in regulation of motoneuron excitability. By providing information on the neuroplasticity of receptors expressed in a motoneuron pool that is inactivated by a higher-level spinal cord injury, appropriate pharmacological targets can be identified to alter motoneuron excitability. PMID:22227062

  3. Modulation of cannabinoid signaling by hippocampal 5-HT4 serotonergic system in fear conditioning.

    Nasehi, Mohammad; Farrahizadeh, Maryam; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza

    2016-09-01

    Behavioral studies have suggested a key role for the cannabinoid system in the modulation of conditioned fear memory. Likewise, much of the literature has revealed that the serotonergic system affects Pavlovian fear conditioning and extinction. A high level of functional overlap between the serotonin and cannabinoid systems has also been reported. To clarify the interaction between the hippocampal serotonin (5-HT4) receptor and the cannabinoid CB1 receptor in the acquisition of fear memory, the effects of 5-HT4 agents, arachidonylcyclopropylamide (ACPA; CB1 receptor agonist), and the combined use of these drugs on fear learning were studied in a fear conditioning task in adult male NMRI mice. Pre-training intraperitoneal administration of ACPA (0.1 mg/kg) decreased the percentage of freezing time in both context- and tone-dependent fear conditions, suggesting impairment of the acquisition of fear memory. Pre-training, intra-hippocampal (CA1) microinjection of RS67333, a 5-HT4 receptor agonist, at doses of 0.1 and 0.2 or 0.2 µg/mouse impaired contextual and tone fear memory, respectively. A subthreshold dose of RS67333 (0.005 µg/mouse) did not alter the ACPA response in either condition. Moreover, intra-CA1 microinjection of RS23597 as a 5-HT4 receptor antagonist did not alter context-dependent fear memory acquisition, but it did impair tone-dependent fear memory acquisition. However, a subthreshold dose of the RS23597 (0.01 µg/mouse) potentiated ACPA-induced fear memory impairment in both conditions. Therefore, we suggest that the blockade of hippocampal 5-HT4 serotonergic system modulates cannabinoid signaling induced by the activation of CB1 receptors in conditioned fear. © The Author(s) 2016.

  4. Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo.

    Kleiman, Robin J; Chapin, Douglas S; Christoffersen, Curt; Freeman, Jody; Fonseca, Kari R; Geoghegan, Kieran F; Grimwood, Sarah; Guanowsky, Victor; Hajós, Mihály; Harms, John F; Helal, Christopher J; Hoffmann, William E; Kocan, Geralyn P; Majchrzak, Mark J; McGinnis, Dina; McLean, Stafford; Menniti, Frank S; Nelson, Fredrick; Roof, Robin; Schmidt, Anne W; Seymour, Patricia A; Stephenson, Diane T; Tingley, Francis David; Vanase-Frawley, Michelle; Verhoest, Patrick R; Schmidt, Christopher J

    2012-05-01

    Cyclic nucleotides are critical regulators of synaptic plasticity and participate in requisite signaling cascades implicated across multiple neurotransmitter systems. Phosphodiesterase 9A (PDE9A) is a high-affinity, cGMP-specific enzyme widely expressed in the rodent central nervous system. In the current study, we observed neuronal staining with antibodies raised against PDE9A protein in human cortex, cerebellum, and subiculum. We have also developed several potent, selective, and brain-penetrant PDE9A inhibitors and used them to probe the function of PDE9A in vivo. Administration of these compounds to animals led to dose-dependent accumulation of cGMP in brain tissue and cerebrospinal fluid, producing a range of biological effects that implied functional significance for PDE9A-regulated cGMP in dopaminergic, cholinergic, and serotonergic neurotransmission and were consistent with the widespread distribution of PDE9A. In vivo effects of PDE9A inhibition included reversal of the respective disruptions of working memory by ketamine, episodic and spatial memory by scopolamine, and auditory gating by amphetamine, as well as potentiation of risperidone-induced improvements in sensorimotor gating and reversal of the stereotypic scratching response to the hallucinogenic 5-hydroxytryptamine 2A agonist mescaline. The results suggested a role for PDE9A in the regulation of monoaminergic circuitry associated with sensory processing and memory. Thus, PDE9A activity regulates neuronal cGMP signaling downstream of multiple neurotransmitter systems, and inhibition of PDE9A may provide therapeutic benefits in psychiatric and neurodegenerative diseases promoted by the dysfunction of these diverse neurotransmitter systems.

  5. Divergent Roles of Central Serotonin in Adult Hippocampal Neurogenesis

    Ning-Ning Song

    2017-06-01

    Full Text Available The central serotonin (5-HT system is the main target of selective serotonin reuptake inhibitors (SSRIs, the first-line antidepressants widely used in current general practice. One of the prominent features of chronic SSRI treatment in rodents is the enhanced adult neurogenesis in the hippocampus, which has been proposed to contribute to antidepressant effects. Therefore, tremendous effort has been made to decipher how central 5-HT regulates adult hippocampal neurogenesis. In this paper, we review how changes in the central serotonergic system alter adult hippocampal neurogenesis. We focus on data obtained from three categories of genetically engineered mouse models: (1 mice with altered central 5-HT levels from embryonic stages, (2 mice with deletion of 5-HT receptors from embryonic stages, and (3 mice with altered central 5-HT system exclusively in adulthood. These recent findings provide unique insights to interpret the multifaceted roles of central 5-HT on adult hippocampal neurogenesis and its associated effects on depression.

  6. Leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.

    Zuure, Wieteke A; Roberts, Amy L; Quennell, Janette H; Anderson, Greg M

    2013-11-06

    The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin receptors were deleted from GABA and glutamate neurons using Cre-Lox transgenics, and the downstream effects on puberty onset and reproduction were examined. Both mouse lines displayed the expected increase in body weight and region-specific loss of leptin signaling in the hypothalamus. The GABA neuron-specific LEPR knock-out females and males showed significantly delayed puberty onset. Adult fertility observations revealed that these knock-out animals have decreased fecundity. In contrast, glutamate neuron-specific LEPR knock-out mice displayed normal fertility. Assessment of the estrogenic hypothalamic-pituitary-gonadal axis regulation in females showed that leptin action on GABA neurons is not necessary for estradiol-mediated suppression of tonic luteinizing hormone secretion (an indirect measure of GnRH neuron activity) but is required for regulation of a full preovulatory-like luteinizing hormone surge. In conclusion, leptin signaling in GABAergic (but not glutamatergic neurons) plays a critical role in the timing of puberty onset and is involved in fertility regulation throughout adulthood in both sexes. These results form an important step in explaining the role of central leptin signaling in the reproductive system. Limiting the leptin-to-GnRH mediators to GABAergic cells will enable future research to focus on a few specific types of neurons.

  7. Spiking Neurons for Analysis of Patterns

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological

  8. The effects of increased central serotonergic activity on prepulse inhibition and habituation of the human startle response

    Jensen, Kristian S; Oranje, Bob; Wienberg, Malene

    2007-01-01

    modulation is currently inconsistent. In a double-blind placebo-controlled crossover design, 18 healthy male volunteers received either placebo or a dose of 10 mg of escitalopram (SSRI), after which they were tested in both PPI and habituation of the startle reflex paradigms. No significant differences...... between the two treatments were observed on PPI, although escitalopram was found to significantly delay habituation of the ASR. In the current study, escitalopram was found to delay habituation, but it did not affect PPI in healthy male volunteers. As escitalopram is a highly specific SSRI, the results...

  9. Naftidrofuryl affects neurite regeneration by injured adult auditory neurons.

    Lefebvre, P P; Staecker, H; Moonen, G; van de Water, T R

    1993-07-01

    Afferent auditory neurons are essential for the transmission of auditory information from Corti's organ to the central auditory pathway. Auditory neurons are very sensitive to acute insult and have a limited ability to regenerate injured neuronal processes. Therefore, these neurons appear to be a limiting factor in restoration of hearing function following an injury to the peripheral auditory receptor. In a previous study nerve growth factor (NGF) was shown to stimulate neurite repair but not survival of injured auditory neurons. In this study, we have demonstrated a neuritogenesis promoting effect of naftidrofuryl in an vitro model for injury to adult auditory neurons, i.e. dissociated cell cultures of adult rat spiral ganglia. Conversely, naftidrofuryl did not have any demonstrable survival promoting effect on these in vitro preparations of injured auditory neurons. The potential uses of this drug as a therapeutic agent in acute diseases of the inner ear are discussed in the light of these observations.

  10. Reconstruction of phrenic neuron identity in embryonic stem cell-derived motor neurons.

    Machado, Carolina Barcellos; Kanning, Kevin C; Kreis, Patricia; Stevenson, Danielle; Crossley, Martin; Nowak, Magdalena; Iacovino, Michelina; Kyba, Michael; Chambers, David; Blanc, Eric; Lieberam, Ivo

    2014-02-01

    Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.

  11. Neuronal Migration Disorders

    ... Understanding Sleep The Life and Death of a Neuron Genes At Work In The Brain Order Publications ... birth defects caused by the abnormal migration of neurons in the developing brain and nervous system. In ...

  12. Motor Neuron Diseases

    ... and other neurodegenerative diseases to better understand the function of neurons and other support cells and identify candidate therapeutic ... and other neurodegenerative diseases to better understand the function of neurons and other support cells and identify candidate therapeutic ...

  13. Onset Dynamics of Action Potentials in Rat Neocortical Neurons and Identified Snail Neurons: Quantification of the Difference

    Volgushev, Maxim; Malyshev, Aleksey; Balaban, Pavel; Chistiakova, Marina; Volgushev, Stanislav; Wolf, Fred

    2008-01-01

    The generation of action potentials (APs) is a key process in the operation of nerve cells and the communication between neurons. Action potentials in mammalian central neurons are characterized by an exceptionally fast onset dynamics, which differs from the typically slow and gradual onset dynamics seen in identified snail neurons. Here we describe a novel method of analysis which provides a quantitative measure of the onset dynamics of action potentials. This method captures the...

  14. Characterization of the of the Pathological and Biochemical Markers That Correlate to the Clinical Features of Autism. Subproject 2. Contribution of Significant Delay of Neuronal Development and Metabolic Shift of Neurons to Clinical Phenotype of Autism

    2013-04-01

    4:e4415 11. Bruce S, Nyberg F, Melén E et al (2009) The protective effect of farm animal exposure on childhood allergy is modified by NPSR1...Rabbit monoclonal (R-m) or polyclonal (R-p), Goat polyclonal (G-p). Immunocytochemistry (ICH), Confocal microscopy (CM), Western blots (WB). doi:10.1371...immunostained with a goat anti-GFAP polyclonal antibody. Projections of the raphe nuclei serotonergic neurons were identified by using mouse mAb ST51-2

  15. Serotonergic neurotransmission in emotional processing: New evidence from long-term recreational poly-drug ecstasy use.

    Laursen, Helle Ruff; Henningsson, Susanne; Macoveanu, Julian; Jernigan, Terry L; Siebner, Hartwig R; Holst, Klaus K; Skimminge, Arnold; Knudsen, Gitte M; Ramsoy, Thomas Z; Erritzoe, David

    2016-12-01

    The brain's serotonergic system plays a crucial role in the processing of emotional stimuli, and several studies have shown that a reduced serotonergic neurotransmission is associated with an increase in amygdala activity during emotional face processing. Prolonged recreational use of ecstasy (3,4-methylene-dioxymethamphetamine [MDMA]) induces alterations in serotonergic neurotransmission that are comparable to those observed in a depleted state. In this functional magnetic resonance imaging (fMRI) study, we investigated the responsiveness of the amygdala to emotional face stimuli in recreational ecstasy users as a model of long-term serotonin depletion. Fourteen ecstasy users and 12 non-using controls underwent fMRI to measure the regional neural activity elicited in the amygdala by male or female faces expressing anger, disgust, fear, sadness, or no emotion. During fMRI, participants made a sex judgement on each face stimulus. Positron emission tomography with 11 C-DASB was additionally performed to assess serotonin transporter (SERT) binding in the brain. In the ecstasy users, SERT binding correlated negatively with amygdala activity, and accumulated lifetime intake of ecstasy tablets was associated with an increase in amygdala activity during angry face processing. Conversely, time since the last ecstasy intake was associated with a trend toward a decrease in amygdala activity during angry and sad face processing. These results indicate that the effects of long-term serotonin depletion resulting from ecstasy use are dose-dependent, affecting the functional neural basis of emotional face processing. © The Author(s) 2016.

  16. Crosstalks between kisspeptin neurons and somatostatin neurons are not photoperiod dependent in the ewe hypothalamus.

    Dufourny, Laurence; Lomet, Didier

    2017-12-01

    Seasonal reproduction is under the control of gonadal steroid feedback, itself synchronized by day-length or photoperiod. As steroid action on GnRH neurons is mostly indirect and therefore exerted through interneurons, we looked for neuroanatomical interactions between kisspeptin (KP) neurons and somatostatin (SOM) neurons, two populations targeted by sex steroids, in three diencephalic areas involved in the central control of ovulation and/or sexual behavior: the arcuate nucleus (ARC), the preoptic area (POA) and the ventrolateral part of the ventromedial hypothalamus (VMHvl). KP is the most potent secretagogue of GnRH secretion while SOM has been shown to centrally inhibit LH pulsatile release. Notably, hypothalamic contents of these two neuropeptides vary with photoperiod in specific seasonal species. Our hypothesis is that SOM inhibits KP neuron activity and therefore indirectly modulate GnRH release and that this effect may be seasonally regulated. We used sections from ovariectomized estradiol-replaced ewes killed after photoperiodic treatment mimicking breeding or anestrus season. We performed triple immunofluorescent labeling to simultaneously detect KP, SOM and synapsin, a marker for synaptic vesicles. Sections from the POA and from the mediobasal hypothalamus were examined using a confocal microscope. Randomly selected KP or SOM neurons were observed in the POA and ARC. SOM neurons were also observed in the VMHvl. In both the ARC and POA, nearly all KP neurons presented numerous SOM contacts. SOM neurons presented KP terminals more frequently in the ARC than in the POA and VMHvl. Quantitative analysis failed to demonstrate major seasonal variations of KP and SOM interactions. Our data suggest a possible inhibitory action of SOM on all KP neurons in both photoperiodic statuses. On the other hand, the physiological significance of KP modulation of SOM neuron activity and vice versa remain to be determined. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Is a serotonergic mechanism involved in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced appetite suppression in the Sprague-Dawley rat

    Rozman, K. (Kansas Univ., Kansas City, KS (USA). Dept. of Pharmacology, Toxicology and Therapeutics Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen (GSF), Neuherberg (Germany, F.R.). Inst. fuer Toxikologie); Pfeifer, B.; Kerecsen, L.; Alper, R.H. (Kansas Univ., Kansas City, KS (USA). Dept. of Pharmacology, Toxicology and Therapeutics)

    1991-02-01

    The major cause of TCDD-induced death in rats is a progressive voluntary feed refusal which has been correlated with reduced gluconeogenesis. Since centrally administered TCDD does not cause death or decreased feed intake in rats, the ability of TCDD to suppress appetite via peripheral mechanisms acting on the central nervous system was examined in two experimental models. First, it was found that the feed intake of rats on scheduled feeding cycles was not decreased by blood transfused from rats with TCDD-induced appetite suppression (8 days after a lethal dose of TCDD, i.p.). In contrast, a similar transfusion from normal, satiated rats did reduce feed intake of recipient rats by approximately 40%, suggesting that TCDD-treated rats are not satiated but rather that they are not hunggy. In the second study tryptophan (the amino acid precursor of the neutrotransmitter serotonin) was measured in the plasma and tryptophan, serotonin, norepinephrine and dopamine in the hypothalamus as well as dopamine and its metabolites in the striatum 4, 8, and 16 days after TCDD dosage (125 {mu}g/kg, i.p.). Progressive time-dependent increases in tryptophan levels in plasma and brain were paralleled by increases in brain serotonin and 5-hydroxyindoleacetic acid (the primary metabolite of serotonin) in TCDD-treated rats. No changes were observed regarding the other biogenic amines. It is suggested based on these data and on substantial evidence from the published literature that a serotonergic mechanism may be involved in TCDD-induced feed intake reduction. (orig.).

  18. Managing Brain Extracellular K(+) during Neuronal Activity

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    characteristics required to fulfill their distinct physiological roles in clearance of K(+) from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na(+)/K(+)-ATPase isoform combinations in K(+) management in the central nervous system might...... understanding of the pathological events occurring during disease....

  19. Perinatal serotonergic activity: A decisive factor in the control of food intake

    Isabeli Lins PINHEIRO

    Full Text Available ABSTRACT The serotoninergic system controls key events related to proper nervous system development. The neurotransmitter serotonin and the serotonin transporter are critical for this control. Availability of these components is minutely regulated during the development period, and the environment may affect their action on the nervous system. Environmental factors such as undernutrition and selective serotonin reuptake inhibitors may increase the availability of serotonin in the synaptic cleft and change its anorectic action. The physiological responses promoted by serotonin on intake control decrease when requested by acute stimuli or stress, demonstrating that animals or individuals develop adaptations in response to the environmental insults they experience during the development period. Diseases, such as anxiety and obesity, appear to be associated with the body’s response to stress or stimulus, and require greater serotonergic system action. These findings demonstrate the importance of the level of serotonin in the perinatal period to the development of molecular and morphological aspects of food intake control, and its decisive role in understanding the possible environmental factors that cause diseases in adulthood.

