WorldWideScience

Sample records for central orexin neurons

  1. Orexin neurons receive glycinergic innervations.

    Directory of Open Access Journals (Sweden)

    Mari Hondo

    Full Text Available Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation.

  2. Activation of the Basal Forebrain by the Orexin/Hypocretin Neurons: Orexin International Symposium

    OpenAIRE

    Arrigoni, Elda; Mochizuki, Takatoshi; Scammell, Thomas E.

    2009-01-01

    The orexin neurons play an essential role in driving arousal and in maintaining normal wakefulness. Lack of orexin neurotransmission produces a chronic state of hypoarousal characterized by excessive sleepiness, frequent transitions between wake and sleep, and episodes of cataplexy. A growing body of research now suggests that the basal forebrain (BF) may be a key site through which the orexin-producing neurons promote arousal. Here we review anatomical, pharmacological and electrophysiologic...

  3. Inhibitory Interplay between Orexin Neurons and Eating

    OpenAIRE

    González, J. Antonio; Jensen, Lise T.; Iordanidou, Panagiota; Strom, Molly; Fugger, Lars; Burdakov, Denis

    2016-01-01

    Summary In humans and rodents, loss of brain orexin/hypocretin (OH) neurons causes pathological sleepiness [1–4], whereas OH hyperactivity is associated with stress and anxiety [5–10]. OH cell control is thus of considerable interest. OH cells are activated by fasting [11, 12] and proposed to stimulate eating [13]. However, OH cells are also activated by diverse feeding-unrelated stressors [14–17] and stimulate locomotion and “fight-or-flight” responses [18–20]. Such OH-mediated behaviors pre...

  4. GABAergic Neurons in the Preoptic Area Send Direct Inhibitory Projections to Orexin Neurons

    OpenAIRE

    Yuki eSaito; Natsuko eTsujino; Emi eHasegawa; Kaoru eAkashi; Manabu eAbe; Michihiro eMieda; Kenji eSakimura; Takeshi eSakurai

    2013-01-01

    Populations of neurons in the hypothalamic preoptic area (POA) fire rapidly during sleep, exhibiting sleep/waking state-dependent firing patterns that are the reciprocal of those observed in the arousal system. The majority of these preoptic “sleep-active” neurons contain the inhibitory neurotransmitter GABA. On the other hand, a population of neurons in the lateral hypothalamic area (LHA) contains orexins, which play an important role in the maintenance of wakefulness, and exhibit an excitat...

  5. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons

    OpenAIRE

    Saito, Yuki C.; Tsujino, Natsuko; Hasegawa, Emi; Akashi, Kaori; Abe, Manabu; Mieda, Michihiro; Sakimura, Kenji; Sakurai, Takeshi

    2013-01-01

    Populations of neurons in the hypothalamic preoptic area (POA) fire rapidly during sleep, exhibiting sleep/waking state-dependent firing patterns that are the reciprocal of those observed in the arousal system. The majority of these preoptic "sleep-active" neurons contain the inhibitory neurotransmitter GABA. On the other hand, a population of neurons in the lateral hypothalamic area (LHA) contains orexins, which play an important role in the maintenance of wakefulness, and exhibit an excitat...

  6. Orexin-A Modulates Firing of Rat Rostral Ventromedial Medulla Neurons: An In Vitro Study

    OpenAIRE

    Hassan Azhdari-Zarmehri; Saeed Semnanian; Yaghoub Fathollahi

    2015-01-01

    The rostral ventromedial medulla (RVM) acts a key role in the descending inhibitory pain modulation. Neuropeptide orexin-A (ORXA) is confined to thousands of neurons in the lateral hypothalamus (LH). While RVM gets the orexinergic projections, the orexin receptors are also expressed in this structure. The aim of this study was to specify the cellular effects of ORXA on RVM neurons in vitro by using the whole cell patch-clamp recording. RVM neurons were classified into three typ...

  7. Thermosensing mechanisms and their impairment by high-fat diet in orexin neurons.

    Science.gov (United States)

    Belanger-Willoughby, N; Linehan, V; Hirasawa, M

    2016-06-01

    In homeotherms, the hypothalamus controls thermoregulatory and adaptive mechanisms in energy balance, sleep-wake and locomotor activity to maintain optimal body temperature. Orexin neurons may be involved in these functions as they promote thermogenesis, food intake and behavioral arousal, and are sensitive to temperature and metabolic status. How thermal and energy balance signals are integrated in these neurons is unknown. Thus, we investigated the cellular mechanisms of thermosensing in orexin neurons and their response to a change in energy status using whole-cell patch clamp on rat brain slices. We found that warming induced an increase in miniature excitatory postsynaptic current (EPSC) frequency, which was blocked by the transient receptor potential vanilloid-1 (TRPV1) receptor antagonist AMG9810 and mimicked by its agonist capsaicin, suggesting that the synaptic effect is mediated by heat-sensitive TRPV1 channels. Furthermore, warming inhibits orexin neurons by activating ATP-sensitive potassium (KATP) channels, an effect regulated by uncoupling protein 2 (UCP2), as the UCP2 inhibitor genipin abolished this response. These properties are unique to orexin neurons in the lateral hypothalamus, as neighboring melanin-concentrating hormone neurons showed no response to warming within the physiological temperature range. Interestingly, in rats fed with western diet for 1 or 11weeks, orexin neurons had impaired synaptic and KATP response to warming. In summary, this study reveals several mechanisms underlying thermosensing in orexin neurons and their attenuation by western diet. Overeating induced by western diet may in part be due to impaired orexin thermosensing, as post-prandial thermogenesis may promote satiety and lethargy by inhibiting orexin neurons. PMID:26964685

  8. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons

    Science.gov (United States)

    Tung, Li-Wei; Lu, Guan-Ling; Lee, Yen-Hsien; Yu, Lung; Lee, Hsin-Jung; Leishman, Emma; Bradshaw, Heather; Hwang, Ling-Ling; Hung, Ming-Shiu; Mackie, Ken; Zimmer, Andreas; Chiou, Lih-Chu

    2016-01-01

    Orexins are associated with drug relapse in rodents. Here, we show that acute restraint stress in mice activates lateral hypothalamic (LH) orexin neurons, increases levels of orexin A and 2-arachidonoylglycerol (2-AG) in the ventral tegmental area (VTA), and reinstates extinguished cocaine-conditioned place preference (CPP). This stress-induced reinstatement of cocaine CPP depends on type 1 orexin receptors (OX1Rs), type 1 cannabinoid receptors (CB1Rs) and diacylglycerol lipase (DAGL) in the VTA. In dopaminergic neurons of VTA slices, orexin A presynaptically inhibits GABAergic transmission. This effect is prevented by internal GDP-β-S or inhibiting OX1Rs, CB1Rs, phospholipase C or DAGL, and potentiated by inhibiting 2-AG degradation. These results suggest that restraint stress activates LH orexin neurons, releasing orexins into the VTA to activate postsynaptic OX1Rs of dopaminergic neurons and generate 2-AG through a Gq-protein-phospholipase C-DAGL cascade. 2-AG retrogradely inhibits GABA release through presynaptic CB1Rs, leading to VTA dopaminergic disinhibition and reinstatement of cocaine CPP. PMID:27448020

  9. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons.

    Science.gov (United States)

    Tung, Li-Wei; Lu, Guan-Ling; Lee, Yen-Hsien; Yu, Lung; Lee, Hsin-Jung; Leishman, Emma; Bradshaw, Heather; Hwang, Ling-Ling; Hung, Ming-Shiu; Mackie, Ken; Zimmer, Andreas; Chiou, Lih-Chu

    2016-01-01

    Orexins are associated with drug relapse in rodents. Here, we show that acute restraint stress in mice activates lateral hypothalamic (LH) orexin neurons, increases levels of orexin A and 2-arachidonoylglycerol (2-AG) in the ventral tegmental area (VTA), and reinstates extinguished cocaine-conditioned place preference (CPP). This stress-induced reinstatement of cocaine CPP depends on type 1 orexin receptors (OX1Rs), type 1 cannabinoid receptors (CB1Rs) and diacylglycerol lipase (DAGL) in the VTA. In dopaminergic neurons of VTA slices, orexin A presynaptically inhibits GABAergic transmission. This effect is prevented by internal GDP-β-S or inhibiting OX1Rs, CB1Rs, phospholipase C or DAGL, and potentiated by inhibiting 2-AG degradation. These results suggest that restraint stress activates LH orexin neurons, releasing orexins into the VTA to activate postsynaptic OX1Rs of dopaminergic neurons and generate 2-AG through a Gq-protein-phospholipase C-DAGL cascade. 2-AG retrogradely inhibits GABA release through presynaptic CB1Rs, leading to VTA dopaminergic disinhibition and reinstatement of cocaine CPP. PMID:27448020

  10. Optogenetic probing of fast glutamatergic transmission from hypocretin/orexin to histamine neurons in situ

    OpenAIRE

    Schöne, Cornelia; Cao, Zhen Fang Huang; Apergis‐Schoute, John; Adamantidis, Antoine; Sakurai, Takeshi; Burdakov, Denis

    2012-01-01

    Hypothalamic hypocretin/orexin (hcrt/orx) neurons coordinate sleep-wake cycles, reward seeking, and body energy balance. Neuro-chemical data suggest that hcrt/orx cells contain several transmitters, but what hcrt/orx cells release onto their projection targets is unknown. A major pathway by which hcrt/orx neurons are thought to promote arousal is through projections to tuberomammillary histamine (HA) neurons. To study the impact of the electrical activity in hcrt/orx cells on HA neurons, we g...

  11. Neurons Containing Orexin or Melanin Concentrating Hormone Reciprocally Regulate Wake and Sleep

    Directory of Open Access Journals (Sweden)

    Roda Rani eKonadhode

    2015-01-01

    Full Text Available There is considerable amount of data on arousal neurons whereas there is a paucity of knowledge regarding neurons that make us fall asleep. Indeed, current network models of sleep-wake regulation list many arousal neuronal populations compared to only one sleep group located in the preoptic area. There are neurons outside the preoptic area that are active during sleep, but they have never been selectively manipulated. Indeed, none of the sleep-active neurons have been selectively stimulated. To close this knowledge gap we used optogenetics to selectively manipulate neurons containing melanin concentrating hormone (MCH. The MCH neurons are located in the posterior hypothalamus intermingled with the orexin arousal neurons. Our data indicated that optogenetic stimulation of MCH neurons in wildtype mice (J Neuroscience, 2013 robustly increased both non-REM and REM sleep. MCH neuron stimulation increased sleep during the animal’s normal active period, which is compelling evidence that stimulation of MCH neurons has a powerful effect in counteracting the strong arousal signal from all of the arousal neurons. The MCH neurons represent the only group of sleep-active neurons that when selectively stimulated induce sleep. From a translational perspective this is potentially useful in sleep disorders, such as insomnia, where sleep needs to be triggered against a strong arousal drive. Our studies indicate that the MCH neurons belong within an overall model of sleep-wake regulation.

  12. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  13. Differential sensitivity of GABAergic and glycinergic inputs to orexin-A in preganglionic cardiac vagal neurons of newborn rats

    Institute of Scientific and Technical Information of China (English)

    Ji-jiang WANG; Yong-hua CHEN; Ke-yong LI; Feng-yan SUN

    2005-01-01

    Aim: To test the effect of orexin-A (hypocretin-1), a neuropeptide synthesized in the lateral hypothalamus and the perifornical area, on the glycinergic inputs and the GABAergic inputs of cardiac vagal neurons (CVN). Methods: The effects of orexin-A at three concentrations (20 nmol/L, 100 nmol/L, 500 nmol/L) on the glycinergic inputs and the GABAergic inputs were investigated by using retrograde fluorescent labeling of cardiac neurons (CVN) in the nucleus ambiguus (NA) and the voltage patch-clamp technique. Results: Orexin-A dose-dependently increased the frequency of both the glycinergic and the GABAergic spontaneous inhibitory postsynaptic currents (sIPSC). However, at a lower concentration (20 nmol/L) of orexin-A, although the frequency of the glycinergic sIPSC was significantly increased, the frequency of the GABAergic sIPSC was not significantly changed. Conclusion: The glycinergic inputs and the GABAergic inputs have different sensitivities to orexin-A, which suggests that the two kinds of inhibitory inputs might play different roles in the synaptic control of cardiac vagal functions.

  14. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons.

    Science.gov (United States)

    Ardianto, C; Yonemochi, N; Yamamoto, S; Yang, L; Takenoya, F; Shioda, S; Nagase, H; Ikeda, H; Kamei, J

    2016-04-21

    The hypothalamus controls feeding behavior. Since central opioid systems may regulate feeding behavior, we examined the role of μ-, δ- and κ-opioid receptors in the lateral hypothalamus (LH), the hunger center, in feeding behavior of mice. Non-selective (naloxone; 3mg/kg, s.c.) and selective μ- (β-funaltrexamine, β-FNA; 10mg/kg, s.c.), δ- (naltrindole; 3mg/kg, s.c.) and κ- (norbinaltorphimine, norBNI; 20mg/kg, s.c.) opioid receptor antagonists significantly decreased food intake in food-deprived mice. The injection of naloxone (20μg/side) into the LH significantly decreased food intake whereas the injection of naloxone (20μg/side) outside of the LH did not affect food intake. The injection of β-FNA (2μg/side), naltrindole (1μg/side) or norBNI (2μg/side) into the LH significantly decreased food intake. Furthermore, all these antagonists significantly decreased the mRNA level of preproorexin, but not those of other hypothalamic neuropeptides. In addition, the injection of the GABAA receptor agonist muscimol (5μg/side) into the LH significantly decreased food intake, and this effect was abolished by the GABAA receptor antagonist bicuculline (50μg/side). Muscimol (1mg/kg, i.p.) decreased the mRNA level of preproorexin in the hypothalamus. Naloxone (3mg/kg, s.c.) significantly increased the GABA level in the LH and both bicuculline and the GABA release inhibitor 3-mercaptopropionic acid (3-MP, 5μg/side) attenuated the inhibitory effect of naloxone on feeding behavior. 3-MP also attenuated the effects of β-FNA and norBNI, but not that of naltrindole. These results show that opioid systems in the LH regulate feeding behavior through orexin neurons. Moreover, μ- and κ-, but not δ-, opioid receptor antagonists inhibit feeding behavior by activating GABA neurons in the LH. PMID:26855191

  15. Leptin transiently antagonizes ghrelin and long-lastingly orexin in regulation of Ca2+ signaling in neuropeptide Y neurons of the arcuate nucleus

    Institute of Scientific and Technical Information of China (English)

    Daisuke Kohno; Shigetomo Suyama; Toshihiko Yada

    2008-01-01

    AIM: To explore the mechanism for interactions of leptin with ghrelin and orexin in the arcuate nucleus (ARC) activating neuropeptide Y (NPY) neurons during physiological regulation of feeding. METHODS: Single neurons from ARC of adult rats with matured feeding function were isolated. [Ca2+]I was measured to monitore their activities. The time course of leptin effects on ghrelin-induced versus orexin-induced [Ca2+]I increases in NPY neurons was studied. RESULTS: Administration of ghrelin or orexin-A at 10-10 mol/L increased cytosolic Ca2+ concentration ([Ca2+I) in NPY neurons isolated from the ARC of adult rats. Upon administration of leptin at 10-14-1012 mol/L, ghrelin-induced [Ca2+]I increases were initially (<10 min) inhibited but later restored, exhibiting a transient pattern of inhibition. In contrast, orexin-induced [Ca2+]I increases were inhibited by leptin in a long-lasting manner. Furthermore, a prior administration of leptin inhibited orexin action but not ghrelin action to increase [Ca2+]I. CONCLUSION: Leptin counteracted ghrelin effects transiently and orexin effects long-lastingly in NPY neurons. The transient property with which leptin counteracts ghrelin action in NPY neurons may allow the fasting-associated increase in ghrelin levels to activate NPY neurons in the presence of physiological leptin and to stimulate feeding.

  16. Sleep-deprivation regulates α-2 adrenergic responses of rat hypocretin/orexin neurons.

    Directory of Open Access Journals (Sweden)

    Aaron Uschakov

    Full Text Available We recently demonstrated, in rat brain slices, that the usual excitation by noradrenaline (NA of hypocretin/orexin (hcrt/orx neurons was changed to an inhibition following sleep deprivation (SD. Here we describe that in control condition (CC, i.e. following 2 hours of natural sleep in the morning, the α(2-adrenergic receptor (α(2-AR agonist, clonidine, had no effect on hcrt/orx neurons, whereas following 2 hours of SD (SDC, it hyperpolarized the neurons by activating G-protein-gated inwardly rectifying potassium (GIRK channels. Since concentrations of clonidine up to a thousand times (100 µM higher than those effective in SDC (100 nM, were completely ineffective in CC, a change in the availability of G-proteins is unlikely to explain the difference between the two conditions. To test whether the absence of effect of clonidine in CC could be due to a down-regulation of GIRK channels, we applied baclofen, a GABA(B agonist known to also activate GIRK channels, and found that it hyperpolarized hcrt/orx neurons in that condition. Moreover, baclofen occluded the response to clonidine in SDC, indicating that absence of effect of clonidine in CC could not be attributed to down-regulation of GIRK channels. We finally tested whether α(2-ARs were still available at the membrane in CC and found that clonidine could reduce calcium currents, indicating that α(2-ARs associated with calcium channels remain available in that condition. Taken together, these results suggest that a pool of α(2-ARs associated with GIRK channels is normally down-regulated (or desensitized in hcrt/orx neurons to only become available for their inhibition following sleep deprivation.

  17. Selective orexin receptor antagonists.

    Science.gov (United States)

    Lebold, Terry P; Bonaventure, Pascal; Shireman, Brock T

    2013-09-01

    The orexin, or hypocretin, neuropeptides (orexin-A and orexin-B) are produced on neurons in the hypothalamus which project to key areas of the brain that control sleep-wake states, modulation of food intake, panic, anxiety, emotion, reward and addictive behaviors. These neuropeptides exert their effects on a pair of G-protein coupled receptors termed the orexin-1 (OX1) and orexin-2 (OX2) receptors. Emerging biology suggests the involvement of these receptors in psychiatric disorders as they are thought to play a key role in the regulation of multiple systems. This review is intended to highlight key selective OX1 or OX2 small-molecule antagonists. PMID:23891187

  18. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    Directory of Open Access Journals (Sweden)

    ChristopherSLeonard

    2013-12-01

    Full Text Available Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2 are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic (laterodorsal tegmental nucleus; LDT and monoaminergic (dorsal raphe; DR and locus coeruleus; LC brainstem nuclei – where orexins promote arousal and suppress REM sleep. In slices from OX2-/- mice, orexin-A (300 nM elicited wild-type responses in LDT, DR and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX1-/- mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX1-/- mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2± transients mediated by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  19. GABA Receptors on Orexin and Melanin-Concentrating Hormone Neurons Are Differentially Homeostatically Regulated Following Sleep Deprivation123

    Science.gov (United States)

    Toossi, Hanieh; del Cid-Pellitero, Esther

    2016-01-01

    Abstract Though overlapping in distribution through the hypothalamus, orexin (Orx) and melanin-concentrating hormone (MCH) neurons play opposite roles in the regulation of sleep–wake states. Orx neurons discharge during waking, whereas MCH neurons discharge during sleep. In the present study, we examined in mice whether GABAA and GABAB receptors (Rs) are present on Orx and MCH neurons and might undergo differential changes as a function of their different activities following sleep deprivation (SD) and sleep recovery (SR). Applying quantitative stereological image analysis to dual-immunofluorescent stained sections, we determined that the proportion of Orx neurons positively immunostained for GABAARs was significantly higher following SD (∼48%) compared with sleep control (SC; ∼24%) and SR (∼27%), and that the luminance of the GABAARs was significantly greater. In contrast, the average proportion of the MCH neurons immunostained for GABAARs was insignificantly lower following SD (∼43%) compared with SC (∼54%) and SR (56%), and the luminance of the GABAARs was significantly less. Although, GABABRs were observed in all Orx and MCH neurons (100%), the luminance of these receptors was differentially altered following SD. The intensity of GABABRs in the Orx neurons was significantly greater after SD than after SC and SR, whereas that in the MCH neurons was significantly less. The present results indicate that GABA receptors undergo dynamic and differential changes in the wake-active Orx neurons and the sleep-active MCH neurons as a function of and homeostatic adjustment to their preceding activity and sleep–wake state. PMID:27294196

  20. Orexin-a regulates body temperature in coordination with control of arousal state

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Orexins, hypothalamic neuropeptieds, are involved in modulation of food intake and arousal state. To examine further physiological roles of orexin in brain function, the effects of centrally administered orexin- A on body temperature was investigated in rats. Assessed by a telemetry-sensor system implanted into the abdominal cavity, infusion of orexin-A into the third cerebroventricle increased body temperature in a dose-responsive manner. Cumulative ambulatory activity was concomitantly increased during 6 h but not 12 h after administration of orexin-A. Expression of uncoupling protein 1 (UCP1) mRNA in brown adipose tissue, as a marker for peripheal thermogenesis which affects body temperature, failed to increase after orexin-A administration. Expression of UCP3 mRNA in skeletal muscle but not UCP 2 in white adipose tissue was upregulated by infusion of orexin-A. The resulting information indicates that orexin neuron regulates body temperature in coordination with control of arousal system independently of peripheral thermogenesis through the BAT UCP1.

  1. The neuronal circuit between nociceptin/orphanin FQ and hypocretins/orexins coordinately modulates stress-induced analgesia and anxiety-related behavior.

    Science.gov (United States)

    Xie, Xinmin Simon

    2015-01-01

    The neuropeptide nociceptin/orphanin FQ (N/OFQ), acting on its receptors (NOP), modulates a variety of biological functions and neurobehavior including nociception, stress responses, water and food-intake, locomotor activity, and spatial attention. N/OFQ is conventionally regarded as an "antiopiate" peptide in the brain because central administration of N/OFQ attenuates stress-induced analgesia (SIA) and produces anxiolytic effects. However, naloxone-irreversible SIA and anxiolytic action are unlikely to be mediated by the opiate system. Both N/OFQ and NOP receptors are expressed most abundantly in the hypothalamus, where two other neuropeptides, the hypocretins/orexins (Hcrts), are exclusively synthesized in the lateral hypothalamic area. N/OFQ and Hcrt regulate most cellular physiological responses in opposite directions (e.g., ion channel modulation and second messenger coupling), and produce differential modulations for almost all neurobehavior assessed, including sleep/wake, locomotion, and rewarding behaviors. This chapter focuses on recent studies that provide evidence at a neuroanatomical level showing that a local neuronal circuit linking N/OFQ to Hcrt neurons exists. Functionally, N/OFQ depresses Hcrt neuronal activity at the cellular level, and modulates stress responses, especially SIA and anxiety-related behavior in the whole organism. N/OFQ exerts its attenuation of SIA and anxiolytic action on fear-induced anxiety through direct modulation of Hcrt neuronal activity. The information obtained from these studies has provided insights into how interaction between the Hcrt and N/OFQ systems positively and negatively modulates the complex and integrated stress responses. PMID:25677777

  2. Orexin A reverses propofol and thiopental induced cytoskeletal rearrangement in rat neurons.

    Science.gov (United States)

    Turina, D; Gerhardsson, H; Bjornstrom, K

    2014-08-01

    Orexin A (OA) is an endogenous peptide regulating awakefulness, known to reduce anaesthesia in animals, but on cellular level its mechanisms to reverse anaesthetics are unknown. Primary cortical cell cultures from newborn rat brains are used and live cell light microscopy is performed to measure 1) neurite retraction after propofol, thiopental, barbituric acid and ketamine exposure and 2) the effect of OA application either before or after anaesthetics. Cytoskeletal reorganization is evaluated with fluorescence microscopy, protein changes are detected with Western blots and mass spectrometry is used to identify proteins after treatment with anaesthetics and/or OA. Adult rats are anaesthesized with propofol, and the cytoskeletal morphology is studied. Orexin A reverses and inhibits neurite retraction and actin ring formation induced by propofol and thiopental. No effect on retraction or actin rings was seen for ketamine (not active on gamma-aminobutiric acid A (GABA(A)) receptors), the non-anaesthetic barbituric acid, OA or solvents used. OA increases the tyrosine phosphorylation of a 50 kDa protein, identified as vimentin. Propofol induces an immediate granular appearance of vimentin, which OAreverses to a smooth distribution. Cytoskeletal morphology changes are also induced by propofol in vivo. All OA effects are blocked with an orexin receptor1 (OX1) antagonist. We conclude that OA reverses the GABAA receptor mediated cellular effects of both propofol and thiopental in rat brain cells. The morphologic changes of actin and vimentin caused by propofol and thiopental, and the subsequent reversal by OA, deepens our understanding of the mechanisms of anaesthesia. PMID:25179085

  3. Delayed Orexin Signaling Consolidates Wakefulness and Sleep: Physiology and Modeling

    OpenAIRE

    Diniz Behn, C. G.; Kopell, N.; Brown, E. N.; Mochizuki, T; Scammell, T.E.

    2008-01-01

    Orexin-producing neurons are clearly essential for the regulation of wakefulness and sleep because loss of these cells produces narcolepsy. However, little is understood about how these neurons dynamically interact with other wake- and sleep-regulatory nuclei to control behavioral states. Using survival analysis of wake bouts in wild-type and orexin knockout mice, we found that orexins are necessary for the maintenance of long bouts of wakefulness, but orexin deficiency has little impact on w...

  4. Activation of orexin neurons in dorsomedial/perifornical hypothalamus and antidepressant reversal in a rodent model of depression.

    Science.gov (United States)

    Nollet, Mathieu; Gaillard, Philippe; Minier, Frédéric; Tanti, Arnaud; Belzung, Catherine; Leman, Samuel

    2011-01-01

    Chronic stressful life events are risk factors for depression often accompanied by homeostatic disturbances. Hypothalamic neuropeptides, such as orexins (OXs) and melanin-concentrating hormone (MCH), are involved in regulation of several autonomic functions that are altered in depression. However, little is known about the link between orexinergic or MCH-ergic systems and depression. Using double immunohistochemical labeling for OX- or MCH-containing neurons and Fos protein, we studied the effects of a chronic selective serotonin reuptake inhibitor antidepressant treatment (fluoxetine) on the OX and MCH neuronal activation in mice exposed to unpredictable chronic mild stress (UCMS), a rodent model of depression. Western blot was also performed to assess OX and MCH receptor expression in various brain areas. Finally, almorexant, a dual OX receptor antagonist, was assessed in the tail suspension test. UCMS induced physical and behavioral disturbances in mice reversed by 6-week fluoxetine treatment. Orexinergic neurons were more activated in the dorsomedial and perifornical hypothalamic area (DMH-PFA) of UCMS-subjected mice compared to the lateral hypothalamus (LH), and this increase was reversed by 6-week fluoxetine treatment. UCMS also reduced expression of OX-receptor 2 in the thalamus and hypothalamus, but not in animals chronically treated with fluoxetine. MCH neurons were neither affected by UCMS nor by antidepressant treatment, while UCMS modulated MCH receptor 1 expression in thalamus and hippocampus. Finally, chronic but not acute administration of almorexant, induced antidepressant-like effect in the tail suspension test. These data suggest that OX neurons in the DMH-PFA and MCH-ergic system may contribute to the pathophysiology of depressive disorders. PMID:21530551

  5. Increased numbers of orexin/hypocretin neurons in a genetic rat depression model

    DEFF Research Database (Denmark)

    Mikrouli, Elli; Wörtwein, Gitta; Soylu, Rana;

    2011-01-01

    The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression that displays characteristics similar to those of depressed patients including lower body weight, decreased appetite and reduced REM sleep latency. Hypothalamic neuropeptides such as orexin/hypocretin, melanin......-concentrating hormone (MCH) and cocaine and amphetamine regulated transcript (CART), that are involved in the regulation of both energy metabolism and sleep, have recently been implicated also in depression. We therefore hypothesized that alterations in these neuropeptide systems may play a role in the development of...... the FSL phenotype with both depressive like behavior, metabolic abnormalities and sleep disturbances. In this study, we first confirmed that the FSL rats displayed increased immobility in the Porsolt forced swim test compared to their control strain, the Flinders Resistant Line (FRL), which is...

  6. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance

    OpenAIRE

    Leinninger, Gina M.; Opland, Darren M.; Jo, Young-Hwan; Faouzi, Miro; Christensen, Lyndsay; Cappellucci, Laura A.; Rhodes, Christopher J.; Gnegy, Margaret E.; Becker, Jill B.; Pothos, Emmanuel N.; Seasholtz, Audrey F.; Robert C. Thompson; Myers, Martin G.

    2011-01-01

    Leptin acts on leptin receptor (LepRb)-expressing neurons throughout the brain, but the roles for many populations of LepRb neurons in modulating energy balance and behavior remain unclear. We found that the majority of LepRb neurons in the lateral hypothalamic area (LHA) contain neurotensin (Nts). To investigate the physiologic role for leptin action via these LepRbNts neurons, we generated mice null for LepRb specifically in Nts neurons (Nts-LepRbKO mice). Nts-LepRbKO mice demonstrate early...

  7. Orexins and fear: implications for the treatment of anxiety disorders

    OpenAIRE

    Flores de los Heros, ??frica; Saravia, Roc??o; Maldonado, Rafael; Berrendero D??az, Fernando, 1971-

    2015-01-01

    An understanding of the neurobiological mechanisms involved in the regulation of fear is essential for the development of new treatments for anxiety disorders, such as phobias, panic, and post-traumatic stress disorders (PTSD). Orexins, also known as hypocretins, are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system. Although this system was initially believed to be primarily involved in the regulation of feeding be...

  8. Neuropeptides controlling energy balance: orexins and neuromedins

    OpenAIRE

    Nixon, Joshua P.; Kotz, Catherine M.; Novak, Colleen M.; Billington, Charles J.; Teske, Jennifer A.

    2012-01-01

    In this section we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus–perifornical area, and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of...

  9. Roles of orexin in modulating arousal, feeding and motivation

    Directory of Open Access Journals (Sweden)

    Takeshi Sakurai

    2013-04-01

    Full Text Available Orexin deficiency results in narcolepsy in humans, dogs, and rodents, suggesting that the orexin system is particularly important for maintenance of wakefulness. However, orexin neurons are ‘multi-tasking’ neurons that regulate sleep/wake states as well as feeding behavior, emotion, and reward processes. Orexin deficiency causes abnormalities in energy homeostasis, stress-related behavior, and reward systems. Orexin excites waking-active monoaminergic and cholinergic neurons in the hypothalamus and brain stem regions to maintain a long, consolidated waking period. Orexin neurons also have reciprocal links with the hypothalamic nucleus, which regulates feeding. Moreover, the responsiveness of orexin neurons to peripheral metabolic cues suggests that these neurons have an important role as a link between energy homeostasis and vigilance states. The link between orexin and the ventral tegmental nucleus serves to motivate an animal to engage in goal-directed behavior. This review focuses on the interaction of orexin neurons with emotion, reward, and energy homeostasis systems. These connectivities are likely to be highly important to maintain proper vigilance states.

  10. Recruitment of hypothalamic orexin neurons after formalin injections in adult male rats exposed to a neonatal immune challenge

    Directory of Open Access Journals (Sweden)

    Erin Jane Campbell

    2015-03-01

    Full Text Available Exposure to early life physiological stressors, such as infection, is thought to contribute to the onset of psychopathology in adulthood. In animal models, injections of the bacterial immune challenge, lipopolysaccharide (LPS, during the neonatal period has been shown to alter both neuroendocrine function and behavioural pain responses in adulthood. Interestingly, recent evidence suggests a role for the lateral hypothalamic peptide orexin in stress and nociceptive processing. However, whether neonatal LPS exposure affects the reactivity of the orexin system to formalin-induced inflammatory pain in later life remains to be determined. Male Wistar rats (n=13 were exposed to either LPS or saline (0.05mg/kg, i.p on postnatal days (PND 3 and 5. On PND 80-97, all rats were exposed to a subcutaneous hindpaw injection of 2.25% formalin. Following behavioural testing, animals were perfused and brains processed for Fos-protein and orexin immunohistochemistry. Rats treated with LPS during the neonatal period exhibited decreased licking behaviours during the interphase of the formalin test, the period typically associated with the active inhibition of pain, and increased grooming responses to formalin in adulthood. Interestingly, these behavioural changes were accompanied by an increase in the percentage of Fos-positive orexin cells in the dorsomedial and perifornical hypothalamus in LPS-exposed animals. Similar increases in Fos-protein were also observed in stress and pain sensitive brain regions that receive orexinergic inputs. These findings highlight a potential role for orexin in the behavioural responses to pain and provide further evidence that early life stress can prime the circuitry responsible for these responses in adulthood.

  11. Recruitment of hypothalamic orexin neurons after formalin injections in adult male rats exposed to a neonatal immune challenge

    OpenAIRE

    Erin Jane Campbell; Stephanie M Watters; Ihssane eZouikr; Hodgson, Deborah M.; Dayas, Christopher V.

    2015-01-01

    Exposure to early life physiological stressors, such as infection, is thought to contribute to the onset of psychopathology in adulthood. In animal models, injections of the bacterial immune challenge, lipopolysaccharide (LPS), during the neonatal period has been shown to alter both neuroendocrine function and behavioural pain responses in adulthood. Interestingly, recent evidence suggests a role for the lateral hypothalamic peptide orexin in stress and nociceptive processing. However, whethe...

  12. Recruitment of hypothalamic orexin neurons after formalin injections in adult male rats exposed to a neonatal immune challenge

    OpenAIRE

    Erin J Campbell; Stephanie M Watters; Zouikr, Ihssane; Hodgson, Deborah M.; Dayas, Christopher V.

    2015-01-01

    Exposure to early life physiological stressors, such as infection, is thought to contribute to the onset of psychopathology in adulthood. In animal models, injections of the bacterial immune challenge, lipopolysaccharide (LPS), during the neonatal period has been shown to alter both neuroendocrine function and behavioral pain responses in adulthood. Interestingly, recent evidence suggests a role for the lateral hypothalamic peptide orexin in stress and nociceptive processing. However, whether...

  13. Hypothalamic orexin's role in exacerbated cutaneous vasodilation responses to an anxiogenic stimulus in a surgical menopause model.

    Science.gov (United States)

    Federici, Lauren M; Caliman, Izabela Facco; Molosh, Andrei I; Fitz, Stephanie D; Truitt, William A; Bonaventure, Pascal; Carpenter, Janet S; Shekhar, Anantha; Johnson, Philip L

    2016-03-01

    Distressing symptoms such as hot flashes and sleep disturbances affect over 70% of women approaching menopause for an average of 4-7 years, and recent large cohort studies have shown that anxiety and stress are strongly associated with more severe and persistent hot flashes and can induce hot flashes. Although high estrogen doses alleviate symptoms, extended use increases health risks, and current non-hormonal therapies are marginally better than placebo. The lack of effective non-hormonal treatments is largely due to the limited understanding of the mechanisms that underlie menopausal symptoms. One mechanistic pathway that has not been explored is the wake-promoting orexin neuropeptide system. Orexin is exclusively synthesized in the estrogen receptor rich perifornical hypothalamic region, and has an emerging role in anxiety and thermoregulation. In female rodents, estrogens tonically inhibit expression of orexin, and estrogen replacement normalizes severely elevated central orexin levels in postmenopausal women. Using an ovariectomy menopause model, we demonstrated that an anxiogenic compound elicited exacerbated hot flash-associated increases in tail skin temperature (TST, that is blocked with estrogen), and cellular responses in orexin neurons and efferent targets. Furthermore, systemic administration of centrally active, selective orexin 1 or 2 and dual receptor antagonists attenuated or blocked TST responses, respectively. This included the reformulated Suvorexant, which was recently FDA-approved for treating insomnia. Collectively, our data support the hypothesis that dramatic loss of estrogen tone during menopausal states leads to a hyperactive orexin system that contributes to symptoms such as anxiety, insomnia, and more severe hot flashes. Additionally, orexin receptor antagonists may represent a novel non-hormonal therapy for treating menopausal symptoms, with minimal side effects. PMID:26765933

  14. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep

    Directory of Open Access Journals (Sweden)

    Salin Paul

    2003-09-01

    Full Text Available Abstract Background Peptidergic neurons containing the melanin-concentrating hormone (MCH and the hypocretins (or orexins are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. Results Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats. Further, we show that ICV administration of MCH induces a dose-dependant increase in PS (up to 200% and slow wave sleep (up to 70% quantities. Conclusion These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.

  15. The orexin neuropeptide system: Physical activity and hypothalamic function throughout the aging process.

    Directory of Open Access Journals (Sweden)

    Anastasia N Zink

    2014-11-01

    Full Text Available There is a rising medical need for novel therapeutic targets of physical activity. Physical activity spans from spontaneous, low intensity movements to voluntary, high-intensity exercise. Regulation of spontaneous and voluntary movement is distributed over many brain areas and neural substrates, but the specific cellular and molecular mechanisms responsible for mediating overall activity levels are not well understood. The hypothalamus plays a central role in the control of physical activity, which is executed through coordination of multiple signaling systems, including the orexin neuropeptides. Orexin producing neurons integrate physiological and metabolic information to coordinate multiple behavioral states and modulate physical activity in response to the environment. This review is organized around three questions: (1 How do orexin peptides modulate physical activity? (2 What are the effects of aging and lifestyle choices on physical activity? (3 What are the effects of aging on hypothalamic function and the orexin peptides? Discussion of these questions will provide a summary of the current state of knowledge regarding hypothalamic orexin regulation of physical activity during aging and provide a platform on which to develop improved clinical outcomes in age-associated obesity and metabolic syndromes.

  16. Central auditory neurons have composite receptive fields.

    Science.gov (United States)

    Kozlov, Andrei S; Gentner, Timothy Q

    2016-02-01

    High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes. PMID:26787894

  17. Aging-related deficits in orexin/hypocretin modulation of the septo-hippocampal cholinergic system

    OpenAIRE

    Stanley, Emily M.; Fadel, Jim

    2012-01-01

    The medial septum (MS) of the basal forebrain contains cholinergic neurons that project to the hippocampus, support cognitive function, and are implicated in age-related cognitive decline. Hypothalamic orexin/hypocretin neurons innervate and modulate basal forebrain cholinergic neurons and provide direct inputs to the hippocampus. However, the precise role of orexin in modulating hippocampal cholinergic transmission—and how these interactions are altered in aging—is unknown. Here, orexin A wa...

  18. Orexin gene transfer into the amygdala suppresses both spontaneous and emotion-induced cataplexy in orexin-knockout mice.

    Science.gov (United States)

    Liu, Meng; Blanco-Centurion, Carlos; Konadhode, Roda Rani; Luan, Liju; Shiromani, Priyattam J

    2016-03-01

    Narcolepsy is a chronic sleep disorder linked to the loss of orexin-producing neurons in the hypothalamus. Cataplexy, a sudden loss of muscle tone during waking, is an important distinguishing symptom of narcolepsy and it is often triggered by strong emotions. The neural circuit underlying cataplexy attacks is not known, but is likely to involve the amygdala, a region implicated in regulating emotions. In mice models of narcolepsy, transfer of the orexin gene into surrogate neurons has been successful in ameliorating narcoleptic symptoms. However, it is not known whether this method also blocks cataplexy triggered by strong emotions. To examine this possibility, the gene encoding mouse prepro-orexin was transferred into amygdala neurons of orexin-knockout (KO) mice (rAAV-orexin; n = 8). Orexin-KO mice that did not receive gene transfer (no-rAAV; n = 7) or received only the reporter gene (rAAV-GFP; n = 7) served as controls. Three weeks later, the animal's sleep and behaviour were recorded at night (no-odour control night), followed by another recording at night in the presence of predator odour (odour night). Orexin-KO mice given the orexin gene transfer into surrogate amygdala neurons had significantly less spontaneous bouts of cataplexy, and predator odour did not induce cataplexy compared with control mice. Moreover, the mice with orexin gene transfer were awake more during the odour night. These results demonstrate that orexin gene transfer into amygdala neurons can suppress both spontaneous and emotion-induced cataplexy attacks in narcoleptic mice. It suggests that manipulating amygdala pathways is a potential strategy for treating cataplexy in narcolepsy. PMID:26741960

  19. Pharmacological or genetic orexin1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex

    OpenAIRE

    Aluisio, Leah; Fraser, Ian; Berdyyeva, Tamara; Tryputsen, Volha; Shireman, Brock T.; Shoblock, James; Lovenberg, Timothy; Dugovic, Christine; Bonaventure, Pascal

    2014-01-01

    The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors). The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward, and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that or...

  20. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior.

    Directory of Open Access Journals (Sweden)

    Jacki M Rorabaugh

    Full Text Available Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM display signatures of hedonic feeding including bingeing and altered DA receptor (R numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day exposure to the IAM, rats given 8-12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR. This activation was negatively correlated with orexin (Orx neuron activation in the lateral hypothalamus/perifornical area (LH/PeF, a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p. equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  1. Central orexin sensitivity, physical activity, and obesity in diet-induced obese and diet-resistant rats.

    Science.gov (United States)

    Novak, Colleen M; Kotz, Catherine M; Levine, James A

    2006-02-01

    Nonexercise activity thermogenesis (NEAT), the most variable component of energy expenditure, can account for differential capacities for human weight gain. Also highly variable, spontaneous physical activity (SPA) may similarly affect weight balance in animals. In the following study, we utilized the rat model of obesity, the diet-induced obese (DIO) rat, as well as the diet-resistant (DR) rat strain, to investigate how access to a high-fat diet alters SPA and the associated energy expenditure (i.e., NEAT). DIO and DR rats showed no differences in the amount of SPA before access to the high-fat diet. After 29 days on a high-fat diet, the DIO rats showed significant decreases in SPA, whereas the DR rats did not. Next, we wanted to determine whether the DIO and DR rats showed differential sensitivity to microinjections of orexin into the paraventricular nucleus of the hypothalamus (PVN). Unilateral guide cannulae were implanted, aimed at the PVN. Orexin A (0, 0.125, 0.25, and 1.0 nmol in 500 nl) was microinjected through the guide cannula into the PVN, then SPA and energy expenditure were measured for 2 h. Using the response to vehicle as a baseline, the DR rats showed significantly greater increase in NEAT compared with the DIO rats. These data indicate that diet-induced obesity is associated with decreases in SPA and a lack of increase in NEAT. A putative mechanism for changes in NEAT that accompany obesity is a decreased sensitivity to the NEAT-activating effects of neuropeptides such as orexin. PMID:16188908

  2. Central functions of the orexinergic system

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yang Zhang; Lei Yu; Qian-Xing Zhuang; Jing-Ning Zhu; Jian-Jun Wang

    2013-01-01

    The neuropeptide orexin is synthesized by neurons exclusively located in the hypothalamus.However,these neurons send axons over virtually the entire brain and spinal cord and therefore constitute a unique central orexinergic system.It is well known that central orexin plays a crucial role in the regulation of various basic non-somatic and somatic physiological functions,including feeding,energy homeostasis,the sleep/wake cycle,reward,addiction,and neuroendocrine,as well as motor control.Moreover,the absence of orexin results in narcolepsy-cataplexy,a simultaneous somatic and non-somatic dysfunction.In this review,we summarize these central functions of the orexinergic system and associated diseases,and suggest that this system may hold a key position in somatic-non-somatic integration.

  3. Narcolepsy and Orexins: An Example of Progress in Sleep Research

    OpenAIRE

    De la Herrán-Arita, Alberto K.; Guerra-Crespo, Magdalena; Drucker-Colín, René

    2011-01-01

    Narcolepsy is a chronic neurodegenerative disease caused by a deficiency of orexin-producing neurons in the lateral hypothalamus. It is clinically characterized by excessive daytime sleepiness and by intrusions into wakefulness of physiological aspects of rapid eye movement sleep such as cataplexy, sleep paralysis, and hypnagogic hallucinations. The major pathophysiology of narcolepsy has been recently described on the bases of the discovery of the neuropeptides named orexins (hypocretins) in...

  4. Narcolepsy and Orexins: An Example of Progress in Sleep Research

    OpenAIRE

    RenéDrucker-Colin

    2011-01-01

    Narcolepsy is a chronic neurodegenerative disease caused by a deficiency of orexin-producing neurons in the lateral hypothalamus (LH). It is clinically characterized by excessive daytime sleepiness and by intrusions into wakefulness of physiological aspects of rapid eye movement (REM) sleep such as cataplexy, sleep paralysis and hypnagogic hallucinations. The major pathophysiology of narcolepsy has been recently described on the bases of the discovery of the neuropeptides named orexins (h...

  5. Subset specification of central serotonergic neurons

    Directory of Open Access Journals (Sweden)

    Marten P Smidt

    2013-10-01

    Full Text Available The last decade the serotonin (5-hydroxytryptamine; 5-HT system has received enormous attention due to its role in regulation of behavior, exemplified by the discovery that increased 5-HT tone in the central nervous system is able to alleviate affective disorders. Here, we review the developmental processes, with a special emphasis on subset specification, leading to the formation of the 5-HT system in the brain. Molecular classification of 5-HT neuronal groups leads to the definition of two independent rostral groups positioned in rhombomere 1 and 2/3 and a caudal group in rhombomere 5-8. In addition, more disperse refinement of these subsets is present as shown by the selective expression of the 5-HT1A autoreceptor, indicating functional diversity between 5-HT subsets. The functional significance of the molecular coding differences is not well known and the molecular basis of described specific connectivity patterns remain to be elucidated. Recent developments in genetic lineage tracing models will provide these data and form a major step-up towards the full understanding of the importance of developmental programming and function of 5-HT neuronal subsets.

  6. Expression and potential role of the peptide orexin-A in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Valiante, Salvatore [Department of Biology, University of Naples Federico II (Italy); Liguori, Giovanna; Tafuri, Simona [Department of Veterinary Medicine and Animal Productions, University of Naples Federico II (Italy); Pavone, Luigi Michele [Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II (Italy); Campese, Roberto [Department of Urology, “A. Cardarelli” Hospital, Naples (Italy); Monaco, Roberto [Department of Pathology, “A. Cardarelli” Hospital, Naples (Italy); Iachetta, Giuseppina; Assisi, Loredana [Department of Biology, University of Naples Federico II (Italy); Mirabella, Nicola [Department of Veterinary Medicine and Animal Productions, University of Naples Federico II (Italy); Forte, Maurizio [Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples (Italy); Costagliola, Anna [Department of Veterinary Medicine and Animal Productions, University of Naples Federico II (Italy); Vittoria, Alfredo, E-mail: avittori@unina.it [Department of Veterinary Medicine and Animal Productions, University of Naples Federico II (Italy)

    2015-09-04

    The peptides orexin-A and orexin-B and their G protein-coupled OX1 and OX2 receptors are involved in multiple physiological processes in the central nervous system and peripheral organs. Altered expression or signaling dysregulation of orexins and their receptors have been associated with a wide range of human diseases including narcolepsy, obesity, drug addiction, and cancer. Although orexin-A, its precursor molecule prepro-orexin and OX1 receptor have been detected in the human normal and hyperplastic prostate tissues, their expression and function in the prostate cancer (PCa) remains to be addressed. Here, we demonstrate for the first time the immunohistochemical localization of orexin-A in human PCa specimens, and the expression of prepro-orexin and OX1 receptor at both protein and mRNA levels in these tissues. Orexin-A administration to the human androgen-dependent prostate carcinoma cells LNCaP up-regulates OX1 receptor expression resulting in a decrease of cell survival. Noteworthy, nanomolar concentrations of the peptide counteract the testosterone-induced nuclear translocation of the androgen receptor in the cells: the orexin-A action is prevented by the addition of the OX1 receptor antagonist SB-408124 to the test system. These findings indicate that orexin-A/OX1 receptor interaction interferes with the activity of the androgen receptor which regulates PCa onset and progression, thus suggesting that orexin-A and its receptor might represent novel therapeutic targets to challenge this aggressive cancer. - Highlights: • Orexin-A and OX1 receptor are present in human cancer prostate tissues. • Orexin-A up-regulates OX1 receptor expression in LNCaP cells. • Orexin-A inhibits testosterone-induced nuclear translocation of androgen receptor.

  7. Expression and potential role of the peptide orexin-A in prostate cancer

    International Nuclear Information System (INIS)

    The peptides orexin-A and orexin-B and their G protein-coupled OX1 and OX2 receptors are involved in multiple physiological processes in the central nervous system and peripheral organs. Altered expression or signaling dysregulation of orexins and their receptors have been associated with a wide range of human diseases including narcolepsy, obesity, drug addiction, and cancer. Although orexin-A, its precursor molecule prepro-orexin and OX1 receptor have been detected in the human normal and hyperplastic prostate tissues, their expression and function in the prostate cancer (PCa) remains to be addressed. Here, we demonstrate for the first time the immunohistochemical localization of orexin-A in human PCa specimens, and the expression of prepro-orexin and OX1 receptor at both protein and mRNA levels in these tissues. Orexin-A administration to the human androgen-dependent prostate carcinoma cells LNCaP up-regulates OX1 receptor expression resulting in a decrease of cell survival. Noteworthy, nanomolar concentrations of the peptide counteract the testosterone-induced nuclear translocation of the androgen receptor in the cells: the orexin-A action is prevented by the addition of the OX1 receptor antagonist SB-408124 to the test system. These findings indicate that orexin-A/OX1 receptor interaction interferes with the activity of the androgen receptor which regulates PCa onset and progression, thus suggesting that orexin-A and its receptor might represent novel therapeutic targets to challenge this aggressive cancer. - Highlights: • Orexin-A and OX1 receptor are present in human cancer prostate tissues. • Orexin-A up-regulates OX1 receptor expression in LNCaP cells. • Orexin-A inhibits testosterone-induced nuclear translocation of androgen receptor

  8. Signal Propagation in Drosophila Central Neurons

    OpenAIRE

    Gouwens, Nathan W.; Wilson, Rachel I.

    2009-01-01

    Drosophila is an important model organism for investigating neural development, neural morphology, neurophysiology, and neural correlates of behaviors. However, almost nothing is known about how electrical signals propagate in Drosophila neurons. Here we address these issues in antennal lobe projection neurons (PNs), one of the most well-studied classes of Drosophila neurons. We use morphological and electrophysiological data to deduce the passive membrane properties of these neurons and to b...

  9. Orexin receptor expression in human adipose tissue: effects of orexin-A and orexin-B.

    Science.gov (United States)

    Digby, J E; Chen, J; Tang, J Y; Lehnert, H; Matthews, R N; Randeva, H S

    2006-10-01

    Orexin-A and orexin-B, via their receptors orexin-1 receptor (OX1R) and orexin-2 receptor (OX2R) have been shown to play a role in the regulation of feeding, body weight, and energy expenditure. Adipose tissue also contributes significantly to the maintenance of body weight by interacting with a complex array of bioactive peptides; however, there are no data as yet on the expression of orexin components in adipose tissue. We, therefore, analyzed the expression of OX1R and OX2R in human adipose tissue and determined functional responses to orexin-A and orexin-B. OX1R and OX2R mRNA expression was detected in subcutaneous (s.c.) and omental adipose tissue and in isolated adipocytes. Protein for OX1R and OX2R was also detected in whole adipose tissue sections and lysates. Treatment with orexin-A, and orexin-B (100 nM, 24 h) resulted in a significant increase in peroxisome proliferator-activated receptors gamma-2 mRNA expression in s.c. adipose tissue (P B treatment (P < 0.05). Glycerol release from omental adipose tissue was also significantly reduced with orexin-A treatment (P < 0.05). These findings demonstrate for the first time the presence of functional orexin receptors in human adipose tissue and suggest a role for orexins in adipose tissue metabolism and adipogenesis. PMID:17065396

  10. Topology of Central Pattern Generators Selection by Chaotic Neurons

    CERN Document Server

    Huerta, R; Rabinovich, M I; Abarbanel, Henry D I; Abarbanel, Henry D I

    1999-01-01

    Central Pattern Generators (CPGs) in invertebrates are comprised of networks of neurons in which every neuron has reciprocal connections to other members of the CPG. This is a ``closed'' network topology. An ``open'' topology, where one or more neurons receives input but does not send output to other member neurons, is not found in these CPGs. In this paper we investigate a possible reason for this topological structure using the ability to perform a biological functional task as a measure of the efficacy of the network. When the CPG is composed of model neurons which exhibit regular membrane voltage oscillations, open topologies are essentially as able to maximize this functionality as closed topologies. When we replace these models by neurons which exhibit chaotic membrane voltage oscillations, the functional criterion selects closed topologies when the demands of the task are increased, and these are the topologies observed in known CPG networks. As isolated neurons from invertebrate CPGs are known in some...

  11. Orexin modulates brown adipose tissue thermogenesis

    OpenAIRE

    Madden, Christopher J.; Tupone, Domenico; Morrison, Shaun F.

    2012-01-01

    Non-shivering thermogenesis in brown adipose tissue (BAT) plays an important role in thermoregulation. In addition, activations of BAT have important implications for energy homeostasis due to the metabolic consumption of energy reserves entailed in the production of heat in this tissue. In this conceptual overview we describe the role of orexins/hypocretins within the central nervous system in the modulation of thermogenesis in BAT under several physiological conditions. Within this framewor...

  12. Hypocretin (orexin regulation of sleep-to-wake transitions

    Directory of Open Access Journals (Sweden)

    Luis eDe Lecea

    2014-02-01

    Full Text Available The hypocretin (Hcrt, also known as orexin, peptides are essential for arousal stability. Here I discuss background information about the interaction of Hcrt with other neuromodulators, including norepinephrine and acetylcholine probed with optogenetics. I conclude that Hcrt neurons integrate metabolic, circadian and limbic inputs and convey this information to a network of neuromodulators, each of which has a different role on the dynamic of sleep-to-wake transitions. This model may prove useful to predict the effects of orexin receptor antagonists in sleep disorders and other conditions.

  13. Regulation of protein prenyltransferase in central neurons

    OpenAIRE

    Zhou, Xiu-Ping; Luo, Zhen-Ge

    2009-01-01

    Geranylgeranyltransferase I (GGT) is a protein prenyltransferase that mediates lipid modification of some proteins such as Rho family small GTPases. Since the activation of Rho GTPases mediates tumorgenesis and metastasis, GGT has become an attractive target for anti-tumor drug design. Although GGT is extensively expressed in the brain, the function of GGT in central nervous system (CNS) is totally unknown. We have previously shown that GGT was involved in neuromuscular synaptogenesis. In thi...

  14. A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents

    Directory of Open Access Journals (Sweden)

    Nixon Joshua P

    2007-06-01

    Full Text Available Abstract Background The orexins (hypocretins are a family of peptides found primarily in neurons in the lateral hypothalamus. Although the orexinergic system is generally thought to be the same across species, the orexins are involved in behaviors which show considerable interspecific variability. There are few direct cross-species comparisons of the distributions of cells and fibers containing these peptides. Here, we addressed the possibility that there might be important species differences by systematically examining and directly comparing the distribution of orexinergic neurons and fibers within the forebrains of species with very different patterns of sleep-wake behavior. Methods We compared the distribution of orexin-immunoreactive cell bodies and fibers in two nocturnal species (the lab rat, Rattus norvegicus and the golden hamster, Mesocricetus auratus and two diurnal species (the Nile grass rat, Arvicanthis niloticus and the degu, Octodon degus. For each species, tissue from the olfactory bulbs through the brainstem was processed for immunoreactivity for orexin A and orexin B (hypocretin-1 and -2. The distribution of orexin-positive cells was noted for each species. Orexin fiber distribution and density was recorded and analyzed using a principal components factor analysis to aid in evaluating potential species differences. Results Orexin-positive cells were observed in the lateral hypothalamic area of each species, though there were differences with respect to distribution within this region. In addition, cells positive for orexin A but not orexin B were observed in the paraventricular nucleus of the lab rat and grass rat, and in the supraoptic nucleus of the lab rat, grass rat and hamster. Although the overall distributions of orexin A and B fibers were similar in the four species, some striking differences were noted, especially in the lateral mammillary nucleus, ventromedial hypothalamic nucleus and flocculus. Conclusion The orexin

  15. Orexin Signaling in the Paraventricular Thalamic Nucleus Modulates Mesolimbic Dopamine and Hedonic Feeding in the Rat

    OpenAIRE

    Choi, Derrick L.; Davis, Jon F.; Magrisso, Irwin J.; Fitzgerald, Maureen E.; Lipton, Jack W.; Benoit, Stephen C.

    2012-01-01

    Data from our lab indicate that the orexin system is involved in the regulation of both conditioned and unconditioned responding for palatable foods. Anticipation of food rewards activates orexin receptor containing neurons within the paraventricular nucleus of the thalamus (PVT). The PVT regulates mesolimbic dopamine neurochemistry through direct connections with the nucleus accumbens and modulates the processing of cognitive-emotional information, suggesting that the PVT may represent a uni...

  16. The hypocretin/orexin system: implications for drug reward and relapse

    OpenAIRE

    Plaza-Zabala, Ainhoa; Maldonado, Rafael; Berrendero D??az, Fernando, 1971-

    2012-01-01

    Hypocretins (also known as orexins) are hypothalamic neuropeptides involved in the regulation of sleep/wake states and feeding behavior. Recent studies have also demonstrated an important role for the hypocretin/orexin system in the addictive properties of drugs of abuse, consistent with the reciprocal innervations between hypocretin neurons and brain areas involved in reward processing. This system participates in the primary reinforcing effects of opioids, nicotine, and alcohol. Hypocretins...

  17. Microinjection of Orexin-A into the Locus Coeruleus Area Induces Morphine Withdrawal Behaviors in Morphine Independent Rats

    Directory of Open Access Journals (Sweden)

    Hosin Azizi

    2012-02-01

    Full Text Available Introduction: Orexin neuropeptide has a role in opioid withdrawal behaviors. Orexin-expressing neurons that are present in the hypothalamic nuclei send dense projections to the Locus Coeruleus (LC. Withdrawal syndrome is temporally associated with hyperactivity of LC neurons. LC neurons do not show withdrawal-induced hyperactivity in brain slices from morphine-dependent rats. Thus, it has been suggested that the increase in LC neuronal activity seen in vivo is mediated by extrinsic factors. Therefore, this study was carried out to find whether LC microinjection of orexin-A can induce withdrawal behaviors. Method: Adult male Wistar rats were used in this study. Intra-LC microinjection of orexin-A or orexin-A vehicle was performed one week after LC cannulation. Thereafter, somatic signs of withdrawal were evaluated during a period of 25 min.Findings: Orexin-A induced several signs of morphine withdrawal. Conclusion: It may be concluded that orexin at LC acts as an extrinsic factor in the expression of morphine withdrawal syndrome.

  18. Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons

    Science.gov (United States)

    Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert

    2012-02-01

    The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.

  19. Orexin-dependent activation of layer VIb enhances cortical network activity and integration of non-specific thalamocortical inputs.

    Science.gov (United States)

    Hay, Y Audrey; Andjelic, Sofija; Badr, Sammy; Lambolez, Bertrand

    2015-11-01

    Neocortical layer VI is critically involved in thalamocortical activity changes during the sleep/wake cycle. It receives dense projections from thalamic nuclei sensitive to the wake-promoting neuropeptides orexins, and its deepest part, layer VIb, is the only cortical lamina reactive to orexins. This convergence of wake-promoting inputs prompted us to investigate how layer VIb can modulate cortical arousal, using patch-clamp recordings and optogenetics in rat brain slices. We found that the majority of layer VIb neurons were excited by nicotinic agonists and orexin through the activation of nicotinic receptors containing α4-α5-β2 subunits and OX2 receptor, respectively. Specific effects of orexin on layer VIb neurons were potentiated by low nicotine concentrations and we used this paradigm to explore their intracortical projections. Co-application of nicotine and orexin increased the frequency of excitatory post-synaptic currents in the ipsilateral cortex, with maximal effect in infragranular layers and minimal effect in layer IV, as well as in the contralateral cortex. The ability of layer VIb to relay thalamocortical inputs was tested using photostimulation of channelrhodopsin-expressing fibers from the orexin-sensitive rhomboid nucleus in the parietal cortex. Photostimulation induced robust excitatory currents in layer VIa neurons that were not pre-synaptically modulated by orexin, but exhibited a delayed, orexin-dependent, component. Activation of layer VIb by orexin enhanced the reliability and spike-timing precision of layer VIa responses to rhomboid inputs. These results indicate that layer VIb acts as an orexin-gated excitatory feedforward loop that potentiates thalamocortical arousal. PMID:25108310

  20. GABA-ergic neurons in the leach central nervous system

    International Nuclear Information System (INIS)

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10-5M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by 3H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites

  1. Electrophysiological characterization of neurons in the dorsolateral pontine REM sleep induction zone of the rat: intrinsic membrane properties and responses to carbachol and orexins

    OpenAIRE

    Brown§, Ritchie E.; Winston, Stuart; Basheer, Radhika; Thakkar, Mahesh M.; McCarley, Robert W.

    2006-01-01

    Pharmacological, lesion and single-unit recording techniques in several animal species have identified a region of the pontine reticular formation (Subcoeruleus, SubC) just ventral to the locus coeruleus as critically involved in the generation of rapid-eye-movement (REM) sleep. However, the intrinsic membrane properties and responses of SubC neurons to neurotransmitters important ...

  2. An essential role for orexins in emergence from general anesthesia

    Science.gov (United States)

    Kelz, Max B.; Sun, Yi; Chen, Jingqiu; Cheng Meng, Qing; Moore, Jason T.; Veasey, Sigrid C.; Dixon, Shelley; Thornton, Marcus; Funato, Hiromasa; Yanagisawa, Masashi

    2008-01-01

    The neural mechanisms through which the state of anesthesia arises and dissipates remain unknown. One common belief is that emergence from anesthesia is the inverse process of induction, brought about by elimination of anesthetic drugs from their CNS site(s) of action. Anesthetic-induced unconsciousness may result from specific interactions of anesthetics with the neural circuits regulating sleep and wakefulness. Orexinergic agonists and antagonists have the potential to alter the stability of the anesthetized state. In this report, we refine the role of the endogenous orexin system in impacting emergence from, but not entry into the anesthetized state, and in doing so, we distinguish mechanisms of induction from those of emergence. We demonstrate that isoflurane and sevoflurane, two commonly used general anesthetics, inhibit c-Fos expression in orexinergic but not adjacent melanin-concentrating hormone (MCH) neurons; suggesting that wake-active orexinergic neurons are inhibited by these anesthetics. Genetic ablation of orexinergic neurons, which causes acquired murine narcolepsy, delays emergence from anesthesia, without changing anesthetic induction. Pharmacologic studies with a selective orexin-1 receptor antagonist confirm a specific orexin effect on anesthetic emergence without an associated change in induction. We conclude that there are important differences in the neural substrates mediating induction and emergence. These findings support the concept that emergence depends, in part, on recruitment and stabilization of wake-active regions of brain. PMID:18195361

  3. Differential sleep-promoting effects of dual orexin receptor antagonists and GABAA receptor modulators

    OpenAIRE

    Gotter, Anthony L.; Garson, Susan L.; Stevens, Joanne; Munden, Regina L; Fox, Steven V.; Tannenbaum, Pamela L.; Yao, Lihang; Kuduk, Scott D.; McDonald, Terrence; Uslaner, Jason M.; Tye, Spencer J.; Coleman, Paul J.; Winrow, Christopher J; Renger, John J.

    2014-01-01

    Background The current standard of care for insomnia includes gamma-aminobutyric acid receptor A (GABAA) activators, which promote sleep as well as general central nervous system depression. Dual orexin receptor antagonists (DORAs) represent an alternative mechanism for insomnia treatment that induces somnolence by blocking the wake-promoting effects of orexin neuropeptides. The current study compares the role and interdependence of these two mechanisms on their ability to influence sleep arc...

  4. Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep.

    Science.gov (United States)

    Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Palmerston, Jeremiah B; Thomas, Alexia M; Morairty, Stephen R; Neylan, Thomas C; Kilduff, Thomas S

    2016-01-01

    Hypocretin 1 and 2 (Hcrts; also known as orexin A and B), excitatory neuropeptides synthesized in cells located in the tuberal hypothalamus, play a central role in the control of arousal. Hcrt inputs to the locus coeruleus norepinephrine (LC NE) system and the posterior hypothalamic histaminergic tuberomammillary nuclei (TMN HA) are important efferent pathways for Hcrt-induced wakefulness. The LC expresses Hcrt receptor 1 (HcrtR1), whereas HcrtR2 is found in the TMN. Although the dual Hcrt/orexin receptor antagonist almorexant (ALM) decreases wakefulness and increases NREM and REM sleep time, the neural circuitry that mediates these effects is currently unknown. To test the hypothesis that ALM induces sleep by selectively disfacilitating subcortical wake-promoting populations, we ablated LC NE neurons (LCx) or TMN HA neurons (TMNx) in rats using cell-type-specific saporin conjugates and evaluated sleep/wake following treatment with ALM and the GABAA receptor modulator zolpidem (ZOL). Both LCx and TMNx attenuated the promotion of REM sleep by ALM without affecting ALM-mediated increases in NREM sleep. Thus, eliminating either HcrtR1 signaling in the LC or HcrtR2 signaling in the TMN yields similar effects on ALM-induced REM sleep without affecting NREM sleep time. In contrast, neither lesion altered ZOL efficacy on any measure of sleep-wake regulation. These results contrast with those of a previous study in which ablation of basal forebrain cholinergic neurons attenuated ALM-induced increases in NREM sleep time without affecting REM sleep, indicating that Hcrt neurotransmission influences distinct aspects of NREM and REM sleep at different locations in the sleep-wake regulatory network. PMID:27022631

  5. Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep123

    Science.gov (United States)

    Nguyen, Alexander T.; Warrier, Deepti R.; Palmerston, Jeremiah B.; Thomas, Alexia M.; Morairty, Stephen R.; Neylan, Thomas C.

