WorldWideScience

Sample records for central nervous adaptations

  1. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  2. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  3. Developmental adaptation of central nervous system to extremely high acetylcholine levels.

    Directory of Open Access Journals (Sweden)

    Vladimir Farar

    Full Text Available Acetylcholinesterase (AChE is a key enzyme in termination of fast cholinergic transmission. In brain, acetylcholine (ACh is produced by cholinergic neurons and released in extracellular space where it is cleaved by AChE anchored by protein PRiMA. Recently, we showed that the lack of AChE in brain of PRiMA knock-out (KO mouse increased ACh levels 200-300 times. The PRiMA KO mice adapt nearly completely by the reduction of muscarinic receptor (MR density. Here we investigated changes in MR density, AChE, butyrylcholinesterase (BChE activity in brain in order to determine developmental period responsible for such adaptation. Brains were studied at embryonal day 18.5 and postnatal days (pd 0, 9, 30, 120, and 425. We found that the AChE activity in PRiMA KO mice remained very low at all studied ages while in wild type (WT mice it gradually increased till pd120. BChE activity in WT mice gradually decreased until pd9 and then increased by pd120, it continually decreased in KO mice till pd30 and remained unchanged thereafter. MR number increased in WT mice till pd120 and then became stable. Similarly, MR increased in PRiMA KO mice till pd30 and then remained stable, but the maximal level reached is approximately 50% of WT mice. Therefore, we provide the evidence that adaptive changes in MR happen up to pd30. This is new phenomenon that could contribute to the explanation of survival and nearly unchanged phenotype of PRiMA KO mice.

  4. Age aspect of adaptive response of the central nervous system in the state of emotional pain

    Directory of Open Access Journals (Sweden)

    Demchenko Ye.M.

    2014-11-01

    Full Text Available The formation of higher adaptive response in the postoperative period was investigated in experiments on rats of two age groups. It was found inhibition of the orientation-motor and emotional activity in young (5-6 months and old rats (20-24 months with the greatear effect in animals of the first age group. In young rats the inhibition of spatial memory was observed – number of food-getting depleted reactions decreased by 28%. Cognitive deficit was accompanied by opposite changes in the content of free unsaturated fatty acids (C18: 2.3, respectively to age features: decreased by 46% in the cortex of young rats and increased by 2.5-fold in the hippocampus of old animals.

  5. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  6. Central nervous system mesenchymal chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Salvati, M.; Frati, A.; Piccirilli, M.; Agrillo, A.; Brogna, C.; Occhiogrosso, G.; Giangaspero, F. [INM Neuromed IRCCS, Pozzilli (Italy). Dept. of Neurosurgery; Caroli, E. [Policlinico S. Andrea, Rome (Italy). Dept. of Neurological Sciences, Neurosurgery

    2005-06-15

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival.

  7. Central Nervous System Infections in Denmark

    Science.gov (United States)

    2018-02-04

    Central Nervous System Infections; Bacterial Meningitis; Viral Meningitis; Aseptic Meningitis; Encephalitis; Brain Abscess; Neuroborreliosis; Neurosyphilis; Lyme Disease; Tertiary Syphilis; Cerebral Abscess; Meningitis

  8. Central nervous system tuberculosis: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kioumehr, F.; Dadsetan, M.R.; Rooholamini, S.A.; Au, A.

    1994-02-01

    The MRI findings of 18 proven cases of central nervous system (CNS) tuberculosis were reviewed; 10 patients were seropositive for HIV. All had medical, laboratory, or surgical proof of CNS tuberculosis. Eleven patients had meningitis, of whom two also had arachnoiditis. Five patients had focal intra-axial tuberculomas: four brain masses and one an intramedullary spinal lesion. Two patients had focal extra-axial tuberculomas: one in the pontine cistern, and one in the spine. In all 11 patients with meningitis MRI showed diffuse, thick, meningeal enhancement. All intraparenchymal tuberculomas showed low signal intensity on T2-weighted images and ring or nodular enhancement. The extra-axial tuberculomas had areas isointense or hypointense relative to normal brain and spinal cord on T2-weighted images. Although tuberculous meningitis cannot be differentiated from other meningitides on the basis of MR findings, intraparenchymal tuberculomas show characteristic T2 shortening, not found in most other space-occupying lesions. In the appropriate clinical setting, tuberculoma should be considered. (orig.)

  9. Unihemispheric central nervous system vasculitis

    Directory of Open Access Journals (Sweden)

    Sikawat Thanaviratananich

    2017-06-01

    Full Text Available Patients with primary central nervous system vasculitis (PCNSV usually manifest with multiple enhancing bilateral hemispheric lesions. We presented an extremely rare clinical course and follow-up of a patient with PCNSV affecting only a single (right hemisphere. A 33-year-old previously healthy man presented with a left hand clonic seizure followed by a secondary generalized tonic-clonic seizure and dysarthria. MRI brain revealed multiple hyperintense lesions confined to only the right hemisphere with contrast enhancement, involving both white and grey matters. He was treated with a methylprednisolone for 5 days followed by prednisone for suspected acute disseminated encephalomyelitis without improvements. He was presented again with left-sided weakness, transient dysarthria and black objects in left visual field. MRI brain was unchanged. MR angiogram and conventional cerebral angiogram were normal. Autoimmune work-ups were all negative. A brain biopsy showed evidence of PCNSV. He was then successfully treated with intravenous cyclophosphamide followed by oral azathioprine. On a follow-up 3 years later, he remains asymptomatic on azathioprine and a repeat MRI showed all areas of enhancement were gone.

  10. Central nervous system depressant activityof Leonurus sibiricus ...

    African Journals Online (AJOL)

    The methanol extract of aerial parts of Leonurus sibiricus was shown to possess central nervous system depressant action by significantly decreased the time of onset of sleep and potentiated the pentobarbital induced sleeping time in mice. Keywords: Leonurus sibiricus, labiatae, central nervous depressant, sedation

  11. MRI of central nervous system anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, M.; Oikawa, A.; Matoba, A.

    1987-05-01

    MRI was very useful in the evaluation of congenital anomalies of central nervous system as well as other nervous system disease with three-dimensional spatial resolution. We had experienced MRI of central nervous system anomalies, demonstrated characterisitic findings in each anomaly. MRI is useful to observe the coronal, horizontal and sagittal images of the brain and spinal cord in order to discuss the etiological mechanisms of spinal dysraphysm and its associated anomalies. In case of spina bifida cystica MRI was available to decide operative indication for radical operation and tetherd cord developed from postoperative scar or accompanied intraspinal lesions.

  12. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...... of this nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more...... of the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  13. The Central Nervous System and Inflammation in Hypertension

    OpenAIRE

    Marvar, Paul J.; Lob, Heinrich; Vinh, Antony; Zarreen, Faresa; Harrison, David G.

    2010-01-01

    In recent years a major research effort has focused on the role of inflammation, and in particular adaptive immunity, in the genesis of hypertension. Hypertension stimulates the accumulation of inflammatory cells including macrophages and T lymphocytes in peripheral tissues important in blood pressure control, such as the kidney and vasculature. Angiotensin II modulates blood pressure via actions on the central nervous system (CNS) and the adaptive immune system. Recent work suggests that the...

  14. [Parasitic diseases of the central nervous system].

    Science.gov (United States)

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  15. Primary Angiitis Of The Central Nervous System

    Directory of Open Access Journals (Sweden)

    Sundaram Meenakshi

    2001-01-01

    Full Text Available An unusual case of primary angiitis of central nervous system (PACNS presenting with headache, seizures and focal deficits is presented. Despite multiple lesions noted on brain MRI, definitive diagnosis required a brain biopsy. A high index of clinical suspicious and the utility of brain biopsy for diagnosis are emphasized.

  16. Azole-Resistant Central Nervous System Aspergillosis

    NARCIS (Netherlands)

    van der Linden, Jan W. M.; Jansen, Rogier R.; Bresters, Dorine; Visser, Caroline E.; Geerlings, Suzanne E.; Kuijper, Ed J.; Melchers, Willem J. G.; Verweij, Paul E.

    2009-01-01

    Three patients with central nervous system aspergillosis due to azole-resistant Aspergillus fumigatus (associated with a leucine substitution for histidine at codon 98 [L98H] and a 34-base pair repeat in tandem in the promoter region) are described. The patients were treated with combination therapy

  17. Central nervous system tuberculomata presenting as internuclear ...

    African Journals Online (AJOL)

    Central nervous system (CNS) tuberculoma can have variable presentation depending upon the site and number of tuberculomata. We are reporting a rare case of a 15 years old girl who presented to our hospital with binocular diplopia on right gaze. Clinical examination revealed left sided internuclear ophthalmoplegia ...

  18. Hypersensitivity Responses in the Central Nervous System

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Asgari, Nasrin; Mørch, Marlene Thorsen

    2015-01-01

    of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals...

  19. Interferons in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions...

  20. Central nervous system tuberculosis | Cherian | African Health ...

    African Journals Online (AJOL)

    Central nervous system (CNS) involvement, one of the most devastating clinical manifestations of tuberculosis (TB) is noted in 5 to 10% of extrapulmonary TB cases, and accounts for approximately 1% of all TB cases. Definitive diagnosis of tuberculous meningitis (TBM) depends upon the detection of the tubercle bacilli in ...

  1. Phenylketonuria: central nervous system and microbiome interaction

    Directory of Open Access Journals (Sweden)

    Demian Arturo Herrera Morban

    2017-06-01

    Full Text Available Phenylketonuria (PKU is an autosomal recessive inborn error of metabolism characterized by increased phenylalanine (Phe levels causing an inadequate neurodevelopment; the treatment of PKU is a Phe-restricting diet, and as such it can modulate the intestinal microbiome of the individual, generating central nervous system secondary disturbances that, added to the baseline disturbance, can influence the outcome of the disease.

  2. Time Perception Mechanisms at Central Nervous System

    OpenAIRE

    Rhailana Fontes; Jéssica Ribeiro; Gupta, Daya S.; Dionis Machado; Fernando Lopes-Júnior; Francisco Magalhães; Victor Hugo Bastos; Kaline Rocha; Victor Marinho; Gildário Lima; Bruna Velasques; Pedro Ribeiro; Marco Orsini; Bruno Pessoa; Marco Antonio Araujo Leite

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms...

  3. How viruses infiltrate the central nervous system.

    Science.gov (United States)

    Michalicová, A; Bhide, K; Bhide, M; Kováč, A

    Central nervous system is protected by the blood-brain barrier, which represents a physical, metabolic and transport barrier and is considered to be a part of a highly dynamic system termed neurovascular unit. Several pathogens, among them viruses, are able to invade the brain. Traversal of viruses across the blood-brain barrier is an essential step for the invasion of the central nervous system and can occur by different mechanisms - by paracellular, transcellular and/or by "Trojan horse" pathway. Penetration of viruses to brain can lead to the blood-brain barrier dysfunction, including increased permeability, pleocytosis and encephalopathy. Viruses causing the central nervous system infections include human immunodeficiency virus type 1, rhabdovirus, different flaviviruses, mouse adenovirus type 1, herpes simplex virus, influenza virus, parainfluenza virus, reovirus, lymphocytic choriomeningitis virus, arbovirus, cytomegalovirus, mumps virus, parvovirus B19, measles virus, human T-cell leukemia virus, enterovirus, morbillivirus, bunyaviruses, togaviruses and others. In this review we summarized what is known about the routes of how some viruses enter the brain and how neurons and glial cells react to infection.

  4. Evolution of flatworm central nervous systems: Insights from polyclads

    Directory of Open Access Journals (Sweden)

    Sigmer Y. Quiroga

    2015-09-01

    Full Text Available The nervous systems of flatworms have diversified extensively as a consequence of the broad range of adaptations in the group. Here we examined the central nervous system (CNS of 12 species of polyclad flatworms belonging to 11 different families by morphological and histological studies. These comparisons revealed that the overall organization and architecture of polyclad central nervous systems can be classified into three categories (I, II, and III based on the presence of globuli cell masses -ganglion cells of granular appearance-, the cross-sectional shape of the main nerve cords, and the tissue type surrounding the nerve cords. In addition, four different cell types were identified in polyclad brains based on location and size. We also characterize the serotonergic and FMRFamidergic nervous systems in the cotylean Boninia divae by immunocytochemistry. Although both neurotransmitters were broadly expressed, expression of serotonin was particularly strong in the sucker, whereas FMRFamide was particularly strong in the pharynx. Finally, we test some of the major hypothesized trends during the evolution of the CNS in the phylum by a character state reconstruction based on current understanding of the nervous system across different species of Platyhelminthes and on up-to-date molecular phylogenies.

  5. Effects of the Autonomic Nervous System, Central Nervous System ...

    African Journals Online (AJOL)

    The gastrointestinal tract is chiefly involved in the digestion of ingested food, facilitation of absorption process and expulsion of the undigested food material through motility process. Motility is influenced by neurohormonal system which is associated with the enteric nervous system , autonomic nervous system and the ...

  6. The central nervous system and inflammation in hypertension.

    Science.gov (United States)

    Marvar, Paul J; Lob, Heinrich; Vinh, Antony; Zarreen, Faresa; Harrison, David G

    2011-04-01

    In recent years a major research effort has focused on the role of inflammation, and in particular adaptive immunity, in the genesis of hypertension. Hypertension stimulates the accumulation of inflammatory cells including macrophages and T lymphocytes in peripheral tissues important in blood pressure control, such as the kidney and vasculature. Angiotensin II modulates blood pressure via actions on the central nervous system (CNS) and the adaptive immune system. Recent work suggests that the central actions of angiotensin II via the circumventricular organs lead to activation of circulating T-cells and vascular inflammation. The neuro-immune system plays an essential role in the pathogenesis of hypertension and further understanding of this relationship could lead to the development of new treatment strategies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Pediatric central nervous system vascular malformations

    Energy Technology Data Exchange (ETDEWEB)

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  8. Central Nervous System Involvement by Multiple Myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, A.; Gozzetti, A.; Cerase, A.