  20. A role for the hippocampal serotonergic system in the pathology of schizophrenia?

    Scarr, E.; Pavey, G.M.; Copolov, D.L.; Dean, B.

    2002-01-01

    Full text: Theories of a role for serotonin in the pathology of schizophrenia predate the dopamine hypothesis of schizophrenia. More recently, interest in the involvement of serotonin in the disorder is primarily due to the fact that the 'atypical' neuroleptic drugs target the serotonergic system, amongst others. We have previously reported decreases in the 5-HT 2A receptors in hippocampi obtained postmortem from subjects with schizophrenia. In the same cohort of subjects we now report decreases (p 3 H]citalopram binding in the CA1 region (17.5 ± 1.4 vs. 21.7 ± 1.3 fmole/mg ETE) and methiothepin-insensitive [3H]sumatriptan binding in the CA1 (2.85 ± 0.25 vs. 3.90 ± 0.33 fmole/mg ETE), the stratum radiatum/lacunosum moleculare (4.11 ± 0.32 vs. 5.35 ± 0.46 fmole/mg ETE) and subiculum (3.87 ± 0.26 vs. 5.08 ± 0.39 fmole/mg ETE) from subjects with schizophrenia. No changes were found in [ 3 H]8-OHDPAT or methiothepin-sensitive [ 3 H]sumatriptan binding. These data indicate that there are regionally specific decreases in the densities of hippocampal serotonin transporter and 5-HT 1F receptors which may be involved in the pathology of schizophrenia. Copyright (2002) Australian Neuroscience Society

  1. Fisetin exerts antihyperalgesic effect in a mouse model of neuropathic pain: engagement of spinal serotonergic system

    Zhao, Xin; Wang, Chuang; Cui, Wu-Geng; Ma, Qing; Zhou, Wen-Hua

    2015-01-01

    Fisetin, a natural flavonoid, has been shown in our previous studies to exert antidepressant-like effect. As antidepressant drugs are clinically used to treat chronic neuropathic pain, this work aimed to investigate the potential antinociceptive efficacies of fisetin against neuropathic pain and explore mechanism(s). We subjected mice to chronic constriction injury (CCI) by loosely ligating the sciatic nerves, and Hargreaves test or von Frey test was used to assess thermal hyperalgesia or mechanical allodynia, respectively. Chronic fisetin treatment (5, 15 or 45 mg/kg, p.o.) ameliorated thermal hyperalgesia (but not mechanical allodynia) in CCI mice, concomitant with escalated levels of spinal monoamines and suppressed monoamine oxidase (MAO)-A activity. The antihyperalgesic action of fisetin was abolished by chemical depletion of spinal serotonin (5-HT) but potentiated by co-treatment with 5-HTP, a precursor of 5-HT. Moreover, intraperitoneal (i.p.) or intrathecal (i.t.) co-treatment with 5-HT7 receptor antagonist SB-258719 completely abrogated fisetin's antihyperalgesia. These findings confirm that chronic fisetin treatment exerts antinociceptive effect on thermal hyperalgesia in neuropathic mice, with spinal serotonergic system (coupled with 5-HT7) being critically involved. Of special benefit, fisetin attenuated co-morbidly behavioral symptoms of depression and anxiety (evaluated in forced swim test, novelty suppressed feeding test and light-dark test) evoked by neuropathic pain. PMID:25761874

  2. Quantitative accuracy of serotonergic neurotransmission imaging with high-resolution 123I SPECT

    Kuikka, J.T.

    2004-01-01

    Aim: Serotonin transporter (SERT) imaging can be used to study the role of regional abnormalities of neurotransmitter release in various mental disorders and to study the mechanism of action of therapeutic drugs or drugs' abuse. We examine the quantitative accuracy and reproducibility that can be achieved with high-resolution SPECT of serotonergic neurotransmission. Method: Binding potential (BP) of 123 I labeled tracer specific for midbrain SERT was assessed in 20 healthy persons. The effects of scatter, attenuation, partial volume, misregistration and statistical noise were estimated using phantom and human studies. Results: Without any correction, BP was underestimated by 73%. The partial volume error was the major component in this underestimation whereas the most critical error for the reproducibility was misplacement of region of interest (ROI). Conclusion: The proper ROI registration, the use of the multiple head gamma camera with transmission based scatter correction introduce more relevant results. However, due to the small dimensions of the midbrain SERT structures and poor spatial resolution of SPECT, the improvement without the partial volume correction is not great enough to restore the estimate of BP to that of the true one. (orig.) [de

  3. Pharmacological profiling an abundantly expressed schistosome serotonergic GPCR identifies nuciferine as a potent antagonist

    John D. Chan

    2016-12-01

    Full Text Available 5-hydroxytryptamine (5-HT is a key regulator of muscle contraction in parasitic flatworms. In Schistosoma mansoni, the myoexcitatory action of 5-HT is effected through activation of a serotonergic GPCR (Sm.5HTRL, prioritizing pharmacological characterization of this target for anthelmintic drug discovery. Here, we have examined the effects of several aporphine alkaloids on the signaling activity of a heterologously expressed Sm.5HTRL construct using a cAMP biosensor assay. Four structurally related natural products – nuciferine, D-glaucine, boldine and bulbocapnine – were demonstrated to block Sm.5HTRL evoked cAMP generation with the potency of GPCR blockade correlating well with the ability of each drug to inhibit contractility of schistosomule larvae. Nuciferine was also effective at inhibiting both basal and 5-HT evoked motility of adult schistosomes. These data advance our understanding of structure-affinity relationships at Sm.5HTRL, and demonstrate the effectiveness of Sm.5HTRL antagonists as hypomotility-evoking drugs across different parasite life cycle stages.

  4. Co-release of glutamate and GABA from single vesicles in GABAergic neurons exogenously expressing VGLUT3

    Johannes eZimmermann

    2015-09-01

    Full Text Available The identity of the vesicle neurotransmitter transporter expressed by a neuron largely corresponds with the primary neurotransmitter that cell releases. However, the vesicular glutamate transporter subtype 3 (VGLUT3 is mainly expressed in non-glutamatergic neurons, including cholinergic, serotonergic, or GABAergic neurons. Though a functional role for glutamate release from these non-glutamatergic neurons has been demonstrated, the interplay between VGLUT3 and the neuron’s characteristic neurotransmitter transporter, particularly in the case of GABAergic neurons, at the synaptic and vesicular level is less clear. In this study, we explore how exogenous expression of VGLUT3 in striatal GABAergic neurons affects the packaging and release of glutamate and GABA in synaptic vesicles. We found that VGLUT3 expression in isolated, autaptic GABAergic neurons leads to action potential evoked release of glutamate. Under these conditions, glutamate and GABA could be packaged together in single vesicles release either spontaneously or asynchronously. However, the presence of glutamate in GABAergic vesicles did not affect uptake of GABA itself, suggesting a lack of synergy in vesicle filling for these transmitters. Finally, we found postsynaptic detection of glutamate released from GABAergic terminals difficult when bona fide glutamatergic synapses were present, suggesting that co-released glutamate cannot induce postsynaptic glutamate receptor clustering.

  5. Neuronal degeneration in autonomic nervous system of Dystonia musculorum mice

    Liu Kang-Jen

    2011-01-01

    Full Text Available Abstract Background Dystonia musculorum (dt is an autosomal recessive hereditary neuropathy with a characteristic uncoordinated movement and is caused by a defect in the bullous pemphigoid antigen 1 (BPAG1 gene. The neural isoform of BPAG1 is expressed in various neurons, including those in the central and peripheral nerve systems of mice. However, most previous studies on neuronal degeneration in BPAG1-deficient mice focused on peripheral sensory neurons and only limited investigation of the autonomic system has been conducted. Methods In this study, patterns of nerve innervation in cutaneous and iridial tissues were examined using general neuronal marker protein gene product 9.5 via immunohistochemistry. To perform quantitative analysis of the autonomic neuronal number, neurons within the lumbar sympathetic and parasympathetic ciliary ganglia were calculated. In addition, autonomic neurons were cultured from embryonic dt/dt mutants to elucidate degenerative patterns in vitro. Distribution patterns of neuronal intermediate filaments in cultured autonomic neurons were thoroughly studied under immunocytochemistry and conventional electron microscopy. Results Our immunohistochemistry results indicate that peripheral sensory nerves and autonomic innervation of sweat glands and irises dominated degeneration in dt/dt mice. Quantitative results confirmed that the number of neurons was significantly decreased in the lumbar sympathetic ganglia as well as in the parasympathetic ciliary ganglia of dt/dt mice compared with those of wild-type mice. We also observed that the neuronal intermediate filaments were aggregated abnormally in cultured autonomic neurons from dt/dt embryos. Conclusions These results suggest that a deficiency in the cytoskeletal linker BPAG1 is responsible for dominant sensory nerve degeneration and severe autonomic degeneration in dt/dt mice. Additionally, abnormally aggregated neuronal intermediate filaments may participate in

  6. Corticosterone Facilitates Fluoxetine-Induced Neuronal Plasticity in the Hippocampus

    Kobayashi, Katsunori; Ikeda, Yumiko; Asada, Minoru; Inagaki, Hirofumi; Kawada, Tomoyuki; Suzuki, Hidenori

    2013-01-01

    The hippocampal dentate gyrus has been implicated in a neuronal basis of antidepressant action. We have recently shown a distinct form of neuronal plasticity induced by the serotonergic antidepressant fluoxetine, that is, a reversal of maturation of the dentate granule cells in adult mice. This “dematuration” is induced in a large population of dentate neurons and maintained for at least one month after withdrawal of fluoxetine, suggesting long-lasting strong influence of dematuration on brain functioning. However, reliable induction of dematuration required doses of fluoxetine higher than suggested optimal doses for mice (10 to 18 mg/kg/day), which casts doubt on the clinical relevance of this effect. Since our previous studies were performed in naive mice, in the present study, we reexamined effects of fluoxetine using mice treated with chronic corticosterone that model neuroendocrine pathophysiology associated with depression. In corticosterone-treated mice, fluoxetine at 10 mg/kg/day downregulated expression of mature granule cell markers and attenuated strong frequency facilitation at the synapse formed by the granule cell axon mossy fiber, suggesting the induction of granule cell dematuration. In addition, fluoxetine caused marked enhancement of dopaminergic modulation at the mossy fiber synapse. In vehicle-treated mice, however, fluoxetine at this dose had no significant effects. The plasma level of fluoxetine was comparable to that in patients taking chronic fluoxetine, and corticosterone did not affect it. These results indicate that corticosterone facilitates fluoxetine-induced plastic changes in the dentate granule cells. Our finding may provide insight into neuronal mechanisms underlying enhanced responsiveness to antidepressant medication in certain pathological conditions. PMID:23675498

  7. Neurons of self-defence: neuronal innervation of the exocrine defence glands in stick insects.

    Stolz, Konrad; von Bredow, Christoph-Rüdiger; von Bredow, Yvette M; Lakes-Harlan, Reinhard; Trenczek, Tina E; Strauß, Johannes

    2015-01-01

    Stick insects (Phasmatodea) use repellent chemical substances (allomones) for defence which are released from so-called defence glands in the prothorax. These glands differ in size between species, and are under neuronal control from the CNS. The detailed neural innervation and possible differences between species are not studied so far. Using axonal tracing, the neuronal innervation is investigated comparing four species. The aim is to document the complexity of defence gland innervation in peripheral nerves and central motoneurons in stick insects. In the species studied here, the defence gland is innervated by the intersegmental nerve complex (ISN) which is formed by three nerves from the prothoracic (T1) and suboesophageal ganglion (SOG), as well as a distinct suboesophageal nerve (Nervus anterior of the suboesophageal ganglion). In Carausius morosus and Sipyloidea sipylus, axonal tracing confirmed an innervation of the defence glands by this N. anterior SOG as well as N. anterior T1 and N. posterior SOG from the intersegmental nerve complex. In Peruphasma schultei, which has rather large defence glands, only the innervation by the N. anterior SOG was documented by axonal tracing. In the central nervous system of all species, 3-4 neuron types are identified by axonal tracing which send axons in the N. anterior SOG likely innervating the defence gland as well as adjacent muscles. These neurons are mainly suboesophageal neurons with one intersegmental neuron located in the prothoracic ganglion. The neuron types are conserved in the species studied, but the combination of neuron types is not identical. In addition, the central nervous system in S. sipylus contains one suboesophageal and one prothoracic neuron type with axons in the intersegmental nerve complex contacting the defence gland. Axonal tracing shows a very complex innervation pattern of the defence glands of Phasmatodea which contains different neurons in different nerves from two adjacent body segments

  8. Genetic variation in glia-neuron signalling modulates ageing rate.

    Yin, Jiang-An; Gao, Ge; Liu, Xi-Juan; Hao, Zi-Qian; Li, Kai; Kang, Xin-Lei; Li, Hong; Shan, Yuan-Hong; Hu, Wen-Li; Li, Hai-Peng; Cai, Shi-Qing

    2017-11-08

    The rate of behavioural decline in the ageing population is remarkably variable among individuals. Despite the considerable interest in studying natural variation in ageing rate to identify factors that control healthy ageing, no such factor has yet been found. Here we report a genetic basis for variation in ageing rates in Caenorhabditis elegans. We find that C. elegans isolates show diverse lifespan and age-related declines in virility, pharyngeal pumping, and locomotion. DNA polymorphisms in a novel peptide-coding gene, named regulatory-gene-for-behavioural-ageing-1 (rgba-1), and the neuropeptide receptor gene npr-28 influence the rate of age-related decline of worm mating behaviour; these two genes might have been subjected to recent selective sweeps. Glia-derived RGBA-1 activates NPR-28 signalling, which acts in serotonergic and dopaminergic neurons to accelerate behavioural deterioration. This signalling involves the SIR-2.1-dependent activation of the mitochondrial unfolded protein response, a pathway that modulates ageing. Thus, natural variation in neuropeptide-mediated glia-neuron signalling modulates the rate of ageing in C. elegans.

  9. Multiple neuropeptides in cholinergic motor neurons of Aplysia: evidence for modulation intrinsic to the motor circuit

    Cropper, E.C.; Lloyd, P.E.; Reed, W.; Tenenbaum, R.; Kupfermann, I.; Weiss, K.R.

    1987-01-01

    Changes in Aplysia biting responses during food arousal are partially mediated by the serotonergic metacerebral cells (MCCs). The MCCs potentiate contractions of a muscle utilized in biting, the accessory radula closer (ARCM), when contractions are elicited by stimulation of either of the two cholinergic motor neurons B15 or B16 that innervate the muscle. The authors have now shown that ARCM contractions may also be potentiated by peptide cotransmitters in the ARCM motor neurons. They found that motor neuron B15 contains small cardioactive peptides A and B (SCP/sub A/ and SCP/sub B/) i.e., whole B15 neurons were bioactive on the SCP-sensitive Helix heart, as were reverse-phase HPLC fractions of B15 neurons that eluted like synthetic SCP/sub A/ and SCP/sub B/. Furthermore, [ 35 S]methionine-labeled B15 peptides precisely coeluted with synthetic SCP/sub A/ and SCP/sub B/. SCP/sub B/-like immunoreactivity was associated with dense-core vesicles in the soma of B15 and in neuritic varicosities and terminals in the ARCM. B16 motor neurons did not contain SCP/sub A/ or SCP/sub B/ but contained an unidentified bioactive peptide. RP-HPLC of [ 35 S]methionine-labeled B16s resulted in one major peak of radioactivity that did not coelute with either SCP and which, when subject to Edman degradation, yielded [ 35 S]methionine in positions where there is no methionine in the SCPs. Exogenously applied B16 peptide potentiated ARCM contractions elicited by stimulation of B15 or B16 neurons. Thus, in this system there appear to be two types of modulation; one type arises from the MCCs and is extrinsic to the motor system, whereas the second type arises from the motor neurons themselves and hence is intrinsic

  10. Wfs1-deficient mice display altered function of serotonergic system and increased behavioural response to antidepressants

    Tanel eVisnapuu

    2013-07-01

    Full Text Available It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT and noradrenaline (NA reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioural despair. The tail suspension test (TST and forced swimming test (FST were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 minutes tobrightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states.

  11. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats.

    Sławińska, Urszula; Majczyński, Henryk; Dai, Yue; Jordan, Larry M

    2012-04-01

    Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture.We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury.