    2016-01-01

    Abstract Hypocretin 1 and 2 (Hcrts; also known as orexin A and B), excitatory neuropeptides synthesized in cells located in the tuberal hypothalamus, play a central role in the control of arousal. Hcrt inputs to the locus coeruleus norepinephrine (LC NE) system and the posterior hypothalamic histaminergic tuberomammillary nuclei (TMN HA) are important efferent pathways for Hcrt-induced wakefulness. The LC expresses Hcrt receptor 1 (HcrtR1), whereas HcrtR2 is found in the TMN. Although the dual Hcrt/orexin receptor antagonist almorexant (ALM) decreases wakefulness and increases NREM and REM sleep time, the neural circuitry that mediates these effects is currently unknown. To test the hypothesis that ALM induces sleep by selectively disfacilitating subcortical wake-promoting populations, we ablated LC NE neurons (LCx) or TMN HA neurons (TMNx) in rats using cell-type-specific saporin conjugates and evaluated sleep/wake following treatment with ALM and the GABAA receptor modulator zolpidem (ZOL). Both LCx and TMNx attenuated the promotion of REM sleep by ALM without affecting ALM-mediated increases in NREM sleep. Thus, eliminating either HcrtR1 signaling in the LC or HcrtR2 signaling in the TMN yields similar effects on ALM-induced REM sleep without affecting NREM sleep time. In contrast, neither lesion altered ZOL efficacy on any measure of sleep–wake regulation. These results contrast with those of a previous study in which ablation of basal forebrain cholinergic neurons attenuated ALM-induced increases in NREM sleep time without affecting REM sleep, indicating that Hcrt neurotransmission influences distinct aspects of NREM and REM sleep at different locations in the sleep–wake regulatory network. PMID:27022631

  6. Increased Feeding and Food Hoarding following Food Deprivation Are Associated with Activation of Dopamine and Orexin Neurons in Male Brandt's Voles

    OpenAIRE

    Xue-Ying Zhang; Hui-Di Yang; Qiang Zhang; Zuoxin Wang; De-Hua Wang

    2011-01-01

    Small mammals usually face energetic challenges, such as food shortage, in the field. They have thus evolved species-specific adaptive strategies for survival and reproductive success. In the present study, we examined male Brandt's voles (Lasiopodomys brandtii) for their physiological, behavioral, and neuronal responses to food deprivation (FD) and subsequent re-feeding. Although 48 hr FD induced a decrease in body weight and the resting metabolic rate (RMR), such decreases did not reach sta...

  7. Causes and consequences of hyperexcitation in central clock neurons.

    Directory of Open Access Journals (Sweden)

    Casey O Diekman

    Full Text Available Hyperexcited states, including depolarization block and depolarized low amplitude membrane oscillations (DLAMOs, have been observed in neurons of the suprachiasmatic nuclei (SCN, the site of the central mammalian circadian (~24-hour clock. The causes and consequences of this hyperexcitation have not yet been determined. Here, we explore how individual ionic currents contribute to these hyperexcited states, and how hyperexcitation can then influence molecular circadian timekeeping within SCN neurons. We developed a mathematical model of the electrical activity of SCN neurons, and experimentally verified its prediction that DLAMOs depend on post-synaptic L-type calcium current. The model predicts that hyperexcited states cause high intracellular calcium concentrations, which could trigger transcription of clock genes. The model also predicts that circadian control of certain ionic currents can induce hyperexcited states. Putting it all together into an integrative model, we show how membrane potential and calcium concentration provide a fast feedback that can enhance rhythmicity of the intracellular circadian clock. This work puts forward a novel role for electrical activity in circadian timekeeping, and suggests that hyperexcited states provide a general mechanism for linking membrane electrical dynamics to transcription activation in the nucleus.

  8. A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents

    OpenAIRE

    Nixon, Joshua P.; Smale, Laura

    2007-01-01

    Background The orexins (hypocretins) are a family of peptides found primarily in neurons in the lateral hypothalamus. Although the orexinergic system is generally thought to be the same across species, the orexins are involved in behaviors which show considerable interspecific variability. There are few direct cross-species comparisons of the distributions of cells and fibers containing these peptides. Here, we addressed the possibility that there might be important species differences by sys...

  9. A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents

    OpenAIRE

    Nixon Joshua P; Smale Laura

    2007-01-01

    Abstract Background The orexins (hypocretins) are a family of peptides found primarily in neurons in the lateral hypothalamus. Although the orexinergic system is generally thought to be the same across species, the orexins are involved in behaviors which show considerable interspecific variability. There are few direct cross-species comparisons of the distributions of cells and fibers containing these peptides. Here, we addressed the possibility that there might be important species differenc...

  10. Orexin-A controls sympathetic activity and eating behavior

    OpenAIRE

    MarcellinoMonda; VincenzoMonda; VincenzoDe Luca

    2014-01-01

    It is extremely important for the health to understand the regulatory mechanisms of energy expenditure. These regulatory mechanisms play a central role in the pathogenesis of body weight alteration. The hypothalamus integrates nutritional information derived from all peripheral organs. This region of the brain controls hormonal secretions and neural pathways of the brainstem. Orexin-A is a hypothalamic neuropeptide involved in the regulation of feeding behavior, sleep-wakefulness rhythm, and ...

  11. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    Directory of Open Access Journals (Sweden)

    Shinichi Harada

    Full Text Available Orexin-A (a neuropeptide in the hypothalamus plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve with orexin-1 receptor and c-Fos (activated neural cells marker. These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  12. A Selective Orexin-1 Receptor Antagonist Attenuates Stress-Induced Hyperarousal without Hypnotic Effects

    OpenAIRE

    Bonaventure, Pascal; Yun, Sujin; Johnson, Philip L.; Shekhar, Anantha; Fitz, Stephanie D.; Shireman, Brock T.; Lebold, Terry P.; Nepomuceno, Diane; Lord, Brian; Wennerholm, Michelle; Shelton, Jonathan; Carruthers, Nicholas; Lovenberg, Timothy; Dugovic, Christine

    2015-01-01

    Orexins (OXs) are peptides produced by perifornical (PeF) and lateral hypothalamic neurons that exert a prominent role in arousal-related processes, including stress. A critical role for the orexin-1 receptor (OX1R) in complex emotional behavior is emerging, such as overactivation of the OX1R pathway being associated with panic or anxiety states. Here we characterize a brain-penetrant, selective, and high-affinity OX1R antagonist, compound 56 [N-({3-[(3-ethoxy-6-methylpyridin-2-yl)carbonyl]-3...

  13. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    Science.gov (United States)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (neurons peaked in phase with linear velocity, in contrast to primary afferents that peaked in phase with linear acceleration. At least three different groups of central response dynamics were described according to the properties observed for motion along the maximum sensitivity direction. "High-pass" neurons exhibited increasing gains and phase values as a function of frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements. The fact that otolith-only central neurons with "high

  14. Orexin: Pathways to obesity resistance?

    OpenAIRE

    Butterick, Tammy A.; Billington, Charles J.; Kotz, Catherine M.; Nixon, Joshua P.

    2013-01-01

    Obesity has increased in prevalence worldwide, attributed in part to the influences of an obesity-promoting environment and genetic factors. While obesity and overweight increasingly seem to be the norm, there remain individuals who resist obesity. We present here an overview of data supporting the idea that hypothalamic neuropeptide orexin A (OXA; hypocretin 1) may be a key component of brain mechanisms underlying obesity resistance. Prior work with models of obesity and obesity resistance i...

  15. The hypocretin/orexin system in sleep disorders: preclinical insights and clinical progress

    Directory of Open Access Journals (Sweden)

    Chow M

    2016-03-01

    Full Text Available Matthew Chow, Michelle CaoDepartment of Psychiatry and Behavioral Sciences, Division of Sleep Medicine, Stanford University School of Medicine, Stanford, CA, USAAbstract: Much of the understanding of the hypocretin/orexin (HCRT/OX system in sleep–wake regulation came from narcolepsy–cataplexy research. The neuropeptides hypocretin-1 and -2/orexin-A and -B (HCRT-1 and -2/OX-A and -B, respectively, as we know, are intimately involved in the regulation wakefulness. The HCRT/OX system regulates sleep–wake control through complex interactions between monoaminergic/cholinergic (wake-promoting and gamma-aminobutyric acid-ergic (sleep-promoting neuronal systems. Deficiency of HCRT/OX results in loss of sleep–wake control or stability with consequent unstable transitions between wakefulness to nonrapid eye movement and rapid eye movement sleep. This manifests clinically as abnormal daytime sleepiness with sleep attacks and cataplexy. Research on the development of HCRT/OX agonists and antagonists for the treatment of sleep disorders has dramatically increased with the US Food and Drug Administration approval of the first-in-class dual HCRT/OX receptor antagonist for the treatment of insomnia. This review focuses on the origin, mechanisms of HCRT/OX receptors, clinical progress, and applications for the treatment of sleep disorders.Keywords: hypocretin, orexin, narcolepsy, insomnia, orexin antagonist, orexin agonist

  16. Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray.

    Science.gov (United States)

    Lee, Hsin-Jung; Chang, Lu-Yang; Ho, Yu-Cheng; Teng, Shu-Fang; Hwang, Ling-Ling; Mackie, Ken; Chiou, Lih-Chu

    2016-06-01

    The orexin system consists of orexin A/hypocretin 1 and orexin B/hypocretin 2, and OX1 and OX2 receptors. Our previous electrophysiological study showed that orexin A in the rat ventrolateral periaqueductal gray (vlPAG) induced antinociception via an OX1 receptor-initiated and endocannabinoid-mediated disinhibition mechanism. Here, we further characterized antinociceptive effects of orexins in the mouse vlPAG and investigated whether this mechanism in the vlPAG can contribute to stress-induced analgesia (SIA) in mice. Intra-vlPAG (i.pag.) microinjection of orexin A in the mouse vlPAG increased the hot-plate latency. This effect was mimicked by i.pag. injection of WIN 55,212-2, a CB1 agonist, and antagonized by i.pag. injection of the antagonist of OX1 (SB 334867) or CB1 (AM 251), but not OX2 (TCS-OX2-29) or opioid (naloxone), receptors. [Ala(11), D-Leu(15)]-orexin B (i.pag.), an OX2 selective agonist, also induced antinociception in a manner blocked by i.pag. injection of TCS-OX2-29, but not SB 334867 or AM 251. Mice receiving restraint stress for 30 min showed significantly longer hot-plate latency, more c-Fos-expressing orexin neurons in the lateral hypothalamus and higher orexin levels in the vlPAG than unrestrained mice. Restraint SIA in mice was prevented by i.pag. or intraperitoneal injection of SB 334867 or AM 251, but not TCS-OX2-29 or naloxone. These results suggest that during stress, hypothalamic orexin neurons are activated, releasing orexins into the vlPAG to induce analgesia, possibly via the OX1 receptor-initiated, endocannabinoid-mediated disinhibition mechanism previously reported. Although activating either OX1 or OX2 receptors in the vlPAG can lead to antinociception, only OX1 receptor-initiated antinociception is endocannabinoid-dependent. PMID:26907809

  17. Orexin-stimulated MAP kinase cascades are activated through multiple G-protein signalling pathways in human H295R adrenocortical cells: diverse roles for orexins A and B.

    Science.gov (United States)

    Ramanjaneya, Manjunath; Conner, Alex C; Chen, Jing; Kumar, Prashanth; Brown, James E P; Jöhren, Olaf; Lehnert, Hendrik; Stanfield, Peter R; Randeva, Harpal S

    2009-08-01

    Orexins A and B (ORA and ORB) are neuropeptide hormones found throughout the central nervous system and periphery. They are required for a host of physiological processes including mitogen-activated protein kinase (MAPK) regulation, steroidogenesis, appetite control and energy regulation. While some signalling mechanisms have been proposed for individual recombinant orexin receptors in generic mammalian cell types, it is clear that the peripheral effects of orexin are spatially and temporally complex. This study dissects the different G-protein signalling and MAPK pathways activated in a pluripotent human adrenal H295R cell line capable of all the physiological steps involved in steroidogenesis. Both extracellular receptor kinase 1/2 (ERK1/2) and p38 were phosphorylated rapidly with a subsequent decline, in a time- and dose-dependent manner, in response to both ORA and ORB. Conversely, there was little or no direct activation of the ERK5 or JNK pathway. Analysis using signalling and MAPK inhibitors as well as receptor-specific antagonists determined the precise mediators of the orexin response in these cells. Both ERK1/2 and p38 activation were predominantly G(q)- and to a lesser extent G(s)-mediated; p38 activation even had a small G(i)-component. Effects were broadly comparable for both orexin sub-types ORA and ORB and although most of the effects were transmitted through the orexin receptor-1 subtype, we did observe a role for orexin receptor-2-mediated activation of both ERK1/2 and p38. Cortisol secretion also differed in response to ORA and ORB. These data suggest multiple roles for orexin-mediated MAPK activation in an adrenal cell-line, this complexity may help to explain the diverse biological actions of orexins with wide-ranging consequences for our understanding of the mechanisms initiated by these steroidogenic molecules. PMID:19460850

  18. Administration of orexin receptor 1 antagonist into the rostral ventromedial medulla increased swim stress-induced antinociception in rat

    OpenAIRE

    Neda Soliemani; Alireza Moslem; Ali Shamsizadeh; Hassan Azhdari-Zarmehri

    2016-01-01

    Objective(s): Intracerebroventricular injection of orexin-A (hypocretin-1) antagonist has been shown to inhibit stress-induced analgesia. However the locations of central sites that may mediate these effects have not been totally demonstrated. This study was performed to investigate the role of rostral ventromedial medulla (RVM) orexin receptor 1 in stress-induced analgesia (SIA). Materials and Methods: Forced swim stress in water was employed to adult male rats (200-250 g). Nociceptive respo...

  19. In vitro study of dopaminergic central neurons radiosensitivity

    International Nuclear Information System (INIS)

    An embryonic mesencephalic neuronal culture model was used to analyze the radiosensitivity of a dopaminergic neuronal population. Several criteria have allowed to evaluate the effects of a gamma irradiation. In the order of increasing sensitivity, a reduction of the dopamine uptake, a decrease of the number of differentiated dopaminergic neurons and some modifications of the size and the degree of branching or the neurites were noted. These results are preliminary and have to be confirmed

  20. Spatiotemporal processing of linear acceleration: primary afferent and central vestibular neuron responses

    Science.gov (United States)

    Angelaki, D. E.; Dickman, J. D.

    2000-01-01

    Spatiotemporal convergence and two-dimensional (2-D) neural tuning have been proposed as a major neural mechanism in the signal processing of linear acceleration. To examine this hypothesis, we studied the firing properties of primary otolith afferents and central otolith neurons that respond exclusively to horizontal linear accelerations of the head (0.16-10 Hz) in alert rhesus monkeys. Unlike primary afferents, the majority of central otolith neurons exhibited 2-D spatial tuning to linear acceleration. As a result, central otolith dynamics vary as a function of movement direction. During movement along the maximum sensitivity direction, the dynamics of all central otolith neurons differed significantly from those observed for the primary afferent population. Specifically at low frequencies (frequency. "Flat" neurons were characterized by relatively flat gains and constant phase lags (approximately 20-55 degrees ). A few neurons ("low-pass") were characterized by decreasing gain and phase as a function of frequency. The response dynamics of central otolith neurons suggest that the approximately 90 degrees phase lags observed at low frequencies are not the result of a neural integration but rather the effect of nonminimum phase behavior, which could arise at least partly through spatiotemporal convergence. Neither afferent nor central otolith neurons discriminated between gravitational and inertial components of linear acceleration. Thus response sensitivity was indistinguishable during 0.5-Hz pitch oscillations and fore-aft movements. The fact that otolith-only central neurons with "high-pass" filter properties exhibit semicircular canal-like dynamics during head tilts might have important consequences for the conclusions of previous studies of sensory convergence and sensorimotor transformations in central vestibular neurons.

  1. Pharmacological or genetic orexin1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex.

    Science.gov (United States)

    Aluisio, Leah; Fraser, Ian; Berdyyeva, Tamara; Tryputsen, Volha; Shireman, Brock T; Shoblock, James; Lovenberg, Timothy; Dugovic, Christine; Bonaventure, Pascal

    2014-01-01

    The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors). The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward, and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg) to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C.) which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient) or genetic (permanent) inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states. PMID:24904253

  2. Exercise reverses the effects of early life stress on orexin cell reactivity in male but not female rats

    Directory of Open Access Journals (Sweden)

    Morgan H James

    2014-07-01

    Full Text Available Early life stress (ELS is a known antecedent for the development of mood disorders such as depression. Orexin neurons drive arousal and motivated behaviors in response to stress. We tested the hypothesis that ELS alters orexin system function and leads to an altered stress-induced behavioral phenotype in adulthood. We also investigated if voluntary exercise during adolescent development could reverse the ELS-induced changes. Male and female Wistar rats were subjected to maternal separation stress on postnatal days (PND 2-14. A subset of animals was given access to running wheels in late adolescence (1hr/day, PND40-70. In adulthood, rats were exposed to restraint stress and then tested on the open field (OF and elevated plus maze (EPM. Brains were processed for Fos-protein and orexin or tyrosine hydroxylase immunohistochemistry. Restraint stress stimulated Fos-protein expression in perifornical area orexin cells, the paraventricular hypothalamic nucleus, and paraventricular thalamic nuclei, but this neuronal response was dampened in male and female rats exposed to ELS. ELS also reduced exploration in the OF, without affecting EPM behavior. These neural and behavioral changes are consistent with a depressive-like phenotype. Adolescent exercise reversed the orexin deficits in ELS males. Exercise was not protective in females, although this may be due to sex differences in running behaviour. Our findings highlight the inherent plasticity of the orexin system—a trait that may lead to a state of pathological rewiring but could also be treated using non-pharmacological approaches. We also highlight a need to better understand the sex-specific changes in orexin circuits and stress-related pathology.

  3. Sex differences in feeding behavior in rats: the relationship with neuronal activation in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2015-03-01

    Full Text Available There is general agreement that the central nervous system in rodents differs between sexes due to the presence of gonadal steroid hormone during differentiation. Sex differences in feeding seem to occur among species, and responses to fasting (i.e., starvation, gonadal steroids (i.e., testosterone and estradiol, and diet (i.e., western-style diet vary significantly between sexes. The hypothalamus is the center for controlling feeding behavior. We examined the activation of feeding-related peptides in neurons in the hypothalamus. Phosphorylation of cyclic AMP response element-binding protein (CREB is a good marker for neural activation, as is the Fos antigen. Therefore, we predicted that sex differences in the activity of melanin-concentrating hormone (MCH neurons would be associated with feeding behavior. We determined the response of MCH neurons to glucose in the lateral hypothalamic area (LHA and our results suggested MCH neurons play an important role in sex differences in feeding behavior. In addition, fasting increased the number of orexin neurons harboring phosphorylated CREB in female rats (regardless of the estrous day, but not male rats. Glucose injection decreased the number of these neurons with phosphorylated CREB in fasted female rats. Finally, under normal spontaneous food intake, MCH neurons, but not orexin neurons, expressed phosphorylated CREB. These sex differences in response to fasting and glucose, as well as under normal conditions, suggest a vulnerability to metabolic challenges in females.

  4. Brain orexin promotes obesity resistance.

    Science.gov (United States)

    Kotz, Catherine; Nixon, Joshua; Butterick, Tammy; Perez-Leighton, Claudio; Teske, Jennifer; Billington, Charles

    2012-08-01

    Resistance to obesity is becoming an exception rather than the norm, and understanding mechanisms that lead some to remain lean in spite of an obesigenic environment is critical if we are to find new ways to reverse this trend. Levels of energy intake and physical activity both contribute to body weight management, but it is challenging for most to adopt major long-term changes in either factor. Physical activity outside of formal exercise, also referred to as activity of daily living, and in stricter form, spontaneous physical activity (SPA), may be an attractive modifiable variable for obesity prevention. In this review, we discuss individual variability in SPA and NEAT (nonexercise thermogenesis, or the energy expended by SPA) and its relationship to obesity resistance. The hypothalamic neuropeptide orexin (hypocretin) may play a key role in regulating SPA and NEAT. We discuss how elevated orexin signaling capacity, in the context of a brain network modulating SPA, may play a major role in defining individual variability in SPA and NEAT. Greater activation of this SPA network leads to a lower propensity for fat mass gain and therefore may be an attractive target for obesity prevention and therapy. PMID:22803681

  5. The Orexin Component of Fasting Triggers Memory Processes Underlying Conditioned Food Selection in the Rat

    Science.gov (United States)

    Ferry, Barbara; Duchamp-Viret, Patricia

    2014-01-01

    To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor-malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion…

  6. Identification of genes influencing dendrite morphogenesis in developing peripheral sensory and central motor neurons

    Directory of Open Access Journals (Sweden)

    Chwalla Barbara

    2008-07-01

    Full Text Available Abstract Background Developing neurons form dendritic trees with cell type-specific patterns of growth, branching and targeting. Dendrites of Drosophila peripheral sensory neurons have emerged as a premier genetic model, though the molecular mechanisms that underlie and regulate their morphogenesis remain incompletely understood. Still less is known about this process in central neurons and the extent to which central and peripheral dendrites share common organisational principles and molecular features. To address these issues, we have carried out two comparable gain-of-function screens for genes that influence dendrite morphologies in peripheral dendritic arborisation (da neurons and central RP2 motor neurons. Results We found 35 unique loci that influenced da neuron dendrites, including five previously shown as required for da dendrite patterning. Several phenotypes were class-specific and many resembled those of known mutants, suggesting that genes identified in this study may converge with and extend known molecular pathways for dendrite development in da neurons. The second screen used a novel technique for cell-autonomous gene misexpression in RP2 motor neurons. We found 51 unique loci affecting RP2 dendrite morphology, 84% expressed in the central nervous system. The phenotypic classes from both screens demonstrate that gene misexpression can affect specific aspects of dendritic development, such as growth, branching and targeting. We demonstrate that these processes are genetically separable. Targeting phenotypes were specific to the RP2 screen, and we propose that dendrites in the central nervous system are targeted to territories defined by Cartesian co-ordinates along the antero-posterior and the medio-lateral axes of the central neuropile. Comparisons between the screens suggest that the dendrites of peripheral da and central RP2 neurons are shaped by regulatory programs that only partially overlap. We focused on one common

  7. Laminin promotes neuritic regeneration from cultured peripheral and central neurons

    OpenAIRE

    1983-01-01

    The ability of axons to grow through tissue in vivo during development or regeneration may be regulated by the availability of specific neurite-promoting macromolecules located within the extracellular matrix. We have used tissue culture methods to examine the relative ability of various extracellular matrix components to elicit neurite outgrowth from dissociated chick embryo parasympathetic (ciliary ganglion) neurons in serum-free monolayer culture. Purified laminin from both mouse and rat s...

  8. The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights into Central Nervous System Function

    Science.gov (United States)

    Llinas, Rodolfo R.

    1988-12-01

    This article reviews the electroresponsive properties of single neurons in the mammalian central nervous system (CNS). In some of these cells the ionic conductances responsible for their excitability also endow them with autorhythmic electrical oscillatory properties. Chemical or electrical synaptic contacts between these neurons often result in network oscillations. In such networks, autorhytmic neurons may act as true oscillators (as pacemakers) or as resonators (responding preferentially to certain firing frequencies). Oscillations and resonance in the CNS are proposed to have diverse functional roles, such as (i) determining global functional states (for example, sleep-wakefulness or attention), (ii) timing in motor coordination, and (iii) specifying connectivity during development. Also, oscillation, especially in the thalamo-cortical circuits, may be related to certain neurological and psychiatric disorders. This review proposes that the autorhythmic electrical properties of central neurons and their connectivity form the basis for an intrinsic functional coordinate system that provides internal context to sensory input.

  9. Effect of intestinal ischemia/reperfusion injury on leptin and orexin-A levels

    Institute of Scientific and Technical Information of China (English)

    LIN Ji; YAN Guangtao; GAO Xiaoning; LIAO Jie; HAO Xiuhua; ZHANG Kai

    2007-01-01

    The aim of this paper is to explore the effect of intestinal ischemia/reperfusion (I/R) injury on leptin and orexin-A levels in peripheral blood and central secretory tissues,and to examine the roles of leptin and orexin-A in acute inflammatory responses.An intestinal I/R injury model of rats was made;the rats were grouped according to the time of after 60 rnin ischemia.Radioimmunoassay was employed to detect the levels of leptin in serum and adipose tissue and orexin-A levels in plasma and hypothalamus.Reverse transcriptase-polymerase chain reaction was used to detect mRNA expressions of adipose leptin and hypothalamus orexin-A.Compared with the levels before the injury,serum leptin in 60 rain ischemia/30 rain reperfusion (I60'R30) group decreased and that of I60'R360' group increased.Compared with sham-operation group (sham group) after injury,serum leptin level of I60aq360' group increased,adipose leptin levels of I60'R30' and I60'R90' decreased,and adipose leptin in I60'R360' group increased.After the injury,adipose leptin mRNA expressions of I60'30',I60'R240' and I60'R360' increased,whereas that of I60'R150' group decreased as compared with the sham group.There was no significant difference in the protein levels of orexin-A,either between plasma and hypothalamus or between pro- and post-I/R injury.Compared with sham group,hypothalamus orexin-A mRNA expressions of I60'R30' and I60'90'decreased gradually after the injury,with that of I60'R150'group reaching the lowest,and those of I60'R240' andI60'R360' recovering gradually,although they were still significantly lower than that of sham group.Leptin and orexin-A respond to intestinal I/R injury in a time-dependent manner,with leptin responding more quickly than orexin-A does,and both of them may contribute to the metabolic disorders in acute inflammation.

  10. Comparative mapping of GABA-immunoreactive neurons in the central nervous systems of nudibranch molluscs.

    Science.gov (United States)

    Gunaratne, Charuni A; Sakurai, Akira; Katz, Paul S

    2014-03-01

    The relative simplicity of certain invertebrate nervous systems, such as those of gastropod molluscs, allows behaviors to be dissected at the level of small neural circuits composed of individually identifiable neurons. Elucidating the neurotransmitter phenotype of neurons in neural circuits is important for understanding how those neural circuits function. In this study, we examined the distribution of γ-aminobutyric-acid;-immunoreactive (GABA-ir) neurons in four species of sea slugs (Mollusca, Gastropoda, Opisthobranchia, Nudibranchia): Tritonia diomedea, Melibe leonina, Dendronotus iris, and Hermissenda crassicornis. We found consistent patterns of GABA immunoreactivity in the pedal and cerebral-pleural ganglia across species. In particular, there were bilateral clusters in the lateral and medial regions of the dorsal surface of the cerebral ganglia as well as a cluster on the ventral surface of the pedal ganglia. There were also individual GABA-ir neurons that were recognizable across species. The invariant presence of these individual neurons and clusters suggests that they are homologous, although there were interspecies differences in the numbers of neurons in the clusters. The GABAergic system was largely restricted to the central nervous system, with the majority of axons confined to ganglionic connectives and commissures, suggesting a central, integrative role for GABA. GABA was a candidate inhibitory neurotransmitter for neurons in central pattern generator (CPG) circuits underlying swimming behaviors in these species, however none of the known swim CPG neurons were GABA-ir. Although the functions of these GABA-ir neurons are not known, it is clear that their presence has been strongly conserved across nudibranchs. PMID:24638845

  11. Ciliary neurotrophic factor prevents retrograde neuronal death in the adult central nervous system.

    OpenAIRE

    Clatterbuck, R E; Price, D L; Koliatsos, V E

    1993-01-01

    The neurocytokine ciliary neurotrophic factor (CNTF) was described originally as an activity that supports the survival of neurons of the chicken ciliary ganglia in vitro. The widespread expression of CNTF and its principal binding protein, CNTF receptor alpha, in the central and peripheral nervous systems suggests a broader trophic role for this peptide. In the present study, we report that CNTF prevents axotomy-induced cell death of neurons in the anteroventral and anterodorsal thalamic nuc...

  12. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    OpenAIRE

    Christine eDugovic; Shelton, Jonathan E.; Sujin eYun; Pascal eBonaventure; Shireman, Brock T.; Lovenberg, Timothy W.

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagon...

  13. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    NARCIS (Netherlands)

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemoki

  14. Orexin A-mediated AKT signaling in the dentate gyrus contributes to the acquisition, expression and reinstatement of morphine-induced conditioned place preference.

    Science.gov (United States)

    Guo, Sui-Jun; Cui, Yu; Huang, Zhen-Zhen; Liu, Huan; Zhang, Xue-Qin; Jiang, Jin-Xiang; Xin, Wen-Jun

    2016-05-01

    Accumulating evidence indicates that the hippocampal dentate gyrus (DG), a critical brain region contributing to learning and memory, is involved in the addiction and relapse to abused drugs. Emerging studies also suggest the role of orexin signaling in the rewarding behavior induced by repeated exposure to opiates. In the present study, we investigated the dynamic adaptation of orexin signaling in the DG and its functional significance in the acquisition, expression, maintenance of and relapse to rewarding behavior induced by morphine. Repeated place conditioning with morphine significantly increased the orexin A content released from the lateral hypothalamic area projecting neurons into the DG. Local infusions of orexin A into the DG sensitized the acquisition of and relapse to the conditioned place preference induced by morphine. The application of the orexin receptor type 1 (OXR1) antagonist SB334867 significantly abolished the acquisition, expression and maintenance of the conditioned place preference induced by repeated exposure to morphine. Furthermore, the significant increase of the phosphorylation of AKT in the DG was associated with preference for the morphine-paired chamber in rats, which was reversed by the local administration of an OXR1 antagonist. Thus, these findings suggested that the dynamic upregulation of orexin A signaling, via the AKT pathway in the DG, may promote the acquisition and maintenance of opioid-induced craving behaviors and may increase sensitivity to the rewarding effect of subsequent opioids. PMID:25757577

  15. Uncovering diversity in the development of central noradrenergic neurons and their efferents.

    Science.gov (United States)

    Robertson, Sabrina D; Plummer, Nicholas W; Jensen, Patricia

    2016-06-15

    Uncovering the mechanisms that underlie central noradrenergic neuron heterogeneity is essential to understanding selective subtype vulnerability to disease and environmental insult. Using recombinase-based intersectional genetic fate mapping we have previously demonstrated that molecularly distinct progenitor populations give rise to mature noradrenergic neurons differing in their anatomical location, axon morphology and efferent projection pattern. Here we review the findings from our previous study and extend our analysis of the noradrenergic subpopulation defined by transient developmental expression of Hoxb1. Using a combination of intersectional genetic fate mapping and analysis of a targeted loss of function mutation in Hoxb1, we have now uncovered additional heterogeneity based on the requirement of some noradrenergic neurons for Hoxb1 expression. By comparing the distribution of noradrenergic neurons derived from the Hoxb1 expression domain in wild-type and mutant mice, we demonstrate that Hoxb1 expression is required by a subset of neurons in the pons. Additional fate mapping, using a Hoxb1 enhancer element that drives Cre recombinase expression exclusively in rhombomere 4 of the hindbrain, reveals the existence of a subpopulation of noradrenergic neurons in the pons with more restricted axonal targets than the full Hoxb1-derived subpopulation. The unique projection profile of this newly defined subpopulation suggests that it may be functionally distinct. These analyses shed new light on the molecular determinants of noradrenergic identity in the pons and the overall complexity of the central noradrenergic system. This article is part of a Special Issue entitled SI: Noradrenergic System. PMID:26612521

  16. Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    OpenAIRE

    de Haas, A. H.; van Weering, H. R. J.; Jong, E.K.; Boddeke, H. W. G. M.; Biber, K.P.H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leuko...

  17. Blocking of orexin receptors in the paraventricular nucleus of the thalamus has no effect on conditioned fear

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-06-01

    Full Text Available The paraventricular nucleus of the thalamus (PVT projects to the central nucleus of the amygdala and recent experimental evidence indicates a role for the PVT in conditioned fear. Furthermore, the PVT contains a high density of orexin receptors and fibers and acute injections of orexin antagonist into the PVT produce anxiolytic effects. The present study was done to determine if administration of a dual orexin receptor antagonist (DORA in the region of the PVT interfered with the expression of conditioned fear in rats exposed to cued and contextual conditioning paradigms. Infusion of 0.5 µl of the DORA N-biphenyl-2-yl-1-{[(1-methyl-1H-benzimidazol-2yl sulfanyl] acetyl}-L-prolinamide at a concentration of 0.1, 1.0, and 10 nmol had no effect on the freezing produced by exposing rats to an auditory cue or the context associated with foot shock. In contrast, the 1.0 and 10 nmol doses were anxiolytic in the social interaction test. The results of the present study do not support a role for orexin receptors in the PVT in the expression of learned fear. The finding that the 1.0 and 10 nmol doses of DORA in the PVT region were anxiolytic in the social interaction test is consistent with other studies indicating a role for orexins in the PVT in anxiety-like behaviors.

  18. Current ideas on central chemoreception by neurons and glial cells in the retrotrapezoid nucleus

    OpenAIRE

    Mulkey, Daniel K.; Wenker, Ian C.; Kréneisz, Orsolya

    2010-01-01

    Central chemoreception is the mechanism by which CO2/pH-sensitive neurons (i.e., chemoreceptors) regulate breathing in response to changes in tissue pH. A region of the brain stem called the retrotrapezoid nucleus (RTN) is thought to be an important site of chemoreception (23), and recent evidence suggests that RTN chemoreception involves two interrelated mechanisms: H+-mediated activation of pH-sensitive neurons (38) and purinergic signaling (19), possibly from pH-sensitive glial cells. A th...

  19. Orexin (hypocretin)-like immunoreactivity in the cat hypothalamus: a light and electron microscopic study.

    Science.gov (United States)

    Zhang, J H; Sampogna, S; Morales, F R; Chase, M H

    2001-02-01

    Orexin-A-like immunoreactive (OrA-ir) neurons and terminals in the cat hypothalamus were examined using immunohistochemical techniques. OrA-ir neurons were found principally in the lateral hypothalamic area (LHA) at the level of the tuberal cinereum and in the dorsal and posterior hypothalamic areas. In the LHA the majority of the neurons were located dorsal and lateral to the fornix; a small number of OrA-ir neurons were also present in other regions of the hypothalamus. OrA-ir fibers with varicose terminals were detected in almost all hypothalamic regions. The high density of fibers was located in the suprachiasmatic nucleus, the infundibular nucleus (INF), the tuberomamillary nucleus (TM) and the supra- and pre-mamillary nuclei. Ultrastructural analysis revealed that OrA-ir neurons in the LHA receive abundant input from non-immunoreactive terminals. These terminals, which contained many small, clear, round vesicles with a few large, dense core vesicles, made asymmetrical synaptic contacts with OrA-ir dendrites, indicating that the activity of orexin neurons is under excitatory control. On the other hand, the terminals of OrA-ir neurons also made asymmetrical synaptic contact with dendrites in the LHA, the INF and the TM. The dendrites in the LHA were both non-immunoreactive and OrA-ir; conversely, the dendrites in the INF and the TM were non-immunoreactive. In these regions, OrA-ir terminals contained many small, clear, round vesicles with few large, dense core vesicles, suggesting that orexinergic neurons also provide excitatory input to other neurons in these regions. PMID:11204055

  20. Cell Death, Neuronal Plasticity and Functional Loading in the Development of the Central Nervous System

    Science.gov (United States)

    Keefe, J. R.

    1985-01-01

    Research on the precise timing and regulation of neuron production and maturation in the vestibular and visual systems of Wistar rats and several inbred strains of mice (C57B16 and Pallid mutant) concentrated upon establishing a timing baseline for mitotic development of the neurons of the vestibular nuclei and the peripheral vestibular sensory structures (maculae, cristae). This involved studies of the timing and site of neuronal cell birth and preliminary studies of neuronal cell death in both central and peripheral elements of the mammalian vestibular system. Studies on neuronal generation and maturation in the retina were recently added to provide a mechanism for more properly defining the in utero' developmental age of the individual fetal subject and to closely monitor potential transplacental effects of environmentally stressed maternal systems. Information is given on current efforts concentrating upon the (1) perinatal period of development (E18 thru P14) and (2) the role of cell death in response to variation in the functional loading of the vestibular and proprioreceptive systems in developing mammalian organisms.

  1. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity.

    Science.gov (United States)

    Wicher, Dieter; Derst, Christian; Gautier, Hélène; Lapied, Bruno; Heinemann, Stefan H; Agricola, Hans-Jürgen

    2007-01-01

    The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK) in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK) in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR), we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM) neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC(50)=11pM) due to reduction of a pacemaker Ca(2+) current through cAMP-inhibited pTRPgamma channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca(2+) concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH): PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPgamma channel that is activated by AKH under conditions of food shortage. PMID:18946521

  2. The satiety signaling neuropeptide perisulfakinin inhibits the activity of central neurons promoting general activity

    Directory of Open Access Journals (Sweden)

    Dieter Wicher

    2007-12-01

    Full Text Available The metabolic state is one of the determinants of the general activity level. Satiety is related to resting or sleep whereas hunger correlates to wakefulness and activity. The counterpart to the mammalian satiety signal cholecystokinin (CCK in insects are the sulfakinins. The aim of this study was to resolve the mechanism by which the antifeedant activity of perisulfakinin (PSK in Periplaneta americana is mediated. We identified the sources of PSK which is used both as hormone and as paracrine messenger. PSK is found in the neurohemal organ of the brain and in nerve endings throughout the central nervous system. To correlate the distributions of PSK and its receptor (PSKR, we cloned the gene coding for PSKR and provide evidence for its expression within the nervous system. It occurs only in a few neurons, among them are the dorsal unpaired median (DUM neurons which release octopamine thereby regulating the general level of activity. Application of PSK to DUM neurons attenuated the spiking frequency (EC50=11pM due to reduction of a pacemaker Ca2+ current through cAMP-inhibited pTRPγ channels. PSK increased the intracellular cAMP level while decreasing the intracellular Ca2+ concentration in DUM neurons. Thus, the satiety signal conferred by PSK acts antagonistically to the hunger signal, provided by the adipokinetic hormone (AKH: PSK depresses the electrical activity of DUM neurons by inhibiting the pTRPγ channel that is activated by AKH under conditions of food shortage.

  3. Comprehensive behavioral analysis of Ox1r-/- mice showed implication of orexin receptor-1 in mood, anxiety and social behavior

    Directory of Open Access Journals (Sweden)

    Md Golam Abbas

    2015-12-01

    Full Text Available Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system and sleep/wakefulness states. Recent pharmacological studies using selective antagonists have suggested that orexin receptor-1 (OX1R is involved in physiological processes that regulate emotion, the reward system and autonomic nervous system. Here, we examined Ox1r-/- mice with a comprehensive behavioral test battery to screen additional OX1R functions. Ox1r-/- mice showed increased anxiety-like behavior, altered depression-like behavior, slightly decreased spontaneous locomotor activity, reduced social interaction, increased startle response and decreased prepulse inhibition. These results suggest that OX1R plays roles in social behaviour and sensory motor gating in addition to roles in mood and anxiety.

  4. Contribution of Orexin to the Neurogenic Hypertension in BPH/2J Mice.

    Science.gov (United States)

    Jackson, Kristy L; Dampney, Bruno W; Moretti, John-Luis; Stevenson, Emily R; Davern, Pamela J; Carrive, Pascal; Head, Geoffrey A

    2016-05-01

    BPH/2J mice are a genetic model of hypertension associated with an overactive sympathetic nervous system. Orexin is a neuropeptide which influences sympathetic activity and blood pressure. Orexin precursor mRNA expression is greater in hypothalamic tissue of BPH/2J compared with normotensive BPN/3J mice. To determine whether enhanced orexinergic signaling contributes to the hypertension, BPH/2J and BPN/3J mice were preimplanted with radiotelemetry probes to compare blood pressure 1 hour before and 5 hours after administration of almorexant, an orexin receptor antagonist. Mid frequency mean arterial pressure power and the depressor response to ganglion blockade were also used as indicators of sympathetic nervous system activity. Administration of almorexant at 100 (IP) and 300 mg/kg (oral) in BPH/2J mice during the dark-active period (2 hours after lights off) markedly reduced blood pressure (-16.1±1.6 and -11.0±1.1 mm Hg, respectively;P<0.001 compared with vehicle). However, when almorexant (100 mg/kg, IP) was administered during the light-inactive period (5 hours before lights off) no reduction from baseline was observed (P=0.64). The same dose of almorexant in BPN/3J mice had no effect on blood pressure during the dark (P=0.79) or light periods (P=0.24). Almorexant attenuated the depressor response to ganglion blockade (P=0.018) and reduced the mid frequency mean arterial pressure power in BPH/2J mice (P<0.001), but not BPN/3J mice (P=0.70). Immunohistochemical labeling revealed that BPH/2J mice have 29% more orexin neurons than BPN/3J mice which are preferentially located in the lateral hypothalamus. The results suggest that enhanced orexinergic signaling contributes to sympathetic overactivity and hypertension during the dark period in BPH/2J mice. PMID:26975709

  5. Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol-preferring Sprague Dawley rats

    OpenAIRE

    Moorman, David E.; Aston-Jones, Gary

    2009-01-01

    Work from our laboratory has shown that orexin (ORX; or hypocretin) neurons in the lateral hypothalamus are involved in preference for morphine, cocaine, and food. Other groups have demonstrated a connection between the ORX system and ethanol-related behaviors. Here we extended those results to investigate, in outbred Sprague-Dawley rats, the relationship between ethanol preference and the ORX system. In Experiment 1, rats were trained to drink 10% ethanol using the intermittent access (IA) t...

  6. Neurofilament protein synthesis in DRG neurons decreases more after peripheral axotomy than after central axotomy

    International Nuclear Information System (INIS)

    Cytoskeletal protein synthesis was studied in DRG neurons after transecting either their peripheral or their central branch axons. Specifically, the axons were transected 5-10 mm from the lumbar-5 ganglion on one side of the animal; the DRGs from the transected side and contralateral control side were labeled with radiolabeled amino acids in vitro; radiolabeled proteins were separated by 2-dimensional (2D) PAGE; and the amounts of radiolabel in certain proteins of the experimental and control ganglia were quantified and compared. We focused on the neurofilament proteins because they are neuron-specific. If either the peripheral or central axons were cut, the amounts of radiolabeled neurofilament protein synthesized by the DRG neurons decreased between 1 and 10 d after transection. Neurofilament protein labeling decreased more after transection of the peripheral axons than after transection of the central axons. In contrast to axonal transections, sham operations or heat shock did not decrease the radiolabeling of the neurofilament proteins, and these procedures also affected the labeling of actin, tubulin, and the heat-shock proteins differently from transection. These results and others indicate that axonal transection leads to specific changes in the synthesis of cytoskeletal proteins of DRG neurons, and that these changes differ from those produced by stress to the animal or ganglia. Studies of the changes in neurofilament protein synthesis from 1 to 40 d after axonal transection indicate that the amounts of radiolabeled neurofilament protein synthesis were decreased during axonal elongation, but that they returned toward control levels when the axons reached cells that stopped elongation

  7. Cutting edge: neuronal recognition by CD8 T cells elicits central diabetes insipidus.

    Science.gov (United States)

    Scheikl, Tanja; Pignolet, Béatrice; Dalard, Cécile; Desbois, Sabine; Raison, Danièle; Yamazaki, Masanori; Saoudi, Abdelhadi; Bauer, Jan; Lassmann, Hans; Hardin-Pouzet, Hélène; Liblau, Roland S

    2012-05-15

    An increasing number of neurologic diseases is associated with autoimmunity. The immune effectors contributing to the pathogenesis of such diseases are often unclear. To explore whether self-reactive CD8 T cells could attack CNS neurons in vivo, we generated a mouse model in which the influenza virus hemagglutinin (HA) is expressed specifically in CNS neurons. Transfer of cytotoxic anti-HA CD8 T cells induced an acute but reversible encephalomyelitis in HA-expressing recipient mice. Unexpectedly, diabetes insipidus developed in surviving animals. This robust phenotype was associated with preferential accumulation of cytotoxic CD8 T cells in the hypothalamus, upregulation of MHC class I molecules, and destruction of vasopressin-expressing neurons. IFN-γ production by the pathogenic CD8 T cells was necessary for MHC class I upregulation by hypothalamic neurons and their destruction. This novel mouse model, in combination with related human data, supports the concept that autoreactive CD8 T cells can trigger central diabetes insipidus. PMID:22504649

  8. Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity

    OpenAIRE

    Cason, Angie M.; Smith, Rachel J.; Tahsili-Fahadan, Pouya; Moorman, David E.; Sartor, Gregory C.; Aston-Jones, Gary

    2010-01-01

    Orexins (also named hypocretins) are recently discovered neuropeptides made exclusively in the hypothalamus. Recent studies have shown that orexin cells located specifically in lateral hypothalamus (LH) are involved in motivated behavior for drugs of abuse as well as natural rewards. Administration of orexin has been shown to stimulate food consumption, and orexin signaling in VTA has been implicated in intake of high-fat food. In self-administration studies, the orexin 1 receptor antagonist ...

  9. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis

    DEFF Research Database (Denmark)

    McGlashon, Jacob M; Gorecki, Michelle C; Kozlowski, Amanda E;

    2015-01-01

    diphtheria toxin receptor (DTR) was selectively expressed in central 5-HT neurons. Treatment with diphtheria toxin (DT) eliminated 5-HT neurons and caused loss of thermoregulation, brown adipose tissue (BAT) steatosis, and a >50% decrease in uncoupling protein 1 (Ucp1) expression in BAT and inguinal white...... adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold, and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1b(f/f)ePet1(Cre) mice in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating...

  10. Regulation of orexin in learning and memory%orexin调控学习记忆的研究进展

    Institute of Scientific and Technical Information of China (English)

    杜肖南; 张涛元; 董海龙

    2016-01-01

    Background Orexins are a category of neuropeptides that are secreted by orexinergic neurons located exclusively in the perifornical area of lateral hypothalamus.Orexins have extensive functions in the brain,including modulations of feeding behavior,energy homeostasis,sleep and arousal,reward and emotion.They play a role in endocrine and cardiovascular systems as well.Recently,it is reported that orexins also take part in the modulation of learning and memory.Objective To review the different viewpoints and recent progress of orexins in the regulation of learning and memory.Content In this review,we briefly introduce the hippocampus pathway and the non-hippocampus pathway through which orexins modulate learning and memory,and the relationship between orexins and neurodegenerative diseases.Trend The effects and mechanisms of orexins in learning and memory have not been entirely understood.Further researches may provide new ideas for the clinical treatment of postoperative cognitive dysfunction and neurodegenerative diseases.%背景 orexins是由位于下丘脑外侧部穹窿周围的神经元分泌的一类神经肽,它们在体内作用广泛,不仅能促进食欲,调节能量平衡,调节睡眠与觉醒,参与奖赏系统及情绪反应,调节内分泌及心血管系统,而且最新的研究表明,orexins对学习与记忆也有调控作用. 目的 对orexins调控学习记忆的各种认识和最近研究进展进行综述. 内容 简述orexins通过海马途径和非海马途径对学习记忆进行调控,以及与神经退行性变引起的学习记忆障碍之间的关系. 趋向 orexins在学习记忆过程中发挥的作用尚不完全清楚,进一步研究可能为解释和干预术后认知功能障碍及神经退行性变提供新的思路.

  11. Increased GABAergic Efficacy of Central Amygdala Projections to Neuropeptide S Neurons in the Brainstem During Fear Memory Retrieval.

    Science.gov (United States)

    Jüngling, Kay; Lange, Maren D; Szkudlarek, Hanna J; Lesting, Jörg; Erdmann, Frank S; Doengi, Michael; Kügler, Sebastian; Pape, Hans-Christian

    2015-11-01

    The canonical view on the central amygdala has evolved from a simple output station towards a highly organized microcircuitry, in which types of GABAergic neurons in centrolateral (CeL) and centromedial (CeM) subnuclei regulate fear expression and generalization. How these specific neuronal populations are connected to extra-amygdaloid target regions remains largely unknown. Here we show in mice that a subpopulation of GABAergic CeL and CeM neurons projects monosynaptically to brainstem neurons expressing neuropeptide S (NPS). The CeL neurons are PKCδ-negative and are activated during conditioned fear. During fear memory retrieval, the efficacy of this GABAergic influence on NPS neurons is enhanced. Moreover, a large proportion of these neurons (~50%) contain prodynorphin and somatostatin, two neuropeptides inhibiting NPS neurons. We conclude that CeL and CeM neurons inhibit NPS neurons in the brainstem by GABA release and that efficacy of this connection is strengthened upon fear memory retrieval. Thereby, this pathway provides a possible feedback mechanism between amygdala and brainstem routes involved in fear and stress coping. PMID:25936641

  12. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits.

    Science.gov (United States)

    Wolff, Tanya; Iyer, Nirmala A; Rubin, Gerald M

    2015-05-01

    Insects exhibit an elaborate repertoire of behaviors in response to environmental stimuli. The central complex plays a key role in combining various modalities of sensory information with an insect's internal state and past experience to select appropriate responses. Progress has been made in understanding the broad spectrum of outputs from the central complex neuropils and circuits involved in numerous behaviors. Many resident neurons have also been identified. However, the specific roles of these intricate structures and the functional connections between them remain largely obscure. Significant gains rely on obtaining a comprehensive catalog of the neurons and associated GAL4 lines that arborize within these brain regions, and on mapping neuronal pathways connecting these structures. To this end, small populations of neurons in the Drosophila melanogaster central complex were stochastically labeled using the multicolor flip-out technique and a catalog was created of the neurons, their morphologies, trajectories, relative arrangements, and corresponding GAL4 lines. This report focuses on one structure of the central complex, the protocerebral bridge, and identifies just 17 morphologically distinct cell types that arborize in this structure. This work also provides new insights into the anatomical structure of the four components of the central complex and its accessory neuropils. Most strikingly, we found that the protocerebral bridge contains 18 glomeruli, not 16, as previously believed. Revised wiring diagrams that take into account this updated architectural design are presented. This updated map of the Drosophila central complex will facilitate a deeper behavioral and physiological dissection of this sophisticated set of structures. PMID:25380328

  13. Apoptosis of supraoptic AVP neurons is involved in the development of central diabetes insipidus after hypophysectomy in rats

    Directory of Open Access Journals (Sweden)

    Huang Lijin

    2008-06-01

    Full Text Available Abstract Background It has been reported that various types of axonal injury of hypothalamo-neurohypophyseal tract can result in degeneration of the magnocellular neurons (MCNs in hypothalamus and development of central diabetes insipidus (CDI. However, the mechanism of the degeneration and death of MCNs after hypophysectomy in vivo is still unclear. This present study was aimed to disclose it and to figure out the dynamic change of central diabetes insipidus after hypophysectomy. Results The analysis on the dynamic change of daily water consumption (DWC, daily urine volume(DUV, specific gravity of urine(USG and plasma vasopressin concentration showed that the change pattern of them was triphasic and neuron counting showed that the degeneration of vasopressin neurons began at 10 d, aggravated at 20 d and then stabilized at 30 d after hypophysectomy. There was marked upregulation of cleaved Caspase-3 expression of vasopressin neurons in hypophysectomy rats. A "ladder" pattern of migration of DNA internucleosomal fragments was detected and apoptotic ultrastructure was found in these neurons. There was time correlation among the occurrence of diabetes insipidus, the changes of plasma vasopressin concentration and the degeneration of vasopressin neurons after hypophysectomy. Conclusion This study firstly demonstrated that apoptosis was involved in degeneration of supraoptic vasopressin neurons after hypophysectomy in vivo and development of CDI. Our study on time course and correlations among water metabolism, degeneration and apoptosis of vasopressin neurons suggested that there should be an efficient therapeutic window in which irreversible CDI might be prevented by anti-apoptosis.

  14. Continued Growth of the Central Nervous System without Mandatory Addition of Neurons in the Nile Crocodile (Crocodylus niloticus).

    Science.gov (United States)

    Ngwenya, Ayanda; Patzke, Nina; Manger, Paul R; Herculano-Houzel, Suzana

    2016-01-01

    It is generally believed that animals with larger bodies require larger brains, composed of more neurons. Across mammalian species, there is a correlation between body mass and the number of brain neurons, albeit with low allometric exponents. If larger bodies imperatively require more neurons to operate them, then such an increase in the number of neurons should be detected across individuals of a continuously growing species, such as the Nile crocodile. In the current study we use the isotropic fractionator method of cell counting to determine how the number of neurons and non-neurons in 6 specific brain regions and the spinal cord change with increasing body mass in the Nile crocodile. The central nervous system (CNS) structures examined all increase in mass as a function of body mass, with allometric exponents of around 0.2, except for the spinal cord, which increases with an exponent of 0.6. We find that numbers of non-neurons increase slowly, but significantly, in all CNS structures, scaling as a function of body mass with exponents ranging between 0.1 and 0.3. In contrast, numbers of neurons scale with body mass in the spinal cord, olfactory bulb, cerebellum and telencephalon, with exponents of between 0.08 and 0.20, but not in the brainstem and diencephalon, the brain structures that receive inputs and send outputs to the growing body. Densities of both neurons and non-neurons decrease with increasing body mass. These results indicate that increasing body mass with growth in the Nile crocodile is associated with a general addition of non-neurons and increasing cell size throughout CNS structures, but is only associated with an addition of neurons in some structures (and at very small rates) and not in those brain structures directly connected to the body. Larger bodies thus do not imperatively require more neurons to operate them. PMID:26914769

  15. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Miles Douglas Thompson

    2014-05-01

    Full Text Available Orexin/hypocretin peptide mutations are rare in humans. Even though human narcolepsy is associated with orexin deficiency, this is only extremely rarely due to mutations in the gene coding prepro-orexin, the precursor for both orexin peptides. In contrast, coding and non-coding variants of the OX1 and OX2 orexin receptors have been identified in many human populations; sometimes, these have been associated with disease phenotype, although most confer a relatively low risk. In most cases, these studies have been based on a candidate gene hypothesis that predicts involvement of orexins in the relevant pathophysiological processes. In the current review, the known human OX1/HCRTR1 and OX2/HCRTR2 genetic variants/polymorphisms as well as studies concerning their involvement in disorders such as narcolepsy, excessive daytime sleepiness, cluster headache, polydipsia-hyponatremia in schizophrenia, and affective disorders are presented. In most cases, the functional cellular or pharmacological correlates of orexin variants have not been investigated  with the exception of the possible impact of an amino acid 10 Pro/Ser variant of OX2 on orexin potency  leaving conclusions on the nature of the receptor variant effects speculative. Nevertheless, we present perspectives that could shape the basis for further studies. The pharmacology and other properties of the orexin receptor variants are discussed in the context of GPCR signaling. Since orexinergic therapeutics are emerging, the impact of receptor variants on the affinity or potency of ligands deserves consideration. This perspective (pharmacogenetics is also discussed in the review.

  16. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.

    Science.gov (United States)

    Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O

    2015-12-01

    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease. PMID:25894681

  17. Effects of a newly developed potent orexin-2 receptor-selective antagonist Compound1m on sleep/wake states in mice

    Directory of Open Access Journals (Sweden)

    Keishi eEtori

    2014-01-01

    Full Text Available Orexins (also known as hypocretins, which are hypothalamic neuropeptides, play critical roles in the regulation of sleep/wakefulness states by activating two G-protein coupled receptors (GPCRs, orexin 1 (OX1R and orexin 2 receptors (OX2R. In order to know the difference between effects of OX2R-selective antagonists (2-SORA and dual orexin receptor antagonists (DORA, and to understand the mechanisms underlying orexin-mediated regulation of sleep/wakefulness states, we examined the effects of a newly developed 2-SORA, Compound 1m (C1m, and a DORA, suvorexant, on sleep/wakefulness states in C57BL/6J mice. After oral administration in the dark period, both C1m and suvorexant exhibited potent sleep-promoting properties with similar efficacy in a dose-dependent manner. While C1m did not increase NREM and REM sleep episode durations, suvorexant induced longer episode durations of NREM and REM sleep as compared with both the vehicle- and C1m-administered groups. When compounds were injected during light period, C1m did not show a significant change in sleep/wakefulness states in the light period, whereas suvorexant slightly but significantly increased the sleep time. We also found that C1m did not affect the time of REM sleep, while suvorexant markedly increased it. This suggests that although OX1R-mediated pathway plays a pivotal role in promoting wakefulness, OX1R-mediated pathway also plays an additional role. OX1R-mediated pathway also plays a role in suppression of REM sleep. Fos-immunostaining showed that both compounds affected the activity of arousal-related neurons with different patterns. These results suggest partly overlapping and partly distinct roles of orexin receptors in the regulation of sleep/wakefulness states.

  18. Development of an orexin-2 receptor selective agonist, [Ala(11), D-Leu(15)]orexin-B.

    Science.gov (United States)

    Asahi, Shuichi; Egashira, Shin-Ichiro; Matsuda, Masao; Iwaasa, Hisashi; Kanatani, Akio; Ohkubo, Mitsuru; Ihara, Masaki; Morishima, Hajime

    2003-01-01

    Investigation of L-alanine and D-amino acid replacement of orexin-B revealed that three L-leucine residues at the positions of 11, 14, and 15 in orexin-B were important to show selectivity for the orexin-2 receptor (OX(2)) over the orexin-1 receptor (OX(1)). L-Alanine substitution at position 11 and D-leucine substitution at positions 14 and 15 maintained the potency of orexin-B to mobilize [Ca(2+)](i) in CHO cells expressing the OX(2), while their potency for the OX(1) was significantly reduced. In combined substitutions, we identified that [Ala(11), D-Leu(15)]orexin-B showed a 400-fold selectivity for the OX(2) (EC(50)=0.13nM) over OX(1) (EC(50)=52nM). [Ala(11), D-Leu(15)]orexin-B is a beneficial tool for addressing the functional roles of the OX(2). PMID:12467628

  19. Interneuronal Transfer and Distal Action of Tetanus Toxin and Botulinum Neurotoxins A and D in Central Neurons.

    Science.gov (United States)

    Bomba-Warczak, Ewa; Vevea, Jason D; Brittain, Joel M; Figueroa-Bernier, Annette; Tepp, William H; Johnson, Eric A; Yeh, Felix L; Chapman, Edwin R

    2016-08-16

    Recent reports suggest that botulinum neurotoxin (BoNT) A, which is widely used clinically to inhibit neurotransmission, can spread within networks of neurons to have distal effects, but this remains controversial. Moreover, it is not known whether other members of this toxin family are transferred between neurons. Here, we investigate the potential distal effects of BoNT/A, BoNT/D, and tetanus toxin (TeNT), using central neurons grown in microfluidic devices. Toxins acted upon the neurons that mediated initial entry, but all three toxins were also taken up, via an alternative pathway, into non-acidified organelles that mediated retrograde transport to the somato-dendritic compartment. Toxins were then released into the media, where they entered and exerted their effects upon upstream neurons. These findings directly demonstrate that these agents undergo transcytosis and interneuronal transfer in an active form, resulting in long-distance effects. PMID:27498860

  20. Is BDNF sufficient for information transfer between microglia and dorsal horn neurons during the onset of central sensitization?

    OpenAIRE

    Balasubramanyan Sridhar; Stebbing Martin J; Lu Van B; Biggs James E; Smith Peter A

    2010-01-01

    Abstract Peripheral nerve injury activates spinal microglia. This leads to enduring changes in the properties of dorsal horn neurons that initiate central sensitization and the onset of neuropathic pain. Although a variety of neuropeptides, cytokines, chemokines and neurotransmitters have been implicated at various points in this process, it is possible that much of the information transfer between activated microglia and neurons, at least in this context, may be explicable in terms of the ac...

  1. Development and distribution of PAG-immunoreactive neurons in the central pathway of trigeminal proprioception of the rat brainstem

    Institute of Scientific and Technical Information of China (English)

    PANG You-wang; LI Jin-lian

    2002-01-01

    Objective:To investigate the development and distribution of phosphate-activated glutaminase like immunoreactive (PAG-LI) neurons in the central pathway of trigeminal proprioception of the rat brainstem.Methods: The immunohistochemitry techniques were used. Results: (1) At embryonic day 17 (E17), PAGLI neurons were initially observed in the mesencephalic trigeminal nucleus (Vme). All PAG-LI neurons were large round neurons with moderate immunostaining. The immunoreactivity grew intense and attained adultlike pattern at P10. (2) Not until postnatal day 10 (P10) did a few PAG-LI neurons appear in the area ventral to the motor trigeminal nucleus (AVM) and area dorsal to the superior olivery nucleus (ADO), and not until P12 in the dorsomedial part of the subnucleus oralis of the spinal trigeminal nucleus (Vodm) and dorsomedial part of the principal sensory trigeminal nucleus (Vpdm). As development proceeded, more and more neurons in them were immunostained, and some PAG-LI neurons were detected in the lateral reticular formation adjacent to the Vodm(LRF)and the caudolateral part of the supratrigeminal nucleus (Vsup-CL) at P21.Conclusion: In the central pathway of trigeminal proprioception of the rat brainstem, PAG-LI neurons appeared during two stages: The first stage from E17 to P10, PAG-LI neurons appeared in the Vme and reached adult-like pattern; the second stage from P10 to P21, PAG-LI neurons appeared in the Vodm, LRF,Vpdm, Vsup-CL, ADO, AVM and gradually reached adult-like pattern. This might be relative to the establishment of jaw movement patterns.

  2. Coe genes are expressed in differentiating neurons in the central nervous system of protostomes.

    Directory of Open Access Journals (Sweden)

    Adrien Demilly

    Full Text Available Genes of the coe (collier/olfactory/early B-cell factor family encode Helix-Loop-Helix transcription factors that are widely conserved in metazoans and involved in many developmental processes, neurogenesis in particular. Whereas their functions during vertebrate neural tube formation have been well documented, very little is known about their expression and role during central nervous system (CNS development in protostomes. Here we characterized the CNS expression of coe genes in the insect Drosophila melanogaster and the polychaete annelid Platynereis dumerilii, which belong to different subgroups of protostomes and show strikingly different modes of development. In the Drosophila ventral nerve cord, we found that the Collier-expressing cells form a subpopulation of interneurons with diverse molecular identities and neurotransmitter phenotypes. We also demonstrate that collier is required for the proper differentiation of some interneurons belonging to the Eve-Lateral cluster. In Platynereis dumerilii, we cloned a single coe gene, Pdu-coe, and found that it is exclusively expressed in post mitotic neural cells. Using an original technique of in silico 3D registration, we show that Pdu-coe is co-expressed with many different neuronal markers and therefore that, like in Drosophila, its expression defines a heterogeneous population of neurons with diverse molecular identities. Our detailed characterization and comparison of coe gene expression in the CNS of two distantly-related protostomes suggest conserved roles of coe genes in neuronal differentiation in this clade. As similar roles have also been observed in vertebrates, this function was probably already established in the last common ancestor of all bilaterians.