    2015-01-01

    Introduction: Central nervous system (CNS) involvement by multiple myeloma (MM) is a rare occurrence and is found in approximately 1% of MM patients at some time during the course of their disease. At the time of diagnosis, extramedullary MM is found in 7% of patients, and another 6% may develop....... Results: The median time from MM diagnosis to CNS MM diagnosis was 3 years. Upon diagnosis, 97% patients with CNS MM received frontline therapy, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. The most common symptoms at presentation were visual changes (36...... history of chemotherapy and unfavorable cytogenetic profile, survival of individuals free from these negative prognostic factors can be prolonged due to administration of systemic treatment and/or radiotherapy. Prospective multi-institutional studies are warranted to improve the outcome of patients...

  9. Central nervous system involvement by multiple myeloma

    DEFF Research Database (Denmark)

    Jurczyszyn, Artur; Grzasko, Norbert; Gozzetti, Alessandro

    2016-01-01

    The multicenter retrospective study conducted in 38 centers from 20 countries including 172 adult patients with CNS MM aimed to describe the clinical and pathological characteristics and outcomes of patients with multiple myeloma (MM) involving the central nervous system (CNS). Univariate......, 97% patients received initial therapy for CNS disease, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. After a median follow-up of 3.5 years, the median overall survival (OS) from the onset of CNS involvement for the entire group was 7 months. Untreated...... untreated patients and patients with favorable cytogenetic profile might be prolonged due to systemic treatment and/or radiotherapy. This article is protected by copyright. All rights reserved....

  10. VIIP: Central Nervous System (CNS) Modeling

    Science.gov (United States)

    Vera, Jerry; Mulugeta, Lealem; Nelson, Emily; Raykin, Julia; Feola, Andrew; Gleason, Rudy; Samuels, Brian; Ethier, C. Ross; Myers, Jerry

    2015-01-01

    Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome. It has been hypothesized that the headward shift of cerebrospinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn may then induce VIIP syndrome through interaction with various biomechanical pathways. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the related IWS works submitted by Nelson et al., Feola et al. and Ethier et al.

  11. Scaffolds for central nervous system tissue engineering

    Science.gov (United States)

    He, Jin; Wang, Xiu-Mei; Spector, Myron; Cui, Fu-Zhai

    2012-03-01

    Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.

  12. Corticosteroids In Infections Of Central Nervous System

    Directory of Open Access Journals (Sweden)

    Meena AK

    2003-01-01

    Full Text Available Infections of central nervous system are still a major problem. Despite the introduction of newer antimicrobial agents, mortality and long-term sequelace associated with these infections is unacceptably high. Based on the evidence that proinflammtory cytokines have a role in pathophysiology of bacterial and tuberculous meningitis, corticosteroids with a potent anti-inflammatory and immunomodulating effect have been tested and found to be of use in experimental and clinical studies, Review of the available literature suggests steroid administration just prior to antimicrobial therapy is effective in decreasing audiologic and neurologic sequelae in childern with H. influenzae nenigitis. Steroid use for bacterial meningitis in adults is found to be beneficial in case of S. pneumoniae. The value of adjunctive steroid therapy for other bacterial causes of meningitis remains unproven. Corticocorticoids are found to be of no benefit in viral meningitis, Role of steroids in HIV positive patients needs to be studied.

  13. Histamine, antihistamines, and the central nervous system.

    Science.gov (United States)

    Lieberman, Philip

    2009-01-01

    Histamine is a central nervous system (CNS) neurotransmitter. It acts in the brain via three receptors, H(1), H(2), and H(3). It is a mediator of "wakefulness" and its activity is necessary to maintain wakefulness, alertness, and reaction time. These activities can be impaired by H(1)-antagonists (reverse agonists) capable of penetrating the blood-brain barrier. By blocking the homeostatic effects of histamine in the CNS, drowsiness and functional impairment with or without drowsiness can occur. Several tests have been designed to assess the effects of antihistamines on the CNS. These include subjective measurements of drowsiness and more objective measurements of impairment. Second-generation antihistamines have been designed to minimize blood-brain barrier penetration by reducing lipophilicity and increasing the affinity for P-aminnoglycoprotein.

  14. Autoimmune Neurology of the Central Nervous System.

    Science.gov (United States)

    Tobin, W Oliver; Pittock, Sean J

    2017-06-01

    This article reviews the rapidly evolving spectrum of autoimmune neurologic disorders with a focus on those that involve the central nervous system, providing an understanding of how to approach the diagnostic workup of patients presenting with central nervous system symptoms or signs that could be immune mediated, either paraneoplastic or idiopathic, to guide therapeutic decision making. The past decade has seen a dramatic increase in the discovery of novel neural antibodies and their targets. Many commercial laboratories can now test for these antibodies, which serve as diagnostic markers of diverse neurologic disorders that occur on an autoimmune basis. Some are highly specific for certain cancer types, and the neural antibody profiles may help direct the physician's cancer search. The diagnosis of an autoimmune neurologic disorder is aided by the detection of an objective neurologic deficit (usually subacute in onset with a fluctuating course), the presence of a neural autoantibody, and improvement in the neurologic status after a course of immunotherapy. Neural autoantibodies should raise concern for a paraneoplastic etiology and may inform a targeted oncologic evaluation (eg, N-methyl-D-aspartate [NMDA] receptor antibodies are associated with teratoma, antineuronal nuclear antibody type 1 [ANNA-1, or anti-Hu] are associated with small cell lung cancer). MRI, EEG, functional imaging, videotaped evaluations, and neuropsychological evaluations provide objective evidence of neurologic dysfunction by which the success of immunotherapy may be measured. Most treatment information emanates from retrospective case series and expert opinion. Nonetheless, early intervention may allow reversal of deficits in many patients and prevention of future disability.

  15. Bilastine and the central nervous system.

    Science.gov (United States)

    Montoro, J; Mullol, J; Dávila, I; Ferrer, M; Sastre, J; Bartra, J; Jáuregui, I; del Cuvillo, A; Valero, A

    2011-01-01

    Antihistamines have been classifed as first or second generation drugs, according to their pharmacokinetic properties, chemical structure and adverse effects. The adverse effects of antihistamines upon the central nervous system (CNS) depend upon their capacity to cross the blood-brain barrier (BBB) and bind to the central H1 receptors (RH1). This in turn depends on the lipophilicity of the drug molecule, its molecular weight (MW), and affinity for P-glycoprotein (P-gp) (CNS xenobiotic substances extractor protein). First generation antihistamines show scant affinity for P-gp, unlike the second generation molecules which are regarded as P-gp substrates. Histamine in the brain is implicated in many functions (waking-sleep cycle, attention, memory and learning, and the regulation of appetite), with numerous and complex interactions with different types of receptors in different brain areas. Bilastine is a new H1 antihistamine that proves to be effective in treating allergic rhinoconjunctivitis (seasonal and perennial) and urticaria. The imaging studies made, as well as the objective psychomotor tests and subjective assessment of drowsiness, indicate the absence of bilastine action upon the CNS. This fact, and the lack of interaction with benzodiazepines and alcohol, define bilastine as a clinically promising drug with a good safety profile as regards adverse effects upon the CNS.

  16. Time perception mechanisms at central nervous system

    Directory of Open Access Journals (Sweden)

    Rhailana Fontes

    2016-04-01

    Full Text Available The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  17. Myelin plasticity in the central nervous system.

    Science.gov (United States)

    Purger, David; Gibson, Erin M; Monje, Michelle

    2016-11-01

    Myelin sheaths, specialized segments of oligodendrocyte (OL) plasma membranes in the central nervous system (CNS), facilitate fast, saltatory conduction of action potentials down axons. Changes to the fine structure of myelin in a neural circuit, including sheath thickness and internode length (length of myelin segments between nodes of Ranvier), are expected to affect conduction velocity of action potentials. Myelination of the mammalian CNS occurs in a stereotyped, progressive pattern and continues well into adulthood in humans. Recent evidence from zebrafish, rodents, non-human primates, and humans suggests that myelination may be sensitive to experiences during development and adulthood, and that varying levels of neuronal activity may underlie these experience-dependent changes in myelin and myelin-forming cells. Several cellular, molecular, and epigenetic mechanisms have been investigated as contributors to myelin plasticity. A deeper understanding of myelin plasticity and its underlying mechanisms may provide insights into diseases involving myelin damage or dysregulation. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Central nervous system stimulants and sport practice.

    Science.gov (United States)

    Avois, L; Robinson, N; Saudan, C; Baume, N; Mangin, P; Saugy, M

    2006-07-01

    Central nervous system (CNS) stimulants may be used to reduce tiredness and increase alertness, competitiveness, and aggression. They are more likely to be used in competition but may be used during training to increase the intensity of the training session. There are several potential dangers involving their misuse in contact sports. This paper reviews the three main CNS stimulants, ephedrine, amfetamine, and cocaine, in relation to misuse in sport. Description of the pharmacology, actions, and side effects of amfetamine, cocaine, and ephedrine. CNS stimulants have psychotropic effects that may be perceived to be ergogenic. Some are prescription drugs, such as Ephedra alkaloids, and there are issues regarding their appropriate therapeutic use. Recently attention has been given to their widespread use by athletes, despite the lack of evidence regarding any ergogenic or real performance benefit, and their potentially serious side effects. Recreational drugs, some of which are illegal (cocaine, amfetamines), are commonly used by athletes and cause potential ergolytic effects. Overall, these drugs are important for their frequent use and mention in anti-doping laboratories statistics and the media, and their potentially serious adverse effects. Doping with CNS stimulants is a real public health problem and all sports authorities should participate in its prevention. Dissemination of information is essential to prevent doping in sport and to provide alternatives. Adequate training and education in this domain should be introduced.

  19. Time Perception Mechanisms at Central Nervous System.

    Science.gov (United States)

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-04-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson's disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  20. Serotonin 5-HT(3) receptors in the central nervous system

    NARCIS (Netherlands)

    Chameau, P.J.P.; van Hooft, J.A.

    2006-01-01

    The 5-HT(3) receptor is a ligand-gated ion channel activated by serotonin (5-HT). Although originally identified in the peripheral nervous system, the 5-HT(3) receptor is also ubiquitously expressed in the central nervous system. Sites of expression include several brain stem nuclei and higher

  1. Statin therapy inhibits remyelination in the central nervous system

    DEFF Research Database (Denmark)

    Miron, Veronique E; Zehntner, Simone P; Kuhlmann, Tanja

    2009-01-01

    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood...

  2. "Suicide" Gen Therapy for Malignant Central Nervous System Tumors

    NARCIS (Netherlands)

    A.J.P.E. Vincent (Arnoud)

    1998-01-01

    textabstractDespite development in surgical techniques, chemotherapy and radiotherapy, most malignancies of the central nervous system are still devastating tumors with a poor prognosis. For example, median survival of patients with malignant gliomas (astrocytoma, oligodendroglioma or mixed rype) is

  3. Central nervous system stimulants and drugs that suppress appetite

    DEFF Research Database (Denmark)

    Aagaard, Lise

    2014-01-01

    of the January 2012 to June 2013 publications on central nervous system stimulants and drugs that suppress appetite covers amphetamines (including metamfetamine, paramethoxyamfetamine and paramethoxymetamfetamine), fenfluramine and benfluorex, atomoxetine, methylphenidate, modafinil and armodafinil...

  4. Central nervous system infections in heart transplant recipients

    NARCIS (Netherlands)

    van de Beek, Diederik; Patel, Robin; Daly, Richard C.; McGregor, Christopher G. A.; Wijdicks, Eelco F. M.

    2007-01-01

    OBJECTIVE: To study central nervous system infections after heart transplantations. DESIGN: Retrospective cohort study. SETTING: Cardiac Transplant Program at Mayo Clinic, Rochester, Minnesota. Patients Three hundred fifteen consecutive patients who underwent heart transplantation from January 1988

  5. Role of metallothionein-III following central nervous system damage

    DEFF Research Database (Denmark)

    Carrasco, Javier; Penkowa, Milena; Giralt, Mercedes

    2003-01-01

    We evaluated the physiological relevance of metallothionein-III (MT-III) in the central nervous system following damage caused by a focal cryolesion onto the cortex by studying Mt3-null mice. In normal mice, dramatic astrogliosis and microgliosis and T-cell infiltration were observed in the area...... the inflammatory response elicited in the central nervous system by a cryoinjury, nor does it serve an important antioxidant role, but it may influence neuronal regeneration during the recovery process....

  6. Xenacoelomorpha: a case of independent nervous system centralization?

    Science.gov (United States)

    Gavilán, Brenda; Perea-Atienza, Elena; Martínez, Pedro

    2016-01-05

    Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoels, nemertodermatids and xenoturbellids. Interestingly, while the xenoturbellids seem to have a rather 'simple' NS (a nerve net), members of the most derived group of acoel worms clearly have ganglionic brains. This interesting diversity of NS architectures (with different degrees of compaction) provides a unique system with which to address outstanding questions regarding the evolution of brains and centralized NSs. The recent sequencing of xenacoelomorph genomes gives us a privileged vantage point from which to analyse neural evolution, especially through the study of key gene families involved in neurogenesis and NS function, such as G protein-coupled receptors, helix-loop-helix transcription factors and Wnts. We finish our manuscript proposing an adaptive scenario for the origin of centralized NSs (brains). © 2015 The Author(s).

  7. Structural and functional features of central nervous system lymphatic vessels.

    Science.gov (United States)

    Louveau, Antoine; Smirnov, Igor; Keyes, Timothy J; Eccles, Jacob D; Rouhani, Sherin J; Peske, J David; Derecki, Noel C; Castle, David; Mandell, James W; Lee, Kevin S; Harris, Tajie H; Kipnis, Jonathan

    2015-07-16

    One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.

  8. Microbiota-gut-brain axis and the central nervous system.

    Science.gov (United States)

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  9. Disseminated encephalomyelitis-like central nervous system neoplasm in childhood.