  12. Combined Norepinephrine / Serotonergic Reuptake Inhibition: Effects on Maternal Behavior, Aggression and Oxytocin in the Rat

    Elizabeth Thomas Cox

    2011-06-01

    Full Text Available BACKGROUND: Few systematic studies exist on the effects of chronic reuptake of monoamine neurotransmitter systems during pregnancy on the regulation of maternal behavior, although many drugs act primarily through one or more of these systems. Previous studies examining fluoxetine and amfonelic acid treatment during gestation on subsequent maternal behavior in rodents indicated significant alterations in postpartum maternal care, aggression and oxytocin levels. In this study, we extended our studies to include chronic gestational treatment with desipramine or amitriptyline to examine differential effects of reuptake inhibition of norepinephrine and combined noradrenergic and serotonergic systems on maternal behavior, aggression, and oxytocin system changes. METHODS: Pregnant Sprague-Dawley rats were treated throughout gestation with saline or one of three doses of either desipramine, which has a high affinity for the norepinephrine monoamine transporter, or amitriptyline, an agent with high affinity for both the norepinephrine and serotonin monoamine transporters. Maternal behavior and postpartum aggression were assessed on postpartum days one and six respectively. Oxytocin levels were measured in relevant brain regions on postpartum day seven. Predictions were that amitriptyline would decrease maternal behavior and increase aggression relative to desipramine, particularly at higher doses. Amygdaloidal oxytocin was expected to decrease with increased aggression. RESULTS: Amitriptyline and desiprimine differentially reduced maternal behavior, and at higher doses reduced aggressive behavior. Hippocampal oxytocin levels were lower after treatment with either drug but were not correlated with specific behavioral effects. These results, in combination with previous findings following gestational treatment with other selective neurotransmitter reuptake inhibitors, highlight the diverse effects of multiple monoamine systems thought to be involved in

  13. Possible Modulation of the Anexiogenic Effects of Vitex Agnus-castus by the Serotonergic System.

    Yaghmaei, Parichehr; Oryan, Shahrbanoo; Fatehi Gharehlar, Laleh; Salari, Ali-Akbar; Solati, Jalal

    2012-03-01

    There is well documented evidence for the increase in widespread use of complementary and alternative medicine in the treatment of physical and psychiatric symptoms and disorders within the populations. In the present study, we investigated the influence of V itex agnus-castus (vitex) on anxiety-like behaviors of rats. Elevated plus maze which is one of the methods used for testing anxiety is used in our present study. Rats were orally administrated with vitex for two week. The anxiety test was carried out after two weeks of oral administration of vitex. For evaluating interaction of vitex and serotonergic systems, rats were anaesthetized with ketamine and special cannulas were inserted stereotaxically into the third ventricle (TV) of brain. After 1 week recovery, the effects of serotonegic agents on anxiety were studied. Oral administration of vitex (100, 200, 300 mg/kg) for two weeks induced an anxiogenic-like effect which was shown through specific decreases in the percentages of open arm time (OAT %) and open arm entries (OAE %). Intra - TV infusion of 5HT1A receptor agonist, 8-OH-DPAT (5, 10 and 25 ng/rat) increased OAT% and OAE%, indicating anxiolytic-like behavior. However, injection of 5HT1A receptor antagonist NAN190 (0.25, 0.5 and 1 µg/rat) produced anxiogenic-like behavior. The most effective dose of 8-OH-DPAT (10 ng/rat), when co-administered with vitex (100, 200, 300 mg/kg), attenuated the anxiogenic-like effects of vitex significantly. Injection of the less effective dose of NAN190 (0.5 µg/rat), in combination with vitex (100, 200, 300 mg/kg), potentiate anxiogenic effects of vitex. These results illustrate that 5HT1A receptor is involved in the anxiogenic effects of vitex.

  14. Action of naftopidil on spinal serotonergic neurotransmission for inhibition of the micturition reflex in rats.

    Sugaya, Kimio; Nishijima, Saori; Kadekawa, Katsumi; Ashitomi, Katsuhiro; Ueda, Tomoyuki; Yamamoto, Hideyuki; Hattori, Tsuyoshi

    2017-03-01

    We examined the mechanism of action of naftopidil, an α1D/A blocker, on spinal descending serotonergic neurotransmission for the micturition reflex. We examined (1) urinary 5-hydroxyindole acetic acid (5-HIAA) after intraperitoneal administration of saline, para-chlorophenylalanine (PCPA; a serotonin synthetic enzyme inhibitor), and/or 5-hydroxytryptophan (5-HTP; a serotonin precursor); (2) isovolumetric cystometry after intraperitoneal administration of saline, PCPA, and/or 5-HTP and intravenous injection of naftopidil; and (3) isovolumetric cystometry before and after intrathecal administration of serotonin (5-HT) receptor antagonists and intravenous injection of naftopidil. PCPA decreased and 5-HTP increased urinary 5-HIAA/creatinine. Intraperitoneal injection of PCPA did not influence cystometric parameters. Intraperitoneal injection of 5-HTP significantly shortened the interval between bladder contractions. Intravenous injection of naftopidil transiently abolished bladder contractions. However, the duration of abolishment of bladder contractions after injection of naftopidil in rats given PCPA was significantly shorter than that in rats given vehicle, but significantly longer than that in rats given PCPA and 5-HTP. Intrathecal injection of 5-HT1B, 5-HT3, or 5-HT7 receptor antagonists significantly prolonged the interval between bladder contractions. Intrathecal injection of 5-HT1D or 5-HT2B receptor antagonists significantly shortened the interval between bladder contractions. Combined administration of the maximum non-effective dose of 5-HT1D, 5-HT2A, 5-HT2B, 5-HT2C, or 5-HT3 receptor antagonists and intravenous injection of naftopidil significantly shortened the duration of abolishment of bladder contraction compared to intravenous injection of naftopidil alone. Naftopidil may inhibit the micturition reflex via 5-HT1D, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT3 receptors in the spinal cord. Neurourol. Urodynam. 36:604-609, 2017. © 2016 Wiley Periodicals, Inc.

  15. Intrinsic neuromodulation: altering neuronal circuits from within.

    Katz, P S; Frost, W N

    1996-02-01

    There are two sources of neuromodulation for neuronal circuits: extrinsic inputs and intrinsic components of the circuits themselves. Extrinsic neuromodulation is known to be pervasive in nervous systems, but intrinsic neuromodulation is less recognized, despite the fact that it has now been demonstrated in sensory and neuromuscular circuits and in central pattern generators. By its nature, intrinsic neuromodulation produces local changes in neuronal computation, whereas extrinsic neuromodulation can cause global changes, often affecting many circuits simultaneously. Studies in a number of systems are defining the different properties of these two forms of neuromodulation.

  16. Bidirectional Microglia-Neuron Communication in the Healthy Brain

    Ukpong B. Eyo

    2013-01-01

    Full Text Available Unlike other resident neural cells that are of neuroectodermal origin, microglia are resident neural cells of mesodermal origin. Traditionally recognized for their immune functions during disease, new roles are being attributed to these cells in the development and maintenance of the central nervous system (CNS including specific communication with neurons. In this review, we highlight some of the recent findings on the bidirectional interaction between neurons and microglia. We discuss these interactions along two lines. First, we review data that suggest that microglial activity is modulated by neuronal signals, focusing on evidence that (i neurons are capable of regulating microglial activation state and influence basal microglial activities; (ii classic neurotransmitters affect microglial behavior; (iii chemotactic signals attract microglia during acute neuronal injury. Next, we discuss some of the recent data on how microglia signal to neurons. Signaling mechanisms include (i direct physical contact of microglial processes with neuronal elements; (ii microglial regulation of neuronal synapse and circuit by fractalkine, complement, and DAP12 signaling. In addition, we discuss the use of microglial depletion strategies in studying the role of microglia in neuronal development and synaptic physiology. Deciphering the mechanisms of bidirectional microglial-neuronal communication provides novel insights in understanding microglial function in both the healthy and diseased brain.

  17. Computational and biological evidences on the serotonergic involvement of SeTACN antidepressant-like effect in mice.

    Mariana G Fronza

    Full Text Available A series of phenylselanyl-1H-1,2,3-triazole-4-carbonitriles with different substituents were screened for their binding affinity with serotonin transporter (SERT and dopamine transporter (DAT by docking molecular. 5-(4methoxyphenyl-1-(2-(phenylselanylphenyl-1H-1,2,3-triazole-4-carbonitrile (SeTACN exhibited the best conformation with SERT even higher than fluoxetine and serotonin, suggesting a competitive inhibition. SeTACN demonstrated additional affinity to other serotonergic receptors involved in antidepressant effects: 5HT1a, 5HT2a and 5HT3. In another set of experiments, SeTACN led to significant reductions in the immobility time of mice submitted to forced swimming test (FST in the dose range of 0.1- 20mg/kg, suggesting an antidepressant-like effect. The possible mechanism of action was investigated using serotonergic and dopaminergic antagonists. The antidepressant-like effect of SeTACN (0.1mg/kg i.g. was prevented by the pretreatment with WAY100635 (a selective 5HT1a antagonist, ketanserin (a 5HT2a/c antagonist and ondansetron (a selective 5ht3 antagonist, PCPA (an inhibitor of serotonin synthesis but not with SCH23390 (dopaminergic D1 antagonist and sulpiride (D2 antagonist. Sub-effective dose of fluoxetine was able to potentiate the effects of a sub-effective dose of SeTACN in FST. None of the treatments affected locomotor activity in open field test (OFT. These results together, suggest that the SeTACN antidepressant-like effect is mediate, at least in parts, by serotonergic system.

  18. Development of a mechanism-based pharmacokinetic/pharmacodynamic model to characterize the thermoregulatory effects of serotonergic drugs in mice

    Xi-Ling Jiang

    2016-09-01

    Full Text Available We have shown recently that concurrent harmaline, a monoamine oxidase-A inhibitor (MAOI, potentiates serotonin (5-HT receptor agonist 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT-induced hyperthermia. The objective of this study was to develop an integrated pharmacokinetic/pharmacodynamic (PK/PD model to characterize and predict the thermoregulatory effects of such serotonergic drugs in mice. Physiological thermoregulation was described by a mechanism-based indirect-response model with adaptive feedback control. Harmaline-induced hypothermia and 5-MeO-DMT–elicited hyperthermia were attributable to the loss of heat through the activation of 5-HT1A receptor and thermogenesis via the stimulation of 5-HT2A receptor, respectively. Thus serotonergic 5-MeO-DMT–induced hyperthermia was readily distinguished from handling/injection stress-provoked hyperthermic effects. This PK/PD model was able to simultaneously describe all experimental data including the impact of drug-metabolizing enzyme status on 5-MeO-DMT and harmaline PK properties, and drug- and stress-induced simple hypo/hyperthermic and complex biphasic effects. Furthermore, the modeling results revealed a 4-fold decrease of apparent SC50 value (1.88–0.496 µmol/L for 5-MeO-DMT when harmaline was co-administered, providing a quantitative assessment for the impact of concurrent MAOI harmaline on 5-MeO-DMT–induced hyperthermia. In addition, the hyperpyrexia caused by toxic dose combinations of harmaline and 5-MeO-DMT were linked to the increased systemic exposure to harmaline rather than 5-MeO-DMT, although the body temperature profiles were mispredicted by the model. The results indicate that current PK/PD model may be used as a new conceptual framework to define the impact of serotonergic agents and stress factors on thermoregulation.

  19. Female-biased dimorphism underlies a female-specific role for post-embryonic Ilp7 neurons in Drosophila fertility

    Castellanos, Monica C.; Tang, Jonathan C. Y.; Allan, Douglas W.

    2013-01-01

    In Drosophila melanogaster, much of our understanding of sexually dimorphic neuronal development and function comes from the study of male behavior, leaving female behavior less well understood. Here, we identify a post-embryonic population of Insulin-like peptide 7 (Ilp7)-expressing neurons in the posterior ventral nerve cord that innervate the reproductive tracts and exhibit a female bias in their function. They form two distinct dorsal and ventral subsets in females, but only a single dorsal subset in males, signifying a rare example of a female-specific neuronal subset. Female post-embryonic Ilp7 neurons are glutamatergic motoneurons innervating the oviduct and are required for female fertility. In males, they are serotonergic/glutamatergic neuromodulatory neurons innervating the seminal vesicle but are not required for male fertility. In both sexes, these neurons express the sex-differentially spliced fruitless-P1 transcript but not doublesex. The male fruitless-P1 isoform (fruM) was necessary and sufficient for serotonin expression in the shared dorsal Ilp7 subset, but although it was necessary for eliminating female-specific Ilp7 neurons in males, it was not sufficient for their elimination in females. By contrast, sex-specific RNA-splicing by female-specific transformer is necessary for female-type Ilp7 neurons in females and is sufficient for their induction in males. Thus, the emergence of female-biased post-embryonic Ilp7 neurons is mediated in a subset-specific manner by a tra- and fru-dependent mechanism in the shared dorsal subset, and a tra-dependent, fru-independent mechanism in the female-specific subset. These studies provide an important counterpoint to studies of the development and function of male-biased neuronal dimorphism in Drosophila. PMID:23981656

  20. Central neural pathways for thermoregulation

    Morrison, Shaun F.; Nakamura, Kazuhiro

    2010-01-01

    Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction. PMID:21196160

  1. The Association between Use of Serotonergic Antidepressants and Perioperative Bleeding during Total Hip Arthroplasty - A Cohort Study

    Dall, M.; Primdahl, A.; Damborg, F.

    2014-01-01

    on the observed blood loss and the need for blood transfusions among this group. We compared the blood loss between users of SA, users of non-serotonergic antidepressants (NSA) and non-users, while adjusting for potential confounders using multivariate linear regression. We indentified 1318 patients...... that underwent a THA in the study period. The average volume of surgical bleeding was 350 ml. The adjusted incremental blood loss associated with use of SA and NSA was 93, 95% confidence interval (38-147) ml and -50 (-125 to 25) ml compared with non-use. Only 48 subjects (3.6%) had transfusions. Use of SA...

  2. Unraveling the central proopiomelanocortin neural circuits

    Aaron J. Mercer

    2013-02-01

    Full Text Available Central proopiomelanocortin (POMC neurons form a potent anorexigenic network, but our understanding of the integration of this hypothalamic circuit throughout the central nervous system (CNS remains incomplete. POMC neurons extend projections along the rostrocaudal axis of the brain, and can signal with both POMC-derived peptides and fast amino acid neurotransmitters. Although recent experimental advances in circuit-level manipulation have been applied to POMC neurons, many pivotal questions still remain: How and where do POMC neurons integrate metabolic information? Under what conditions do POMC neurons release bioactive molecules throughout the CNS? Are GABA and glutamate or neuropeptides released from POMC neurons more crucial for modulating feeding and metabolism? Resolving the exact stoichiometry of signals evoked from POMC neurons under different metabolic conditions therefore remains an ongoing endeavor. In this review, we analyze the anatomical atlas of this network juxtaposed to the physiological signaling of POMC neurons both in vitro and in vivo. We also consider novel genetic tools to further characterize the function of the POMC circuit in vivo. Our goal is to synthesize a global view of the POMC network, and to highlight gaps that require further research to expand our knowledge on how these neurons modulate energy balance.

  3. Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster.

    Majeed, Zana R; Abdeljaber, Esraa; Soveland, Robin; Cornwell, Kristin; Bankemper, Aubrey; Koch, Felicitas; Cooper, Robin L

    2016-01-01

    Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs) in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity.

  4. Modulatory Action by the Serotonergic System: Behavior and Neurophysiology in Drosophila melanogaster

    Zana R. Majeed

    2016-01-01

    Full Text Available Serotonin modulates various physiological processes and behaviors. This study investigates the role of 5-HT in locomotion and feeding behaviors as well as in modulation of sensory-motor circuits. The 5-HT biosynthesis was dysregulated by feeding Drosophila larvae 5-HT, a 5-HT precursor, or an inhibitor of tryptophan hydroxylase during early stages of development. The effects of feeding fluoxetine, a selective serotonin reuptake inhibitor, during early second instars were also examined. 5-HT receptor subtypes were manipulated using RNA interference mediated knockdown and 5-HT receptor insertional mutations. Moreover, synaptic transmission at 5-HT neurons was blocked or enhanced in both larvae and adult flies. The results demonstrate that disruption of components within the 5-HT system significantly impairs locomotion and feeding behaviors in larvae. Acute activation of 5-HT neurons disrupts normal locomotion activity in adult flies. To determine which 5-HT receptor subtype modulates the evoked sensory-motor activity, pharmacological agents were used. In addition, the activity of 5-HT neurons was enhanced by expressing and activating TrpA1 channels or channelrhodopsin-2 while recording the evoked excitatory postsynaptic potentials (EPSPs in muscle fibers. 5-HT2 receptor activation mediates a modulatory role in a sensory-motor circuit, and the activation of 5-HT neurons can suppress the neural circuit activity, while fluoxetine can significantly decrease the sensory-motor activity.

  5. Kappe neurons, a novel population of olfactory sensory neurons

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  6. NEURON and Python.

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  7. Dicer maintains the identity and function of proprioceptive sensory neurons.

    O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R; Nelson, Sacha B

    2017-03-01

    Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, micro

  8. Mechanosensor Channels in Mammalian Somatosensory Neurons

    Patrick Delmas

    2007-09-01

    Full Text Available Mechanoreceptive sensory neurons innervating the skin, skeletal muscles andviscera signal both innocuous and noxious information necessary for proprioception, touchand pain. These neurons are responsible for the transduction of mechanical stimuli intoaction potentials that propagate to the central nervous system. The ability of these cells todetect mechanical stimuli impinging on them relies on the presence of mechanosensitivechannels that transduce the external mechanical forces into electrical and chemical signals.Although a great deal of information regarding the molecular and biophysical properties ofmechanosensitive channels in prokaryotes has been accumulated over the past two decades,less is known about the mechanosensitive channels necessary for proprioception and thesenses of touch and pain. This review summarizes the most pertinent data onmechanosensitive channels of mammalian somatosensory neurons, focusing on theirproperties, pharmacology and putative identity.

  9. Spinal cord: motor neuron diseases.

    Rezania, Kourosh; Roos, Raymond P

    2013-02-01

    Spinal cord motor neuron diseases affect lower motor neurons in the ventral horn. This article focuses on the most common spinal cord motor neuron disease, amyotrophic lateral sclerosis, which also affects upper motor neurons. Also discussed are other motor neuron diseases that only affect the lower motor neurons. Despite the identification of several genes associated with familial amyotrophic lateral sclerosis, the pathogenesis of this complex disease remains elusive. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. 5-HT modulation of hyperpolarization-activated inward current and calcium- dependent outward current in a crustacean motor neuron

    Kiehn, O.; Harris-Warrick, R. M.