  3. A comparison of peripheral and central axotomy effects on neurofilament and tubulin gene expression in rat dorsal root ganglion neurons

    International Nuclear Information System (INIS)

    The expression of major cytoskeletal protein mRNAs was studied in adult rat dorsal root ganglion (DRG) neurons after crushing either their central or peripheral branch axons. mRNA levels in DRG neurons were examined by quantitative in situ hybridization with radiolabeled cDNA probes specific for the low-molecular-weight neurofilament protein (NF-L) and beta-tubulin. The large-sized (greater than 1000 microns 2) neurons which give rise to myelinated axons in lumbar ganglia (L4 and L5) were studied 1 d through 8 weeks after either dorsal root or sciatic nerve crush. NF-L and beta-tubulin mRNA levels in axotomized DRG neurons were compared to those in contralateral control DRG neurons, as well as to those in normal (completely untreated) DRG cells. In the case of NF-L mRNA, changes were observed after central as well as peripheral branch axotomy and the time course and magnitude of changes were similar after both types of axotomy. NF-L mRNA levels initially decreased (first 2 weeks after crush) and then began to return towards control levels at longer survival times. Similar, but less pronounced, changes in NF-L mRNA levels also occurred in contralateral DRG neurons (which were uninjured); the changes in contralateral neurons were not simply a result of surgical stress since no changes in NF-L mRNA levels were observed in sham-operated DRG neurons. In the case of tubulin mRNA, changes were observed after central as well as peripheral branch axotomy by in situ hybridization, but the time course and magnitude of changes were different after each type of axotomy

  4. Expression of plasma orexin-A in obese children%肥胖儿童血浆中orexin-A的表达

    Institute of Scientific and Technical Information of China (English)

    贾鲲鹏; 赵琳; 张红霞; 庞随军; 李元霞

    2012-01-01

    Objective To explore the expression of plasma orexin-A and its correlation with body mass index (BMI) in obese children. Methods Fasting plasma orexin-A concentration was measured and compared in 48 obese children (obese group) and 48 matched healthy children (healthy control group). The correlation between plasma orexin-A concentration and BMI was analyzed. Results The plasma orexin-A concentration in obese group was significantly lower than that in healthy control group (P < 0.05 ). There was a negative correlation between plasma orexin-A concentration and BMI in both obese children and healthy controls(P< 0.01). Conclusion Orexin-A may be involved in the regulation of energy metabolism in obese children,and plasma orexin-A may be closely related with energy intake.%目的 探讨肥胖儿童血浆orexin-A的表达改变及其与BMI的相关性.方法 肥胖组儿童48例,检测患儿空腹外周血中orexin-A水平、体重指数(BMI),并与48例性别、年龄匹配的健康儿童(健康对照组)进行比较.分析两组orexin-A水平与BMI的相关性.结果 肥胖组儿童血浆orexin-A水平显著低于健康对照组(P<0.05).两组血浆orexin-A水平均与BMI呈负相关(P<0.01).结论 orexin-A参与了肥胖儿童机体能量代谢的调节,orexin-A与摄食密切相关.

  5. Is BDNF sufficient for information transfer between microglia and dorsal horn neurons during the onset of central sensitization?

    Directory of Open Access Journals (Sweden)

    Balasubramanyan Sridhar

    2010-07-01

    Full Text Available Abstract Peripheral nerve injury activates spinal microglia. This leads to enduring changes in the properties of dorsal horn neurons that initiate central sensitization and the onset of neuropathic pain. Although a variety of neuropeptides, cytokines, chemokines and neurotransmitters have been implicated at various points in this process, it is possible that much of the information transfer between activated microglia and neurons, at least in this context, may be explicable in terms of the actions of brain derived neurotrophic factor (BDNF. Microglial-derived BDNF mediates central sensitization in lamina I by attenuating inhibitory synaptic transmission. This involves an alteration in the chloride equilibrium potential as a result of down regulation of the potassium-chloride exporter, KCC2. In lamina II, BDNF duplicates many aspects of the effects of chronic constriction injury (CCI of the sciatic nerve on excitatory transmission. It mediates an increase in synaptic drive to putative excitatory neurons whilst reducing that to inhibitory neurons. CCI produces a specific pattern of changes in excitatory synaptic transmission to tonic, delay, phasic, transient and irregular neurons. A very similar 'injury footprint' is seen following long-term exposure to BDNF. This review presents new information on the action of BDNF and CCI on lamina II neurons, including the similarity of their actions on the kinetics and distributions of subpopulations of miniature excitatory postsynaptic currents (mEPSC. These findings raise the possibility that BDNF functions as a final common path for a convergence of perturbations that culminate in the generation of neuropathic pain.

  6. Control of hypothalamic orexin neurons by acid and CO2

    Czech Academy of Sciences Publication Activity Database

    Williams, R.H.; Jensen, L.T.; Verkhratsky, Alexei; Fugger, L.; Burdakov, D.

    2007-01-01

    Roč. 104, č. 25 (2007), s. 10685-10690. ISSN 0027-8424 Institutional research plan: CEZ:AV0Z50390512 Keywords : Arousal * Hypocretin * Hypothalamus Subject RIV: FH - Neurology Impact factor: 9.598, year: 2007

  7. The hypocretin/orexin system in sleep disorders: preclinical insights and clinical progress.

    Science.gov (United States)

    Chow, Matthew; Cao, Michelle

    2016-01-01

    Much of the understanding of the hypocretin/orexin (HCRT/OX) system in sleep-wake regulation came from narcolepsy-cataplexy research. The neuropeptides hypocretin-1 and -2/orexin-A and -B (HCRT-1 and -2/OX-A and -B, respectively), as we know, are intimately involved in the regulation wakefulness. The HCRT/OX system regulates sleep-wake control through complex interactions between monoaminergic/cholinergic (wake-promoting) and gamma-aminobutyric acid-ergic (sleep-promoting) neuronal systems. Deficiency of HCRT/OX results in loss of sleep-wake control or stability with consequent unstable transitions between wakefulness to nonrapid eye movement and rapid eye movement sleep. This manifests clinically as abnormal daytime sleepiness with sleep attacks and cataplexy. Research on the development of HCRT/OX agonists and antagonists for the treatment of sleep disorders has dramatically increased with the US Food and Drug Administration approval of the first-in-class dual HCRT/OX receptor antagonist for the treatment of insomnia. This review focuses on the origin, mechanisms of HCRT/OX receptors, clinical progress, and applications for the treatment of sleep disorders. PMID:27051324

  8. Contribution of the T1r3 taste receptor to the response properties of central gustatory neurons.

    Science.gov (United States)

    Lemon, Christian H; Margolskee, Robert F

    2009-05-01

    T1r3 is a critical subunit of T1r sweet taste receptors. Here we studied how the absence of T1r3 impacts responses to sweet stimuli by taste neurons in the nucleus tractus solitarius (NTS) of the mouse. The consequences bear on the multiplicity of sweet taste receptors and how T1r3 influences the distribution of central gustatory neurons. Taste responses to glycine, sucrose, NaCl, HCl, and quinine were electrophysiologically recorded from single NTS neurons in anesthetized T1r3 knockout (KO) and wild-type (WT) C57BL/6 mice. Other stimuli included l-proline, d-fructose, d-glucose, d-sorbitol, Na-saccharin, acesulfame-K, monosodium glutamate, NaNO(3), Na-acetate, citric acid, KCl, denatonium, and papaverine. Forty-one WT and 41 KO neurons were recorded. Relative to WT, KO responses to all sweet stimuli were significantly lower, although the degree of attenuation differed among stimuli, with near zero responses to sugars but salient residual activity to artificial sweeteners and glycine. Residual KO across-neuron responses to sweet stimuli were variably similar to nonsweet responses, as indexed by multivariate and correlation analyses. In some cases, this suggested that residual KO activity to "sweet" stimuli could be mediated by nonsweet taste receptors, implicating T1r3 receptors as primary contributors to NTS sweet processing. The influence of T1r3 on the distribution of NTS neurons was evaluated by comparing neuron types that emerged between WT and KO cells. Neurons tuned toward sweet stimuli composed 34% of the WT sample but did not appear among KO cells. Input from T1r3-containing receptors critically guides the normal development of NTS neurons oriented toward sweet tastants. PMID:19279151

  9. Role of the non-opioid dynorphin peptide des-Tyr-dynorphin (DYN-A2-17) in food intake and physical activity, and its interaction with orexin-A.

    Science.gov (United States)

    Gac, L; Butterick, T A; Duffy, C M; Teske, J A; Perez-Leighton, C E

    2016-02-01

    Food intake and physical activity are regulated by multiple neuropeptides, including orexin and dynorphin (DYN). Orexin-A (OXA) is one of two orexin peptides with robust roles in regulation of food intake and spontaneous physical activity (SPA). DYN collectively refers to several peptides, some of which act through opioid receptors (opioid DYN) and some whose biological effects are not mediated by opioid receptors (non-opioid DYN). While opioid DYN is known to increase food intake, the effects of non-opioid DYN peptides on food intake and SPA are unknown. Neurons that co-express and release OXA and DYN are located within the lateral hypothalamus. Limited evidence suggests that OXA and opioid DYN peptides can interact to modulate some aspects of behaviors classically related to orexin peptide function. The paraventricular hypothalamic nucleus (PVN) is a brain area where OXA and DYN peptides might interact to modulate food intake and SPA. We demonstrate that injection of des-Tyr-dynorphin (DYN-A2-17, a non opioid DYN peptide) into the PVN increases food intake and SPA in adult mice. Co-injection of DYN-A2-17 and OXA in the PVN further increases food intake compared to DYN-A2-17 or OXA alone. This is the first report describing the effects of non-opioid DYN-A2-17 on food intake and SPA, and suggests that DYN-A2-17 interacts with OXA in the PVN to modulate food intake. Our data suggest a novel function for non-opioid DYN-A2-17 on food intake, supporting the concept that some behavioral effects of the orexin neurons result from combined actions of the orexin and DYN peptides. PMID:26654796

  10. EFFECTS OF ACUTE HYPOGLYCEMIA ON THE OREXIN SYSTEM IN RAT

    Institute of Scientific and Technical Information of China (English)

    Yu-yan Zhao; Lei Guo; Jian Du; Guo-liang Liu

    2005-01-01

    Objective To evaluate the effects of acute glucose level changes on expression of prepro-orexin, orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) mRNA in rat hypothalamus tissue and pancreatic islets cells.Methods Thirty adult male Wistar rats were randomly divided into three equal groups (n= 10). The acute hypoglycemia rat model was induced by a single subcutaneous injection of insulin. Twenty acute hypoglycemia rats were divided into group B and group C. Group B was allowed to eat freely, while group C was food-deprived. Control rats were injected the same volume of saline. The effect of glucose levels (2.8 mmol/L and 8.3 mmol/L) on pancreatic islet cell orexin system was detected in pancreas islet cell cultured in vitro. The expression of prepro-orexin and OXR mRNA was examined in rat hypothalamus tissue and pancreatic islets cell cultured in vitro using reverse transcription-polymerase chain reaction (RTPCR).Results Expression of orexin mRNA increased about 150% for the food-deprived hypoglycemia rats in comparison with control group (P < 0.01), whereas expression of OX1R mRNA decreased up to 30% (P < 0.01). However, expression of OX2R mRNA was unchanged in comparison with control group. In vitro, after incubation with 2.8 mmol/L glucose for 6hours, the expression of prepro-orexin mRNA increased 2 times in rat pancreas islet cells in comparison with 8.3 mmol/Lglucose group (P < 0.01). But the expression of OX1R mRNA was not sensitive to acute glucose fluctuation.Conclusions Orexin in rat hypothalamus is stimulated by decline in blood glucose and inhibited by signals related to feeding. Moreover, glucose plays a role in modulating the gene expression of prepro-orexin in rat pancreatic islet cells.

  11. Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly.

    Science.gov (United States)

    Heinze, Stanley; Florman, Jeremy; Asokaraj, Surainder; El Jundi, Basil; Reppert, Steven M

    2013-02-01

    Each fall, eastern North American monarch butterflies in their northern range undergo a long-distance migration south to their overwintering grounds in Mexico. Migrants use a time-compensated sun compass to determine directionality during the migration. This compass system uses information extracted from sun-derived skylight cues that is compensated for time of day and ultimately transformed into the appropriate motor commands. The central complex (CX) is likely the site of the actual sun compass, because neurons in this brain region are tuned to specific skylight cues. To help illuminate the neural basis of sun compass navigation, we examined the neuronal composition of the CX and its associated brain regions. We generated a standardized version of the sun compass neuropils, providing reference volumes, as well as a common frame of reference for the registration of neuron morphologies. Volumetric comparisons between migratory and nonmigratory monarchs substantiated the proposed involvement of the CX and related brain areas in migratory behavior. Through registration of more than 55 neurons of 34 cell types, we were able to delineate the major input pathways to the CX, output pathways, and intrinsic neurons. Comparison of these neural elements with those of other species, especially the desert locust, revealed a surprising degree of conservation. From these interspecies data, we have established key components of a conserved core network of the CX, likely complemented by species-specific neurons, which together may comprise the neural substrates underlying the computations performed by the CX. PMID:22886450

  12. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    Directory of Open Access Journals (Sweden)

    Christine eDugovic

    2014-02-01

    Full Text Available In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R and orexin-2 (OX2R receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM and REM sleep following oral dosing (10 and 30 mg/kg at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion. When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic.

  13. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism.

    Science.gov (United States)

    Dugovic, Christine; Shelton, Jonathan E; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T; Lovenberg, Timothy W

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  14. Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-Dür)

    Science.gov (United States)

    Xie, Gui-Ying; Zhao, Xin-Cheng; Ma, Bai-Wei; Guo, Pei; Li, Guo-Ping; Feng, Hong-Qiang; Wu, Guo-Liang

    2016-01-01

    The mirid bug Apolygus lucorum (Meyer-Dür), a polyphagous pest, is dependent on olfactory cues to locate various host plant species and mates. In this study, we traced the projection pathway of the antennal sensory neurons and visualized their projection patterns in the central nervous system of A. lucorum through confocal microscopy and digital reconstructions. We also examined the glomerular organization of the primary olfactory center of the brain, the antennal lobe, and created a three-dimensional model of the glomeruli. We found that the axons of the sensory neurons project into the brain via the ipsilateral antennal nerve, and descend further into the gnathal ganglion, prothoracic ganglion, mesothoracic ganglion, and metathoracic ganglion, and reach as far as to the abdominal ganglion. Such a projection pattern indicates that antennal sensory neurons of A. lucorum may be potentially directly connected to motor neurons. The antennal lobe, however, is the major target area of antennal sensory neurons. The antennal lobe is composed of a large number of glomeruli, i.e. 70–80 glomeruli in one AL of A. lucorum. The results of this study which provide information about the basic anatomical arrangement of the brain olfactory center of A. lucorum, are important for further investigations of chemosensory encoding mechanisms of the mirid bug. PMID:27478892

  15. Menin: a tumor suppressor that mediates postsynaptic receptor expression and synaptogenesis between central neurons of Lymnaea stagnalis.

    Directory of Open Access Journals (Sweden)

    Nichole Flynn

    Full Text Available Neurotrophic factors (NTFs support neuronal survival, differentiation, and even synaptic plasticity both during development and throughout the life of an organism. However, their precise roles in central synapse formation remain unknown. Previously, we demonstrated that excitatory synapse formation in Lymnaea stagnalis requires a source of extrinsic NTFs and receptor tyrosine kinase (RTK activation. Here we show that NTFs such as Lymnaea epidermal growth factor (L-EGF act through RTKs to trigger a specific subset of intracellular signalling events in the postsynaptic neuron, which lead to the activation of the tumor suppressor menin, encoded by Lymnaea MEN1 (L-MEN1 and the expression of excitatory nicotinic acetylcholine receptors (nAChRs. We provide direct evidence that the activation of the MAPK/ERK cascade is required for the expression of nAChRs, and subsequent synapse formation between pairs of neurons in vitro. Furthermore, we show that L-menin activation is sufficient for the expression of postsynaptic excitatory nAChRs and subsequent synapse formation in media devoid of NTFs. By extending our findings in situ, we reveal the necessity of EGFRs in mediating synapse formation between a single transplanted neuron and its intact presynaptic partner. Moreover, deficits in excitatory synapse formation following EGFR knock-down can be rescued by injecting synthetic L-MEN1 mRNA in the intact central nervous system. Taken together, this study provides the first direct evidence that NTFs functioning via RTKs activate the MEN1 gene, which appears sufficient to regulate synapse formation between central neurons. Our study also offers a novel developmental role for menin beyond tumour suppression in adult humans.

  16. Antibodies in Cerebrospinal Fluid of Some Alzheimer Disease Patients Recognize Cholinergic Neurons in the Rat Central Nervous System

    Science.gov (United States)

    McRae-Degueurce, Amanda; Booj, Serney; Haglid, Kenneth; Rosengren, Lars; Karlsson, Jan Erik; Karlsson, Ingvar; Wallin, Anders; Svennerholm, Lars; Gottfries, Carl-Gerhard; Dahlstrom, Annica

    1987-12-01

    The etiology of Alzheimer disease is unclear. However, immunological aberrations have been suggested to be critical factors in the pathogenesis of this neurodegenerative disease. This study was carried out to investigate if cerebrospinal fluid (CSF) from Alzheimer disease patients contains antibodies that recognize specific neuronal populations in the rat central nervous system. The results indicate that in a subgroup of patients this is indeed the case. The antibodies reported in this study have the following properties: (i) they recognize neuronal populations and components in the medial septum and spinal motor neurons in rats perfused with a mixture that fixes small neurotransmitter molecules; (ii) adsorption of the patient CSF with staphylococcal protein A-Sepharose and using a polyclonal antiserum against human IgG3 indicates that the immunocytochemical reaction in these brain regions is mainly due to the subclass IgG3; and (iii) the CSF immunocytochemical reaction is blocked by preincubation of the sections with a rabbit anti-acetylcholine antiserum. These results provide evidence that antibodies in the CSF of some, but not all, Alzheimer disease patients recognize acetylcholine-like epitopes in cholinergic neurons in the rat central nervous system.

  17. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep

    Directory of Open Access Journals (Sweden)

    Masahiro eYamaguchi

    2013-08-01

    Full Text Available Plastic changes in neuronal circuits often occur in association with specific behavioral states. In this review, we focus on an emerging view that neuronal circuits in the olfactory system are reorganized along the wake-sleep cycle. Olfaction is crucial to sustaining the animals’ life, and odor-guided behaviors have to be newly acquired or updated to successfully cope with a changing odor world. It is therefore likely that neuronal circuits in the olfactory system are highly plastic and undergo repeated reorganization in daily life. A remarkably plastic feature of the olfactory system is that newly generated neurons are continually integrated into neuronal circuits of the olfactory bulb (OB throughout life. New neurons in the OB undergo an extensive selection process, during which many are eliminated by apoptosis for the fine tuning of neuronal circuits. The life and death decision of new neurons occurs extensively during a short time window of sleep after food consumption (postprandial sleep, a typical daily olfactory behavior. We review recent studies that explain how olfactory information is transferred between the OB and the olfactory cortex (OC along the course of the wake-sleep cycle. Olfactory sensory input is effectively transferred from the OB to the OC during waking, while synchronized top-down inputs from the OC to the OB are promoted during the slow-wave sleep. We discuss possible neuronal circuit mechanisms for the selection of new neurons in the OB, which involves the encoding of olfactory sensory inputs and memory trace formation during waking and internally generated activities in the OC and OB during subsequent sleep. The plastic changes in the OB and OC are well coordinated along the course of olfactory behavior during wakefulness and postbehavioral rest and sleep. We therefore propose that the olfactory system provides an excellent model in which to understand behavioral state-dependent plastic mechanisms of the neuronal

  18. Menin: A Tumor Suppressor That Mediates Postsynaptic Receptor Expression and Synaptogenesis between Central Neurons of Lymnaea stagnalis

    OpenAIRE

    Nichole Flynn; Angela Getz; Frank Visser; Tara A Janes; Syed, Naweed I.

    2014-01-01

    Neurotrophic factors (NTFs) support neuronal survival, differentiation, and even synaptic plasticity both during development and throughout the life of an organism. However, their precise roles in central synapse formation remain unknown. Previously, we demonstrated that excitatory synapse formation in Lymnaea stagnalis requires a source of extrinsic NTFs and receptor tyrosine kinase (RTK) activation. Here we show that NTFs such as Lymnaea epidermal growth factor (L-EGF) act through RTKs to t...

  19. ErbB receptor signaling in astrocytes: a mediator of neuron-glia communication in the mature central nervous system.

    Science.gov (United States)

    Sharif, Ariane; Prevot, Vincent

    2010-11-01

    Astrocytes are now recognized as active players in the developing and mature central nervous system. Each astrocyte contacts vascular structures and thousands of synapses within discrete territories. These cells receive a myriad of inputs and generate appropriate responses to regulate the function of brain microdomains. Emerging evidence has implicated receptors of the ErbB tyrosine kinase family in the integration and processing of neuronal inputs by astrocytes: ErbB receptors can be activated by a wide range of neuronal stimuli; they control critical steps of glutamate-glutamine metabolism; and they regulate the biosynthesis and release of various glial-derived neurotrophic factors, gliomediators and gliotransmitters. These key properties of astrocytic ErbB signaling in neuron-glia interactions have significance for the physiology of the mature central nervous system, as exemplified by the central control of reproduction within the hypothalamus, and are also likely to contribute to pathological situations, since both dysregulation of ErbB signaling and glial dysfunction occur in many neurological disorders. PMID:20685225

  20. Prenatal fat exposure and hypothalamic PPAR β/δ: Possible relationship to increased neurogenesis of orexigenic peptide neurons.

    Science.gov (United States)

    Chang, G-Q; Karatayev, O; Lukatskaya, O; Leibowitz, S F

    2016-05-01

    Gestational exposure to a fat-rich diet, while elevating maternal circulating fatty acids, increases in the offspring's hypothalamus and amygdala the proliferation and density of neurons that express neuropeptides known to stimulate consummatory behavior. To understand the relationship between these phenomena, this study examined in the brain of postnatal offspring (day 15) the effect of prenatal fat exposure on the transcription factor, peroxisome proliferator-activated receptor (PPAR) β/δ, which is sensitive to fatty acids, and the relationship of PPAR β/δ to the orexigenic neuropeptides, orexin, melanin-concentrating hormone, and enkephalin. Prenatal exposure to a fat-rich diet compared to low-fat chow increased the density of cells immunoreactive for PPAR β/δ in the hypothalamic paraventricular nucleus (PVN), perifornical lateral hypothalamus (PFLH), and central nucleus of the amygdala (CeA), but not the hypothalamic arcuate nucleus or basolateral amygdaloid nucleus. It also increased co-labeling of PPAR β/δ with the cell proliferation marker, BrdU, or neuronal marker, NeuN, and the triple labeling of PPAR β/δ with BrdU plus NeuN, indicating an increase in proliferation and density of new PPAR β/δ neurons. Prenatal fat exposure stimulated the double-labeling of PPAR β/δ with orexin or melanin-concentrating hormone in the PFLH and enkephalin in the PVN and CeA and also triple-labeling of PPAR β/δ with BrdU and these neuropeptides, indicating that dietary fat increases the genesis of PPAR β/δ neurons that produce these peptides. These findings demonstrate a close anatomical relationship between PPAR β/δ and the increased proliferation and density of peptide-expressing neurons in the hypothalamus and amygdala of fat-exposed offspring. PMID:27002387

  1. Effects of orexin on obesity and its mechanism%增食欲素干预单纯性肥胖的作用及机制

    Institute of Scientific and Technical Information of China (English)

    郝圆圆; 张婷婷; 袁红网; 唐丽娟; 胡弘毅; 陈曦; 秦阳; 卜平

    2014-01-01

    Orexin,a significant central neuropeptide,homeostatically coordinates multiple physiological functions,including feeding behavior and energy metabolism.In the context of a brain regulation network,orexin plays a key role in increasing food intake,inhibiting gastrointestinal motility and promoting the secretion of gastric acid,working with several kinds of neurotransmitters.The elevated orexin may result in the increase of spontaneous physical activity,which is greater than orexigenic effects.The greater activation of orexin-induced spontaneous physical activity may raise nonexercise activity thermogenesis and affect the resting/non-resting energy expenditure ratio.Orexin may enhance brown adipose tissue thermogenesis energy expenditure,therefore intervene the development of obesity.%增食欲素作为一种调节进食与能量代谢等生理功能的重要中枢神经肽,与多种神经递质构成中枢调控网络,促进进食,抑制胃肠蠕动,增强胃酸分泌.增食欲素对机体自发运动有向上调节作用,且比促食作用更明显,从而增加机体非运动活动产热,影响休息/非休息能量消耗比.此外增食欲素还能提高褐色脂肪组织的生热作用,共同增强机体能量消耗,干预肥胖发展.

  2. Integration of stress and leptin signaling by CART producing neurons in the rodent midbrain centrally projecting Edinger-Westphal nucleus

    Science.gov (United States)

    Xu, Lu; Janssen, Donny; van der Knaap, Noortje; Roubos, Eric W.; Leshan, Rebecca L.; Myers, Martin G.; Gaszner, Balázs; Kozicz, Tamás

    2014-01-01

    Leptin targets the brain to regulate feeding, neuroendocrine function and metabolism. The leptin receptor is present in hypothalamic centers controlling energy metabolism as well as in the centrally projecting Edinger–Westphal nucleus (EWcp), a region implicated in the stress response and in various aspects of stress-related behaviors. We hypothesized that the stress response by cocaine- and amphetamine-regulated transcript (CART)-producing EWcp-neurons would depend on the animal’s energy state. To test this hypothesis, we investigated the effects of changes in energy state (mimicked by low, normal and high leptin levels, which were achieved by 24 h fasting, normal chow and leptin injection, respectively) on the response of CART neurons in the EWcp of rats subjected or not to acute restraint stress. Our data show that leptin treatment alone significantly increases CART mRNA expression in the rat EWcp and that in leptin receptor deficient (db/db) mice, the number of CART producing neurons in this nucleus is reduced. This suggests that leptin has a stimulatory effect on the production of CART in the EWcp under non-stressed condition. Under stressed condition, however, leptin blunts stress-induced activation of EWcp neurons and decreases their CART mRNA expression. Interestingly, fasting, does not influence the stress-induced activation of EWcp-neurons, and specifically EWcp-CART neurons are not activated. These results suggest that the stress response by the EWcp depends to some degree on the animal’s energy state, a mechanism that may contribute to a better understanding of the complex interplay between obesity and stress. PMID:24624061

  3. Integration of stress and leptin signaling by CART producing neurons in the rodent midbrain centrally projecting Edinger-Westphal nucleus

    Directory of Open Access Journals (Sweden)

    Lu eXu

    2014-03-01

    Full Text Available Leptin targets the brain to regulate feeding, neuroendocrine function and metabolism. The leptin receptor is present in hypothalamic centers controlling energy metabolism as well as in the centrally projecting Edinger-Westphal nucleus (EWcp, a region implicated in the stress response and in various aspects of stress-related behaviors. We hypothesized that the stress response by cocaine- and amphetamine-regulated transcript (CART-producing EWcp-neurons would depend on the animal’s energy state. To test this hypothesis, we investigated the effects of changes in energy state (mimicked by low, normal and high leptin levels, which were achieved by 24h fasting, normal chow and leptin injection, respectively on the response of CART neurons in the EWcp of rats subjected or not to acute restraint stress. Our data show that leptin treatment alone significantly increases CART mRNA expression in the rat EWcp and that in leptin receptor deficient (db/db mice, the number of CART producing neurons in this nucleus is reduced. This suggests that leptin has a stimulatory effect on the production of CART in the EWcp under non-stressed condition. Under stressed condition, however, leptin blunts stress-induced activation of EWcp neurons and decreases their CART mRNA expression. Interestingly, fasting, does not influence the stress-induced activation of EWcp-neurons, and specifically EWcp-CART neurons are not activated. These results suggest that the stress response by the EWcp depends to some degree on the animal’s energy state, a mechanism that may contribute to a better understanding of the complex interplay between obesity and stress.

  4. Orexin receptor antagonists as therapeutic agents for insomnia

    Directory of Open Access Journals (Sweden)

    Ana Clementina Equihua

    2013-12-01

    Full Text Available Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning.Currently, treatment for insomnia involves a combination of cognitive behavioral therapy and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine receptor agonist drugs (GABAA receptor, although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects.Orexin (hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g. impaired cognition, disturbed arousal, and motor balance difficulties. However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia.

  5. Regulation of motor patterns by the central spike initiation zone of a sensory neuron

    OpenAIRE

    Daur, Nelly; Nadim, Farzan; Stein, Wolfgang

    2009-01-01

    Sensory feedback from muscles and peripheral sensors acts to initiate, tune or reshape motor activity according to the state of the body. Yet, sensory neurons often show low levels of activity even in the absence of sensory input. Here we examine the functional role of spontaneous low-frequency activity of such a sensory neuron. The anterior gastric receptor (AGR) is a muscle tendon organ in the crab stomatogastric nervous system whose phasic activity shapes the well-characterized gastric mil...

  6. Detection and Characterization of Autoantibodies to Neuronal Cell-Surface Antigens in the Central Nervous System

    OpenAIRE

    Marleen eVan Coevorden-Hameete; Maarten eTitulaer; Marco eSchreurs; Esther ede Graaff; Peter eSillevis Smitt; Casper eHoogenraad

    2016-01-01

    Autoimmune encephalitis (AIE) is a group of disorders in which autoantibodies directed at antigens located on the plasma membrane of neurons induce severe neurological symptoms. In contrast to classical paraneoplastic disorders, AIE patients respond well to immunotherapy. The detection of neuronal surface autoantibodies in patients’ serum or CSF therefore has serious consequences for the patients’ treatment and follow-up and requires the availability of sensitive and specific diagnostic tests...

  7. Orexin Receptor Antagonists: New Therapeutic Agents for the Treatment of Insomnia.

    Science.gov (United States)

    Roecker, Anthony J; Cox, Christopher D; Coleman, Paul J

    2016-01-28

    Since its discovery in 1998, the orexin system, composed of two G-protein coupled receptors, orexins 1 and 2, and two neuropeptide agonists, orexins A and B, has captured the attention of the scientific community as a potential therapeutic target for the treatment of obesity, anxiety, and sleep/wake disorders. Genetic evidence in rodents, dogs, and humans was revealed between 1999 and 2000, demonstrating a causal link between dysfunction or deletion of the orexin system and narcolepsy, a disorder characterized by hypersomnolence during normal wakefulness. These findings encouraged efforts to discover agonists to treat narcolepsy and, alternatively, antagonists to treat insomnia. This perspective will focus on the discovery and development of structurally diverse orexin antagonists suitable for preclinical pharmacology studies and human clinical trials. The work described herein culminated in the 2014 FDA approval of suvorexant as a first-in-class dual orexin receptor antagonist for the treatment of insomnia. PMID:26317591

  8. A selective orexin-1 receptor antagonist attenuates stress-induced hyperarousal without hypnotic effects.

    Science.gov (United States)

    Bonaventure, Pascal; Yun, Sujin; Johnson, Philip L; Shekhar, Anantha; Fitz, Stephanie D; Shireman, Brock T; Lebold, Terry P; Nepomuceno, Diane; Lord, Brian; Wennerholm, Michelle; Shelton, Jonathan; Carruthers, Nicholas; Lovenberg, Timothy; Dugovic, Christine

    2015-03-01

    Orexins (OXs) are peptides produced by perifornical (PeF) and lateral hypothalamic neurons that exert a prominent role in arousal-related processes, including stress. A critical role for the orexin-1 receptor (OX1R) in complex emotional behavior is emerging, such as overactivation of the OX1R pathway being associated with panic or anxiety states. Here we characterize a brain-penetrant, selective, and high-affinity OX1R antagonist, compound 56 [N-({3-[(3-ethoxy-6-methylpyridin-2-yl)carbonyl]-3-azabicyclo[4.1.0]hept-4-yl}methyl)-5-(trifluoromethyl)pyrimidin-2-amine]. Ex vivo receptor binding studies demonstrated that, after subcutaneous administration, compound 56 crossed the blood-brain barrier and occupied OX1Rs in the rat brain at lower doses than standard OX1R antagonists GSK-1059865 [5-bromo-N-({1-[(3-fluoro-2-methoxyphenyl)carbonyl]-5-methylpiperidin-2-yl}methyl)pyridin-2-amine], SB-334867 [1-(2-methyl-1,3-benzoxazol-6-yl)-3-(1,5-naphthyridin-4-yl)urea], and SB-408124 [1-(6,8-difluoro-2-methylquinolin-4-yl)-3-[4-(dimethylamino)phenyl]urea]. Although compound 56 did not alter spontaneous sleep in rats and in wild-type mice, its administration in orexin-2 receptor knockout mice selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. In a rat model of psychological stress induced by cage exchange, the OX1R antagonist prevented the prolongation of sleep onset without affecting sleep duration. In a rat model of panic vulnerability (involving disinhibition of the PeF OX region) to threatening internal state changes (i.e., intravenous sodium lactate infusion), compound 56 attenuated sodium lactate-induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. In conclusion, OX1R antagonism represents a novel therapeutic strategy for the treatment of various psychiatric disorders associated with stress or hyperarousal states. PMID:25583879

  9. Orexin / hypocretin 1 receptor antagonist reduces heroin self-administration and cue-induced heroin seeking

    OpenAIRE

    Smith, Rachel J; Aston-Jones, Gary

    2012-01-01

    The orexin / hypocretin system is involved in several addiction-related behaviors. The present experiments examined the involvement of orexin in heroin reinforcement and relapse by administering the orexin 1 receptor antagonist SB-334867 prior to heroin self-administration or prior to cue- or heroin-induced reinstatement of extinguished heroin seeking in male Sprague Dawley rats. SB-334867 (30 mg/kg, i.p.) reduced heroin intake during self-administration under fixed ratio-1 (FR-1) and progres...

  10. Involvement of Heme Oxygenase-1 in Orexin-A-induced Angiogenesis in Vascular Endothelial Cells

    OpenAIRE

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Su-Ryun; Choi, Yoon Kyung; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2015-01-01

    The cytoprotective enzyme heme oxygenase-1 (HO-1) influences endothelial cell survival, proliferation, inflammatory response, and angiogenesis in response to various angiogenic stimuli. In this study, we investigate the involvement of HO-1 in the angiogenic activity of orexin-A. We showed that orexin-A stimulates expression and activity of HO-1 in human umbilical vein endothelial cells (HUVECs). Furthermore, we showed that inhibition of HO-1 by tin (Sn) protoporphryin-IX (SnPP) reduced orexin...

  11. Xanthurenic acid is localized in neurons in the central nervous system.

    Science.gov (United States)

    Roussel, Guy; Bessede, Alban; Klein, Christian; Maitre, Michel; Mensah-Nyagan, Ayikoe Guy

    2016-08-01

    Kynurenine pathway metabolites (KPM) are thought to be synthesized mainly by non-neuronal cells in the mammalian brain. KPM are of particular interest because several studies demonstrated their implication in various disorders of the nervous system. Among KPM is xanthurenic acid (XA) deriving from the catabolism of 3-hydroxykynurenine. Based on its chemical structure, XA appears as a close analog of kynurenic acid which has been extensively investigated and is considered as a potent neuroprotective compound. Contrary to kynurenic acid (KYNA), XA has received little attention and its role in the brain remains not elucidated. We have previously described several characteristics of XA, suggesting its possible involvement in neurotransmission. XA is also proposed as a potential modulator at glutamatergic synapses. Here, we used a selective antibody against XA and various neuronal, glial and synaptic markers to show that XA is essentially localized in the soma and dendrites of brain neurons, but is absent from axonal compartments and terminal endings. Our results also reveal that XA-like immunoreactivity is not expressed by glial cells. To double-check our findings, we have also used another XA antibody obtained from a commercial source to confirm the neuronal expression of XA. Together, our results suggest that, differently to several other KPM produced by glial cells, XA exhibits a neuronal distribution in the mouse brain. PMID:27167083

  12. Detection and Characterization of Autoantibodies to Neuronal Cell-Surface Antigens in the Central Nervous System.

    Science.gov (United States)

    van Coevorden-Hameete, Marleen H; Titulaer, Maarten J; Schreurs, Marco W J; de Graaff, Esther; Sillevis Smitt, Peter A E; Hoogenraad, Casper C

    2016-01-01

    Autoimmune encephalitis (AIE) is a group of disorders in which autoantibodies directed at antigens located on the plasma membrane of neurons induce severe neurological symptoms. In contrast to classical paraneoplastic disorders, AIE patients respond well to immunotherapy. The detection of neuronal surface autoantibodies in patients' serum or CSF therefore has serious consequences for the patients' treatment and follow-up and requires the availability of sensitive and specific diagnostic tests. This mini-review provides a guideline for both diagnostic and research laboratories that work on the detection of known surface autoantibodies and/or the identification of novel surface antigens. We discuss the strengths and pitfalls of different techniques for anti-neuronal antibody detection: (1) Immunohistochemistry (IHC) and immunofluorescence on rat/primate brain sections; (2) Immunocytochemistry (ICC) of living cultured hippocampal neurons; and (3) Cell Based Assay (CBA). In addition, we discuss the use of immunoprecipitation and mass spectrometry analysis for the detection of novel neuronal surface antigens, which is a crucial step in further disease classification and the development of novel CBAs. PMID:27303263

  13. Detection and Characterization of Autoantibodies to Neuronal Cell-Surface Antigens in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Marleen eVan Coevorden-Hameete

    2016-05-01

    Full Text Available Autoimmune encephalitis (AIE is a group of disorders in which autoantibodies directed at antigens located on the plasma membrane of neurons induce severe neurological symptoms. In contrast to classical paraneoplastic disorders, AIE patients respond well to immunotherapy. The detection of neuronal surface autoantibodies in patients’ serum or CSF therefore has serious consequences for the patients’ treatment and follow-up and requires the availability of sensitive and specific diagnostic tests. This mini-review provides a guideline for both diagnostic and research laboratories that work on the detection of known surface autoantibodies and/or the identification of novel surface antigens. We discuss the strengths and pitfalls of different techniques for anti-neuronal antibody detection: 1 Immunohistochemistry and immunofluorescence on rat/ primate brain sections, 2 Immunocytochemistry of living cultured hippocampal neurons, 3 Cell Based Assay (CBA. In addition, we discuss the use of immunoprecipitation and mass spectrometry analysis for the detection of novel neuronal surface antigens, which is a crucial step in further disease classification and the development of novel CBAs.

  14. Orexin Mediates Morphine Place Preference, but not Morphine-Induced Hyperactivity or Sensitization

    OpenAIRE

    Sharf, Ruth; Guarnieri, Douglas J.; Taylor, Jane R.; DiLeone, Ralph J

    2009-01-01

    Orexin (or hypocretin) has been implicated in mediating drug addiction and reward. Here, we investigated orexin's contribution to morphine-induced behavioral sensitization and place preference. Orexin -/- (OKO) mice and littermate wild-type (WT) controls (n= 56) and C57BL/6J mice (n=67) were tested for chronic morphine-induced locomotor sensitization or for conditioned place preference (CPP) for a morphine- or a cocaine-paired environment. C57BL/6J mice received the orexin receptor 1 (Ox1r) a...

  15. Plasma Orexin-A Levels in COPD Patients with Hypercapnic Respiratory Failure

    OpenAIRE

    Jie-Ming Qu; Hong-Ni Jiang; Lin-Yun Zhu; Hanssa Summah

    2011-01-01

    Orexins have previously been shown to promote wakefulness, regulate lipid metabolism and participate in energy homeostasis. The aim of the study was to determine the relationship between plasma orexin-A and body composition in COPD in-patients with hypercapnic respiratory failure. 40 patients with hypercapnic respiratory failure and 22 healthy individuals were enrolled prospectively in this study. Plasma orexin-A levels, BMI, SaO2, PaCO2 and PaO2 were noted for all the patients. Plasma orexin...

  16. Neuronal activation in the central nervous system of rats in the initial stage of chronic kidney disease-modulatory effects of losartan and moxonidine.

    Directory of Open Access Journals (Sweden)

    Miklós Palkovits

    Full Text Available The effect of mild chronic renal failure (CRF induced by 4/6-nephrectomy (4/6NX on central neuronal activations was investigated by c-Fos immunohistochemistry staining and compared to sham-operated rats. In the 4/6 NX rats also the effect of the angiotensin receptor blocker, losartan, and the central sympatholyticum moxonidine was studied for two months. In serial brain sections Fos-immunoreactive neurons were localized and classified semiquantitatively. In 37 brain areas/nuclei several neurons with different functional properties were strongly affected in 4/6NX. It elicited a moderate to high Fos-activity in areas responsible for the monoaminergic innervation of the cerebral cortex, the limbic system, the thalamus and hypothalamus (e.g. noradrenergic neurons of the locus coeruleus, serotonergic neurons in dorsal raphe, histaminergic neurons in the tuberomamillary nucleus. Other monoaminergic cell groups (A5 noradrenaline, C1 adrenaline, medullary raphe serotonin neurons and neurons in the hypothalamic paraventricular nucleus (innervating the sympathetic preganglionic neurons and affecting the peripheral sympathetic outflow did not show Fos-activity. Stress- and pain-sensitive cortical/subcortical areas, neurons in the limbic system, the hypothalamus and the circumventricular organs were also affected by 4/6NX. Administration of losartan and more strongly moxonidine modulated most effects and particularly inhibited Fos-activity in locus coeruleus neurons. In conclusion, 4/6NX elicits high activity in central sympathetic, stress- and pain-related brain areas as well as in the limbic system, which can be ameliorated by losartan and particularly by moxonidine. These changes indicate a high sensitivity of CNS in initial stages of CKD which could be causative in clinical disturbances.

  17. Intrinsic properties and neuropharmacology of midline paraventricular thalamic nucleus neurons.

    Directory of Open Access Journals (Sweden)

    Miloslav Kolaj

    2014-04-01

    Full Text Available Neurons in the midline and intralaminar thalamic nuclei are components of an interconnected brainstem, limbic and prefrontal cortex neural network that is engaged during arousal, vigilance, motivated and addictive behaviors, and stress. To better understand the cellular mechanisms underlying these functions, here we review some of the recently characterized electrophysiological and neuropharmacological properties of neurons in the paraventricular thalamic nucleus (PVT, derived from whole cell patch clamp recordings in acute rat brain slice preparations. PVT neurons display firing patterns and ionic conductances (IT and IH that exhibit significant diurnal change. Their resting membrane potential is maintained by various ionic conductances that include inward rectifier (Kir, hyperpolarization-activated nonselective cation (HCN and TWIK-related acid sensitive (TASK K+ channels. Firing patterns are regulated by high voltage-activated (HVA and low voltage-activated (LVA Ca2+ conductances. Moreover, transient receptor potential (TRP-like nonselective cation channels together with Ca2+- and Na+-activated K+ conductances (KCa; KNa contribute to unique slow afterhyperpolarizing potentials (sAHPs that are generally not detectable in lateral thalamic or reticular thalamic nucleus neurons. We also report on receptor-mediated actions of GABA, glutamate, monoamines and several neuropeptides: arginine vasopressin, gastrin-releasing peptide, thyrotropin releasing hormone and the orexins (hypocretins. This review represents an initial survey of intrinsic and transmitter-sensitive ionic conductances that are deemed to be unique to this population of midline thalamic neurons, information that is fundamental to an appreciation of the role these thalamic neurons may play in normal central nervous system (CNS physiology and in CNS disorders that involve the dorsomedial thalamus.

  18. Modulation of the Ca(2+) signaling pathway by celangulin I in the central neurons of Spodoptera exigua.

    Science.gov (United States)

    Li, Yuxin; Lian, Xihong; Wan, Yinging; Wang, Duoyi; Chen, Wei; Di, Fengjuan; Wu, Wenjun; Li, Zhengming

    2016-02-01

    Celangulin I is an insecticidal component isolated from Chinese bittersweet Celastrus angulatus. The present study explored the possible effects of celangulin I on the calcium signaling pathway, especially on the L-type Ca(2+) channel and the calcium channels in the endoplasmic reticulum in the central neurons isolated from the third instar larvae of Spodoptera exigua using whole-cell patch-clamp and calcium imaging technique. The results showed that celangulin I could activate the high voltage-gated calcium channel at the concentration of 150μM. The peak currents were increased by 17% of the initial value at the end of the 10-min recording after treated with celangulin I. The rises of intracellular calcium ion concentration ([Ca(2+)]i) in neurons treated by celangulin I showed that the effects of celangulin I were concentration-dependent. Activation of the RyRs by ryanodine decreased the calcium release induced by celangulin I, indicating that celangulin I exerts effect on insect RyRs. Furthermore, we also provided evidence for the first time that celangulin I activates inositol 1,4,5-trisphosphate (IP3) sensitive intracellular calcium release channels in the endoplasmic reticulum third instar larvae neurons of S. exigua. Plausibly, these experimental results can explain the characteristic symptoms of anesthesia and paralysis in celangulin I treated insects. PMID:26821661

  19. HYPOCRETIN/OREXIN AND NARCOLEPSY NEW BASIC AND CLINICAL INSIGHTS

    OpenAIRE

    Nishino, Seiji; Okuro, Masashi; Kotorii, Nozomu; ANEGAWA, Emiko; Ishimaru, Yuji; MATSUMURA, Mari; Kanbayashi, Takashi

    2009-01-01

    Narcolepsy is a chronic sleep disorder, characterized by excessive daytime sleepiness (EDS), cataplexy, hypnagogic hallucinations, and sleep paralysis. Both sporadic (95%) and familial (5%) forms of narcolepsy exist in humans. The major pathophysiology of human narcolepsy has been recently discovered based on the discovery of narcolepsy genes in animals; the genes involved in the pathology of the hypocretin/orexin ligand and its receptor. Mutations in hypocretin-related genes are rare in huma...

  20. Early expression of hypocretin/orexin in the chick embryo brain.

    Directory of Open Access Journals (Sweden)

    Kyle E Godden

    Full Text Available Hypocretin/Orexin (H/O neuropeptides are released by a discrete group of neurons in the vertebrate hypothalamus which play a pivotal role in the maintenance of waking behavior and brain state control. Previous studies have indicated that the H/O neuronal development differs between mammals and fish; H/O peptide-expressing cells are detectable during the earliest stages of brain morphogenesis in fish, but only towards the end of brain morphogenesis (by ∼ 85% of embryonic development in rats. The developmental emergence of H/O neurons has never been previously described in birds. With the goal of determining whether the chick developmental pattern was more similar to that of mammals or of fish, we investigated the emergence of H/O-expressing cells in the brain of chick embryos of different ages using immunohistochemistry. Post-natal chick brains were included in order to compare the spatial distribution of H/O cells with that of other vertebrates. We found that H/O-expressing cells appear to originate from two separate places in the region of the diencephalic proliferative zone. These developing cells express the H/O neuropeptide at a comparatively early age relative to rodents (already visible at 14% of the way through fetal development, thus bearing a closer resemblance to fish. The H/O-expressing cell population proliferates to a large number of cells by a relatively early embryonic age. As previously suggested, the distribution of H/O neurons is intermediate between that of mammalian and non-mammalian vertebrates. This work suggests that, in addition to its roles in developed brains, the H/O peptide may play an important role in the early embryonic development of non-mammalian vertebrates.

  1. Kinetic properties of 'dual' orexin receptor antagonists at OX1R and OX2R orexin receptors.

    Directory of Open Access Journals (Sweden)

    Gabrielle Elizabeth Callander

    2013-12-01

    Full Text Available Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various ‘dual’ orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [3H]-BBAC ((S-N-([1,1'-biphenyl]-2-yl-1-(2-((1-methyl-1H-benzo[d]imidazol-2-ylthioacetylpyrrolidine-2-carboxamide. In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-ylmethyl-9-(4-methoxypyrimidin-2-yl-2,9-diazaspiro[5.5]undecan-1-one bind rapidly and reach equilibrium very quickly in both binding and / or functional assays. Overall, the dual antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the dual antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo.

  2. Effects of a newly developed potent orexin-2 receptor-selective antagonist, compound 1 m, on sleep/wakefulness states in mice

    OpenAIRE

    Keishi eEtori; Yuki eSaito; Natsuko eTsujino; Takeshi eSakurai

    2014-01-01

    Orexins (also known as hypocretins), which are hypothalamic neuropeptides, play critical roles in the regulation of sleep/wakefulness states by activating two G-protein coupled receptors (GPCRs), orexin 1 (OX1R) and orexin 2 receptors (OX2R). In order to know the difference between effects of OX2R-selective antagonists (2-SORA) and dual orexin receptor antagonists (DORA), and to understand the mechanisms underlying orexin-mediated regulation of sleep/wakefulness states, we examined the effect...

  3. THE OREXIN SYSTEM IN INSULIN RESISTANCE RAT MODEL INDUCED BY HIGH-FRUCTOSE DIET

    Institute of Scientific and Technical Information of China (English)

    赵玉岩; 郭磊; 都健; 刘国良

    2003-01-01

    Objective. To evaluate the effects of high-fructose diet on expression of orexin and its receptors,orexin 1 receptor (OX1R) and orexin 2 receptor (OX2R) in rat hypothalamus tissue, and to analysis the interaction of related factors involved in regulating orexin and its receptors. Methods. Insulin resistance rat model induced by high fructose confirmed by the gold standard eug-lycaemic clamping was employed and mRNA expression of orexin and its receptors OX1R and OX2R in hypothalamus, mRNA expression of leptin in adipose tissue were measured by reverse transcription poly-merase chain reaction. Serum insulin and triglyceride levels were measured by chemiluminescence im-munoassay and biochemical enzyme techniques. Results. Expression of orexin mRNA decreased about 40% in high fructose diet rats compared to control group (P<0.01), whereas expression of orexin 1 receptor and orexin 2 receptor mRNA increased up to 4.4 and 5.1 fold (P<0.01). Leptin mRNA expression in adipose tissue increased about 30% in comparison with control group (P<0.01). Blood glucose, serum insulin and triglyceride have shown signi ficant higher levels than those in control group (P<0.01). Glucose infusion rate (GIR60-120) was much lower in comparison with control group (P<0.01). Conclusions. High- fructose diet induces insulin resistance in rats with impact on orexin and leptin regulations. Blood glucose, serum insulin, lipid metabolism and leptin play an interactive role on orexin and its receptors regulation in rats.

  4. Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion

    Institute of Scientific and Technical Information of China (English)

    Ying YANG; Li-bin ZHOU; Shang-quan LIU; Jing-feng TANG; Feng-yin LI; Rong-ying LI; Huai-dong SONG; Ming-dao CHEN

    2005-01-01

    Aim: To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion.Methods: Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagonlike peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexinl, orexin2,neuromedin-B, neuropeptide Y (NPY) 1 and NPY5, neurotensin (NT) 1, NT2, NT3,and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin,orexin A and orexin B at a cohort of concentrations for different lengths of time,and GnRH in medium was determined by radioimmunoassay (RIA). Results:Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexinl, neuromedin-B, NPY1,NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Conclusion: Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.

  5. Genomic organization of mouse orexin receptors: characterization of two novel tissue-specific splice variants.

    Science.gov (United States)

    Chen, Jing; Randeva, Harpal S

    2004-11-01

    In humans and rat, orexins orchestrate divergent actions through their G protein-coupled receptors, orexin-1 (OX1R) and orexin-2 (OX2R). Orexins also play an important physiological role in mouse, but the receptors through which they function are not characterized. To characterize the physiological role(s) of orexins in the mouse, we cloned and characterized the mouse orexin receptor(s), mOX1R and mOX2R, using rapid amplification of cDNA (mouse brain) ends, RT-PCR, and gene structure analysis. The mOX1R cDNA encodes a 416-amino acid (aa) receptor. We have identified two alternative C terminus splice variants of the mOX2R; mOX2 alpha R (443 aa) and mOX2 beta R (460 aa). Binding studies in human embryonic kidney 293 cells transfected with mOX1R, mOX2 alpha R, and the mOX2 beta R revealed specific, saturable sites for both orexin-A and -B. Activation of these receptors by orexins induced inositol triphosphate (IP(3)) turnover. However, human embryonic kidney 293 cells transfected with mOXRs demonstrated no cAMP response to either orexin-A or orexin-B challenge, although forskolin and GTP gamma S revealed a dose-dependent increase in cAMP. Although, orexin-A and -B showed no difference in binding characteristics between the splice variants; interestingly, orexin-B led to an increase in IP(3) production at all concentrations in the mOX2 beta R variant. Orexin-A, however, showed no difference in IP(3) production between the two variants. Additionally, in the mouse, we demonstrate that these splice variants are distributed in a tissue-specific manner, where OX2 alpha R mRNA was undetectable in skeletal muscle and kidney. Moreover, food deprivation led to a greater increase in hypothalamic mOX2 beta R gene expression, compared with both mOX1R and mOX2 alpha R. This potentially implicates a fundamental physiological role for these splice variants. PMID:15256537

  6. Neuronal apoptosis and inflammatory responses in the central nervous system of a rabbit treated with Shiga toxin-2

    Directory of Open Access Journals (Sweden)

    Ikuta Fusahiro

    2008-03-01

    Full Text Available Abstract Background Shiga toxins (Stxs are the major agents responsible for hemorrhagic colitis and hemolytic-uremic syndrome (HUS during infections caused by Stx-producing Escherichia coli (STEC such as serotype O157:H7. Central nervous system (CNS involvement is an important determinant of mortality in diarrhea associated-HUS. It has been suggested that vascular endothelial injuries caused by Stxs play a crucial role in the development of the disease. The current study investigates the relationship between the cytotoxic effects of Stxs and inflammatory responses in a rabbit brain treated with Stx2. Methods In a rabbit model treated with purified Stx2 or PBS(-, we examined the expression of the Stx receptor globotriaosylceramide (Gb3/CD77 in the CNS and microglial activation using immunohistochemistry. The relationship between inflammatory responses and neuronal cell death was analyzed by the following methods: real time quantitative reverse transcriptase (RT-polymerase chain reaction (PCR to determine the expression levels of pro-inflammatory cytokines, and the terminal deoxynucleotidyl transferase (TdT-mediated dUTP nick-end labeling (TUNEL method to detect apoptotic changes. Results Gb3/CD77 expression was detected in endothelial cells but not in neurons or glial cells. In the spinal cord gray matter, significant levels of Gb3/CD77 expression were observed. Severe endothelial injury and microvascular thrombosis resulted in extensive necrotic infarction, which led to acute neuronal damage. Conversely, in the brain, Stx receptor expression was much lower. The observed neuropathology was less severe. However, neuronal apoptosis was observed at the onset of neurological symptoms, and the number of apoptotic cells significantly increased in the brain at a later stage, several days after onset. Microglial activation was observed, and tumor necrosis factor (TNF-α and interleukin (IL-1β mRNA in the CNS parenchyma was significantly up

  7. pH recovery from intracellular alkalinization in Retzius neurones of the leech central nervous system.

    Science.gov (United States)

    Frey, G; Schlue, W R

    1993-03-01

    1. Neutral-carrier pH-sensitive microelectrodes were used to investigate intracellular pH (pHi) recovery from alkalinization in leech Retzius neurones in Hepes- and in CO2-HCO3(-)-buffered solution. The Retzius neurones were alkaline loaded by the addition and subsequent removal of 16 mM acetate, by changing from 5% CO2-27 mM HCO3- to 2% CO2-11 mM HCO3- or by changing from CO2-HCO3(-)- to Hepes-buffered solution. 2. In Hepes-buffered solution (pH 7.4) the mean pHi was 7.29 +/- 0.11 and the mean membrane potential -44.7 +/- 5.9 mV (mean +/- S.D.; n = 83). 3. The rate of pHi recovery from alkalinization increased with decreasing pH of the bathing medium (pHb). pHi changed about 0.30 pH units for a pHb unit change. 4. A decrease of extracellular buffer concentration (Hepes concentration lowered from 20 to 5 mM) caused an acidification of extracellular and intracellular pH and an acceleration of pHi recovery from alkalinization. 5. A depolarization of the Retzius cell membrane-induced by increasing the K+ concentration of the bathing medium from 4 to 20 mM (delta Em = 16.5 +/- 5.5 mV) or from 4 to 40 mM (delta Em = 24.8 +/- 3.5 mV)--evoked a decrease of pHi and an acceleration of pHi recovery from alkalinization. 6. The H+ current blocker Zn2+ (0.5 mM) inhibited pHi recovery from alkalinization at resting membrane potential as well as during depolarization. The inhibition was more pronounced during depolarization. 7. In Cl(-)-free, CO2-HCO3(-)-buffered solution pHi recovery from an alkaline load by changing from 5% CO2-27 mM HCO3- to 2% CO2-11 mM HCO3- was slowed by 48-71%. The rate of pHi recovery from an alkaline load induced by changing from CO2-HCO3- to Hepes buffer was reduced by 33-56% in Cl(-)-free solution. The removal of external Cl- did not affect pHi recovery in Hepes-buffered solution. 8. The pHi recovery from alkalinization was DIDS-insensitive in CO2-HCO3(-)- as in Hepes-buffered solutions and was not slowed in the absence of external Na+. 9. It is

  8. Analyzing gene expression from whole tissue vs. different cell types reveals the central role of neurons in predicting severity of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Shiri Stempler

    Full Text Available Alterations in gene expression resulting from Alzheimer's disease have received considerable attention in recent years. Although expression has been investigated separately in whole brain tissue, in astrocytes and in neurons, a rigorous comparative study quantifying the relative utility of these sources in predicting the progression of Alzheimer's disease has been lacking. Here we analyze gene expression from neurons, astrocytes and whole tissues across different brain regions, and compare their ability to predict Alzheimer's disease progression by building pertaining classification models based on gene expression sets annotated to different biological processes. Remarkably, we find that predictions based on neuronal gene expression are significantly more accurate than those based on astrocyte or whole tissue expression. The findings explicate the central role of neurons, particularly as compared to glial cells, in the pathogenesis of Alzheimer's disease, and emphasize the importance of measuring gene expression in the most relevant (pathogenically 'proximal' single cell types.

  9. Orexin A (hypocretin 1) injected into hypothalamic paraventricular nucleus and spontaneous physical activity in rats.

    Science.gov (United States)

    Kiwaki, Kohji; Kotz, Catherine M; Wang, Chuanfeng; Lanningham-Foster, Lorraine; Levine, James A

    2004-04-01

    In humans, nonexercise activity thermogenesis (NEAT) increases with positive energy balance. The mediator of the interaction between positive energy balance and physical activity is unknown. In this study, we address the hypothesis that orexin A acts in the hypothalamic paraventricular nucleus (PVN) to increase nonfeeding-associated physical activity. PVN-cannulated rats were injected with either orexin A or vehicle during the light and dark cycle. Spontaneous physical activity (SPA) was measured using arrays of infrared activity sensors and night vision videotaped recording (VTR). O(2) consumption and CO(2) production were measured by indirect calorimetry. Feeding behavior was assessed by VTR. Regardless of the time point of injection, orexin A (1 nmol) was associated with dramatic increases in SPA for 2 h after injection (orexin A: 6.27 +/- 1.95 x 10(3) beam break count, n = 24; vehicle: 1.85 +/- 1.13 x 10(3), n = 38). This increase in SPA was accompanied by compatible increase in O(2) consumption. Duration of feeding was increased only when orexin A was injected in the early light phase and accounted for only 3.5 +/- 2.5% of the increased physical activity. In a dose-response experiment, increases in SPA were correlated with dose of orexin A linearly up to 2 nmol. PVN injections of orexin receptor antagonist SB-334867 were associated with decreases in SPA and attenuated the effects of PVN-injected orexin A. Thus orexin A can act in PVN to increase nonfeeding-associated physical activity, suggesting that this neuropeptide might be a mediator of NEAT. PMID:14656716

  10. Mapping of neurons in the central nervous system of the guinea pig by use of antisera specific to the molluscan neuropeptide FMRFamide

    DEFF Research Database (Denmark)

    Triepel, J; Grimmelikhuijzen, C J

    1984-01-01

    Immunoreactive neurons were mapped in the central nervous system of colchicine-treated and untreated guinea pigs with the use of two antisera to the molluscan neuropeptide FMRFamide. These antisera were especially selected for their incapability to react with peptides of the pancreatic polypeptide...

  11. Age-related changes in hypocretin (orexin) immunoreactivity in the cat brainstem.

    Science.gov (United States)

    Zhang, Jian Hua; Sampogna, Sharon; Morales, Francisco R; Chase, Michael H

    2002-03-15

    Terminals of hypothalamic hypocretin-containing neurons are observed within brainstem nuclei involved in the control of sleep and wakefulness. Because aged humans, cats and other species exhibit changes in sleep and wakefulness in old age, we were interested in examining age-related changes in hypocretin/orexin projections to the following brainstem regions which are associated with the regulation of sleep and wakefulness: the dorsal raphe nucleus, the laterodorsal tegmental nucleus, the pedunculo-pontine tegmental nucleus and the locus coeruleus. Based upon the results of immunohistochemical determinations, in all the regions examined, round or oval "spot-like" structures were observed in aged cats. Many of these "spot-like" structures resembled enlarged varicosities of a nature that would be expected to disrupt hypocretin neurotransmission. In addition, a site-specific decrease in immunostaining was observed in the locus coeruleus in old cats compared with adult controls; this result likely reflects a decrease in the number of labeled fibers, which indicates that there occurs a degeneration of hypocretinergic function in conjunction with old age. The proceeding changes may account for some of sleep-wake disturbance which are observed in aged animals as well as elderly humans. PMID:11879811

  12. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models

    Directory of Open Access Journals (Sweden)

    Rachel Ivy Anderson

    2014-02-01

    Full Text Available To examine the role of orexin-1 and orexin-2 receptor activity on ethanol self-administration, compounds that differentially target orexin (OX receptor subtypes were assessed in various self-administration paradigms using high-drinking rodent models. Effects of the OX1 antagonist SB334867, the OX2 antagonist LSN2424100, and the mixed OX1/2 antagonist almorexant (ACT-078573 on home cage ethanol consumption were tested in ethanol-preferring (P rats using a 2-bottle choice procedure. In separate experiments, effects of SB334867, LSN2424100, and almorexant on operant ethanol self-administration were assessed in P rats maintained on a progressive ratio operant schedule of reinforcement. In a third series of experiments, SB334867, LSN2424100, and almorexant were administered to ethanol-preferring C57BL/6J mice to examine effects of OX receptor blockade on ethanol intake in a binge-like drinking (drinking-in-the-dark model. In P rats with chronic home cage free-choice ethanol access, SB334867 and almorexant significantly reduced ethanol intake, but almorexant also reduced water intake, suggesting nonspecific effects on consummatory behavior. In the progressive ratio operant experiments, LSN2424100 and almorexant reduced breakpoints and ethanol consumption in P rats, whereas the almorexant inactive enantiomer and SB334867 did not significantly affect the motivation to consume ethanol. As expected, vehicle-injected mice exhibited binge-like drinking patterns in the drinking-in-the-dark model. All three OX antagonists reduced both ethanol intake and resulting blood ethanol concentrations relative to vehicle-injected controls, but SB334867 and LSN2424100 also reduced sucrose consumption in a different cohort of mice, suggesting nonspecific effects. Collectively, these results contribute to a growing body of evidence indicating that OX1 and OX2 receptor activity influences ethanol self-administration, although the effects may not be selective for ethanol

  13. Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Alessandro Gozzi

    Full Text Available Orexins are neuro-modulatory peptides involved in the control of diverse physiological functions through interaction with two receptors, orexin-1 (OX1R and orexin-2 (OX2R. Recent evidence in pre-clinical models points toward a putative dichotomic role of the two receptors, with OX2R predominantly involved in the regulation of the sleep/wake cycle and arousal, and the OX1R being more specifically involved in reward processing and motivated behaviour. However, the specific neural substrates underlying these distinct processes in the rat brain remain to be elucidated. Here we used functional magnetic resonance imaging (fMRI in the rat to map the modulatory effect of selective OXR blockade on the functional response produced by D-amphetamine, a psychostimulant and arousing drug that stimulates orexigenic activity. OXR blockade was produced by GSK1059865 and JNJ1037049, two novel OX1R and OX2R antagonists with unprecedented selectivity at the counter receptor type. Both drugs inhibited the functional response to D-amphetamine albeit with distinct neuroanatomical patterns: GSK1059865 focally modulated functional responses in striatal terminals, whereas JNJ1037049 induced a widespread pattern of attenuation characterised by a prominent cortical involvement. At the same doses tested in the fMRI study, JNJ1037049 exhibited robust hypnotic properties, while GSK1059865 failed to display significant sleep-promoting effects, but significantly reduced drug-seeking behaviour in cocaine-induced conditioned place preference. Collectively, these findings highlight an essential contribution of the OX2R in modulating cortical activity and arousal, an effect that is consistent with the robust hypnotic effect exhibited by JNJ1037049. The subcortical and striatal pattern observed with GSK1059865 represent a possible neurofunctional correlate for the modulatory role of OX1R in controlling reward-processing and goal-oriented behaviours in the rat.

  14. "GAG-ing with the neuron": The role of glycosaminoglycan patterning in the central nervous system.

    Science.gov (United States)

    Smith, Patrice D; Coulson-Thomas, Vivien J; Foscarin, Simona; Kwok, Jessica C F; Fawcett, James W

    2015-12-01

    Proteoglycans (PGs) are a diverse family of proteins that consist of one or more glycosaminoglycan (GAG) chains, covalently linked to a core protein. PGs are major components of the extracellular matrix (ECM) and play critical roles in development, normal function and damage-response of the central nervous system (CNS). GAGs are classified based on their disaccharide subunits, into the following major groups: chondroitin sulfate (CS), heparan sulfate (HS), heparin (HEP), dermatan sulfate (DS), keratan sulfate (KS) and hyaluronic acid (HA). All except HA are modified by sulfation, giving GAG chains specific charged structures and binding properties. While significant neuroscience research has focused on the role of one PG family member, chondroitin sulfate proteoglycan (CSPG), there is ample evidence in support of a role for the other PGs in regulating CNS function in normal and pathological conditions. This review discusses the role of all the identified PG family members (CS, HS, HEP, DS, KS and HA) in normal CNS function and in the context of pathology. Understanding the pleiotropic roles of these molecules in the CNS may open the door to novel therapeutic strategies for a number of neurological conditions. PMID:26277685

  15. A pair of dopamine neurons target the D1-like dopamine receptor DopR in the central complex to promote ethanol-stimulated locomotion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Eric C Kong

    Full Text Available Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol.