    Science.gov (United States)

    Zhao, Jianhui; Bao, Xinhua; Fu, Na; Ye, Jintang; Li, Ting; Yuan, Yun; Zhang, Chunyu; Zhang, Yao; Zhang, Yuehua; Qin, Jiong; Wu, Xiru

    2014-08-01

    A malignant neoplasm in the central nervous system with diffuse white matter changes on magnetic resonance imaging (MRI) is rare in children. It could be misdiagnosed as acute disseminated encephalomyelitis. This report presents our experience based on 4 patients (3 male, 1 female; aged 7-13 years) whose MRI showed diffuse lesions in white matter and who were initially diagnosed with acute disseminated encephalomyelitis. All of the patients received corticosteroid therapy. After brain biopsy, the patients were diagnosed with gliomatosis cerebri, primitive neuroectodermal tumor and central nervous system lymphoma. We also provide literature reviews and discuss the differentiation of central nervous system neoplasm from acute disseminated encephalomyelitis. © The Author(s) 2013.

  10. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  11. Central nervous system control of ejaculation.

    Science.gov (United States)

    Holstege, Gert

    2005-06-01

    An overview is given of the regions in the spinal cord that are active during ejaculation. Motoneurons involved are the preganglionic sympathetic motoneurons in the upper lumbar spinal cord and the motoneurons in the nucleus of Onuf, located in the upper sacral cord. The first group is involved in the so-called emission phase of ejaculation, the last group in the expulsion phase. Both groups receive afferents from premotor interneurons in the so-called intermediomedial cell groups located at about the same level as the motoneurons themselves. A concept is put forward in which these premotor cell groups represent the central spinal pattern generators for ejaculation, one for the emission phase and one for the expulsion phase. Clinical observations in patients suffering from transection of the spinal cord indicate that the ejaculation motoneurons as well as their spinal central pattern generators are under strong influence of descending pathways originating in supraspinal parts of the brain. The various pathways possibly involved in ejaculation control are reviewed. Finally, the results of the brain activation of a PET-scan study in human males, ejaculating after penile stimulation by their female partner are discussed. Especially the ventral tegmental area and the cerebellum seem to be activated during ejaculation, while the amygdala region is deactivated. Apparently, a general lack of fear is necessary for ejaculation to occur.

  12. Sjogrens Syndrome Presenting with Central Nervous System Involvement

    Directory of Open Access Journals (Sweden)

    Tülay Terzi

    2012-01-01

    Full Text Available Sjogren’s syndrome is a slowly progressive autoimmune disease. Neurological involvement occurs in approximately 20-25% cases in Sjogren’s syndrome. 87% of the neurological involvement is peripheral nervous system, almost 13% in the form of central nervous system involvement. Affected central nervous system may show similar clinical and radiological findings as in multiple sclerosis (MS. In this paper, a 43-year-old patient is discussed who was referred with the complaint of dizziness, there was MS- like lesions in brain imaging studies and was diagnosed with Sjogren’s syndrome. MS- like clinical and radiologic tables can be seen, albeit rarely in Sjogren’s syndrome. In these cases, early diagnosis and early treatment for the sjögren has a great importance for the prognosis of the disease.

  13. Innate immune responses in central nervous system inflammation

    DEFF Research Database (Denmark)

    Finsen, Bente; Owens, Trevor

    2011-01-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II...... of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy....

  14. Some Central Nervous System Activities of Nerium Oleander Linn ...

    African Journals Online (AJOL)

    Purpose: The purpose of the study was to evaluate the activity of 50 % hydroalcohol flower extract of Nerium oleander Linn. on the central nervous system (CNS) of mice. Methods: The effect of the 50 % hydroalcohol extract of N. oleander flowers at dosage levels of 100 and 200 mg/kg p.o. on the locomotor activity of mice ...

  15. central nervous system lignocaine toxicity in an infant following ...

    African Journals Online (AJOL)

    2013-05-28

    May 28, 2013 ... CENTRAL NERVOUS SYSTEM LIGNOCAINE TOXICITY IN AN INFANT FOLLOWING VENTRICULO-PERITONEAL. SHUNT AND SPINA BIFIDA REPAIR: A CASE REPORT. N. Kituu .... under general anesthesia can be made with indirect signs such as muscular rigidity, hypoxemia without other causes ...

  16. Central nervous system depressant activity of Russelia equisetiformis

    African Journals Online (AJOL)

    A significant reduction (p< 0.05) in amphetamine – induced stereotype behavior was observed with 200mg/kg REC, but there was no protection against amphetamine – induced mortality. The results of this study suggest that Russelia equisetiformis methanol extract possesses central nervous system depressant activities.

  17. Central nervous system affecting drugs and road traffic accidents ...

    African Journals Online (AJOL)

    These accidents (RTA) have been attributed to various causes including driving under the influence of drugs that affect the central nervous system (CNS). Objective: This study was aimed at determining the role of CNS affecting drugs in the causation of RTA among these motorcyclists and also to make recommendations ...

  18. Sino-orbital aspergillosis with central nervous system complication ...

    African Journals Online (AJOL)

    A central nervous system (CNS) complication (cerebral abscess) was diagnosed following seizures in the patient. The patient died a few days later. Conclusion: The diagnosis of aspergillosis of the orbit was only made from fungal culture after the patient's death. It requires a high index of suspicion to make a diagnosis of ...

  19. Primary cerebral angitis of the central nervous | Das | East African ...

    African Journals Online (AJOL)

    Various medications like intravenous immunoglobulin, antibiotics, acyclovir, methyl prednisolone and management for raised intracranial pressure were instituted. She rapidly deteroriated and died on tenth hospital day. Only at autopsy was the diagnosis of primary angitis of central nervous system established. East African ...

  20. School Reentry for Children with Acquired Central Nervous Systems Injuries

    Science.gov (United States)

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  1. Peripheral and Central Nervous System Involvement in Recently ...

    African Journals Online (AJOL)

    Peripheral and Central Nervous System Involvement in Recently Diagnosed Cases of Hypothyroidism: An. Electrophysiological Study. Gupta N, Arora M1, Sharma R, Arora KS2. Departments of Physiology and 1Medicine, Guru Gobind Singh Medical College, 2Department of Physiology, Dasmesh. Institute of Research and ...

  2. Some central nervous system and blood pressure lowering effects of ...

    African Journals Online (AJOL)

    The methanol extract of the leaves of Spondias mombin (SP) was evaluated for some central nervous system and blood pressure lowering effect in albino wistar rats and mice. The extract was administered to pre-weighed mice (20-35 g), divided into five groups of five mice each at the doses of 50, 100 and 200 mg/kg for the ...

  3. Tuberculosis of the central nervous system : overview of neuroradiological findings

    NARCIS (Netherlands)

    Bernaerts, A; Vanhoenacker, FM; Parizel, PM; van Altena, R; Laridon, A; De Roeck, J; Coeman, [No Value; De Schepper, AM; Goethem, J.W.M.

    This article presents the range of manifestations of tuberculosis (TB) of the craniospinal axis. Central nervous system (CNS) infection with Mycobacterium tuberculosis occurs either in a diffuse form as basal exudative leptomeningitis or in a localized form as tuberculoma, abscess, or cerebritis. In

  4. Effect of Sleep on the Central Nervous System.

    Science.gov (United States)

    1981-03-30

    Kleitman, N. (1967) Sleep and Wakefulness. P. 215. The University of Chicago Press , Chicago. 2. Tarozzi, G. Sull’influenze dell’insonnio sperimentale...developpee au cours d’une veille prolongee. C. R. Soc. Biol. 72:274-75, 1912. 203, 215, 352. 11. Peters, A. The fixation of central nervous tissue and the

  5. Diverse roles of neurotensin agonists in the central nervous system

    Directory of Open Access Journals (Sweden)

    Mona eBoules

    2013-03-01

    Full Text Available NT is a tridecapeptide that is found in the central nervous system and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several central nervous system (CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease, pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and Parkinson’s disease.

  6. Is Ghrelin Synthesized in the Central Nervous System?

    Science.gov (United States)

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  7. Acute Central Nervous System Complications in Pediatric Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Baytan, Birol; Evim, Melike Sezgin; Güler, Salih; Güneş, Adalet Meral; Okan, Mehmet

    2015-10-01

    The outcome of childhood acute lymphoblastic leukemia has improved because of intensive chemotherapy and supportive care. The frequency of adverse events has also increased, but the data related to acute central nervous system complications during acute lymphoblastic leukemia treatment are sparse. The purpose of this study is to evaluate these complications and to determine their long term outcome. We retrospectively analyzed the hospital reports of 323 children with de novo acute lymphoblastic leukemia from a 13-year period for acute neurological complications. The central nervous system complications of leukemic involvement, peripheral neuropathy, and post-treatment late-onset encephalopathy, and neurocognitive defects were excluded. Twenty-three of 323 children (7.1%) suffered from central nervous system complications during acute lymphoblastic leukemia treatment. The majority of these complications (n = 13/23; 56.5%) developed during the induction period. The complications included posterior reversible encephalopathy (n = 6), fungal abscess (n = 5), cerebrovascular lesions (n = 5), syndrome of inappropriate secretion of antidiuretic hormone (n = 4), and methotrexate encephalopathy (n = 3). Three of these 23 children (13%) died of central nervous system complications, one from an intracranial fungal abscess and the others from intracranial thrombosis. Seven of the survivors (n = 7/20; 35%) became epileptic and three of them had also developed mental and motor retardation. Acute central neurological complications are varied and require an urgent approach for proper diagnosis and treatment. Collaboration among the hematologist, radiologist, neurologist, microbiologist, and neurosurgeon is essential to prevent fatal outcome and serious morbidity. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Central nervous system involvement in progressive muscular dystrophy.

    Science.gov (United States)

    Yoshioka, M; Okuno, T; Honda, Y; Nakano, Y

    1980-01-01

    Several abnormalities in the central nervous system were shown in patients with progressive muscular dystrophy using computerised tomography (CT) scans, electroencephalograms, psychometry, and ophthalmological methods. In congenital muscular dystrophy, the most characteristic finding in the CT scan was a low density area in the white matter, seen in 14 (56%) out of 25 cases. In Duchenne dystrophy, slight cerebral atrophy was observed in 20 (67%) out of 30 cases. It was interesting that in the case of Duchenne dystrophy the older the patient, the more severe were the CT findings. In congenital muscular dystrophy half the patients with a low density area showed a spike or a spike-and-wave complex in the electroencephalogram, and optic atrophy was evident in several cases. It is concluded that progressive muscular dystrophy is not only a myogenic disorder but also one which affects the central nervous system. Images Fig. 1 Fig. 2 PMID:7436514

  9. Uses of nanoparticles for central nervous system imaging and therapy.

    Science.gov (United States)

    Provenzale, J M; Silva, G A

    2009-08-01

    Applications of nanotechnology to medicine are leading to novel means of imaging living systems and of delivering therapy. Much nanotechnology research is focused on methods for imaging central nervous system functions and disease states. In this review, the principles of nanoparticle design and function are discussed with specific emphasis on applications to neuroradiology. In addition to innovative forms of imaging, this review describes therapeutic uses of nanoparticles, such as drug delivery systems, neuroprotection devices, and methods for tissue regeneration.

  10. Managing Atypical and Typical herpetic central nervous system infections

    DEFF Research Database (Denmark)

    Cag, Yasemin; Erdem, Hakan; Leib, Stephen

    2016-01-01

    There have been many studies pertaining to the management of herpetic meningoencephalitis (HME), but the majority of them have focussed on virologically unconfirmed cases or included only small sample sizes. We have conducted a multicentre study aimed at providing management strategies for HME. O...... the subtle nature of HME, CSF HSV PCR, EEG and MRI data should be collected for all patients with a central nervous system infection....

  11. Central nervous system manifestations of HIV infection in children

    Energy Technology Data Exchange (ETDEWEB)

    George, Reena; Andronikou, Savvas; Plessis, Jaco du; Plessis, Anne-Marie du; Maydell, Arthur [University of Stellenbosch, Department of Radiology, Tygerberg Academic Hospital, Cape Town (South Africa); Toorn, Ronald van [University of Stellenbosch, Department of Paediatrics and Child Health, Tygerberg Academic Hospital, Cape Town (South Africa)

    2009-06-15

    Vertically transmitted HIV infection is a major problem in the developing world due to the poor availability of antiretroviral agents to pregnant women. HIV is a neurotrophic virus and causes devastating neurological insults to the immature brain. The effects of the virus are further compounded by the opportunistic infections and neoplasms that occur as a result of the associated immune suppression. This review focuses on the imaging features of HIV infection and its complications in the central nervous system. (orig.)

  12. Epigenetics Components of Aging in the Central Nervous System

    OpenAIRE

    Zhao, Yue-Qiang; Jordan, I. King; Lunyak, Victoria V.

    2013-01-01

    This review highlights recent discoveries that have shaped the emerging viewpoints in the field of epigenetic influences in the central nervous system (CNS), focusing on the following questions: i) How is the CNS shaped during development when precursor cells transition into morphologically and molecularly distinct cell types, and is this event driven by epigenetic alterations?; ii) How do epigenetic pathways control CNS function?; iii) What happens to “epigenetic memory” during aging process...

  13. Are astrocytes executive cells within the central nervous system?

    OpenAIRE

    Sica, Roberto E.; Caccuri, Roberto; Quarracino, Cecilia; Capani, Francisco

    2016-01-01

    ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS) by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dement...

  14. Xenacoelomorpha: a case of independent nervous system centralization?

    OpenAIRE

    Gavilán, Brenda; Perea-Atienza, Elena; Martínez, Pedro

    2016-01-01

    Centralized nervous systems (NSs) and complex brains are among the most important innovations in the history of life on our planet. In this context, two related questions have been formulated: How did complex NSs arise in evolution, and how many times did this occur? As a step towards finding an answer, we describe the NS of several representatives of the Xenacoelomorpha, a clade whose members show different degrees of NS complexity. This enigmatic clade is composed of three major taxa: acoel...

  15. Effect of insulin-induced hypoglycaemia on the central nervous system

    DEFF Research Database (Denmark)

    Jensen, Vivi Flou Hjorth; Bøgh, I. B.; Lykkesfeldt, Jens

    2014-01-01

    normoglycaemia. Brain glucose concentrations, being approximately 15-20% of the blood glucose concentration in humans, are rigorously maintained during hypoglycaemia through adaptions such as increased cerebral glucose transport, decreased cerebral glucose utilisation and, possibly, by using central nervous...... system glycogen as a glucose reserve. However, during sustained hypoglycaemia, the brain cannot maintain a sufficient glucose influx and, as the cerebral hypoglycaemia becomes severe, electroencephalogram changes, oxidative stress and regional neuronal death ensues. With particular focus on evidence from...