    1992-01-01

    1. Serotonergic modulation of a hyperpolarization-activated inward current, I(h), and a calcium-dependent outward current, I(o(Ca)), was examined in the dorsal gastric (DG) motor neuron, with the use of intracellular recording techniques in an isolated preparation of the crab stomatogastric....... The time course of activation of I(h) was well fitted by a single exponential function and strongly voltage dependent. 5-HT increased the rate of activation of I(h). 5- HT also slowed the rate of deactivation of the I(h) tail on repolarization to -50 mV. 6. The activation curve for the conductance (G...... reduced or eliminated the 5-HT response in the depolarizing range, suggesting that 5-HT specifically reduces I(o(Ca)). 11. These results demonstrate that 5-HT has dual effects on the DG motor neuron, in the crab stomatogastric ganglion. We suggest that changes in the two conductances are responsible...

  11. Estrogenic and serotonergic butenolides from the leaves of Piper hispidum Swingle (Piperaceae)

    Michel, Joanna L; Chen, Yegao; Zhang, Hongjie; Huang, Yue; Krunic, Alecjev; Orjala, Jimmy; Veliz, Mario; Soni, Kapil K.; Soejarto, Djaja Doel; Caceres, Armando; Perez, Alice; Mahady, Gail B

    2010-01-01

    Ethnopharmacological relevance Our previous work has demonstrated that several plants in the Piperaceae family are commonly used by the Q’eqchi Maya of Livingston, Guatemala to treat amenorrhea, dysmenorrhea, and pain. Extracts of Piper hispidum Swingle (Piperaceae), bound to the estrogen (ER) and serotonin (5-HT7) receptors. Aim of the study To investigate the estrogenic and serotonergic activities of P. hispidum extracts in functionalized assays, identify the active chemical constituents in the leaf extract, and test these compounds as agonists or antagonists of ER and 5-HT7. Materials and methods The effects of the P. hispidum leaf extracts were investigated in estrogen reporter gene and endogenous gene assays in MCF-7 cells to determine if the extracts acted as an estrogen agonist or antagonist. In addition, the active compounds were isolated using ER- and 5-HT7 receptor bioassay-guided fractionation. The structures of the purified compounds were identified using high-resolution LC-MS and NMR spectroscopic methods. The ER- and 5-HT7-agonist effects of the purified chemical constituents were tested in a 2ERE-reporter gene assay in MCF-7 cells and in serotonin binding and functionalized assays. Results Three butenolides including one new compound (1) were isolated from the leaves of P. hispidum, and their structures were determined. Compound 1 bound to the serotonin receptor 5-HT7 with IC50 values of 16.1 and 8.3 μM, respectively, and using GTP shift assays, compound 1 was found to be a partial agonist of the 5-HT7 receptor. The P. hispidum leaf extracts, as well as compounds 2 and 3 enhanced the expression of estrogen responsive reporter and endogenous genes in MCF-7 cells, demonstrating estrogen agonist effects. Conclusions Extracts of P. hispidum act as agonists of the ER and 5-HT7 receptors. Compound 1, a new natural product, identified as 9, 10-methylenedioxy-5,6-Z-fadyenolide, was isolated as the 5-HT7 agonist. Compounds 2 and 3 are reported for the

  12. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  13. The PM1 neurons, movement sensitive centrifugal visual brain neurons in the locust: anatomy, physiology, and modulation by identified octopaminergic neurons.

    Stern, Michael

    2009-02-01

    The locust's optic lobe contains a system of wide-field, multimodal, centrifugal neurons. Two of these cells, the protocerebrum-medulla-neurons PM4a and b, are octopaminergic. This paper describes a second pair of large centrifugal neurons (the protocerebrum-medulla-neurons PM1a and PM1b) from the brain of Locusta migratoria based on intracellular cobalt fills, electrophysiology, and immunocytochemistry. They originate and arborise in the central brain and send processes into the medulla of the optic lobe. Double intracellular recording from the same cell suggests input in the central brain and output in the optic lobe. The neurons show immunoreactivity to gamma-amino-butyric acid and its synthesising enzyme, glutamate decarboxylase. The PM1 cells are movement sensitive and show habituation to repeated visual stimulation. Bath application of octopamine causes the response to dishabituate. A very similar effect is produced by electrical stimulation of one of an octopaminergic PM4 neuron. This effect can be blocked by application of the octopamine antagonists, mianserin and phentolamine. This readily accessible system of four wide-field neurons provides a system suitable for the investigation of octopaminergic effects on the visual system at the cellular level.

  14. Afferent neuronal control of type-I gonadotropin releasing hormone (GnRH neurons in the human

    Erik eHrabovszky

    2013-09-01

    Full Text Available Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. Under various physiological and pathological conditions, hormonal and metabolic signals either regulate GnRH neurons directly or act on upstream neuronal circuitries to influence the pattern of pulsatile GnRH secretion into the hypophysial portal circulation. Neuronal afferents to GnRH cells convey important metabolic-, stress-, sex steroid-, lactational- and circadian signals to the reproductive axis, among other effects. This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and neurokinin B systems.

  15. Neuronal-glial trafficking

    Bachelard, H.S.

    2001-01-01

    Full text: The name 'glia' originates from the Greek word for glue, because astro glia (or astrocytes) were thought only to provide an anatomical framework for the electrically-excitable neurones. However, awareness that astrocytes perform vital roles in protecting the neurones, which they surround, emerged from evidence that they act as neuroprotective K + -sinks, and that they remove potentially toxic extracellular glutamate from the vicinity of the neurones. The astrocytes convert the glutamate to non-toxic glutamine which is returned to the neurones and used to replenish transmitter glutamate. This 'glutamate-glutamine cycle' (established in the 1960s by Berl and his colleagues) also contributes to protecting the neurones against a build-up of toxic ammonia. Glial cells also supply the neurones with components for free-radical scavenging glutathione. Recent studies have revealed that glial cells play a more positive interactive role in furnishing the neurones with fuels. Studies using radioactive 14 C, 13 C-MRS and 15 N-GCMS have revealed that glia produce alanine, lactate and proline for consumption by neurones, with increased formation of neurotransmitter glutamate. On neuronal activation the release of NH 4 + and glutamate from the neurones stimulates glucose uptake and glycolysis in the glia to produce more alanine, which can be regarded as an 'alanine-glutamate cycle' Use of 14 C-labelled precursors provided early evidence that neurotransmitter GABA may be partly derived from glial glutamine, and this has been confirmed recently in vivo by MRS isotopomer analysis of the GABA and glutamine labelled from 13 C-acetate. Relative rates of intermediary metabolism in glia and neurones can be calculated using a combination of [1- 13 C] glucose and [1,2- 13 C] acetate. When glutamate is released by neurones there is a net neuronal loss of TCA intermediates which have to be replenished. Part of this is derived from carboxylation of pyruvate, (pyruvate carboxylase

  16. Genistein alleviates anxiety-like behaviors in post-traumatic stress disorder model through enhancing serotonergic transmission in the amygdala.

    Wu, Zhong-Min; Ni, Gui-Lian; Shao, Ai-Min; Cui, Rong

    2017-09-01

    Post-traumatic stress disorder (PTSD) is a chronic psychiatric disorder, characterized by intense fear, and increased arousal and avoidance of traumatic events. The current available treatments for PTSD have limited therapeutic value. Genistein, a natural isoflavone, modulates a variety of cell functions. In this study, we tested anti-anxiety activity and underlying mechanisms of genistein in a PTSD rat model. The rats were trained to associate a tone with foot shock delivery on day 0, then fear conditioning was performed on day 7, 14 and 21. Genistein (2-8mg/kg) was injected intraperitoneally daily for 7 days. The anti-anxiety effects of genistein were measured by contextual freezing behavior and elevated plus maze. By the end of the experiments, the amygdala was extracted and subject to neurochemistry analysis. Genistein alleviated contextual freezing behavior and improved performance in elevated plus maze dose-dependently in PTSD rats. Furthermore, in these rats, genistein enhanced serotonergic transmission in the amygdala, including upregulation of tryptophan hydroxylase, serotonin, and phosphorylated (p)-CaMKII and p-CREB, as well. Genistein exerts anti-anxiety effects on a PTSD model probably through enhancing serotonergic system and CaMKII/CREB signaling pathway in the amygdala. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making.

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha; Zhou, Xiaolin

    2017-09-01

    The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. © The Author (2017). Published by Oxford University Press.

  18. Neonatal citalopram exposure decreases serotonergic fiber density in the olfactory bulb of male but not female adult rats

    Junlin eZhang

    2013-05-01

    Full Text Available Manipulation of serotonin (5HT during early development has been shown to induce long-lasting morphological changes within the raphe nuclear complex and serotonergic circuitry throughout the brain. Recent studies have demonstrated altered raphe-derived 5HT transporter (SERT immunoreactive axonal expression in several cortical target sites after brief perinatal exposure to selective 5HT reuptake inhibitors such as citalopram (CTM. Since the serotonergic raphe nuclear complex projects to the olfactory bulb (OB and perinatal 5HT disruption has been shown to disrupt olfactory behaviors, the goal of this study was to further investigate such developmental effects in the OB of CTM exposed animals. Male and female rat pups were exposed to CTM from postnatal day 8-21. After animals reach adulthood (>90 days, OB tissue sections were processed immunohistochemically for SERT antiserum. Our data revealed that the density of the SERT immunoreactive fibers decreased ~40% in the OB of CTM exposed male rats, but not female rats. Our findings support a broad and long-lasting change throughout most of the 5HT system, including the OB, after early manipulation of 5HT. Because dysfunction of the early 5HT system has been implicated in the etiology of neurodevelopmental disorders such as autism spectrum disorders (ASDs, these new findings may offer insight into the abnormal olfactory perception often noted in patients with ASD.

  19. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha

    2017-01-01

    Abstract The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. PMID:28431168

  20. Effects of cocaine history on postsynaptic GABA receptors on dorsal raphe serotonin neurons in a stress-induced relapse model in rats.

    Li, Chen; Kirby, Lynn G

    2016-01-01

    The serotonin (5-hydroxytryptamine, 5-HT) system plays an important role in stress-related psychiatric disorders and substance abuse. Stressors and stress hormones can inhibit the dorsal raphe nucleus (DRN)-5-HT system, which composes the majority of forebrain-projecting 5-HT. This inhibition is mediated via stimulation of GABA synaptic activity at DRN-5-HT neurons. Using swim stress-induced reinstatement of morphine conditioned place-preference, recent data from our laboratory indicate that morphine history sensitizes DRN-5-HT neurons to GABAergic inhibitory effects of stress. Moreover, GABAA receptor-mediated inhibition of the serotonergic DRN is required for this reinstatement. In our current experiment, we tested the hypothesis that GABAergic sensitization of DRN-5-HT neurons is a neuroadaptation elicited by multiple classes of abused drugs across multiple models of stress-induced relapse by applying a chemical stressor (yohimbine) to induce reinstatement of previously extinguished cocaine self-administration in Sprague-Dawley rats. Whole-cell patch-clamp recordings of GABA synaptic activity in DRN-5-HT neurons were conducted after the reinstatement. Behavioral data indicate that yohimbine triggered reinstatement of cocaine self-administration. Electrophysiology data indicate that 5-HT neurons in the cocaine group exposed to yohimbine had increased amplitude of inhibitory postsynaptic currents compared to yoked-saline controls exposed to yohimbine or unstressed animals in both drug groups. These data, together with previous findings, indicate that interaction between psychostimulant or opioid history and chemical or physical stressors may increase postsynaptic GABA receptor density and/or sensitivity in DRN-5-HT neurons. Such mechanisms may result in serotonergic hypofunction and consequent dysphoric mood states which confer vulnerability to stress-induced drug reinstatement. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  1. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  2. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  3. Neuron-glia metabolic coupling and plasticity.

    Magistretti, Pierre J

    2006-06-01

    The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.

  4. The role of GABA in the regulation of GnRH neurons

    Miho eWatanabe

    2014-11-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons form the final common pathway for the central regulation of reproduction. Gamma-amino butyric acid (GABA has long been implicated as one of the major players in the regulation of GnRH neurons. Although GABA is typically an inhibitory neurotransmitter in the mature adult central nervous system, most mature GnRH neurons show the unusual characteristic of being excited by GABA. While many reports have provided much insight into the contribution of GABA to the activity of GnRH neurons, the precise physiological role of the excitatory action of GABA on GnRH neurons remains elusive. This brief review presents the current knowledge of the role of GABA signaling in GnRH neuronal activity. We also discuss the modulation of GABA signaling by neurotransmitters and neuromodulators and the functional consequence of GABAergic inputs to GnRH neurons in both the physiology and pathology of reproduction.

  5. Behavioral plasticity through the modulation of switch neurons.

    Vassiliades, Vassilis; Christodoulou, Chris

    2016-02-01

    A central question in artificial intelligence is how to design agents capable of switching between different behaviors in response to environmental changes. Taking inspiration from neuroscience, we address this problem by utilizing artificial neural networks (NNs) as agent controllers, and mechanisms such as neuromodulation and synaptic gating. The novel aspect of this work is the introduction of a type of artificial neuron we call "switch neuron". A switch neuron regulates the flow of information in NNs by selectively gating all but one of its incoming synaptic connections, effectively allowing only one signal to propagate forward. The allowed connection is determined by the switch neuron's level of modulatory activation which is affected by modulatory signals, such as signals that encode some information about the reward received by the agent. An important aspect of the switch neuron is that it can be used in appropriate "switch modules" in order to modulate other switch neurons. As we show, the introduction of the switch modules enables the creation of sequences of gating events. This is achieved through the design of a modulatory pathway capable of exploring in a principled manner all permutations of the connections arriving on the switch neurons. We test the model by presenting appropriate architectures in nonstationary binary association problems and T-maze tasks. The results show that for all tasks, the switch neuron architectures generate optimal adaptive behaviors, providing evidence that the switch neuron model could be a valuable tool in simulations where behavioral plasticity is required. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Engineering connectivity by multiscale micropatterning of individual populations of neurons.

    Albers, Jonas; Toma, Koji; Offenhäusser, Andreas

    2015-02-01

    Functional networks are the basis of information processing in the central nervous system. Essential for their formation are guided neuronal growth as well as controlled connectivity and information flow. The basis of neuronal development is generated by guiding cues and geometric constraints. To investigate the neuronal growth and connectivity of adjacent neuronal networks, two-dimensional protein patterns were created. A mixture of poly-L-lysine and laminin was transferred onto a silanized glass surface by microcontact printing. The structures were populated with dissociated primary cortical embryonic rat neurons. Triangular structures with diverse opening angles, height, and design were chosen as two-dimensional structures to allow network formation with constricted gateways. Neuronal development was observed by immunohistochemistry to pursue the influence of the chosen structures on the neuronal outgrowth. Neurons were stained for MAP2, while poly-L-lysine was FITC labeled. With this study we present an easy-to-use technique to engineer two-dimensional networks in vitro with defined gateways. The presented micropatterning method is used to generate daisy-chained neuronal networks with predefined connectivity. Signal propagation among geometrically constrained networks can easily be monitored by calcium-sensitive dyes, providing insights into network communication in vitro. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Single neuron computation

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  8. Mesmerising mirror neurons.

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  9. The mirror neuron system.

    Cattaneo, Luigi; Rizzolatti, Giacomo

    2009-05-01

    Mirror neurons are a class of neurons, originally discovered in the premotor cortex of monkeys, that discharge both when individuals perform a given motor act and when they observe others perform that same motor act. Ample evidence demonstrates the existence of a cortical network with the properties of mirror neurons (mirror system) in humans. The human mirror system is involved in understanding others' actions and their intentions behind them, and it underlies mechanisms of observational learning. Herein, we will discuss the clinical implications of the mirror system.

  10. The role of glial cells in neuronal acetylcholine synthesis

    Kasa, P.

    1986-01-01

    This paper presents data on the role of glial cells in neuronal ACh synthesis. It is noted that central neurons fare better in cultures when in contact with non-neuronal cells, and especially glial cells. Since neither the fate of the Ch released from the glial cells nor the role of the contact between glial cells and neurons has yet been elucidated, the author investigates these phenomena. Glial cells from 14-day-old chickbrain were cultured for 14 days. ( 14 C) - choline incorporated into lipids, phosphocholine, betaine and ACh, as well as the free ( 14 C) -choline, were determined in the pure glial cell cultures after 24 h, and in the combined cultures after 7 days. The ( 14 C) - choline influx into the incubation medium and the uptake by the neurons were measured. Results are presented

  11. Neuromorphic Silicon Neuron Circuits

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  12. Neuromorphic silicon neuron circuits

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  13. Evaluation of the Serotonergic Genes htr1A, htr1B, htr2A, and slc6A4 in Aggressive Behavior of Golden Retriever Dogs

    Berg, L. van den; Vos-Loohuis, M.; Schilder, M.B.H.; Oost, B.A. van; Hazewinkel, H.A.W.; Wade, C.M.; Karlsson, E.K.; Lindblad-Toh, K.; Liinamo, A.E.; Leegwater, P.A.J.

    2008-01-01

    Aggressive behavior displays a high heritability in our study group ofGolden Retriever dogs.Alterations in brain serotonin metabolism have been described in aggressive dogs before. Here, we evaluate whether four genes of the canine serotonergic system, coding for the serotonin receptors 1A, 1B,

  14. The effect of tryptophan supplemented diets on brain serotonergic activity and plasma cortisol under undisturbed and stressed conditions in grouped-housed Nile tilapia Oreochromis niloticus

    Martins, C.I.M.; Silva, P.I.M.; Costas, B.