  16. Cerebral cortical neurons with activity linked to central neurogenic spontaneous and evoked elevations in cerebral blood flow

    Science.gov (United States)

    Golanov, E. V.; Reis, D. J.

    1996-01-01

    We recorded neurons in rat cerebral cortex with activity relating to the neurogenic elevations in regional cerebral blood flow (rCBF) coupled to stereotyped bursts of EEG activity, burst-cerebrovascular wave complexes, appearing spontaneously or evoked by electrical stimulation of rostral ventrolateral medulla (RVL) or fastigial nucleus (FN). Of 333 spontaneously active neurons only 15 (5%), in layers 5-6, consistently (P neurons in deep cortical laminae whose activity correlates with neurogenic elevations of rCBF. These neurons may function to transduce afferent neuronal signals into vasodilation.

  17. Evidence for Inhibitory Effects of Flupirtine, a Centrally Acting Analgesic, on Delayed Rectifier K+ Currents in Motor Neuron-Like Cells

    OpenAIRE

    Sheng-Nan Wu; Ming-Chun Hsu; Yu-Kai Liao; Fang-Tzu Wu; Yuh-Jyh Jong; Yi-Ching Lo

    2012-01-01

    Flupirtine (Flu), a triaminopyridine derivative, is a centrally acting, non-opiate analgesic agent. In this study, effects of Flu on K+ currents were explored in two types of motor neuron-like cells. Cell exposure to Flu decreased the amplitude of delayed rectifier K+ current (I K(DR)) with a concomitant raise in current inactivation in NSC-34 neuronal cells. The dissociation constant for Flu-mediated increase of I K(DR) inactivation rate was about 9.8  μ M. Neither linopirdine (10  μ M), NMD...

  18. Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn

    Directory of Open Access Journals (Sweden)

    Black Joel A

    2012-11-01

    Full Text Available Abstract Background Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since loss-of-function mutations in SCN9A, the gene that encodes Nav1.7, are associated with a syndrome of congenital insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from peripheral terminals in the skin to central terminals in the spinal cord dorsal horn. Results Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in a subpopulation of Aδ-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within skin, intraepidermal nerve fibers (IENF, exhibit robust Nav1.7 immunolabeling. The central projections of DRG neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to presynaptic terminals. Conclusions The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of presynaptic axons. The findings presented here may be important for pharmaceutical development, where target engagement in the right compartment is essential.

  19. Orexin A induces bidirectional modulation of synaptic plasticity: Inhibiting long-term potentiation and preventing depotentiation.

    Science.gov (United States)

    Lu, Guan-Ling; Lee, Chia-Hsu; Chiou, Lih-Chu

    2016-08-01

    The orexin system consists of two peptides, orexin A and B and two receptors, OX1R and OX2R. It is implicated in learning and memory regulation while controversy remains on its role in modulating hippocampal synaptic plasticity in vivo and in vitro. Here, we investigated effects of orexin A on two forms of synaptic plasticity, long-term potentiation (LTP) and depotentiation of field excitatory postsynaptic potentials (fEPSPs), at the Schaffer Collateral-CA1 synapse of mouse hippocampal slices. Orexin A (≧30 nM) attenuated LTP induced by theta burst stimulation (TBS) in a manner antagonized by an OX1R (SB-334867), but not OX2R (EMPA), antagonist. Conversely, at 1 pM, co-application of orexin A prevented the induction of depotentiation induced by low frequency stimulation (LFS), i.e. restoring LTP. This re-potentiation effect of sub-nanomolar orexin A occurred at LFS of 1 Hz, but not 2 Hz, and with LTP induced by either TBS or tetanic stimulation. It was significantly antagonized by SB-334867, EMPA and TCS-1102, selective OX1R, OX2R and dual OXR antagonists, respectively, and prevented by D609, SQ22536 and H89, inhibitors of phospholipase C (PLC), adenylyl cyclase (AC) and protein kinase A (PKA), respectively. LFS-induced depotentiation was antagonized by blockers of NMDA, A1-adenosine and type 1/5 metabotropic glutamate (mGlu1/5) receptors, respectively. However, orexin A (1 pM) did not affect chemical-induced depotentiation by agonists of these receptors. These results suggest that orexin A bidirectionally modulates hippocampal CA1 synaptic plasticity, inhibiting LTP via OX1Rs at moderate concentrations while inducing re-potentiation via OX1Rs and OX2Rs, possibly through PLC and AC-PKA signaling at sub-nanomolar concentrations. PMID:26965217

  20. Orexin-1 Receptor Mediation of Cocaine Seeking in Male and Female Rats

    OpenAIRE

    Zhou, Luyi; Ghee, Shannon M.; Chan, Clifford; Lin, Li; Cameron, Michael D.; Kenny, Paul J.; See, Ronald E.

    2012-01-01

    Previous studies have shown that female rats exhibit enhanced cocaine seeking during multiple phases of cocaine addiction compared with males. The orexin/hypocretin system recently has been implicated in drug addiction in male rats. Based on the known sex differences in cocaine addiction, in the current study we examined orexin-mediated cocaine seeking during self-administration, extinction, and reinstatement in age-matched male (initial weight 250–300 g) and female (initial weight 175–225 g)...

  1. Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior

    OpenAIRE

    Heydendael, W.; Sengupta, A.; Beck, S; Bhatnagar, S.

    2013-01-01

    Maladaptation to stress is associated with psychopathology. However, our understanding of the underlying neural circuitry involved in adaptations to stress is limited. Previous work from our lab indicated the paraventricular hypothalamic neuropeptides orexins/hypocretins regulate behavioral and neuroendocrine responses to stress. To further elucidate the role of orexins in adaptation to stress, we employed optogenetic techniques to specifically examine the effects of orexin cell activation on...

  2. Role of orexin-2 receptors in the nucleus accumbens in antinociception induced by carbachol stimulation of the lateral hypothalamus in formalin test.

    Science.gov (United States)

    Yazdi, Fatemeh; Jahangirvand, Mahboubeh; Ezzatpanah, Somayeh; Haghparast, Abbas

    2016-08-01

    Orexins, which are mainly produced by orexin-expressing neurons in the lateral hypothalamus (LH), play an important role in pain modulation. Previously, it has been established that the nucleus accumbens (NAc) is involved in the modulation of formalin-induced nociceptive responses, a model of tonic pain. In this study, the role of intra-accumbal orexin-2 receptors (OX2rs) in the mediation of formalin-induced pain was investigated. A volume of 0.5 μl of 10, 20, and 40 nmol/l solutions of TCS OX2 29, an OX2r antagonist, were unilaterally microinjected into the NAc 5 min before an intra-LH carbachol microinjection (0.5 μl of 250 nmol/l solution). After 5 min, animals received a subcutaneous injection of formalin 2.5% (50 μl) into the hind paw. Pain-related behaviors were assessed at 5 min intervals during a 60-min test period. The findings showed that TCS OX2 29 administration dose dependently blocked carbachol-induced antinociception during both phases of formalin-induced pain. The antianalgesic effect of TCS OX2 29 was greater during the late phase compared with the early phase. These observations suggest that the NAc, as a part of a descending pain-modulatory circuitry, partially mediates LH-induced analgesia in the formalin test through recruitment of OX2rs. This makes the orexinergic system a good potential therapeutic target in the control of persistent inflammatory pain. PMID:26871404

  3. Wen-Dan Decoction Improves Negative Emotions in Sleep-Deprived Rats by Regulating Orexin-A and Leptin Expression

    Directory of Open Access Journals (Sweden)

    Fengzhi Wu

    2014-01-01

    Full Text Available Wen-Dan Decoction (WDD, a formula of traditional Chinese medicine, has been clinically used for treating insomnia for approximately 800 years. However, the therapeutic mechanisms of WDD remain unclear. Orexin-A plays a key role in the sleep-wake cycle, while leptin function is opposite to orexin-A. Thus, orexin-A and leptin may be important factors in sleep disorders. In this study, 48 rats were divided into control, model, WDD-treated, and diazepam-treated groups. The model of insomnia was produced by sleep deprivation (SD for 14 days. The expressions of orexin-A, leptin, and their receptors in blood serum, prefrontal cortex, and hypothalamus were detected by enzyme-linked immunosorbent assay, immunohistochemistry, and real time PCR. Open field tests showed that SD increased both crossing movement (Cm and rearing-movement (Rm times. Orexin-A and leptin levels in blood serum increased after SD but decreased in brain compared to the control group. mRNA expressions of orexin receptor 1 and leptin receptor after SD were decreased in the prefrontal cortex but were increased in hypothalamus. WDD treatment normalized the behavior and upregulated orexin-A, leptin, orexin receptor 1 and leptin receptor in brain. The findings suggest that WDD treatment may regulate SD-induced negative emotions by regulating orexin-A and leptin expression.

  4. Diverse Physiological Roles of Calcitonin Gene-Related Peptide in Migraine Pathology: Modulation of Neuronal-Glial-Immune Cells to Promote Peripheral and Central Sensitization.

    Science.gov (United States)

    Durham, Paul L

    2016-08-01

    The neuropeptide calcitonin gene-related peptide (CGRP) is implicated in the underlying pathology of migraine by promoting the development of a sensitized state of primary and secondary nociceptive neurons. The ability of CGRP to initiate and maintain peripheral and central sensitization is mediated by modulation of neuronal, glial, and immune cells in the trigeminal nociceptive signaling pathway. There is accumulating evidence to support a key role of CGRP in promoting cross excitation within the trigeminal ganglion that may help to explain the high co-morbidity of migraine with rhinosinusitis and temporomandibular joint disorder. In addition, there is emerging evidence that CGRP facilitates and sustains a hyperresponsive neuronal state in migraineurs mediated by reported risk factors such as stress and anxiety. In this review, the significant role of CGRP as a modulator of the trigeminal system will be discussed to provide a better understanding of the underlying pathology associated with the migraine phenotype. PMID:27334137

  5. The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons.

    Science.gov (United States)

    Price, T J; Flores, C M; Cervero, F; Hargreaves, K M

    2006-09-15

    Neuronal proteins have been traditionally viewed as being derived solely from the soma; however, accumulating evidence indicates that dendritic and axonal sites are capable of a more autonomous role in terms of new protein synthesis. Such extra-somal translation allows for more rapid, on-demand regulation of neuronal structure and function than would otherwise be possible. While mechanisms of dendritic RNA transport have been elucidated, it remains unclear how RNA is trafficked into the axon for this purpose. Primary afferent neurons of the dorsal root (DRG) and trigeminal (TG) ganglia have among the longest axons in the neuraxis and such axonal protein synthesis would be advantageous, given the greater time involved for protein trafficking to occur via axonal transport. Therefore, we hypothesized that these primary sensory neurons might express proteins involved in RNA transport. Rat DRG and TG neurons expressed staufen (stau) 1 and 2 (detected at the mRNA level) and stau2 and fragile x mental retardation protein (FMRP; detected at the protein level). Stau2 mRNA was also detected in human TG neurons. Stau2 and FMRP protein were localized to the sciatic nerve and dorsal roots by immunohistochemistry and to dorsal roots by Western blot. Stau2 and FMRP immunoreactivities colocalized with transient receptor potential channel type 1 immunoreactivity in sensory axons of the sciatic nerve and dorsal root, suggesting that these proteins are being transported into the peripheral and central terminals of nociceptive sensory axons. Based on these findings, we propose that stau2 and FMRP proteins are attractive candidates to subserve RNA transport in sensory neurons, linking somal transcriptional events to axonal translation. PMID:16809002

  6. Starting of the steam generator of a fossil fuel power plant, using predictive control based in a neuronal model; Arranque del generador de vapor de una central termoelectrica, usando control predictivo basado en un modelo neuronal

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo Dominguez, Tonatiuh

    2004-09-15

    In this thesis work it is presented the design and implementation of a simulator of total scope of a predictive controller based in the neuronal model of the temperature in two stages of the heating of the steam generator of a fossil fuel power plant. An implemented control scheme is detailed, as well as the methodology for the identification of a neuronal model utilized for the control. Finally the results of the implementation in the simulator located at the Instituto de Investigaciones Electricas (IIE) are shown to be satisfactory. This control structure is not applied directly in closed circuit, but provides the value of the control actions to a human operator. [Spanish] En este trabajo de tesis se presenta el diseno e implementacion, en un simulador de alcance total, de un controlador predictivo basado en un modelo neuronal para el control de la temperatura en dos etapas del calentamiento del generador de vapor de una central termoelectrica. Se detalla el esquema de control implementado, asi como la metodologia de identificacion de un modelo neuronal utilizado para la sintesis del control. Finalmente se muestran los resultados de la implementacion en el simulador que se encuentra en el Instituto de Investigaciones Electricas (IIE); dichos resultados fueron satisfactorios. Esta estructura de control no se aplica directamente en lazo cerrado, sino que provee el valor de las acciones de control a un operador humano.

  7. Decline of CSF orexin (hypocretin) levels in Prader-Willi syndrome.

    Science.gov (United States)

    Omokawa, Mayu; Ayabe, Tadayuki; Nagai, Toshiro; Imanishi, Aya; Omokawa, Ayumi; Nishino, Seiji; Sagawa, Yohei; Shimizu, Tetsuo; Kanbayashi, Takashi

    2016-05-01

    Prader-Willi syndrome is a congenital neurodevelopmental disorder resulting from deletion of the paternal copies of genes within the chromosome region 15q11-q13. Patients with Prader-Willi syndrome often exhibit excessive daytime sleepiness, excessive appetite, and obesity. As is the case in narcolepsy, orexin (hypocretin) may be responsible for these symptoms. However, reports showing cerebrospinal fluid orexin levels in Prader-Willi syndrome patients have been limited. The aim of this study was to examine the relationship between the characteristic symptoms of Prader-Willi syndrome and cerebrospinal fluid orexin levels. We clinically identified 14 Prader-Willi syndrome patients and examined their cerebrospinal fluid orexin levels. A total of 12 patients with a 15q11-q13 deletion and two patients with maternal uniparental disomy of chromosome 15 were identified. A total of 37 narcoleptic patients and 14 idiopathic hypersomnia patients were recruited for comparison. Cerebrospinal fluid orexin levels (median [25-75 percentiles]) in the 14 Prader-Willi syndrome patients were intermediate (192 [161-234.5] pg/ml), higher than in the narcoleptic patients, but lower than in the idiopathic hypersomnia patients. Body mass index of the Prader-Willi syndrome patients was higher than in the narcoleptic and idiopathic hypersomnia patients. There was also a negative correlation between Epworth sleepiness scale scores and orexin levels in Prader-Willi syndrome patients. Decreased cerebrospinal fluid orexin levels in Prader-Willi syndrome may play an important role in severity of obesity and excessive daytime sleepiness. © 2016 Wiley Periodicals, Inc. PMID:26738920

  8. Orexin A Affects INS-1 Rat Insulinoma Cell Proliferation via Orexin Receptor 1 and the AKT Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Li Chen

    2013-01-01

    Full Text Available Our aim is to investigate the role of the AKT/PKB (protein kinase B signaling pathway acting via orexin receptor 1 (OX1R and the effects of orexin A (OXA on cell proliferation in the insulin-secreting beta-cell line (INS-1 cells. Rat INS-1 cells were exposed to different concentrations of OXA in vitro and treated with OX1R antagonist (SB334867, PI3K antagonist (wortmannin, AKT antagonist (PF-04691502, or negative control. INS-1 amount of cell proliferation, viability and apoptosis, insulin secretion, OX1R protein expression, caspase-3 activity, and AKT protein levels were determined. We report that OXA (10-10 to 10-6 M stimulates INS-1 cell proliferation and viability, reduces the proapoptotic activity of caspase-3 to protect against apoptotic cell death, and increases insulin secretion. Additionally, AKT phosphorylation was stimulated by OXA (10-10 to 10-6 M. However, the OX1R antagonist SB334867 (10-6 M, the PI3K antagonist wortmannin (10-8 M, the AKT antagonist PF-04691502 (10-6 M, or the combination of both abolished the effects of OXA to a certain extent. These results suggest that the upregulation of OXA-OX1R mediated by AKT activation may inhibit cell apoptosis and promote cell proliferation in INS-1 cells. This finding provides functional evidence of the biological actions of OXA in rat insulinoma cells.

  9. Orexin A Affects INS-1 Rat Insulinoma Cell Proliferation via Orexin Receptor 1 and the AKT Signaling Pathway

    Science.gov (United States)

    Chen, Li; Zhao, Yuyan; Zheng, Delu; Ju, Shujing; Shen, Yang; Guo, Lei

    2013-01-01

    Our aim is to investigate the role of the AKT/PKB (protein kinase B) signaling pathway acting via orexin receptor 1 (OX1R) and the effects of orexin A (OXA) on cell proliferation in the insulin-secreting beta-cell line (INS-1 cells). Rat INS-1 cells were exposed to different concentrations of OXA in vitro and treated with OX1R antagonist (SB334867), PI3K antagonist (wortmannin), AKT antagonist (PF-04691502), or negative control. INS-1 amount of cell proliferation, viability and apoptosis, insulin secretion, OX1R protein expression, caspase-3 activity, and AKT protein levels were determined. We report that OXA (10−10 to 10−6 M) stimulates INS-1 cell proliferation and viability, reduces the proapoptotic activity of caspase-3 to protect against apoptotic cell death, and increases insulin secretion. Additionally, AKT phosphorylation was stimulated by OXA (10−10 to 10−6 M). However, the OX1R antagonist SB334867 (10−6 M), the PI3K antagonist wortmannin (10−8 M), the AKT antagonist PF-04691502 (10−6 M), or the combination of both abolished the effects of OXA to a certain extent. These results suggest that the upregulation of OXA-OX1R mediated by AKT activation may inhibit cell apoptosis and promote cell proliferation in INS-1 cells. This finding provides functional evidence of the biological actions of OXA in rat insulinoma cells. PMID:24382962

  10. Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons.

    Science.gov (United States)

    Lin, Tzu; Pan, Po-Yuan; Lai, Yu-Ting; Chiang, Kai-Wen; Hsieh, Hsin-Lun; Wu, Yi-Ping; Ke, Jian-Ming; Lee, Myong-Chol; Liao, Shih-Sian; Shih, Hsueh-Tzu; Tang, Chiou-Yang; Yang, Shi-Bing; Cheng, Hsu-Chen; Wu, June-Tai; Jan, Yuh-Nung; Lee, Hsiu-Hsiang

    2015-11-01

    During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F) that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons. PMID:26540204

  11. Activation of corticotropin releasing factor-containing neurons in the rat central amygdala and bed nucleus of the stria terminalis following exposure to two different anxiogenic stressors.

    Science.gov (United States)

    Butler, Ryan K; Oliver, Elisabeth M; Sharko, Amanda C; Parilla-Carrero, Jeffrey; Kaigler, Kris F; Fadel, Jim R; Wilson, Marlene A

    2016-05-01

    Rats exposed to the odor of a predator or to the elevated plus maze (EPM) express unique unconditioned fear behaviors. The extended amygdala has previously been demonstrated to mediate the response to both predator odor and the EPM. We seek to determine if divergent amygdalar microcircuits are associated with the different behavioral responses. The current experiments compared activation of corticotropin-releasing factor (CRF)-containing neuronal populations in the central amygdala and bed nucleus of the stria terminalis (BNST) of rats exposed to either the EPM (5 min) versus home cage controls, or predator (ferret) odor versus butyric acid, or no odor (30 min). Sections of the brains were prepared for dual-labeled immunohistochemistry and counts of c-Fos co-localized with CRF were made in the centrolateral and centromedial amygdala (CLA and CMA) as well as the dorsolateral (dl), dorsomedial (dm), and ventral (v) BNST. Ferret odor-exposed rats displayed an increase in duration and a decrease in latency of defensive burying versus control rats. Exposure to both predator stress and EPM induced neuronal activation in the BNST, but not the central amygdala, and similar levels of neuronal activation were seen in both the high and low anxiety groups in the BNST after EPM exposure. Dual-labeled immunohistochemistry showed a significant increase in the percentage of CRF/c-Fos co-localization in the vBNST of ferret odor-exposed rats compared to control and butyric acid-exposed groups as well as EPM-exposed rats compared to home cage controls. In addition, an increase in the percentage of CRF-containing neurons co-localized with c-Fos was observed in the dmBNST after EPM exposure. No changes in co-localization of CRF with c-Fos was observed with these treatments in either the CLA or CMA. These results suggest that predator odor and EPM exposure activates CRF neurons in the BNST to a much greater extent than CRF neurons of the central amygdala, and indicates unconditioned

  12. gp130 signaling in proopiomelanocortin neurons mediates the acute anorectic response to centrally applied ciliary neurotrophic factor

    OpenAIRE

    Janoschek, Ruth; Plum, Leona; Koch, Linda; Münzberg, Heike; Diano, Sabrina; Shanabrough, Marya; Müller, Werner; Horvath, Tamas L.; Brüning, Jens C.

    2006-01-01

    Ciliary neurotrophic factor (CNTF) exerts anorectic effects by overcoming leptin resistance via activation of hypothalamic neurons. However, the exact site of CNTF action in the hypothalamus has not yet been identified. Using Cre-loxP-mediated recombination in vivo, we have selectively ablated the common cytokine signaling chain gp130, which is required for functional CNTF signaling, in proopiomelanocortin (POMC)-expressing neurons. POMC-specific gp130 knockout mice exhibit unaltered numbers ...

  13. Single-neuron diversity generated by Protocadherin-β cluster in mouse central and peripheral nervous systems

    Directory of Open Access Journals (Sweden)

    Keizo Hirano

    2012-08-01

    Full Text Available The generation of complex neural circuits depends on the correct wiring of neurons with diverse individual characteristics. To understand the complexity of the nervous system, the molecular mechanisms for specifying the identity and diversity of individual neurons must be elucidated. The clustered protocadherins (Pcdh in mammals consist of approximately 50 Pcdh genes (Pcdh-α, Pcdh-β, and Pcdh-γ that encode cadherin-family cell surface adhesion proteins. Individual neurons express a random combination of Pcdh-α and Pcdh-γ, whereas the expression patterns for the Pcdh-β genes, 22 one-exon genes in mouse, are not fully understood. Here we show that the Pcdh-β genes are expressed in a 3’-polyadenylated form in mouse brain. In situ hybridization using a pan-Pcdh-β probe against a conserved Pcdh-β sequence showed widespread labeling in the brain, with prominent signals in the olfactory bulb, hippocampus, and cerebellum. In situ hybridization with specific probes for individual Pcdh-β genes showed their expression to be scattered in Purkinje cells from P10 to P150. The scattered expression patterns were confirmed by performing a newly developed single-cell 3’-RACE analysis of Purkinje cells, which clearly demonstrated that the Pcdh-β genes are expressed monoallelically and combinatorially in individual Purkinje cells. Scattered expression patterns of individual Pcdh-β genes were also observed in pyramidal neurons in the hippocampus and cerebral cortex, neurons in the trigeminal and dorsal root ganglion, GABAergic interneurons, and cholinergic neurons. Our results extend previous observations of diversity at the single-neuron level generated by Pcdh expression and suggest that the Pcdh-β cluster genes contribute to specifying the identity and diversity of individual neurons.

  14. Radioautographic identification of central monoaminergic neurons after local micro-instillation of tritiated serotonin and norepinephrine in the cat

    International Nuclear Information System (INIS)

    Monoaminergic neurons in nuclei raphe dorsalis and locus coeruleus of the cat may be visualized by radioautography after local micro-instillation of tritiated serotonin and noradrenaline. The concomitant administration of the appropriate tracer with the other biogenic amine in non radioactive form permits a specific identification of serotoninergic and catecholaminergic nerve cell bodies. A small contingent of presumptive serotoninergic neurons is thus demonstrated in the region of the locus coeruleus

  15. Discovery of piperidine ethers as selective orexin receptor antagonists (SORAs) inspired by filorexant.

    Science.gov (United States)

    Raheem, Izzat T; Breslin, Michael J; Bruno, Joseph; Cabalu, Tamara D; Cooke, Andrew; Cox, Christopher D; Cui, Donghui; Garson, Susan; Gotter, Anthony L; Fox, Steven V; Harrell, C Meacham; Kuduk, Scott D; Lemaire, Wei; Prueksaritanont, Thomayant; Renger, John J; Stump, Craig; Tannenbaum, Pamela L; Williams, Peter D; Winrow, Christopher J; Coleman, Paul J

    2015-02-01

    Highly selective orexin receptor antagonists (SORAs) of the orexin 2 receptor (OX2R) have become attractive targets both as potential therapeutics for insomnia as well as biological tools to help further elucidate the underlying pharmacology of the orexin signaling pathway. Herein, we describe the discovery of a novel piperidine ether 2-SORA class identified by systematic lead optimization beginning with filorexant, a dual orexin receptor antagonist (DORA) that recently completed Phase 2 clinical trials. Changes to the ether linkage and pendant heterocycle of filorexant were found to impart significant selectivity for OX2R, culminating in lead compound PE-6. PE-6 displays sub-nanomolar binding affinity and functional potency on OX2R while maintaining >1600-fold binding selectivity and >200-fold functional selectivity versus the orexin 1 receptor (OX1R). PE-6 bears a clean off-target profile, a good overall preclinical pharmacokinetic (PK) profile, and reduces wakefulness with increased NREM and REM sleep when evaluated in vivo in a rat sleep study. Importantly, subtle structural changes to the piperidine ether class impart dramatic changes in receptor selectivity. To this end, our laboratories have identified multiple piperidine ether 2-SORAs, 1-SORAs, and DORAs, providing access to a number of important biological tool compounds from a single structural class. PMID:25577040

  16. Evidence for Inhibitory Effects of Flupirtine, a Centrally Acting Analgesic, on Delayed Rectifier K+ Currents in Motor Neuron-Like Cells

    Directory of Open Access Journals (Sweden)

    Sheng-Nan Wu

    2012-01-01

    Full Text Available Flupirtine (Flu, a triaminopyridine derivative, is a centrally acting, non-opiate analgesic agent. In this study, effects of Flu on K+ currents were explored in two types of motor neuron-like cells. Cell exposure to Flu decreased the amplitude of delayed rectifier K+ current (IK(DR with a concomitant raise in current inactivation in NSC-34 neuronal cells. The dissociation constant for Flu-mediated increase of IK(DR inactivation rate was about 9.8 μM. Neither linopirdine (10 μM, NMDA (30 μM, nor gabazine (10 μM reversed Flu-induced changes in IK(DR inactivation. Addition of Flu shifted the inactivation curve of IK(DR to a hyperpolarized potential. Cumulative inactivation for IK(DR was elevated in the presence of this compound. Flu increased the amplitude of M-type K+ current (IK(M and produced a leftward shift in the activation curve of IK(M. In another neuronal cells (NG108-15, Flu reduced IK(DR amplitude and enhanced the inactivation rate of IK(DR. The results suggest that Flu acts as an open-channel blocker of delayed-rectifier K+ channels in motor neurons. Flu-induced block of IK(DR is unlinked to binding to NMDA or GABA receptors and the effects of this agent on K+ channels are not limited to its action on M-type K+ channels.

  17. ELECTROPHYSIOLOGICAL CHARACTERISTICS OF PARAVENTRICULAR THALAMIC (PVT NEURONS IN RESPONSE TO CHRONIC COCAINE EXPOSURE: EFFECTS OF COCAINE- AND AMPHETAMINE-REGULATED TRANSCRIPT (CART

    Directory of Open Access Journals (Sweden)

    Jiann Wei Yeoh

    2014-08-01

    Full Text Available Recent work has established that the paraventricular thalamus (PVT is a central node in the brain reward-seeking pathway. This role is likely mediated in part through the dense projections to the PVT from hypothalamic peptide transmitter systems such as orexin, and cocaine- and amphetamine-regulated transcript (CART, both of which play key roles in drug-seeking behaviour. Consistent with this proposition, we previously found that inactivation of the PVT or infusions of CART into the PVT suppressed drug-seeking behaviour in an animal model of contingent cocaine self-administration. Despite this work, very few studies have assessed the basic physiological properties of PVT neurons and how these parameters are altered by exposure to drugs such as cocaine. We set out to address these questions by employing an electrophysiological approach to record from anterior PVT (aPVT neurons from cocaine-treated and control animals. First, we determined the excitability of aPVT neurons by injecting a series of depolarizing current steps and characterizing the resulting action potential (AP discharge properties. Second, we investigated the effects of CART on excitatory synaptic inputs to aPVT neurons. We found that the majority of aPVT neurons exhibited tonic firing (TF, and initial bursting (IB consistent with previous studies. However, we also identified PVT neurons that exhibited delayed firing (DF, single spiking (SS and reluctant firing (RF. Interestingly, cocaine exposure shifted the proportion of aPVT neurons that exhibited TF. Further, application of CART suppressed excitatory synaptic drive to PVT. This finding is consistent with our previous behavioural data, which showed that CART signaling in the PVT negatively regulates drug-seeking behaviour. Together, these studies support previous anatomical evidence that the PVT can integrate reward-relevant information and provides a putative mechanism through which drugs of abuse can dysregulate this system in

  18. Hypothalamic leptin-neurotensin-hypocretin neuronal networks in zebrafish.

    Science.gov (United States)

    Levitas-Djerbi, Talia; Yelin-Bekerman, Laura; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-04-01

    Neurotensin (NTS) is a 13 amino acid neuropeptide that is expressed in the hypothalamus. In mammals, NTS-producing neurons that express leptin receptor (LepRb) regulate the function of hypocretin/orexin (HCRT) and dopamine neurons. Thus, the hypothalamic leptin-NTS-HCRT neuronal network orchestrates key homeostatic output, including sleep, feeding, and reward. However, the intricate mechanisms of the circuitry and the unique role of NTS-expressing neurons remain unclear. We studied the NTS neuronal networks in zebrafish and cloned the genes encoding the NTS neuropeptide and receptor (NTSR). Similar to mammals, the ligand is expressed primarily in the hypothalamus, while the receptor is expressed widely throughout the brain in zebrafish. A portion of hypothalamic nts-expressing neurons are inhibitory and some coexpress leptin receptor (lepR1). As in mammals, NTS and HCRT neurons are localized adjacently in the hypothalamus. To track the development and axonal projection of NTS neurons, the NTS promoter was isolated. Transgenesis and double labeling of NTS and HCRT neurons showed that NTS axons project toward HCRT neurons, some of which express ntsr. Moreover, another target of NTS neurons is ntsr-expressing dopaminergeric neurons. These findings suggest structural circuitry between leptin, NTS, and hypocretinergic or dopaminergic neurons and establish the zebrafish as a model to study the role of these neuronal circuits in the regulation of feeding, sleep, and reward. PMID:25421126

  19. Immunohistochemical study of constitutive neuronal and inducible nitric oxide synthase in the central nervous system of goat with natural listeriosis.

    Science.gov (United States)

    Shin, T; Weinstock, D; Castro, M D; Acland, H; Walter, M; Kim, H Y; Purchase, H G

    2000-12-01

    The expression of both constitutive and inducible forms of nitric oxide synthase (NOS) was investigated by immunohistochemical staining of formalin-fixed paraffin-embedded sections in normal and Listeria monocytogenes-infected brains of goats. In normal control goats, a small number of neurons showed immunoreactivity of both iNOS and nNOS, and the number of iNOS-positive neurons was higher than the number of nNOS-positive neurons. In natural listeriosis, listeria antigens were easily immunostained in the inflammatory cells of microabscesses. In this lesion, the immunoreactivity of iNOS in neurons was more intense than the control, but nNOS was not. In microabscesses, nNOS was weakly visualized in macrophages and neutrophils, while iNOS was expressed in macrophages, but not in neutrophils. These findings suggest that normal caprine brain cells, including neurons, constitutively express iNOS and nNOS, and the expressions of these molecules is increased in Listeria monocytogenes infections. Furthermore, inflammatory cells, including macrophages, expressing both nNOS and iNOS may play important roles in the pathogenesis of bacterial meningoencephalitis in goat. PMID:14614301

  20. Orexin Receptor Targets for Anti-Relapse Medication Development in Drug Addiction

    Directory of Open Access Journals (Sweden)

    Ronald E. See

    2011-06-01

    Full Text Available Drug addiction is a chronic illness characterized by high rates of relapse. Relapse to drug use can be triggered by re-exposure to drug-associated cues, stressful events, or the drug itself after a period of abstinence. Pharmacological intervention to reduce the impact of relapse-instigating factors offers a promising target for addiction treatment. Growing evidence has implicated an important role of the orexin/hypocretin system in drug reward and drug-seeking, including animal models of relapse. Here, we review the evidence for the role of orexins in modulating reward and drug-seeking in animal models of addiction and the potential for orexin receptors as specific targets for anti-relapse medication approaches.

  1. The role of the lateral hypothalamus and orexin in ingestive behavior: a model for the translation of past experience and sensed deficits into motivated behaviors.

    Science.gov (United States)

    Hurley, Seth W; Johnson, Alan Kim

    2014-01-01

    The hypothalamus has been recognized for its involvement in both maintaining homeostasis and mediating motivated behaviors. The present article discusses a region of the hypothalamus known as the lateral hypothalamic area (LHA). It is proposed that brain nuclei within the LHA including the dorsal region of the lateral hypothalamus (LHAd) and perifornical area (PeF) provide a link between neural systems that regulate homeostasis and those that mediate appetitive motivated behaviors. Functional and immunohistochemical data indicate that the LHA promotes many motivated behaviors including food intake, water intake, salt intake, and sexual behavior. Anatomical tracing experiments demonstrate that the LHA is positioned to receive inputs from brain areas involved in regulating body fluid and energy homeostasis. Regions within the LHA send dense projections to the ventral tegmental area (VTA), providing a pathway for the LHA to influence dopaminergic systems generally recognized to be involved in motivated behaviors and their reinforcement. Furthermore, the LHA contains neurons that synthesize orexin/hypocretin, a neuropeptide that promotes many appetitive motivated behaviors. The LHA also receives inputs from brain areas involved in reward-related learning and orexin neuron activation can become conditioned to environmental stimuli that are associated with rewards. Therefore, it is hypothesized that the LHA integrates signaling from areas that regulate body fluid and energy balance and reward-related learning. In turn, this information is "fed into" mesolimbic circuitry to influence the performance of motivated behaviors. This hypothesis may foster experiments that will result in an improved understanding of LHA function. An improved understanding of LHA function may aid in treating disorders that are associated with an excess or impairment in the expression of ingestive behavior including obesity, anorexia, impairments in thirst, salt gluttony, and salt deficiency. PMID

  2. The role of the lateral hypothalamus and orexin in ingestive behavior: A model for the translation of past experience and sensed deficits into motivated behaviors

    Directory of Open Access Journals (Sweden)

    Seth William Hurley

    2014-11-01

    Full Text Available The hypothalamus has been recognized for its involvement in both maintaining homeostasis and mediating motivated behavior. The present article discusses a region of the hypothalamus known as the lateral hypothalamic area (LHA. It is proposed that brain nuclei within the LHA including the dorsal region of the lateral hypothalamus (LHAd and perifornical area (PeF provide a link between neural systems that regulates homeostasis and those that mediate appetitive motivated behaviors. Functional and immunohistochemical data indicate that the LHA promotes many motivated behaviors including food intake, water intake, salt intake, and sexual behavior. Anatomical tracing experiments demonstrate that the LHA is positioned to receive inputs from brain areas involved in regulating body fluid and energy homeostasis. Regions within the LHA send dense projections to the ventral tegmental area (VTA, providing a pathway for the LHA to influence dopaminergic systems generally recognized to be involved in motivated behaviors and their reinforcement. Furthermore, the LHA contains neurons that synthesize orexin/hypocretin, a neuropeptide that promotes many appetitive motivated behaviors. The LHA also receives inputs from brain areas involved in reward-related learning and orexin neuron activation can become conditioned to environmental stimuli that are associated with rewards. Therefore, it is hypothesized that the LHA integrates signaling from areas that regulate body fluid and energy balance and reward-related learning. In turn, this information is “fed into” mesolimbic circuitry to influence the performance of motivated behaviors. This hypothesis may foster experiments that will result in an improved understanding of LHA function. An improved understanding of LHA function may aid in treating disorders that are associated with an excess or impairment in the expression of ingestive behavior including obesity, anorexia, impairments in thirst, salt gluttony and

  3. Histamine in the central nervous system: characterization of release and effects of other neurotransmitters on the activity of histaminergic neurons

    International Nuclear Information System (INIS)

    The release of endogenous histamine and the involvement of adrenergic, dopaminergic and glutamatergic neurons in the modulation of histamine release was investigated by the push-pull technique. The posterior hypothalamus of conscious rats was superfused through a push-pull cannula with artificial cerebrospinal fluid containing neuroactive compounds. Histamine was determined radioenzymatically or by HPLC with fluorimetric detection. Experiments with depolarizing, channel-blocking and enzyme-inhibiting agents proved the neuronal origin of the histamine analysed. Superfusion with agonists and antagonists of α-adrenoceptors led to the conclusion that under in vivo conditions the neuronal histamine released is modulated by noradrenergic α2-adrenoceptors in a negative way, but not by β-adrenoceptors. Findings with dopaminergic agents suggested that dopaminergic neurons of the hypothalamus influence the release of histamine in a dual way: D2-heteroreceptors stimulate, D3-heteroreceptors inhibit the release. The anterior and medial hypothalamus possess glutamate-heteroreceptors, which modulate the histamine release in a positive way. We further studied the influence of the GABA- and NO-system on the manifestation of genetic hypertension and connections to the histaminergic system. The chronical activation of both systems led to distinct effects on blood pressure and histamine contents of main brain areas of normo- and hypertensive rats (WKY, SHR). However, a primary contribution of both systems to the manifestation of hypertension must be excluded. (author)

  4. Further characterization of autoantibodies to GABAergic neurons in the central nervous system produced by a subset of children with autism

    Directory of Open Access Journals (Sweden)

    Wills Sharifia

    2011-04-01

    Full Text Available Abstract Background Autism is a neurodevelopmental disorder characterized by impairments in social interaction and deficits in verbal and nonverbal communication, together with the presence of repetitive behaviors or a limited repertoire of activities and interests. The causes of autism are currently unclear. In a previous study, we determined that 21% of children with autism have plasma autoantibodies that are immunoreactive with a population of neurons in the cerebellum that appear to be Golgi cells, which are GABAergic interneurons. Methods We have extended this analysis by examining plasma immunoreactivity in the remainder of the brain. To determine cell specificity, double-labeling studies that included one of the calcium-binding proteins that are commonly colocalized in GABAergic neurons (calbindin, parvalbumin or calretinin were also carried out to determine which GABAergic neurons are immunoreactive. Coronal sections through the rostrocaudal extent of the macaque monkey brain were reacted with plasma from each of seven individuals with autism who had previously demonstrated positive Golgi cell staining, as well as six negative controls. In addition, brain sections from adult male mice were similarly examined. Results In each case, specific staining was observed for neurons that had the morphological appearance of interneurons. By double-labeling sections with plasma and with antibodies directed against γ-aminobutyric acid (GABA, we determined that all autoantibody-positive neurons were GABAergic. However, not all GABAergic neurons were autoantibody-positive. Calbindin was colabeled in several of the autoantibody-labeled cells, while parvalbumin colabeling was less frequently observed. Autoantibody-positive cells rarely expressed calretinin. Sections from the mouse brain processed similarly to the primate sections also demonstrated immunoreactivity to interneurons distributed throughout the neocortex and many subcortical regions. Some

  5. Higher plasma orexin A levels in children with Prader-Willi syndrome compared with healthy unrelated sibling controls.

    Science.gov (United States)

    Manzardo, Ann M; Johnson, Lisa; Miller, Jennifer L; Driscoll, Daniel J; Butler, Merlin G

    2016-08-01

    Prader-Willi syndrome (PWS) is a rare genetic neurodevelopmental disorder associated with maladaptive social behavior, hyperphagia, and morbid obesity. Orexin A is a hypothalamic neuropeptide important as a homeostatic regulator of feeding behavior and in energy metabolism through actions in the lateral hypothalamus. Dysregulation of orexin signaling may contribute to behavioral problems and hyperphagia seen in PWS and we sought to assess orexin A levels in PWS relative to controls children. Morning fasting plasma orexin A levels were analyzed in 23 children (aged 5-11 years) with genetically confirmed PWS and 18 age and gender matched healthy unrelated siblings without PWS. Multiplex immune assays utilized the Milliplex Human Neuropeptide Magnetic panel and the Luminex platform. Natural log-transformed orexin A data were analyzed using general linear model adjusting for diagnosis, gender, age, total body fat and body mass index (BMI). Plasma orexin A levels were significantly higher (P behavioral problems and hyperphagia in PWS. Further studies are warranted to better understand the complex relationship between orexin A levels and the problematic behaviors consistently found in individuals with PWS. © 2016 Wiley Periodicals, Inc. PMID:27214028

  6. Cerebrospinal Fluid Hypocretin-1 (Orexin-A) Level Fluctuates with Season and Correlates with Day Length.

    Science.gov (United States)

    Boddum, Kim; Hansen, Mathias Hvidtfelt; Jennum, Poul Jørgen; Kornum, Birgitte Rahbek

    2016-01-01

    The hypocretin/orexin neuropeptides (hcrt) are key players in the control of sleep and wakefulness evidenced by the fact that lack of hcrt leads to the sleep disorder Narcolepsy Type 1. Sleep disturbances are common in mood disorders, and hcrt has been suggested to be poorly regulated in depressed subjects. To study seasonal variation in hcrt levels, we obtained data on hcrt-1 levels in the cerebrospinal fluid (CSF) from 227 human individuals evaluated for central hypersomnias at a Danish sleep center. The samples were taken over a 4 year timespan, and obtained in the morning hours, thus avoiding impact of the diurnal hcrt variation. Hcrt-1 concentration was determined in a standardized radioimmunoassay. Using biometric data and sleep parameters, a multivariate regression analysis was performed. We found that the average monthly CSF hcrt-1 levels varied significantly across the seasons following a sine wave with its peak in the summer (June-July). The amplitude was 19.9 pg hcrt/mL [12.8-26.9] corresponding to a 10.6% increase in midsummer compared to winter. Factors found to significantly predict the hcrt-1 values were day length, presence of snow, and proximity to the Christmas holiday season. The hcrt-1 values from January were much higher than predicted from the model, suggestive of additional factors influencing the CSF hcrt-1 levels such as social interaction. This study provides evidence that human CSF hcrt-1 levels vary with season, correlating with day length. This finding could have implications for the understanding of winter tiredness, fatigue, and seasonal affective disorder. This is the first time a seasonal variation of hcrt-1 levels has been shown, demonstrating that the hcrt system is, like other neurotransmitter systems, subjected to long term modulation. PMID:27008404

  7. Origins, actions and dynamic expression patterns of the neuropeptide VGF in rat peripheral and central sensory neurones following peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Costigan Michael

    2008-12-01

    Full Text Available Abstract Background The role of the neurotrophin regulated polypeptide, VGF, has been investigated in a rat spared injury model of neuropathic pain. This peptide has been shown to be associated with synaptic strengthening and learning in the hippocampus and while it is known that VGFmRNA is upregulated in dorsal root ganglia following peripheral nerve injury, the role of this VGF peptide in neuropathic pain has yet to be investigated. Results Prolonged upregulation of VGF mRNA and protein was observed in injured dorsal root ganglion neurons, central terminals and their target dorsal horn neurons. Intrathecal application of TLQP-62, the C-terminal active portion of VGF (5–50 nmol to naïve rats caused a long-lasting mechanical and cold behavioral allodynia. Direct actions of 50 nM TLQP-62 upon dorsal horn neuron excitability was demonstrated in whole cell patch recordings in spinal cord slices and in receptive field analysis in intact, anesthetized rats where significant actions of VGF were upon spontaneous activity and cold evoked responses. Conclusion VGF expression is therefore highly modulated in nociceptive pathways following peripheral nerve injury and can cause dorsal horn cell excitation and behavioral hypersensitivity in naïve animals. Together the results point to a novel and powerful role for VGF in neuropathic pain.

  8. Neurokinin-1 Receptor Immunoreactive Neuronal Elements in the Superficial Dorsal Horn of the Chicken Spinal Cord: With Special Reference to Their Relationship with the Tachykinin-containing Central Axon Terminals in Synaptic Glomeruli

    International Nuclear Information System (INIS)

    Synaptic glomeruli that involve tachykinin-containing primary afferent central terminals are numerous in lamina II of the chicken spinal cord. Therefore, a certain amount of noxious information is likely to be modulated in these structures in chickens. In this study, we used immunohistochemistry with confocal and electron microscopy to investigate whether neurokinin-1 receptor (NK-1R)-expressing neuronal elements are in contact with the central primary afferent terminals in synaptic glomeruli of the chicken spinal cord. We also investigated which neuronal elements (axon terminals, dendrites, cell bodies) and which neurons in the spinal cord possess NK-1R, and are possibly influenced by tachykinin in the glomeruli. By confocal microscopy, NK-1R immunoreactivities were seen in a variety of neuronal cell bodies, their dendrites and smaller fibers of unknown origin. Some of the NK-1R immunoreactive profiles also expressed GABA immunoreactivities. A close association was observed between the NK-1R-immunoreactive neurons and tachykinin-immunoreactive axonal varicosities. By electron microscopy, NK-1R immunoreactivity was seen in cell bodies, conventional dendrites and vesicle-containing dendrites in laminae I and II. Among these elements, dendrites and vesicle-containing dendrites made contact with tachykinin-containing central terminals in the synaptic glomeruli. These results indicate that tachykinin-containing central terminals in the chicken spinal cord can modulate second-order neuronal elements in the synaptic glomeruli

  9. Evidence for inhibitory effects of flupirtine, a centrally acting analgesic, on delayed rectifier k(+) currents in motor neuron-like cells.

    Science.gov (United States)

    Wu, Sheng-Nan; Hsu, Ming-Chun; Liao, Yu-Kai; Wu, Fang-Tzu; Jong, Yuh-Jyh; Lo, Yi-Ching

    2012-01-01

    Flupirtine (Flu), a triaminopyridine derivative, is a centrally acting, non-opiate analgesic agent. In this study, effects of Flu on K(+) currents were explored in two types of motor neuron-like cells. Cell exposure to Flu decreased the amplitude of delayed rectifier K(+) current (I(K(DR))) with a concomitant raise in current inactivation in NSC-34 neuronal cells. The dissociation constant for Flu-mediated increase of I(K(DR)) inactivation rate was about 9.8 μM. Neither linopirdine (10 μM), NMDA (30 μM), nor gabazine (10 μM) reversed Flu-induced changes in I(K(DR)) inactivation. Addition of Flu shifted the inactivation curve of I(K(DR)) to a hyperpolarized potential. Cumulative inactivation for I(K(DR)) was elevated in the presence of this compound. Flu increased the amplitude of M-type K(+) current (I(K(M))) and produced a leftward shift in the activation curve of I(K(M)). In another neuronal cells (NG108-15), Flu reduced I(K(DR)) amplitude and enhanced the inactivation rate of I(K(DR)). The results suggest that Flu acts as an open-channel blocker of delayed-rectifier K(+) channels in motor neurons. Flu-induced block of I(K(DR)) is unlinked to binding to NMDA or GABA receptors and the effects of this agent on K(+) channels are not limited to its action on M-type K(+) channels. PMID:22888361

  10. The influence of μ-opioid and noradrenaline reuptake inhibition in the modulation of pain responsive neurones in the central amygdala by tapentadol in rats with neuropathy.

    Science.gov (United States)

    Gonçalves, Leonor; Friend, Lauren V; Dickenson, Anthony H

    2015-02-15

    Treatments for neuropathic pain are either not fully effective or have problematic side effects. Combinations of drugs are often used. Tapentadol is a newer molecule that produces analgesia in various pain models through two inhibitory mechanisms, namely central μ-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition. These two components interact synergistically, resulting in levels of analgesia similar to opioid analgesics such as oxycodone and morphine, but with more tolerable side effects. The right central nucleus of the amygdala (CeA) is critical for the lateral spinal ascending pain pathway, regulates descending pain pathways and is key in the emotional-affective components of pain. Few studies have investigated the pharmacology of limbic brain areas in pain models. Here we determined the actions of systemic tapentadol on right CeA neurones of animals with neuropathy and which component of tapentadol contributes to its effect. Neuronal responses to multimodal peripheral stimulation of animals with spinal nerve ligation or sham surgery were recorded before and after two doses of tapentadol. After the higher dose of tapentadol either naloxone or yohimbine were administered. Systemic tapentadol resulted in dose-dependent decrease in right CeA neuronal activity only in neuropathy. Both naloxone and yohimbine reversed this effect to an extent that was modality selective. The interactions of the components of tapentadol are not limited to the synergy between the MOR and α2-adrenoceptors seen at spinal levels, but are seen at this supraspinal site where suppression of responses may relate to the ability of the drug to alter affective components of pain. PMID:25576174

  11. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate.

    OpenAIRE

    Anis, N. A.; Berry, S. C.; Burton, N. R.; Lodge, D.

    1983-01-01

    The interaction of two dissociative anaesthetics, ketamine and phencyclidine, with the responses of spinal neurones to the electrophoretic administration of amino acids and acetylcholine was studied in decerebrate or pentobarbitone-anaesthetized cats and rats. Both ketamine and phencyclidine selectively blocked excitation by N-methyl-aspartate (NMA) with little effect on excitation by quisqualate and kainate. Ketamine reduced responses to L-aspartate somewhat more than those of L-glutamate; t...

  12. Orexin 1 receptor antagonists in compulsive behaviour and anxiety: possible therapeutic use.

    Directory of Open Access Journals (Sweden)

    Emilio eMerlo-Pich

    2014-02-01

    Full Text Available Fifteen years after the discovery of hypocretin/orexin a large body of evidence has been collected supporting its critical role in the modulation of several regulatory physiological functions. While reduced levels of hypocretin/orexin were early on associated with narcolepsy, increased levels have been linked in recent years to pathological states of hypervigilance and, in particular, to insomnia. The filing to FDA of the dual-activity orexin receptor antagonist (DORA suvorexant for the indication of insomnia further corroborates the robustness of such evidences. However, as excessive vigilance is also typical of anxiety and panic episodes, as well as of abstinence and craving in substance misuse disorders, in this review we briefly discuss the evidence supporting the development of hypocretin/orexin receptor 1 (OX1 antagonists for these indications. Experiments using the OX1 antagonist SB-334867 and mutant mice have involved the OX1 receptor in mediating the compulsive reinstatement of drug seeking for ethanol, nicotine, cocaine, cannabinoids and morphine. More recently, data have been generated with the novel selective OX1 antagonists GSK1059865 and ACT-335827 on behavioural and cardiovascular response to stressors and panic-inducing agents in animals. Concluding, while waiting for pharmacologic data to become available in humans, risks and benefits for the development of an OX1 receptor antagonist for Binge Eating and Anxiety Disorders are discussed.

  13. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy.

    NARCIS (Netherlands)

    Fronczek, R.; Overeem, S.; Reijntjes, R.; Lammers, G.J.; Dijk, J.G.M.; Pijl, H.

    2008-01-01

    STUDY OBJECTIVES: We investigated autonomic balance and resting metabolic rate to explore their possible involvement in obesity in hypocretin/orexin-deficient narcoleptic subjects. METHODS: Resting metabolic rate (using indirect calorimetry) and variability in heart rate and blood pressure were dete

  14. Emerging role of orexin antagonists in insomnia therapeutics: An update on SORAs and DORAs.

    Science.gov (United States)

    Kumar, Anil; Chanana, Priyanka; Choudhary, Supriti

    2016-04-01

    The pharmacological management of insomnia has lately become a challenge for researchers worldwide. As per the third International Classification of Sleep disorders (ICSD-3) insomnia can be defined as a state with repeated difficulty in sleep initiation, duration, consolidation, or quality that occurs despite adequate opportunity and circumstances for sleep, and results in some form of daytime impairment. The conventional treatments approved for management of insomnia were benzodiazepines (BZDs) (estazolam, quazepam, triazolam, flurazepam and temazepam) and non-BZDs, also known as z-drugs (zaleplon, zolpidem, and eszopiclone), tricyclic antidepressant (TCA) doxepin as well as melatonin agonists, e.g. ramelteon. But the potential of these agents to address sleep problems has been limited due to substantial side effects associated with them like hangover, dependence and tolerance, rebound insomnia, muscular atonia, inhibition of respiratory system, cognitive dysfunctions, and increased anxiety. Recently, orexin neuropeptides have been identified as regulators of transition between wakefulness and sleep and documented to aid an initial transitory effect towards wakefulness by activating cholinergic/monoaminergic neural pathways of the ascending arousal system. This has led to the development of orexin peptides and receptors, as possible therapeutic targets for the treatment of sleep disorders with the advantage of having lesser side effects as compared to conventional treatments. The present review focuses on the orexin peptides and receptors signifying their physiological profile as well as the development of orexin receptor antagonists as novel strategies in sleep medicine. PMID:26922522

  15. HLA DQB1*06:02 negative narcolepsy with hypocretin/orexin deficiency

    DEFF Research Database (Denmark)

    Han, Fang; Lin, Ling; Schormair, Barbara;

    2014-01-01

    STUDY OBJECTIVES: To identify rare allelic variants and HLA alleles in narcolepsy patients with hypocretin (orexin, HCRT) deficiency but lacking DQB1*06:02. SETTINGS: China (Peking University People's Hospital), Czech Republic (Charles University), Denmark (Golstrup Hospital), Italy (University o...

  16. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction.

    Science.gov (United States)

    Keefer, Sara E; Cole, Sindy; Petrovich, Gorica D

    2016-08-01

    Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin

  17. Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation.

    Science.gov (United States)

    Lyons, G E; Micales, B K; Schwarz, J; Martin, J F; Olson, E N

    1995-08-01

    Members of the myocyte enhancer factor 2 (MEF2) gene family are expressed in a dynamic pattern during development of the CNS of pre- and postnatal mice. The four MEF2 genes, Mef2A, -B, -C, -D, encode transcription factors belonging to the MADS (MCM1-agamous-deficiens-serum response factor) superfamily of DNA binding proteins. MEF2 factors have previously been shown to be positive regulators of gene expression in terminally differentiated muscle cells. To begin to determine the role of MEF2 factors in CNS development, we used in situ hybridization with gene-specific cRNA probes to define the expression patterns of each of the four Mef2 mRNAs in the developing and mature mouse CNS. Mef2C mRNA was first detected in a ventral portion of the telencephalon at 11.5 d postcoitum (p.c.). By 13.5 d p.c., each of the four Mef2 genes were expressed in overlapping yet distinct patterns in regions of the frontal cortex, midbrain, thalamus, hippocampus, and hindbrain. Temporal and spatial patterns of embryonic Mef2 gene expression appeared to follow gradients of neuron maturation and suggested that the onset of Mef2 gene expression coincides with withdrawal from the cell cycle and initiation of neuronal differentiation. This correlation is particularly striking for Purkinje cells in the cerebellum. Since the molecular mechanisms that regulate neuron differentiation are unknown, we propose that the MEF2 factors are likely to play an important role in this process. PMID:7643214

  18. Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin.

    Science.gov (United States)

    Tam, Janice K V; Lau, Kwan-Wa; Lee, Leo T O; Chu, Jessica Y S; Ng, Kwong-Man; Fournier, Alain; Vaudry, Hubert; Chow, Billy K C

    2011-01-01

    At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa) secretins, we provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin, orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins early in the vertebrate lineage. PMID:21559418

  19. Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa secretins, we provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin, orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins early in the vertebrate lineage.

  20. Synthesis of FMRFaNV, a Photoreleasable Caged Transmitter Designed to Study Neuron-Glia Interactions in the Central Nervous System.

    Science.gov (United States)

    Janett, Elia; Bernardinelli, Yann; Müller, Dominique; Bochet, Christian G

    2015-12-16

    Neuroscience studies require technologies able to deliver compounds with both scale and timing compatibility with morphological and physiological synaptic properties. In this light, two-photon flash photolysis has been extensively used to successfully apply glutamate or other neurotransmitters at the synaptic level. However, the set of commercially available caged compounds is restricted and incompatible with studies demanding high cell specificity. The gain in cell specificity is especially relevant and challenging when studying neuron-glia interactions in the central nervous system. Here we develop a system to mimic the metabotropic glutamate receptor-dependent response of astrocytes, a glial cell type, following synaptic glutamate release. For this, we expressed an exogeneous orphan Gq-coupled protein of the Mas-related-gene (Mrg) family in glial cells and generated an MrgR's agonist peptide (FMRFa) that was chemically caged with a nitroveratryl photolabile protecting group (NV). NV has an appropriate quantum yield and a high absorption maximum that makes it very adapted to experiments with very short irradiation time. This novel caged compound allowed the activation of MrgR with both single- and two-photon light sources. Indeed, MrgR activation induced calcium transients and morphological changes in astrocytes as described previously. Thus, FMRFaNV is a very promising tool to study neuron-glia interactions. PMID:26511675

  1. Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia

    Science.gov (United States)

    Schikorski, David; Cuvillier-Hot, Virginie; Leippe, Matthias; Boidin-Wichlacz, Céline; Slomianny, Christian; Macagno, Eduardo; Salzet, Michel; Tasiemski, Aurélie

    2010-01-01

    Following trauma, the central nervous system (CNS) of the medicinal leech, unlike the mammalian CNS, has a strong capacity to regenerate neurites and synaptic connections that restore normal function. Here, we show that this regenerative process is enhanced by a controlled bacterial infection, suggesting that induction of regeneration of normal CNS function may depend critically upon the co-initiation of an immune response. We explore the interaction between the activation of a neuroimmune response and the process of regeneration by assaying the potential roles of two newly characterized antimicrobial peptides. Our data provide evidence that microbial components differentially induce the transcription, by microglial cells, of both antimicrobial peptide genes, the products of which accumulate rapidly at sites in the CNS undergoing regeneration following axotomy. Using a preparation of leech CNS depleted of microglial cells, we also demonstrate the production of antimicrobial peptides by neurons. Interestingly, in addition to exerting antibacterial properties, both peptides act as promoters of the regenerative process of axotomized leech CNS. These data are the first to report the neuronal synthesis of antimicrobial peptides and their participation in the immune response and the regeneration of the CNS. Thus, the leech CNS appears as an excellent model for studying the implication of immune molecules in neural repair. PMID:18606660

  2. Low doses of a neonicotinoid insecticide modify pheromone response thresholds of central but not peripheral olfactory neurons in a pest insect.

    Science.gov (United States)

    Rabhi, Kaouther K; Deisig, Nina; Demondion, Elodie; Le Corre, Julie; Robert, Guillaume; Tricoire-Leignel, Hélène; Lucas, Philippe; Gadenne, Christophe; Anton, Sylvia

    2016-02-10

    Insect pest management relies mainly on neurotoxic insecticides, including neonicotinoids, leaving residues in the environment. There is now evidence that low doses of insecticides can have positive effects on pest insects by enhancing various life traits. Because pest insects often rely on sex pheromones for reproduction, and olfactory synaptic transmission is cholinergic, neonicotinoid residues could modify chemical communication. We recently showed that treatments with different sublethal doses of clothianidin could either enhance or decrease behavioural sex pheromone responses in the male moth, Agrotis ipsilon. We investigated now effects of the behaviourally active clothianidin doses on the sensitivity of the peripheral and central olfactory system. We show with extracellular recordings that both tested clothianidin doses do not influence pheromone responses in olfactory receptor neurons. Similarly, in vivo optical imaging does not reveal any changes in glomerular response intensities to the sex pheromone after clothianidin treatments. The sensitivity of intracellularly recorded antennal lobe output neurons, however, is upregulated by a lethal dose 20 times and downregulated by a dose 10 times lower than the lethal dose 0. This correlates with the changes of behavioural responses after clothianidin treatment and suggests the antennal lobe as neural substrate involved in clothianidin-induced behavioural changes. PMID:26842577

  3. Papel del oxido nítrico en procesos de plasticidad neuronal en el sistema nervioso central y periférico del mamífero

    OpenAIRE

    Rodríguez Sunico, Cármen

    2009-01-01

    La lesión de un nervio periférico induce la sobre-expresión de la enzima óxido nítrico sintasa (Nos) en el nervio afectado. Este tipo de lesión, así como ciertas enfermedades neurodegenerativas, cursan con una disminución de la densidad sínáptica central junto con la expresión de novo y/o sobre-expresión de NOS neuronal (nNOS) en las motoneuronas. Dado que el óxido nítrico (NO) participa en numerosos fenómenos de plasticidad sináptica, se podría sugerir un papel del NO en procesos de El princ...

  4. Pertussis toxin modulation of sodium channels in the central neurons of cyhalothrin-resistant and cyhalothrin-susceptible cotton bollworm, Helicoverpa armigera

    Institute of Scientific and Technical Information of China (English)

    QIANG ZHAO; DE-LING KONG; BING-JUN HE; YAN-QIANG LIU; XIAN-LIN FAN; AN-XI LIU

    2007-01-01

    Pertussis toxin (PTX) inhibits the activation of the α-subunit of the inhibitory heterotrimeric G-proteins (Gαi/o) and modulates voltage-gated sodium channels, which may be one of the primary targets of pyrethroids. To investigate the potential mechanisms of agricultural pests resistance to pyrethroid insecticides, we examined the modulations by PTX on sodium channels in the central neurons of the 3rd-4th instar larvae of cyhalothrin-resistant (Cy-R) and cyhalothrin-susceptible (Cy-S) Helicoverpa armigera by the whole-cell patch-clamp technique.The isolated neurons were cultured for 12-16 h in an improved L15 insect culture medium with or without PTX (400 ng/mL). The results showed that both the Cy-R and Cy-S sodium channels exhibited fast kinetics and tetrodotoxin (TTX) sensitivity. The Cy-R sodium channels exhibited not only altered gating properties, including a 8.88-mV right shift in voltage-dependent activation (V0.5act) and a 6.54-mV right shift in voltage-dependent inactivation (V0.5inact), but also a reduced peak in sodium channel density (Idensity) (55.2% of that in Cy-S neurons). Cy-R sodium channels also showed low excitability, as evidenced by right shift of activation potential (Vacti) by 5-10 mV and peak potential (Vpeak) by 20 mV. PTX exerted significant effects on Cy-S sodium channels,reducing sodium channel density by 70.04%, right shifting V0.5act by 14.41 mV and V0.5inact by 9.38 mV. It did not cause any significant changes of the parameters mentioned above in the Cy-R sodium channels. The activation time (Tpeak) from latency to peak at peak voltage and the fast inactivation time constant (τinact) in both Cy-S and Cy-R neurons were not affected. The results suggest that cotton bollworm resistant to pyrethroid insecticides involves not only mutations and allosteric alterations of voltage-gated sodium channels, but also might implicate perturbation of PTX-sensitive Gαi/o-coupled signaling transduction pathways.

  5. Embryonic Origin of the Islet1 and Pax6 Neurons of the Chicken Central Extended Amygdala Using Cell Migration Assays and Relation to Different Neuropeptide-Containing Cells.

    Science.gov (United States)

    Vicario, Alba; Abellán, Antonio; Medina, Loreta

    2015-01-01

    In a recent study, we tentatively identified different subdivisions of the central extended amygdala (EAce) in chicken based on the expression of region-specific transcription factors (including Pax6 and Islet1) and several phenotypic markers during embryonic development. Such a proposal was partially based on the suggestion that, similarly to the subdivisions of the EAce of mammals, the Pax6 and Islet1 neurons of the comparable chicken subdivisions derive from the dorsal (Std) or ventral striatal embryonic domains (Stv), respectively. To investigate whether this is true, in the present study, we carried out cell migration assays from chicken Std or Stv combined with immunofluorescence for Pax6 or Islet1. Our results showed that the cells of the proposed chicken EAce truly originate in either Std (expressing Pax6) or Stv (expressing Islet1). This includes lateral subdivisions previously compared to the intercalated amygdalar cells and the central amygdala of mammals, also rich in Std-derived Pax6 cells and/or Stv-derived Islet1 cells. In the medial region of the chicken EAce, the dorsal part of the lateral bed nucleus of the stria terminalis (BSTL) contains numerous cells expressing Nkx2.1 (mostly derived from the pallidal domain), but our migration assays showed that it also contains neuron subpopulations from the Stv (expressing Islet1) and Std (expressing Pax6), resembling the mouse BSTL. These findings, together with those previously published in different species of mammals, birds and reptiles, support the homology of the chicken EAce to that of other vertebrates, and reinforce the existence of several cell subcorridors inside the EAce. In addition, together with previously published data on neuropeptidergic cells, these results led us to propose the existence of at least seventeen neuron subtypes in the EAce in rodents and/or some birds (chicken and pigeon). The functional significance and the evolutionary origin of each subtype needs to be analyzed

  6. Effects of cocaine place conditioning, chronic escalating-dose “binge” pattern cocaine administration and acute withdrawal on orexin/hypocretin and preprodynorphin gene expressions in lateral hypothalamus of Fischer and Sprague-Dawley rats

    OpenAIRE

    Zhou, Yan; Cui, Cai-Lian; Schlussman, Stefan D.; Choi, Jason C.; Ho, Ann; Han, Ji-Sheng; Kreek, Mary Jeanne

    2008-01-01

    Recent evidence suggests an important role for hypothalamic orexins/hypocretins in modulation of drug reward and addiction-like behaviors in rodents. Our recent study has shown that the aversive state of arousal during acute morphine withdrawal is associated with increased orexin gene expression in lateral hypothalamus (LH) of Fischer 344 (F344) inbred rats, with no change in the expression of preprodynorphin (ppDyn), a gene co-expressed with LH orexin. Therefore, we determined whether orexin...