  16. Paraneoplastic and non-paraneoplastic autoimmunity to neurons in the central nervous system

    OpenAIRE

    Melzer, Nico; Meuth, Sven G.; Wiendl, Heinz

    2012-01-01

    Autoimmune central nervous system (CNS) inflammation occurs both in a paraneoplastic and non-paraneoplastic context. In a widening spectrum of clinical disorders, the underlying adaptive (auto) immune response targets neurons with a divergent role for cellular and humoral disease mechanisms: (1) in encephalitis associated with antibodies to intracellular neuronal antigens, neuronal antigen-specific CD8+ T cells seemingly account for irreversible progressive neuronal cell death and neurologica...

  17. Radon exposure and tumors of the central nervous system.

    Science.gov (United States)

    Ruano-Ravina, Alberto; Dacosta-Urbieta, Ana; Barros-Dios, Juan Miguel; Kelsey, Karl T

    2017-03-15

    To review the published evidence of links between radon exposure and central nervous system tumors through a systematic review of the scientific literature. We performed a thorough bibliographic search in Medline (PubMed) and EMBASE. We combined MeSH (Medical Subject Heading) terms and free text. We developed a purpose-designed scale to assess the quality of the included manuscripts. We have included 18 studies, 8 performed on miners, 3 on the general population and 7 on children, and the results have been structured using this classification. The results are inconclusive. An association between radon exposure and central nervous system tumors has been observed in some studies on miners, but not in others. The results observed in the general adult population and in children are also mixed, with some research evincing a statistically significant association and others showing no effect. We cannot conclude that there is a relationship between radon exposure and central nervous system tumors. The available studies are extremely heterogeneous in terms of design and populations studied. Further research is needed in this topic, particularly in the general population residing in areas with high levels of radon. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Novel mechanisms of central nervous system damage in HIV infection

    Directory of Open Access Journals (Sweden)

    Joy E Hazleton

    2010-03-01

    Full Text Available Joy E Hazleton1, Joan W Berman1,2, Eliseo A Eugenin11Department of Pathology and 2Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USAAbstract: Human immunodeficiency virus-1 infection of the central nervous system is an early event after primary infection, resulting in motor and cognitive defects in a significant number of individuals despite successful antiretroviral therapy. The pathology of the infected brain is characterized by enhanced leukocyte infiltration, microglial activation and nodules, aberrant expression of inflammatory factors, neuronal dysregulation and loss, and blood–brain barrier disruption. Months to years following the primary infection, these central nervous system insults result in a spectrum of motor and cognitive dysfunction, ranging from mild impairment to frank dementia. The mechanisms that mediate impairment are still not fully defined. In this review we discuss the cellular and molecular mechanisms that facilitate impairment and new data that implicate intercellular communication systems, gap junctions and tunneling nanotubes, as mediators of human immunodeficiency virus-1 toxicity and infection within the central nervous system. These data suggest potential targets for novel therapeutics.Keywords: AIDS, dementia, inflammation, gap junctions, nanotubes, chemokines

  19. Arteriovenous Malformations and Other Vascular Lesions of the Central Nervous System

    Science.gov (United States)

    ... Malformations and Other Vascular Lesions of the Central Nervous System Fact Sheet What are arteriovenous malformations? What are ... other types of vascular lesions affect the central nervous system? Besides AVMs, three other main types of vascular ...

  20. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    NARCIS (Netherlands)

    Weekamp, H.; Huygen, P.L.M.; Merx, J.L.; Kremer, H.P.H.; Cremers, C.W.R.J.; Longridge, N.S.

    2003-01-01

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs.

  1. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system

    NARCIS (Netherlands)

    Weekamp, H H; Huygen, P L M; Merx, J L; Kremer, H P H; Cremers, Cor W R J; Longridge, Neil S

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs.

  2. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training

    Directory of Open Access Journals (Sweden)

    M.C. Martins-Pinge

    2011-09-01

    Full Text Available The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  3. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training.

    Science.gov (United States)

    Martins-Pinge, M C

    2011-09-01

    The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  4. Refining the Ciona intestinalis model of central nervous system regeneration.

    Directory of Open Access Journals (Sweden)

    Carl Dahlberg

    Full Text Available BACKGROUND: New, practical models of central nervous system regeneration are required and should provide molecular tools and resources. We focus here on the tunicate Ciona intestinalis, which has the capacity to regenerate nerves and a complete adult central nervous system, a capacity unusual in the chordate phylum. We investigated the timing and sequence of events during nervous system regeneration in this organism. METHODOLOGY/PRINCIPAL FINDINGS: We developed techniques for reproducible ablations and for imaging live cellular events in tissue explants. Based on live observations of more than 100 regenerating animals, we subdivided the regeneration process into four stages. Regeneration was functional, as shown by the sequential recovery of reflexes that established new criteria for defining regeneration rates. We used transgenic animals and labeled nucleotide analogs to describe in detail the early cellular events at the tip of the regenerating nerves and the first appearance of the new adult ganglion anlage. CONCLUSIONS/SIGNIFICANCE: The rate of regeneration was found to be negatively correlated with adult size. New neural structures were derived from the anterior and posterior nerve endings. A blastemal structure was implicated in the formation of new neural cells. This work demonstrates that Ciona intestinalis is as a useful system for studies on regeneration of the brain, brain-associated organs and nerves.

  5. 75 FR 75681 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-12-06

    ... HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs... and circulation) of the central nervous system. The BBB is an area consisting of specialized cells...

  6. Serotonin 5-HT(3) receptors in the central nervous system.

    Science.gov (United States)

    Chameau, Pascal; van Hooft, Johannes A

    2006-11-01

    The 5-HT(3) receptor is a ligand-gated ion channel activated by serotonin (5-HT). Although originally identified in the peripheral nervous system, the 5-HT(3) receptor is also ubiquitously expressed in the central nervous system. Sites of expression include several brain stem nuclei and higher cortical areas such as the amygdala, hippocampus, and cortex. On the subcellular level, both presynaptic and postsynaptic 5-HT(3) receptors can be found. Presynaptic 5-HT(3) receptors are involved in mediating or modulating neurotransmitter release. Postsynaptic 5-HT(3) receptors are preferentially expressed on interneurons. In view of this specific expression pattern and of the well-established role of 5-HT as a neurotransmitter shaping development, we speculate that 5-HT(3) receptors play a role in the formation and function of cortical circuits.

  7. Masquerade Syndrome of Multicentre Primary Central Nervous System Lymphoma

    Directory of Open Access Journals (Sweden)

    Silvana Guerriero

    2011-01-01

    Full Text Available Purpose. In Italy we say that the most unlucky things can happen to physicians when they get sick, despite the attention of colleagues. To confirm this rumor, we report the sad story of a surgeon with bilateral vitreitis and glaucoma unresponsive to traditional therapies. Methods/Design. Case report. Results. After one year of steroidal and immunosuppressive therapy, a vitrectomy, and a trabeculectomy for unresponsive bilateral vitreitis and glaucoma, MRI showed a multicentre primary central nervous system lymphoma, which was the underlying cause of the masquerade syndrome. Conclusions. All ophthalmologists and clinicians must be aware of masquerade syndromes, in order to avoid delays in diagnosis.

  8. Area 51: How do Acanthamoeba invade the central nervous system?

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Emes, Richard; Elsheikha, Hany; Khan, Naveed Ahmed

    2011-05-01

    Acanthamoeba granulomatous encephalitis generally develops as a result of haematogenous spread, but it is unclear how circulating amoebae enter the central nervous system (CNS) and cause inflammation. At present, the mechanisms which Acanthamoeba use to invade this incredibly well-protected area of the CNS and produce infection are not well understood. In this paper, we propose two key virulence factors: mannose-binding protein and extracellular serine proteases as key players in Acanthamoeba traversal of the blood-brain barrier leading to neuronal injury. Both molecules should provide excellent opportunities as potential targets in the rational development of therapeutic interventions against Acanthamoeba encephalitis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Hypopituitarism as unusual sequelae to central nervous system tuberculosis

    Directory of Open Access Journals (Sweden)

    S Mageshkumar

    2011-01-01

    Full Text Available Neurological tuberculosis can very rarely involve the hypophysis cerebri. We report a case of an eighteen year old female who presented with five months duration of generalised apathy, secondary amenorrhea and weight gain. She was on irregular treatment for tuberculosis of the central nervous system for the last five months. Neuroimaging revealed sellar and suprasellar tuberculomas and communicating hydrocephalus requiring emergency decompression. Endocrinological investigation showed hypopituitarism manifesting as pituitary hypothyroidism, hypocortisolism, hypogonadotropic hypogonadism, and hyperprolactinemia. Restarting anti-tuberculosis treatment, hormone replacement therapy, and a ventriculo-peritoneal shunt surgery led to remarkable improvement in the general condition of the patient.

  10. Central nervous system frontiers for the use of erythropoietin

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    2003-01-01

    Recombinant human erythropoietin (r-HuEPO; epoetin alfa) is well established as safe and effective for the treatment of anemia. In addition to the erythropoietic effects of endogenous erythropoietin (EPO), recent evidence suggests that it may elicit a neuroprotective effect in the central nervous...... system (CNS). Preclinical studies have demonstrated the presence of EPO receptors in the brain that are up-regulated under hypoxic or ischemic conditions. Intracerebral and systemic administration of epoetin alfa have been demonstrated to elicit marked neuroprotective effects in multiple preclinical...

  11. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  12. Masquerade syndrome of multicentre primary central nervous system lymphoma.

    Science.gov (United States)

    Guerriero, Silvana; Giancipoli, Ermete; Ciracì, Lorenza; Ingravallo, Giuseppe; Prete, Marcella; Di Leo, Elisabetta; Cimmino, Antonietta; Cardascia, Nicola

    2011-01-01

    Purpose. In Italy we say that the most unlucky things can happen to physicians when they get sick, despite the attention of colleagues. To confirm this rumor, we report the sad story of a surgeon with bilateral vitreitis and glaucoma unresponsive to traditional therapies. Methods/Design. Case report. Results. After one year of steroidal and immunosuppressive therapy, a vitrectomy, and a trabeculectomy for unresponsive bilateral vitreitis and glaucoma, MRI showed a multicentre primary central nervous system lymphoma, which was the underlying cause of the masquerade syndrome. Conclusions. All ophthalmologists and clinicians must be aware of masquerade syndromes, in order to avoid delays in diagnosis.

  13. Involvement of central nervous system in the schistosomiasis

    Directory of Open Access Journals (Sweden)

    Teresa Cristina de Abreu Ferrari

    2004-08-01

    Full Text Available The involvement of the central nervous system (CNS by schistosomes may or may not determine clinical manifestations. When symptomatic, neuroschistosomiasis (NS is one of the most severe presentations of schistosomal infection. Considering the symptomatic form, cerebral involvement is almost always due to Schistosoma japonicum and the spinal cord disease, caused by S. mansoni or S. haematobium. Available evidence suggests that NS depends basically on the presence of parasite eggs in the nervous tissue and on the host immune response. The patients with cerebral NS usually have the clinical manifestations of increased intracranial pressure associated with focal neurological signs; and those with schistosomal myeloradiculopathy (SMR present rapidly progressing symptoms of myelitis involving the lower cord, usually in association with the involvement of the cauda esquina roots. The diagnosis of cerebral NS is established by biopsy of the nervous tissue and SMR is usually diagnosed according to a clinical criterion. Antischistosomal drugs, corticosteroids and surgery are the resourses available for treating NS. The outcome is variable and is better in cerebral disease.

  14. Involvement of central nervous system in the schistosomiasis.

    Science.gov (United States)

    Ferrari, Teresa Cristina de Abreu

    2004-01-01

    The involvement of the central nervous system (CNS) by schistosomes may or may not determine clinical manifestations. When symptomatic, neuroschistosomiasis (NS) is one of the most severe presentations of schistosomal infection. Considering the symptomatic form, cerebral involvement is almost always due to Schistosoma japonicum and the spinal cord disease, caused by S. mansoni or S. haematobium. Available evidence suggests that NS depends basically on the presence of parasite eggs in the nervous tissue and on the host immune response. The patients with cerebral NS usually have the clinical manifestations of increased intracranial pressure associated with focal neurological signs; and those with schistosomal myeloradiculopathy (SMR) present rapidly progressing symptoms of myelitis involving the lower cord, usually in association with the involvement of the cauda esquina roots. The diagnosis of cerebral NS is established by biopsy of the nervous tissue and SMR is usually diagnosed according to a clinical criterion. Antischistosomal drugs, corticosteroids and surgery are the resources available for treating NS. The outcome is variable and is better in cerebral disease.

  15. [Neuroradiologic manifestations of central nervous system tuberculosis in 122 adults].

    Science.gov (United States)

    Kilani, B; Ammari, L; Tiouiri, H; Goubontini, A; Kanoun, F; Zouiten, F; Chaabène, T-B

    2003-02-01

    Central nervous system (CNS) tuberculosis remains a public health problem, particularly in developing countries. The aim of this study is to characterize neuroradiologic findings of various intracranial lesions. We retrospectively reviewed data of 122 patients with CNS tuberculosis, without immunosuppression. CT scan was performed in all patients, whereas 17 patients had CT scan and MRI. We included 74 women (61%) and 48 men (39%) with a mean age of 37 years (17 -88y). 18 patients (14,7%) had a history of tuberculosis. Tuberculous meningitis was the most frequent clinical presentation (119 cases). Mycobacterium tuberculosis was isolated in cerebrospinal fluid of 18 patients (15%). Several types of lesions were identified : hydrocephalus (35 cases), tuberculomas (29 cases), leptomeningitis (26 cases), infarction (15 cases), abcesses (2 cases). Hydrocephalus was associated to other lesions in 26 cases. Communication hydrocephalus was present in 28 cases. Multiple tuberculomas were seen in 23 cases (80%), with miliary aspects in some cases. In 3 cases, tuberculoma was present without meningitis. Patients with leptomeningitis showed thick meningeal contrast enhancement involving all basal cisterns. Infarction resulted from arterial englobement or embols, and involved the area of middle cerebral artery (12 cases). Central nervous system tuberculosis has different appearences, mostly hydrocephalus and tuberculomas. MR with contrast is necessary for diagnosis and for follow-up during treatment.