    2013-01-01

    -term supplementation with TRP supplemented diets changes brain serotonergic activity and the stress response associated with slaughter handling in grouped-housed Nile tilapia Oreochromis niloticus. Adult fish (n. =. 108, 490.6. ±. 4.0. g, 12 individuals per tank) were exposed to one of the three treatments...

  15. Up-regulation of serotonergic binding sites labeled by (3H) WB4101 following fimbrial transection and 5,7-dihydroxytryptamine-induced lesions

    Morrow, A.L.; Norman, A.B.; Battaglia, G.; Loy, R.; Creese, I.

    1985-01-01

    Lesions of the serotonergic afferents to the hippocampus, by fimbrial transection or by 5,7-dihydroxytryptamine treatment, produce an increase in the Bmax of ( 3 H)WB4101 to its nanomolar affinity binding site, with no effect on its picomolar affinity binding site or on ( 3 H)prazosin binding. The nanomolar site is serotonergic as the serotonergic agonists, serotonin and 8-hydroxy-dipropylaminotetraline (8-OH-DPAT) have nanomolar affinity for ( 3 H)WB4101 binding when studied in the presence of a prazosin mask (30nM) of the alpha-1 component of ( 3 H)WB4101 binding. The serotonin receptor antagonists metergoline, lysergic acid diethylamide and lisuride also have high nanomolar affinities while ketanserin, yohimbine, prazosin and noradrenergic agonists have affinities in the micromolar range. Fimbrial transection or 5,7-dihydroxytryptamine injections produced 32% and 44% increases in the Bmax of ( 3 H)WB4101 binding in the presence of a prazosin mask. Serotonin competition for ( 3 H)WB4101 binding was identical in control and experimental tissues from each lesion experiment. Although specific binding of ( 3 H)WB4101 was increased, there was no change in the affinities or the percentages of the two binding components for serotonin competition with ( 3 H)WB4101. These data suggest that removal of the serotonergic input to the hippocampus produces an increase in the Bmax of serotonin receptor binding sites labeled by ( 3 H)WB4101. 33 references, 3 figures, 3 tables

  16. The analgesic agent tapentadol inhibits calcitonin gene-related peptide release from isolated rat brainstem via a serotonergic mechanism.

    Greco, Maria Cristina; Navarra, Pierluigi; Tringali, Giuseppe

    2016-01-15

    In this study we tested the hypothesis that tapentadol inhibits GGRP release from the rat brainstem through a mechanism mediated by the inhibition of NA reuptake; as a second alternative hypothesis, we investigated whether tapentadol inhibits GGRP release via the inhibition of 5-HT reuptake. Rat brainstems were explanted and incubated in short-term experiments. CGRP released in the incubation medium was taken as a marker of CGRP release from the central terminals of trigeminal neurons within the brainstem. CGRP levels were measured by radioimmunoassay under basal conditions or in the presence of tapentadol; NA, 5-HT, clonidine, yohimbine and ondansetron were used as pharmacological tools to investigate the action mechanism of tapentadol. The α2-antagonist yohimbine failed to counteract the effects of tapentadol. Moreover, neither NA nor the α2-agonist clonidine per se inhibited K(+)-stimulated CGRP release, thereby indicating that the effects of tapentadol are nor mediated through the block of NA reuptake. Further experiments showed that 5-HT and tramadol, which inhibits both NA and 5-HT reuptake, significantly reduced K(+)-stimulated CGRP release. Moreover, the 5-HT3 antagonist ondansetron was able to counteract the effects of tapentadol in this system. This study provided pharmacological evidence that tapentadol inhibits stimulated CGRP release from the rat brainstem in vitro through a mechanism involving an increase in 5-HT levels in the system and the subsequent activation of 5-HT3 receptors. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. NeuronBank: a tool for cataloging neuronal circuitry

    Paul S Katz

    2010-04-01

    Full Text Available The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models.

  18. Psilocybin-induced spiritual experiences and insightfulness are associated with synchronization of neuronal oscillations.

    Kometer, Michael; Pokorny, Thomas; Seifritz, Erich; Volleinweider, Franz X

    2015-10-01

    During the last years, considerable progress has been made toward understanding the neuronal basis of consciousness by using sophisticated behavioral tasks, brain-imaging techniques, and various psychoactive drugs. Nevertheless, the neuronal mechanisms underlying some of the most intriguing states of consciousness, including spiritual experiences, remain unknown. To elucidate state of consciousness-related neuronal mechanisms, human subjects were given psilocybin, a naturally occurring serotonergic agonist and hallucinogen that has been used for centuries to induce spiritual experiences in religious and medical rituals. In this double-blind, placebo-controlled study, 50 healthy human volunteers received a moderate dose of psilocybin, while high-density electroencephalogram (EEG) recordings were taken during eyes-open and eyes-closed resting states. The current source density and the lagged phase synchronization of neuronal oscillations across distributed brain regions were computed and correlated with psilocybin-induced altered states of consciousness. Psilocybin decreased the current source density of neuronal oscillations at 1.5-20 Hz within a neural network comprising the anterior and posterior cingulate cortices and the parahippocampal regions. Most intriguingly, the intensity levels of psilocybin-induced spiritual experience and insightfulness correlated with the lagged phase synchronization of delta oscillations (1.5-4 Hz) between the retrosplenial cortex, the parahippocampus, and the lateral orbitofrontal area. These results provide systematic evidence for the direct association of a specific spatiotemporal neuronal mechanism with spiritual experiences and enhanced insight into life and existence. The identified mechanism may constitute a pathway for modulating mental health, as spiritual experiences can promote sustained well-being and psychological resilience.

  19. Abnormal development of monoaminergic neurons is implicated in mood fluctuations and bipolar disorder.

    Jukic, Marin M; Carrillo-Roa, Tania; Bar, Michal; Becker, Gal; Jovanovic, Vukasin M; Zega, Ksenija; Binder, Elisabeth B; Brodski, Claude

    2015-03-01

    Subtle mood fluctuations are normal emotional experiences, whereas drastic mood swings can be a manifestation of bipolar disorder (BPD). Despite their importance for normal and pathological behavior, the mechanisms underlying endogenous mood instability are largely unknown. During embryogenesis, the transcription factor Otx2 orchestrates the genetic networks directing the specification of dopaminergic (DA) and serotonergic (5-HT) neurons. Here we behaviorally phenotyped mouse mutants overexpressing Otx2 in the hindbrain, resulting in an increased number of DA neurons and a decreased number of 5-HT neurons in both developing and mature animals. Over the course of 1 month, control animals exhibited stable locomotor activity in their home cages, whereas mutants showed extended periods of elevated or decreased activity relative to their individual average. Additional behavioral paradigms, testing for manic- and depressive-like behavior, demonstrated that mutants showed an increase in intra-individual fluctuations in locomotor activity, habituation, risk-taking behavioral parameters, social interaction, and hedonic-like behavior. Olanzapine, lithium, and carbamazepine ameliorated the behavioral alterations of the mutants, as did the mixed serotonin receptor agonist quipazine and the specific 5-HT2C receptor agonist CP-809101. Testing the relevance of the genetic networks specifying monoaminergic neurons for BPD in humans, we applied an interval-based enrichment analysis tool for genome-wide association studies. We observed that the genes specifying DA and 5-HT neurons exhibit a significant level of aggregated association with BPD but not with schizophrenia or major depressive disorder. The results of our translational study suggest that aberrant development of monoaminergic neurons leads to mood fluctuations and may be associated with BPD.

  20. Concomitant use of opioid medications with triptans or serotonergic antidepressants in US office-based physician visits.

    Molina, Kyle C; Fairman, Kathleen A; Sclar, David A

    2018-01-01

    Opioids are not recommended for routine treatment of migraine because their benefits are outweighed by risks of medication overuse headache and abuse/dependence. A March 2016 US Food and Drug Administration (FDA) safety communication warned of the risk of serotonin syndrome from using opioids concomitantly with 5-hydroxytryptamine receptor agonists (triptans) or serotonergic antidepressants: selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine reuptake inhibitors (SNRIs). Epidemiological information about co-prescribing of these medications is limited. The objective of this study was to estimate the nationwide prevalence of co-prescribing of an opioid with a serotonergic antidepressant and/or triptan in US office-based physician visits made by 1) all patients and 2) patients diagnosed with migraine. National Ambulatory Medical Care Survey (NAMCS) data were obtained for 2013 and 2014. Physician office visits that included the new or continued prescribing of ≥1 opioid medication with a triptan or an SSRI/SNRI were identified. Co-prescribed opioids were stratified by agent to determine the proportion of co-prescriptions with opioids posing a higher risk of serotonergic agonism (meperidine, tapentadol, and tramadol). Of an annualized mean 903.6 million office-based physician visits in 2013-2014, 17.7 million (2.0% of all US visits) resulted in the prescribing of ≥1 opioid medication with a triptan or an SSRI/SNRI. Opioid-SSRI/SNRI was co-prescribed in 16,044,721 visits, while opioid-triptan was co-prescribed in 1,622,827 visits. One-fifth of opioid co-prescribing was attributable to higher-risk opioids, predominantly tramadol (18.6% of opioid-SSRI/SNRI, 21.8% of opioid-triptan). Of 7,672,193 visits for patients diagnosed with migraine, 16.3% included opioid prescribing and 2.0% included co-prescribed opioid-triptan. During a period approximately 2 years prior to an FDA warning about the risk of serotonin syndrome from opioid-SSRI/SNRI or

  1. Elevated mazes as animal models of anxiety: effects of serotonergic agents

    Simone H. Pinheiro

    2007-03-01

    Full Text Available This article reviews reported results about the effects of drugs that act upon the serotonergic neurotransmission measured in three elevated mazes that are animal models of anxiety. A bibliographic search has been performed in MEDLINE using different combinations of the key words X-maze, plus-maze, T-maze, serotonin and 5-HT, present in the title and/or the abstract, with no time limit. From the obtained abstracts, several publications were excluded on the basis of the following criteria: review articles that did not report original results, species other than the rat, intracerebral drug administration alone, genetically manipulated rats, and animals having any kind of experimental pathology. The reported results indicate that the effect of drugs on the inhibitory avoidance task performed in the elevated T-maze and on the spatio temporal indexes of anxiety measured in the X and plus mazes correlate with their effect in patients diagnosed with generalized anxiety disorder. In contrast, the drug effects on the one-way escape task in the elevated T-maze predict the drug response of panic disorder patients. Overall, the drug effects assessed with the avoidance task in the T-maze are more consistent than those measured through the anxiety indexes of the X and plus mazes. Therefore, the elevated T-maze is a promising animal model of generalized anxiety and panic disorder.No presente artigo, revisamos resultados publicados relatando efeitos de drogas que atuam na neurotransmissão serotonérgica medidos em três labirintos elevados, que são modelos animais de ansiedade. Realizamos uma busca bibliográfica no MEDLINE, usando diferentes combinações das palavras-chave: X-maze, plus-maze, T-maze, serotonin e 5-HT, presentes no título ou no resumo, sem limite de tempo. Dos resumos obtidos, vários foram excluídos com base nos seguintes critérios: artigos de revisão que não continham resultados originais, espécies diferentes do rato, apenas inje

  2. Otolith-Canal Convergence In Vestibular Nuclei Neurons

    Dickman, J. David; Si, Xiao-Hong

    2002-01-01

    The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.

  3. Glucose-monitoring neurons in the mediodorsal prefrontal cortex.

    Nagy, Bernadett; Szabó, István; Papp, Szilárd; Takács, Gábor; Szalay, Csaba; Karádi, Zoltán

    2012-03-20

    The mediodorsal prefrontal cortex (mdPFC), a key structure of the limbic neural circuitry, plays important roles in the central regulation of feeding. As an integrant part of the forebrain dopamine (DA) system, it performs complex roles via interconnections with various brain areas where glucose-monitoring (GM) neurons have been identified. The main goal of the present experiments was to examine whether similar GM neurons exist in the mediodorsal prefrontal cortex. To search for such chemosensory cells here, and to estimate their involvement in the DA circuitry, extracellular single neuron activity of the mediodorsal prefrontal cortex of anesthetized Wistar and Sprague-Dawley rats was recorded by means of tungsten wire multibarreled glass microelectrodes during microelectrophoretic administration of d-glucose and DA. One fourth of the neurons tested changed in firing rate in response to glucose, thus, proved to be elements of the forebrain GM neural network. DA responsive neurons in the mdPFC were found to represent similar proportion of all cells; the glucose-excited units were shown to display excitatory whereas the glucose-inhibited neurons were demonstrated to exert mainly inhibitory responses to dopamine. The glucose-monitoring neurons of the mdPFC and their distinct DA sensitivity are suggested to be of particular significance in adaptive processes of the central feeding control. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Serotonergic modulation of spatial working memory: predictions from a computational network model

    Maria eCano-Colino

    2013-09-01

    Full Text Available Serotonin (5-HT receptors of types 1A and 2A are massively expressed in prefrontal cortex (PFC neurons, an area associated with cognitive function. Hence, 5-HT could be effective in modulating prefrontal-dependent cognitive functions, such as spatial working memory (SWM. However, a direct association between 5-HT and SWM has proved elusive in psycho-pharmacological studies. Recently, a computational network model of the PFC microcircuit was used to explore the relationship between 5‑HT and SWM (Cano-Colino et al. 2013. This study found that both excessive and insufficient 5-HT levels lead to impaired SWM performance in the network, and it concluded that analyzing behavioral responses based on confidence reports could facilitate the experimental identification of SWM behavioral effects of 5‑HT neuromodulation. Such analyses may have confounds based on our limited understanding of metacognitive processes. Here, we extend these results by deriving three additional predictions from the model that do not rely on confidence reports. Firstly, only excessive levels of 5-HT should result in SWM deficits that increase with delay duration. Secondly, excessive 5-HT baseline concentration makes the network vulnerable to distractors at distances that were robust to distraction in control conditions, while the network still ignores distractors efficiently for low 5‑HT levels that impair SWM. Finally, 5-HT modulates neuronal memory fields in neurophysiological experiments: Neurons should be better tuned to the cued stimulus than to the behavioral report for excessive 5-HT levels, while the reverse should happen for low 5-HT concentrations. In all our simulations agonists of 5-HT1A receptors and antagonists of 5-HT2A receptors produced behavioral and physiological effects in line with global 5-HT level increases. Our model makes specific predictions to be tested experimentally and advance our understanding of the neural basis of SWM and its neuromodulation

  5. Neuronal avalanches and learning

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  6. Neuronal avalanches and learning

    Arcangelis, Lucilla de

    2011-01-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  7. Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT neurons in mice with altered 5-HT homeostasis

    Naozumi eAraragi

    2013-08-01

    Full Text Available Firing activity of serotonin (5-HT neurons in the dorsal raphe nucleus (DRN is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert -/- and tryptophan hydroxylase-2 knockout (Tph2 -/- mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+-8-hydroxy-2-(di-n-propylaminotetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2 -/- mice and Sert -/- mice, respectively. While 5-HT neurons from Tph2 -/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert -/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP, neurons from both Tph2 -/- and Sert -/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.

  8. Membrane potential dye imaging of ventromedial hypothalamus neurons from adult mice to study glucose sensing.

    Vazirani, Reema P; Fioramonti, Xavier; Routh, Vanessa H

    2013-11-27

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.

  9. Impact of CYP2C19 phenotypes on escitalopram metabolism and an evaluation of pupillometry as a serotonergic biomarker

    Noehr-Jensen, L; Zwisler, S; Larsen, F

    2009-01-01

    PURPOSE: To investigate the impact of cytochrome P450 2C19 (CYP2C19) phenotypes on escitalopram metabolism and to evaluate pupillometry as a serotonergic biomarker. METHODS: This was a double-blind, crossover design study with single and multiple doses of 10 mg escitalopram and placebo in panels...... of CYP2C19 extensive (EM) and poor metabolisers (PM). Pupillometry was measured by a NeurOptics Pupillometer-PLR. RESULTS: Five PM and eight EM completed the study. The CYP2C19 phenotype significantly affected the metabolism of escitalopram. The area under the time-plasma concentration curve (AUC(0......-24)) was 1.8-fold higher in PM than in EM after both single and multiple doses. Escitalopram treatment did not affect the maximum pupil size, but it did statistically significantly decrease the relative amplitude of the pupil light reflex compared to the placebo; this effect was equal in both phenotype...

  10. Selective Serotonergic (SSRI) Versus Noradrenergic (SNRI) Reuptake Inhibitors with and without Acetylsalicylic Acid in Major Depressive Disorder.