  7. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat.

    Science.gov (United States)

    Xi, M C; Morales, F R; Chase, M H

    2001-05-18

    Anatomical data demonstrate a dense projection, in the cat, from hypocretin (orexin) neurons in the hypothalamus to the laterodorsal tegmental nucleus (LDT), which is a critical pontine site that is involved in the regulation of the behavioral states of sleep and wakefulness. The present study was therefore undertaken to explore the hypocretinergic control of neurons in the LDT vis-à-vis these behavioral states. Accordingly, hypocretin-1 was microinjected into the LDT of chronic, unanesthetized cats and its effects on the percentage, latency, frequency and duration of wakefulness, quiet (non-REM) sleep and active (REM) sleep were determined. There was a significant increase in the time spent in wakefulness following the microinjection of hypocretin-1 into the LDT and a significant decrease in the time spent in active sleep. The increase in the percentage of wakefulness was due to an increase in the duration of episodes of wakefulness; the reduction in active sleep was due to a decrease in the frequency of active sleep episodes, but not in their duration. These data indicate that hypocretinergic processes in the LDT play an important role in both of the promotion of wakefulness and the suppression of active sleep. PMID:11368975

  8. Novel class of medications, orexin receptor antagonists, in the treatment of insomnia - critical appraisal of suvorexant.

    Science.gov (United States)

    Norman, Jessica L; Anderson, Sarah L

    2016-01-01

    Insomnia, a highly prevalent disorder, can be detrimental to patients' overall health and worsen existing comorbidities. Patients may have acute episodes of insomnia related to a traumatic event, but more commonly insomnia occurs chronically. While proper sleep hygiene and behavioral therapy play important roles in the nonpharmacologic management of short-term and chronic insomnia, medications may also be required. Historically, insomnia has been treated with agents such as benzodiazepines, nonbenzodiazepine receptor agonists, and melatonin agonists. Dual orexin receptor antagonists represent a new class of medications for the treatment of insomnia, which block the binding of wakefulness-promoting neuropeptides orexin A and orexin B to their respective receptor sites. Suvorexant (Belsomra) is the first dual orexin receptor antagonist to be approved in the US and Japan and has demonstrated efficacy in decreasing time to sleep onset and increasing total sleep time. Its unique mechanism of action, data to support efficacy and safety over 12 months of use, and relative lack of withdrawal effects when discontinued may represent an alternative for patients with chronic insomnia who cannot tolerate or do not receive benefit from more traditional sleep agents. Suvorexant is effective and well tolerated, but precautions exist for certain patient populations, including females, obese patients, and those with respiratory disease. Suvorexant has only been studied vs placebo, and hence it is unknown how it directly compares with other medications approved by the US Food and Drug Administration for insomnia. Suvorexant is not likely to replace benzodiazepines or nonbenzodiazepine receptor antagonists as a first-line sleep agent but does represent a novel option for the treatment of patients with chronic insomnia. PMID:27471419

  9. The Hypocretin/Orexin System Mediates the Extinction of Fear Memories

    OpenAIRE

    Flores de los Heros, ??frica; Valls-Comamala, Vict??ria; Costa, Giulia; Saravia Santos, Roc??o Ingrid; Maldonado, Rafael; Berrendero D??az, Fernando, 1971-

    2014-01-01

    Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear condi...

  10. Orexin Receptor Targets for Anti-Relapse Medication Development in Drug Addiction

    OpenAIRE

    See, Ronald E.; Luyi Zhou; Wei-Lun Sun

    2011-01-01

    Drug addiction is a chronic illness characterized by high rates of relapse. Relapse to drug use can be triggered by re-exposure to drug-associated cues, stressful events, or the drug itself after a period of abstinence. Pharmacological intervention to reduce the impact of relapse-instigating factors offers a promising target for addiction treatment. Growing evidence has implicated an important role of the orexin/hypocretin system in drug reward and drug-seeking, including animal models of rel...

  11. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    OpenAIRE

    Xiao-Bing Gao; Gretchen Hermes

    2015-01-01

    The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc.) and long-term behavioral changes (such as reward seeking and addiction, stress response, etc.) in animals. The most recent evidence suggest...

  12. Glutamate and GABA as rapid effectors of hypothalamic peptidergic neurons

    Directory of Open Access Journals (Sweden)

    Cornelia eSchöne

    2012-11-01

    Full Text Available Vital hypothalamic neurons regulating hunger, wakefulness, reward-seeking, and body weight are often defined by unique expression of hypothalamus-specific neuropeptides. Gene-ablation studies show that some of these peptides, notably orexin/hypocretin (hcrt/orx, are themselves critical for stable states of consciousness and metabolic health. However, neuron-ablation studies often reveal more severe phenotypes, suggesting key roles for co-expressed transmitters. Indeed, most hypothalamic neurons, including hcrt/orx cells, contain fast transmitters glutamate and GABA, as well as several neuropeptides. What are the roles and relations between different transmitters expressed by the same neuron? Here, we consider signaling codes for releasing different transmitters in relation to transmitter and receptor diversity in behaviorally-defined, widely-projecting peptidergic neurons, such as hcrt/orx cells. We then discuss latest optogenetic studies of endogenous transmitter release from defined sets of axons in situ, which suggest that recently-characterized vital peptidergic neurons (e.g. hcrt/orx, proopiomelanocortin , and agouti-related peptide cells, as well as classical modulatory neurons (e.g. dopamine and acetylcholine cells, all use fast transmitters to control their postsynaptic targets. These optogenetic insights are complemented by recent observations of behavioral deficiencies caused by genetic ablation of fast transmission from specific neuropeptidergic and aminergic neurons. Powerful and fast (millisecond-scale GABAergic and glutamatergic signaling from neurons previously considered to be primarily modulatory raises new questions about the roles of slower co-transmitters they co-express.

  13. Do the Images of Neuronal Pathways in the Human Central Nervous System Show Feed-back? A Comparative Study in Fifteen Countries.

    Science.gov (United States)

    Clement, Pierre; Mouelhi, Lassaad; Kochkar, Momahed; Valanides, Nicos; Nisiforou, Olia; Thiaw, Seyni Mame; Ndiaye, Valdiodio; Jeanbart, Paula; Horvath, Daniel; Ferreira, Claudia; Carvalho, Graca S.

    2010-01-01

    In the human brain, the neuronal pathways are networks which support our learning, memory and thought, and which work with permanent feedback. However, only 19% of illustrations of these neuronal pathways, in the 55 analysed school textbooks coming from 15 countries, were showing feedbacks. The neuronal pathways related to movements were generally…

  14. Acute tianeptine treatment selectively modulates neuronal activation in the central nucleus of the amygdala and attenuates fear extinction.

    Science.gov (United States)

    Godsil, B P; Bontempi, B; Mailliet, F; Delagrange, P; Spedding, M; Jay, T M

    2015-11-01

    Antidepressant drugs are commonly prescribed treatments for anxiety disorders, and there is growing interest in understanding how these drugs impact fear extinction because extinction learning is pivotal to successful exposure-based therapy (EBT). A key objective within this domain is understanding how antidepressants alter the activation of specific elements of the limbic-based network that governs such fear processing. Chronic treatment with the antidepressant tianeptine has been shown to reduce the acquisition of extinction learning in rats, yet the drug's acute influence on activation in prefrontal and amygdalar regions, and on extinction learning are not well understood. To assess its influence on cellular activation, rats were injected with tianeptine and Fos immunoreactivity was measured in these regions. Acute tianeptine treatment selectively altered Fos expression within subdivisions of the central nucleus of the amygdala (CEA) in a bidirectional manner that varied in relation to ongoing activation within the capsular subdivision and its prefrontal and intra-amygdalar inputs. This pattern of results suggests that the drug can conditionally modulate the activation of CEA subdivisions, which contain microcircuits strongly implicated in fear processing. The effect of acute tianeptine was also examined with respect to the acquisition, consolidation and expression of fear extinction in rats. Acute tianeptine attenuated extinction learning as well as the recall of extinction memory, which underscores that acute dosing with the drug could alter learning during EBT. Together these findings provide a new perspective for understanding the mechanism supporting tianeptine's clinical efficacy, as well as its potential influence on CEA-based learning mechanisms. PMID:25560759

  15. Effects of location and timing of co-activated neurons in the auditory midbrain on cortical activity: implications for a new central auditory prosthesis

    Science.gov (United States)

    Straka, Małgorzata M.; McMahon, Melissa; Markovitz, Craig D.; Lim, Hubert H.

    2014-08-01

    Objective. An increasing number of deaf individuals are being implanted with central auditory prostheses, but their performance has generally been poorer than for cochlear implant users. The goal of this study is to investigate stimulation strategies for improving hearing performance with a new auditory midbrain implant (AMI). Previous studies have shown that repeated electrical stimulation of a single site in each isofrequency lamina of the central nucleus of the inferior colliculus (ICC) causes strong suppressive effects in elicited responses within the primary auditory cortex (A1). Here we investigate if improved cortical activity can be achieved by co-activating neurons with different timing and locations across an ICC lamina and if this cortical activity varies across A1. Approach. We electrically stimulated two sites at different locations across an isofrequency ICC lamina using varying delays in ketamine-anesthetized guinea pigs. We recorded and analyzed spike activity and local field potentials across different layers and locations of A1. Results. Co-activating two sites within an isofrequency lamina with short inter-pulse intervals (<5 ms) could elicit cortical activity that is enhanced beyond a linear summation of activity elicited by the individual sites. A significantly greater extent of normalized cortical activity was observed for stimulation of the rostral-lateral region of an ICC lamina compared to the caudal-medial region. We did not identify any location trends across A1, but the most cortical enhancement was observed in supragranular layers, suggesting further integration of the stimuli through the cortical layers. Significance. The topographic organization identified by this study provides further evidence for the presence of functional zones across an ICC lamina with locations consistent with those identified by previous studies. Clinically, these results suggest that co-activating different neural populations in the rostral-lateral ICC rather

  16. Neurons of human nucleus accumbens

    Directory of Open Access Journals (Sweden)

    Sazdanović Maja

    2011-01-01

    Full Text Available Background/Aim. Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. Methods. The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I - fusiform neurons; type II - fusiform neurons with lateral dendrite, arising from a part of the cell body; type III - pyramidal-like neuron; type IV - multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV - multipolar neurons. Results. Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV - multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. Conclusion. Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.

  17. Vestibular Neuronitis

    Science.gov (United States)

    ... Prevent Painful Swimmer's Ear Additional Content Medical News Vestibular Neuronitis By Lawrence R. Lustig, MD NOTE: This ... Drugs Herpes Zoster Oticus Meniere Disease Purulent Labyrinthitis Vestibular Neuronitis Vestibular neuronitis is a disorder characterized by ...

  18. Xingshentongqiao Decoction Mediates Proliferation, Apoptosis, Orexin-A Receptor and Orexin-B Receptor Messenger Ribonucleic Acid Expression and Represses Mitogen-activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Yuanli Dong

    2015-01-01

    Full Text Available Background: Hypocretin (HCRT signaling plays an important role in the pathogenesis of narcolepsy and can be significantly influenced by Chinese herbal therapy. Our previous study showed that xingshentongqiao decoction (XSTQ is clinically effective for the treatment of narcolepsy. To determine whether XSTQ improves narcolepsy by modulating HCRT signaling, we investigated its effects on SH-SY5Y cell proliferation, apoptosis, and HCRT receptor 1/2 (orexin receptor 1 [OX1R] and orexin receptor 2 [OX2R] expression. The signaling pathways involved in these processes were also assessed. Methods: The effects of XSTQ on proliferation and apoptosis in SH-SY5Y cells were assessed using cell counting kit-8 and annexin V-fluorescein isothiocyanate assays. OX1R and OX2R expression was assessed by quantitative real-time polymerase chain reaction analysis. Western blotting for mitogen-activated protein kinase (MAPK pathway activation was performed to further assess the signaling mechanism of XSTQ. Results: XSTQ reduced the proliferation and induced apoptosis of SH-SY5Y cells. This effect was accompanied by the upregulation of OX1R and OX2R expression and the reduced phosphorylation of extracellular signal-regulated kinase (Erk 1/2, p38 MAPK and c-Jun N-terminal kinase (JNK. Conclusions: XSTQ inhibits proliferation and induces apoptosis in SH-SY5Y cells. XSTQ also promotes OX1R and OX2R expression. These effects are associated with the repression of the Erk1/2, p38 MAPK, and JNK signaling pathways. These results define a molecular mechanism for XSTQ in regulating HCRT and MAPK activation, which may explain its ability to treat narcolepsy.

  19. Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms

    Directory of Open Access Journals (Sweden)

    Rodrigo eEspaña

    2012-08-01

    Full Text Available The hypocretins/orexins are comprised of two neuroexcitatory peptides that are synthesized exclusively within a circumscribed region of the lateral hypothalamus. These peptides project widely throughout the brain and interact with a variety of regions involved in the regulation of arousal-related processes including those associated with motivated behavior. The current review focuses on emerging evidence indicating that the hypocretins influence reward and reinforcement processing via actions on the mesolimbic dopamine system. We discuss contemporary perspectives of hypocretin regulation of mesolimbic dopamine signaling in both drug free and drug states, as well as hypocretin regulation of behavioral responses to drugs of abuse, particularly as it relates to cocaine.

  20. A KEY ROLE FOR OREXIN IN PANIC ANXIETY

    OpenAIRE

    Johnson, Philip L.; Truitt, William; Fitz, Stephanie D.; Minick, Pamela E.; Dietrich, Amy; Sanghani, Sonal; Träskman-Bendz, Lil; Goddard, Andrew W; Brundin, Lena; Shekhar, Anantha

    2009-01-01

    Introductory paragraph Panic disorder is a severe anxiety disorder with recurrent, debilitating panic attacks. In subjects with panic disorder there is evidence of decreased central GABAergic activity as well as marked increases in autonomic and respiratory responses following intravenous infusions of 0.5M sodium lactate1–3. In an animal model of panic disorder, chronic inhibition of GABA synthesis in the dorsomedial/perifornical hypothalamus of rats produces anxiety-like states and a similar...

  1. From radioimmunoassay to mass spectrometry: a new method to quantify orexin-A (hypocretin-1) in cerebrospinal fluid.

    Science.gov (United States)

    Hirtz, Christophe; Vialaret, Jérôme; Gabelle, Audrey; Nowak, Nora; Dauvilliers, Yves; Lehmann, Sylvain

    2016-01-01

    I(125) radioimmunoassay (RIA) is currently the standard technique for quantifying cerebrospinal fluid (CSF) orexin-A/hypocretin-1, a biomarker used to diagnose narcolepsy type 1. However, orexin-A RIA is liable to undergo cross-reactions with matrix constituents generating interference, high variability between batches, low precision and accuracy, and requires special radioactivity precautions. Here we developed the first quantitative mass spectrometry assay of orexin-A based on a multiple reaction monitoring (MRM) approach. This method was tested in keeping with the Clinical and Laboratory Standards Institute (CLSI) guidelines and its clinical relevance was confirmed by comparing patients with narcolepsy type 1 versus patients with other neurological conditions. The results obtained using MRM and RIA methods were highly correlated, and Bland-Altman analysis established their interchangeability. However, the MRM values had a wider distribution and were 2.5 time lower than the RIA findings. In conclusion, this method of assay provides a useful alternative to RIA to quantify orexin-A, and may well replace it not only in narcolepsy type 1, but also in the increasing number of pathologies in which the quantification of this analyte is relevant. PMID:27165941

  2. Culture of Mouse Olfactory Sensory Neurons

    OpenAIRE

    Gong, Qizhi

    2012-01-01

    Olfactory sensory neurons, located in the nasal epithelium, detect and transmit odorant information to the central nervous system. This requires that these neurons form specific neuronal connections within the olfactory bulb and express receptors and signaling molecules specific for these functions. This protocol describes a primary olfactory sensory neuron culture technique that allows in vitro investigation of olfactory sensory neuron differentiation, axon outgrowth, odorant receptor expres...

  3. Analyzing Gene Expression from Whole Tissue vs. Different Cell Types Reveals the Central Role of Neurons in Predicting Severity of Alzheimer’s Disease

    OpenAIRE

    Shiri Stempler; Eytan Ruppin

    2012-01-01

    Alterations in gene expression resulting from Alzheimer's disease have received considerable attention in recent years. Although expression has been investigated separately in whole brain tissue, in astrocytes and in neurons, a rigorous comparative study quantifying the relative utility of these sources in predicting the progression of Alzheimer's disease has been lacking. Here we analyze gene expression from neurons, astrocytes and whole tissues across different brain regions, and compare th...

  4. Effects of Orexin A on mRNA Expression of Various Neuropeptides in the Hypothalamus and Pituitary,and on Serum LH Levels in Ovariectomized Gilts

    Institute of Scientific and Technical Information of China (English)

    NING Hong-mei; GE Ya-ming; SU Juan; ZHANG Wen-long; YAO Yuan; YANG Gui-hong; LEI Zhi-hai

    2010-01-01

    Orexin has several biological functions,including the regulation of reproductive endocrine signaling,which has received much attention.However,little is known about the mechanism through which orexin regulates the levels of neuroendocrine hormones and peptides.We injected orexin A or physiological saline into the lateral ventricle of 10 ovariectomized(OVX)gilts,and determined the subsequent changes in serum luteinizing hormone(LH)concentration by using radioimmunoassay(RIA).We also examined the expression of GnRH,NPY,and POMC mRNAs in the hypothalamus and that of LH,follicle-stimulating hormone(FSH),POMC,and ghrelin mRNAs in the pituitary by using semi-quantitative reverse transcription polymerase chain reaction.We found the following results:(1)Orexin A transiently promoted LH secretion; serum LH concentration started to increase at 10 min after the orexin injection,peaked at 30 min,and returned to its initial level at1.5 h;(2)orexin A upregulated GnRH mRNA expression and downregulated NPY and POMC mRNAs expression in the hypothalamus;(3)orexin A upregulated LH and FSH mRNAs expression(FSH,P>0.05),but downregulated ghrelin mRNA expression in the pituitary.No significant effects were observed on the pituitary expression of FSH and POMC mRNAs.Our data suggest that orexin A regulates reproductive function by stimulating GnRH and LH release directly and indirectly via its effects on NPY,POMC and ghrelin expression.

  5. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors

    International Nuclear Information System (INIS)

    Highlights: • OX1 and OX2 orexin and CB1 cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX1, OX2 and CB1 receptors, C-terminally fused with either Renilla luciferase or GFP2 green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP2 to CB1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX1–OX2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations available for

  6. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    OpenAIRE

    Steiner, Michel A.; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois

    2013-01-01

    The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS...

  7. Rapid eye movement sleep disruption and sleep fragmentation are associated with increased orexin-A cerebrospinal-fluid levels in mild cognitive impairment due to Alzheimer's disease.

    Science.gov (United States)

    Liguori, Claudio; Nuccetelli, Marzia; Izzi, Francesca; Sancesario, Giuseppe; Romigi, Andrea; Martorana, Alessandro; Amoroso, Chiara; Bernardini, Sergio; Marciani, Maria Grazia; Mercuri, Nicola Biagio; Placidi, Fabio

    2016-04-01

    The orexin system has been investigated in patients affected by mild cognitive impairment (MCI) due to Alzheimer's disease (AD) by measuring orexin-A concentrations in the cerebrospinal fluid (CSF), and correlated to subjective and objective sleep parameters, quantified by questionnaires and polysomnography, respectively. Twenty drug-naïve patients with MCI due to AD were studied and compared with a population of 26 age and/or sex matched controls, divided into subgroups on the basis of the Pittsburgh Sleep Quality Index (PSQI) score. Increased CSF-orexin levels were detected in patients with MCI due to AD in comparison with controls (p complaints (PSQI ≥5, n = 10) compared with MCI patients with a regular sleep-wake cycle (PSQI complaints, PSQI ≥5, n = 11, p complaints, PSQI <5, n = 15, p < 0.001). Moreover, REM sleep was reduced in MCI patients compared with controls (p < 0.01), and had a negative correlation coupled with a reciprocal influence at the multiple regression analysis with CSF-orexin levels (R = -0.65; β = -8.90). REM sleep disruption and sleep fragmentation are related to higher CSF-orexin levels in patients with MCI due to AD, thus suggesting that the orexin system may be involved even in the earliest stages of AD, resulting in prolonged sleep latency, reduced sleep efficiency, and REM sleep impairment. PMID:26973111

  8. Neuronal generation from somatic stem cells: current knowledge and perspectives on the treatment of acquired and degenerative central nervous system disorders.

    Science.gov (United States)

    Corti, S; Locatelli, F; Strazzer, S; Guglieri, M; Comi, G P

    2003-06-01

    Stem cell transplantation through cell replacement or as vector for gene delivery is a potential strategy for the treatment of neurodegenerative diseases. Several studies have reported the transdifferentiation of different somatic stem cells into neurons in vitro or after transplantation into animal models. This observation has pointed out the perspective of using an ethical and accessible cell source to "replace" damaged neurons or provide support to brain tissue. However, recent findings such as the cell fusion phenomenon have raised some doubts about the real existence of somatic stem cell plasticity. In this review, we will discuss current evidence and controversial issues about the neuroneogenesis from various sources of somatic cells focusing on the techniques of isolation, expansion in vitro as well as the inductive factors that lead to transdifferentiation in order to identify the factors peculiar to this process. The morphological, immunochemical, and physiological criteria to correctly judge whether the neuronal transdifferentation occurred are critically presented. We will also discuss the transplantation experiments that were done in view of a possible clinical therapeutic application. Animal models of stroke, spinal cord and brain trauma have improved with Mesenchymal Stem Cells or Bone Marrow transplantation. This improvement does not seem to depend on the replacement of the lost neurons but may be due to increased expression levels of neurotrophic factors, thus suggesting a beneficial effect of somatic cells regardless of transdifferentiation. Critical understanding of available data on the mechanisms governing the cell fate reprogramming is a necessary achievement toward an effective cell therapy. PMID:12762483

  9. The influence of aging on the number of neurons and levels of non-phosporylated neurofilament proteins in the central auditory system of rats

    Czech Academy of Sciences Publication Activity Database

    Buriánová, Jana; Ouda, Ladislav; Syka, Josef

    2015-01-01

    Roč. 7, Mar 11 (2015), s. 27. ISSN 1663-4365 R&D Projects: GA ČR(CZ) GAP304/12/1342; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:68378041 Keywords : SMI-32 * neurofilaments * number of neurons * aging * auditory system Subject RIV: FF - HEENT, Dentistry Impact factor: 4.000, year: 2014

  10. Formulation development for the orexin receptor antagonist almorexant: assessment in two clinical studies

    Directory of Open Access Journals (Sweden)

    Dingemanse J

    2014-04-01

    Full Text Available Jasper Dingemanse, Martine Gehin, Hans Gabriel Cruz, Petra HoeverDepartment of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil, SwitzerlandAbstract: Almorexant, a dual orexin receptor antagonist, was investigated for the treatment of insomnia. The following observations initiated further formulation development: the active pharmaceutical ingredient (API was sticking to the apparatus used during tablet compression; almorexant has an absolute bioavailability of 11.2%; and almorexant modestly decreased the latency to persistent sleep by 10.4 minutes in patients. Two randomized crossover studies were performed to investigate the pharmacokinetics of several new formulations in healthy subjects. In study I, the old “sticky” tablet was compared to two new formulations developed to prevent sticking: a qualitatively similar tablet but with a larger API crystal size and a tablet with 30% more excipients as well as a larger API crystal size. This latter formulation was available in two strengths. The geometric mean ratios and 90% confidence interval of the area under the curve (AUC were within the bioequivalence range of 0.80–1.25 for the different comparisons between formulations. In study II, 100 mg of the reference tablet was compared to 25 and 50 mg of a liquid-filled hard gelatin capsule developed to increase the bioavailability of almorexant. The geometric mean ratios of the maximum concentration and AUC comparing the new 25 and 50 mg capsule formulations to the reference tablet did not exceed 0.25 and 0.50, respectively, indicating that the new capsule formulation did not increase the maximum concentration of or the total exposure to almorexant. In conclusion, a new tablet was developed but formulation development aimed at increasing the bioavailability of almorexant failed.Keywords: almorexant, orexin receptor antagonist, pharmacokinetics, formulation development, healthy subjects

  11. The biophysics of neuronal growth

    Science.gov (United States)

    Franze, Kristian; Guck, Jochen

    2010-09-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  12. Novel Octahydropyrrolo[3,4-c]pyrroles Are Selective Orexin-2 Antagonists: SAR Leading to a Clinical Candidate.

    Science.gov (United States)

    Letavic, Michael A; Bonaventure, Pascal; Carruthers, Nicholas I; Dugovic, Christine; Koudriakova, Tatiana; Lord, Brian; Lovenberg, Timothy W; Ly, Kiev S; Mani, Neelakandha S; Nepomuceno, Diane; Pippel, Daniel J; Rizzolio, Michele; Shelton, Jonathan E; Shah, Chandra R; Shireman, Brock T; Young, Lana K; Yun, Sujin

    2015-07-23

    The preclinical characterization of novel octahydropyrrolo[3,4-c]pyrroles that are potent and selective orexin-2 antagonists is described. Optimization of physicochemical and DMPK properties led to the discovery of compounds with tissue distribution and duration of action suitable for evaluation in the treatment of primary insomnia. These selective orexin-2 antagonists are proven to promote sleep in rats, and this work ultimately led to the identification of a compound that progressed into human clinical trials for the treatment of primary insomnia. The synthesis, SAR, and optimization of the pharmacokinetic properties of this series of compounds as well as the identification of the clinical candidate, JNJ-42847922 (34), are described herein. PMID:26087021

  13. Interactions between gonadotropin-releasing hormone (GnRH) and orexin in the regulation of feeding and reproduction in goldfish (Carassius auratus).

    Science.gov (United States)

    Hoskins, Leah J; Xu, Meiyu; Volkoff, Hélène

    2008-08-01

    Links between energy homeostasis and reproduction have been demonstrated in vertebrates. As a general rule, abundant food resources favor reproduction whereas low food availability induces an inhibition of reproductive processes. In both mammals and fish, gonadotropin-releasing hormone (GnRH) and orexin (OX) are hypothalamic neuropeptides that play critical roles in the regulation of sexual behavior and appetite, respectively. In order to assess possible interactions between orexin and GnRH in the control of feeding and reproduction in goldfish, we examined the effects of chicken GnRH (cGnRH-II) intracerebroventricular (ICV) injection on feeding behavior and OX brain mRNA expression as well as the effects of orexin ICV injections on spawning behavior and cGnRH-II brain mRNA expression. Treatment with cGnRH-II at doses that stimulate spawning (0.5 ng/g or 1 ng/g) resulted in a decrease in both food intake and hypothalamic orexin mRNA expression. Treatment with orexin A at doses that stimulate feeding (10 ng/g) induced an inhibition of spawning behavior and a decrease in cGnRH-II expression in the hypothalamus and optic tectum-thalamus. Our results suggest that the anorexigenic actions of cGnRH-II in goldfish might be in part mediated by OX and that orexin inhibits reproductive behavior in part via the inhibition of the GnRH system. Our data suggest the existence of a coordinated control of feeding and reproduction by the orexin and GnRH systems in goldfish. PMID:18544455

  14. Effects of embryonic ethanol exposure at low doses on neuronal development, voluntary ethanol consumption and related behaviors in larval and adult zebrafish: Role of hypothalamic orexigenic peptides.

    Science.gov (United States)

    Sterling, M E; Chang, G-Q; Karatayev, O; Chang, S Y; Leibowitz, S F

    2016-05-01

    Embryonic exposure to ethanol is known to affect neurochemical systems in rodents and increase alcohol drinking and related behaviors in humans and rodents. With zebrafish emerging as a powerful tool for uncovering neural mechanisms of numerous diseases and exhibiting similarities to rodents, the present report building on our rat studies examined in zebrafish the effects of embryonic ethanol exposure on hypothalamic neurogenesis, expression of orexigenic neuropeptides, and voluntary ethanol consumption and locomotor behaviors in larval and adult zebrafish, and also effects of central neuropeptide injections on these behaviors affected by ethanol. At 24h post-fertilization, zebrafish embryos were exposed for 2h to ethanol, at low concentrations of 0.25% and 0.5%, in the tank water. Embryonic ethanol compared to control dose-dependently increased hypothalamic neurogenesis and the proliferation and expression of the orexigenic peptides, galanin (GAL) and orexin (OX), in the anterior hypothalamus. These changes in hypothalamic peptide neurons were accompanied by an increase in voluntary consumption of 10% ethanol-gelatin and in novelty-induced locomotor and exploratory behavior in adult zebrafish and locomotor activity in larvae. After intracerebroventricular injection, these peptides compared to vehicle had specific effects on these behaviors altered by ethanol, with GAL stimulating consumption of 10% ethanol-gelatin more than plain gelatin food and OX stimulating novelty-induced locomotor behavior while increasing intake of food and ethanol equally. These results, similar to those obtained in rats, suggest that the ethanol-induced increase in genesis and expression of these hypothalamic peptide neurons contribute to the behavioral changes induced by embryonic exposure to ethanol. PMID:26778786

  15. Hypocretin/Orexin Regulation of Dopamine Signaling and Cocaine Self-Administration Is Mediated Predominantly by Hypocretin Receptor 1

    OpenAIRE

    Prince, Courtney D.; Rau, Andrew R; Yorgason, Jordan T.; España, Rodrigo A.

    2014-01-01

    Extensive evidence suggests that the hypocretins/orexins influence cocaine reinforcement and dopamine signaling via actions at hypocretin receptor 1. By comparison, the involvement of hypocretin receptor 2 in reward and reinforcement processes has received relatively little attention. Thus, although there is some evidence that hypocretin receptor 2 regulates intake of some drugs of abuse, it is currently unclear to what extent hypocretin receptor 2 participates in the regulation of dopamine s...

  16. The hypocretin–orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system

    OpenAIRE

    España, Rodrigo A.; Oleson, Erik B.; Locke, Jason L.; Brookshire, Bethany R.; Roberts, David C.S.; JONES, SARA R.

    2009-01-01

    Recent evidence suggests that the hypocretin–orexin system participates in the regulation of reinforcement processes. The current studies examined the extent to which hypocretin neurotransmission regulates behavioral and neurochemical responses to cocaine, and behavioral responses to food reinforcement. These studies used a combination of fixed ratio, discrete trials, progressive ratio and threshold self-administration procedures to assess whether the hypocretin 1 receptor antagonist, SB-3348...

  17. Novel class of medications, orexin receptor antagonists, in the treatment of insomnia – critical appraisal of suvorexant

    Science.gov (United States)

    Norman, Jessica L; Anderson, Sarah L

    2016-01-01

    Insomnia, a highly prevalent disorder, can be detrimental to patients’ overall health and worsen existing comorbidities. Patients may have acute episodes of insomnia related to a traumatic event, but more commonly insomnia occurs chronically. While proper sleep hygiene and behavioral therapy play important roles in the nonpharmacologic management of short-term and chronic insomnia, medications may also be required. Historically, insomnia has been treated with agents such as benzodiazepines, nonbenzodiazepine receptor agonists, and melatonin agonists. Dual orexin receptor antagonists represent a new class of medications for the treatment of insomnia, which block the binding of wakefulness-promoting neuropeptides orexin A and orexin B to their respective receptor sites. Suvorexant (Belsomra) is the first dual orexin receptor antagonist to be approved in the US and Japan and has demonstrated efficacy in decreasing time to sleep onset and increasing total sleep time. Its unique mechanism of action, data to support efficacy and safety over 12 months of use, and relative lack of withdrawal effects when discontinued may represent an alternative for patients with chronic insomnia who cannot tolerate or do not receive benefit from more traditional sleep agents. Suvorexant is effective and well tolerated, but precautions exist for certain patient populations, including females, obese patients, and those with respiratory disease. Suvorexant has only been studied vs placebo, and hence it is unknown how it directly compares with other medications approved by the US Food and Drug Administration for insomnia. Suvorexant is not likely to replace benzodiazepines or nonbenzodiazepine receptor antagonists as a first-line sleep agent but does represent a novel option for the treatment of patients with chronic insomnia. PMID:27471419

  18. Do the images of neuronal pathways in the human central nervous system show or not feed-back ? : a comparative study in 15 countries

    OpenAIRE

    Clément, Pierre; Mouelhi, Lassaad; Kochkar, Mohamed; Thiaw, Mame Seyni; Ndniaye, Valdiodio; Jeanbart, Paula; Khalil, Iman; Daniel HORVATH; Ferreira, Cláudia; Carvalho, Graça Simões de

    2007-01-01

    In the human brain, the neuronal pathways are networks (which support learning) and work with permanent regulations (feedbacks). However, less than ¼ of illustrations in the analysed school textbooks of 15 countries is showing such regulations. Half of them are concerning the neuro-hormonal control of the reproduction; some are related to the control of the heart rhythm or breathing. Only in some countries the double innervations (gamma and alpha) of striated muscle is taught, and only a few ...

  19. Channeling the Central Dogma.

    Science.gov (United States)

    Calabrese, Ronald L

    2014-05-21

    How do neurons and networks achieve their characteristic electrical activity, regulate this activity homeostatically, and yet show population variability in expression? In this issue of Neuron, O'Leary et al. (2014) address some of these thorny questions in this theoretical analysis that starts with the Central Dogma. PMID:24853932

  20. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E;

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  1. Neuronal Transcriptome of Aplysia: Neuronal Compartments and Circuitry

    OpenAIRE

    Moroz, Leonid L.; Edwards, John R.; Puthanveettil, Sathyanarayanan V.; Kohn, Andrea B.; Ha, Thomas; Heyland, Andreas; Knudsen, Bjarne; Sahni, Anuj; Yu, Fahong; Liu, Li; Jezzini, Sami; LOVELL, PETER; Iannucculli, William; Chen, Minchen; Nguyen, Tuan

    2006-01-01

    Molecular analyses of Aplysia, a well-established model organism for cellular and systems neural science, have been seriously handicapped by a lack of adequate genomic information. By sequencing cDNA libraries from the central nervous system (CNS), we have identified over 175,000 expressed sequence tags (ESTs), of which 19,814 are unique neuronal gene products and represent 50%–70% of the total Aplysia neuronal transcriptome. We have characterized the transcriptome at three levels: (1) the ce...

  2. The Visual Orientation Memory of "Drosophila" Requires Foraging (PKG) Upstream of Ignorant (RSK2) in Ring Neurons of the Central Complex

    Science.gov (United States)

    Kuntz, Sara; Poeck, Burkhard; Sokolowski, Marla B.; Strauss, Roland

    2012-01-01

    Orientation and navigation in a complex environment requires path planning and recall to exert goal-driven behavior. Walking "Drosophila" flies possess a visual orientation memory for attractive targets which is localized in the central complex of the adult brain. Here we show that this type of working memory requires the cGMP-dependent protein…

  3. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB{sub 1} cannabinoid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jäntti, Maria H., E-mail: maria.jantti@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland); Mandrika, Ilona, E-mail: ilona@biomed.lu.lv [Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga LV 1067 (Latvia); Kukkonen, Jyrki P., E-mail: jyrki.kukkonen@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland)

    2014-03-07

    Highlights: • OX{sub 1} and OX{sub 2} orexin and CB{sub 1} cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX{sub 1} orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB{sub 1} cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX{sub 1}, OX{sub 2} and CB{sub 1} receptors, C-terminally fused with either Renilla luciferase or GFP{sup 2} green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB{sub 1} receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP{sup 2} to CB{sub 1} produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX{sub 1}–OX{sub 2} interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB{sub 1} receptors, dimerization could be an effective way

  4. 食欲肽与肥胖抵抗%Orexin and Obesity Resistance

    Institute of Scientific and Technical Information of China (English)

    杨洋; 程德琴; 刘莹; 安输; 郭晓汐; 徐天瑞

    2016-01-01

    肥胖症是威胁现代人健康的重要疾病,它增加了糖尿病、高血压、高脂血症等疾病的发病率.肥胖的根本原因是机体能量摄入和消耗的失衡.食欲肽(orexin)是由下丘脑特异性分泌的一种能调节睡眠、摄食及能量平衡的神经肽.新近的研究表明,增加食欲肽水平和/或食欲肽的敏感性可通过提高机体自发活动(spontaneous physical activity, SPA)诱导的非运动生热作用(nonexercise activity thermogenesis,NEAT)而实现肥胖抵抗,进而开辟了一条治疗肥胖的新途径.该文综述了受食欲肽调控的SPA和NEAT与肥胖抵抗的关系,分析了食欲肽受体信号通路与肥胖的相关性,并阐释了食欲肽作为预防和治疗肥胖的分子靶标的作用机理.

  5. The hypocretin/orexin system mediates the extinction of fear memories.

    Science.gov (United States)

    Flores, África; Valls-Comamala, Victòria; Costa, Giulia; Saravia, Rocío; Maldonado, Rafael; Berrendero, Fernando

    2014-11-01

    Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias. PMID:24930888

  6. The influence of μ-opioid and noradrenaline reuptake inhibition in the modulation of pain responsive neurones in the central amygdala by tapentadol in rats with neuropathy

    OpenAIRE

    L. Gonçalves; Friend, L. V.; Dickenson, A. H.

    2015-01-01

    Treatments for neuropathic pain are either not fully effective or have problematic side effects. Combinations of drugs are often used. Tapentadol is a newer molecule that produces analgesia in various pain models through two inhibitory mechanisms, namely central μ-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition. These two components interact synergistically, resulting in levels of analgesia similar to opioid analgesics such as oxycodone and morphine, but with more tolerabl...

  7. Detection of Ca2+-dependent acid phosphatase activity identiifes neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Institute of Scientific and Technical Information of China (English)

    Tigran R Petrosyan; Anna S Ter-Markosyan; Anna S Hovsepyan

    2016-01-01

    The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I;n=12) or unilateral rubrospinal tract transection at the cervical level (C3–4) (group II;n=12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly injected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian’s calcium adenoside triphosphate method revealed that BM stimulated the sprouting of ifbers and dilated the capillaries in the brain and spinal cord. These results sug-gest that BM can promote the recovery of motor function of rats with central nervous system injury;and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regenera-tion-promoting effects of BM on the injured central nervous system.

  8. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  9. Acute Aerobic Exercise and Plasma Levels of Orexin A, Insulin, Glucose, and Insulin Resistance in Males With Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Alizadeh

    2016-01-01

    Full Text Available Background The endocrine system disruptions are the main factors in metabolic disorders which are due to lifestyle changes, obesity, and aging. Insulin resistance is impaired glucose homeostasis in the presence of insulin and is related to many diseases such as hypertension, coronary artery disease, and type 2 diabetes Objectives This study aimed to investigate the effect of acute aerobic exercise on plasma levels of orexin A, insulin, glucose, and insulin resistance in males with type 2 diabetes. Patients and Methods Twenty subjects (mean age = 45.40 ± 5.42 years, mean weight = 80.91 ± 6.35 kg, body mass index = 25.41 ± 2.76 kg/m2 were randomly assigned into control and experimental groups, involving 10 people in each group. The exercise protocol consisted of one session of acute aerobic exercise on a treadmill at 60% maximal oxygen uptake and the same energy expenditure (300 kcal, which were determined by gas analyzers. Subjects were subjected to samplings before, immediately after, and 24 hours after the acute aerobic exercise. Results The analysis of findings in P ≤ 0.05 indicated that acute aerobic exercise caused a significant increase in plasma levels of orexin A and a significant decrease in plasma levels of glucose immediately after the aerobic activity, but insignificantly affected the plasma levels of insulin and insulin resistance. Conclusions It seems that in people with type 2 diabetes, acute aerobic exercise can decrease the plasma levels of glucose, possibly through increasing orexin A. In addition, negative energy balance is necessary to decrease the levels of insulin and insulin resistance during acute aerobic exercise.

  10. To Ingest or Rest? Specialized Roles of Lateral Hypothalamic Area Neurons in Coordinating Energy Balance

    Directory of Open Access Journals (Sweden)

    Juliette A. Brown

    2015-02-01

    Full Text Available Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH or orexins/hypocretins (OX are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.

  11. Determining Concentration of Neurotrophic Factors and Neuron Specific Enolase in the Blood of Newborns with Central Nervous System Damages as a New Approach in Clinical Diagnostics

    Directory of Open Access Journals (Sweden)

    M.V. Vedunova

    2015-06-01

    Full Text Available The aim of the investigation is to assess the quantity of brain-derived neurotrophic factor (BDNF, glial cell line-derived neurotrophic factor (GDNF and neuron specific enolase (NSE in plasma of newborns with perinatal hypoxic damage of CNS. Materials and Methods. Neurotrophic factors and NSE enzyme concentrations in plasma of newborns (gestation age 31–42 weeks was studied. The main groups consisted of newborns with the symptoms of perinatal CNS damage (group 1 — with convulsive states, group 2 — with the signs of severe perinatal CNS damage, diagnosed according to physical examination, evaluation of the neurological status dynamics and neurosonographic studies. Control group included healthy neonates. Concentration of BDNF, GDNF (R&D Systems, USA and NSE enzyme (Vector Best, Russia was determined by ELISA kit during hospitalization and on day 10–14 after the rehabilitation therapy. Results. Carried out experiments revealed the significant increase of NSE concentration in plasma of newborns with convulsive states. The higher levels of this enzyme were detected in infants with severe perinatal CNS damage. Moreover, BDNF concentration significantly increases in plasma of patients with the symptoms of severe CNS damage in the period following rehabilitation therapy. These experiments also demonstrate the inverse correlation between BDNF and GDNF levels. It was shown the important prognostic value of BDNF and NSE determination in plasma of newborns with CNS injury. Conclusion. The most diagnostic value for assessing the severity of brain damage in early neonatal period is associated with measurements of NSE and BDNF concentrations in plasma, which allows to use these markers immediately after birth and before the development of neurological symptoms.

  12. Using the fragment molecular orbital method to investigate agonist-orexin-2 receptor interactions.

    Science.gov (United States)

    Heifetz, Alexander; Aldeghi, Matteo; Chudyk, Ewa I; Fedorov, Dmitri G; Bodkin, Mike J; Biggin, Philip C

    2016-04-15

    The understanding of binding interactions between any protein and a small molecule plays a key role in the rationalization of affinity and selectivity and is essential for an efficient structure-based drug discovery (SBDD) process. Clearly, to begin SBDD, a structure is needed, and although there has been fantastic progress in solving G-protein-coupled receptor (GPCR) crystal structures, the process remains quite slow and is not currently feasible for every GPCR or GPCR-ligand complex. This situation significantly limits the ability of X-ray crystallography to impact the drug discovery process for GPCR targets in 'real-time' and hence there is still a need for other practical and cost-efficient alternatives. We present here an approach that integrates our previously described hierarchical GPCR modelling protocol (HGMP) and the fragment molecular orbital (FMO) quantum mechanics (QM) method to explore the interactions and selectivity of the human orexin-2 receptor (OX2R) and its recently discovered nonpeptidic agonists. HGMP generates a 3D model of GPCR structures and its complexes with small molecules by applying a set of computational methods. FMO allowsab initioapproaches to be applied to systems that conventional QM methods would find challenging. The key advantage of FMO is that it can reveal information on the individual contribution and chemical nature of each residue and water molecule to the ligand binding that normally would be difficult to detect without QM. We illustrate how the combination of both techniques provides a practical and efficient approach that can be used to analyse the existing structure-function relationships (SAR) and to drive forward SBDD in a real-world example for which there is no crystal structure of the complex available. PMID:27068972

  13. Orexin receptor antagonists differ from standard sleep drugs by promoting sleep at doses that do not disrupt cognition.

    Science.gov (United States)

    Uslaner, Jason M; Tye, Spencer J; Eddins, Donnie M; Wang, Xiaohai; Fox, Steven V; Savitz, Alan T; Binns, Jacquelyn; Cannon, Christopher E; Garson, Susan L; Yao, Lihang; Hodgson, Robert; Stevens, Joanne; Bowlby, Mark R; Tannenbaum, Pamela L; Brunner, Joseph; Mcdonald, Terrence P; Gotter, Anthony L; Kuduk, Scott D; Coleman, Paul J; Winrow, Christopher J; Renger, John J

    2013-04-01

    Current treatments for insomnia, such as zolpidem (Ambien) and eszopiclone (Lunesta), are γ-aminobutyric acid type A (GABAA)-positive allosteric modulators that carry a number of side effects including the potential to disrupt cognition. In an effort to develop better tolerated medicines, we have identified dual orexin 1 and 2 receptor antagonists (DORAs), which promote sleep in preclinical animal models and humans. We compare the effects of orally administered eszopiclone, zolpidem, and diazepam to the dual orexin receptor antagonist DORA-22 on sleep and the novel object recognition test in rat, and on sleep and two cognition tests (delayed match to sample and serial choice reaction time) in the rhesus monkey. Each compound's minimal dose that promoted sleep versus the minimal dose that exerted deficits in these cognitive tests was determined, and a therapeutic margin was established. We found that DORA-22 has a wider therapeutic margin for sleep versus cognitive impairment in rat and rhesus monkey compared to the other compounds tested. These data were further supported with the demonstration of a wider therapeutic margin for DORA-22 compared to the other compounds on sleep versus the expression of hippocampal activity-regulated cytoskeletal-associated protein (Arc), an immediate-early gene product involved in synaptic plasticity. These findings suggest that DORAs might provide an effective treatment for insomnia with a greater therapeutic margin for sleep versus cognitive disturbances compared to the GABAA-positive allosteric modulators currently in use. PMID:23552372

  14. Phase switching in Hindmarsh-Rose relay neurons

    Science.gov (United States)

    Thounaojam, Umeshkanta Singh; Sharma, Pooja Rani; Shrimali, Manish Dev

    2016-02-01

    A system of Hindmarsh-Rose relay neurons with time delay coupling is considered in which the relay (central) neuron has an additional feedback term that represents the interaction activity with a local environment. The strength of environmental coupling with the central neuron plays an important role in inducing synchronization and de-synchronization between the outer neurons. The strength of feedback developed from the environmental coupling has created a gradual quenching in the oscillations of the central neuron. At a higher feedback coupling strength, oscillation of the central neuron is suppressed drastically and a transition from a regime of synchronization to out-of-phase synchronization take place between the oscillations of the two outer neurons.

  15. Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons.

    Directory of Open Access Journals (Sweden)

    Irene Miguel-Aliaga

    2008-03-01

    Full Text Available Insulin and related peptides play important and conserved functions in growth and metabolism. Although Drosophila has proved useful for the genetic analysis of insulin functions, little is known about the transcription factors and cell lineages involved in insulin production. Within the embryonic central nervous system, the MP2 neuroblast divides once to generate a dMP2 neuron that initially functions as a pioneer, guiding the axons of other later-born embryonic neurons. Later during development, dMP2 neurons in anterior segments undergo apoptosis but their posterior counterparts persist. We show here that surviving posterior dMP2 neurons no longer function in axonal scaffolding but differentiate into neuroendocrine cells that express insulin-like peptide 7 (Ilp7 and innervate the hindgut. We find that the postmitotic transition from pioneer to insulin-producing neuron is a multistep process requiring retrograde bone morphogenetic protein (BMP signalling and four transcription factors: Abdominal-B, Hb9, Fork Head, and Dimmed. These five inputs contribute in a partially overlapping manner to combinatorial codes for dMP2 apoptosis, survival, and insulinergic differentiation. Ectopic reconstitution of this code is sufficient to activate Ilp7 expression in other postmitotic neurons. These studies reveal striking similarities between the transcription factors regulating insulin expression in insect neurons and mammalian pancreatic beta-cells.

  16. Molecular Mechanism for Regulation of INS-1 Rat Insulinoma Cell Proliferation by Orexin-A%食欲素A调控INS-1胰岛素瘤细胞的细胞增殖的分子机制

    Institute of Scientific and Technical Information of China (English)

    孔媛; 赵玉岩; 温晶

    2015-01-01

    目的:探讨增食欲素A(Orexin A)通过增食欲素受体1(OX1R)和AKT/PKB信号传导途径对胰岛细胞增殖的干预效应。方法体外培养的大鼠INS⁃1胰岛素瘤细胞暴露于不同浓度的Orexin A,OX1R拮抗剂(SB334867)、PI3K拮抗剂(渥曼青霉素)和AKT拮抗剂(PF⁃04691502)干预Orexin A的作用,测定INS⁃1的细胞增殖、凋亡、胰岛素分泌、OX1R蛋白活性及AKT蛋白磷酸化水平。结果 Orexin A(10-10~10-6 mol/L)可刺激INS⁃1细胞的增殖和活化,防止细胞凋亡,并增加胰岛素的分泌;Orexin A (10-10~10-6 mol/L)增强了INS⁃1细胞内AKT的磷酸化,SB334867(10-6 mol/L)、渥曼青霉素(10-8 mol/L)和PF⁃04691502(10-6 mol/L)可以减弱Orexin A的作用。结论 INS⁃1细胞内Orexin A通过Orexin A⁃OX1R的介导而活化AKT信号通路,促进细胞增殖。%Objective To investigate the interference effects of orexin A on cell proliferation of the insulin⁃secreting beta⁃cell line(INS⁃1 cells) through the orexin receptor 1(OX1R)and the AKT/PKB signaling pathway. Methods INS⁃1 cells were exposed to different concentrations of orexin A in vitro,and treated with OX1R antagonist(SB334867),PI3K antagonist(wortmannin),or AKT antagonist(PF⁃04691502). The INS⁃1 cell proliferation and apoptosis,insulin secretion,OX1R protein activity and AKT phosphorylation level were determined. Results Orexin A(10-10 to 10-6 mol/L)stimulated the proliferation and activation of INS⁃1 cells,prevented apoptpsis,and increased insulin secretion. Additionally,AKT phosphorylation was stimulated by orexin A(10-10 to 10-6 mol/L). The OX1R antagonist SB334867(10-6 mol/L),the PI3K antagonist wortmannin (10-8 mol/L)and the AKT antagonist PF⁃04691502(10-6 mol/L)weakened the effects of orexin A. Conclusion Orexin A activated the AKT sig⁃naling pathway through the mediation of orexin A⁃OX1R,and promoted cell proliferation in INS⁃1 cells.

  17. Neuronal boost to evolutionary dynamics

    Science.gov (United States)

    de Vladar, Harold P.; Szathmáry, Eörs

    2015-01-01

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild. PMID:26640653

  18. Neuron-glia cell adhesion molecule interacts with neurons and astroglia via different binding mechanisms

    OpenAIRE

    1988-01-01

    The neuron-glia cell adhesion molecule (Ng-CAM) is present in the central nervous system on postmitotic neurons and in the periphery on neurons and Schwann cells. It has been implicated in binding between neurons and between neurons and glia. To understand the molecular mechanisms of Ng-CAM binding, we analyzed the aggregation of chick Ng- CAM either immobilized on 0.5-micron beads (Covaspheres) or reconstituted into liposomes. The results were correlated with the binding of these particles t...

  19. Do Orexins contribute to impulsivity-driven binge consumption of rewarding stimulus and transition to drug/food dependence?

    Science.gov (United States)

    Alcaraz-Iborra, Manuel; Cubero, Inmaculada

    2015-07-01

    Orexins (OX) are neuropeptides synthesized in the lateral hypothalamic region which play a fundamental role in a wide range of physiological and psychological functions including arousal, stress, motivation or eating behaviors. This paper reviews under the addiction cycle framework (Koob, 2010), the role of the OX system as a key modulator in compulsivity-driven consumption of rewarding stimulus including ethanol, palatable food and drugs and their role in impulsivity and binge-like consumption in non dependent organisms as well. We propose here that drug/food binge-like consumption in vulnerable organisms increases OX activity which, in turn, elicits enhanced impulsivity and further impulsivity-driven binge consumption in a positive loop that would promote compulsive-driven binge-consumption and the transition to drug/food disorders over time. PMID:25931265

  20. Cooperative effects of neuronal ensembles.

    Science.gov (United States)

    Rose, G; Siebler, M

    1995-01-01

    Electrophysiological properties of neurons as the basic cellular elements of the central nervous system and their synaptic connections are well characterized down to a molecular level. However, the behavior of complex noisy networks formed by these constituents usually cannot simply be derived from the knowledge of its microscopic parameters. As a consequence, cooperative phenomena based on the interaction of neurons were postulated. This is a report on a study of global network spike activity as a function of synaptic interaction. We performed experiments in dissociated cultured hippocampal neurons and, for comparison, simulations of a mathematical model closely related to electrophysiology. Numeric analyses revealed that at a critical level of synaptic connectivity the firing behavior undergoes a phase transition. This cooperative effect depends crucially on the interaction of numerous cells and cannot be attributed to the spike threshold of individual neurons. In the experiment a drastic increase in the firing level was observed upon increase of synaptic efficacy by lowering of the extracellular magnesium concentration, which is compatible with our theoretical predictions. This "on-off" phenomenon demonstrates that even in small neuronal ensembles collective behavior can emerge which is not explained by the characteristics of single neurons. PMID:8542966

  1. Neuronal regulation of astroglial morphology and proliferation in vitro

    OpenAIRE

    1985-01-01

    To analyze the interdependence of neurons and astroglia during central nervous system development, a rapid method for purifying early postnatal cerebellar neurons and astroglia, and recombining them in vitro, has been developed. The influence of neurons on astroglial shape and proliferation has been evaluated with an in vitro model system previously used to describe the role of cerebellar astroglia in neuronal migration and positioning (Hatten, M. E., and R. K. H. Liem, 1981, J. Cell Biol., 9...

  2. Selective neuronal toxicity of cocaine in embryonic mouse brain cocultures.

    OpenAIRE

    Nassogne, Marie-Cécile; Courtoy, Pierre J.; Evrard, Philippe

    1995-01-01

    Cocaine exposure in utero causes severe alterations in the development of the central nervous system. To study the basis of these teratogenic effects in vitro, we have used cocultures of neurons and glial cells from mouse embryonic brain. Cocaine selectively affected embryonic neuronal cells, causing first a dramatic reduction of both number and length of neurites and then extensive neuronal death. Scanning electron microscopy demonstrated a shift from a multipolar neuronal pattern towards bi...

  3. Effects of sex and reproductive experience on the number of orexin A-immunoreactive cells in the prairie vole brain.

    Science.gov (United States)

    Donlin, Michael; Cavanaugh, Breyanna L; Spagnuolo, Olivia S; Yan, Lily; Lonstein, Joseph S

    2014-07-01

    Large populations of cells synthesizing the neuropeptide orexin (OX) exist in the caudal hypothalamus of all species examined and are implicated in physiological and behavioral processes including arousal, stress, anxiety and depression, reproduction, and goal-directed behaviors. Hypothalamic OX expression is sexually dimorphic in different directions in laboratory rats (F>M) and mice (M>F), suggesting different roles in male and female physiology and behavior that are species-specific. We here examined if the number of hypothalamic cells immunoreactive for orexin A (OXA) differs between male and female prairie voles (Microtus ochrogaster), a socially monogamous species that pairbonds after mating and in which both sexes care for offspring, and if reproductive experience influences their number of OXA-immunoreactive (OXA-ir) cells. It was found that the total number of OXA-ir cells did not differ between the sexes, but females had more OXA-ir cells than males in anterior levels of the caudal hypothalamus, while males had more OXA-ir cells posteriorly. Sexually experienced females sacrificed 12 days after the birth of their first litter, or one day after birth of a second litter, had more OXA-ir cells in anterior levels but not posterior levels of the caudal hypothalamus compared to females housed with a brother (incest avoidance prevents sibling mating). Male prairie voles showed no effect of reproductive experience but showed an unexpected effect of cohabitation duration regardless of mating. The sex difference in the distribution of OXA-ir cells, and their increased number in anterior levels of the caudal hypothalamus of reproductively experienced female prairie voles, may reflect a sex-specific mechanism involved in pairbonding, parenting, or lactation in this species. PMID:24874707

  4. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    Directory of Open Access Journals (Sweden)

    Andres D. Ramirez

    2013-12-01

    Full Text Available Dual orexin receptor antagonists (DORAs are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA-A receptor modulators of distinct chemical structure and pharmacologic properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam (0.3–30 mg/kg administered orally [PO] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.25 g/kg induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO nor almorexant (30–300 mg/kg, PO impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone and diazepam and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.

  5. Demonstration of an orexinergic central innervation of the pineal gland of the pig

    DEFF Research Database (Denmark)

    Fabris, Chiara; Cozzi, Bruno; Hay-Schmidt, Anders;

    2004-01-01

    and continued into the pineal stalk and parenchyma to disperse among the pinealocytes. Immunoelectron microscopy confirmed the presence of orexinergic nerve fibers in the pig pineal gland. After extraction of total mRNA from the hypothalamus and pineal gland, we performed RT-PCR and nested PCR using...... primers specific for porcine orexin receptors. PCR products were sequenced, verifying the presence of both OR-R1 and OR-R2 in the tissues investigated. These findings, supported by previous studies on rodents, suggest a hypothalamic regulation of the pineal gland via central orexinergic nervous inputs....

  6. Failure to upregulate Agrp and Orexin in response to activity based anorexia in weight loss vulnerable rats characterized by passive stress coping and prenatal stress experience.

    Science.gov (United States)

    Boersma, Gretha J; Liang, Nu-Chu; Lee, Richard S; Albertz, Jennifer D; Kastelein, Anneke; Moody, Laura A; Aryal, Shivani; Moran, Timothy H; Tamashiro, Kellie L

    2016-05-01

    We hypothesize that anorexia nervosa (AN) poses a physiological stress. Therefore, the way an individual copes with stress may affect AN vulnerability. Since prenatal stress (PNS) exposure alters stress responsivity in offspring this may increase their risk of developing AN. We tested this hypothesis using the activity based anorexia (ABA) rat model in control and PNS rats that were characterized by either proactive or passive stress-coping behavior. We found that PNS passively coping rats ate less and lost more weight during the ABA paradigm. Exposure to ABA resulted in higher baseline corticosterone and lower insulin levels in all groups. However, leptin levels were only decreased in rats with a proactive stress-coping style. Similarly, ghrelin levels were increased only in proactively coping ABA rats. Neuropeptide Y (Npy) expression was increased and proopiomelanocortin (Pomc) expression was decreased in all rats exposed to ABA. In contrast, agouti-related peptide (Agrp) and orexin (Hctr) expression were increased in all but the PNS passively coping ABA rats. Furthermore, DNA methylation of the orexin gene was increased after ABA in proactive coping rats and not in passive coping rats. Overall our study suggests that passive PNS rats have innate impairments in leptin and ghrelin in responses to starvation combined with prenatal stress associated impairments in Agrp and orexin expression in response to starvation. These impairments may underlie decreased food intake and associated heightened body weight loss during ABA in the passively coping PNS rats. PMID:26907996

  7. Neuronal Migration Disorders

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Neuronal Migration Disorders Information Page Table of Contents (click to ... being done? Clinical Trials Organizations What are Neuronal Migration Disorders? Neuronal migration disorders (NMDs) are a group ...

  8. Motor Neuron Diseases

    Science.gov (United States)

    ... Awards Enhancing Diversity Find People About NINDS Motor Neuron Diseases Fact Sheet See a list of all ... can I get more information? What are motor neuron diseases? The motor neuron diseases (MNDs) are a ...

  9. Development and distribution of parvalbumin-positive neurons in the central pathway of the trigeminal proprioception of the rat brainstem%大鼠脑干内三叉神经本体觉中枢通路中小白蛋白样阳性神经元的分布与发育

    Institute of Scientific and Technical Information of China (English)

    庞有旺; 李金莲

    2002-01-01

    Immunohistochemical techniques were used to investigate the development and distribution of parvalbuminlike immunoreactive(PV-LI) neurons in the central pathway of the trigeminal proprioception of the rat brainstem. It was found that: ① Atembryonic day 13 (E13), PV-LI neurons were observed initially in the mesencephalic trigeminal nucleus(Vme). Most PV-LI neurons were large pseudounipolar neurons with moderate immunostaining. ②At postnatal day 3 ( P3), more neurons were labeled with intense immunostaining in the Vme, so was the Probst' s ract. ③At P10, moder- ately PV-LI neurons appeared both in the dorsomedial part of the subnucleus oralis of the spinal trigeminal nucleus (Vodm), and in the dorsomedial part of the principal sensory trigeminal nucleus (Vpdm). ④At P14, PV-LI neurons were first detected in the lateral reticular formation adjacent to the Vodm( LRF), caudolateral part of the supratrigeminal nucleus (Vsup-CL), area ventral to the motor trigeminal nucleus (AVM), and area dorsal to the superior olivery nucleus(ADO). ⑤At P21, PV-LI neurons and fibers attained the adult pattern in the Vodm-LRF, and “zone-shaped area” whichincludes the Vpdm, Vsup-CL, ADO, and AVM. The present results indicated that the istribution and development of PV-LI neurons and the formation of PV-LI fibers possibly coincided with the functional maturation of the neurons in the rat brainstem central pathway of the trigeminal proprioception during the prenatal and postnatal development stages.%应用免疫组织化学技术对脑干内三叉神经本体觉中枢通路中PV样阳性神经元的分布与发育进行了观察.结果发现:①早在胚胎13 d时,首先在三叉神经中脑核(Vme)内观察到许多含小白蛋白(Parvalbumin,PV)样阳性神经元,主要为大的假单极神经元,呈中等阳性反应.②生后3 d时,Vme内PV样阳性神经元的数量明显增多,免疫反应呈强阳性,并可观察到Probst束呈强阳性反应.③生后10 d时,在三叉

  10. Human mirror neuron system and its plasticity

    Institute of Scientific and Technical Information of China (English)

    Wei Chen; Tifei Yuan; Yin Wang; Jun Ding

    2008-01-01

    The mirror neuron system (MNS) was first discovered in non-human primates; these neurons fire when a monkey performs an action or observes another monkey (or even some people) performing that same action. Recent findings have suggested that neural rehabilitation might be achieved through the activation of the MNS in patients after stroke. We propose two major mechanisms (one involving adult neurogenesis and another involving brain-derived neurotrophic factor) that may underlie the activation, modulation and expe-rience-dependent plasticity in the MNS, for further study on promoting central nerve functional reconstruc-tion and rehabilitation of patients with central nervous system injury.

  11. Psychomotor effects, pharmacokinetics and safety of the orexin receptor antagonist suvorexant administered in combination with alcohol in healthy subjects.

    Science.gov (United States)

    Sun, Hong; Yee, Ka Lai; Gill, Sean; Liu, Wen; Li, Xiaodong; Panebianco, Deborah; Mangin, Eric; Morrison, Dennis; McCrea, Jacqueline; Wagner, John A; Troyer, Matthew D

    2015-11-01

    A double-blind crossover study investigated psychomotor effects, pharmacokinetics, and safety of the orexin receptor antagonist suvorexant with and without alcohol. Healthy adults (n=31) were randomized to receive placebo or suvorexant (40 mg) plus placebo solution or alcohol (0.7 g/kg) in each of four treatments (single doses; morning administration). The US Food and Drug Administration approved suvorexant dose is 10 mg (up to 20 mg) daily. Pharmacodynamic effects were assessed using tests of digit vigilance (DVT; primary endpoint), choice reaction time, digit symbol substitution, numeric working memory, immediate/delayed word recall, body sway and subjective alertness. Suvorexant alone did not significantly affect DVT reaction time, but did impact some pharmacodynamic tests. Suvorexant with alcohol increased reaction time versus either alone (mean difference at 2 h: 44 ms versus suvorexant, p<0.001; 24 ms, versus alcohol, p<0.05) and had additive negative effects on tests of vigilance, working/episodic memory, postural stability and alertness. No effects of suvorexant alone or with alcohol were observed by 9 h. No important changes in pharmacokinetic parameters were observed upon co-administration. All treatments were generally well tolerated without serious adverse events. In conclusion, co-administration of 40 mg suvorexant and 0.7 g/kg alcohol had additive negative psychomotor effects. Patients are advised not to consume alcohol with suvorexant. PMID:26464455

  12. Spiking Neurons for Analysis of Patterns

    Science.gov (United States)

    Huntsberger, Terrance

    2008-01-01

    Artificial neural networks comprising spiking neurons of a novel type have been conceived as improved pattern-analysis and pattern-recognition computational systems. These neurons are represented by a mathematical model denoted the state-variable model (SVM), which among other things, exploits a computational parallelism inherent in spiking-neuron geometry. Networks of SVM neurons offer advantages of speed and computational efficiency, relative to traditional artificial neural networks. The SVM also overcomes some of the limitations of prior spiking-neuron models. There are numerous potential pattern-recognition, tracking, and data-reduction (data preprocessing) applications for these SVM neural networks on Earth and in exploration of remote planets. Spiking neurons imitate biological neurons more closely than do the neurons of traditional artificial neural networks. A spiking neuron includes a central cell body (soma) surrounded by a tree-like interconnection network (dendrites). Spiking neurons are so named because they generate trains of output pulses (spikes) in response to inputs received from sensors or from other neurons. They gain their speed advantage over traditional neural networks by using the timing of individual spikes for computation, whereas traditional artificial neurons use averages of activity levels over time. Moreover, spiking neurons use the delays inherent in dendritic processing in order to efficiently encode the information content of incoming signals. Because traditional artificial neurons fail to capture this encoding, they have less processing capability, and so it is necessary to use more gates when implementing traditional artificial neurons in electronic circuitry. Such higher-order functions as dynamic tasking are effected by use of pools (collections) of spiking neurons interconnected by spike-transmitting fibers. The SVM includes adaptive thresholds and submodels of transport of ions (in imitation of such transport in biological

  13. Individual differences in gene expression of vasopressin, D2 receptor, POMC and orexin: vulnerability to relapse to heroin-seeking in rats.