  16. A Rare Case of Central Nervous System Tuberculosis

    Directory of Open Access Journals (Sweden)

    Ravish Parekh

    2014-01-01

    Full Text Available Intracranial abscess is an extremely rare form of central nervous system (CNS tuberculosis (TB. We describe a case of central nervous system tuberculous abscess in absence of human immunodeficiency virus (HIV infection. A 82-year-old Middle Eastern male from Yemen was initially brought to the emergency room due to altered mental status and acute renal failure. Cross-sectional imaging revealed multiple ring enhancing lesions located in the left cerebellum and in bilateral frontal lobe as well as in the inferior parietal lobe on the left. The patient was placed on an empiric antibiotic regimen. Preliminary testing for infectious causes was negative. Chest radiography and CT of chest showed no positive findings. He was not on any immunosuppressive medications and human immunodeficiency virus (HIV enzyme immunoassay (EIA test was negative. A subsequent MRI one month later showed profound worsening of the lesions with increasing vasogenic edema and newly found mass effect impinging on the fourth ventricle. Brain biopsy showed focal exudative cerebellitis and inflamed granulation tissue consistent with formation of abscesses. The diagnosis of CNS TB was finally confirmed by positive acid-fast bacilli (AFB cultures. The patient was started on standard tuberculosis therapy but expired due to renal failure and cardiac arrest.

  17. Engineering Biomaterial Properties for Central Nervous System Applications

    Science.gov (United States)

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  18. Materials directed to implants for repairing Central Nervous System

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Moreno-Burriel, B.; Chinarro, E.

    2014-07-01

    Central Nervous System (CNS) can be damaged by a wide range of injuries and disorders which entail permanent disability in some cases. Moreover, CNS repairing process presents some complications. The natural repair mechanism, which consists on the glial scar formation, is triggered by the inflammatory process. Molecules delivered during these processes, inflammation and glial scar formation as well as oxygen and glucose deficiencies due to the injury, create an inhibitory environment for axon regeneration and remyelination which is known as secondary injury. Biomaterials are taking up an even more important role in repairing CNS. Physicochemical properties of some ceramic materials have inspired different applications to repair CNS as substrates, electrodes or molecule vehicles. Based on their biocompatibility, capability to neutralize reactive species involved in the inflammatory processes and their versatile processing to obtain scaffolds with different shapes and sizes, ceramics are a succulent offer in nervous tissue engineering. Furthermore, their possibilities have been increased with polymeric-ceramics composites development, which have given rise to new interesting horizon. (Author)

  19. [Central nervous system tumours in childhood: their clinical pathological aspects].

    Science.gov (United States)

    Ortega Aznar, A; Romero Vidal, F J

    Paediatric tumours affecting the central nervous system (CNS) constitute the second most frequent group of tumours at this age. Taking the WHO 2000 classification as our starting point, our intention was to describe the more important clinical and pathological features in the differential diagnosis of the different tumourous entities with the highest incidence in childhood. We highlight, above all, the characteristics that justify the need for a smooth flow of information between neurologists, neurosurgeons, neuroradiologists, neuropathologists and oncologists. We do not deal with familial tumourous syndromes, genetic aspects or clinical information derived from analyses of molecular alterations. Among CNS tumours, enough age related differences exist to be able to consider those appearing during childhood in their own right. Their topographic specificity is very characteristic and while 50% of them are infratentorial, 90% of those that occur in adults are supratentorial. Embryonic tumours are very frequent in childhood, but rare in adults, and the opposite happens with meningiomas. They are also different as regards their histological features, clinical characteristics, the early tendency to spread throughout the nervous system in the course of the disease and their biological behaviour. These data make us think that, in the pathogenesis of brain tumours in children, the molecular and epigenetic factors involved are different from those at play in the case of adults. A correct diagnosis requires a multidisciplinary approach and an understanding of the histological criteria and nomenclature by the health professionals involved in treating these patients.

  20. Engineered AAV vectors for improved central nervous system gene delivery

    Science.gov (United States)

    A Kotterman, Melissa; Schaffer, David V

    2015-01-01

    Adeno-associated viruses (AAV) are non-pathogenic members of the Parvoviridae family that are being harnessed as delivery vehicles for both basic research and increasingly successful clinical gene therapy. To address a number of delivery shortcomings with natural AAV variants, we have developed and implemented directed evolution—a high-throughput molecular engineering approach to generate novel biomolecules with enhanced function—to create novel AAV vectors that are designed to preferentially transduce specific cell types in the central nervous system (CNS), including astrocytes, neural stem cells, and cells within the retina. These novel AAV vectors—which have enhanced infectivity in vitro and enhanced infectivity and selectivity in vivo—can enable more efficient studies to further our understanding of neurogenesis, development, aging, and disease. Furthermore, such engineered vectors may aid gene or cell replacement therapies to treat neurodegenerative disease or injury. PMID:27606332

  1. Are astrocytes executive cells within the central nervous system?

    Directory of Open Access Journals (Sweden)

    Roberto E. Sica

    2016-08-01

    Full Text Available ABSTRACT Experimental evidence suggests that astrocytes play a crucial role in the physiology of the central nervous system (CNS by modulating synaptic activity and plasticity. Based on what is currently known we postulate that astrocytes are fundamental, along with neurons, for the information processing that takes place within the CNS. On the other hand, experimental findings and human observations signal that some of the primary degenerative diseases of the CNS, like frontotemporal dementia, Parkinson’s disease, Alzheimer’s dementia, Huntington’s dementia, primary cerebellar ataxias and amyotrophic lateral sclerosis, all of which affect the human species exclusively, may be due to astroglial dysfunction. This hypothesis is supported by observations that demonstrated that the killing of neurons by non-neural cells plays a major role in the pathogenesis of those diseases, at both their onset and their progression. Furthermore, recent findings suggest that astrocytes might be involved in the pathogenesis of some psychiatric disorders as well.

  2. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    Science.gov (United States)

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  3. Programming and reprogramming neuronal subtypes in the central nervous system.

    Science.gov (United States)

    Rouaux, Caroline; Bhai, Salman; Arlotta, Paola

    2012-07-01

    Recent discoveries in nuclear reprogramming have challenged the dogma that the identity of terminally differentiated cells cannot be changed. The identification of molecular mechanisms that reprogram differentiated cells to a new identity carries profound implications for regenerative medicine across organ systems. The central nervous system (CNS) has historically been considered to be largely immutable. However, recent studies indicate that even the adult CNS is imparted with the potential to change under the appropriate stimuli. Here, we review current knowledge regarding the capability of distinct cells within the CNS to reprogram their identity and consider the role of developmental signals in directing these cell fate decisions. Finally, we discuss the progress and current challenges of using developmental signals to precisely direct the generation of individual neuronal subtypes in the postnatal CNS and in the dish. Copyright © 2012 Wiley Periodicals, Inc.

  4. Neuronal regulation of immune responses in the central nervous system.

    Science.gov (United States)

    Tian, Li; Rauvala, Heikki; Gahmberg, Carl G

    2009-02-01

    The central nervous system (CNS) has traditionally been considered to be immunologically privileged, but over the years there has been a re-evaluation of this dogma. To date, studies have tended to focus on the immune functions of glial cells, whereas the roles of neurons have been regarded as passive and their immune-regulatory properties have been less examined. However, recent findings indicate that CNS neurons actively participate in immune regulation by controlling their glial cell counterparts and infiltrated T cells. Here, we describe the immune-regulatory roles of CNS neurons by both contact-dependent and contact-independent mechanisms. In addition, we specifically deal with the immune functions of neuronal cell adhesion molecules, many of which are key modulators of neuronal synaptic formation and plasticity.

  5. Engineered AAV vectors for improved central nervous system gene delivery.

    Science.gov (United States)

    A Kotterman, Melissa; Schaffer, David V

    2015-01-01

    Adeno-associated viruses (AAV) are non-pathogenic members of the Parvoviridae family that are being harnessed as delivery vehicles for both basic research and increasingly successful clinical gene therapy. To address a number of delivery shortcomings with natural AAV variants, we have developed and implemented directed evolution-a high-throughput molecular engineering approach to generate novel biomolecules with enhanced function-to create novel AAV vectors that are designed to preferentially transduce specific cell types in the central nervous system (CNS), including astrocytes, neural stem cells, and cells within the retina. These novel AAV vectors-which have enhanced infectivity in vitro and enhanced infectivity and selectivity in vivo-can enable more efficient studies to further our understanding of neurogenesis, development, aging, and disease. Furthermore, such engineered vectors may aid gene or cell replacement therapies to treat neurodegenerative disease or injury.

  6. Central nervous system lymphoma: magnetic resonance imaging features at presentation

    Directory of Open Access Journals (Sweden)

    Ricardo Schwingel

    2012-02-01

    Full Text Available OBJECTIVE: This paper aimed at studying presentations of the central nervous system (CNS lymphoma using structural images obtained by magnetic resonance imaging (MRI. METHODS: The MRI features at presentation of 15 patients diagnosed with CNS lymphoma in a university hospital, between January 1999 and March 2011, were analyzed by frequency and cross tabulation. RESULTS: All patients had supratentorial lesions; and four had infra- and supratentorial lesions. The signal intensity on T1 and T2 weighted images was predominantly hypo- or isointense. In the T2 weighted images, single lesions were associated with a hypointense signal component. Six patients presented necrosis, all of them showed perilesional abnormal white matter, nine had meningeal involvement, and five had subependymal spread. Subependymal spread and meningeal involvement tended to occur in younger patients. CONCLUSION: Presentations of lymphoma are very pleomorphic, but some of them should point to this diagnostic possibility.

  7. Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach

    Science.gov (United States)

    Tam, Roger Y; Fuehrmann, Tobias; Mitrousis, Nikolaos; Shoichet, Molly S

    2014-01-01

    The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood–brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair. PMID:24002187

  8. Central nervous system infections caused by varicella-zoster virus.

    Science.gov (United States)

    Chamizo, Francisco J; Gilarranz, Raúl; Hernández, Melisa; Ramos, Diana; Pena, María José

    2016-08-01

    We carried out a clinical and epidemiological study of adult patients with varicella-zoster virus central nervous system infection diagnosed by PCR in cerebrospinal fluid. Twenty-six patients were included. Twelve (46.2 %) patients were diagnosed with meningitis and fourteen (53.8 %) with meningoencephalitis. Twelve (46.2 %) had cranial nerves involvement (mainly the facial (VII) and vestibulocochlear (VIII) nerves), six (23.1 %) had cerebellar involvement, fourteen (53.8 %) had rash, and four (15.4 %) developed Ramsay Hunt syndrome. Three (11.5 %) patients had sequelae. Length of stay was significantly lower in patients diagnosed with meningitis and treatment with acyclovir was more frequent in patients diagnosed with meningoencephalitis. We believe routine detection of varicella-zoster virus, regardless of the presence of rash, is important because the patient may benefit from a different clinical management.

  9. Modulation of Tumor Tolerance in Primary Central Nervous System Malignancies

    Directory of Open Access Journals (Sweden)

    Theodore S. Johnson

    2012-01-01

    Full Text Available Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance.

  10. Central Nervous System (CNS Disease Triggering Takotsubo Syndrome

    Directory of Open Access Journals (Sweden)

    Josef Finsterer

    2016-01-01

    Full Text Available Takotsubo syndrome (TTS is usually triggered by psychological or physical stress. One of the many physical sources of stress are central nervous system (CNS disorders. CNS disorders most frequently triggering TTS include subarachnoid bleeding, epilepsy, ischemic stroke, migraine, and intracerebral bleeding. More rare CNS-triggers of TTS include posterior reversible encephalopathy syndrome (PRES, amyotrophic lateral sclerosis, encephalitis, or traumatic brain or spinal cord injury. TTS triggered by any of the CNS disorders needs to be recognized since adequate treatment of TTS may improve the general outcome from the CNS disorder as well. Neurologists need to be aware of TTS as a complication of specific CNS disorders but TTS may be triggered also by CNS disorders so far not recognised as causes of TTS.

  11. Infection of the central nervous system due to Acanthamoeba.

    Science.gov (United States)

    Martinez, A J

    1991-01-01

    It is well established that Acanthamoeba castellanii, Acanthamoeba culbertsoni, Acanthamoeba polyphaga, and probably other species of free-living amebas are virulent opportunists capable of producing disease in humans and animals. Human infections involving brain, eyes, skin, and lungs have been reported from all continents. Central nervous system (CNS) infection due to Acanthamoeba species usually occurs in chronically ill, debilitated individuals, some of them receiving immunosuppressive therapy or taking broad-spectrum antibiotics. The disease runs a protracted, insidious clinical course and is known as granulomatous amebic encephalitis. Histopathologically, Acanthamoeba species may produce a multifocal, chronic, or subacute granulomatous encephalitis, with trophozoites and cysts present in CNS lesions. The portal of entry of the amebas into the CNS is probably the respiratory tract or a skin lesion, and the organisms reach the CNS by hematogenous spread. As of 1 January 1989, about 50 cases of granulomatous amebic encephalitis had been reported worldwide, 27 in the United States alone.

  12. The role of microbiome in central nervous system disorders

    Science.gov (United States)

    Wang, Yan; Kasper, Lloyd H.