    Zdanowicz, Nicolas; Reynaert, Christine; Jacques, Denis; Lepiece, Brice; Dubois, Thomas

    2017-09-01

    Antidepressant medication efficacy remains a major research challenge. Here, we explored four questions: whether noradrenergic antidepressants are more effective than serotonergic antidepressants; whether the addition of 100 mg acetylsalicylic acid (ASA) changes antidepressant efficacy; whether the long-term efficacy differs depending on the antidepressant and the addition of ASA; and whether serum levels of brain-derived neurotrophic factor (BDNF) are clinically informative. In a two-year study, forty people with major depressive disorder were randomly assigned to groups that received an SSRI (escitalopram) or an SNRI (duloxetine), each group received concomitant ASA (100 mg) or a placebo. Sociodemographic data were recorded and patients under went regular assessments with the Hamilton depression scale (HDS) and clinical global impression (CGI) scale. Serum levels of BDNF were measured four times per year. There was no significant difference in efficacy between the two antidepressants or between antidepressant treatment with and without ASA. However, subgroup comparisons revealed that the duloxetine + ASA (DASA) subgroup showed a more rapid improvement in HDS score as early as 2 months (t=-3.114, p=0.01), in CGI score at 5 months (t=-2.119, p=0.05), and a better remission rate (χ 2 =6.296, p 0.012) than the escitalopram + placebo (EP) subgroup. Serum BDNF before treatment was also higher in the DASA subgroup than in the EP subgroup (t=3.713; p=0.002). This suggest two hypotheses: either a noradrenergic agent combined with ASA is more effective in treating depression than a serotonergic agent alone, or the level of serum BDNF before treatment is a precursor marker of the response to antidepressants. Further research is needed to test these hypotheses.

  11. Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain

    Andrea Forero

    2017-09-01

    Full Text Available Background: During early prenatal stages of brain development, serotonin (5-HT-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR, innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13 has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system.Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency.Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs, which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5.Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell

  12. Excitatory inputs to four types of spinocerebellar tract neurons in the cat and the rat thoraco-lumbar spinal cord

    Shrestha, Sony Shakya; Bannatyne, B Anne; Jankowska, Elzbieta; Hammar, Ingela; Nilsson, Elin; Maxwell, David J

    2012-01-01

    The cerebellum receives information from the hindlimbs through several populations of spinocerebellar tract neurons. Although the role of these neurons has been established in electrophysiological experiments, the relative contribution of afferent fibres and central neurons to their excitatory input has only been estimated approximately so far. Taking advantage of differences in the immunohistochemistry of glutamatergic terminals of peripheral afferents and of central neurons (with vesicular glutamate transporters VGLUT1 or VGLUT2, respectively), we compared sources of excitatory input to four populations of spinocerebellar neurons in the thoraco-lumbar spinal cord: dorsal spinocerebellar tract neurons located in Clarke's column (ccDSCT) and in the dorsal horn (dhDSCT) and ventral spinocerebellar tract (VSCT) neurons including spinal border (SB) neurons. This was done on 22 electrophysiologically identified intracellularly labelled neurons in cats and on 80 neurons labelled by retrograde transport of cholera toxin b subunit injected into the cerebellum of rats. In both species distribution of antibodies against VGLUT1 and VGLUT2 on SB neurons (which have dominating inhibitory input from limb muscles), revealed very few VGLUT1 contacts and remarkably high numbers of VGLUT2 contacts. In VSCT neurons with excitatory afferent input, the number of VGLUT1 contacts was relatively high although VGLUT2 contacts likewise dominated, while the proportions of VGLUT1 and VGLUT2 immunoreactive terminals were the reverse on the two populations of DSCT neurons. These findings provide morphological evidence that SB neurons principally receive excitatory inputs from central neurons and provide the cerebellum with information regarding central neuronal activity. PMID:22371473

  13. Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only.

    Pagani, J H; Williams Avram, S K; Cui, Z; Song, J; Mezey, É; Senerth, J M; Baumann, M H; Young, W S

    2015-02-01

    Serotonin and oxytocin influence aggressive and anxiety-like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically mediated anxiety-like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open-field, olfactory habituation/dishabituation or, surprisingly, anxiety-like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to 8 of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident-intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety-like behaviors or maternal care. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  14. Functional neuroanatomy of the central noradrenergic system.

    Szabadi, Elemer

    2013-08-01

    The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.

  15. Kappe neurons, a novel population of olfactory sensory neurons.

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  16. Stochastic neuron models

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  17. Characterization of astrocytic and neuronal benzodiazepine receptors

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  18. Astrocytic actions on extrasynaptic neuronal currents

    Balazs ePal

    2015-12-01

    Full Text Available In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system, but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the 'tripartite synapse', as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and –secretory processes, cortical oscillatory activity, memory and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.

  19. Enteric neurons show a primary cilium.

    Luesma, Ma José; Cantarero, Irene; Castiella, Tomás; Soriano, Mario; Garcia-Verdugo, José Manuel; Junquera, Concepción

    2013-01-01

    The primary cilium is a non-motile cilium whose structure is 9+0. It is involved in co-ordinating cellular signal transduction pathways, developmental processes and tissue homeostasis. Defects in the structure or function of the primary cilium underlie numerous human diseases, collectively termed ciliopathies. The presence of single cilia in the central nervous system (CNS) is well documented, including some choroid plexus cells, neural stem cells, neurons and astrocytes, but the presence of primary cilia in differentiated neurons of the enteric nervous system (ENS) has not yet been described in mammals to the best of our knowledge. The enteric nervous system closely resembles the central nervous system. In fact, the ultrastructure of the ENS is more similar to the CNS ultrastructure than to the rest of the peripheral nervous system. This research work describes for the first time the ultrastructural characteristics of the single cilium in neurons of rat duodenum myenteric plexus, and reviews the cilium function in the CNS to propose the possible role of cilia in the ENS cells. © 2012 The Authors. Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  20. Neuronal Migration and Neuronal Migration Disorder in Cerebral Cortex

    SUN, Xue-Zhi; TAKAHASHI, Sentaro; GUI, Chun; ZHANG, Rui; KOGA, Kazuo; NOUYE, Minoru; MURATA, Yoshiharu

    2002-01-01

    Neuronal cell migration is one of the most significant features during cortical development. After final mitosis, neurons migrate from the ventricular zone into the cortical plate, and then establish neuronal lamina and settle onto the outermost layer, forming an "inside-out" gradient of maturation. Neuronal migration is guided by radial glial fibers and also needs proper receptors, ligands, and other unknown extracellular factors, requests local signaling (e.g. some emitted by the Cajal-Retz...

  1. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion

    Hägglund, Martin; Borgius, Lotta; Dougherty, Kimberly J.

    2010-01-01

    Central pattern generators (CPGs) are spinal neuronal networks required for locomotion. Glutamatergic neurons have been implicated as being important for intrinsic rhythm generation in the CPG and for the command signal for initiating locomotion, although this has not been demonstrated directly. We...... neurons in the spinal cord are critical for initiating or maintaining the rhythm and that activation of hindbrain areas containing the locomotor command regions is sufficient to directly activate the spinal locomotor network....

  2. Noise-Induced Transition in a Voltage-Controlled Oscillator Neuron Model

    Xie Huizhang; Liu Xuemei; Li Zhibing; Ai Baoquan; Liu Lianggang

    2008-01-01

    In the presence of Gaussian white noise, we study the properties of voltage-controlled oscillator neuron model and discuss the effects of the additive and multiplicative noise. It is found that the additive noise can accelerate and counterwork the firing of neuron, which depends on the value of central frequency of neuron itself, while multiplicative noise can induce the continuous change or mutation of membrane potential

  3. V1 spinal neurons regulate the speed of vertebrate locomotor outputs

    Gosgnach, Simon; Lanuza, Guillermo M.; Butt, Simon J B

    2006-01-01

    The neuronal networks that generate vertebrate movements such as walking and swimming are embedded in the spinal cord1-3. These networks, which are referred to as central pattern generators (CPGs), are ideal systems for determining how ensembles of neurons generate simple behavioural outputs...... for inhibition in regulating the frequency of the locomotor CPG rhythm, and also suggest that V1 neurons may have an evolutionarily conserved role in controlling the speed of vertebrate locomotor movements....

  4. Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons

    Ren, Hongxia; Lu, Taylor Y.; McGraw, Timothy E.; Accili, Domenico

    2014-01-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin?mediated cell ablation to selectively remove basal hypothalamic Glut4 ...

  5. A map of octopaminergic neurons in the Drosophila brain.

    Busch, Sebastian; Selcho, Mareike; Ito, Kei; Tanimoto, Hiromu

    2009-04-20

    The biogenic amine octopamine modulates diverse behaviors in invertebrates. At the single neuron level, the mode of action is well understood in the peripheral nervous system owing to its simple structure and accessibility. For elucidating the role of individual octopaminergic neurons in the modulation of complex behaviors, a detailed analysis of the connectivity in the central nervous system is required. Here we present a comprehensive anatomical map of candidate octopaminergic neurons in the adult Drosophila brain: including the supra- and subesophageal ganglia. Application of the Flp-out technique enabled visualization of 27 types of individual octopaminergic neurons. Based on their morphology and distribution of genetic markers, we found that most octopaminergic neurons project to multiple brain structures with a clear separation of dendritic and presynaptic regions. Whereas their major dendrites are confined to specific brain regions, each cell type targets different, yet defined, neuropils distributed throughout the central nervous system. This would allow them to constitute combinatorial modules assigned to the modulation of distinct neuronal processes. The map may provide an anatomical framework for the functional constitution of the octopaminergic system. It also serves as a model for the single-cell organization of a particular neurotransmitter in the brain. 2009 Wiley-Liss, Inc.

  6. Forced swimming test and fluoxetine treatment: in vivo evidence that peripheral 5-HT in rat platelet-rich plasma mirrors cerebral extracellular 5-HT levels, whilst 5-HT in isolated platelets mirrors neuronal 5-HT changes.

    Bianchi, M; Moser, C; Lazzarini, C; Vecchiato, E; Crespi, F

    2002-03-01

    present data show that the initial block of 5-HT reuptake is revealed by the selective increase in 5-HT levels (extracellular content) measured in PRP (not in insulated platelets, IPs) the 1st day of fluoxetine treatment. The initial action of this SSRI upon the 5-HT transporter in brain has also been confirmed by in vivo voltammetric data showing selective increase in the serotonergic signal following local injection of fluoxetine into the brain region studied. Successively, the major effect monitored is a decrease in 5-HT levels, which is more evident in IPs than in PRP. However, it is known that following 2 weeks treatment with an SSRI, 5-HT autoreceptors are desensitized and the serotonin synthesis is restored, together with the intracellular 5-HT levels. The present data showing that the levels of 5-HT in IPs tend to return to control values 12 days after the beginning of chronic fluoxetine treatment suggest that 5-HT levels in IPs (intracellular environment) mirror the influence of SSRI treatment upon the central 5-HT system. On the other hand, at day 12 of the chronic fluoxetine treatment, 5-HT content remains low in PRP. Similarly, low levels of 5-HT have been monitored in brain homogenate of rats chronically treated with fluoxetine. This would support the similarity between PRP preparation and brain homogenate as in both cases cells are disrupted by sample preparation. In conclusion this work supports the literature in proposing platelets as a peripheral model of central functions. In particular, the present data support the idea that peripheral 5-HT platelet levels can reflect the state of the central 5-HT system in conditions of depression. Furthermore, the main outcome of this study is that PRP may mirror central extracellular 5-HT levels, whilst IPs mirror neuronal 5-HT changes.

  7. The Isolation of Pure Populations of Neurons by Laser Capture Microdissection: Methods and Application in Neuroscience.

    Morris, Renée; Mehta, Prachi

    2018-01-01

    In mammals, the central nervous system (CNS) is constituted of various cellular elements, posing a challenge to isolating specific cell types to investigate their expression profile. As a result, tissue homogenization is not amenable to analyses of motor neurons profiling as these represent less than 10% of the total spinal cord cell population. One way to tackle the problem of tissue heterogeneity and obtain meaningful genomic, proteomic, and transcriptomic profiling is to use laser capture microdissection technology (LCM). In this chapter, we describe protocols for the capture of isolated populations of motor neurons from spinal cord tissue sections and for downstream transcriptomic analysis of motor neurons with RT-PCR. We have also included a protocol for the immunological confirmation that the captured neurons are indeed motor neurons. Although focused on spinal cord motor neurons, these protocols can be easily optimized for the isolation of any CNS neurons.

  8. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply

    Jillian L Stobart

    2013-04-01

    Full Text Available Dynamic adjustments to neuronal energy supply in response to synaptic activity are critical for neuronal function. Glial cells known as astrocytes have processes that ensheath most central synapses and express G-protein-coupled neurotransmitter receptors and transporters that respond to neuronal activity. Astrocytes also release substrates for neuronal oxidative phosphorylation and have processes that terminate on the surface of brain arterioles and can influence vascular smooth muscle tone and local blood flow. Membrane receptor or transporter-mediated effects of glutamate represent a convergence point of astrocyte influence on neuronal bioenergetics. Astrocytic glutamate uptake drives glycolysis and subsequent shuttling of lactate from astrocytes to neurons for oxidative metabolism. Astrocytes also convert synaptically reclaimed glutamate to glutamine, which is returned to neurons for glutamate salvage or oxidation. Finally, astrocytes store brain energy currency in the form of glycogen, which can be mobilized to produce lactate for neuronal oxidative phosphorylation in response to glutamatergic neurotransmission. These mechanisms couple synaptically-driven astrocytic responses to glutamate with release of energy substrates back to neurons to match demand with supply. In addition, astrocytes directly influence the tone of penetrating brain arterioles in response to glutamatergic neurotransmission, coordinating dynamic regulation of local blood flow. We will describe the role of astrocytes in neurometabolic and neurovascular coupling in detail and discuss, in turn, how astrocyte dysfunction may contribute to neuronal bioenergetic deficit and neurodegeneration. Understanding the role of astrocytes as a hub for neurometabolic and neurovascular coupling mechanisms is a critical underpinning for therapeutic development in a broad range of neurodegenerative disorders characterized by chronic generalized brain ischemia and brain microvascular

  9. Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo.

    Slota, Leslie A; McClay, David R

    2018-03-15

    Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Neuronal nets in robotics

    Jimenez Sanchez, Raul

    1999-01-01

    The paper gives a generic idea of the solutions that the neuronal nets contribute to the robotics. The advantages and the inconveniences are exposed that have regarding the conventional techniques. It also describe the more excellent applications as the pursuit of trajectories, the positioning based on images, the force control or of the mobile robots management, among others

  11. Neuronal regulation of homeostasis by nutrient sensing.

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  12. A comparison of experience-dependent locomotory behaviors and biogenic amine neurons in nematode relatives of Caenorhabditis elegans

    Sternberg Paul W

    2010-02-01

    Full Text Available Abstract Background Survival of an animal depends on its ability to match its responses to environmental conditions. To generate an optimal behavioral output, the nervous system must process sensory information and generate a directed motor output in response to stimuli. The nervous system should also store information about experiences to use in the future. The diverse group of free-living nematodes provides an excellent system to study macro- and microevolution of molecular, morphological and behavioral character states associated with such nervous system function. We asked whether an adaptive behavior would vary among bacterivorous nematodes and whether differences in the neurotransmitter systems known to regulate the behavior in one species would reflect differences seen in the adaptive behavior among those species. Caenorhabditis elegans worms slow in the presence of food; this 'basal' slowing is triggered by dopaminergic mechanosensory neurons that detect bacteria. Starved worms slow more dramatically; this 'enhanced' slowing is regulated by serotonin. Results We examined seven nematode species with known phylogenetic relationship to C. elegans for locomotory behaviors modulated by food (E. coli, and by the worm's recent history of feeding (being well-fed or starved. We found that locomotory behavior in some species was modulated by food and recent feeding experience in a manner similar to C. elegans, but not all the species tested exhibited these food-modulated behaviors. We also found that some worms had different responses to bacteria other than E. coli. Using histochemical and immunological staining, we found that dopaminergic neurons were very similar among all species. For instance, we saw likely homologs of four bilateral pairs of dopaminergic cephalic and deirid neurons known from C. elegans in all seven species examined. In contrast, there was greater variation in the patterns of serotonergic neurons. The presence of presumptive

  13. Mechanisms underlying prorenin actions on hypothalamic neurons implicated in cardiometabolic control

    Soledad Pitra

    2016-10-01

    Conclusions: We identified novel neuronal targets and cellular mechanisms underlying PR/PRR actions in critical hypothalamic neurons involved in cardiometabolic regulation. This fundamental mechanistic information regarding central PR/PRR actions is essential for the development of novel RAS-based therapeutic targets for the treatment of cardiometabolic disorders in obesity and hypertension.

  14. The molluscan RING-finger protein L-TRIM is essential for neuronal outgrowth

    van Diepen, M. T.; Spencer, G.E.; Minnen, J.; Gouwenberg, Y.; Bouwman, J.G.; Smit, A. B.; van Kesteren, R.E.

    2005-01-01

    The tripartite motif proteins TRIM-2 and TRIM-3 have been put forward as putative organizers of neuronal outgrowth and structural plasticity. Here, we identified a molluscan orthologue of TRIM-2/3, named L-TRIM, which is up-regulated during in vitro neurite outgrowth of central neurons. In adult

  15. Is the serotonergic system altered in romantic love? A literature review and research suggestions

    Langeslag, Sandra

    2009-01-01

    textabstractInfatuated individuals think about their beloved a lot. The notions that these frequent thoughts resemble the obsessions of obsessive-compulsive disorder (OCD) patients and that those patients benefit from serotonin reuptake inhibitors (SSRIs), have led to the hypothesis that romantic love is associated with reduced central serotonin levels. In this chapter, the literature on this topic is reviewed and suggestions for future research are made. Previous studies have shown that roma...