    Science.gov (United States)

    Zhou, Yan; Leri, Francesco; Cummins, Erin; Kreek, Mary Jeanne

    2015-02-01

    Individual vulnerability to stress-induced relapse during abstinence from chronic heroin exposure is a key feature of opiate addiction, with limited studies on this topic. Arginine vasopressin (AVP) and its V1b receptor, components of the brain stress responsive systems, play a role in heroin-seeking behavior triggered by foot shock (FS) stress in rats. In this study, we tested whether individual differences in the FS-induced heroin-seeking were associated with alterations of AVP and V1b, as well as other stress responsive systems, including pro-opiomelanocortin (POMC), orexin, plasma ACTH and corticosterone, as well as dopamine D2 receptor (D2) and plasma prolactin. Sprague-Dawley rats were subjected to 3-hour intravenous heroin self-administration (SA) and then tested in extinction, and FS-induced and heroin priming-induced reinstatements. The rats that self-administered heroin were divided into high and low reinstatement responders induced by FS (H-RI; L-RI). Over SA sessions, both the H-RI and L-RI displayed similar active lever responding, heroin infusion and total heroin intake. Compared to the L-RI, however, the H-RI showed greater active lever responses during stress-induced reinstatement, with higher AVP mRNA levels in medial/basolateral amygdala and lower D2 mRNA levels in caudate putamen. However, heroin priming resulted in similar reinstatement in both groups and produced similarly low POMC and high orexin mRNA levels in hypothalamus. Our results indicate that: 1) enhanced amygdalar AVP and reduced striatal D2 expression may be related to individual vulnerability to stress-induced reinstatement of heroin- seeking; and 2) heroin abstinence-associated alterations of hypothalamic orexin and POMC expression may be involved in drug priming-induced heroin-seeking. PMID:25446223

  14. Muscarinic Receptor Activation Elicits Sustained, Recurring Depolarizations in Reticulospinal Neurons

    OpenAIRE

    Smetana, R. W.; Alford, S.; Dubuc, R.

    2007-01-01

    In lampreys, brain stem reticulospinal (RS) neurons constitute the main descending input to the spinal cord and activate the spinal locomotor central pattern generators. Cholinergic nicotinic inputs activate RS neurons, and consequently, induce locomotion. Cholinergic muscarinic agonists also induce locomotion when applied to the brain stem of birds. This study examined whether bath applications of muscarinic agonists could activate RS neurons and initiate motor output in lampreys. Bath appli...

  15. Distribution of hypocretin (orexin) immunoreactivity in the feline pons and medulla.

    Science.gov (United States)

    Zhang, Jian Hua; Sampogna, Sharon; Morales, Francisco R; Chase, Michael H

    2004-01-01

    The distribution of hypocretin-1 (hcrt-1) and hypocretin-2 (hcrt-2) immunoreactivities in the cat brainstem was examined using immunohistochemical techniques. Hcrt-1- and hcrt-2-positive fibers with varicosities were detected in almost all brainstem regions. However, no hcrt-1- or hcrt-2-immunoreactive neuronal somata were observed in the cat brainstem. Both hcrt-1- and hcrt-2-labeled fibers exhibited different densities in distinct regions of the brainstem. In most brainstem regions, the intensity of hcrt-1 immunoreactivity was higher than that of hcrt-2 immunoreactivity. The highest densities of hcrt-1- and hcrt-2-positive fibers were found in the nucleus raphe dorsalis (RD), the laterodorsal tegmental nucleus (LDT) and the locus coeruleus (LC), suggesting an important role for these peptides in functions related to sleep-wake behavior. PMID:14672810

  16. Juvenil neuronal ceroid lipofuscinosis

    DEFF Research Database (Denmark)

    Ostergaard, J R; Hertz, Jens Michael

    1998-01-01

    Neuronal ceroid-lipofuscinosis is a group of neurodegenerative diseases which are characterized by an abnormal accumulation of lipopigment in neuronal and extraneuronal cells. The diseases can be differentiated into several subgroups according to age of onset, the clinical picture...

  17. Refractory Neuron Circuits

    OpenAIRE

    Sarpeshkar, Rahul; Watts, Lloyd; Mead, Carver

    1992-01-01

    Neural networks typically use an abstraction of the behaviour of a biological neuron, in which the continuously varying mean firing rate of the neuron is presumed to carry information about the neuron's time-varying state of excitation. However, the detailed timing of action potentials is known to be important in many biological systems. To build electronic models of such systems, one must have well-characterized neuron circuits that capture the essential behaviour of real neur...

  18. NEURON and Python

    OpenAIRE

    Michael Hines; Davison, Andrew P.; Eilif Muller

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because ...

  19. Firing dynamics of an autaptic neuron

    Science.gov (United States)

    Wang, Heng-Tong; Chen, Yong

    2015-12-01

    Autapses are synapses that connect a neuron to itself in the nervous system. Previously, both experimental and theoretical studies have demonstrated that autaptic connections in the nervous system have a significant physiological function. Autapses in nature provide self-delayed feedback, thus introducing an additional timescale to neuronal activities and causing many dynamic behaviors in neurons. Recently, theoretical studies have revealed that an autapse provides a control option for adjusting the response of a neuron: e.g., an autaptic connection can cause the electrical activities of the Hindmarsh-Rose neuron to switch between quiescent, periodic, and chaotic firing patterns; an autapse can enhance or suppress the mode-locking status of a neuron injected with sinusoidal current; and the firing frequency and interspike interval distributions of the response spike train can also be modified by the autapse. In this paper, we review recent studies that showed how an autapse affects the response of a single neuron. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275084 and 11447027) and the Fundamental Research Funds for the Central Universities, China (Grant No. GK201503025).

  20. Tuberal hypothalamic neurons secreting the satiety molecule Nesfatin-1 are critically involved in paradoxical (REM sleep homeostasis.

    Directory of Open Access Journals (Sweden)

    Sonia Jego

    Full Text Available The recently discovered Nesfatin-1 plays a role in appetite regulation as a satiety factor through hypothalamic leptin-independent mechanisms. Nesfatin-1 is co-expressed with Melanin-Concentrating Hormone (MCH in neurons from the tuberal hypothalamic area (THA which are recruited during sleep states, especially paradoxical sleep (PS. To help decipher the contribution of this contingent of THA neurons to sleep regulatory mechanisms, we thus investigated in rats whether the co-factor Nesfatin-1 is also endowed with sleep-modulating properties. Here, we found that the disruption of the brain Nesfatin-1 signaling achieved by icv administration of Nesfatin-1 antiserum or antisense against the nucleobindin2 (NUCB2 prohormone suppressed PS with little, if any alteration of slow wave sleep (SWS. Further, the infusion of Nesfatin-1 antiserum after a selective PS deprivation, designed for elevating PS needs, severely prevented the ensuing expected PS recovery. Strengthening these pharmacological data, we finally demonstrated by using c-Fos as an index of neuronal activation that the recruitment of Nesfatin-1-immunoreactive neurons within THA is positively correlated to PS but not to SWS amounts experienced by rats prior to sacrifice. In conclusion, this work supports a functional contribution of the Nesfatin-1 signaling, operated by THA neurons, to PS regulatory mechanisms. We propose that these neurons, likely releasing MCH as a synergistic factor, constitute an appropriate lever by which the hypothalamus may integrate endogenous signals to adapt the ultradian rhythm and maintenance of PS in a manner dictated by homeostatic needs. This could be done through the inhibition of downstream targets comprised primarily of the local hypothalamic wake-active orexin- and histamine-containing neurons.

  1. Motor Neurons that Multitask

    OpenAIRE

    Goulding, Martyn

    2012-01-01

    Animals use a form of sensory feedback termed proprioception to monitor their body position and modify the motor programs that control movement. In this issue of Neuron, Wen et al. (2012) provide evidence that a subset of motor neurons function as proprioceptors in C. elegans, where B-type motor neurons sense body curvature to control the bending movements that drive forward locomotion.

  2. Mechanisms responsible for the effect of median nerve electrical stimulation on traumatic brain injury-induced coma: orexin-A-mediated N-methyl-D-aspartate receptor subunit NR1 upregulation

    Science.gov (United States)

    Feng, Zhen; Du, Qing

    2016-01-01

    Electrical stimulation of the median nerve is a noninvasive technique that facilitates awakening from coma. In rats with traumatic brain injury-induced coma, median nerve stimulation markedly enhances prefrontal cortex expression of orexin-A and its receptor, orexin receptor 1. To further understand the mechanism underlying wakefulness mediated by electrical stimulation of the median nerve, we evaluated its effects on the expression of the N-methyl-D-aspartate receptor subunit NR1 in the prefrontal cortex in rat models of traumatic brain injury-induced coma, using immunohistochemistry and western blot assays. In rats with traumatic brain injury, NR1 expression increased with time after injury. Rats that underwent electrical stimulation of the median nerve (30 Hz, 0.5 ms, 1.0 mA for 15 minutes) showed elevated NR1 expression and greater recovery of consciousness than those without stimulation. These effects were reduced by intracerebroventricular injection of the orexin receptor 1 antagonist SB334867. Our results indicate that electrical stimulation of the median nerve promotes recovery from traumatic brain injury-induced coma by increasing prefrontal cortex NR1 expression via an orexin-A-mediated pathway.

  3. Elucidation of the metabolic pathways and the resulting multiple metabolites of almorexant, a dual orexin receptor antagonist, in humans.

    Science.gov (United States)

    Dingemanse, Jasper; Hoever, Petra; Hoch, Matthias; Treiber, Alexander; Wagner-Redeker, Winfried; Miraval, Tommaso; Hopfgartner, Gérard; Shakeri-Nejad, Kasra

    2013-05-01

    Almorexant [(2R)-2-{(1S)-6, 7-dimethoxy-1-[2-(4-trifluoromethyl-phenyl)-ethyl]-3,4-dihydro-1H-isoquinolin-2-yl}-N-methyl-2-phenyl-acetamide], a tetrahydroisoquinoline derivative, is a dual orexin receptor antagonist with sleep-promoting properties in both animals and humans. This study investigated the disposition, metabolism, and elimination of almorexant in humans. After oral administration of a 200-mg dose of ¹⁴C-almorexant, almorexant was rapidly absorbed (Tmax = 0.8 hour), and the apparent terminal half-life (t(1/2)) was 17.8 hours. The radioactive dose was almost completely recovered with 78.0% of the administered radioactive dose found in feces and 13.5% in urine. Unchanged almorexant was not found in urine and represented 10% of the administered dose in feces. In total, 47 metabolites were identified of which 21 were shown to be present in plasma. There are four primary metabolites, the isomeric phenols M3 and M8, formed by demethylation, the aromatic isoquinolinium ion M5, formed by dehydrogenation, and M6, formed by oxidative dealkylation with loss of the phenylglycine moiety. Most of the subsequent products are formed by permutations of these primary metabolic reactions followed by conjugation of the intermediate phenols with glucuronic or sulfonic acid. The percentage of dose excreted in urine or feces for any of the metabolites did not exceed 10% of the administered radioactive dose, nor did any of the metabolites represent more than 10% of the total drug-related exposure. In conclusion, after rapid absorption, almorexant is extensively metabolized, and excretion of metabolites in feces is the predominant route of elimination in humans. PMID:23431113

  4. Assessment of the Abuse Potential of the Orexin Receptor Antagonist, Suvorexant, Compared With Zolpidem in a Randomized Crossover Study.

    Science.gov (United States)

    Schoedel, Kerri A; Sun, Hong; Sellers, Edward M; Faulknor, Janice; Levy-Cooperman, Naama; Li, Xiaodong; Kennedy, William P; Cha, Jang-Ho; Lewis, Nicole M; Liu, Wen; Bondiskey, Phung; McCrea, Jacqueline B; Panebianco, Deborah L; Troyer, Matthew D; Wagner, John A

    2016-08-01

    Suvorexant is a dual orexin receptor antagonist approved in the United States and Japan for the treatment of insomnia at a maximum dose of 20 mg. This randomized double-blind crossover study evaluated the abuse potential of suvorexant in 36 healthy recreational polydrug users with a history of sedative and psychedelic drug use. Single doses of suvorexant (40, 80, and 150 mg: 2-7.5 × maximum dose), zolpidem (15 and 30 mg: 1.5-3 × maximum dose), and placebo were administered, with a 10-day washout between treatments. Subjective and objective measures, including visual analog scales (VASs), Addiction Research Center Inventory, and cognitive/psychomotor tests, were evaluated for 24-hour postdose. Suvorexant had significantly greater peak effects on "drug liking" VAS (primary endpoint) than placebo. Although effects of suvorexant on abuse potential measures were generally similar to zolpidem, they remained constant across doses, whereas zolpidem often had greater effects at higher doses. Suvorexant (all doses) had significantly fewer effects than zolpidem 30 mg on secondary measures, such as "high" VAS, Bowdle VAS, and Addiction Research Center Inventory morphine-benzedrine group. The overall incidence of abuse-related adverse events, such as euphoric mood and hallucination, was numerically lower with suvorexant than zolpidem. In agreement with its classification as a schedule IV drug, suvorexant demonstrated abuse potential, compared with placebo. The abuse potential was similar to zolpidem using certain measures, but with a reduced incidence of abuse-related adverse events. Although this suggests that the overall abuse liability of suvorexant may be lower than zolpidem, the actual abuse rates will be assessed with the postmarketing experience. PMID:27253658

  5. Central Pathways Integrating Metabolism and Reproduction in Teleosts

    Directory of Open Access Journals (Sweden)

    Md eShahjahan

    2014-03-01

    Full Text Available Energy balance plays an important role in the control of reproduction. However, the cellular and molecular mechanisms connecting the two systems are not well understood especially in teleosts. The hypothalamus plays a crucial role in the regulation of both energy balance and reproduction, and contains a number of neuropeptides, including gonadotropin-releasing hormone (GnRH, orexin, neuropeptide-Y (NPY, ghrelin, pituitary adenylate cyclase-activating polypeptide (PACAP, α-melanocyte stimulating hormone (α-MSH, melanin-concentrating hormone (MCH, cholecystokinin (CCK, 26RFa, nesfatin, kisspeptin, and gonadotropin-inhibitory hormone (GnIH. These neuropeptides are involved in the control of energy balance and reproduction either directly or indirectly. On the other hand, synthesis and release of these hypothalamic neuropeptides are regulated by metabolic signals from the gut and the adipose tissue. Furthermore, neurons producing these neuropeptides interact with each other, providing neuronal basis of the link between energy balance and reproduction. This review summarizes the advances made in our understanding of the physiological roles of the hypothalamic neuropeptides in energy balance and reproduction in teleosts, and discusses how they interact with GnRH, kisspeptin, and pituitary gonadotropins to control reproduction in teleosts.

  6. Orexin-1 receptor signalling in the prelimbic cortex and ventral tegmental area regulates cue-induced reinstatement of ethanol-seeking in iP rats.

    Science.gov (United States)

    Brown, Robyn Mary; Kim, Andrezza K; Khoo, Shaun Yon-Seng; Kim, Jee Hyun; Jupp, Bianca; Lawrence, Andrew John

    2016-05-01

    Orexins (hypocretins) are hypothalamic neuropeptides that innervate the entire neuraxis, including the prelimbic cortex and ventral tegmental area and have been implicated in ethanol-seeking behaviour. The present study aimed to use the orexin-1 (OX1 ) receptor antagonist SB-334867 to examine the role of prelimbic cortex and ventral tegmental area OX1 receptors in cue-induced reinstatement of ethanol-seeking. Ethanol-preferring rats (iP) rats were trained to self-administer ethanol (10 percent v/v, FR3) or sucrose (0.2-1 percent w/v, FR3) in the presence of reward-associated cues before being implanted with indwelling guide cannulae. Rats then underwent extinction training for 11 days. On test days, rats were given a microinjection of vehicle or SB-334867 (3 μg/side) and presented with reward-associated cues to precipitate reinstatement. Results show SB-334867 infused into the prelimbic cortex attenuated cue-induced reinstatement of ethanol-seeking, but not sucrose-seeking. OX1 antagonism in the ventral tegmental area also attenuated cue-induced reinstatement of ethanol-seeking. These findings suggest that OX1 receptors located in the prelimbic cortex and ventral tegmental area are part of a circuit driving cue-mediated ethanol-seeking behaviour. PMID:25899624

  7. Closing the Phenotypic Gap between Transformed Neuronal Cell Lines in Culture and Untransformed Neurons

    Science.gov (United States)

    Myers, Tereance A.; Nickerson, Cheryl A.; Kaushal, Deepak; Ott, C. Mark; HonerzuBentrup, Kerstin; Ramamurthy, Rajee; Nelman-Gonzales, Mayra; Pierson, Duane L.; Philipp, Mario T.

    2008-01-01

    Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a dimensional (3-D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells. In our studies comparing 3-D versus 2-dimensional (2-D) culture, neuronal SH-SY5Y (SY) cells underwent distinct morphological changes combined with a significant drop in their rate of cell division. Expression of the proto-oncogene N-myc and the RNA binding protein HuD was decreased in 3-D culture as compared to standard 2-D conditions. We observed a decline in the anti-apoptotic protein Bcl-2 in 3-D culture, coupled with increased expression of the pro-apoptotic proteins Bax and Bak. Moreover, thapsigargin (TG)-induced apoptosis was enhanced in the 3-D cells. Microarray analysis demonstrated significantly differing mRNA levels for over 700 genes in the cells of each culture type. These results indicate that a 3-D culture approach narrows the phenotypic gap between neuronal cell lines and primary neurons. The resulting cells may readily be used for in vitro research of neuronal pathogenesis.

  8. Neurons controlling jumping in froghopper insects.

    Science.gov (United States)

    Bräunig, Peter; Burrows, Malcolm

    2008-03-01

    The neurons innervating muscles that deliver the enormous power enabling froghopper insects to excel at jumping were revealed by backfilling the nerves from those muscles. The huge trochanteral depressor muscle (M133) of a hind leg consists of four parts. The two largest parts (M133b,c) occupy most of the metathorax and are innervated by the same two motor neurons that have small, laterally placed somata in the metathoracic ganglion and axons in nerve N3C(2). They are also supplied by three dorsal unpaired median (DUM) neurons with the largest diameter somata in the central nervous system. A small metathoracic part of the muscle (M133d) is supplied by two motor neurons with lateral somata and by common inhibitory motor neuron CI(1), all with axons in nerve N3C(3) The motor neuron with the larger soma has a thick primary neurite that projects across the midline of the ganglion so that its branches overlap those of its symmetrical counterpart,innervating the same muscle of the other hind leg. The fourth coxal part of the muscle (M133a) is innervated by two motor neurons (one with a ventral and the other with a dorsal and lateral soma), by CI(1), and by a DUM neuron with a small soma. All have axons in nerve N5A. The two trochanteral levator muscles of a hind leg are contained within the coxa and are separately innervated by nerves N3B and N4, respectively. The properties of the different motor neurons are discussed in the context of the neural patterns that generate jumping. PMID:18095320

  9. Effect of type-2 astrocytes on the viability of dorsal root ganglion neurons and length of neuronal processes

    Institute of Scientific and Technical Information of China (English)

    Chunling Fan; Hui Wang; Dan Chen; Xiaoxin Cheng; Kun Xiong; Xuegang Luo; Qilin Cao

    2014-01-01

    The role of type-2 astrocytes in the repair of central nervous system injury remains poorly un-derstood. In this study, using a relatively simple culture condition in vitro, type-2 astrocytes, differentiated from oligodendrocyte precursor cells by induction with bone morphogenetic pro-tein-4, were co-cultured with dorsal root ganglion neurons. We examined the effects of type-2 astrocytes differentiated from oligodendrocyte precursor cells on the survival and growth of dorsal root ganglion neurons. Results demonstrated that the number of dorsal root ganglion neurons was higher following co-culture of oligodendrocyte precursor cells and type-2 astrocytes than when cultured alone, but lower than that of neurons co-cultured with type-1 astrocytes. The length of the longest process and the length of all processes of a single neuron were shortest in neurons cultured alone, followed by neurons co-cultured with type-2 astrocytes, then neurons co-cultured with oligodendrocyte precursor cells, and longest in neurons co-cultured with type-1 astrocytes. These results indicate that co-culture with type-2 astrocytes can increase neuronal survival rate and process length. However, compared with type-1 astrocytes and oligodendrocyte precursor cells, the promotion effects of type-2 astrocytes on the growth of dorsal root ganglion neurons were weaker.

  10. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    Directory of Open Access Journals (Sweden)

    Xiao-Bing eGao

    2015-10-01

    Full Text Available The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc and long-term behavioral changes (such as reward seeking and addiction, stress response, etc in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation and long-term changes (such as cocaine seeking in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological behavioral, and mental health implications of these findings will be discussed.

  11. Control of phasic firing by a background leak current in avian forebrain auditory neurons

    Directory of Open Access Journals (Sweden)

    Andre Andreotti Dagostin

    2015-12-01

    Full Text Available Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP phasic firing, produced by low-threshold voltage activated potassium currents (VAKCs, is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs than the other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons.

  12. Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons.

    Science.gov (United States)

    Dagostin, André A; Lovell, Peter V; Hilscher, Markus M; Mello, Claudio V; Leão, Ricardo M

    2015-01-01

    Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830

  13. Distribution of Hypophysiotropic Thyrotropin-Releasing Hormone (TRH)-Synthesizing Neurons in the Hypothalamic Paraventricular Nucleus of the Mouse

    OpenAIRE

    Kádár, Andrea; Sánchez, Edith; Wittmann, Gábor; Singru, Praful S.; Füzesi, Tamás; Marsili, Alessandro; Larsen, P. Reed; Liposits, Zsolt; Lechan, Ronald M.; Fekete, Csaba

    2010-01-01

    Hypophysiotropic thyrotropin-releasing hormone (TRH) neurons, the central regulators of the hypothalamus-pituitary-thyroid axis, are located in the hypothalamic paraventricular nucleus (PVN) in a partly overlapping distribution with non-hypophysiotropic TRH neurons. The distribution of hypophysiotropic TRH neurons in the rat PVN is well understood, but the localization of these neurons is unknown in mice. To determine the distribution and phenotype of hypophysiotropic TRH neurons in mice, dou...

  14. Study of a New Neuron

    OpenAIRE

    Adler, S. L.; Bhanot, G. V.; Weckel, J. D.

    1994-01-01

    We study a modular neuron alternative to the McCulloch-Pitts neuron that arises naturally in analog devices in which the neuron inputs are represented as coherent oscillatory wave signals. Although the modular neuron can compute $XOR$ at the one neuron level, it is still characterized by the same Vapnik-Chervonenkis dimension as the standard neuron. We give the formulas needed for constructing networks using the new neuron and training them using back-propagation. A numerical study of the mod...

  15. PARVALBUMIN-EXPRESSING NEURONS ON THE CENTRAL PATHWAY OF THE TRIGEMINAL PROPRIOCEPTIVE SENSATION OF THE RAT: A DOUBLE LABELING STUDY%Parvalbumin样阳性神经元大鼠三叉神经本体觉中枢通路上的分布--FG逆标与免疫组化相结合研究

    Institute of Scientific and Technical Information of China (English)

    张富兴; 李金莲; 李继硕

    2000-01-01

    Previous studies showed that the Vodm-LRF-including the dorsomedial part of the subnucleus oralis of the spinal trigeminal nucleus and its adjacent lateral reticular formation--contained the second-order neurons on the central pathway of the trigeminal proprioceptive sensation of the rat and the "zone-shaped area"-including the caudolateral part of the supratrigeminal nucleus (Vsup-CL). The dorsomedial part of principal sensory trigeminal nucleus (Vpdm) and two newly found nuclei: the areaventral to the motor trigeminal nucleus (AVM) and the area dorsal to the superior olivary nucleus (ADO)-contained the third order neurons of this pathway. Parvalbumin (PV) is one of the calcium-binding proteins, In this pathway, many PV-like immunoreactive (PV-LI) neurons were observed in Vodm LRF and the "zone-shaped arena", hut there has been no reports so far regarding whether these PV-LI neurons are projection neurons responsible for the transmission of proprioceptive information or the interneurons serving the modulatory function, in the present study, our aim was to solve the problem by a double labeling study by using retrograde tracing method combined with immunofluorescence histochemistry. The results showed that: (1) following the unilateral Fluoro-Gold (FG) injections into the ventral posteromedial nucleus (VPM) of the thalamus and the separated parts of the "zone-shaped area", viz, Vpdm, ADO and AVM, many FG-labeled neurons were always found contralaterally in the "zone-shaped area" and ipsilaterally in the Vodm-LRF, respectively; (2) in either the "zone-shaped area" or the Vodm-LRF, a substantial number of the FG retrogradely labeled neurons showed PV-LI. In the Vsup-CL, Vpdm, AVM and ADO, about 57%, 55%, 11% and 4% of the neurons projecting to the VPM of the thalamus showed pV-LI, respectively. Of the total population of PV-LI neurons in the Vsup-CL, Vpdm. AVM and ADO, about 23%, 79%, 53% and 16% were labeled by FG, respectively. Most of these PV/FG double

  16. Nuclear Factor I and Cerebellar Granule Neuron Development: An Intrinsic–Extrinsic Interplay

    OpenAIRE

    Kilpatrick, Daniel L.; Wang, Wei; Gronostajski, Richard; Litwack, E. David

    2012-01-01

    Granule neurons have a central role in cerebellar function via their synaptic interactions with other neuronal cell types both within and outside this structure. Establishment of these synaptic connections and its control is therefore essential to their function. Both intrinsic as well as environmental mechanisms are required for neuronal development and formation of neuronal circuits, and a key but poorly understood question is how these various events are coordinated and integrated in matur...

  17. The Specification and Maturation of Nociceptive Neurons from Human Embryonic Stem Cells

    OpenAIRE

    Erin M. Boisvert; Engle, Sandra J; Shawn E. Hallowell; Ping Liu; Zhao-Wen Wang; Xue-Jun Li

    2015-01-01

    Nociceptive neurons play an essential role in pain sensation by transmitting painful stimuli to the central nervous system. However, investigations of nociceptive neuron biology have been hampered by the lack of accessibility of human nociceptive neurons. Here, we describe a system for efficiently guiding human embryonic stem cells into nociceptive neurons by first inducing these cells to the neural lineage. Subsequent addition of retinoic acid and BMP4 at specific time points and concentrati...

  18. Functional Heterogeneity of Arcuate Nucleus Pro-Opiomelanocortin Neurons: Implications for Diverging Melanocortin Pathways

    OpenAIRE

    Sohn, Jong-Woo; Williams, Kevin W.

    2012-01-01

    Arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons are essential regulators of food intake, energy expenditure, and glucose homeostasis. POMC neurons integrate several key metabolic signals that include neurotransmitters and hormones. The change in activity of POMC neurons is relayed to melanocortin receptors in distinct regions of the central nervous system. This review will summarize the role of leptin and serotonin receptors in regulating the activity of POMC neurons and provide a m...

  19. Nucleofection and Primary Culture of Embryonic Mouse Hippocampal and Cortical Neurons

    OpenAIRE

    Viesselmann, Christopher; Ballweg, Jason; Lumbard, Derek; Dent, Erik W.

    2011-01-01

    Hippocampal and cortical neurons have been used extensively to study central nervous system (CNS) neuronal polarization, axon/dendrite outgrowth, and synapse formation and function. An advantage of culturing these neurons is that they readily polarize, forming distinctive axons and dendrites, on a two dimensional substrate at very low densities. This property has made them extremely useful for determining many aspects of neuronal development. Furthermore, by providing glial conditioning for t...

  20. Mesmerising mirror neurons.

    Science.gov (United States)

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. PMID:20167276

  1. Kalman Filter Neuron Training

    OpenAIRE

    Murase, Haruhiko; KOYAMA, Shuhei; HONAMI, Nobuo; Kuwabara, Takao

    1991-01-01

    An attempt of implementing Kalman filter algorithm in the procedure for training the neural network was made and evaluated. The Kalman filter neuron training program (KNT) was coded. The performance of Kalman filter in KNT was compared to commonly used neuron training algorithm. The study revealed that KNT requires much less calculation time to accomplish neuron training than commonly used other algorithms do. KNT also gave much smaller final error than any other algorithms tested in this study.

  2. Hypocretin (orexin) input to trigeminal and hypoglossal motoneurons in the cat: a double-labeling immunohistochemical study.

    Science.gov (United States)

    Fung, S J; Yamuy, J; Sampogna, S; Morales, F R; Chase, M H

    2001-06-01

    In trigeminal and hypoglossal motor nuclei of adult cats, hypocretin immunoreactive fiber varicosities were observed in apposition to retrogradely labeled motoneuron somata and dendrites. Among those lateral hypothalamus neurons that project to the hypoglossal nucleus some were determined to be hypocretin immunoreactive and were located amongst the single-labeled hypocretinergic neurons. These data suggest that hypocretin may play a role in the synaptic control of these motoneurons. PMID:11382413

  3. Cerebrospinal fluid melanin-concentrating hormone (MCH and hypocretin-1 (HCRT-1, orexin-A in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Frank M Schmidt

    Full Text Available Ancillary to decline in cognitive abilities, patients with Alzheimer's disease (AD frequently suffer from behavioural and psychological symptoms of dementia (BPSD. Hypothalamic polypeptides such as melanin-concentrating hormone (MCH and hypocretin-1 (HCRT-1, orexin-A are promoters of sleep-wake regulation and energy homeostasis and are found to impact on cognitive performance. To investigate the role of MCH and HCRT-1 in AD, cerebrospinal fluid (CSF levels were measured in 33 patients with AD and 33 healthy subjects (HS using a fluorescence immunoassay (FIA. A significant main effect of diagnosis (F(1,62 = 8.490, p<0.01 on MCH levels was found between AD (93.76±13.47 pg/mL and HS (84.65±11.40 pg/mL. MCH correlated with T-tau (r = 0.47; p<0.01 and P-tau (r = 0.404; p<0.05 in the AD but not in the HS. CSF-MCH correlated negatively with MMSE scores in the AD (r = -0.362, p<0.05 and was increased in more severely affected patients (MMSE≤20 compared to HS (p<0.001 and BPSD-positive patients compared to HS (p<0.05. In CSF-HCRT-1, a significant main effect of sex (F(1,31 = 4.400, p<0.05 with elevated levels in females (90.93±17.37 pg/mL vs. 82.73±15.39 pg/mL was found whereas diagnosis and the sex*diagnosis interaction were not significant. Elevated levels of MCH in patients suffering from AD and correlation with Tau and severity of cognitive impairment point towards an impact of MCH in AD. Gender differences of CSF-HCRT-1 controversially portend a previously reported gender dependence of HCRT-1-regulation. Histochemical and actigraphic explorations are warranted to further elucidate alterations of hypothalamic transmitter regulation in AD.

  4. Bidirectional Microglia-Neuron Communication in the Healthy Brain

    Directory of Open Access Journals (Sweden)

    Ukpong B. Eyo

    2013-01-01

    Full Text Available Unlike other resident neural cells that are of neuroectodermal origin, microglia are resident neural cells of mesodermal origin. Traditionally recognized for their immune functions during disease, new roles are being attributed to these cells in the development and maintenance of the central nervous system (CNS including specific communication with neurons. In this review, we highlight some of the recent findings on the bidirectional interaction between neurons and microglia. We discuss these interactions along two lines. First, we review data that suggest that microglial activity is modulated by neuronal signals, focusing on evidence that (i neurons are capable of regulating microglial activation state and influence basal microglial activities; (ii classic neurotransmitters affect microglial behavior; (iii chemotactic signals attract microglia during acute neuronal injury. Next, we discuss some of the recent data on how microglia signal to neurons. Signaling mechanisms include (i direct physical contact of microglial processes with neuronal elements; (ii microglial regulation of neuronal synapse and circuit by fractalkine, complement, and DAP12 signaling. In addition, we discuss the use of microglial depletion strategies in studying the role of microglia in neuronal development and synaptic physiology. Deciphering the mechanisms of bidirectional microglial-neuronal communication provides novel insights in understanding microglial function in both the healthy and diseased brain.

  5. Orexin-1 receptor co-localizes with pancreatic hormones in islet cells and modulates the outcome of streptozotocin-induced diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Ernest Adeghate

    Full Text Available Recent studies have shown that orexins play a critical role in the regulation of sleep/wake states, feeding behaviour, and reward processes. The exocrine and endocrine pancreas are involved in the regulation of food metabolism and energy balance. This function is deranged in diabetes mellitus. This study examined the pattern of distribution of orexin-1 receptor (OX1R in the endocrine cells of the pancreas of normal and diabetic Wistar (a model of type 1 diabetes, Goto-Kakizaki (GK, a model of type 2 diabetes rats and in orexin-deficient (OX-/- and wild type mice. Diabetes mellitus (DM was induced in Wistar rats and mice by streptozotocin (STZ. At different time points (12 h, 24 h, 4 weeks, 8 months and 15 months after the induction of DM, pancreatic fragments of normal and diabetic rats were processed for immunohistochemistry and Western blotting. OX1R-immunoreactive nerves were observed in the pancreas of normal and diabetic Wistar rats. OX1R was also discernible in the pancreatic islets of normal and diabetic Wistar and GK rats, and wild type mice. OX1R co-localized with insulin (INS and glucagon (GLU in the pancreas of Wistar and GK rats. The number of OX1R-positive cells in the islets increased markedly (p<0.0001 after the onset of DM. The increase in the number of OX1R-positive cells is associated with a high degree of co-localization with GLU. The number of GLU- positive cells expressing OX1R was significantly (p<0.0001 higher after the onset of DM. The tissue level of OX1R protein increased with the duration of DM especially in type 1 diabetes where it co-localized with cleaved caspase 3 in islet cells. In comparison to STZ-treated wild type mice, STZ-treated OX-/- animals exhibited reduced hyperglycemia and handled glucose more efficiently in glucose tolerance test. The findings suggest an important role for the OX-OX1R pathway in STZ-induced experimental diabetes.

  6. Optophysiological approach to resolve neuronal action potentials with high spatial and temporal resolution in cultured neurons

    Directory of Open Access Journals (Sweden)

    Stephane ePages

    2011-10-01

    Full Text Available Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm. Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (> 10 % of fluorescence change for 100 mV depolarization and time response (submillisecond of the dye allows the robust detection of action potentials (APs even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms resolution and high spatial (µm resolution.

  7. 中枢神经系统药物促进干细胞定向分化为神经元的研究进展%Research progress of central nervous system drugs on facilitating directional differentiation of stem cells into neurons

    Institute of Scientific and Technical Information of China (English)

    杜云霞; 王晓虹; 王苏平

    2014-01-01

    干细胞是一类具有自我更新和分化潜能的细胞。目前,通过干细胞移植并使其在体内定向分化为神经元来治疗中枢神经系统疾病已经受到广泛关注。干细胞分化机制和促进干细胞定向分化药物的研究成为干细胞移植研究的热点,国内外有关这方面的研究及药物研发已经取得了重大进展。本文将对干细胞的来源、分类及生物学特性作出总结,并概述干细胞定向分化为神经元的诱导方法及中枢神经系统药物对其定向分化的促进作用。%Stem cells are a kind of cells which have the potential of self -renewal and differen-tiation.At present,it has received extensive attention that through stem cell transplantation and ma -king it directionally differentiated into neurons to offer therapy for central nervous system disease . The research on the differentiation mechanism and the drugs promoting stem cell directional differen -tiation has become a hot topic of stem cells transplantation research ,the research and development of this has received significant progress at home and abroad .The present paper concluded the source , classification and biological characteristics of stem cells ,and summarized the approach to inducing directional differentiation of stem cells and the effect of central nervous system drugs on the direc -tional differentiation of stem cells into neurons .

  8. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  9. Neuronal Response Clamp

    Directory of Open Access Journals (Sweden)

    Avner Wallach

    2011-04-01

    Full Text Available Responses of individual neurons to ongoing input are highly variable, reflecting complex threshold dynamics. Experimental access to this threshold dynamics is required in order to fully characterize neuronal input-output relationships. The challenge is practically intractable using present day experimental paradigms due to the cumulative, nonlinear interactions involved. Here we introduce the Neuronal Response Clamp, a closed-loop technique enabling control over the instantaneous response probability of the neuron. The potential of the technique is demonstrated by showing direct access to threshold dynamics of cortical neuron in-vitro using extracellular recording and stimulation, over timescales ranging from seconds to many hours. Moreover, the method allowed us to expose the sensitivity of threshold dynamics to spontaneous input from the network in which the neuron is embedded. The Response Clamp technique follows the rationale of the voltage-clamp and dynamic-clamp approaches, extending it to the neuron's spiking behavior. The general framework offered here is applicable in the study of other neural systems, beyond the single neuron level.

  10. Inflammatory mechanism in ischemic neuronal injury

    Institute of Scientific and Technical Information of China (English)

    Ya-Dan WEN; Hui-Ling ZHANG; Zheng-Hong QIN

    2006-01-01

    Inflammation has been implicated as a secondary mechanism underlying neuronal injury induced by ischemia.A variety of experimental models, including thromboembolic stroke, focal and global ischemia, have been used to evaluate contributions of inflammation to neuronal damage. The vasculature endothelium promotes inflammation through upregulation of adhesion molecules such as intercellular adhesion molecule (ICAM), E-selectin, and P-selectin that bind to circulating leukocytes and facilitate migration of leukocytes into the central nervous system (CNS). Once being in the CNS, leukocytes produce cytotoxic molecules that promote cell death. The response of macrophages and microglia to injury may either be beneficial by scavenging necrotic debris or be detrimental by facilitating cell death of neurons that would otherwise recover. While many studies have tested these hypotheses, the significance of inflammation in stroke models is inconclusive. This review summarizes data regarding roles of cell adhesion molecules, astrocytes, microglia and leukocytes in stroke.

  11. Microglia in neuronal plasticity: Influence of stress.

    Science.gov (United States)

    Delpech, Jean-Christophe; Madore, Charlotte; Nadjar, Agnes; Joffre, Corinne; Wohleb, Eric S; Layé, Sophie

    2015-09-01

    The central nervous system (CNS) has previously been regarded as an immune-privileged site with the absence of immune cell responses but this dogma was not entirely true. Microglia are the brain innate immune cells and recent findings indicate that they participate both in CNS disease and infection as well as facilitate normal CNS function. Microglia are highly plastic and play integral roles in sculpting the structure of the CNS, refining neuronal circuitry and connectivity, and contribute actively to neuronal plasticity in the healthy brain. Interestingly, psychological stress can perturb the function of microglia in association with an impaired neuronal plasticity and the development of emotional behavior alterations. As a result it seemed important to describe in this review some findings indicating that the stress-induced microglia dysfunction may underlie neuroplasticity deficits associated to many mood disorders. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. PMID:25582288

  12. Mechanosensor Channels in Mammalian Somatosensory Neurons

    Directory of Open Access Journals (Sweden)

    Patrick Delmas

    2007-09-01

    Full Text Available Mechanoreceptive sensory neurons innervating the skin, skeletal muscles andviscera signal both innocuous and noxious information necessary for proprioception, touchand pain. These neurons are responsible for the transduction of mechanical stimuli intoaction potentials that propagate to the central nervous system. The ability of these cells todetect mechanical stimuli impinging on them relies on the presence of mechanosensitivechannels that transduce the external mechanical forces into electrical and chemical signals.Although a great deal of information regarding the molecular and biophysical properties ofmechanosensitive channels in prokaryotes has been accumulated over the past two decades,less is known about the mechanosensitive channels necessary for proprioception and thesenses of touch and pain. This review summarizes the most pertinent data onmechanosensitive channels of mammalian somatosensory neurons, focusing on theirproperties, pharmacology and putative identity.

  13. NEURON and Python

    Directory of Open Access Journals (Sweden)

    Michael Hines

    2009-01-01

    Full Text Available The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including GUI tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the XML module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  14. Glutamate and GABA in Vestibulo-Sympathetic Pathway Neurons.

    Science.gov (United States)

    Holstein, Gay R; Friedrich, Victor L; Martinelli, Giorgio P

    2016-01-01

    The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first

  15. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  16. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Michel Alexander Steiner

    2013-12-01

    Full Text Available The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1 in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO associated with metabolic syndrome (MetS. Rats were fed either standard chow (SC or a cafeteria (CAF diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% versus controls and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this

  17. Afferent neuronal control of type-I gonadotropin releasing hormone (GnRH neurons in the human

    Directory of Open Access Journals (Sweden)

    ErikHrabovszky

    2013-09-01

    Full Text Available Understanding the regulation of the human menstrual cycle represents an important ultimate challenge of reproductive neuroendocrine research. However, direct translation of information from laboratory animal experiments to the human is often complicated by strikingly different and unique reproductive strategies and central regulatory mechanisms that can be present in even closely related animal species. In all mammals studied so far, type-I gonadotropin releasing hormone (GnRH synthesizing neurons form the final common output way from the hypothalamus in the neuroendocrine control of the adenohypophysis. Under various physiological and pathological conditions, hormonal and metabolic signals either regulate GnRH neurons directly or act on upstream neuronal circuitries to influence the pattern of pulsatile GnRH secretion into the hypophysial portal circulation. Neuronal afferents to GnRH cells convey important metabolic-, stress-, sex steroid-, lactational- and circadian signals to the reproductive axis, among other effects. This article gives an overview of the available neuroanatomical literature that described the afferent regulation of human GnRH neurons by peptidergic, monoaminergic and amino acidergic neuronal systems. Recent studies of human genetics provided evidence that central peptidergic signaling by kisspeptins and neurokinin B play particularly important roles in puberty onset and later, in the sex steroid-dependent feedback regulation of GnRH neurons. This review article places special emphasis on the topographic distribution, sexual dimorphism, aging-dependent neuroanatomical changes and plastic connectivity to GnRH neurons of the critically important human hypothalamic kisspeptin and neurokinin B systems.

  18. The role of GABA in the regulation of GnRH neurons

    Directory of Open Access Journals (Sweden)

    Miho eWatanabe

    2014-11-01

    Full Text Available Gonadotropin-releasing hormone (GnRH neurons form the final common pathway for the central regulation of reproduction. Gamma-amino butyric acid (GABA has long been implicated as one of the major players in the regulation of GnRH neurons. Although GABA is typically an inhibitory neurotransmitter in the mature adult central nervous system, most mature GnRH neurons show the unusual characteristic of being excited by GABA. While many reports have provided much insight into the contribution of GABA to the activity of GnRH neurons, the precise physiological role of the excitatory action of GABA on GnRH neurons remains elusive. This brief review presents the current knowledge of the role of GABA signaling in GnRH neuronal activity. We also discuss the modulation of GABA signaling by neurotransmitters and neuromodulators and the functional consequence of GABAergic inputs to GnRH neurons in both the physiology and pathology of reproduction.

  19. Axonal PPARγ promotes neuronal regeneration after injury.

    Science.gov (United States)

    Lezana, Juan Pablo; Dagan, Shachar Y; Robinson, Ari; Goldstein, Ronald S; Fainzilber, Mike; Bronfman, Francisca C; Bronfman, Miguel

    2016-06-01

    PPARγ is a ligand-activated nuclear receptor best known for its involvement in adipogenesis and glucose homeostasis. PPARγ activity has also been associated with neuroprotection in different neurological disorders, but the mechanisms involved in PPARγ effects in the nervous system are still unknown. Here we describe a new functional role for PPARγ in neuronal responses to injury. We found both PPAR transcripts and protein within sensory axons and observed an increase in PPARγ protein levels after sciatic nerve crush. This was correlated with increased retrograde transport of PPARγ after injury, increased association of PPARγ with the molecular motor dynein, and increased nuclear accumulation of PPARγ in cell bodies of sensory neurons. Furthermore, PPARγ antagonists attenuated the response of sensory neurons to sciatic nerve injury, and inhibited axonal growth of both sensory and cortical neurons in culture. Thus, axonal PPARγ is involved in neuronal injury responses required for axonal regeneration. Since PPARγ is a major molecular target of the thiazolidinedione (TZD) class of drugs used in the treatment of type II diabetes, several pharmaceutical agents with acceptable safety profiles in humans are available. Our findings provide motivation and rationale for the evaluation of such agents for efficacy in central and peripheral nerve injuries. PMID:26446277

  20. How microglia kill neurons.

    Science.gov (United States)

    Brown, Guy C; Vilalta, Anna

    2015-12-01

    Microglia are resident brain macrophages that become inflammatory activated in most brain pathologies. Microglia normally protect neurons, but may accidentally kill neurons when attempting to limit infections or damage, and this may be more common with degenerative disease as there was no significant selection pressure on the aged brain in the past. A number of mechanisms by which activated microglia kill neurons have been identified, including: (i) stimulation of the phagocyte NADPH oxidase (PHOX) to produce superoxide and derivative oxidants, (ii) expression of inducible nitric oxide synthase (iNOS) producing NO and derivative oxidants, (iii) release of glutamate and glutaminase, (iv) release of TNFα, (v) release of cathepsin B, (vi) phagocytosis of stressed neurons, and (vii) decreased release of nutritive BDNF and IGF-1. PHOX stimulation contributes to microglial activation, but is not directly neurotoxic unless NO is present. NO is normally neuroprotective, but can react with superoxide to produce neurotoxic peroxynitrite, or in the presence of hypoxia inhibit mitochondrial respiration. Glutamate can be released by glia or neurons, but is neurotoxic only if the neurons are depolarised, for example as a result of mitochondrial inhibition. TNFα is normally neuroprotective, but can become toxic if caspase-8 or NF-κB activation are inhibited. If the above mechanisms do not kill neurons, they may still stress the neurons sufficiently to make them susceptible to phagocytosis by activated microglia. We review here whether microglial killing of neurons is an artefact, makes evolutionary sense or contributes in common neuropathologies and by what mechanisms. This article is part of a Special Issue entitled SI: Neuroprotection. PMID:26341532

  1. HIV, opiates and enteric neuron dysfunction

    OpenAIRE

    Galligan, James J.

    2015-01-01

    HIV is an immunosuppressive virus that targets CD4+ T-lymphocytes. HIV infections cause increased susceptibility to opportunistic infections and cancer. HIV infection can also alter central nervous system (CNS) function causing cognitive impairment. HIV does not infect neurons but it does infect astrocytes and microglia in the CNS. HIV can also infect enteric glia initiating an intestinal inflammatory response which causes enteric neural injury and gut dysfunction. Part of the inflammatory re...

  2. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  3. Straintronic spin-neuron

    OpenAIRE

    Biswas, Ayan K.; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-01-01

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ. Here, we propose and analyze a different type of spin-neuron in which t...

  4. 增食因子在肥胖抵抗大鼠食欲调节中的作用%Role of orexin in appetite regulation of DIO- R rats

    Institute of Scientific and Technical Information of China (English)

    刘荣; 孙长灏; 王舒然

    2004-01-01

    目的探讨增食因子A和B在肥胖抵抗大鼠食欲调节中的作用.方法 50只健康雄性SD大鼠,随机分为对照组和高脂组,分别用基础饲料和高脂饲料喂养13周,然后根据体重和能量摄入量筛选出饮食诱导肥胖抵抗(diet-induced obesity resistance,DIO-R)和饮食诱导肥胖(diet-induced obesity,DIO)组,观察摄食量的变化,Westem-Blot法测定大鼠脑组织中增食因子A和B的蛋白含量.结果 DIO-R大鼠总摄食量明显低于DIO大鼠(P<0.05);高脂饲料可增加大鼠脑组织中增食因子A和B的含量,但DIO-R大鼠和DIO大鼠间无显著性差异.结论DIO-R大鼠体内增食因子A(orexinA)和B(orexin B)的增食作用可能被其它抑制食欲因素的作用所掩盖.因而,orexin A和orexin B在肥胖抵抗大鼠的食欲调节中作用较弱.

  5. MSC p43 required for axonal development in motor neurons

    Science.gov (United States)

    Zhu, Xiaodong; Liu, Yang; Yin, Yanqing; Shao, Aiyun; Zhang, Bo; Kim, Sunghoon; Zhou, Jiawei

    2009-01-01

    Neuron connectivity and correct neural function largely depend on axonal integrity. Neurofilaments (NFs) constitute the main cytoskeletal network maintaining the structural integrity of neurons and exhibit dynamic changes during axonal and dendritic growth. However, the mechanisms underlying axonal development and maintenance remain poorly understood. Here, we identify that multisynthetase complex p43 (MSC p43) is essential for NF assembly and axon maintenance. The MSC p43 protein was predominantly expressed in central neurons and interacted with NF light subunit in vivo. Mice lacking MSC p43 exhibited axon degeneration in motor neurons, defective neuromuscular junctions, muscular atrophy, and motor dysfunction. Furthermore, MSC p43 depletion in mice caused disorganization of the axonal NF network. Mechanistically, MSC p43 is required for maintaining normal phosphorylation levels of NFs. Thus, MSC p43 is indispensable in maintaining axonal integrity. Its dysfunction may underlie the NF disorganization and axon degeneration associated with motor neuron degenerative diseases. PMID:19717447

  6. Cdc42 regulates cofilin during the establishment of neuronal polarity

    DEFF Research Database (Denmark)

    Garvalov, Boyan K; Flynn, Kevin C; Neukirchen, Dorothee;

    2007-01-01

    The establishment of polarity is an essential process in early neuronal development. Although a number of molecules controlling neuronal polarity have been identified, genetic evidence about their physiological roles in this process is mostly lacking. We analyzed the consequences of loss of Cdc42......, a central regulator of polarity in multiple systems, on the polarization of mammalian neurons. Genetic ablation of Cdc42 in the brain led to multiple abnormalities, including striking defects in the formation of axonal tracts. Neurons from the Cdc42 null animals sprouted neurites but had a strongly...... suppressed ability to form axons both in vivo and in culture. This was accompanied by disrupted cytoskeletal organization, enlargement of the growth cones, and inhibition of filopodial dynamics. Axon formation in the knock-out neurons was rescued by manipulation of the actin cytoskeleton, indicating that the...

  7. From Neural Plate to Cortical Arousal—A Neuronal Network Theory of Sleep Derived from in Vitro “Model” Systems for Primordial Patterns of Spontaneous Bioelectric Activity in the Vertebrate Central Nervous System

    Directory of Open Access Journals (Sweden)

    Michael A. Corner

    2013-05-01

    Full Text Available In the early 1960s intrinsically generated widespread neuronal discharges were discovered to be the basis for the earliest motor behavior throughout the animal kingdom. The pattern generating system is in fact programmed into the developing nervous system, in a regionally specific manner, already at the early neural plate stage. Such rhythmically modulated phasic bursts were next discovered to be a general feature of developing neural networks and, largely on the basis of experimental interventions in cultured neural tissues, to contribute significantly to their morpho-physiological maturation. In particular, the level of spontaneous synchronized bursting is homeostatically regulated, and has the effect of constraining the development of excessive network excitability. After birth or hatching, this “slow-wave” activity pattern becomes sporadically suppressed in favor of sensory oriented “waking” behaviors better adapted to dealing with environmental contingencies. It nevertheless reappears periodically as “sleep” at several species-specific points in the diurnal/nocturnal cycle. Although this “default” behavior pattern evolves with development, its essential features are preserved throughout the life cycle, and are based upon a few simple mechanisms which can be both experimentally demonstrated and simulated by computer modeling. In contrast, a late onto- and phylogenetic aspect of sleep, viz., the intermittent “paradoxical” activation of the forebrain so as to mimic waking activity, is much less well understood as regards its contribution to brain development. Some recent findings dealing with this question by means of cholinergically induced “aroused” firing patterns in developing neocortical cell cultures, followed by quantitative electrophysiological assays of immediate and longterm sequelae, will be discussed in connection with their putative implications for sleep ontogeny.

  8. Recent Developments in NEURON

    OpenAIRE

    Hines, Michael L.; Carnevale, Nicholas T.

    2005-01-01

    We describe four recent additions to NEURON's suite of graphical tools that make it easier for users to create and manage models: an enhancement to the Channel Builder that facilitates the specification and efficient simulation of stochastic channel models

  9. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    GiacomoIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  10. Noise and Neuronal Heterogeneity

    OpenAIRE

    Barber, Michael J.; Ristig, Manfred L.

    2010-01-01

    We consider signal transaction in a simple neuronal model featuring intrinsic noise. The presence of noise limits the precision of neural responses and impacts the quality of neural signal transduction. We assess the signal transduction quality in relation to the level of noise, and show it to be maximized by a non-zero level of noise, analogous to the stochastic resonance effect. The quality enhancement occurs for a finite range of stimuli to a single neuron; we show how to construct network...

  11. Josephson junction simulation of neurons

    OpenAIRE

    Crotty, Patrick; Schult, Daniel; Segall, Ken

    2010-01-01

    With the goal of understanding the intricate behavior and dynamics of collections of neurons, we present superconducting circuits containing Josephson junctions that model biologically realistic neurons. These "Josephson junction neurons" reproduce many characteristic behaviors of biological neurons such as action potentials, refractory periods, and firing thresholds. They can be coupled together in ways that mimic electrical and chemical synapses. Using existing fabrication technologies, lar...

  12. Otolith-Canal Convergence In Vestibular Nuclei Neurons

    Science.gov (United States)

    Dickman, J. David; Si, Xiao-Hong

    2002-01-01

    The current final report covers the period from June 1, 1999 to May 31, 2002. The primary objective of the investigation was to determine how information regarding head movements and head position relative to gravity is received and processed by central vestibular nuclei neurons in the brainstem. Specialized receptors in the vestibular labyrinths of the inner ear function to detect angular and linear accelerations of the head, with receptors located in the semicircular canals transducing rotational head movements and receptors located in the otolith organs transducing changes in head position relative to gravity or linear accelerations of the head. The information from these different receptors is then transmitted to central vestibular nuclei neurons which process the input signals, then project the appropriate output information to the eye, head, and body musculature motor neurons to control compensatory reflexes. Although a number of studies have reported on the responsiveness of vestibular nuclei neurons, it has not yet been possible to determine precisely how these cells combine the information from the different angular and linear acceleration receptors into a correct neural output signal. In the present project, rotational and linear motion stimuli were separately delivered while recording responses from vestibular nuclei neurons that were characterized according to direct input from the labyrinth and eye movement sensitivity. Responses from neurons receiving convergent input from the semicircular canals and otolith organs were quantified and compared to non-convergent neurons.

  13. Targeted Disruption of the BDNF Gene Perturbs Brain and Sensory Neuron Development but Not Motor Neuron Development

    OpenAIRE

    Jones, Kevin R; Fariñas, Isabel; Backus, Carey; Reichardt, Louis F.

    1994-01-01

    Brain-derived neurotrophic factor (BDNF), a neurotrophin, enhances the survival and differentiation of several classes of neurons in vitro. To determine its essential functions, we have mutated the BDNF gene. Most homoxygote mutants die within 2 days after birth, but a fraction live for 2–4 weeks. These develop symptoms of nervous system dysfunction, including ataxia. The BDNF mutant homoxygotes have substantlaliy reduced numbers of cranlal and spinal sensory neurons. Although their central n...

  14. Vestibular convergence patterns in vestibular nuclei neurons of alert primates

    Science.gov (United States)

    Dickman, J. David; Angelaki, Dora E.

    2002-01-01

    Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate

  15. Signal Propagation between Neuronal Populations Controlled by Micropatterning.

    Science.gov (United States)

    Albers, Jonas; Offenhäusser, Andreas

    2016-01-01

    The central nervous system consists of an unfathomable number of functional networks enabling highly sophisticated information processing. Guided neuronal growth with a well-defined connectivity and accompanying polarity is essential for the formation of these networks. To investigate how two-dimensional protein patterns influence neuronal outgrowth with respect to connectivity and functional polarity between adjacent populations of neurons, a microstructured model system was established. Exclusive cell growth on patterned substrates was achieved by transferring a mixture of poly-l-lysine and laminin to a cell-repellent glass surface by microcontact printing. Triangular structures with different opening angle, height, and width were chosen as a pattern to achieve network formation with defined behavior at the junction of adjacent structures. These patterns were populated with dissociated primary cortical embryonic rat neurons and investigated with respect to their impact on neuronal outgrowth by immunofluorescence analysis, as well as their functional connectivity by calcium imaging. Here, we present a highly reproducible technique to devise neuronal networks in vitro with a predefined connectivity induced by the design of the gateway. Daisy-chained neuronal networks with predefined connectivity and functional polarity were produced using the presented micropatterning method. Controlling the direction of signal propagation among populations of neurons provides insights to network communication and offers the chance to investigate more about learning processes in networks by external manipulation of cells and signal cascades. PMID:27379230

  16. Rhynchophylline Protects Cultured Rat Neurons against Methamphetamine Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Dan Dan Xu

    2012-01-01

    Full Text Available Rhynchophylline (Rhy is an active component isolated from species of the genus Uncaria which has been used for the treatment of ailments to the central nervous system in traditional Chinese medicine. Besides acting as a calcium channel blocker, Rhy was also reported to be able to protect against glutamate-induced neuronal death. We thus hypothesize that Rhy may have neuroprotective activity against methamphetamine (MA. The primary neurons were cultured directly from the cerebral cortex of neonatal rats, acting as in vitro model in the present study. The neurotoxicity of MA and the protective effect of Rhy were evaluated by MTT assay. The effects of MA, Rhy or their combination on intracellular free calcium concentration ([Ca2+]i were determined in individual neocortical neurons by the Fluo-3/AM tracing method. The MTT assay demonstrated that MA has a dose-dependent neurotoxicity in neuronal cultures. The addition of Rhy prior to the exposure to MA prevented neuronal death. Time course studies with the Fluo-3/AM probe showed that Rhy significantly decreased neuronal [Ca2+]i which was elevated by the exposure to MA. Our results suggested that Rhy can protect the neuronal cultures against MA exposure and promptly attenuate intracellular calcium overload triggered by MA challenge. This is the first report demonstrating an inhibitory effect of Rhy against MA impairment in cultured neurons in vitro.

  17. The mapping of neurons and lineage classification of the larvae and adult Drosophila brain in several Gal4 transmitter lines

    OpenAIRE

    Ahad, Sally

    2015-01-01

    In Drosophila, neurons within the central nervous system are grouped into units called lineages. Each lineage contains cells derived from a single neuroblast. A neuroblast is a stem cell divides and forms lineages of neurons. In flies, the lineage can be subdivided into different parts; the neurons that are born first are closest to the neuropile (Spindler and Hartenstein, 2010). There is a birth ordering of neurons. In the embryo, the neuroblasts divide 5 to 6 times and are called primary n...

  18. Local-Circuit Phenotypes of Layer 5 Neurons in Motor-Frontal Cortex of YFP-H Mice

    OpenAIRE

    Sheets, Patrick L; Shepherd, Gordon M. G.

    2008-01-01

    Layer 5 pyramidal neurons comprise an important but heterogeneous group of cortical projection neurons. In motor-frontal cortex, these neurons are centrally involved in the cortical control of movement. Recent studies indicate that local excitatory networks in mouse motor-frontal cortex are dominated by descending pathways from layer 2/3 to 5. However, those pathways were identified in experiments involving unlabeled neurons in wild type mice. Here, to explore the possibility of class-specifi...

  19. Synapse-to-neuron ratio is inversely related to neuronal density in mature neuronal cultures

    OpenAIRE

    Cullen, D. Kacy; Gilroy, Meghan; Irons, Hillary R.; LaPlaca, Michelle C.

    2010-01-01

    Synapse formation is a fundamental process in neurons that occurs throughout development, maturity, and aging. Although these stages contain disparate and fluctuating numbers of mature neurons, tactics employed by neuronal networks to modulate synapse number as a function of neuronal density are not well understood. The goal of this study was to utilize an in vitro model to assess the influence of cell density and neuronal maturity on synapse number and distribution. Specifically, cerebral co...

  20. [Central manifestations of dystrophinopathies].

    Science.gov (United States)

    Cuisset, J-M; Rivier, F

    2015-12-01

    The dystrophin gene involved in Duchenne and Becker muscular dystrophy is expressed in three main tissues resulting in clinical manifestations: skeletal muscle, heart and central nervous system. The 6 different existing dystrophins in the brain may play a role in the maturation and plasticity of neuronal synapses in particular by their functions in clustering and stabilization of different receptors at the post synaptic membrane. The possibility of an intellectual deficiency in Duchenne muscular dystrophy is known from the original description by Duchenne himself. Current data are in line with a constant cognitive impairment with a Gaussian curve shifted intellectual quotient (IQ) at -1 standard deviation from the standard population with an average IQ around 80. Clinical manifestations suggestive of a central nervous system involvement can affect all dystrophinopathies, including isolated central presentations without myopathic sign. The phenotypic spectrum appears broader and more subtle than non specific intellectual deficiency. The isolated or shared involvement of specific cognitive functions is possible (memory functions, executive functions, attention) with or without intellectual deficiency. Autism spectrum disorders are also among the encountered events. In clinical practice, it seems worth to ask for a measurement of serum creatine kinase (CK) in these different situations, keeping in mind that pure forms of central dystrophinopathies with a normal CK level have been recently reported. PMID:26773588

  1. Adult axolotls can regenerate original neuronal diversity in response to brain injury.

    Science.gov (United States)

    Amamoto, Ryoji; Huerta, Violeta Gisselle Lopez; Takahashi, Emi; Dai, Guangping; Grant, Aaron K; Fu, Zhanyan; Arlotta, Paola

    2016-01-01

    The axolotl can regenerate multiple organs, including the brain. It remains, however, unclear whether neuronal diversity, intricate tissue architecture, and axonal connectivity can be regenerated; yet, this is critical for recovery of function and a central aim of cell replacement strategies in the mammalian central nervous system. Here, we demonstrate that, upon mechanical injury to the adult pallium, axolotls can regenerate several of the populations of neurons present before injury. Notably, regenerated neurons acquire functional electrophysiological traits and respond appropriately to afferent inputs. Despite the ability to regenerate specific, molecularly-defined neuronal subtypes, we also uncovered previously unappreciated limitations by showing that newborn neurons organize within altered tissue architecture and fail to re-establish the long-distance axonal tracts and circuit physiology present before injury. The data provide a direct demonstration that diverse, electrophysiologically functional neurons can be regenerated in axolotls, but challenge prior assumptions of functional brain repair in regenerative species. PMID:27156560

  2. Astrocytic actions on extrasynaptic neuronal currents

    Directory of Open Access Journals (Sweden)

    Balazs ePal

    2015-12-01

    Full Text Available In the last few decades, knowledge about astrocytic functions has significantly increased. It was demonstrated that astrocytes are not passive elements of the central nervous system, but active partners of neurons. There is a growing body of knowledge about the calcium excitability of astrocytes, the actions of different gliotransmitters and their release mechanisms, as well as the participation of astrocytes in the regulation of synaptic functions and their contribution to synaptic plasticity. However, astrocytic functions are even more complex than being a partner of the 'tripartite synapse', as they can influence extrasynaptic neuronal currents either by releasing substances or regulating ambient neurotransmitter levels. Several types of currents or changes of membrane potential with different kinetics and via different mechanisms can be elicited by astrocytic activity. Astrocyte-dependent phasic or tonic, inward or outward currents were described in several brain areas. Such currents, together with the synaptic actions of astrocytes, can contribute to neuromodulatory mechanisms, neurosensory and –secretory processes, cortical oscillatory activity, memory and learning or overall neuronal excitability. This mini-review is an attempt to give a brief summary of astrocyte-dependent extrasynaptic neuronal currents and their possible functional significance.

  3. Characterization of astrocytic and neuronal benzodiazepine receptors

    Energy Technology Data Exchange (ETDEWEB)

    Bender, A.S.