    2014-01-01

    Mammals live in a co-evolutionary association with the plethora of microorganisms that reside at a variety of tissue microenvironments. The microbiome represents the collective genomes of these co-existing microorganisms, which is shaped by host factors such as genetics and nutrients but in turn is able to influence host biology in health and disease. Niche-specific microbiome, prominently the gut microbiome, has the capacity to effect both local and distal sites within the host. The gut microbiome has played a crucial role in the bidirectional gut-brain axis that integrates the gut and central nervous system (CNS) activities, and thus the concept of microbiome-gut-brain axis is emerging. Studies are revealing how diverse forms of neuro-immune and neuro-psychiatric disorders are correlated with or modulated by variations of microbiome, microbiota-derived products and exogenous antibiotics and probiotics. The microbiome poises the peripheral immune homeostasis and predisposes host susceptibility to CNS autoimmune diseases such as multiple sclerosis. Neural, endocrine and metabolic mechanisms are also critical mediators of the microbiome-CNS signaling, which are more involved in neuro-psychiatric disorders such as autism, depression, anxiety, stress. Research on the role of microbiome in CNS disorders deepens our academic knowledge about host-microbiome commensalism in central regulation and in practicality, holds conceivable promise for developing novel prognostic and therapeutic avenues for CNS disorders. PMID:24370461

  13. Connexin32 expression in central and peripheral nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Deschenes, S.M.; Scherer, S.S.; Fischbeck, K.H. [Univ. of Pennslylvania, PA (United States)

    1994-09-01

    Mutations have been identified in the gap junction gene, connexin32 (Cx32), in patients affected with the X-linked form of the demyelinating neuropathy, Charcot-Marie-Tooth disease (CMTX). Gap junctions composed of Cx32 are present and developmentally regulated in a wide variety of tissues. In peripheral nerve, our immunohistochemical analysis localized Cx32 to the noncompacted myelin of the paranodal regions and the Schmidt-Lantermann incisures, where previous studies describe gap junctions. In contrast to the location of Cx32 in peripheral nerve and the usual restriction of clinical manifestations to the peripheral nervous system (PNS) (abstract by Paulson describes an exception), preliminary studies show that Cx32 is present in the compacted myelin of the central nervous system (CNS), as demonstrated by radial staining through the myelin sheath of oligodendrocytes in rat spinal cord. Analysis of Cx32 expression in various regions of rat CNS during development shows that the amount of Cx32 mRNA and protein increases as myelination increases, a pattern observed for other myelin genes. Studies in the PNS provide additional evidence that Cx32 and myelin genes are coordinately regulated at the transcriptional level; Cx32 and peripheral myelin gene PMP-22 mRNAs are expressed in parallel following transient or permanent nerve injury. Differences in post-translational regulation of Cx32 in the CNS and PNS may be indicated by the presence of a faster migrating form of Cs32 in cerebrum versus peripheral nerve. Studies are currently underway to determine the unique role of Cx32 in peripheral nerve.

  14. Improved tolerance of peripheral fatigue by the central nervous system after endurance training.

    Science.gov (United States)

    Zghal, F; Cottin, F; Kenoun, I; Rebaï, H; Moalla, W; Dogui, M; Tabka, Z; Martin, V

    2015-07-01

    The purposes of this study were to evaluate the effect of endurance training on central fatigue development and recovery. A control group was compared to a training group, which followed an 8-week endurance-training program, consisting in low-force concentric and isometric contractions. Before (PRE) and after (POST) the training period, neuromuscular function of the knee extensor (KE) muscles was evaluated before, immediately after and during 33 min after an exhausting submaximal isometric task at 15 % of the maximal voluntary contraction (MVC) force. After training, the trained group performed another test at iso-time, i.e., with the task maintained until the duration completed before training was matched (POST2). The evaluation of neuromuscular function consisted in the determination of the voluntary activation level during MVCs, from peripheral nerve electrical (VAPNS) and transcranial magnetic stimulations (VATMS). The amplitude of the potentiated twitch (Pt), the evoked [motor evoked potentials, cortical silent period (CSP)] and voluntary EMG activities were also recorded on the KE muscles. Before training, the isometric task induced significant reductions of VAPNS, VATMS and Pt, and an increased CSP. The training period induced a threefold increase of exercise duration, delayed central fatigue appearance, as illustrated by the absence of modification of VAPNS, VATMS and CSP after POST2. At POST, central fatigue magnitude and recovery were not modified but Pt reduction was greater. These results suggest that central fatigue partially adapts to endurance training. This adaptation principally translates into improved tolerance of peripheral fatigue by the central nervous system.

  15. Diffusion imaging in pediatric central nervous system infections

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, J. [Dept. de Imagiologia, Hospital Geral De Santo Antonio, Porto (Portugal); Zimmerman, R.A.; Haselgrove, J.C.; Bilaniuk, L.T.; Hunter, J.V. [Dept. of Radiology, Children' s Hospital of Philadelphia, PA (United States)

    2001-12-01

    Our purpose was to investigate the role of diffusion imaging (DI) in central nervous system (CNS) infections in pediatric patients. It was anticipated that DI would be more sensitive than conventional MRI in the detection of the infarctive complications of infection, and possibly, in the detection of the infectious process as well. Seventeen pediatric patients, eight having meningitis'' five with herpes encephalitis, three with brain abscess or cerebritis and one with sepsis, were evaluated at 1.5-T with DI. All herpes patients had positive DI at the site of herpetic involvement, and two had the addition of watershed infarctions. DI demonstrated more lesions in three of the four cases of herpetic encephalitis. Half the meningitis cases had watershed infarction where DI was better and half had vasculitic infarctions in which DI was equal to or better than conventional MRI. Diffusion imaging was more sensitive than conventional MRI alone in detection of changes due to infections and ischemic lesions, but did not differentiate between them by DI or apparent diffusion coefficient (ADC), although anatomic distribution of lesions proved useful. (orig.)

  16. Nanotechnologies for the study of the central nervous system.

    Science.gov (United States)

    Ajetunmobi, A; Prina-Mello, A; Volkov, Y; Corvin, A; Tropea, D

    2014-12-01

    The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Microparticles: A New Perspective in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Stephanie M. Schindler

    2014-01-01

    Full Text Available Microparticles (MPs are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer’s disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.

  18. Breast cancer subtypes and outcomes of central nervous system metastases.

    Science.gov (United States)

    Arslan, Ulku Y; Oksuzoglu, Berna; Aksoy, Sercan; Harputluoglu, Hakan; Turker, Ibrahim; Ozisik, Yavuz; Dizdar, Omer; Altundag, Kadri; Alkis, Necati; Zengin, Nurullah

    2011-12-01

    Central nervous system (CNS) metastases are detected in up to one third of patients with advanced breast cancer, but their incidence and outcomes by breast cancer subtypes are not precisely documented. Herein, we retrospectively analyzed clinicopathologic data of 259 breast cancer patients with CNS metastases to evaluate the association between breast cancer subtypes and CNS metastasis. The patient groups were classified according to their hormone receptor status and HER-2 expression. Median follow-up time among the patients was 42 months and median survival after CNS metastasis detection was 7.8 months. In HER-2 overexpressing group, median time period between the diagnosis of breast cancer and the detection of CNS metastasis (15.9 months) was significantly shorter compared to the other groups (p = 0.01). The triple negative group had the shortest median survival time after CNS metastasis (6.6 months), although statistically not significant (p = 0.3). In multivariate Cox regression analyses, having solitary CNS metastasis (HR 0.4, 95% CI; 0.2-0.7, p = 0.004), and receiving chemotherapy after CNS metastasis (HR 0.4, 95% CI; 0.287-0.772, p = 0.003) were independent prognostic factors for increasing survival after CNS metastasis. In conclusion, new and effective treatment strategies are required for breast carcinoma patients with brain metastasis considering the positive effect of the treatment on survival. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Scar-modulating treatments for central nervous system injury.

    Science.gov (United States)

    Shen, Dingding; Wang, Xiaodong; Gu, Xiaosong

    2014-12-01

    Traumatic injury to the adult mammalian central nervous system (CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims: (1) inhibition of glial and fibrotic scar formation, and (2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair.

  20. Nanotechnologies for the study of the central nervous system.

    LENUS (Irish Health Repository)

    Ajetunmobi, A

    2014-12-01

    The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders.

  1. Fractal Structure and Entropy Production within the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Andrew J. E. Seely

    2014-08-01

    Full Text Available Our goal is to explore the relationship between two traditionally unrelated concepts, fractal structure and entropy production, evaluating both within the central nervous system (CNS. Fractals are temporal or spatial structures with self-similarity across scales of measurement; whereas entropy production represents the necessary exportation of entropy to our environment that comes with metabolism and life. Fractals may be measured by their fractal dimension; and human entropy production may be estimated by oxygen and glucose metabolism. In this paper, we observe fractal structures ubiquitously present in the CNS, and explore a hypothetical and unexplored link between fractal structure and entropy production, as measured by oxygen and glucose metabolism. Rapid increase in both fractal structures and metabolism occur with childhood and adolescent growth, followed by slow decrease during aging. Concomitant increases and decreases in fractal structure and metabolism occur with cancer vs. Alzheimer’s and multiple sclerosis, respectively. In addition to fractals being related to entropy production, we hypothesize that the emergence of fractal structures spontaneously occurs because a fractal is more efficient at dissipating energy gradients, thus maximizing entropy production. Experimental evaluation and further understanding of limitations and necessary conditions are indicated to address broad scientific and clinical implications of this work.

  2. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery.

    Science.gov (United States)

    Wager, Travis T; Hou, Xinjun; Verhoest, Patrick R; Villalobos, Anabella

    2016-06-15

    Significant progress has been made in prospectively designing molecules using the central nervous system multiparameter optimization (CNS MPO) desirability tool, as evidenced by the analysis reported herein of a second wave of drug candidates that originated after the development and implementation of this tool. This simple-to-use design algorithm has expanded design space for CNS candidates and has further demonstrated the advantages of utilizing a flexible, multiparameter approach in drug discovery rather than individual parameters and hard cutoffs of physicochemical properties. The CNS MPO tool has helped to increase the percentage of compounds nominated for clinical development that exhibit alignment of ADME attributes, cross the blood-brain barrier, and reside in lower-risk safety space (low ClogP and high TPSA). The use of this tool has played a role in reducing the number of compounds submitted to exploratory toxicity studies and increasing the survival of our drug candidates through regulatory toxicology into First in Human studies. Overall, the CNS MPO algorithm has helped to improve the prioritization of design ideas and the quality of the compounds nominated for clinical development.

  3. Central nervous system anomalies in craniofacial microsomia: a systematic review.

    Science.gov (United States)

    Renkema, R W; Caron, C J J M; Wolvius, E B; Dunaway, D J; Forrest, C R; Padwa, B L; Koudstaal, M J

    2018-01-01

    Extracraniofacial anomalies, including central nervous system (CNS) anomalies, may occur in craniofacial microsomia (CFM). This systematic review was performed to provide an overview of the literature on the prevalence and types of CNS anomalies and developmental disorders in CFM, in order to improve the recognition and possible treatment of these anomalies. A systematic search was conducted and data on the number of patients, patient characteristics, type and prevalence of CNS anomalies or developmental delay, and correlations between CFM and CNS anomalies were extracted. Sixteen papers were included; 11 of these described developmental disorders. The most common reported anomalies were neural tube defects, corpus callosum agenesis or hypoplasia, intracranial lipoma, Arnold-Chiari malformations, hydrocephaly, ventriculomegaly, and cerebral hypoplasia. The prevalence of CNS anomalies in CFM varied from 2% to 69%. The prevalence of developmental disorders, such as intellectual disability, language or speech developmental delay, and neuropsychomotor delay, varied from 8% to 73%. This study suggests that CNS anomalies and developmental disorders are seen in a substantial proportion of patients with CFM. Further research should focus on determining which features of CFM are correlated with CNS anomalies to allow adequate screening and timely care. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. All rights reserved.

  4. Herpes Simplex Virus Infections of the Central Nervous System.

    Science.gov (United States)

    Whitley, Richard J

    2015-12-01

    This article summarizes knowledge of herpes simplex virus (HSV) infections of the central nervous system (CNS). Disease pathogenesis, detection of DNA polymerase chain reaction (PCR) for diagnosis and prognosis, and approaches to therapy warrant consideration. HSV infection of the CNS is one of few treatable viral diseases. Clinical trials indicate that outcome following neonatal herpes simplex virus type 2 (HSV-2) infections of the CNS is significantly improved when 6 months of suppressive oral acyclovir therapy follows IV antiviral therapy. In contrast, herpes simplex virus type 1 (HSV-1) infections of the brain do not benefit from extended oral antiviral therapy. This implies a difference in disease pathogenesis between HSV-2 and HSV-1 infections of the brain. PCR detection of viral DNA in the CSF is the gold standard for diagnosis. Use of PCR is now being adopted as a basis for determining the duration of therapy in the newborn. HSV infections are among the most common encountered by humans; seropositivity occurs in 50% to 90% of adult populations. Herpes simplex encephalitis, however, is an uncommon result of this infection. Since no new antiviral drugs have been introduced in nearly 3 decades, much effort has focused on learning how to better use acyclovir and how to use existing databases to establish earlier diagnosis.

  5. HCV-related central and peripheral nervous system demyelinating disorders.

    Science.gov (United States)

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered.

  6. HCV-Related Central and Peripheral Nervous System Demyelinating Disorders

    Science.gov (United States)

    Mariotto, Sara; Ferrari, Sergio; Monaco, Salvatore

    2014-01-01

    Chronic infection with hepatitis C virus (HCV) is associated with a large spectrum of extrahepatic manifestations (EHMs), mostly immunologic/rheumatologic in nature owing to B-cell proliferation and clonal expansion. Neurological complications are thought to be immune-mediated or secondary to invasion of neural tissues by HCV, as postulated in transverse myelitis and encephalopathic forms. Primarily axonal neuropathies, including sensorimotor polyneuropathy, large or small fiber sensory neuropathy, motor polyneuropathy, mononeuritis, mononeuritis multiplex, or overlapping syndrome, represent the most common neurological complications of chronic HCV infection. In addition, a number of peripheral demyelinating disorders are encountered, such as chronic inflammatory demyelinating polyneuropathy, the Lewis-Sumner syndrome, and cryoglobulin-associated polyneuropathy with demyelinating features. The spectrum of demyelinating forms also includes rare cases of iatrogenic central and peripheral nervous system disorders, occurring during treatment with pegylated interferon. Herein, we review HCV-related demyelinating conditions, and disclose the novel observation on the significantly increased frequency of chronic demyelinating neuropathy with anti-myelin-associated glycoprotein antibodies in a cohort of 59 consecutive patients recruited at our institution. We also report a second case of neuromyelitis optica with serum IgG autoantibody against the water channel aquaporin-4. The prompt recognition of these atypical and underestimated complications of HCV infection is of crucial importance in deciding which treatment option a patient should be offered. PMID:25198705

  7. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Gary V.; Shihadeh, Ferial [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kantarjian, Hagop [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Allen, Pamela [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rondon, Gabriela; Kebriaei, Partow [Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); O' Brien, Susan [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kedir, Aziza; Said, Mustefa; Grant, Jonathan D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Thomas, Deborah A. [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gidley, Paul W. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dabaja, Bouthaina S., E-mail: bdabaja@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-12-01

    Purpose: To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials: A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results: The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P=.02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions: Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement.