  16. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABA A , glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABA B , as well as an adenosine A 1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron

  17. Study of ATM Phosphorylation by Cdk5 in Neuronal Cells.

    She, Hua; Mao, Zixu

    2017-01-01

    The phosphatidylinositol-3-kinase-like kinase ATM (ataxia-telangiectasia mutated) plays a central role in coordinating the DNA damage responses including cell cycle checkpoint control, DNA repair, and apoptosis. Mutations of ATM cause a spectrum of defects ranging from neurodegeneration to cancer predisposition. We previously showed that Cdk5 (cyclin-dependent kinase 5) is activated by DNA damage and directly phosphorylates ATM at serine 794 in postmitotic neurons. Phosphorylation at serine 794 precedes and is required for ATM autophosphorylation at serine 1981, and activates ATM kinase activity. Cdk5-ATM pathway plays a crucial role in DNA damage-induced neuronal injury. This chapter describes protocols used in analyzing ATM phosphorylation by Cdk5 in CGNs (cerebellar granule neurons) and its effects on neuronal survival.

  18. Survival of adult neurons lacking cholesterol synthesis in vivo.

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  19. Survival of adult neurons lacking cholesterol synthesis in vivo

    Möbius Wiebke

    2007-01-01

    Full Text Available Abstract Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1, which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  20. Neuronal survival in the brain: neuron type-specific mechanisms

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether...... for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various...

  1. A happy valve in a happy patient? Serotonergic antidepressants and the risk of valvular heart disease (SERVAL). A case-control study.

    De Backer, Tine; Petrovic, Mirko; Audenaert, Kurt; Coeman, Mathieu; De Bacquer, Dirk

    2016-02-01

    The objective was to investigate the risk of valvular heart disease in humans in relation to the use of selective serotonin reuptake inhibitors (SSRIs) and serotonin and noradrenaline reuptake inhibitors. A case-control study. We conducted a case-control study within this cohort in which patients with newly diagnosed cardiac valve regurgitation were age-matched to controls. Patient demographics, their cardiovascular risk factors and medication use were extracted in both series. Use of SSRIs, serotonin and noradreline reuptake inhibitors (SNRIs) and other pro-serotonergic agents, their dose and treatment duration were recorded. Logistic regression analysis was used to establish the strength of the association between SSRI/SNRI use and valvular heart disease. Outpatient clinic of the cardiology department at the Ghent University Hospital, East-Flanders in Belgium. Total of 2911 persons 21-58 years of age who had undergone an echocardiogram in the period 2006-2010 and had no known cardiovascular disease or previous cardiac intervention. Two hundred and six echocardiographically proven cases of valvular regurgitation and 195 matched controls. Odd ratio of valvular disease associated with intake of serotonergic drugs. Of the 206 patients with newly diagnosed cardiac valve regurgitation, 11.6% were exposed to serotonergic agents compared to 4.1% in the 195 control patients, leading to an odds ratio of 3.08 (95% confidence interval [CI] 1.35-7.04). The analysis of doses and treatment durations revealed a dose-relationship pattern between SSRI/SNRI use and prevalent valvular heart disease. In this study, use of serotonergic antidepressants was associated with an increased rate of valvular regurgitation in humans.

  2. Normal and abnormal neuronal migration during brain development

    Rakic, P.

    1986-01-01

    Conceptual and factual advances in understanding neuronal migration in the past two decades have provided new insight into the pathogenesis of brain malformations at the cellular, molecular, and functional levels. Some of these results may have direct implications in understanding the consequences of ionizing radiation on the fetal central nervous system in utero. (orig.)

  3. Clinical characteristics of the dysfunctions of the neuronal migration

    Espinosa, Eugenia; Dunoyer, Catalina; Acosta, Maria Teresa

    1992-01-01

    This article describes a group of 22 pediatric patients with neuronal migration anomalies, studied in the department of neuro-pediatrics in the Hospital Militar Central. The clinical findings are emphasized and the value of diagnostic images in the identification and classification of these anomalies is shown

  4. How neurons migrate: a dynamic in-silico model of neuronal migration in the developing cortex

    Setty, Yaki

    2011-09-30

    Abstract Background Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process. Results The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration. Conclusions We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise

  5. How neurons migrate: a dynamic in-silico model of neuronal migration in the developing cortex

    Skoblov Nikita

    2011-09-01

    Full Text Available Abstract Background Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process. Results The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1 the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2 we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1 under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2 under enhanced DCX expression in mice we predict a normal or a higher bipolar migration. Conclusions We present here a system-wide computational model of neuronal migration that integrates theory and data within a

  6. Neuronal synchrony: peculiarity and generality.

    Nowotny, Thomas; Huerta, Ramon; Rabinovich, Mikhail I

    2008-09-01

    Synchronization in neuronal systems is a new and intriguing application of dynamical systems theory. Why are neuronal systems different as a subject for synchronization? (1) Neurons in themselves are multidimensional nonlinear systems that are able to exhibit a wide variety of different activity patterns. Their "dynamical repertoire" includes regular or chaotic spiking, regular or chaotic bursting, multistability, and complex transient regimes. (2) Usually, neuronal oscillations are the result of the cooperative activity of many synaptically connected neurons (a neuronal circuit). Thus, it is necessary to consider synchronization between different neuronal circuits as well. (3) The synapses that implement the coupling between neurons are also dynamical elements and their intrinsic dynamics influences the process of synchronization or entrainment significantly. In this review we will focus on four new problems: (i) the synchronization in minimal neuronal networks with plastic synapses (synchronization with activity dependent coupling), (ii) synchronization of bursts that are generated by a group of nonsymmetrically coupled inhibitory neurons (heteroclinic synchronization), (iii) the coordination of activities of two coupled neuronal networks (partial synchronization of small composite structures), and (iv) coarse grained synchronization in larger systems (synchronization on a mesoscopic scale). (c) 2008 American Institute of Physics.

  7. Peripheral chemoreceptors tune inspiratory drive via tonic expiratory neuron hubs in the medullary ventral respiratory column network.

    Segers, L S; Nuding, S C; Ott, M M; Dean, J B; Bolser, D C; O'Connor, R; Morris, K F; Lindsey, B G

    2015-01-01

    Models of brain stem ventral respiratory column (VRC) circuits typically emphasize populations of neurons, each active during a particular phase of the respiratory cycle. We have proposed that "tonic" pericolumnar expiratory (t-E) neurons tune breathing during baroreceptor-evoked reductions and central chemoreceptor-evoked enhancements of inspiratory (I) drive. The aims of this study were to further characterize the coordinated activity of t-E neurons and test the hypothesis that peripheral chemoreceptors also modulate drive via inhibition of t-E neurons and disinhibition of their inspiratory neuron targets. Spike trains of 828 VRC neurons were acquired by multielectrode arrays along with phrenic nerve signals from 22 decerebrate, vagotomized, neuromuscularly blocked, artificially ventilated adult cats. Forty-eight of 191 t-E neurons fired synchronously with another t-E neuron as indicated by cross-correlogram central peaks; 32 of the 39 synchronous pairs were elements of groups with mutual pairwise correlations. Gravitational clustering identified fluctuations in t-E neuron synchrony. A network model supported the prediction that inhibitory populations with spike synchrony reduce target neuron firing probabilities, resulting in offset or central correlogram troughs. In five animals, stimulation of carotid chemoreceptors evoked changes in the firing rates of 179 of 240 neurons. Thirty-two neuron pairs had correlogram troughs consistent with convergent and divergent t-E inhibition of I cells and disinhibitory enhancement of drive. Four of 10 t-E neurons that responded to sequential stimulation of peripheral and central chemoreceptors triggered 25 cross-correlograms with offset features. The results support the hypothesis that multiple afferent systems dynamically tune inspiratory drive in part via coordinated t-E neurons. Copyright © 2015 the American Physiological Society.

  8. MPTP-induced executive dysfunction is associated with altered prefrontal serotonergic function.

    Maiti, Panchanan; Gregg, Laura C; McDonald, Michael P

    2016-02-01

    In Parkinson's disease, cognitive deficits manifest as fronto-striatally-mediated executive dysfunction, with impaired attention, planning, judgment, and impulse control. We examined changes in executive function in mice lesioned with subchronic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a 3-choice serial reaction-time (SRT) task, which included measures of sustained attention and impulse control. Each trial of the baseline SRT task comprised a pseudo-random pre-cue period ranging from 3 to 8 s, followed by a 1-s cue duration. MPTP impaired all measures of impulsive behavior acutely, but with additional training their performance normalized to saline control levels. When challenged with shorter cue durations, MPTP-lesioned mice had significantly slower reaction times than wild-type mice. When challenged with longer pre-cue times, the MPTP-lesioned mice exhibited a loss of impulse control at the longer durations. In lesioned mice, striatal dopamine was depleted by 54% and the number of tyrosine-hydroxylase-positive neurons in the substantia nigra pars compacta was reduced by 75%. Serotonin (5-HT) was unchanged in the striatum and prefrontal cortex (PFC), but the ratio of 5-hydroxyindolacetic acid (5-HIAA) to 5-HT was significantly reduced in the MPTP group in the PFC. In lesioned mice, prefrontal 5-HIAA/5-HT was significantly correlated with the executive impairments and striatal norepinephrine was associated with slower reaction times. None of the neurochemical measures was significantly associated with behavior in saline-treated controls. Taken together, these results show that prefrontal 5-HT turnover may play a pivotal role in MPTP-induced executive dysfunction. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. From Neurons to Newtons

    Nielsen, Bjørn Gilbert

    2001-01-01

    proteins generate forces, to the macroscopic levels where overt arm movements are vol- untarily controlled within an unpredictable environment by legions of neurons¯ring in orderly fashion. An extensive computer simulation system has been developed for this thesis, which at present contains a neural...... network scripting language for specifying arbitrary neural architectures, de¯nition ¯les for detailed spinal networks, various biologically realistic models of neurons, and dynamic synapses. Also included are structurally accurate models of intrafusal and extra-fusal muscle ¯bers and a general body...... that an explicit function may be derived which expresses the force that the spindle contractile elements must produce to exactly counter spindle unloading during muscle shortening. This information was used to calculate the corresponding "optimal" °-motoneuronal activity level. For some simple arm movement tasks...

  10. Criticality in Neuronal Networks

    Friedman, Nir; Ito, Shinya; Brinkman, Braden A. W.; Shimono, Masanori; Deville, R. E. Lee; Beggs, John M.; Dahmen, Karin A.; Butler, Tom C.

    2012-02-01

    In recent years, experiments detecting the electrical firing patterns in slices of in vitro brain tissue have been analyzed to suggest the presence of scale invariance and possibly criticality in the brain. Much of the work done however has been limited in two ways: 1) the data collected is from local field potentials that do not represent the firing of individual neurons; 2) the analysis has been primarily limited to histograms. In our work we examine data based on the firing of individual neurons (spike data), and greatly extend the analysis by considering shape collapse and exponents. Our results strongly suggest that the brain operates near a tuned critical point of a highly distinctive universality class.

  11. Fluorescence imaging of glutamate release in neurons

    Wang, Ziqiang; Yeung, Edward S.

    1999-01-01

    A noninvasive detection scheme based on glutamate dehydrogenase (GDH) enzymatic assay combined with microscopy was developed to measure the glutamate release in cultured cells from the central nervous system (CNS). The enzyme reaction is very specific and sensitive. The detection limit with charge-coupled device (CCD) imaging is down to μM levels of glutamate with reasonable response time (∼30 s). The standard glutamate test shows a linear response over 3 orders of magnitude, from μM to 0.1 mM range. The in vitro monitoring of glutamate release from cultured neuron cells demonstrated excellent spatial and temporal resolution. (c) 1999 Society for Applied Spectroscopy

  12. Brucella abortus-activated microglia induce neuronal death through primary phagocytosis.

    Rodríguez, Ana M; Delpino, M Victoria; Miraglia, M Cruz; Costa Franco, Miriam M; Barrionuevo, Paula; Dennis, Vida A; Oliveira, Sergio C; Giambartolomei, Guillermo H

    2017-07-01

    Inflammation has long been implicated as a contributor to pathogenesis in neurobrucellosis. Many of the associated neurocognitive symptoms of neurobrucellosis may be the result of neuronal dysfunction resulting from the inflammatory response induced by Brucella abortus infection in the central nervous system. In this manuscript, we describe an immune mechanism for inflammatory activation of microglia that leads to neuronal death upon B. abortus infection. B. abortus was unable to infect or harm primary cultures of mouse neurons. However, when neurons were co-cultured with microglia and infected with B. abortus significant neuronal loss occurred. This phenomenon was dependent on TLR2 activation by Brucella lipoproteins. Neuronal death was not due to apoptosis, but it was dependent on the microglial release of nitric oxide (NO). B. abortus infection stimulated microglial proliferation, phagocytic activity and engulfment of neurons. NO secreted by B. abortus-activated microglia induced neuronal exposure of the "eat-me" signal phosphatidylserine (PS). Blocking of PS-binding to protein milk fat globule epidermal growth factor-8 (MFG-E8) or microglial vitronectin receptor-MFG-E8 interaction was sufficient to prevent neuronal loss by inhibiting microglial phagocytosis without affecting their activation. Taken together, our results indicate that B. abortus is not directly toxic to neurons; rather, these cells become distressed and are killed by phagocytosis in the inflammatory surroundings generated by infected microglia. Neuronal loss induced by B. abortus-activated microglia may explain, in part, the neurological deficits observed during neurobrucellosis. © 2017 Wiley Periodicals, Inc.

  13. Auditory DUM neurons in a bush-cricket: A filter bank for carrier frequency.

    Lefebvre, Paule Chloé; Seifert, Marvin; Stumpner, Andreas

    2018-05-01

    In bush-crickets the first stage of central auditory processing occurs in the prothoracic ganglion. About 15 to 50 different auditory dorsal unpaired median neurons (DUM neurons) exist but they have not been studied in any detail. These DUM neurons may be classified into seven different morphological types, although, there is only limited correlation between morphology and physiological responses. Ninety seven percent of the stained neurons were local, 3% were intersegmental. About 90% project nearly exclusively into the auditory neuropile, and 45% into restricted areas therein. Lateral extensions overlap with the axons of primary auditory sensory neurons close to their branching point. DUM neurons are typically tuned to frequencies covering the range between 2 and 50 kHz and thereby may establish a filter bank for carrier frequency. Less than 10% of DUM neurons have their branches in adjacent and more posterior regions of the auditory neuropile and are mostly tuned to low frequencies, less sensitive than the other types and respond to vibration. Thirty five percent of DUM show indications of inhibition, either through reduced responses at higher intensities, or by hyperpolarizing responses to sound. Most DUM neurons produce phasic spike responses preferably at higher intensities. Spikes may be elicited by intracellular current injection. Preliminary data suggest that auditory DUM neurons have GABA as transmitter and therefore may inhibit other auditory interneurons. From all known local auditory neurons, only DUM neurons have frequency specific responses which appear suited for local processing relevant for acoustic communication in bush crickets. © 2018 Wiley Periodicals, Inc.

  14. Anorexia and impaired glucose metabolism in mice with hypothalamic ablation of Glut4 neurons.

    Ren, Hongxia; Lu, Taylor Y; McGraw, Timothy E; Accili, Domenico

    2015-02-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin-mediated cell ablation to selectively remove basal hypothalamic Glut4 neurons and investigate the resulting phenotypes. After Glut4 neuron ablation, mice demonstrate altered hormone and nutrient signaling in the CNS. Accordingly, they exhibit negative energy balance phenotype characterized by reduced food intake and increased energy expenditure, without locomotor deficits or gross neuronal abnormalities. Glut4 neuron ablation affects orexigenic melanin-concentrating hormone neurons but has limited effect on neuropeptide Y/agouti-related protein and proopiomelanocortin neurons. The food intake phenotype can be partially normalized by GABA administration, suggesting that it arises from defective GABAergic transmission. Glut4 neuron-ablated mice show peripheral metabolic defects, including fasting hyperglycemia and glucose intolerance, decreased insulin levels, and elevated hepatic gluconeogenic genes. We conclude that Glut4 neurons integrate hormonal and nutritional cues and mediate CNS actions of insulin on energy balance and peripheral metabolism. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  15. Distribution of glycinergic neuronal somata in the rat spinal cord.

    Hossaini, Mehdi; French, Pim J; Holstege, Jan C

    2007-04-20

    Glycine transporter 2 (GlyT2) mRNA is exclusively expressed in glycinergic neurons, and is presently considered a reliable marker for glycinergic neuronal somata. In this study, we have performed non-radioactive in situ hybridization to localize GlyT2 mRNA in fixed free-floating sections of cervical (C2 and C6), thoracic (T5), lumbar (L2 and L5) and sacral (S1) segments of the rat spinal cord. The results showed that in all segments the majority of the GlyT2 mRNA labeled (glycinergic) neuronal somata was present in the deep dorsal horn and the intermediate zone (laminae III-VIII), with around 50% (range 43.7-70.9%) in laminae VII&VIII. In contrast, the superficial dorsal horn, the motoneuronal cell groups and the area around the central canal contained only few glycinergic neuronal somata. The density (number of glycinergic neuronal somata per mm(2)) was also low in these areas, while the highest densities were found in laminae V to VIII. The lateral spinal nucleus and the lateral cervical nucleus also contained a limited number of glycinergic neurons. Our findings showed that the distribution pattern of the glycinergic neuronal somata is similar in all the examined segments. The few differences that were found in the relative laminar distribution between some of the segments, are most likely due to technical reasons. We therefore conclude that the observed distribution pattern of glycinergic neuronal somata is present throughout the spinal cord. Our findings further showed that the non-radioactive in situ hybridization technique for identifying GlyT2 mRNA in fixed free-floating sections is a highly efficient tool for identifying glycinergic neurons in the spinal cord.