    1988-01-01

    Primary cultures of astrocytes and neurons express benzodiazepine receptors. Neuronal benzodiazepine receptors were of high-affinity, K{sub D} values were 7.5-43 nM and the densities of receptors (B{sub max}) were 924-4131 fmol/mg protein. Astrocytes posses a high-affinity benzodiazepine receptor, K{sub D} values were 6.6-13 nM. The B{sub max} values were 6,033-12,000 fmol/mg protein. The pharmacological profile of the neuronal benzodiazepine receptor was that of the central-type benzodiazepine receptor, where clonazepam has a high-affinity and Ro 5-4864 (4{prime}-chlorodiazepam) has a low-affinity. Whereas astrocytic benzoidazepine receptor was characteristic of the so called peripheral-type benzodiazepine receptors, which shows a high-affinity towards Ro 5-4863, and a low-affinity towards clonazepam. The astrocytic benzodiazepine receptors was functionally correlated with voltage dependent calcium channels, since dihydropyridines and benzodiazepines interacted with ({sup 3}H) diazepam and ({sup 3}H) nitrendipine receptors with the same rank order of potency, showing a statistically significant correlation. No such correlation was observed in neurons.

  4. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  5. Aspartame affects the electrical activity of projection neurons in central nervous system by inhibiting the calcium channel current in Drosophila%阿斯巴甜抑制钙通道电流影响果蝇中枢投射神经元电活动

    Institute of Scientific and Technical Information of China (English)

    王琦; 齐旻悦; 吴诗哲; 顾怀宇

    2016-01-01

    目的:从突触水平检验不同浓度的阿斯巴甜对果蝇中枢神经元影响及作用机制,为进一步探究阿斯巴甜生物安全性提供支持。方法采用膜片钳全细胞记录的方法,通过离子通道的阻断与分离,分别记录给药前后果蝇投射神经元(PN)的胆碱能突触微小兴奋性电流(mEPSC)、钙离子通道电流和钙通道瞬时电流密度,统计并分析mEPSC幅值和频率,以及钙通道电流峰值和瞬时电流密度。结果与给药前相比,8μg/ml阿斯巴甜会降低果蝇PN的mEPSC频率(t=22.05,P<0.01)、钙电流峰值(t=5.01,P<0.01)和瞬时电流密度(t=2.68,P<0.05);2μg/ml阿斯巴甜会降低果蝇PN的mEPSC频率(t=3.15,P<0.05),其他实验指标差异则无统计学意义(P>0.05)。结论一定浓度的阿斯巴甜可影响果蝇中枢投射神经元的电活动,并且该作用可能是通过影响钙电流而实现的。%Objective To study the effect of different concentrations of aspartame in Drosophila central nervous system , especially to the electrical activity of projection neuron (PN), and evaluate the biological security of aspartame and neural mechanism. Methods The whole-cell electrophysiological signals of projection neurons in Drosophila was detected by patch clamp. The recordings of mini excitatory postsynaptic currents (mEPSC) and calcium currents were performed in both pre-and post-of aspartame treatment. Results Aspartame treatments with 8 μg/ml could reduce the frequency of mEPSC (t=22.05, P0.05) at the same time. In addition, there have no statistically significant in aspartame treatments with 2μg/ml experimental groups except for the frequency of mEPSC (t=3.15, P<0.05). Conclusion There has a range of aspartame concentration can significantly affect the electrical activity of projection neurons in Drosophila central nervous system, which could be effective via the calcium

  6. Anorexia and Impaired Glucose Metabolism in Mice With Hypothalamic Ablation of Glut4 Neurons

    OpenAIRE

    Ren, Hongxia; Lu, Taylor Y.; McGraw, Timothy E.; Accili, Domenico

    2014-01-01

    The central nervous system (CNS) uses glucose independent of insulin. Nonetheless, insulin receptors and insulin-responsive glucose transporters (Glut4) often colocalize in neurons (Glut4 neurons) in anatomically and functionally distinct areas of the CNS. The apparent heterogeneity of Glut4 neurons has thus far thwarted attempts to understand their function. To answer this question, we used Cre-dependent, diphtheria toxin–mediated cell ablation to selectively remove basal hypothalamic Glut4 ...

  7. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain

    OpenAIRE

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi -Hartenstein, Amelia; Hartenstein, Volker

    2009-01-01

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100–150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death remo...

  8. Lymphocytes with cytotoxic activity induce rapid microtubule axonal destabilization independently and before signs of neuronal death

    OpenAIRE

    Arundhati Jana; Bonnie N. Dittel; Kalipada Pahan; Rajiv Ahuja; Sreemanti Basu; Avijit Ray; Vijaya L. Bodiga; Leah P. Shriver; Nichole M. Miller

    2013-01-01

    MS (multiple sclerosis) is the most prevalent autoimmune disease of the CNS (central nervous system) historically characterized as an inflammatory and demyelinating disease. More recently, extensive neuronal pathology has lead to its classification as a neurodegenerative disease as well. While the immune system initiates the autoimmune response it remains unclear how it orchestrates neuronal damage. In our previous studies, using in vitro cultured embryonic neurons, we demonstrated tha...

  9. Connexins in neurons and glia: targets for intervention in disease and injury

    OpenAIRE

    Moore, Keith B.; John O′Brien

    2015-01-01

    Both neurons and glia throughout the central nervous system are organized into networks by gap junctions. Among glia, gap junctions facilitate metabolic homeostasis and intercellular communication. Among neurons, gap junctions form electrical synapses that function primarily for communication. However, in neurodegenerative states due to disease or injury gap junctions may be detrimental to survival. Electrical synapses may facilitate hyperactivity and bystander killing among neurons, while ga...

  10. GABAergic Neuron Specification in the Spinal Cord, the Cerebellum, and the Cochlear Nucleus

    OpenAIRE

    Kei Hori; Mikio Hoshino

    2012-01-01

    In the nervous system, there are a wide variety of neuronal cell types that have morphologically, physiologically, and histochemically different characteristics. These various types of neurons can be classified into two groups: excitatory and inhibitory neurons. The elaborate balance of the activities of the two types is very important to elicit higher brain function, because its imbalance may cause neurological disorders, such as epilepsy and hyperalgesia. In the central nervous system, inhi...

  11. Modulation of neuronal CXCR4 by the μ-opioid agonist DAMGO

    OpenAIRE

    Patel, Jeegar P; Sengupta, Rajarshi; Bardi, Giuseppe; Khan, Muhammad Z; Mullen-Przeworski, Anna; Meucci, Olimpia

    2006-01-01

    The chemokine receptor CXCR4 regulates neuronal survival and differentiation and is involved in a number of pathologies, including cancer and human immunodeficiency virus (HIV). Recent data suggest that chemokines act in concert with neurotransmitters and neuropeptides, such as opioids. This study aimed to determine whether μ-opioid agonists alter the effect of CXCL12 (the specific CXCR4 ligand) on central neurons. Neuronal expression of CXCR4 and μ-opioid receptors (MORs) was analyzed by Wes...

  12. Simultaneous monitoring of three key neuronal functions in primary neuronal cultures

    OpenAIRE

    Evans, Gareth John Owen; Cousin, Michael Alan

    2007-01-01

    The coupling of Ca(2+) influx to synaptic vesicle (SV) recycling in nerve terminals is essential for neurotransmitter release and thus neuronal communication. Both of these parameters have been monitored using fluorescent reporter dyes such as fura-2 and FM1-43 in single central nerve terminals. However, their simultaneous monitoring has been hampered by the proximity of their fluorescence spectra, resulting in significant contamination of their signals by bleedthrough. We have developed an a...

  13. GABA-ERGIC NEURONS IN THE RAT STRIATUM UNDER NORMAL AND ISCHEMIC INJURY

    Directory of Open Access Journals (Sweden)

    E.S. Petrova

    2013-09-01

    Full Text Available Gamma-aminobutyric acid (GABA is a major inhibitory neurotransmitter in the central nervous system. Enzyme glutamate decarboxylase (GAD-67 is a marker of GABA-ergic neurons. The purpose of this study is to examine the distribution of GAD-67-immunopositive neurons in the striatum of rats under experimental conditions, reproducing brief focal cerebral ischemia. Endovascular occlusion of the left middle cerebral artery in rats was performed. Duration of circulatory disorders was 30 min, the time of reperfusion was 48 hours. With counting GAD-67-immunopositive neurons in the striatum was found that the number of GABA-ergic neurons in the striatum ipsilateral hemisphere is reduced by 40%. In the contralateral hemisphere, the distribution and structure of the neurons is not different from controls. It is shown that GABA-ergic neurons are less susceptible to damage, as compared to other neurons phenotypes.

  14. Muscarinic receptor activation elicits sustained, recurring depolarizations in reticulospinal neurons.

    Science.gov (United States)

    Smetana, R W; Alford, S; Dubuc, R

    2007-05-01

    In lampreys, brain stem reticulospinal (RS) neurons constitute the main descending input to the spinal cord and activate the spinal locomotor central pattern generators. Cholinergic nicotinic inputs activate RS neurons, and consequently, induce locomotion. Cholinergic muscarinic agonists also induce locomotion when applied to the brain stem of birds. This study examined whether bath applications of muscarinic agonists could activate RS neurons and initiate motor output in lampreys. Bath applications of 25 microM muscarine elicited sustained, recurring depolarizations (mean duration of 5.0 +/- 0.5 s recurring with a mean period of 55.5 +/- 10.3 s) in intracellularly recorded rhombencephalic RS neurons. Calcium imaging experiments revealed that muscarine induced oscillations in calcium levels that occurred synchronously within the RS neuron population. Bath application of TTX abolished the muscarine effect, suggesting the sustained depolarizations in RS neurons are driven by other neurons. A series of lesion experiments suggested the caudal half of the rhombencephalon was necessary. Microinjections of muscarine (75 microM) or the muscarinic receptor (mAchR) antagonist atropine (1 mM) lateral to the rostral pole of the posterior rhombencephalic reticular nucleus induced or prevented, respectively, the muscarinic RS neuron response. Cells immunoreactive for muscarinic receptors were found in this region and could mediate this response. Bath application of glutamatergic antagonists (6-cyano-7-nitroquinoxaline-2,3-dione/D-2-amino-5-phosphonovaleric acid) abolished the muscarine effect, suggesting that glutamatergic transmission is needed for the effect. Ventral root recordings showed spinal motor output coincides with RS neuron sustained depolarizations. We propose that unilateral mAchR activation on specific cells in the caudal rhombencephalon activates a circuit that generates synchronous sustained, recurring depolarizations in bilateral populations of RS neurons. PMID

  15. New findings on neuron development

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A mature neuron receives inputs from multiple dendrites and sends its output to other neurons via a single axon.This polarized morphology requires proper axonal/dendritic differentiation during development.

  16. Regulation of Peripheral Inflammation by the Central Nervous System

    OpenAIRE

    Waldburger, Jean-Marc; Firestein, Gary S.

    2010-01-01

    In inflammatory disorders such as rheumatoid arthritis, cytokines and danger signals are sensed by the central nervous system, which adapts behavior and physiologic responses during systemic stress. The central nervous system can also signal the periphery to modulate inflammation through efferent hormonal and neuronal pathways. The brain and spinal cord are involved in this bidirectional interaction. A variety of neuronal pathways that modulate synovial inflammation have been implicated, incl...

  17. Chaotic neuron clock

    International Nuclear Information System (INIS)

    Highlights: → A chaotic model of spontaneous neuron firing. → Mapping the irregular spiking time-series into telegraph signals. → Fundamental frequency of the Rossler attractor provides periodic component. → Spiking time-series from spontaneous activity of hippocampal neurons. → Comparison shows good agreement between the model and the experiment. - Abstract: A chaotic model of spontaneous (without external stimulus) neuron firing has been analyzed by mapping the irregular spiking time-series into telegraph signals. In this model the fundamental frequency of chaotic Roessler attractor provides (with a period doubling) the strong periodic component of the generated irregular signal. The exponentially decaying broad-band part of the spectrum of the Roessler attractor has been transformed by the threshold firing mechanism into a scaling tale. These results are compared with irregular spiking time-series obtained in vitro from a spontaneous activity of hippocampal (CA3) singular neurons (rat's brain slice culture). The comparison shows good agreement between the model and experimentally obtained spectra.

  18. Neuronal nets in robotics

    International Nuclear Information System (INIS)

    The paper gives a generic idea of the solutions that the neuronal nets contribute to the robotics. The advantages and the inconveniences are exposed that have regarding the conventional techniques. It also describe the more excellent applications as the pursuit of trajectories, the positioning based on images, the force control or of the mobile robots management, among others

  19. Effect of tapentadol on neurons in the locus coeruleus

    OpenAIRE

    Torres-Sanchez, Sonia; Alba-Delgado, Cristina; Llorca-Torralba, Meritxell; Mico, Juan A.; Berrocoso, Esther

    2013-01-01

    Tapentadol is a novel centrally acting drug that combines mu-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition (NRI), producing analgesic effects in various painful conditions. We investigated the acute effects of tapentadol in the locus coeruleus (LC), a central nucleus regulated by the noradrenergic and opioid systems that is critical in pain modulation. In single-unit extracellular recordings of LC neurons from anaesthetized male SpragueeDawley rats, tapentado...

  20. Spike-timing error backpropagation in theta neuron networks.

    Science.gov (United States)

    McKennoch, Sam; Voegtlin, Thomas; Bushnell, Linda

    2009-01-01

    The main contribution of this letter is the derivation of a steepest gradient descent learning rule for a multilayer network of theta neurons, a one-dimensional nonlinear neuron model. Central to our model is the assumption that the intrinsic neuron dynamics are sufficient to achieve consistent time coding, with no need to involve the precise shape of postsynaptic currents; this assumption departs from other related models such as SpikeProp and Tempotron learning. Our results clearly show that it is possible to perform complex computations by applying supervised learning techniques to the spike times and time response properties of nonlinear integrate and fire neurons. Networks trained with our multilayer training rule are shown to have similar generalization abilities for spike latency pattern classification as Tempotron learning. The rule is also able to train networks to perform complex regression tasks that neither SpikeProp or Tempotron learning appears to be capable of. PMID:19431278

  1. Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora).

    Science.gov (United States)

    Voronezhskaya, Elena E; Tyurin, Sergei A; Nezlin, Leonid P

    2002-02-25

    Chitons are the most primitive molluscs and, thus, a matter of considerable interest for understanding both basic principles of molluscan neurogenesis and phylogeny. The development of the nervous system in trochophores of the chiton Ischnochiton hakodadensis from hatching to metamorphosis is described in detail by using confocal laser scanning microscopy and antibodies raised against serotonin, FMRFamide, and acetylated alpha tubulin. The earliest nervous elements detected were peripheral neurons located in the frontal hemisphere of posthatching trochophores and projecting into the apical organ. Among them, two pairs of unique large lateral cells appear to pioneer the pathways of developing adult nervous system. Chitons possess an apical organ that contains the largest number of neurons among all molluscan larvae investigated so far. Besides, many pretrochal neurons are situated outside the apical organ. The prototroch is not innervated by larval neurons. The first neurons of the developing adult central nervous system (CNS) appear later in the cerebral ganglion and pedal cords. None of the neurons of the larval nervous system are retained in the adult CNS. They cease to express their transmitter content and disintegrate after settlement. Although the adult CNS of chitons resembles that of polychaetes, their general scenario of neuronal development resembles that of advanced molluscs and differs from annelids. Thus, our data demonstrate the conservative pattern of molluscan neurogenesis and suggest independent origin of molluscan and annelid trochophores. PMID:11835180

  2. Cultures of Cerebellar Granule Neurons

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Parizad M. Bilimoria and Azad Bonni1 Corresponding author ([]()) ### INTRODUCTION Primary cultures of granule neurons from the post-natal rat cerebellum provide an excellent model system for molecular and cell biological studies of neuronal development and function. The cerebellar cortex, with its highly organized structure and few neuronal subtypes, offers a well-characterized neural circuitry. Many fundamental insight...

  3. Transmembrane Agrin Regulates Dendritic Filopodia and Synapse Formation in Mature Hippocampal Neuron Cultures

    OpenAIRE

    McCroskery, Seumas; Bailey, Allison; Lin, Lin; Daniels, Mathew P.

    2009-01-01

    The transmembrane isoform of agrin (Tm-agrin) is the predominant form expressed in the brain but its putative roles in brain development are not well understood. Recent reports have implicated Tm-agrin in the formation and stabilization of filopodia on neurites of immature central and peripheral neurons in culture. In maturing central neurons, dendritic filopodia are believed to facilitate synapse formation. In the present study we have investigated the role of Tm-agrin in regulation of dendr...

  4. Rhythm dynamics of complex neuronal networks with mixed bursting neurons

    International Nuclear Information System (INIS)

    The spatiotemporal order and rhythm dynamics of a complex neuronal network with mixed bursting neurons are studied in this paper. A quantitative characteristic, the width factor, is introduced to describe the rhythm dynamics of an individual neuron, and the average width factor is used to characterize the rhythm dynamics of a neuronal network. An r parameter is introduced to denote the ratio of the short bursting neurons in the network. Then we investigate the effect of the ratio on the rhythm dynamics of the neuronal network. The critical value of r is derived, and the neurons in the network always remain short bursting when the r ratio is larger than the critical value. (general)

  5. Rhythm dynamics of complex neuronal networks with mixed bursting neurons

    Institute of Scientific and Technical Information of China (English)

    Lü Yong-Bing; Shi Xia; Zheng Yan-Hong

    2013-01-01

    The spatiotemporal order and rhythm dynamics of a complex neuronal network with mixed bursting neurons are studied in this paper.A quantitative characteristic,the width factor,is introduced to describe the rhythm dynamics of an individual neuron,and the average width factor is used to characterize the rhythm dynamics of a neuronal network.An r parameter is introduced to denote the ratio of the short bursting neurons in the network.Then we investigate the effect of the ratio on the rhythm dynamics of the neuronal network.The critical value of r is derived,and the neurons in the network always remain short bursting when the r ratio is larger than the critical value.

  6. A Balance Equation Determines a Switch in Neuronal Excitability

    OpenAIRE

    Franci, Alessio; Drion, Guillaume; Seutin, Vincent; Sepulchre, Rodolphe

    2012-01-01

    Author Summary Understanding the changing electrophysiological signatures of neurons in different physiological and pharmacological conditions is a central focus of experimental electrophysiology because a key component of cell signaling in the nervous system. Computational modeling may assist experimentalists in this quest by identifying core mechanisms and suggesting pharmacological targets from a mathematical analysis of the model. But a successful interplay between experiments and mathema...

  7. Clinical characteristics of the dysfunctions of the neuronal migration

    International Nuclear Information System (INIS)

    This article describes a group of 22 pediatric patients with neuronal migration anomalies, studied in the department of neuro-pediatrics in the Hospital Militar Central. The clinical findings are emphasized and the value of diagnostic images in the identification and classification of these anomalies is shown

  8. Computational modeling of optogenetic neuronal excitation under complex illumination conditions using a Matlab-Neuron interface (Conference Presentation)

    Science.gov (United States)

    Yona, Guy; Weissler, Yonatan; Meitav, Nizan; Guzi, Eliran; Rifold, Dafna D.; Kahn, Itamar; Shoham, Shy

    2016-03-01

    Optogenetics has in recent years become a central tool in neuroscience research. Creating a realistic model of optogenetic neuronal excitation is of crucial importance for controlling the activation levels of various neuronal populations in different depths, predicting experimental results and designing the optical systems. However, current approaches to modeling light propagation through rodents' brain tissue suffer from major shortcomings and comprehensive modeling of local illumination levels together with other important factors governing excitation (i.e., cellular morphology, channel dynamics and expression), are still lacking. To address this challenge we introduce a new simulation tool for optogenetic neuronal excitation under complex and realistic illumination conditions that implements a detailed physical model for light scattering (in MATLAB) together with neuron morphology and channelrhodopsin-2 model (in NEURON). These two disparate simulation environments were interconnected using a newly developed generic interface termed 'NeuroLab'. Applying this method, we show that in a layer-V cortical neuron, the relative contribution of the apical dendrites to neuronal excitation is considerably greater than that of the soma or basal dendrites, when illuminated from the surface.

  9. How neurons migrate: a dynamic in-silico model of neuronal migration in the developing cortex

    LENUS (Irish Health Repository)

    Setty, Yaki

    2011-09-30

    Abstract Background Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process. Results The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration. Conclusions We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise

  10. Phosphoinositide signaling in somatosensory neurons.

    Science.gov (United States)

    Rohacs, Tibor

    2016-05-01

    Somatosensory neurons of the dorsal root ganglia (DRG) and trigeminal ganglia (TG) are responsible for detecting thermal and tactile stimuli. They are also the primary neurons mediating pain and itch. A large number of cell surface receptors in these neurons couple to phospholipase C (PLC) enzymes leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the generation of downstream signaling molecules. These neurons also express many different ion channels, several of which are regulated by phosphoinositides. This review will summarize the knowledge on phosphoinositide signaling in DRG neurons, with special focus on effects on sensory and other ion channels. PMID:26724974

  11. The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior

    OpenAIRE

    Alessandra Matzeu

    2014-01-01

    A major challenge for the successful treatment of drug addiction is the long-lasting susceptibility to relapse and multiple processes that have been implicated in the compulsion to resume drug intake during abstinence. Recently, the orexin/hypocretin (Orx/Hcrt) system has been shown to play a role in drug-seeking behavior. The Orx/Hcrt system regulates a wide range of physiological processes, including feeding, energy metabolism, and arousal. It has also been shown to be recruited by drugs of...

  12. Intranasal treatment of central nervous system dysfunction in humans.

    Science.gov (United States)

    Chapman, Colin D; Frey, William H; Craft, Suzanne; Danielyan, Lusine; Hallschmid, Manfred; Schiöth, Helgi B; Benedict, Christian

    2013-10-01

    One of the most challenging problems facing modern medicine is how to deliver a given drug to a specific target at the exclusion of other regions. For example, a variety of compounds have beneficial effects within the central nervous system (CNS), but unwanted side effects in the periphery. For such compounds, traditional oral or intravenous drug delivery fails to provide benefit without cost. However, intranasal delivery is emerging as a noninvasive option for delivering drugs to the CNS with minimal peripheral exposure. Additionally, this method facilitates the delivery of large and/or charged therapeutics, which fail to effectively cross the blood-brain barrier (BBB). Thus, for a variety of growth factors, hormones, neuropeptides and therapeutics including insulin, oxytocin, orexin, and even stem cells, intranasal delivery is emerging as an efficient method of administration, and represents a promising therapeutic strategy for the treatment of diseases with CNS involvement, such as obesity, Alzheimer's disease, Parkinson's disease, Huntington's disease, depression, anxiety, autism spectrum disorders, seizures, drug addiction, eating disorders, and stroke. PMID:23135822

  13. Motor neurone disease

    OpenAIRE

    Talbot, K.

    2002-01-01

    Motor neurone disease (MND), or amyotrophic lateral sclerosis (ALS), is a neurodegenerative disorder of unknown aetiology. Progressive motor weakness and bulbar dysfunction lead to premature death, usually from respiratory failure. Confirming the diagnosis may initially be difficult until the full clinical features are manifest. For all forms of the disease there is a significant differential diagnosis to consider, including treatable conditions, and therefore specialist neurological opinion ...

  14. The neuron classification problem

    OpenAIRE

    Bota, Mihail; Swanson, Larry W.

    2007-01-01

    A systematic account of neuron cell types is a basic prerequisite for determining the vertebrate nervous system global wiring diagram. With comprehensive lineage and phylogenetic information unavailable, a general ontology based on structure-function taxonomy is proposed and implemented in a knowledge management system, and a prototype analysis of select regions (including retina, cerebellum, and hypothalamus) presented. The supporting Brain Architecture Knowledge Management System (BAMS) Neu...

  15. Connexins in neurons and glia: targets for intervention in disease and injury

    Directory of Open Access Journals (Sweden)

    Keith B Moore

    2015-01-01

    Full Text Available Both neurons and glia throughout the central nervous system are organized into networks by gap junctions. Among glia, gap junctions facilitate metabolic homeostasis and intercellular communication. Among neurons, gap junctions form electrical synapses that function primarily for communication. However, in neurodegenerative states due to disease or injury gap junctions may be detrimental to survival. Electrical synapses may facilitate hyperactivity and bystander killing among neurons, while gap junction hemichannels in glia may facilitate inflammatory signaling and scar formation. Advances in understanding mechanisms of plasticity of electrical synapses and development of molecular therapeutics to target glial gap junctions and hemichannels offer new hope to pharmacologically limit neuronal degeneration and enhance recovery.

  16. H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep-wake regulatory neurons in mice.

    Science.gov (United States)

    Tesoriero, Chiara; Codita, Alina; Zhang, Ming-Dong; Cherninsky, Andrij; Karlsson, Håkan; Grassi-Zucconi, Gigliola; Bertini, Giuseppe; Harkany, Tibor; Ljungberg, Karl; Liljeström, Peter; Hökfelt, Tomas G M; Bentivoglio, Marina; Kristensson, Krister

    2016-01-19

    An increased incidence in the sleep-disorder narcolepsy has been associated with the 2009-2010 pandemic of H1N1 influenza virus in China and with mass vaccination campaigns against influenza during the pandemic in Finland and Sweden. Pathogenetic mechanisms of narcolepsy have so far mainly focused on autoimmunity. We here tested an alternative working hypothesis involving a direct role of influenza virus infection in the pathogenesis of narcolepsy in susceptible subjects. We show that infection with H1N1 influenza virus in mice that lack B and T cells (Recombinant activating gene 1-deficient mice) can lead to narcoleptic-like sleep-wake fragmentation and sleep structure alterations. Interestingly, the infection targeted brainstem and hypothalamic neurons, including orexin/hypocretin-producing neurons that regulate sleep-wake stability and are affected in narcolepsy. Because changes occurred in the absence of adaptive autoimmune responses, the findings show that brain infections with H1N1 virus have the potential to cause per se narcoleptic-like sleep disruption. PMID:26668381

  17. Consistent estimation of complete neuronal connectivity in large neuronal populations using sparse "shotgun" neuronal activity sampling.

    Science.gov (United States)

    Mishchenko, Yuriy

    2016-10-01

    We investigate the properties of recently proposed "shotgun" sampling approach for the common inputs problem in the functional estimation of neuronal connectivity. We study the asymptotic correctness, the speed of convergence, and the data size requirements of such an approach. We show that the shotgun approach can be expected to allow the inference of complete connectivity matrix in large neuronal populations under some rather general conditions. However, we find that the posterior error of the shotgun connectivity estimator grows quickly with the size of unobserved neuronal populations, the square of average connectivity strength, and the square of observation sparseness. This implies that the shotgun connectivity estimation will require significantly larger amounts of neuronal activity data whenever the number of neurons in observed neuronal populations remains small. We present a numerical approach for solving the shotgun estimation problem in general settings and use it to demonstrate the shotgun connectivity inference in the examples of simulated synfire and weakly coupled cortical neuronal networks. PMID:27515518

  18. Calbindin-D-28K like immunoreactivity in superficial dorsal horn neurons and effects of sciatic chronic constriction injury.

    Science.gov (United States)

    Stebbing, M J; Balasubramanyan, S; Smith, P A

    2016-06-01

    The neuropathic pain that results from peripheral nerve injury is associated with alterations in the properties of neurons in the superficial spinal laminae. Chronic constriction injury (CCI) of the rat sciatic nerve increases excitatory synaptic drive to excitatory neurons in the substantia gelatinosa while limiting that to inhibitory neurons. Since the calcium-binding protein calbindin D-28K has been associated with excitatory neurons, we examined whether CCI altered the properties of neurons expressing calbindin-like immunoreactivity (Cal+). These account for 30% of the neurons in lamina I and II. Calbindin did not co-localize with any particular electrophysiological phenotype of neuron; in substantia gelatinosa, it was found in some tonic, delay, irregular, phasic and transient firing neurons and in some cells that displayed central, radial or vertical morphology. When neuronal phenotype was defined more precisely in terms of both morphology and electrophysiological properties, no strong correlation with calbindin expression was found. The frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSC) in calbindin negative (Cal-) neurons was greater than that in Cal+ neurons. CCI did not alter the proportion of Cal+ neurons in the dorsal horn. Although CCI promoted a fourfold increase in sEPSC frequency in Cal+ neurons, sEPSC amplitude was reduced by 22% and charge transfer per second was unchanged. Since synaptic drive to Cal+ neurons is weak and there is no firm correlation between neuronal phenotype and calbindin expression, it is doubtful whether these neurons play a major role in the generation of central sensitization. PMID:26975894

  19. Regulation of neuronal chloride homeostasis by neuromodulators.

    Science.gov (United States)

    Mahadevan, Vivek; Woodin, Melanie A

    2016-05-15

    KCC2 is the central regulator of neuronal Cl(-) homeostasis, and is critical for enabling strong hyperpolarizing synaptic inhibition in the mature brain. KCC2 hypofunction results in decreased inhibition and increased network hyperexcitability that underlies numerous disease states including epilepsy, neuropathic pain and neuropsychiatric disorders. The current holy grail of KCC2 biology is to identify how we can rescue KCC2 hypofunction in order to restore physiological levels of synaptic inhibition and neuronal network activity. It is becoming increasingly clear that diverse cellular signals regulate KCC2 surface expression and function including neurotransmitters and neuromodulators. In the present review we explore the existing evidence that G-protein-coupled receptor (GPCR) signalling can regulate KCC2 activity in numerous regions of the nervous system including the hypothalamus, hippocampus and spinal cord. We present key evidence from the literature suggesting that GPCR signalling is a conserved mechanism for regulating chloride homeostasis. This evidence includes: (1) the activation of group 1 metabotropic glutamate receptors and metabotropic Zn(2+) receptors strengthens GABAergic inhibition in CA3 pyramidal neurons through a regulation of KCC2; (2) activation of the 5-hydroxytryptamine type 2A serotonin receptors upregulates KCC2 cell surface expression and function, restores endogenous inhibition in motoneurons, and reduces spasticity in rats; and (3) activation of A3A-type adenosine receptors rescues KCC2 dysfunction and reverses allodynia in a model of neuropathic pain. We propose that GPCR-signals are novel endogenous Cl(-) extrusion enhancers that may regulate KCC2 function. PMID:26876607

  20. Metabolic reprogramming during neuronal differentiation.

    Science.gov (United States)

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation. PMID:27058317

  1. Directed neuronal differentiation of human embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Noggle Scott A

    2003-10-01

    Full Text Available Abstract Background We have developed a culture system for the efficient and directed differentiation of human embryonic stem cells (HESCs to neural precursors and neurons. HESC were maintained by manual passaging and were differentiated to a morphologically distinct OCT-4+/SSEA-4- monolayer cell type prior to the derivation of embryoid bodies. Embryoid bodies were grown in suspension in serum free conditions, in the presence of 50% conditioned medium from the human hepatocarcinoma cell line HepG2 (MedII. Results A neural precursor population was observed within HESC derived serum free embryoid bodies cultured in MedII conditioned medium, around 7–10 days after derivation. The neural precursors were organized into rosettes comprised of a central cavity surrounded by ring of cells, 4 to 8 cells in width. The central cells within rosettes were proliferating, as indicated by the presence of condensed mitotic chromosomes and by phosphoHistone H3 immunostaining. When plated and maintained in adherent culture, the rosettes of neural precursors were surrounded by large interwoven networks of neurites. Immunostaining demonstrated the expression of nestin in rosettes and associated non-neuronal cell types, and a radial expression of Map-2 in rosettes. Differentiated neurons expressed the markers Map-2 and Neurofilament H, and a subpopulation of the neurons expressed tyrosine hydroxylase, a marker for dopaminergic neurons. Conclusion This novel directed differentiation approach led to the efficient derivation of neuronal cultures from HESCs, including the differentiation of tyrosine hydroxylase expressing neurons. HESC were morphologically differentiated to a monolayer OCT-4+ cell type, which was used to derive embryoid bodies directly into serum free conditions. Exposure to the MedII conditioned medium enhanced the derivation of neural precursors, the first example of the effect of this conditioned medium on HESC.

  2. Differentiation and molecular heterogeneity of inhibitory and excitatory neurons associated with midbrain dopaminergic nuclei.

    Science.gov (United States)

    Lahti, Laura; Haugas, Maarja; Tikker, Laura; Airavaara, Mikko; Voutilainen, Merja H; Anttila, Jenni; Kumar, Suman; Inkinen, Caisa; Salminen, Marjo; Partanen, Juha

    2016-02-01

    Local inhibitory GABAergic and excitatory glutamatergic neurons are important for midbrain dopaminergic and hindbrain serotonergic pathways controlling motivation, mood, and voluntary movements. Such neurons reside both within the dopaminergic nuclei, and in adjacent brain structures, including the rostromedial and laterodorsal tegmental nuclei. Compared with the monoaminergic neurons, the development, heterogeneity, and molecular characteristics of these regulatory neurons are poorly understood. We show here that different GABAergic and glutamatergic subgroups associated with the monoaminergic nuclei express specific transcription factors. These neurons share common origins in the ventrolateral rhombomere 1, where the postmitotic selector genes Tal1, Gata2 and Gata3 control the balance between the generation of inhibitory and excitatory neurons. In the absence of Tal1, or both Gata2 and Gata3, the GABAergic precursors adopt glutamatergic fates and populate the glutamatergic nuclei in excessive numbers. Together, our results uncover developmental regulatory mechanisms, molecular characteristics, and heterogeneity of central regulators of monoaminergic circuits. PMID:26718003

  3. Mathematical Modeling of Subthreshold Resonant Properties in Pyloric Dilator Neurons

    Science.gov (United States)

    Vazifehkhah Ghaffari, Babak; Kouhnavard, Mojgan; Aihara, Takeshi; Kitajima, Tatsuo

    2015-01-01

    Various types of neurons exhibit subthreshold resonance oscillation (preferred frequency response) to fluctuating sinusoidal input currents. This phenomenon is well known to influence the synaptic plasticity and frequency of neural network oscillation. This study evaluates the resonant properties of pacemaker pyloric dilator (PD) neurons in the central pattern generator network through mathematical modeling. From the pharmacological point of view, calcium currents cannot be blocked in PD neurons without removing the calcium-dependent potassium current. Thus, the effects of calcium (ICa) and calcium-dependent potassium (IKCa) currents on resonant properties remain unclear. By taking advantage of Hodgkin-Huxley-type model of neuron and its equivalent RLC circuit, we examine the effects of changing resting membrane potential and those ionic currents on the resonance. Results show that changing the resting membrane potential influences the amplitude and frequency of resonance so that the strength of resonance (Q-value) increases by both depolarization and hyperpolarization of the resting membrane potential. Moreover, hyperpolarization-activated inward current (Ih) and ICa (in association with IKCa) are dominant factors on resonant properties at hyperpolarized and depolarized potentials, respectively. Through mathematical analysis, results indicate that Ih and IKCa affect the resonant properties of PD neurons. However, ICa only has an amplifying effect on the resonance amplitude of these neurons. PMID:25960999

  4. HIV, opiates, and enteric neuron dysfunction.

    Science.gov (United States)

    Galligan, J J

    2015-04-01

    Human immune deficient virus (HIV) is an immunosuppressive virus that targets CD4(+) T-lymphocytes. HIV infections cause increased susceptibility to opportunistic infections and cancer. HIV infection can also alter central nervous system (CNS) function causing cognitive impairment. HIV does not infect neurons but it does infect astrocytes and microglia in the CNS. HIV can also infect enteric glia initiating an intestinal inflammatory response which causes enteric neural injury and gut dysfunction. Part of the inflammatory response is HIV induced production of proteins including, Transactivator of transcription (Tat) which contribute to neuronal injury after release from HIV infected glial cells. A risk factor for HIV infection is intravenous drug use with contaminated needles and chronic opiate use can exacerbate neural injury in the nervous system. While most research focuses on the actions of Tat and other HIV related proteins and opiates on the brain, recent data indicate that Tat can cause intestinal inflammation and disruption of enteric neuron function, including alteration of Na(+) channel activity and action potential generation. A paper published in this issue of Neurogastroenterology and Motility extends these findings by identifying an interaction between Tat and morphine on enteric neuron Na(+) channels and on intestinal motility in vivo using a Tat expressing transgenic mouse model. These new data show that Tat protein can enhance the inhibitory actions of morphine on action potential generation and propulsive motility. These findings are important to our understanding of how HIV causes diarrhea in infected patients and for the use of opioid drugs to treat HIV-induced diarrhea. PMID:25817054

  5. Neuroprotection Signaling of Nuclear Akt in Neuronal Cells

    OpenAIRE

    Ahn, Jee-Yin

    2014-01-01

    Akt is one of the central kinases that perform a pivotal function in mediating survival signaling in a wide range of neuronal cell types in response to growth factor stimulation. The recent findings of a number of targets for Akt suggest that it prohibits neuronal death by both impinging on the cytoplasmic cell death machinery and by regulating nuclear proteins. The presence of active Akt in the nuclei of mammalian cells is no longer debatable, and this has been corroborated by the finding of...

  6. OPTICAL COHERENCE TOMOGRAPHY IN JUVENILE NEURONAL CEROID LIPOFUSCINOSIS

    DEFF Research Database (Denmark)

    Hansen, Michael S; Hove, Marianne Nørgaard; Jensen, Hanne;

    2016-01-01

    PURPOSE: To report optical coherence tomography findings obtained in two patients with juvenile neuronal ceroid lipofuscinosis. METHODS: Two case reports. RESULTS: Two 7-year-old girls presented with decreased visual acuity, clumsiness, night blindness, and behavioral problems. Optical coherence...... tomography showed an overall reduction in thickness of the central retina, as well as the outer and the inner retinal layers. The degenerative retinal changes were the same, despite different mutations in the CLN3 gene. CONCLUSION: In these rare cases of juvenile neuronal ceroid lipofuscinosis, optical...

  7. The origin of cortical neurons

    OpenAIRE

    Parnavelas J.G.

    2002-01-01

    Neurons of the mammalian cerebral cortex comprise two broad classes: pyramidal neurons, which project to distant targets, and the inhibitory nonpyramidal cells, the cortical interneurons. Pyramidal neurons are generated in the germinal ventricular zone, which lines the lateral ventricles, and migrate along the processes of radial glial cells to their positions in the developing cortex in an `inside-out' sequence. The GABA-containing nonpyramidal cells originate for the most part in the gangli...

  8. The relationships between plasma Orexin-A and sleep disorder in patients with depression%抑郁症患者睡眠障碍与血浆增食欲素A的关系

    Institute of Scientific and Technical Information of China (English)

    赵素华; 蒋泽宇; 黄兴兵; 林育华; 梅芳

    2011-01-01

    目的 探讨抑郁症患者睡眠障碍与血浆增食欲素A的关系,以期为抑郁症睡眠障碍的干预提供理论基础.方法 67例抑郁症患者行24项汉密尔顿抑郁量表(HAMD-24)及匹兹堡睡眠质量指数量表(Pittsburgh sleep quality index,PSQI)评定,根据睡眠情况分为睡眠障碍组(研究组,n=37)及非睡眠障碍组(阳性对照组,n =30),多导睡眠图检测睡眠情况,放射免疫法检测血浆增食欲素-A水平,并与26例健康体检者进行对比(阴性对照组).结果 与正常对照组及非睡眠障碍组比较,抑郁症睡眠障碍组患者HAMD抑郁量表评分及血浆Orexin-A水平均明显增加(P< 0.05,P<0.01);总睡眠时间减少,睡眠潜伏期长,觉醒次数及时间增多,睡眠效率及维持率明显下降,浅睡(S1期睡眠)增加而深睡(S3、S4期睡眠)减少(P<0.05,P< 0.01);REM潜伏期缩短,REM睡眠时间增多,REM活动度、强度及密度明显增强(P<0.05,P<0.01);相关性分析表明,血浆Orexin-A水平与睡眠潜伏期、觉醒时间、觉醒次数均呈正相关(r分别为0.447、0.591、0.670,P<0.01),与S3%+S4%呈负相关(r=-0.872).结论 睡眠障碍者抑郁程度较非睡眠障碍者更高,血浆Orexin-A水平升高可能是引起抑郁症睡眠障碍的一项重要因素,其机制可能与其促进觉醒有关.%Objective To explore the relationships between sleep disorder and the plasma levels of orexin-A in depressive patients.Methods 67 patients with depression were evaluated using HAMD and PSQI.They were assigned the sleep disorder group(experimental group,n = 37) and non sleep disorder group (positive control group,n =30) according to the quality of sleep.The quality of sleep was assessed by polysomonography (PSG).The level of plasma orexin - A was detected by radioimmunoassay.The control groups were 26 individuals having general physical examination.Results Compared with the control groups and non sleep disorder group,the HAMD score and the level of

  9. Microglial control of neuronal activity

    Directory of Open Access Journals (Sweden)

    Catherine eBéchade

    2013-03-01

    Full Text Available Fine-tuning of neuronal activity was thought to be a neuron-autonomous mechanism until the discovery that astrocytes are active players of synaptic transmission. The involvement of astrocytes has changed our understanding of the roles of non-neuronal cells and shed new light on the regulation of neuronal activity. Microglial cells are the macrophages of the brain and they have been mostly investigated as immune cells. However recent data discussed in this review support the notion that, similarly to astrocytes, microglia are involved in the regulation of neuronal activity. For instance, in most, if not all, brain pathologies a strong temporal correlation has long been known to exist between the pathological activation of microglia and dysfunction of neuronal activity. Recent studies have convincingly shown that alteration of microglial function is responsible for pathological neuronal activity. This causal relationship has also been demonstrated in mice bearing loss-of-function mutations in genes specifically expressed by microglia. In addition to these long-term regulations of neuronal activity, recent data show that microglia can also rapidly regulate neuronal activity, thereby acting as partners of neurotransmission.

  10. The straintronic spin-neuron.

    Science.gov (United States)

    Biswas, Ayan K; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo

    2015-07-17

    In artificial neural networks, neurons are usually implemented with highly dissipative CMOS-based operational amplifiers. A more energy-efficient implementation is a 'spin-neuron' realized with a magneto-tunneling junction (MTJ) that is switched with a spin-polarized current (representing weighted sum of input currents) that either delivers a spin transfer torque or induces domain wall motion in the soft layer of the MTJ to mimic neuron firing. Here, we propose and analyze a different type of spin-neuron in which the soft layer of the MTJ is switched with mechanical strain generated by a voltage (representing weighted sum of input voltages) and term it straintronic spin-neuron. It dissipates orders of magnitude less energy in threshold operations than the traditional current-driven spin neuron at 0 K temperature and may even be faster. We have also studied the room-temperature firing behaviors of both types of spin neurons and find that thermal noise degrades the performance of both types, but the current-driven type is degraded much more than the straintronic type if both are optimized for maximum energy-efficiency. On the other hand, if both are designed to have the same level of thermal degradation, then the current-driven version will dissipate orders of magnitude more energy than the straintronic version. Thus, the straintronic spin-neuron is superior to current-driven spin neurons. PMID:26112081

  11. STDP in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Matthieu Gilson

    2010-09-01

    Full Text Available Recent results about spike-timing-dependent plasticity (STDP in recurrently connected neurons are reviewed, with a focus on the relationship between the weight dynamics and the emergence of network structure. In particular, the evolution of synaptic weights in the two cases of incoming connections for a single neuron and recurrent connections are compared and contrasted. A theoretical framework is used that is based upon Poisson neurons with a temporally inhomogeneous firing rate and the asymptotic distribution of weights generated by the learning dynamics. Different network configurations examined in recent studies are discussed and an overview of the current understanding of STDP in recurrently connected neuronal networks is presented.

  12. Racing to Learn: Statistical Inference and Learning in a Single Spiking Neuron with Adaptive Kernels

    Directory of Open Access Journals (Sweden)

    Saeed eAfshar

    2014-11-01

    Full Text Available This paper describes the Synapto-dendritic Kernel Adapting Neuron (SKAN, a simple spiking neuron model that performs statistical inference and unsupervised learning of spatiotemporal spike patterns. SKAN is the first proposed neuron model to investigate the effects of dynamic synapto-dendritic kernels and demonstrate their computational power even at the single neuron scale. The rule-set defining the neuron is simple: there are no complex mathematical operations such as normalization, exponentiation or even multiplication. The functionalities of SKAN emerge from the real-time interaction of simple additive and binary processes. Like a biological neuron, SKAN is robust to signal and parameter noise, and can utilize both in its operations. At the network scale neurons are locked in a race with each other with the fastest neuron to spike effectively ‘hiding’ its learnt pattern from its neighbors. This use of time as a parameter is central and means that a SKAN network utilizes a minimal connectivity that scales linearly with the number of neurons. The robustness to noise, low connectivity requirements, high speed and simple building blocks not only make SKAN an interesting neuron model in computational neuroscience, but also make it ideal for implementation in digital and analog neuromorphic systems which is demonstrated through an implementation in a Field Programmable Gate Array (FPGA.

  13. 大鼠三叉神经本体感觉中枢通路二级神经元接受5-羟色胺能终末支配的电镜证明%ULTRASTRUCTURAL EVIDENCE OF SEROTON-INERGIC INNERVATION OF THE SECOND-ORDER NEURONS ON THE CENTRAL PATHWAY OF THE TRIGEMINAL PROPRIOCEPTION OF THE RAT

    Institute of Scientific and Technical Information of China (English)

    张富兴; 李金莲; 李继硕

    2002-01-01

    目的研究5-羟色胺(5-HT)样免疫反应纤维终末与大鼠三叉神经本体觉中枢通路二级神经元之间是否存在突触联系. 方法逆行束路追踪与免疫组织化学相结合的电镜双重标记技术. 结果将麦芽凝集素结合的辣根过氧化物酶(WGA-HRP)注入大鼠三叉神经感觉主核背内侧部(Vpdm)并进行5-HT免疫染色后,在三叉神经脊束核吻侧亚核背内侧部及其邻接的外侧网状结构(Vodm-LRF)中可见WGA-HRP逆行标记的神经元和5-HT样阳性轴突终末.电镜下观察到5-HT样阳性轴突终末与WGA-HRP标记的神经元之间有轴-体、轴-树突触联系,这些突触属对称或非对称型,但以对称型为主. 结论本研究为5-HT能终末可能对三叉神经本体觉信息的传递具有一定的调控作用提供了形态学依据.%Objective To investigate whether the serotonin(5-HT)-like immunoreactive axons synapse upon the second-order neurons on the central path way of the trigeminal proprioception in the rat. Methods Electron microscopic double-labeling of retrograde tract-tracing technique combined with immunohistochemistry. Results Following the injection of wheat germ agglutinin-horsera dish peroxidase (WGA-HRP) into the dorsomedial part of the principal sensory tr igeminal nucleus(Vpdm) of the rat and the immunostaining for 5-HT, there were n eurons retrogradely labeled by WGA-HRP and axon terminals with 5-HT-like immu noreactivity(5-HT-LI) in the dorsomedial part of the subnucleus oralis of the spinal trigeminal nucleus and its adjacent lateral reticular formation(Vodm-LRF ).At the electron microscopic level,the 5-HT-immunostained axonal profiles wer e observed to make synaptic contacts with the WGA-HRP-labeled neurons.Both the axon-somatic and axon-dendritic synapses were found.These synapses were mainly of symmetric type although the asymmetric ones were also seen.Conclusion The present results provided a morphologic basis for the serotoninergic terminals which

  14. Sleep-wakefulness effects after microinjections of hypocretin 1 (orexin A) in cholinoceptive areas of the cat oral pontine tegmentum.

    Science.gov (United States)

    Moreno-Balandrán, Elena; Garzón, Miguel; Bódalo, Cristina; Reinoso-Suárez, Fernando; de Andrés, Isabel

    2008-07-01

    Hypocretinergic/orexinergic neurons, which are known to be implicated in narcolepsy, project to the pontine tegmentum areas involved in the control of rapid eye movement (REM) sleep. Here, we report the effects on sleep-wakefulness produced by low-volume microinjections of hypocretin (Hcrt)1 (20-30 nL, 100, 500 and 1000 microm) and carbachol (20-30 nL, 0.1 m) delivered in two areas of the oral pontine tegmentum of free-moving cats with electrodes for chronic sleep recordings: in the dorsal oral pontine tegmentum (DOPT) and in the ventral part of the oral pontine reticular nucleus (vRPO). Carbachol in the DOPT produced dissociate polygraphic states, with some but not all REM sleep signs. In contrast, carbachol in the vRPO produced a shift with short latency from wakefulness (W) to REM sleep with all of its polygraphic and behavioral signs. Hcrt-1 in the DOPT increased W and decreased both slow-wave sleep (SWS) and REM sleep during the first 3 h post-drug. The same doses of Hcr-1 in the vRPO produced a significant suppression of REM sleep without a definitive trend for changes in the other states. Both groups showed significant decreases in the number of transitions from SWS to REM sleep. Thus, Hcrt-1 produced distinct effects in cholinoceptive areas of the oral pontine tegmentum; in the DOPT it promoted W, suppressed SWS and probably defacilitated REM sleep, and in the vRPO it directly inhibited REM sleep. Hypocretinergic/orexinergic signaling is lost in narcoleptics and this absence would mean that pontine defacilitation/inhibition of REM sleep would also be absent, explaining why these patients can fall directly into REM sleep from W. PMID:18702704

  15. Central nervous control of energy and glucose balance: focus on the central melanocortin system

    OpenAIRE

    Xu, Yong; Elmquist, Joel K.; Fukuda, Makoto

    2011-01-01

    Studies have suggested that manipulations of the central melanocortin circuitry by pharmacological agents produce robust effects on the regulation of body weight and glucose homeostasis. In this review, we discuss recent findings from genetic mouse models that have further established the physiological relevance of this circuitry in the context of glucose and energy balance. In addition, we will discuss distinct neuronal populations that respond to central melanocortins to regulate food intak...

  16. Hydrogen peroxide modulates neuronal excitability and membrane properties in ventral horn neurons of the rat spinal cord.

    Science.gov (United States)

    Ohashi, Masayuki; Hirano, Toru; Watanabe, Kei; Shoji, Hirokazu; Ohashi, Nobuko; Baba, Hiroshi; Endo, Naoto; Kohno, Tatsuro

    2016-09-01

    Hydrogen peroxide (H2O2), a reactive oxygen species, is an important signaling molecule for synaptic and neuronal activity in the central nervous system; it is produced excessively in brain ischemia and spinal cord injury. Although H2O2-mediated modulations of synaptic transmission have been reported in ventral horn (VH) neurons of the rat spinal cord, the effects of H2O2 on neuronal excitability and membrane properties remain poorly understood. Accordingly, the present study investigated such effects using a whole-cell patch-clamp technique. The bath-application of H2O2 decreased neuronal excitability accompanied by decreased input resistance, firing frequency, and action potential amplitude and by increased rheobase. These H2O2-mediated changes were induced by activation of extrasynaptic, but not synaptic, GABAA receptors. Indeed, GABAergic tonic currents were enhanced by H2O2. On the other hand, the amplitude of medium and slow afterhyperpolarization (mAHP and sAHP), which plays important roles in controlling neuronal excitability and is mediated by small-conductance calcium-activated potassium (SK) channels, was significantly decreased by H2O2. When extrasynaptic GABAA receptors were completely blocked, these decreases of mAHP and sAHP persisted, and H2O2 increased excitability, suggesting that H2O2 per se might have the potential to increase neuronal excitability via decreased SK channel conductance. These findings indicate that activating extrasynaptic GABAA receptors or SK channels may attenuate acute neuronal damage caused by H2O2-induced hyperexcitability and therefore represent a novel therapeutic target for the prevention and treatment of H2O2-induced motor neuron disorders. PMID:27343829

  17. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype

    OpenAIRE

    Martinat, Cecile; Bacci, Jean-Jacques; Leete, Thomas; Kim, Jongpil; Vanti, William B.; Newman, Amy H.; Cha, Joo H.; Gether, Ulrik; Wang, Honggang; Abeliovich, Asa

    2006-01-01

    Midbrain dopamine (DA) neurons play a central role in the regulation of voluntary movement, and their degeneration is associated with Parkinson’s disease. Cell replacement therapies, and in particular embryonic stem (ES) cell-derived DA neurons, offer a potential therapeutic venue for Parkinson’s disease. We sought to identify genes that can potentiate maturation of ES cell cultures to the midbrain DA neuron phenotype. A number of transcription factors have been implicated in the development ...

  18. Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: Distinct classes of hugin-expressing neurons

    OpenAIRE

    Bader, Rüdiger; Colomb, Julien; Pankratz, Bettina; Schröck, Anne; Stocker, Reinhard F.; Pankratz, Michael J.

    2007-01-01

    The hugin gene of Drosophila encodes a neuropeptide with homology to mammalian neuromedin U. The hugin-expressing neurons are localized exclusively to the subesophageal ganglion of the central nervous system and modulate feeding behavior in response to nutrient signals. These neurons send neurites to the protocerebrum, the ventral nerve cord, the ring gland, and the pharynx and may interact with the gustatory sense organs. In this study, we have investigated the morphology of the hugin neuron...

  19. Synchronization by elastic neuronal latencies

    Science.gov (United States)

    Vardi, Roni; Timor, Reut; Marom, Shimon; Abeles, Moshe; Kanter, Ido

    2013-01-01

    Psychological and physiological considerations entail that formation and functionality of neuronal cell assemblies depend upon synchronized repeated activation such as zero-lag synchronization. Several mechanisms for the emergence of this phenomenon have been suggested, including the global network quantity, the greatest common divisor of neuronal circuit delay loops. However, they require strict biological prerequisites such as precisely matched delays and connectivity, and synchronization is represented as a stationary mode of activity instead of a transient phenomenon. Here we show that the unavoidable increase in neuronal response latency to ongoing stimulation serves as a nonuniform gradual stretching of neuronal circuit delay loops. This apparent nuisance is revealed to be an essential mechanism in various types of neuronal time controllers, where synchronization emerges as a transient phenomenon and without predefined precisely matched synaptic delays. These findings are described in an experimental procedure where conditioned stimulations were enforced on a circuit of neurons embedded within a large-scale network of cortical cells in vitro, and are corroborated and extended by simulations of circuits composed of Hodgkin-Huxley neurons with time-dependent latencies. These findings announce a cortical time scale for time controllers based on tens of microseconds stretching of neuronal circuit delay loops per spike. They call for a reexamination of the role of the temporal periodic mode in brain functionality using advanced in vitro and in vivo experiments.

  20. Neuronal avalanches and coherence potentials

    Science.gov (United States)

    Plenz, D.

    2012-05-01

    The mammalian cortex consists of a vast network of weakly interacting excitable cells called neurons. Neurons must synchronize their activities in order to trigger activity in neighboring neurons. Moreover, interactions must be carefully regulated to remain weak (but not too weak) such that cascades of active neuronal groups avoid explosive growth yet allow for activity propagation over long-distances. Such a balance is robustly realized for neuronal avalanches, which are defined as cortical activity cascades that follow precise power laws. In experiments, scale-invariant neuronal avalanche dynamics have been observed during spontaneous cortical activity in isolated preparations in vitro as well as in the ongoing cortical activity of awake animals and in humans. Theory, models, and experiments suggest that neuronal avalanches are the signature of brain function near criticality at which the cortex optimally responds to inputs and maximizes its information capacity. Importantly, avalanche dynamics allow for the emergence of a subset of avalanches, the coherence potentials. They emerge when the synchronization of a local neuronal group exceeds a local threshold, at which the system spawns replicas of the local group activity at distant network sites. The functional importance of coherence potentials will be discussed in the context of propagating structures, such as gliders in balanced cellular automata. Gliders constitute local population dynamics that replicate in space after a finite number of generations and are thought to provide cellular automata with universal computation. Avalanches and coherence potentials are proposed to constitute a modern framework of cortical synchronization dynamics that underlies brain function.

  1. The Neuronal Ceroid-Lipofuscinoses

    Science.gov (United States)

    Bennett, Michael J.; Rakheja, Dinesh

    2013-01-01

    The neuronal ceroid-lipofuscinoses (NCL's, Batten disease) represent a group of severe neurodegenerative diseases, which mostly present in childhood. The phenotypes are similar and include visual loss, seizures, loss of motor and cognitive function, and early death. At autopsy, there is massive neuronal loss with characteristic storage in…

  2. Encoding of fear learning and memory in distributed neuronal circuits.

    Science.gov (United States)

    Herry, Cyril; Johansen, Joshua P

    2014-12-01

    How sensory information is transformed by learning into adaptive behaviors is a fundamental question in neuroscience. Studies of auditory fear conditioning have revealed much about the formation and expression of emotional memories and have provided important insights into this question. Classical work focused on the amygdala as a central structure for fear conditioning. Recent advances, however, have identified new circuits and neural coding strategies mediating fear learning and the expression of fear behaviors. One area of research has identified key brain regions and neuronal coding mechanisms that regulate the formation, specificity and strength of fear memories. Other work has discovered critical circuits and neuronal dynamics by which fear memories are expressed through a medial prefrontal cortex pathway and coordinated activity across interconnected brain regions. Here we review these recent advances alongside prior work to provide a working model of the extended circuits and neuronal coding mechanisms mediating fear learning and memory. PMID:25413091

  3. Europa central

    Directory of Open Access Journals (Sweden)

    Karel BARTOSEK

    2010-02-01

    Full Text Available La investigación francesa continúa interesándose por Europa Central. Desde luego, hay límites a este interés en el ambiente general de mi nueva patria: en la ignorancia, producto del largo desinterés de Francia por este espacio después de la Segunda Guerra Mundial, y en el comportamiento y la reflexión de la clase política y de los medios de comunicación (una anécdota para ilustrar este ambiente: durante la preparación de nuestro coloquio «Refugiados e inmigrantes de Europa Central en el movimiento antifascista y la Resistencia en Francia, 1933-1945», celebrado en París en octubre de 1986, el problema de la definición fue planteado concreta y «prácticamente». ¡Y hubo entonces un historiador eminente, para quién Alemania no formaría parte de Europa Central!.

  4. Transition to Chaos in Random Neuronal Networks

    Science.gov (United States)

    Kadmon, Jonathan; Sompolinsky, Haim

    2015-10-01

    Firing patterns in the central nervous system often exhibit strong temporal irregularity and considerable heterogeneity in time-averaged response properties. Previous studies suggested that these properties are the outcome of the intrinsic chaotic dynamics of the neural circuits. Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e., connection variance) is sufficiently large. In the limit of an infinitely large network, there is a sharp transition from a fixed point to chaos, as the synaptic gain reaches a critical value. Near the onset, chaotic fluctuations are slow, analogous to the ubiquitous, slow irregular fluctuations observed in the firing rates of many cortical circuits. However, the existence of a transition from a fixed point to chaos in neuronal circuit models with more realistic architectures and firing dynamics has not been established. In this work, we investigate rate-based dynamics of neuronal circuits composed of several subpopulations with randomly diluted connections. Nonzero connections are either positive for excitatory neurons or negative for inhibitory ones, while single neuron output is strictly positive with output rates rising as a power law above threshold, in line with known constraints in many biological systems. Using dynamic mean field theory, we find the phase diagram depicting the regimes of stable fixed-point, unstable-dynamic, and chaotic-rate fluctuations. We focus on the latter and characterize the properties of systems near this transition. We show that dilute excitatory-inhibitory architectures exhibit the same onset to chaos as the single population with Gaussian connectivity. In these architectures, the large mean excitatory and inhibitory inputs dynamically balance each other, amplifying the effect of the residual fluctuations. Importantly, the existence of a transition to chaos

  5. Ethanol and neuronal metabolism.

    Science.gov (United States)

    Mandel, P; Ledig, M; M'Paria, J R

    1980-01-01

    The effect of ethanol on membrane enzymes (Na+, K+ and Mg2+ ATPases, 5'-nucleotidase, adenylate cyclase) alcohol dehydrogenase, aldehyde dehydrogenase and superoxide dismutase were studied in nerve cells (established cell lines, primary cultures of chick and rat brain) cultured in the presence of 100 mM ethanol, and in total rat brain, following various ethanol treatments of the rats (20% ethanol as the sole liquid source, intraperitoneal injection). The results show a difference between neuronal and glial cells. Most of the observed changes in enzymatic activities returned rapidly to control values when ethanol was withdrawn from the culture medium or from the diet. Alcohol dehydrogenase was more stimulated by ethanol than aldehyde dehydrogenase; therefore acetaldehyde may be accumulated. The inhibition of superoxide dismutase activity may allow an accumulation of cytotoxic O2- radicals in nervous tissue and may explain the polymorphism of lesions brought about by alcohol intoxication. PMID:6264495

  6. Hyaluronic acid-based scaffold for central neural tissue engineering

    OpenAIRE

    Wang, Xiumei; He, Jin; Wang, Ying; CUI, FU-ZHAI

    2012-01-01

    Central nervous system (CNS) regeneration with central neuronal connections and restoration of synaptic connections has been a long-standing worldwide problem and, to date, no effective clinical therapies are widely accepted for CNS injuries. The limited regenerative capacity of the CNS results from the growth-inhibitory environment that impedes the regrowth of axons. Central neural tissue engineering has attracted extensive attention from multi-disciplinary scientists in recent years, and ma...

  7. Disinhibition Bursting of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Collin J Lobb

    2011-05-01

    Full Text Available Substantia nigra pars compacta (SNpc dopaminergic neurons receive strong tonic inputs from GABAergic neurons in the substantia nigra pars reticulata (SNpr and globus pallidus (GP, and glutamatergic neurons in the subthalamic nucleus. The presence of these tonic inputs raises the possibility that phasic disinhibition may trigger phasic bursts in dopaminergic neurons. We first applied constant NMDA and GABAA conductances onto a two-compartment single cell model of the dopaminergic neuron (Kuznetsov et al., 2006. The model exhibited disinhibition bursting upon stepwise removal of inhibition. A further bifurcation analysis suggests that disinhibition may be more robust than excitation alone in that for most levels of NMDA conductance, the cell remains capable of bursting even after a complete removal of inhibition, whereas too much excitatory input will drive the cell into depolarization block. To investigate the network dynamics of disinhibition, we used a modified version of an integrate-and-fire based model of the basal ganglia (Humphries et al., 2006. Synaptic activity generated in the network was delivered to the two-compartment single cell dopaminergic neuron. Phasic activation of the D1-expressing medium spiny neurons in the striatum (D1STR produced disinhibition bursts in dopaminergic neurons through the direct pathway (D1STR to SNpr to SNpc. Anatomical studies have shown that D1STR neurons have collaterals that terminate in GP. Adding these collaterals to the model, we found that striatal activation increased the intra-burst firing frequency of the disinhibition burst as the weight of this connection was increased. Our studies suggest that striatal activation is a robust means by which disinhibition bursts can be generated by SNpc dopaminergic neurons, and that recruitment of the indirect pathway via collaterals may enhance disinhibition bursting.

  8. Parallel Algorithms for Neuronal Spike Sorting

    OpenAIRE

    Bergheim, Thomas Stian; Skogvold, Arve Aleksander Nymo

    2011-01-01

    Neurons communicate through electrophysiological signals, which may be recorded using electrodes inserted into living tissue.When a neuron emits a signal, it is referred to as a spike, and an electrode can detect these from multiple neurons.Neuronal spike sorting is the process of classifying the spike activity based on which neuron each spike signal is emitted from.Advances in technology have introduced better recording equipment, which allows the recording of many neurons at the same time.H...

  9. NEURON-SPECIFIC PHOSPHOPROTEINS AS BIOCHEMICAL INDICATORS OF NEUROTOXICITY: EFFECTS OF ACUTE ADMINISTRATION OF TRIMETHYLTIN TO THE ADULT RAT

    Science.gov (United States)

    The cytoarchitecture of the adult central nervous system is expressed by proteins specific to individual cell types. In this investigation, a subclass of these proteins, the neuron-specific phosphoproteins, was examined after the administration of trimethyltin (TMT), a neurotoxic...

  10. Flexibility in the nervous system: Regulation of axonal spike initiation in a sensory neuron fine-tunes signal integration

    OpenAIRE

    Städele, Carola

    2016-01-01

    Generating appropriate behavioral responses to sensory inputs is a pivotal function of the nervous system. Changes in internal conditions or the environment elicit action potentials that travel along the axon of sensory neurons to inform the central nervous system of the occurred changes. My work shows for the first time that neurons in the central nervous system feed back to the sensory system and regulate action potential initiation in the sensory axon. This regulation increases the activit...

  11. Ventral tegmental area neurons are either excited or inhibited by cocaine’s actions in the peripheral nervous system

    OpenAIRE

    Mejías-Aponte, Carlos A.; Kiyatkin, Eugene A

    2012-01-01

    Cocaine’s multiple pharmacological substrates are ubiquitously present in the peripheral and central nervous system. Thus, upon its administration, cocaine acts in the periphery before directly acting in the brain. We determined whether cocaine alters ventral tegmental area (VTA) neuronal activity via peripheral actions, and whether this precedes its central actions. In urethane-anesthetized rats, we recorded VTA neurons responses to intravenous injections of two cocaine analogs: cocaine-hydr...