  8. Tertiary Lymphoid Organs in Central Nervous System Autoimmunity

    Directory of Open Access Journals (Sweden)

    Meike Mitsdoerffer

    2016-10-01

    Full Text Available Multiple sclerosis (MS is an autoimmune disease characterized by chronic inflammation in the central nervous system (CNS, which results in permanent neuronal damage and substantial disability in patients. Autoreactive T cells are important drivers of the disease, however, the efficacy of B cell depleting therapies uncovered an essential role for B cells in disease pathogenesis. They can contribute to inflammatory processes via presentation of autoantigen, secretion of pro-inflammatory cytokines and production of pathogenic antibodies. Recently, B cell aggregates reminiscent of tertiary lymphoid organs (TLOs were discovered in the meninges of MS patients, leading to the hypothesis that differentiation and maturation of autopathogenic B and T cells may partly occur inside the CNS. Since these structures were associated with a more severe disease course, it is extremely important to gain insight into the mechanism of induction, their precise function and clinical significance. Mechanistic studies in patiens are limited. However, a few studies in the MS animal model experimental autoimmune encephalomyelitis (EAE recapitulate TLO formation in the CNS and provide new insight into CNS TLO features, formation and function. This review summarizes what we know so far about CNS TLOs in MS and what we have learned about them from EAE models. It also highlights the areas that are in need of further experimental work, as we are just beginning to understand and evaluate the phenomenon of CNS TLOs.

  9. Advances in Pathobiology of Primary Central Nervous System Lymphoma.

    Science.gov (United States)

    Yang, Xue-Liang; Liu, Yuan-Bo

    2017-08-20

    Primary central nervous system lymphoma (PCNSL) is a specific type of non-Hodgkin lymphoma with poor prognosis. The rare incidence of this disease and difficulty to obtain sufficient tissue material impede deep research into PCNSL. However, application of modern molecular techniques makes it possible to find biological characteristics exclusive to PCNSL. Therefore, we systematically reviewed the latest research progress on biological characteristics and pathogenesis of PCNSL. The data analyzed in this review were from the articles listed in PubMed database. Articles focusing on the biology of PCNSL at the cytogenetic or molecular level were reviewed, including clinical, basic research, and review articles. With respect to histopathology, perivascular growth pattern and reactive perivascular T-cell infiltration are regarded as typical histopathological manifestations of tumor cells in PCNSL. Moreover, tumor cells of PCNSL predominantly express an activated B-cell-like phenotype, including CD10- BCL-6+ MUM1+, CD10- BCL-6- MUM1+, and CD10- BCL-6- MUM1-. On the molecular level, some molecular and genetic alterations may contribute to malignant transformation, including mutations of proto-oncogenes and tumor suppressor genes, gains and losses of genetic material, as well as aberrant activation of some important signaling pathways, such as nuclear factor-κB and JAK/STAT pathway. The integrated molecular mechanisms involved in pathogenesis of PCNSL are not well understood. The important biomarkers indicating prognosis are not identified. Multicenter studies should be carried out to elucidate pathogenesis of PCNSL to find novel and effective therapeutic strategies.

  10. Mechanisms of magnetic stimulation of central nervous system neurons.

    Directory of Open Access Journals (Sweden)

    Tamar Pashut

    2011-03-01

    Full Text Available Transcranial magnetic stimulation (TMS is a stimulation method in which a magnetic coil generates a magnetic field in an area of interest in the brain. This magnetic field induces an electric field that modulates neuronal activity. The spatial distribution of the induced electric field is determined by the geometry and location of the coil relative to the brain. Although TMS has been used for several decades, the biophysical basis underlying the stimulation of neurons in the central nervous system (CNS is still unknown. To address this problem we developed a numerical scheme enabling us to combine realistic magnetic stimulation (MS with compartmental modeling of neurons with arbitrary morphology. The induced electric field for each location in space was combined with standard compartmental modeling software to calculate the membrane current generated by the electromagnetic field for each segment of the neuron. In agreement with previous studies, the simulations suggested that peripheral axons were excited by the spatial gradients of the induced electric field. In both peripheral and central neurons, MS amplitude required for action potential generation was inversely proportional to the square of the diameter of the stimulated compartment. Due to the importance of the fiber's diameter, magnetic stimulation of CNS neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. Passive dendrites affect this process primarily as current sinks, not sources. The simulations predict that neurons with low current threshold are more susceptible to magnetic stimulation. Moreover, they suggest that MS does not directly trigger dendritic regenerative mechanisms. These insights into the mechanism of MS may be relevant for the design of multi-intensity TMS protocols, may facilitate the construction of magnetic stimulators, and may aid the interpretation of results of TMS of the CNS.

  11. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-03-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  12. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-04-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  13. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-01-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  14. 78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  15. 76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2011-07-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  16. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  17. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  18. 78 FR 20328 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2013-04-04

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  19. 75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2010-06-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs...

  20. Materials directed to implants for repairing Central Nervous System

    Directory of Open Access Journals (Sweden)

    Canillas, M.

    2014-12-01

    Full Text Available Central Nervous System (CNS can be damaged by a wide range of injuries and disorders which entail permanent disability in some cases. Moreover, CNS repairing process presents some complications. The natural repair mechanism, which consists on the glial scar formation, is triggered by the inflammatory process. Molecules delivered during these processes, inflammation and glial scar formation as well as oxygen and glucose deficiencies due to the injury, create an inhibitory environment for axon regeneration and remyelination which is known as “secondary injury”. Biomaterials are taking up an even more important role in repairing CNS. Physicochemical properties of some ceramic materials have inspired different applications to repair CNS as substrates, electrodes or molecule vehicles. Based on their biocompatibility, capability to neutralize reactive species involved in the inflammatory processes and their versatile processing to obtain scaffolds with different shapes and sizes, ceramics are a succulent offer in nervous tissue engineering. Furthermore, their possibilities have been increased with polymeric-ceramics composites development, which have given rise to new interesting horizon.Existen diferentes tipos de lesiones o desordenes del Sistema Nervioso Central (SNC que pueden provocar graves secuelas e incluso en algunos casos una discapacidad permanente. Además, el proceso de reparación del SNC tiene algunas complicaciones. El mecanismo natural de reacción a una lesión, el cual consiste en la formación de una cicatriz glial, es desencadenado por un proceso inflamatorio. Las moléculas liberadas durante estos procesos, la inflamación y formación de la cicatriz glial, así como la deficiencia en oxígeno y glucosa debidos a la lesión, crean un ambiente que inhibe la regeneración axonal creando la llamada “lesión secundaria”. Los biomateriales están adquiriendo un papel cada vez más importante en la reparación de SNC. Las

  1. Interaction of Plant Extracts with Central Nervous System Receptors

    Directory of Open Access Journals (Sweden)

    Kenneth Lundstrom

    2017-02-01

    Full Text Available Background: Plant extracts have been used in traditional medicine for the treatment of various maladies including neurological diseases. Several central nervous system receptors have been demonstrated to interact with plant extracts and components affecting the pharmacology and thereby potentially playing a role in human disease and treatment. For instance, extracts from Hypericum perforatum (St. John’s wort targeted several CNS receptors. Similarly, extracts from Piper nigrum, Stephania cambodica, and Styphnolobium japonicum exerted inhibition of agonist-induced activity of the human neurokinin-1 receptor. Methods: Different methods have been established for receptor binding and functional assays based on radioactive and fluorescence-labeled ligands in cell lines and primary cell cultures. Behavioral studies of the effect of plant extracts have been conducted in rodents. Plant extracts have further been subjected to mood and cognition studies in humans. Results: Mechanisms of action at molecular and cellular levels have been elucidated for medicinal plants in support of standardization of herbal products and identification of active extract compounds. In several studies, plant extracts demonstrated affinity to a number of CNS receptors in parallel indicating the complexity of this interaction. In vivo studies showed modifications of CNS receptor affinity and behavioral responses in animal models after treatment with medicinal herbs. Certain plant extracts demonstrated neuroprotection and enhanced cognitive performance, respectively, when evaluated in humans. Noteworthy, the penetration of plant extracts and their protective effect on the blood-brain-barrier are discussed. Conclusion: The affinity of plant extracts and their isolated compounds for CNS receptors indicates an important role for medicinal plants in the treatment of neurological disorders. Moreover, studies in animal and human models have confirmed a scientific basis for the

  2. Neuroendoscopic diagnosis of central nervous system histoplasmosis with basilar arachnoiditis.

    Science.gov (United States)

    Rangel-Castilla, Leonardo; Hwang, Steven W; White, A Clinton; Zhang, Yi Jonathan

    2012-02-01

    Histoplasmosis of the central nervous system (CNS) is seen in 10% to 20% of patients with disseminated histoplasmosis and/or in association with immunocompromised patients. Meningitis, arachnoiditis, and hydrocephalus are the most common clinical manifestations of CNS histoplasmosis. Patients with CNS histoplasmosis present similarly to other infectious etiologies, and confirmatory diagnosis is important in the management of these patients. However, diagnosis of CNS histoplasmosis can be difficult, and sometimes performing a parenchymal biopsy is necessary to confirm the diagnosis. We describe the case of a 41-year-old man with HIV/AIDS who presented with the signs, symptoms, and radiologic evidence of basal meningitis and hydrocephalus. Cerebrospinal fluid (CSF) analysis from multiple lumbar punctures was negative. The patient underwent a neuroendoscopic procedure with diagnostic and therapeutic goals. Internal CSF diversion (endoscopic third ventriculostomy) and biopsy of the floor of the third ventricle and subarachnoid space were performed; surgical biopsies identified noncaseating granulomas, and ventricular CSF was positive for Histoplasmosis antibodies. The patient was treated with liposomal amphotericin B and itraconazole. The patient had resolution of his symptoms immediately after surgery, and 1-month follow-up computed tomography of the head demonstrated resolution of the hydrocephalus. At the last follow-up 12 months postoperatively, the patient has not required insertion of a ventriculoperitoneal shunt. Clinicians should maintain a high index of suspicion for fungal basal meningitis in patients with AIDS and hydrocephalus. With nondiagnostic lumbar CSF sampling, neuroendoscopy can be considered as an alternative for diagnosis and treatment of basal meningitis and hydrocephalus. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Central nervous system tumors: Radiologic pathologic correlation and diagnostic approach

    Directory of Open Access Journals (Sweden)

    Ishita Pant

    2015-01-01

    Full Text Available Objective: This study was conducted to formulate location-wise radiologic diagnostic algorithms and assess their concordance with the final histopathological diagnosis so as to evaluate their utility in a rural setting where only basic facilities are available. Materials and Methods: A retrospective analysis to assess the concordance of radiology (primarily MRI with final histopathology report was done. Based on the most common incidence of tumor location and basic radiology findings, diagnostic algorithms were prepared. Results: For supratentorial intraaxial parenchymal location concordance was seen in all high-grade astrocytomas, low- and high-grade oligodendrogliomas, metastatic tumors, primitive neuroectodermal tumors, high-grade ependymomas, neuronal and mixed neuro-glial tumors and tumors of hematopoietic system. Lowest concordance was seen in low-grade astrocytomas. In the supratentorial intraaxial ventricular location, agreement was observed in choroid plexus tumors, ependymomas, low-grade astrocytomas and meningiomas; in the supratentorial extraaxial location, except for the lack of concordance in the only case of metastatic tumor, concordance was observed in meningeal tumors, tumors of the sellar region, tumors of cranial and paraspinal nerves; the infratentorial intraaxial parenchymal location showed agreement in low- as well as high-grade astrocytomas, metastatic tumors, high-grade ependymoma, embryonal tumors and hematopoietic tumors; in the infratentorial intraaxial ventricular location, except for the lack of concordance in one case of low-grade astrocytoma and two cases of medulloblastomas, agreement was observed in low- and high-grade ependymoma; infratentorial extraaxial tumors showed complete agreement in all tumors of cranial and paraspinal nerves, meningiomas, and hematopoietic tumors. Conclusion: A location-based approach to central nervous system (CNS tumors is helpful in establishing an appropriate differential diagnosis.

  4. Central nervous system activity of Illicium verum fruit extracts.

    Science.gov (United States)

    Chouksey, Divya; Upmanyu, Neeraj; Pawar, R S

    2013-11-01

    To research the acute toxicity of Illicium verum (I. verum) fruit extracts and its action on central nervous system. The TLC and HPTLC techniques were used as fingerprints to determine the chemical components present in I. verum. Male albino rats and mice were utilized for study. The powdered material was successively extracted with n-hexane, ethyl acetate and methanol using a Soxhlet extractor. Acute toxicity studies were performed as per OECD guidelines. The CNS activity was evaluated on parameters of general behavior, sleeping pattern, locomotor activity, anxiety and myocoordination activity. The animals were trained for seven days prior to experiments and the divided into five groups with six animals in each. The drug was administered by intraperitoneal route according to body weight. The dosing was done as prescribed in each protocol. Toxicity studies reported 2 000 mg/kg as toxicological dose and 1/10 of the same dose was taken as therapeutic dose Intraperitoneal injection of all extracts at dose of 200 mg prolonged phenobarbitone induced sleeping time, produced alteration in general behavior pattern, reduced locomotor activity and produced anxiolytic effects but the extracts do not significantly alter muscles coordination activity. The three extracts of I. verum at the dose of 200 mg, methanol extract was found to produce more prominent effects, then hexane and ethylacetate extracts. The observation suggested that the extracts of I. verum possess potent CNS depressant action and anxiolytic effect without interfering with motor coordination. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Transcriptome analysis of the Octopus vulgaris central nervous system.