  16. Synchronization dynamics in a small pacemaker neuronal ensemble via a robust adaptive controller

    Cornejo-Pérez, O.; Solis-Perales, G.C.; Arenas-Prado, J.A.

    2012-01-01

    The synchronization dynamics of a pacemaker neuronal ensemble under the action of a control command is studied herein. The ensemble corresponds to the pyloric central pattern generator of the stomatogastric ganglion of lobster. The desired dynamics is provided by means of an external master neuron and it is induced via a nonlinear controller. Such a controller is composed of a linearizing-like controller and a high gain observer; the controller is able to counteract uncertainties and external perturbations in the controlled system. Numerical simulations of the robust synchronization dynamics of the master neuron and the pacemaker neuronal ensemble are displayed.

  17. Altered Chloride Homeostasis Decreases the Action Potential Threshold and Increases Hyperexcitability in Hippocampal Neurons

    Sørensen, Andreas T; Ledri, Marco; Melis, Miriam

    2017-01-01

    Chloride ions play an important role in controlling excitability of principal neurons in the central nervous system. When neurotransmitter GABA is released from inhibitory interneurons, activated GABA type A (GABAA) receptors on principal neurons become permeable to chloride. Typically, chloride...... neurons, and promote AP generation. It is generally recognized that altered chloride homeostasis per se has no effect on the AP threshold. Here, we demonstrate that chloride overload of mouse principal CA3 pyramidal neurons not only makes these cells more excitable through GABAA receptor activation...

  18. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice.

    Otsuka, Tsuyoshi; Kawai, Misato; Togo, Yuki; Goda, Ryosei; Kawase, Takahiro; Matsuo, Haruka; Iwamoto, Ayaka; Nagasawa, Mao; Furuse, Mitsuhiro; Yasuo, Shinobu

    2014-02-01

    Seasonal affective disorder (SAD) is characterized by depression during specific seasons, generally winter. The pathophysiological mechanisms underlying SAD remain elusive due to a limited number of animal models with high availability and validity. Here we show that laboratory C57BL/6J mice display photoperiodic changes in depression-like behavior and brain serotonin content. C57BL/6J mice maintained under short-day conditions, as compared to those under long-day conditions, demonstrated prolonged immobility times in the forced swimming test with lower brain levels of serotonin and its precursor l-tryptophan. Furthermore, photoperiod altered multiple parameters reflective of peripheral metabolism, including the ratio of plasma l-tryptophan to the sum of other large neutral amino acids that compete for transport across the blood-brain barrier, responses of circulating glucose and insulin to glucose load, sucrose intake under restricted feeding condition, and sensitivity of the brain serotonergic system to peripherally administered glucose. These data suggest that the mechanisms underlying SAD involve the brain-peripheral tissue network, and C57BL/6J mice can serve as a powerful tool for investigating the link between seasons and mood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Short-term plasticity in turtle dorsal horn neurons mediated by L-type Ca2+ channels

    Russo, R E; Hounsgaard, J

    1994-01-01

    Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup of the re......Windup--the gradual increase of the response--of dorsal horn neurons to repeated activation of primary afferents is an elementary form of short-term plasticity that may mediate central sensitization to pain. In deep dorsal horn neurons of the turtle spinal cord in vitro we report windup...

  20. A central neural circuit for itch sensation.

    Mu, Di; Deng, Juan; Liu, Ke-Fei; Wu, Zhen-Yu; Shi, Yu-Feng; Guo, Wei-Min; Mao, Qun-Quan; Liu, Xing-Jun; Li, Hui; Sun, Yan-Gang

    2017-08-18

    Although itch sensation is an important protective mechanism for animals, chronic itch remains a challenging clinical problem. Itch processing has been studied extensively at the spinal level. However, how itch information is transmitted to the brain and what central circuits underlie the itch-induced scratching behavior remain largely unknown. We found that the spinoparabrachial pathway was activated during itch processing and that optogenetic suppression of this pathway impaired itch-induced scratching behaviors. Itch-mediating spinal neurons, which express the gastrin-releasing peptide receptor, are disynaptically connected to the parabrachial nucleus via glutamatergic spinal projection neurons. Blockade of synaptic output of glutamatergic neurons in the parabrachial nucleus suppressed pruritogen-induced scratching behavior. Thus, our studies reveal a central neural circuit that is critical for itch signal processing. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  1. Dopamine suppresses neuronal activity of Helisoma B5 neurons via a D2-like receptor, activating PLC and K channels.

    Zhong, L R; Artinian, L; Rehder, V

    2013-01-03

    Dopamine (DA) plays fundamental roles as a neurotransmitter and neuromodulator in the central nervous system. How DA modulates the electrical excitability of individual neurons to elicit various behaviors is of great interest in many systems. The buccal ganglion of the freshwater pond snail Helisoma trivolvis contains the neuronal circuitry for feeding and DA is known to modulate the feeding motor program in Helisoma. The buccal neuron B5 participates in the control of gut contractile activity and is surrounded by dopaminergic processes, which are expected to release DA. In order to study whether DA modulates the electrical activity of individual B5 neurons, we performed experiments on physically isolated B5 neurons in culture and on B5 neurons within the buccal ganglion in situ. We report that DA application elicited a strong hyperpolarization in both conditions and turned the electrical activity from a spontaneously firing state to an electrically silent state. Using the cell culture system, we demonstrated that the strong hyperpolarization was inhibited by the D2 receptor antagonist sulpiride and the phospholipase C (PLC) inhibitor U73122, indicating that DA affected the membrane potential of B5 neurons through the activation of a D2-like receptor and PLC. Further studies revealed that the DA-induced hyperpolarization was inhibited by the K channel blockers 4-aminopyridine and tetraethylammonium, suggesting that K channels might serve as the ultimate target of DA signaling. Through its modulatory effect on the electrical activity of B5 neurons, the release of DA in vivo may contribute to a neuronal output that results in a variable feeding motor program. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Hearing loss alters serotonergic modulation of intrinsic excitability in auditory cortex.

    Rao, Deepti; Basura, Gregory J; Roche, Joseph; Daniels, Scott; Mancilla, Jaime G; Manis, Paul B

    2010-11-01

    Sensorineural hearing loss during early childhood alters auditory cortical evoked potentials in humans and profoundly changes auditory processing in hearing-impaired animals. Multiple mechanisms underlie the early postnatal establishment of cortical circuits, but one important set of developmental mechanisms relies on the neuromodulator serotonin (5-hydroxytryptamine [5-HT]). On the other hand, early sensory activity may also regulate the establishment of adultlike 5-HT receptor expression and function. We examined the role of 5-HT in auditory cortex by first investigating how 5-HT neurotransmission and 5-HT(2) receptors influence the intrinsic excitability of layer II/III pyramidal neurons in brain slices of primary auditory cortex (A1). A brief application of 5-HT (50 μM) transiently and reversibly decreased firing rates, input resistance, and spike rate adaptation in normal postnatal day 12 (P12) to P21 rats. Compared with sham-operated animals, cochlear ablation increased excitability at P12-P21, but all the effects of 5-HT, except for the decrease in adaptation, were eliminated in both sham-operated and cochlear-ablated rats. At P30-P35, cochlear ablation did not increase intrinsic excitability compared with shams, but it did prevent a pronounced decrease in excitability that appeared 10 min after 5-HT application. We also tested whether the effects on excitability were mediated by 5-HT(2) receptors. In the presence of the 5-HT(2)-receptor antagonist, ketanserin, 5-HT significantly decreased excitability compared with 5-HT or ketanserin alone in both sham-operated and cochlear-ablated P12-P21 rats. However, at P30-P35, ketanserin had no effect in sham-operated and only a modest effect cochlear-ablated animals. The 5-HT(2)-specific agonist 5-methoxy-N,N-dimethyltryptamine also had no effect at P12-P21. These results suggest that 5-HT likely regulates pyramidal cell excitability via multiple receptor subtypes with opposing effects. These data also show that

  3. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus.

    Hernández, Vivian M; Hegeman, Daniel J; Cui, Qiaoling; Kelver, Daniel A; Fiske, Michael P; Glajch, Kelly E; Pitt, Jason E; Huang, Tina Y; Justice, Nicholas J; Chan, C Savio

    2015-08-26

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping expression of the

  4. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  5. Metabolic reprogramming during neuronal differentiation.

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation.

  6. Abnormal Glycogen Storage by Retinal Neurons in Diabetes.

    Gardiner, Tom A; Canning, Paul; Tipping, Nuala; Archer, Desmond B; Stitt, Alan W

    2015-12-01

    It is widely held that neurons of the central nervous system do not store glycogen and that accumulation of the polysaccharide may cause neurodegeneration. Since primary neural injury occurs in diabetic retinopathy, we examined neuronal glycogen status in the retina of streptozotocin-induced diabetic and control rats. Glycogen was localized in eyes of streptozotocin-induced diabetic and control rats using light microscopic histochemistry and electron microscopy, and correlated with immunohistochemical staining for glycogen phosphorylase and phosphorylated glycogen synthase (pGS). Electron microscopy of 2-month-old diabetic rats (n = 6) showed massive accumulations of glycogen in the perinuclear cytoplasm of many amacrine neurons. In 4-month-old diabetic rats (n = 11), quantification of glycogen-engorged amacrine cells showed a mean of 26 cells/mm of central retina (SD ± 5), compared to 0.5 (SD ± 0.2) in controls (n = 8). Immunohistochemical staining for glycogen phosphorylase revealed strong expression in amacrine and ganglion cells of control retina, and increased staining in cell processes of the inner plexiform layer in diabetic retina. In control retina, the inactive pGS was consistently sequestered within the cell nuclei of all retinal neurons and the retinal pigment epithelium (RPE), but in diabetics nuclear pGS was reduced or lost in all classes of retinal cell except the ganglion cells and cone photoreceptors. The present study identifies a large population of retinal neurons that normally utilize glycogen metabolism but show pathologic storage of the polysaccharide during uncontrolled diabetes.

  7. Implication of coumarins towards central nervous system disorders.

    Skalicka-Woźniak, Krystyna; Orhan, Ilkay Erdogan; Cordell, Geoffrey A; Nabavi, Seyed Mohammad; Budzyńska, Barbara

    2016-01-01

    Coumarins are widely distributed, plant-derived, 2H-1-benzopyran-2-one derivatives which have attracted intense interest in recent years as a result of their diverse and potent pharmacological properties. Particularly, their effects on the central nervous system (CNS) have been established. The present review discusses the most important pharmacological effects of natural and synthetic coumarins on the CNS, including their interactions with benzodiazepine receptors, their dopaminergic and serotonergic affinity, and their ability to inhibit cholinesterases and monoamine oxidases. The structure-activity relationships pertaining to these effects are also discussed. This review posits that natural or synthetic coumarins have the potential for development in the therapy of psychiatric and neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, schizophrenia, anxiety, epilepsy, and depression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice

    Jianing Yu

    2008-12-01

    Full Text Available Layer 5 pyramidal neurons comprise an important but heterogeneous group of cortical projection neurons. In motor-frontal cortex, these neurons are centrally involved in the cortical control of movement. Recent studies indicate that local excitatory networks in mouse motor-frontal cortex are dominated by descending pathways from layer 2/3 to 5. However, those pathways were identified in experiments involving unlabeled neurons in wild type mice. Here, to explore the possibility of class-specific connectivity in this descending pathway, we mapped the local sources of excitatory synaptic input to a genetically labeled population of cortical neurons: YFP-positive layer 5 neurons of YFP-H mice. We found, first, that in motor cortex, YFP-positive neurons were distributed in a double blade, consistent with the idea of layer 5B having greater thickness in frontal neocortex. Second, whereas unlabeled neurons in upper layer 5 received their strongest inputs from layer 2, YFP-positive neurons in the upper blade received prominent layer 3 inputs. Third, YFP-positive neurons exhibited distinct electrophysiological properties, including low spike frequency adaptation, as reported previously. Our results with this genetically labeled neuronal population indicate the presence of distinct local-circuit phenotypes among layer 5 pyramidal neurons in mouse motor-frontal cortex, and present a paradigm for investigating local circuit organization in other genetically labeled populations of cortical neurons.

  9. Directed neuronal differentiation of human embryonic stem cells

    Noggle Scott A

    2003-10-01

    Full Text Available Abstract Background We have developed a culture system for the efficient and directed differentiation of human embryonic stem cells (HESCs to neural precursors and neurons. HESC were maintained by manual passaging and were differentiated to a morphologically distinct OCT-4+/SSEA-4- monolayer cell type prior to the derivation of embryoid bodies. Embryoid bodies were grown in suspension in serum free conditions, in the presence of 50% conditioned medium from the human hepatocarcinoma cell line HepG2 (MedII. Results A neural precursor population was observed within HESC derived serum free embryoid bodies cultured in MedII conditioned medium, around 7–10 days after derivation. The neural precursors were organized into rosettes comprised of a central cavity surrounded by ring of cells, 4 to 8 cells in width. The central cells within rosettes were proliferating, as indicated by the presence of condensed mitotic chromosomes and by phosphoHistone H3 immunostaining. When plated and maintained in adherent culture, the rosettes of neural precursors were surrounded by large interwoven networks of neurites. Immunostaining demonstrated the expression of nestin in rosettes and associated non-neuronal cell types, and a radial expression of Map-2 in rosettes. Differentiated neurons expressed the markers Map-2 and Neurofilament H, and a subpopulation of the neurons expressed tyrosine hydroxylase, a marker for dopaminergic neurons. Conclusion This novel directed differentiation approach led to the efficient derivation of neuronal cultures from HESCs, including the differentiation of tyrosine hydroxylase expressing neurons. HESC were morphologically differentiated to a monolayer OCT-4+ cell type, which was used to derive embryoid bodies directly into serum free conditions. Exposure to the MedII conditioned medium enhanced the derivation of neural precursors, the first example of the effect of this conditioned medium on HESC.

  10. The cellular prion protein interacts with the tissue non-specific alkaline phosphatase in membrane microdomains of bioaminergic neuronal cells.

    Myriam Ermonval

    Full Text Available BACKGROUND: The cellular prion protein, PrP(C, is GPI anchored and abundant in lipid rafts. The absolute requirement of PrP(C in neurodegeneration associated to prion diseases is well established. However, the function of this ubiquitous protein is still puzzling. Our previous work using the 1C11 neuronal model, provided evidence that PrP(C acts as a cell surface receptor. Besides a ubiquitous signaling function of PrP(C, we have described a neuronal specificity pointing to a role of PrP(C in neuronal homeostasis. 1C11 cells, upon appropriate induction, engage into neuronal differentiation programs, giving rise either to serotonergic (1C11(5-HT or noradrenergic (1C11(NE derivatives. METHODOLOGY/PRINCIPAL FINDINGS: The neuronal specificity of PrP(C signaling prompted us to search for PrP(C partners in 1C11-derived bioaminergic neuronal cells. We show here by immunoprecipitation an association of PrP(C with an 80 kDa protein identified by mass spectrometry as the tissue non-specific alkaline phosphatase (TNAP. This interaction occurs in lipid rafts and is restricted to 1C11-derived neuronal progenies. Our data indicate that TNAP is implemented during the differentiation programs of 1C11(5-HT and 1C11(NE cells and is active at their cell surface. Noteworthy, TNAP may contribute to the regulation of serotonin or catecholamine synthesis in 1C11(5-HT and 1C11(NE bioaminergic cells by controlling pyridoxal phosphate levels. Finally, TNAP activity is shown to modulate the phosphorylation status of laminin and thereby its interaction with PrP. CONCLUSION/SIGNIFICANCE: The identification of a novel PrP(C partner in lipid rafts of neuronal cells favors the idea of a role of PrP in multiple functions. Because PrP(C and laminin functionally interact to support neuronal differentiation and memory consolidation, our findings introduce TNAP as a functional protagonist in the PrP(C-laminin interplay. The partnership between TNAP and PrP(C in neuronal cells may

  11. Visualization of migration of human cortical neurons generated from induced pluripotent stem cells.

    Bamba, Yohei; Kanemura, Yonehiro; Okano, Hideyuki; Yamasaki, Mami

    2017-09-01

    Neuronal migration is considered a key process in human brain development. However, direct observation of migrating human cortical neurons in the fetal brain is accompanied by ethical concerns and is a major obstacle in investigating human cortical neuronal migration. We established a novel system that enables direct visualization of migrating cortical neurons generated from human induced pluripotent stem cells (hiPSCs). We observed the migration of cortical neurons generated from hiPSCs derived from a control and from a patient with lissencephaly. Our system needs no viable brain tissue, which is usually used in slice culture. Migratory behavior of human cortical neuron can be observed more easily and more vividly by its fluorescence and glial scaffold than that by earlier methods. Our in vitro experimental system provides a new platform for investigating development of the human central nervous system and brain malformation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A multisensory centrifugal neuron in the olfactory pathway of heliothine moths

    Zhao, Xin-Cheng; Pfuhl, Gerit; Surlykke, Annemarie

    2013-01-01

    fine processes in the dorsomedial region of the protocerebrum and extensive neuronal branches with blebby terminals in all glomeruli of the antennal lobe. Its soma is located dorsally of the central body close to the brain midline. Mass-fills of antennal-lobe connections with protocerebral regions...... showed that the centrifugal neuron is, in each brain hemisphere, one within a small group of neurons having their somata clustered. In both species the neuron was excited during application of non-odorant airborne signals, including transient sound pulses of broad bandwidth and air velocity changes....... Additional responses to odors were recorded from the neuron in Hel