  12. Tectothalamic inhibitory projection neurons in the avian torus semicircularis.

    Science.gov (United States)

    Ito, Tetsufumi; Atoji, Yasuro

    2016-09-01

    Inhibitory feedforward projection is one of key features of the organization of the central auditory system. In mammals, the inferior colliculus (IC) is the origin of a substantial inhibitory feedforward projection as well as an excitatory projection to the auditory thalamus. This inhibitory feedforward projection is provided by large γ-aminobutyric acid (GABA)ergic (LG) neurons, which are characterized by their receipt of dense excitatory axosomatic terminals positive for vesicular glutamate transporter (VGLUT) 2. In the avian torus semicircularis (TS), which is the homolog of the IC, neither the homology of cell types nor the presence of inhibitory feedforward inhibition have been established. In this study, we tested the presence of LG neurons in pigeon and chicken by neuroanatomical techniques. The TS contained two types of GABAergic neurons of different soma size. Of these, larger GABA + cells were encircled by dense VGLUT2 + axosomatic terminals. Ultrastructural analyses revealed that more than 30% of the perimeter of a large GABA+, but not small GABA + or GABA-, soma was covered by presumptive excitatory axosomatic terminals, suggesting that large GABA + cells are the sole recipient of dense excitatory axosomatic synapses. After injection of a retrograde tracer into the auditory thalamus, many retrogradely labeled neurons were found bilaterally in the TS, a few of which were GABA+. Almost all tectothalamic GABA + neurons had large somata, and received dense VGLUT2 + axosomatic terminals. These results clearly demonstrated the presence of LG neurons in birds. The similar morphology of LG neurons implies that the function of tectothalamic inhibition is similar among amniotes. J. Comp. Neurol. 524:2604-2622, 2016. © 2016 Wiley Periodicals, Inc. PMID:26850847

  13. Differential Modulation of Excitatory and Inhibitory Neurons during Periodic Stimulation.

    Science.gov (United States)

    Mahmud, Mufti; Vassanelli, Stefano

    2016-01-01

    Non-invasive transcranial neuronal stimulation, in addition to deep brain stimulation, is seen as a promising therapeutic and diagnostic approach for an increasing number of neurological diseases such as epilepsy, cluster headaches, depression, specific type of blindness, and other central nervous system disfunctions. Improving its effectiveness and widening its range of use may strongly rely on development of proper stimulation protocols that are tailored to specific brain circuits and that are based on a deep knowledge of different neuron types response to stimulation. To this aim, we have performed a simulation study on the behavior of excitatory and inhibitory neurons subject to sinusoidal stimulation. Due to the intrinsic difference in membrane conductance properties of excitatory and inhibitory neurons, we show that their firing is differentially modulated by the wave parameters. We analyzed the behavior of the two neuronal types for a broad range of stimulus frequency and amplitude and demonstrated that, within a small-world network prototype, parameters tuning allow for a selective enhancement or suppression of the excitation/inhibition ratio. PMID:26941602

  14. Pathogenesis of motor neuron disease

    Institute of Scientific and Technical Information of China (English)

    Xuefei Wang

    2006-01-01

    OBJECTIVE: To summarize and analyze the factors and theories related to the attack of motor neuron disease, and comprehensively investigate the pathogenesis of motor neuron disease.DATA SOURCES: A search of Pubmed database was undertaken to identify articles about motor neuron disease published in English from January 1994 to June 2006 by using the keywords of "neurodegenerative diseases". Other literatures were collected by retrieving specific journals and articles.STUDY SELECTION: The data were checked primarily, articles related to the pathogenesis of motor neuron disease were involved, and those obviously irrelated to the articles were excluded.DATA EXTRACTION: Totally 54 articles were collected, 30 of them were involved, and the other 24 were excluded.DATA SYNTHESIS: The pathogenesis of motor neuron disease has multiple factors, and the present related theories included free radical oxidation, excitotoxicity, genetic and immune factors, lack of neurotrophic factor,injury of neurofilament, etc. The studies mainly come from transgenic animal models, cell culture in vitro and patients with familial motor neuron disease, but there are still many restrictions and disadvantages.CONCLUSION: It is necessary to try to find whether there is internal association among different mechanisms,comprehensively investigate the pathogenesis of motor neuron diseases, in order to provide reliable evidence for the clinical treatment.

  15. Neurotrophic effects of neudesin in the central nervous system

    OpenAIRE

    Kimura, Ikuo; Nakayama, Yoshiaki; Zhao, Ying; Konishi, Morichika; Itoh, Nobuyuki

    2013-01-01

    Neudesin (neuron-derived neurotrophic factor; NENF) was identified as a neurotrophic factor that is involved in neuronal differentiation and survival. It is abundantly expressed in the central nervous system, and its neurotrophic activity is exerted via the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. Neudesin is also an anorexigenic factor that suppresses food intake in the hypothalamus. It is a member of the membrane-associated progesterone rece...

  16. diferenciación neuronal

    Directory of Open Access Journals (Sweden)

    Gabriel Moreno González

    2006-01-01

    Full Text Available El L-glutamato (Glu es el principal neurotransmisor excitador del Sistema Nervioso Central (SNC y ejerce su función por medio de receptores (GluRs que se clasifican en dos grandes superfamilias. La primera la forman canales iónicos activados por ligando o receptores de glutamato ionotrópicos (iGluRs permeables a Ca2+, Na+ y K+. Estos se han clasificado en tres familias con base en datos farmacológicos y electrofisiológicos: los receptores para el α-amino-3-hidroxi-5-metil-4-isoxazol propionato (AMPA; los receptores para kainato (KA; y los receptores para N-metil-Daspartato (NMDA. A la segunda superfamilia pertenecen los GluRs acoplados a segundos mensajeros (inositol 3-fosfato, diacilglicerol y AMP cíclico, también llamados receptores metabotrópicos (mGluRs. La importancia del estudio de los GluRs en el SNC se centra en el papel que estos cumplen en diversas enfermedades neurodegenerativas, como la corea de Huntington, la enfermedad de Parkinson, la enfermedad de Alzheimer, la esclerosis lateral amiotrófica, los accidentes vasculares cerebrales, la epilepsia, la demencia por VIH, la enfermedad de Creutzfeld-Jacob y la hipoglicemia, así como en enfermedades psiquiátricas como la esquizofrenia, la depresión, los trastornos de ansiedad y la enfermedad por estrés postraumático. Además, el Glu, al actuar mediante diversos receptores, desempeña un papel fundamental en los procesos que involucran la diferenciación neuronal y el desarrollo del SNC. Se sabe que existe una expresión diferencial de la gran variedad de subunidades de iGluRs y mGluRs durante la diferenciación y el desarrollo del SNC, la cual depende tanto de su localización en el SNC como de la etapa del desarrollo neuronal. Durante la neurogénesis, se encuentran niveles altos de Glu en las áreas de desarrollo del SNC que, por activación de diferentes receptores, dan lugar a una señalización por segundos mensajeros, una variación en las concentraciones de calcio

  17. A Neuron Model for FPGA Spiking Neuronal Network Implementation

    Directory of Open Access Journals (Sweden)

    BONTEANU, G.

    2011-11-01

    Full Text Available We propose a neuron model, able to reproduce the basic elements of the neuronal dynamics, optimized for digital implementation of Spiking Neural Networks. Its architecture is structured in two major blocks, a datapath and a control unit. The datapath consists of a membrane potential circuit, which emulates the neuronal dynamics at the soma level, and a synaptic circuit used to update the synaptic weight according to the spike timing dependent plasticity (STDP mechanism. The proposed model is implemented into a Cyclone II-Altera FPGA device. Our results indicate the neuron model can be used to build up 1K Spiking Neural Networks on reconfigurable logic suport, to explore various network topologies.

  18. Regulation of gonadotropin-releasing hormone neurons by glucose

    OpenAIRE

    Roland, Alison V.; Moenter, Suzanne M.

    2011-01-01

    Reproduction is influenced by energy balance, but the physiological pathways mediating their relationship have not been fully elucidated. As the central regulators of fertility, gonadotropin-releasing hormone (GnRH) neurons integrate numerous physiological signals, including metabolic cues. Circulating glucose levels regulate GnRH release and may in part mediate the effects of negative energy balance on fertility. Existing evidence suggests that neural pathways originating in the hindbrain, a...

  19. Palmitoylation of Estrogen Receptors Is Essential for Neuronal Membrane Signaling

    OpenAIRE

    Meitzen, John; Luoma, Jessie I.; Boulware, Marissa I.; Hedges, Valerie L.; Peterson, Brittni M.; Tuomela, Krista; Britson, Kyla A.; Mermelstein, Paul G.

    2013-01-01

    In addition to activating nuclear estrogen receptor signaling, 17β-estradiol can also regulate neuronal function via surface membrane receptors. In various brain regions, these actions are mediated by the direct association of estrogen receptors (ERs) activating metabotropic glutamate receptors (mGluRs). These ER/mGluR signaling partners are organized into discrete functional microdomains via caveolin proteins. A central question that remains concerns the underlying mechanism by which these s...

  20. A spontaneous, tonic chloride conductance in solitary glutamatergic hippocampal neurons

    OpenAIRE

    Eisenman, Lawrence N.; Kress, Geraldine; Charles F. Zorumski; Mennerick, Steven

    2006-01-01

    GABA-A receptors mediate both phasic synaptic inhibition and more recently appreciated tonic currents in the vertebrate central nervous system. We addressed discrepancies in the literature regarding the pharmacology of tonic currents by examining tonic currents in a controlled environment of dissociated, solitary glutamatergic neurons. We describe a novel tonically active, bicuculline-sensitive chloride conductance that is insensitive to gabazine and to picrotoxin and thus not mediated by con...

  1. Neuronal and molecular substrates for optimal foraging in Caenorhabditis elegans

    OpenAIRE

    Milward, Kate; Busch, Karl Emanuel; Murphy, Robin Joseph; de Bono, Mario; Olofsson, Birgitta

    2011-01-01

    Variation in food quality and abundance requires animals to decide whether to stay on a poor food patch or leave in search of better food. An important question in behavioral ecology asks when is it optimal for an animal to leave a food patch it is depleting. Although optimal foraging is central to evolutionary success, the neural and molecular mechanisms underlying it are poorly understood. Here we investigate the neuronal basis for adaptive food-leaving behavior in response to resource depl...

  2. Optogenetic stimulation of prefrontal glutamatergic neurons enhances recognition memory

    OpenAIRE

    Benn, Abi; Barker, Gareth R. I.; Stuart, Sarah A; Roloff, Eva v. L.; Teschemacher, Anja G; Warburton, Clea; Robinson, Emma S. J.

    2016-01-01

    Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specific...

  3. [Glial cells are involved in iron accumulation and degeneration of dopamine neurons in Parkinson's disease].

    Science.gov (United States)

    Xu, Hua-Min; Wang, Jun; Song, Ning; Jiang, Hong; Xie, Jun-Xia

    2016-08-25

    A growing body of evidence suggests that glial cells play an important role in neural development, neural survival, nerve repair and regeneration, synaptic transmission and immune inflammation. As the highest number of cells in the central nervous system, the role of glial cells in Parkinson's disease (PD) has attracted more and more attention. It has been confirmed that nigral iron accumulation contributes to the death of dopamine (DA) neurons in PD. Until now, most researches on nigral iron deposition in PD are focusing on DA neurons, but in fact glial cells in the central nervous system also play an important role in the regulation of iron homeostasis. Therefore, this review describes the role of iron metabolism of glial cells in death of DA neurons in PD, which could provide evidence to reveal the mechanisms underlying nigral iron accumulation of DA neurons in PD and provide the basis for discovering new potential therapeutic targets for PD. PMID:27546505

  4. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses...... include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review...... the responses of neurons to various physiological stressors at the molecular and cellular level....

  5. Neurones and neuropeptides in coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Ebbesen, Ditte Graff; McFarlane, I D

    1989-01-01

    The first nervous system probably evolved in coelenterates. Many neurons in coelenterates have morphological characteristics of both sensory and motor neurones, and appear to be multifunctional. Using immunocytochemistry with antisera to the sequence Arg-Phe-NH2 (RFamide), RFamide-like peptides......) was isolated, which also belongs to the less than Glu...Arg-X-NH2 family. Using specific antisera it was shown that all four peptides were located in neurones. Application of low doses of Antho-RFamide, or Antho-RWamide I or II induced contractions of endodermal muscles of sea anemones. This indicates...

  6. Simulating synchronization in neuronal networks

    Science.gov (United States)

    Fink, Christian G.

    2016-06-01

    We discuss several techniques used in simulating neuronal networks by exploring how a network's connectivity structure affects its propensity for synchronous spiking. Network connectivity is generated using the Watts-Strogatz small-world algorithm, and two key measures of network structure are described. These measures quantify structural characteristics that influence collective neuronal spiking, which is simulated using the leaky integrate-and-fire model. Simulations show that adding a small number of random connections to an otherwise lattice-like connectivity structure leads to a dramatic increase in neuronal synchronization.

  7. Neuronal Coding of pacemaker neurons - A random dynamical systems approach

    OpenAIRE

    de Jaeger, T

    2009-01-01

    The behaviour of neurons under the influence of periodic external input has been modelled very successfully by circle maps. The aim of this note is to extend certain aspects of this analysis to a much more general class of forcing processes. We apply results on the fibred rotation number of randomly forced circle maps to show the uniqueness of the asymptotic firing frequency of ergodically forced pacemaker neurons. The details of the analysis are carried out for the forced leaky integrate-and...

  8. From Neurons to Brain: Adaptive Self-Wiring of Neurons

    OpenAIRE

    Segev, Ronen; Ben-Jacob, Eshel

    1998-01-01

    During embryonic morpho-genesis, a collection of individual neurons turns into a functioning network with unique capabilities. Only recently has this most staggering example of emergent process in the natural world, began to be studied. Here we propose a navigational strategy for neurites growth cones, based on sophisticated chemical signaling. We further propose that the embryonic environment (the neurons and the glia cells) acts as an excitable media in which concentric and spiral chemical ...

  9. The locust standard brain: a 3D standard of the central complex as a platform for neural network analysis

    Directory of Open Access Journals (Sweden)

    Stanley Heinze

    2010-02-01

    Full Text Available Many insects use the pattern of polarized light in the sky for spatial orientation and navigation. We have investigated the polarization vision system in the desert locust. To create a common platform for anatomical studies on polarization vision pathways, Kurylas et al. (2008 have generated a three-dimensional (3D standard brain from confocal microscopy image stacks of 10 male brains, using two different standardization methods, the Iterative Shape Averaging (ISA procedure and the Virtual Insect Brain (VIB protocol. Comparison of both standardization methods showed that the VIB standard is ideal for comparative volume analysis of neuropils, whereas the ISA standard is the method of choice to analyze the morphology and connectivity of neurons. The central complex is a key processing stage for polarization information in the locust brain. To investigate neuronal connections between diverse central-complex neurons, we generated a higher-resolution standard atlas of the central complex and surrounding areas, using the ISA method based on brain sections from 20 individual central complexes. To explore the usefulness of this atlas, two central-complex neurons, a polarization-sensitive columnar neuron (type CPU1a and a tangential neuron that is activated during flight, the giant-fan shaped (GFS neuron, were reconstructed three-dimensionally from brain sections. To examine whether the GFS neuron is a candidate to contribute to synaptic input to the CPU1a neuron, we registered both neurons into the standardized central complex. Visualization of both neurons revealed a potential connection of the CPU1a and GFS neurons in layer II of the upper division of the central body.

  10. Immune clearance of attenuated rabies virus results in neuronal survival with altered gene expression.

    Directory of Open Access Journals (Sweden)

    Emily A Gomme

    Full Text Available Rabies virus (RABV is a highly neurotropic pathogen that typically leads to mortality of infected animals and humans. The precise etiology of rabies neuropathogenesis is unknown, though it is hypothesized to be due either to neuronal death or dysfunction. Analysis of human brains post-mortem reveals surprisingly little tissue damage and neuropathology considering the dramatic clinical symptomology, supporting the neuronal dysfunction model. However, whether or not neurons survive infection and clearance and, provided they do, whether they are functionally restored to their pre-infection phenotype has not been determined in vivo for RABV, or any neurotropic virus. This is due, in part, to the absence of a permanent "mark" on once-infected cells that allow their identification long after viral clearance. Our approach to study the survival and integrity of RABV-infected neurons was to infect Cre reporter mice with recombinant RABV expressing Cre-recombinase (RABV-Cre to switch neurons constitutively expressing tdTomato (red to expression of a Cre-inducible EGFP (green, permanently marking neurons that had been infected in vivo. We used fluorescence microscopy and quantitative real-time PCR to measure the survival of neurons after viral clearance; we found that the vast majority of RABV-infected neurons survive both infection and immunological clearance. We were able to isolate these previously infected neurons by flow cytometry and assay their gene expression profiles compared to uninfected cells. We observed transcriptional changes in these "cured" neurons, predictive of decreased neurite growth and dysregulated microtubule dynamics. This suggests that viral clearance, though allowing for survival of neurons, may not restore them to their pre-infection functionality. Our data provide a proof-of-principle foundation to re-evaluate the etiology of human central nervous system diseases of unknown etiology: viruses may trigger permanent neuronal

  11. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons.

    Science.gov (United States)

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day. PMID:27445788

  12. How Does p73 Cause Neuronal Defects?

    Science.gov (United States)

    Niklison-Chirou, Maria Victoria; Killick, Richard; Knight, Richard A; Nicotera, Pierluigi; Melino, Gerry; Agostini, Massimiliano

    2016-09-01

    The p53-family member, p73, plays a key role in the development of the central nervous system (CNS), in senescence, and in tumor formation. The role of p73 in neuronal differentiation is complex and involves several downstream pathways. Indeed, in the last few years, we have learnt that TAp73 directly or indirectly regulates several genes involved in neural biology. In particular, TAp73 is involved in the maintenance of neural stem/progenitor cell self-renewal and differentiation throughout the regulation of SOX-2, Hey-2, TRIM32 and Notch. In addition, TAp73 is also implicated in the regulation of the differentiation and function of postmitotic neurons by regulating the expression of p75NTR and GLS2 (glutamine metabolism). Further still, the regulation of miR-34a by TAp73 indicates that microRNAs can also participate in this multifunctional role of p73 in adult brain physiology. However, contradictory results still exist in the relationship between p73 and brain disorders, and this remains an important area for further investigation. PMID:26266644

  13. Parallel Transformation of Tactile Signals in Central Circuits of Drosophila.

    Science.gov (United States)

    Tuthill, John C; Wilson, Rachel I

    2016-02-25

    To distinguish between complex somatosensory stimuli, central circuits must combine signals from multiple peripheral mechanoreceptor types, as well as mechanoreceptors at different sites in the body. Here, we investigate the first stages of somatosensory integration in Drosophila using in vivo recordings from genetically labeled central neurons in combination with mechanical and optogenetic stimulation of specific mechanoreceptor types. We identify three classes of central neurons that process touch: one compares touch signals on different parts of the same limb, one compares touch signals on right and left limbs, and the third compares touch and proprioceptive signals. Each class encodes distinct features of somatosensory stimuli. The axon of an individual touch receptor neuron can diverge to synapse onto all three classes, meaning that these computations occur in parallel, not hierarchically. Representing a stimulus as a set of parallel comparisons is a fast and efficient way to deliver somatosensory signals to motor circuits. PMID:26919434

  14. Effect of type-2 astrocytes on the viability of dorsal root ganglion neurons and length of neuronal processes

    OpenAIRE

    Fan, Chunling; Wang, Hui; Chen, Dan; Cheng, Xiaoxin; Xiong, Kun; Luo, Xuegang; Cao, Qilin

    2014-01-01

    The role of type-2 astrocytes in the repair of central nervous system injury remains poorly understood. In this study, using a relatively simple culture condition in vitro, type-2 astrocytes, differentiated from oligodendrocyte precursor cells by induction with bone morphogenetic protein-4, were co-cultured with dorsal root ganglion neurons. We examined the effects of type-2 astrocytes differentiated from oligodendrocyte precursor cells on the survival and growth of dorsal root ganglion neuro...

  15. The functional significance of newly born neurons integrated into olfactory bulb circuits

    OpenAIRE

    Sakamoto, Masayuki; Kageyama, Ryoichiro; Imayoshi, Itaru

    2014-01-01

    The olfactory bulb (OB) is the first central processing center for olfactory information connecting with higher areas in the brain, and this neuronal circuitry mediates a variety of odor-evoked behavioral responses. In the adult mammalian brain, continuous neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the hippocampal dentate gyrus. New neurons born in the SVZ migrate through the rostral migratory stream and are integrated into the ne...

  16. Genetic control of neuronal activity in mice conditionally expressing TRPV1

    OpenAIRE

    Arenkiel, Benjamin R.; Klein, Marguerita E; Davison, Ian G.; Katz, Lawrence C.; Ehlers, Michael D.

    2008-01-01

    Here we describe a knock-in mouse model for Cre-loxP–based conditional expression of TRPV1 in central nervous system neurons. Expression of Cre recombinase using biolistics, lentivirus or genetic intercrosses triggered heterologous expression of TRPV1 in a cell-specific manner. Application of the TRPV1 ligand capsaicin induced strong inward currents, triggered action potentials and activated stereotyped behaviors, allowing cell type–specific chemical genetic control of neuronal activity in vi...

  17. Effect of glutamate on lysosomal membrane permeabilization in primary cultured cortical neurons

    OpenAIRE

    Yan, Min; Zhu, Wenbo; Zheng, Xiaoke; Li, Yuan; TANG, LIPENG; LU, BINGZHENG; Chen, WenLi; Qiu, Pengxin; Leng, Tiandong; Lin, Suizhen; Yan, Guangmei; Yin, Wei

    2016-01-01

    Glutamate is the principal neurotransmitter in the central nervous system. Glutamate-mediated excitotoxicity is the predominant cause of cerebral damage. Recent studies have shown that lysosomal membrane permeabilization (LMP) is involved in ischemia-associated neuronal death in non-human primates. This study was designed to investigate the effect of glutamate on lysosomal stability in primary cultured cortical neurons. Glutamate treatment for 30 min induced the permeabilization of lysosomal ...

  18. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus

    OpenAIRE

    NAKAMURA, KAE; Matsumoto, Masayuki; Hikosaka, Okihide

    2008-01-01

    The dopamine system has been thought to play a central role in guiding behavior based on rewards. Recent pharmacological studies suggest that another monoamine neurotransmitter, serotonin, is also involved in reward processing. To elucidate the functional relationship between serotonin neurons and dopamine neurons, we performed single unit recording in the dorsal raphe nucleus (DRN), a major source of serotonin, and the substantia nigra pars compacta, a major source of dopamine, while monkeys...

  19. Comprehensive catecholaminergic projectome analysis reveals single-neuron integration of zebrafish ascending and descending dopaminergic systems

    OpenAIRE

    Tay, Tuan Leng; Ronneberger, Olaf; Ryu, Soojin; Nitschke, Roland; Driever, Wolfgang

    2011-01-01

    Essential components of animal behaviour are modulated by dopaminergic (DA) and noradrenergic circuitry. In this study, we reveal at cellular resolution the complete set of projections ('projectome') of every single type of DA and noradrenergio neurons in the central nervous system of zebrafish larvae. The most extensive DA projections are established by posterior tubercular otp-dependent neurons, with individual somata integrating the ascending DA system, the descending diencephalospinal, as...

  20. Is Neuronal Death Necessary for Acquired Epileptogenesis in the Immature Brain?

    OpenAIRE

    Dudek, F. Edward; Ekstrand, Jeffrey J.; Staley, Kevin J.

    2010-01-01

    A central question concerning acquired epileptogenesis in the immature brain is whether neuronal death is required for the development of epilepsy after a brain insult. Results from three different animal models of brain injury during early development have been used to develop the hypothesis that status epilepticus, prolonged febrile seizures, or hypoxia-induced seizures can lead to chronic epilepsy without the occurrence of neuronal death. This brief review will summarize the evidence suppo...

  1. Overexpression of Glycogen Synthase Kinase 3β Sensitizes Neuronal Cells to Ethanol Toxicity

    OpenAIRE

    Liu, Ying(College of Nuclear Science and Technology, Beijing Normal University, 100875, Beijing, China); Chen, Gang; Ma, Cuiling; Bower, Kimberly A.; Xu, Mei; Fan, Zhiqin; Shi, Xianglin; Ke, Zun-Ji; Luo, Jia

    2009-01-01

    The developing central nervous system (CNS) is particularly susceptible to ethanol toxicity. The loss of neurons underlies many of the behavioral deficits observed in fetal alcohol spectrum disorders (FASD). The mechanisms of ethanol-induced neuronal loss, however, remain incompletely elucidated. We demonstrated that glycogen synthase kinase 3β (GSK3β), a multifunctional serine/threonine kinase, was involved in ethanol neurotoxicity. The activity of GSK3β is negatively regulated by its phosph...

  2. Differential effects of cardiac sympathetic afferent stimulation on neurons in the nucleus tractus solitarius

    OpenAIRE

    Wang, Wei-zhong; Gao, Lie; Pan, Yan-Xia; Zucker, Irving H.; Wang, Wei

    2006-01-01

    Activation of the cardiac “sympathetic afferent” reflex (CSAR) has been reported to depress the arterial baroreflex and enhance the arterial chemoreflex via a central mechanism. In the present study, we used single-unit extracellular recording techniques to examine the effects of stimulation of cardiac sympathetic afferents on baro- or chemosensitive neurons in the nucleus tractus solitarius (NTS) in anesthetized rats. Of 54 barosensitive NTS neurons tested for their response to epicardial ap...

  3. Extracellular Ca2+ Acts as a Mediator of Communication from Neurons to Glia

    OpenAIRE

    Torres, Arnulfo; Wang, Fushun; Xu, Qiwu; Fujita, Takumi; Dobrowolski, Radoslaw; Willecke, Klaus; Takano, Takahiro; Nedergaard, Maiken

    2012-01-01

    Defining the pathways through which neurons and astrocytes communicate may contribute to the elucidation of higher central nervous system functions. We investigated the possibility that decreases in extracellular calcium ion concentration ([Ca2+]e) that occur during synaptic transmission might mediate signaling from neurons to glia. Using noninvasive photolysis of the photolabile Ca2+ buffer diazo-2 {N-[2-[2-[2-[bis(carboxymethyl)amino]-5-(diazoacetyl)phenoxy]ethoxy]-4-methylphenyl]-N-(carbox...

  4. Cannabinoid inhibition of the capsaicin-induced calcium response in rat dorsal root ganglion neurones

    OpenAIRE

    Millns, Paul J; Chapman, Victoria; Kendall, David A.

    2001-01-01

    Cannabinoids have marked inhibitory effects on somatosensory processing, which may arise from actions at both peripheral and central cannabinoid receptors. Here, the effect of a synthetic cannabinoid agonist HU210 on capsaicin-evoked responses in adult rat dorsal root ganglion (DRG) neurones was studied. The vanilloid capsaicin produced a concentration-related increase in intracellular calcium in DRG neurones, which was significantly inhibited by HU210 (1 μM). The cannabinoid CB1 receptor ant...

  5. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability

    OpenAIRE

    Tsodyks, Misha V.; Markram, Henry

    1997-01-01

    Although signaling between neurons is central to the functioning of the brain, we still do not understand how the code used in signaling depends on the properties of synaptic transmission. Theoretical analysis combined with patch clamp recordings from pairs of neocortical pyramidal neurons revealed that the rate of synaptic depression, which depends on the probability of neurotransmitter release, dictates the extent to which firing rate and temporal coherence of action potentials within a pre...

  6. VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse

    OpenAIRE

    Eiden, Lee E.; Weihe, Eberhard

    2011-01-01

    The monoaminergic neuron, in particular the dopaminergic neuron, is central to mediating the hedonic and addictive properties of drugs of abuse. The effects of amphetamine (AMPH) and cocaine (COC), for example, depend on the ability to increase dopamine in the synapse, by effects on either the plasma membrane transporter DAT or the vesicular transporter for monoamine storage, VMAT2. The potential role of DAT as a target for AMPH and COC has been reviewed extensively. Here, we present VMAT2 as...

  7. Adiponectin Depolarizes Parvocellular Paraventricular Nucleus Neurons Controlling Neuroendocrine and Autonomic Function

    OpenAIRE

    Hoyda, Ted Donald; Samson, Willis Kendrick; Ferguson, Alastair Victor

    2008-01-01

    Adiponectin plays important roles in the control of energy homeostasis and autonomic function through peripheral and central nervous system actions. The paraventricular nucleus (PVN) of the hypothalamus is a primary site of neuroendocrine (NE) and autonomic integration, and, thus, a potential target for adiponectin actions. Here, we investigate actions of adiponectin on parvocellular PVN neurons. Adiponectin influenced the majority (65%) of parvocellular PVN neurons, depolarizing 47%, whereas...

  8. Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input.

    Science.gov (United States)

    Dean, J B; Bayliss, D A; Erickson, J T; Lawing, W L; Millhorn, D E

    1990-01-01

    The effects of elevated CO2 (i.e. hypercapnia) on neurons in the nucleus tractus solitarii were studied using extracellular (n = 82) and intracellular (n = 33) recording techniques in transverse brain slices prepared from rat. Synaptic connections from putative chemosensitive neurons in the ventrolateral medulla were removed by bisecting each transverse slice and discarding the ventral half. In addition, the response to hypercapnia in 20 neurons was studied during high magnesium-low calcium synaptic blockade. Sixty-five per cent of the neurons (n = 75) tested were either insensitive or inhibited by hypercapnia. However, 35% (n = 40) were depolarized and/or increased their firing rate during hypercapnia. Nine out of 10 CO2-excited neurons retained their chemosensitivity to CO2 in the presence of high magnesium-low calcium synaptic blockade medium. Our findings demonstrate that many neurons in the nucleus tractus solitarii were depolarized and/or increased their firing rate during hypercapnia. These neurons were not driven synaptically by putative chemosensitive neurons of the ventrolateral medulla since this region was removed from the slice. Furthermore, because chemosensitivity persisted in most neurons tested during synaptic blockade, we conclude that some neurons in the nucleus tractus solitarii are inherently CO2-chemosensitive. Although the function of dorsal medullary chemosensitive neurons cannot be determined in vitro, their location and their inherent chemosensitivity suggest a role in cardiorespiratory central chemoreception. PMID:2120613

  9. Neuronal modelling of baroreflex response to orthostatic stress

    Science.gov (United States)

    Samin, Azfar

    The accelerations experienced in aerial combat can cause pilot loss of consciousness (GLOC) due to a critical reduction in cerebral blood circulation. The development of smart protective equipment requires understanding of how the brain processes blood pressure (BP) information in response to acceleration. We present a biologically plausible model of the Baroreflex to investigate the neural correlates of short-term BP control under acceleration or orthostatic stress. The neuronal network model, which employs an integrate-and-fire representation of a biological neuron, comprises the sensory, motor, and the central neural processing areas that form the Baroreflex. Our modelling strategy is to test hypotheses relating to the encoding mechanisms of multiple sensory inputs to the nucleus tractus solitarius (NTS), the site of central neural processing. The goal is to run simulations and reproduce model responses that are consistent with the variety of available experimental data. Model construction and connectivity are inspired by the available anatomical and neurophysiological evidence that points to a barotopic organization in the NTS, and the presence of frequency-dependent synaptic depression, which provides a mechanism for generating non-linear local responses in NTS neurons that result in quantifiable dynamic global baroreflex responses. The entire physiological range of BP and rate of change of BP variables is encoded in a palisade of NTS neurons in that the spike responses approximate Gaussian 'tuning' curves. An adapting weighted-average decoding scheme computes the motor responses and a compensatory signal regulates the heart rate (HR). Model simulations suggest that: (1) the NTS neurons can encode the hydrostatic pressure difference between two vertically separated sensory receptor regions at +Gz, and use changes in that difference for the regulation of HR; (2) even though NTS neurons do not fire with a cardiac rhythm seen in the afferents, pulse

  10. Towards Automatic Classification of Neurons

    OpenAIRE

    Armañanzas, Rubén; Ascoli, Giorgio A.

    2015-01-01

    The classification of neurons into types has been much debated since the inception of modern neuroscience. Recent experimental advances are accelerating the pace of data collection. The resulting information growth of morphological, physiological, and molecular properties encourages efforts to automate neuronal classification by powerful machine learning techniques. We review state-of-the-art analysis approaches and availability of suitable data and resources, highlighting prominent challenge...

  11. Neuronal Classification of Atria Fibrillation

    OpenAIRE

    Mohamed BEN MESSAOUD

    2008-01-01

    Motivation. In medical field, particularly the cardiology, the diagnosis systems constitute the essential domain of research. In some applications, the traditional methods of classification present some limitations. The neuronal technique is considered as one of the promising algorithms to resolve such problem.Method. In this paper, two approaches of the Artificial Neuronal Network (ANN) technique are investigated to classify the heart beats which are Multi Layer Perception (MLP) and Radial B...

  12. Computing with Spiking Neuron Networks

    OpenAIRE

    Paugam-Moisy, H.; Bohte, Sander; Rozenberg, G.; Baeck, Thomas; Kok, Joost

    2012-01-01

    Abstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions between neurons, taking into account the time of spike firing. SNNs overcome the computational power of neural networks made of threshold or sigmoidal units. Based on dynamic event-driven processing, they ope...

  13. A more substantive neuron doctrine

    OpenAIRE

    Lau, JYF

    1999-01-01

    First, it is not clear from Gold and Stoljar's definition of biological neuroscience whether it includes computational and representational concepts. If so, then their evaluation of Kandel's theory is problematic. If not, then a more direct refutation of the radical neuron doctrine is available. Second, objections to the psychological sciences might derive not just from the conflation of the radical and the trivial neuron doctrines. There might also be the implicit belief that, for many menta...

  14. Chimera states in bursting neurons

    OpenAIRE

    Bera, Bidesh K.; Ghosh, Dibakar; Lakshmanan, M.

    2015-01-01

    We study the existence of chimera states in pulse-coupled networks of bursting Hindmarsh-Rose neurons with nonlocal, global and local (nearest neighbor) couplings. Through a linear stability analysis, we discuss the behavior of stability function in the incoherent (i.e. disorder), coherent, chimera and multi-chimera states. Surprisingly, we find that chimera and multi-chimera states occur even using local nearest neighbor interaction in a network of identical bursting neurons alone. This is i...

  15. A multisensory centrifugal neuron in the olfactory pathway of heliothine moths

    DEFF Research Database (Denmark)

    Zhao, Xin-Cheng; Pfuhl, Gerit; Surlykke, Annemarie;

    2013-01-01

    . Additional responses to odors were recorded from the neuron in Heliothis virescens. The putative biological significance of the centrifugal antennal-lobe neuron is discussed with regard to its morphological and physiological properties. In particular, a possible role in multisensory processes underlying the...... fine processes in the dorsomedial region of the protocerebrum and extensive neuronal branches with blebby terminals in all glomeruli of the antennal lobe. Its soma is located dorsally of the central body close to the brain midline. Mass-fills of antennal-lobe connections with protocerebral regions...

  16. Novel model of neuronal bioenergetics

    DEFF Research Database (Denmark)

    Bak, Lasse Kristoffer; Obel, Linea Lykke Frimodt; Walls, Anne B;

    2012-01-01

    We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N-methyl-d-aspartate)-ind......We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N...... an ionomycin-induced increase in intracellular Ca2+ (i.e. independent of synaptic activity) on neuronal energy metabolism employing 13C-labelled glucose and lactate and subsequent mass spectrometric analysis of labelling in glutamate, alanine and lactate. The results demonstrate that glucose...... utilization is positively correlated with intracellular Ca2+ whereas lactate utilization is not. This result lends further support for a significant role of glucose in neuronal bioenergetics and that Ca2+ signalling may control the switch between glucose and lactate utilization during synaptic activity. Based...

  17. Automated identification of neurons and their locations

    CERN Document Server

    Inglis, Andrew; Roe, Dan L; Stanley, H E; Rosene, Douglas L; Urbanc, Brigita

    2007-01-01

    Individual locations of many neuronal cell bodies (>10^4) are needed to enable statistically significant measurements of spatial organization within the brain such as nearest-neighbor and microcolumnarity measurements. In this paper, we introduce an Automated Neuron Recognition Algorithm (ANRA) which obtains the (x,y) location of individual neurons within digitized images of Nissl-stained, 30 micron thick, frozen sections of the cerebral cortex of the Rhesus monkey. Identification of neurons within such Nissl-stained sections is inherently difficult due to the variability in neuron staining, the overlap of neurons, the presence of partial or damaged neurons at tissue surfaces, and the presence of non-neuron objects, such as glial cells, blood vessels, and random artifacts. To overcome these challenges and identify neurons, ANRA applies a combination of image segmentation and machine learning. The steps involve active contour segmentation to find outlines of potential neuron cell bodies followed by artificial ...

  18. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders

    NARCIS (Netherlands)

    De Keyser, Jacques; Mostert, Jop P.; Koch, Marcus W.

    2008-01-01

    Once considered little more than the glue that holds neurons in place, astrocytes are now becoming appreciated for the key roles they play in central nervous system functions. They supply neurons and oligodendrocytes with substrates for energy metabolism, control extracellular water and electrolyte

  19. Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies

    OpenAIRE

    Goldstein, David S.; Holmes, Courtney; Sharabi, Yehonatan

    2012-01-01

    Central catecholamine deficiency characterizes α-synucleinopathies such as Parkinson’s disease. We hypothesized that cerebrospinal fluid levels of neuronal metabolites of catecholamines provide neurochemical biomarkers of these disorders. To test this hypothesis we measured cerebrospinal fluid levels of catechols including dopamine, norepinephrine and their main respective neuronal metabolites dihydroxyphenylacetic acid and dihydroxyphenylglycol in Parkinson’s disease and two other synucleino...

  20. Communication among neurons.

    Science.gov (United States)

    Marner, Lisbeth

    2012-04-01

    The communication among neurons is the prerequisite for the working brain. To understand the cellular, neurochemical, and structural basis of this communication, and the impacts of aging and disease on brain function, quantitative measures are necessary. This thesis evaluates several quantitative neurobiological methods with respect to possible bias and methodological issues. Stereological methods are suited for the unbiased estimation of number, length, and volumes of components of the nervous system. Stereological estimates of the total length of myelinated nerve fibers were made in white matter of post mortem brains, and the impact of aging and diseases as Schizophrenia and Alzheimer's disease were evaluated. Although stereological methods are in principle unbiased, shrinkage artifacts are difficult to account for. Positron emission tomography (PET) recordings, in conjunction with kinetic modeling, permit the quantitation of radioligand binding in brain. The novel serotonin 5-HT4 antagonist [11C]SB207145 was used as an example of the validation process for quantitative PET receptor imaging. Methods based on reference tissue as well as methods based on an arterial plasma input function were evaluated with respect to precision and accuracy. It was shown that [11C]SB207145 binding had high sensitivity to occupancy by unlabeled ligand, necessitating high specific activity in the radiosynthesis to avoid bias. The established serotonin 5-HT2A ligand [18F]altanersin was evaluated in a two-year follow-up study in elderly subjects. Application of partial volume correction of the PET data diminished the reliability of the measures, but allowed for the correct distinction between changes due to brain atrophy and receptor availability. Furthermore, a PET study of patients with Alzheimer's disease with the serotonin transporter ligand [11C]DASB showed relatively preserved serotonergic projections, despite a marked decrease in 5-HT2A receptor binding. Possible confounders are

  1. Cognition and behavior in motor neuron disease

    OpenAIRE

    Raaphorst, J.

    2015-01-01

    Motor neuron disease (MND) is a devastating neurodegenerative disorder characterized by progressive motor neuron loss, leading to weakness of the muscles of arms and legs, bulbar and respiratory muscles. Depending on the involvement of the lower and the upper motor neuron, amyotrophic lateral sclerosis (ALS; both lower and upper motor neuron affected) and progressive muscular atrophy (PMA; only lower motor neuron affected) are recognized. There is no cure, despite numerous pharmaceutical tria...

  2. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    OpenAIRE

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.; Chan, C. Savio

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically,...

  3. Isoflurane-induced neuronal apoptosis in developing hippocampal neurons

    Institute of Scientific and Technical Information of China (English)

    Hongliang Liu; Tijun Dai; Weitao Guo

    2013-01-01

    We hypothesized that the P2X7 receptor may be the target of isoflurane, so we investigated the roles of the P2X7 receptor and inositol triphosphate receptor in calcium overload and neuronal apoptosis induced by isoflurane in cultured embryonic rat hippocampal neurons. Results showed that isoflurane induced widespread neuronal apoptosis and significantly increased cytoplasmic Ca2+. Blockade of P2X7 receptors or removal of extracellular Ca2+ combined with blockade of inositol triphosphate receptors completely inhibited apoptosis or increase in cytoplasmic Ca2+. Removal of extracellular Ca2+ or blockade of inositol triphosphate receptor alone could partly inhibit these effects of isoflurane. Isoflurane could directly activate P2X7-gated channels and induce inward currents, but did not affect the expression of P2X7 receptor protein in neurons. These findings indicate that the mechanism by which isoflurane induced neuronal apoptosis in rat developing brain was mediated by intracellular calcium overload, which was caused by P2X7 receptor mediated calcium influx and inositol triphosphate receptor mediated calcium release.

  4. Brain-derived neurotrophic factor protects neurons from GdCl3-induced impairment in neuron-astrocyte co-cultures

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Gadolinium (Gd3+) complexes are important contrast agents in medical magnetic resonance imaging (MRI) and of great potential value in brain research. In order to better understand the mechanisms of the action of Gd3+ on neurons in the complex central nervous system (CNS), the neurotoxic actions of GdCl3 have been investigated in both neuron monoculture and astrocyte-neuron co-culture systems. Measurements of lactate dehydrogenase release showed that GdCl3 causes significant cell death of monocultured neurons as a result of reactive oxygen species (ROS) generation and down-regulation of brain-derived neurotrophic factor (BDNF). However, GdCl3 does not affect the viability and BDNF expression of astrocytes. Both co-culturing of neurons with astrocytes and addition of BDNF ameliorated GdCl3-induced neurotoxicity by decreasing ROS generation and facilitating recovery of BDNF levels. The results obtained suggest that astrocytes in the CNS may protect neurons from GdCl3-induced impairment through secreting BDNF and thus up-regulating BDNF expression and interfering with Gd3+-induced cell signaling in neurons. A possible molecular mechanism is suggested which should be helpful in understand- ing the neurotoxic actions of gadolinium probes .

  5. Serial correlation in neural spike trains: experimental evidence, stochastic modeling, and single neuron variability.

    Science.gov (United States)

    Farkhooi, Farzad; Strube-Bloss, Martin F; Nawrot, Martin P

    2009-02-01

    The activity of spiking neurons is frequently described by renewal point process models that assume the statistical independence and identical distribution of the intervals between action potentials. However, the assumption of independent intervals must be questioned for many different types of neurons. We review experimental studies that reported the feature of a negative serial correlation of neighboring intervals, commonly observed in neurons in the sensory periphery as well as in central neurons, notably in the mammalian cortex. In our experiments we observed the same short-lived negative serial dependence of intervals in the spontaneous activity of mushroom body extrinsic neurons in the honeybee. To model serial interval correlations of arbitrary lags, we suggest a family of autoregressive point processes. Its marginal interval distribution is described by the generalized gamma model, which includes as special cases the log-normal and gamma distributions, which have been widely used to characterize regular spiking neurons. In numeric simulations we investigated how serial correlation affects the variance of the neural spike count. We show that the experimentally confirmed negative correlation reduces single-neuron variability, as quantified by the Fano factor, by up to 50%, which favors the transmission of a rate code. We argue that the feature of a negative serial correlation is likely to be common to the class of spike-frequency-adapting neurons and that it might have been largely overlooked in extracellular single-unit recordings due to spike sorting errors. PMID:19391776

  6. Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain.

    Science.gov (United States)

    Larsen, Camilla; Shy, Diana; Spindler, Shana R; Fung, Siaumin; Pereanu, Wayne; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2009-11-15

    The Drosophila central brain is composed of approximately 100 paired lineages, with most lineages comprising 100-150 neurons. Most lineages have a number of important characteristics in common. Typically, neurons of a lineage stay together as a coherent cluster and project their axons into a coherent bundle visible from late embryo to adult. Neurons born during the embryonic period form the primary axon tracts (PATs) that follow stereotyped pathways in the neuropile. Apoptotic cell death removes an average of 30-40% of primary neurons around the time of hatching. Secondary neurons generated during the larval period form secondary axon tracts (SATs) that typically fasciculate with their corresponding primary axon tract. SATs develop into the long fascicles that interconnect the different compartments of the adult brain. Structurally, we distinguish between three types of lineages: PD lineages, characterized by distinct, spatially separate proximal and distal arborizations; C lineages with arborizations distributed continuously along the entire length of their tract; D lineages that lack proximal arborizations. Arborizations of many lineages, in particular those of the PD type, are restricted to distinct neuropile compartments. We propose that compartments are "scaffolded" by individual lineages, or small groups thereof. Thereby, the relatively small number of primary neurons of each primary lineage set up the compartment map in the late embryo. Compartments grow during the larval period simply by an increase in arbor volume of primary neurons. Arbors of secondary neurons form within or adjacent to the larval compartments, resulting in smaller compartment subdivisions and additional, adult specific compartments. PMID:19538956

  7. Serial correlation in neural spike trains: Experimental evidence, stochastic modeling, and single neuron variability

    Science.gov (United States)

    Farkhooi, Farzad; Strube-Bloss, Martin F.; Nawrot, Martin P.

    2009-02-01

    The activity of spiking neurons is frequently described by renewal point process models that assume the statistical independence and identical distribution of the intervals between action potentials. However, the assumption of independent intervals must be questioned for many different types of neurons. We review experimental studies that reported the feature of a negative serial correlation of neighboring intervals, commonly observed in neurons in the sensory periphery as well as in central neurons, notably in the mammalian cortex. In our experiments we observed the same short-lived negative serial dependence of intervals in the spontaneous activity of mushroom body extrinsic neurons in the honeybee. To model serial interval correlations of arbitrary lags, we suggest a family of autoregressive point processes. Its marginal interval distribution is described by the generalized gamma model, which includes as special cases the log-normal and gamma distributions, which have been widely used to characterize regular spiking neurons. In numeric simulations we investigated how serial correlation affects the variance of the neural spike count. We show that the experimentally confirmed negative correlation reduces single-neuron variability, as quantified by the Fano factor, by up to 50%, which favors the transmission of a rate code. We argue that the feature of a negative serial correlation is likely to be common to the class of spike-frequency-adapting neurons and that it might have been largely overlooked in extracellular single-unit recordings due to spike sorting errors.

  8. Metabolic multianalyte microphysiometry reveals extracellular acidosis is an essential mediator of neuronal preconditioning.

    Science.gov (United States)

    McKenzie, Jennifer R; Palubinsky, Amy M; Brown, Jacquelynn E; McLaughlin, Bethann; Cliffel, David E

    2012-07-18

    Metabolic adaptation to stress is a crucial yet poorly understood phenomenon, particularly in the central nervous system (CNS). The ability to identify essential metabolic events which predict neuronal fate in response to injury is critical to developing predictive markers of outcome, for interpreting CNS spectroscopic imaging, and for providing a richer understanding of the relevance of clinical indices of stress which are routinely collected. In this work, real-time multianalyte microphysiometry was used to dynamically assess multiple markers of aerobic and anaerobic respiration through simultaneous electrochemical measurement of extracellular glucose, lactate, oxygen, and acid. Pure neuronal cultures and mixed cultures of neurons and glia were compared following a 90 min exposure to aglycemia. This stress was cytotoxic to neurons yet resulted in no appreciable increase in cell death in age-matched mixed cultures. The metabolic profile of the cultures was similar in that aglycemia resulted in decreases in extracellular acidification and lactate release in both pure neurons and mixed cultures. However, oxygen consumption was only diminished in the neuron enriched cultures. The differences became more pronounced when cells were returned to glucose-containing media upon which extracellular acidification and oxygen consumption never returned to baseline in cells fated to die. Taken together, these data suggest that lactate release is not predictive of neuronal survival. Moreover, they reveal a previously unappreciated relationship of astrocytes in maintaining oxygen uptake and a correlation between metabolic recovery of neurons and extracellular acidification. PMID:22860220

  9. Convergence of limb, visceral, and vertical semicircular canal or otolith inputs onto vestibular nucleus neurons

    Science.gov (United States)

    Jian, B. J.; Shintani, T.; Emanuel, B. A.; Yates, B. J.

    2002-01-01

    The major goal of this study was to determine the patterns of convergence of non-labyrinthine inputs from the limbs and viscera onto vestibular nucleus neurons receiving signals from vertical semicircular canals or otolith organs. A secondary aim was to ascertain whether the effects of non-labyrinthine inputs on the activity of vestibular nucleus neurons is affected by bilateral peripheral vestibular lesions. The majority (72%) of vestibular nucleus neurons in labyrinth-intact animals whose firing was modulated by vertical rotations responded to electrical stimulation of limb and/or visceral nerves. The activity of even more vestibular nucleus neurons (93%) was affected by limb or visceral nerve stimulation in chronically labyrinthectomized preparations. Some neurons received non-labyrinthine inputs from a variety of peripheral sources, including antagonist muscles acting at the same joint, whereas others received inputs from more limited sources. There was no apparent relationship between the spatial and dynamic properties of a neuron's responses to tilts in vertical planes and the non-labyrinthine inputs that it received. These data suggest that non-labyrinthine inputs elicited during movement will modulate the processing of information by the central vestibular system, and may contribute to the recovery of spontaneous activity of vestibular nucleus neurons following peripheral vestibular lesions. Furthermore, some vestibular nucleus neurons with non-labyrinthine inputs may be activated only during particular behaviors that elicit a specific combination of limb and visceral inputs.

  10. Facilitation of the main generator source of earthworm muscle contraction by a peripheral neuron

    Directory of Open Access Journals (Sweden)

    Y.C. Chang

    1998-10-01

    Full Text Available A constant facilitation of responses evoked in the earthworm muscle contraction generator neurons by responses evoked in the neurons of its peripheral nervous system was demonstrated. It is based on the proposal that these two responses are bifurcations of an afferent response evoked by the same peripheral mechanical stimulus but converging again on this central neuron. A single-peaked generator response without facilitation was demonstrated by sectioning the afferent route of the peripheral facilitatory modulatory response, or conditioning response (CR. The multipeaked response could be restored by restimulating the sectioned modulatory neuron with an intracellular substitutive conditioning stimulus (SCS. These multi-peaked responses were proposed to be the result of reverberating the original single peaked unconditioned response (UR through a parallel (P neuronal circuit which receives the facilitation of the peripheral modulatory neuron. This peripheral modulatory neuron was named "Peri-Kästchen" (PK neuron because it has about 20 peripheral processes distributed on the surface of a Kästchen of longitudinal muscle cells on the body wall of this preparation as revealed by the Lucifer Yellow-CH-filling method.

  11. Steps in the formation of neurites and synapses studied in cultured leech neurons

    Directory of Open Access Journals (Sweden)

    De-Miguel F.F.

    2000-01-01

    Full Text Available Leech neurons in culture have provided novel insights into the steps in the formation of neurite outgrowth patterns, target recognition and synapse formation. Identified adult neurons from the central nervous system of the leech can be removed individually and plated in culture under well-controlled conditions, where they retain their characteristic physiological properties, grow neurites and form specific chemical or electrical synapses. Different identified neurons develop distinctive outgrowth patterns that depend on their identities and on the molecular composition of the substrate. On native substrates, the patterns displayed by these neurons reproduce characteristics from the adult or the developing neurons. In addition, the substrate may induce selective directed growth between pairs of neurons that normally make contact in the ganglion. Upon contact, pairs of cultured leech neurons form chemical or electrical synapses, or both types depending on the neuronal identities. Anterograde and retrograde signals during membrane contact and synapse formation modify the distribution of synaptic terminals, calcium currents, and responses to 5-hydroxytryptamine.

  12. Monoclonal anti-vasopressin (VP) antibodies penetrate into VP neurons, in vivo.

    Science.gov (United States)

    Burlet, A J; Leon-Henri, B P; Robert, F R; Arahmani, A; Fernette, B M; Burlet, C R

    1987-01-01

    The fate of monoclonal anti-vasopressin antibodies (VP-MAbs) injected in vivo into the paraventricular nucleus (PVN) of the rat brain was studied by immunocytochemistry. Depending on the post survival time, VP-MAbs contained in an ascites fluid were stained at different levels of the VP neurons: the cytoplasm of the PVN neurons, the fibres of the median eminence and the granular layer of the Gyrus Dentatus. The identification of endogenous peptides synthesized by PVN neurons showed that the VP-MAbs uptake was specific: it did not appear either in the oxytocinergic neurons or in the non immunoreactive neurons of the Brattleboro rat brain, this rat being genetically incapable of synthesizing central VP. Conversely, VP-MAbs only penetrated into the VP neurons: ascites fluid containing monoclonal antibodies prepared against bovine thyroglobulin (the carrier conjugated to VP in our immunizations) was neither stained in magnocellular neurons nor carried in nerve fibres. The neuronal uptake and transport of VP-MAbs occurred in vivo: they were totally inhibited by heating of the ascites fluid at 56 degrees C for 30 min; this treatment did not alter the VP-MAbs themselves but probably destroyed some thermic sensitive component essential to the macromolecule internalization. The biological effects of antibodies injected in vivo have been reported. The results described here suggest that some specific antibodies passively transferred into the brain could act directly on the peptide synthesis recognized by the antibodies. PMID:3556490

  13. Viscoelastic properties of individual glial cells and neurons in the CNS.

    Science.gov (United States)

    Lu, Yun-Bi; Franze, Kristian; Seifert, Gerald; Steinhäuser, Christian; Kirchhoff, Frank; Wolburg, Hartwig; Guck, Jochen; Janmey, Paul; Wei, Er-Qing; Käs, Josef; Reichenbach, Andreas

    2006-11-21

    One hundred fifty years ago glial cells were discovered as a second, non-neuronal, cell type in the central nervous system. To ascribe a function to these new, enigmatic cells, it was suggested that they either glue the neurons together (the Greek word "gammalambdaiotaalpha" means "glue") or provide a robust scaffold for them ("support cells"). Although both speculations are still widely accepted, they would actually require quite different mechanical cell properties, and neither one has ever been confirmed experimentally. We investigated the biomechanics of CNS tissue and acutely isolated individual neurons and glial cells from mammalian brain (hippocampus) and retina. Scanning force microscopy, bulk rheology, and optically induced deformation were used to determine their viscoelastic characteristics. We found that (i) in all CNS cells the elastic behavior dominates over the viscous behavior, (ii) in distinct cell compartments, such as soma and cell processes, the mechanical properties differ, most likely because of the unequal local distribution of cell organelles, (iii) in comparison to most other eukaryotic cells, both neurons and glial cells are very soft ("rubber elastic"), and (iv) intriguingly, glial cells are even softer than their neighboring neurons. Our results indicate that glial cells can neither serve as structural support cells (as they are too soft) nor as glue (because restoring forces are dominant) for neurons. Nevertheless, from a structural perspective they might act as soft, compliant embedding for neurons, protecting them in case of mechanical trauma, and also as a soft substrate required for neurite growth and facilitating neuronal plasticity. PMID:17093050

  14. Monoclonal antibody identification of subpopulations of cerebral cortical neurons affected in Alzheimer's disease

    International Nuclear Information System (INIS)

    Neuronal degeneration is one of the hallmarks of Alzheimer's disease (AD). Given the paucity of molecular markers available for the identification of neuronal subtypes, the specificity of neuronal loss within the cerebral cortex has been difficult to evaluate. With a panel of four monoclonal antibodies (mAbs) applied to central nervous system tissues from AD patients, the authors have immunocytochemically identified a population of vulnerable cortical neurons; a subpopulation of pyramidal neurons is recognized by mAbs 3F12 and 44.1 in the hippocampus and neocortex, and clusters of multipolar neurons in the entorhinal cortex reactive with mAb 44.1 show selective degeneration. Closely adjacent stellate-like neurons in these regions, identified by mAb 6A2, show striking preservation in AD. The neurons recognized by mAbs 3F12 and 44.1 do not comprise a single known neurotransmitter system. mAb 3A4 identifies a phosphorylated antigen that is undetectable in normal brain but accumulates early in the course of AD in somas of vulnerable neurons. Antigen 3A4 is distinct from material reactive with thioflavin S or antibody generated against paired helical filaments. Initially, antigen 3A4 is localized to neurons in the entorhinal cortex and subiculum, later in the association neocortex, and, ultimately in cases of long duration, in primary sensory cortical regions. mAb 3F12 recognizes multiple bands of immunoblots of homogenates of normal and AD cortical tissues, whereas mAb 3A4 does not bind to immunoblots containing neurofilament proteins or brain homogenates from AD patients. Ultrastructurally, antigen 3A4 is localized to paired-helical filaments. Using these mAbs, further molecular characterization of the affected cortical neurons is now possible

  15. Glutamine uptake contributes to central sensitization in the medullary dorsal horn

    OpenAIRE

    Chiang, Chen Yu; Li, Zhaohui; Dostrovsky, Jonathan O.; Hu, James W.; Sessle, Barry J.

    2008-01-01

    Mustard oil application to tooth pulp produces central sensitization in rat medullary dorsal horn (MDH) nociceptive neurons, which has been implicated in persistent pain mechanisms. We found that superfusion onto MDH of methylaminoisobutyric acid, a competitive inhibitor of the neuronal system A transporter for presynaptic uptake of glutamine (a glutamate precursor released from astroglia), significantly depressed development of mustard oil-induced central sensitization in rat MDH nociceptive...

  16. THE SYNAPTIC CONNECTIONS BETWEEN PV-LI TERMINALS AND THALAMIC PROJECTION NEURONS IN THE THIRD-ORDER NUCLEI OF CENTRAL PATHWAY OF TRIGEMINAL PROPRIOCEPTIVE SENSATION OF THE RAT%大鼠三叉神经本体觉中枢通路上第三级核团内PV样阳性终末与丘脑投射神经元的突触联系

    Institute of Scientific and Technical Information of China (English)

    董玉琳; 李金莲

    2004-01-01

    Objective To examine if axonal varicosities with parvalbumin-like immunoreactivity(PV-LI) might make synaptic connections with thalamic projection neurons in the third-order nuclei of central pathway of trigeminal proprioceptive sensation of the rat. Methods The HRP-retrograde tracing method combined with immuno-electron microscopy was used.Projection neurons were retrogradely labeled with wheat germ agglutinin-horseradish peroxidase(WGA-HRP) which was injected into the ventral posteromedial nucleus(VPM) of the thalamus. Results After injection,a number of WGA-HRP-labeled neurons were observed mainly in the principal sensory trigeminal nucleus(Vp),the caudolateral part of supratrigeminal nucleus (Vsup-CL),the area ventral to the motor trigeminal nucleus(AVM) and the area dorsal to the superior olivary nucleus(ADO).Electron microscopy confirmed that axon terminals with PV-LI made synaptic contact on somatic and dendritic profiles which were labeled with WGA-HRP.In addition,some PV-negative axon terminals made synapses with WGA-HRP-labeled somatic or dendritic profiles occasionally showed PV-LI.Conclusion It was indicated that some of PV-containing projection neurons might be involved in the transmission of the trigeminal proprioceptive information from the third-order nuclei to the VPM of thalamus through the mechanism of synaptic transmission.%目的观察大鼠三叉神经本体觉中枢通路上第三级核团内Parvalbumin样阳性轴突终末与丘脑投射神经元之间是否存在突触联系. 方法用HRP逆行追踪和包埋前免疫电镜相结合的双重标记法.将WGA-HRP注入丘脑腹后内侧核逆行标记投射神经元. 结果 WGA-HRP注入丘脑腹后内侧核(VPM)后,WGA-HRP标记神经元主要分布在感觉主核背内侧部(Vpdm)、三叉上核尾外侧部(Vsup-CL)以及三叉神经运动核腹侧区(AVM)和上橄榄核背侧区(ADO).电镜下可见PV样阳性神经元的轴突终末与WGA-HRP标记的胞体或者树突形成突触联系.

  17. Learning of time series through neuron-to-neuron instruction

    International Nuclear Information System (INIS)

    A model neuron with delayline feedback connections can learn a time series generated by another model neuron. It has been known that some student neurons that have completed such learning under the instruction of a teacher's quasi-periodic sequence mimic the teacher's time series over a long interval, even after instruction has ceased. We found that in addition to such faithful students, there are unfaithful students whose time series eventually diverge exponentially from that of the teacher. In order to understand the circumstances that allow for such a variety of students, the orbit dimension was estimated numerically. The quasi-periodic orbits in question were found to be confined in spaces with dimensions significantly smaller than that of the full phase space

  18. Neurochemical architecture of the central complex related to its function in the control of grasshopper acoustic communication.

    Directory of Open Access Journals (Sweden)

    Michael Kunst

    Full Text Available The central complex selects and coordinates the species- and situation-specific song production in acoustically communicating grasshoppers. Control of sound production is mediated by several neurotransmitters and modulators, their receptors and intracellular signaling pathways. It has previously been shown that muscarinic cholinergic excitation in the central complex promotes sound production whereas both GABA and nitric oxide/cyclic GMP signaling suppress its performance. The present immunocytochemical and pharmacological study investigates the question whether GABA and nitric oxide mediate inhibition of sound production independently. Muscarinic ACh receptors are expressed by columnar output neurons of the central complex that innervate the lower division of the central body and terminate in the lateral accessory lobes. GABAergic tangential neurons that innervate the lower division of the central body arborize in close proximity of columnar neurons and thus may directly inhibit these central complex output neurons. A subset of these GABAergic tangential neurons accumulates cyclic GMP following the release of nitric oxide from neurites in the upper division of the central body. While sound production stimulated by muscarine injection into the central complex is suppressed by co-application of sodium nitroprusside, picrotoxin-stimulated singing was not affected by co-application of this nitric oxide donor, indicating that nitric oxide mediated inhibition requires functional GABA signaling. Hence, grasshopper sound production is controlled by processing of information in the lower division of the central body which is subject to modulation by nitric oxide released from neurons in the upper division.

  19. Ephaptic coupling in cortical neurons

    Directory of Open Access Journals (Sweden)

    Costas Anastassiou

    2014-03-01

    Full Text Available The electrochemical processes that underlie neural function manifest themselves in ceaseless spatial and temporal fluctuations in the extracellular electric field. The local field potential (LFP, used to study neural interactions during various brain states, is regarded as an epiphenomenon of coordinated neural activity. Yet the extracellular field activity feeds back onto the electrical potential across the neuronal membrane via ephaptic coupling (Jefferys et al, Physiol Rev, 1995. The extent to which such ephaptic coupling alters the functioning of individual neurons and neural assemblies under physiological conditions has remained largely speculative despite recent advances (Ozen et al, JNeurosci, 2010; Fröhlich & McCormick, Neuron, 2010, Anastassiou et al, JNeurosci, 2010. To address this question we use a 12-pipette setup that allows independent positioning of each pipette under visual control with μm accuracy, with the flexibility of using an arbitrary number of these as patching, extracellularly stimulating or extracellular recording pipettes only a few μm away from the cell body of patched neurons (Anastassiou et al, Nat Neurosci, 2011. We stimulated in rat somatosensory cortical slices a variety of layer 5 neural types and recorded inside and outside their cell bodies while pharmacologically silencing synaptic transmission. Pyramidal cells couple to the extracellular field distinctly different from interneurons. Ephaptic coupling strength depends both on the field strength (as measured at the neuron soma as well as the spike-history of neurons. In particular, we find that ephaptic coupling strength depends both on the field strength (as measured at the cell body as well as the spike-history of neurons. How do such effects manifest themselves in vivo? We address this question through detailed large-scale simulations from thousands of biophysically realistic and interconnected neurons (Reimann, Anastassiou et al, Neuron, 2013 emulating

  20. Neuronal factors determining high intelligence.

    Science.gov (United States)

    Dicke, Ursula; Roth, Gerhard

    2016-01-01

    Many attempts have been made to correlate degrees of both animal and human intelligence with brain properties. With respect to mammals, a much-discussed trait concerns absolute and relative brain size, either uncorrected or corrected for body size. However, the correlation of both with degrees of intelligence yields large inconsistencies, because although they are regarded as the most intelligent mammals, monkeys and apes, including humans, have neither the absolutely nor the relatively largest brains. The best fit between brain traits and degrees of intelligence among mammals is reached by a combination of the number of cortical neurons, neuron packing density, interneuronal distance and axonal conduction velocity--factors that determine general information processing capacity (IPC), as reflected by general intelligence. The highest IPC is found in humans, followed by the great apes, Old World and New World monkeys. The IPC of cetaceans and elephants is much lower because of a thin cortex, low neuron packing density and low axonal conduction velocity. By contrast, corvid and psittacid birds have very small and densely packed pallial neurons and relatively many neurons, which, despite very small brain volumes, might explain their high intelligence. The evolution of a syntactical and grammatical language in humans most probably has served as an additional intelligence amplifier, which may have happened in songbirds and psittacids in a convergent manner. PMID:26598734