    Directory of Open Access Journals (Sweden)

    Xiang Zhang

    Full Text Available BACKGROUND: Cephalopoda are a class of Mollusca species found in all the world's oceans. They are an important model organism in neurobiology. Unfortunately, the lack of neuronal molecular sequences, such as ESTs, transcriptomic or genomic information, has limited the development of molecular neurobiology research in this unique model organism. RESULTS: With high-throughput Illumina Solexa sequencing technology, we have generated 59,859 high quality sequences from 12,918,391 paired-end reads. Using BLASTx/BLASTn, 12,227 contigs have blast hits in the Swissprot, NR protein database and NT nucleotide database with E-value cutoff 1e(-5. The comparison between the Octopus vulgaris central nervous system (CNS library and the Aplysia californica/Lymnaea stagnalis CNS ESTs library yielded 5.93%/13.45% of O. vulgaris sequences with significant matches (1e(-5 using BLASTn/tBLASTx. Meanwhile the hit percentage of the recently published Schistocerca gregaria, Tilapia or Hirudo medicinalis CNS library to the O. vulgaris CNS library is 21.03%-46.19%. We constructed the Phylogenetic tree using two genes related to CNS function, Synaptotagmin-7 and Synaptophysin. Lastly, we demonstrated that O. vulgaris may have a vertebrate-like Blood-Brain Barrier based on bioinformatic analysis. CONCLUSION: This study provides a mass of molecular information that will contribute to further molecular biology research on O. vulgaris. In our presentation of the first CNS transcriptome analysis of O. vulgaris, we hope to accelerate the study of functional molecular neurobiology and comparative evolutionary biology.

  6. Staphylococcus aureus Central Nervous System Infections in Children.

    Science.gov (United States)

    Vallejo, Jesus G; Cain, Alexandra N; Mason, Edward O; Kaplan, Sheldon L; Hultén, Kristina G

    2017-10-01

    Central nervous system (CNS) infections caused by Staphylococcus aureus are uncommon in pediatric patients. We review the epidemiology, clinical features and treatment in 68 patients with a S. aureus CNS infection evaluated at Texas Children's Hospital. Cases of CNS infection in children with positive cerebrospinal fluid cultures or spinal epidural abscess (SEA) for S. aureus at Texas Children's Hospital from 2001 to 2013 were reviewed. Seventy cases of S. aureus CNS infection occurred in 68 patients. Forty-nine cases (70%) were secondary to a CNS device, 5 (7.1%) were postoperative meningitis, 9 (12.8%) were hematogenous meningitis and 7 (10%) were SEAs. Forty-seven (67.2%) were caused by methicillin-sensitive S. aureus (MSSA) and 23 (32.8%) by methicillin-resistant S. aureus (MRSA). Community-acquired infections were more often caused by MRSA that was clone USA300/pvl. Most patients were treated with nafcillin (MSSA) or vancomycin (MRSA) with or without rifampin. Among patients with MRSA infection, 50% had a serum vancomycin trough obtained with the median level being 10.6 μg/mL (range: 5.4-15.7 μg/mL). Only 1 death was associated with S. aureus infection. The epidemiology of invasive of S. aureus infections continues to evolve with MSSA accounting for most of the infections in this series. The majority of cases were associated with neurosurgical procedures; however, hematogenous S. aureus meningitis and SEA occurred as community-acquired infections in patients without predisposing factors. Patients with MRSA CNS infections had a favorable response to vancomycin, but the beneficial effect of combination therapy or targeting vancomycin trough concentrations of 15-20 μg/mL remains unclear.

  7. Paracoccidioidomycosis case series with and without central nervous system involvement

    Directory of Open Access Journals (Sweden)

    Vinicius Sousa Pietra Pedroso

    2012-10-01

    Full Text Available INTRODUCTION: Paracoccidioidomycosis (PCM is the most important systemic mycosis in South America. Central nervous system involvement is potentially fatal and can occur in 12.5% of cases. This paper aims to contribute to the literature describing eight cases of neuroparacoccidioidomycosis (NPMC and compare their characteristics with patients without neurological involvement, to identify unique characteristics of NPCM. METHODS: A cohort of 213 PCM cases was evaluated at the Infectious Diseases Clinic of the University Hospital, Federal University of Minas Gerais, Brazil, from October 1976 to August 2008. Epidemiological, clinical, laboratory, therapeutic and follow-up data were registered. RESULTS: Eight patients presented NPCM. The observed NPCM prevalence was 3.8%. One patient presented the subacute form of PCM and the other seven presented the chronic form of the disease. The parenchymatous form of NPCM occurred in all patients. 60% of the patients who proceeded from the north/ northeast region of Minas Gerais State developed NPCM. The neurological involvement of a mother and her son was observed. NPCM patients exhibited demographical and clinical profiles similar to what is described in the literature. When NPCM cases were compared to PCM patients, there were differences in relation to origin and positive PCM family history. CONCLUSIONS: The results corroborate the clinical view that the neurological findings are extremely important in the evaluation of PCM patients. Despite the limitations of this study, the differences in relation to patient's origins and family history point to the need of further studies to determine the susceptibility factors involved in the neurological compromise.

  8. Cerebrospinal fluid interleukin-6 in central nervous system inflammatory diseases.

    Directory of Open Access Journals (Sweden)

    Alexandre Wullschleger

    Full Text Available BACKGROUND: Interleukin (IL-6 is recognised as an important cytokine involved in inflammatory diseases of the central nervous system (CNS. OBJECTIVE: To perform a large retrospective study designed to test cerebrospinal fluid (CSF IL-6 levels in the context of neurological diseases, and evaluate its usefulness as a biomarker to help discriminate multiple sclerosis (MS from other inflammatory neurological diseases (OIND. PATIENTS AND METHODS: We analyzed 374 CSF samples for IL-6 using a quantitative enzyme-linked immunosorbent assay. Groups tested were composed of demyelinating diseases of the CNS (DD, n = 117, including relapsing-remitting MS (RRMS, n = 65, primary progressive MS (PPMS, n = 11, clinically isolated syndrome (CIS, n = 11, optic neuritis (ON, n = 30; idiopathic transverse myelitis (ITM, n = 10; other inflammatory neurological diseases (OIND, n = 35; and non-inflammatory neurological diseases (NIND, n = 212. Differences between groups were analysed using Kruskal-Wallis test and Mann-Whitney U-test. RESULTS: CSF IL-6 levels exceeded the positivity cut-off of 10 pg/ml in 18 (51.4% of the 35 OIND samples, but in only three (3.9% of the 76 MS samples collected. CSF IL-6 was negative for all NIND samples tested (0/212. IL-6 cut-off of 10 pg/ml offers 96% sensitivity to exclude MS. CONCLUSION: CSF IL-6 may help to differentiate MS from its major differential diagnosis group, OIND.

  9. Space radiation risks to the central nervous system

    Science.gov (United States)

    Cucinotta, Francis A.; Alp, Murat; Sulzman, Frank M.; Wang, Minli

    2014-07-01

    Central nervous system (CNS) risks which include during space missions and lifetime risks due to space radiation exposure are of concern for long-term exploration missions to Mars or other destinations. Possible CNS risks during a mission are altered cognitive function, including detriments in short-term memory, reduced motor function, and behavioral changes, which may affect performance and human health. The late CNS risks are possible neurological disorders such as premature aging, and Alzheimer's disease (AD) or other dementia. Radiation safety requirements are intended to prevent all clinically significant acute risks. However the definition of clinically significant CNS risks and their dependences on dose, dose-rate and radiation quality is poorly understood at this time. For late CNS effects such as increased risk of AD, the occurrence of the disease is fatal with mean time from diagnosis of early stage AD to death about 8 years. Therefore if AD risk or other late CNS risks from space radiation occur at mission relevant doses, they would naturally be included in the overall acceptable risk of exposure induced death (REID) probability for space missions. Important progress has been made in understanding CNS risks due to space radiation exposure, however in general the doses used in experimental studies have been much higher than the annual galactic cosmic ray (GCR) dose (∼0.1 Gy/y at solar maximum and ∼0.2 Gy/y at solar minimum with less than 50% from HZE particles). In this report we summarize recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models, and make a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission. Prospects for understanding dose, dose-rate and radiation quality dependencies of CNS effects and extrapolation to human risk assessments are described.

  10. Idiopathic inflammatory-demyelinating diseases of the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Rovira Canellas, A. [Vall d' Hebron University Hospital, Magnetic Resonance Unit (I.D.I.), Department of Radiology, Barcelona (Spain); Rovira Gols, A. [Parc Tauli University Institute - UAB, UDIAT, Diagnostic Centre, Sabadell (Spain); Rio Izquierdo, J.; Tintore Subirana, M.; Montalban Gairin, X. [Vall d' Hebron University Hospital, Neuroimmunology Unit, Department of Neurology, Barcelona (Spain)

    2007-05-15

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Balo's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures. (orig.)

  11. Citation classics in central nervous system inflammatory demyelinating disease.

    Science.gov (United States)

    Kim, Jee-Eun; Park, Kang M; Kim, Yerim; Yoon, Dae Y; Bae, Jong S

    2017-06-01

    To identify and analyze the characteristics of the most influential articles about central nervous system (CNS) inflammatory demyelinating disease. The Institute for Scientific Information (ISI) Web of Science database and the 2014 Journal Citation Reports Science Edition were used to retrieve the top 100 cited articles on CNS inflammatory demyelinating disease. The citation numbers, journals, years of publication, authorships, article types, subjects and main issues were analyzed. For neuromyelitis optica (NMO), articles that were cited more than 100 times were regarded as a citation classic and described separately. The top 100 cited articles were published between 1972 and 2011 in 13 journals. The highest number of articles (n = 24) was published in Brain, followed by The New England Journal of Medicine (n = 21). The average number of citations was 664 (range 330-3,897), and 64% of the articles were from the United States and the United Kingdom. The majority of the top 100 cited articles were related to multiple sclerosis (n = 87), and only a few articles reported on other topics such as NMO (n = 9), acute disseminated encephalomyelitis (n = 2) and optic neuritis (n = 2). Among the top 100 cited articles, 77% were original articles. Forty-one citation classics were found for NMO. Our study provides a historical perspective on the research progress on CNS inflammatory demyelinating disease and may serve as a guide for important advances and trends in the field for associated researchers.

  12. Systematic Review of Central Post Stroke Pain: What Is Happening in the Central Nervous System?

    Science.gov (United States)

    Akyuz, Gulseren; Kuru, Pinar

    2016-08-01

    Central poststroke pain (CPSP) is one of the most common central neuropathic pain syndromes seen after stroke. It is mainly related with vascular damage at certain brain territory and pain related to corresponding body areas. In the past, it was described as one of the definitive symptoms of thalamic lesion. However, recent findings suggest that it is not only seen after thalamic lesions but also seen after vascular lesions in any part of the central nervous system. Although there are certain hypotheses to explain physiopathologic mechanisms of CPSP, further evidence is needed. The majority of the cases are intractable and unresponsive to analgesic treatment. Electrical stimulation such as deep brain stimulation and repetitive transcranial magnetic stimulation seems to be effective in certain cases. In this systematic review, recent advancements related to CPSP mechanisms have been evaluated. Further investigations are needed in order to reveal the mystery of the pathophysiologic mechanisms of CPSP.

  13. SOME IMMUNOLOGICAL INDICATORS IN INFANTS WITH PSYCHOMOTOR DEVELOPMENT RETARDATION IN CONSEQUENCE OF CENTRAL NERVOUS SYSTEM HYPOXIC-ISCHEMIC PERINATAL DAMAGE

    Directory of Open Access Journals (Sweden)

    Kh.M. Karimova

    2011-01-01

    Full Text Available Despite the fact that there are the researches testifying to activation of congenital (nonspecific and got (adaptive, specific immunity in Central Nervous System Perinatal Damages, interrelations between blood sera immunological indicators and clinical lines of Central Nervous System Perinatal Damages are studied now insufficiently. In our work the analysis of interrelations between a number of immunological indicators (the activity of leucocyte elastase (LE and 1-proteinase inhibitor (α1-PI, the rates of autoantibodies (aAB to nerve tissue proteins and psychomotor development of children with consequences of Central Nervous System hypoxic-ischemic Perinatal Damages has been carried out. It is revealed that in this pathology activation of the congenital and got immunity takes place; the congenital immunity activation degree (on LE activity back correlates with severity of psychomotor development disorders, activity α1-PI directly correlates with a psychomotor development point of children, i.e. its lowered activity is the adverse diagnostic factor; joining of autoimmune reactions (increased rates of aAB to nerve tissue proteins characterizes the heaviest variants of psychomotor development retardations. It is shown also that pre-term infants have lower point of psychomotor development, and also more patients of this group have low α1-PI activity and the raised levels of aAB in comparison to full-term infants.Key words: children, perinatal damages of central nervous system, psychomotor development, congenital immunity, leucocyte elastase, α1-proteinase inhibitor, autoimmune reactions.

  14. Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 ...

    Science.gov (United States)

    ... Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 Increased between 2005 and 2011 Central nervous system (CNS) stimulants include prescription drugs, like those used ...

  15. Primary anaplastic large T cell lymphoma of central nervous system

    Directory of Open Access Journals (Sweden)

    ZHANG Yan

    2013-01-01

    Full Text Available Background Primary anaplastic large T cell lymphoma (ALCL of central nervous system (CNS can occur in people of all ages, and is usually unrelated with immunodeficiency. It is often misdiagnosed as meningitis, especially tuberculous meningitis, on clinical practice and imaging examination. In pathological diagnosis, the morphological changes of primary ALCL of CNS are similar to the systemic ALCL and the anaplastic lymphoma kinase-1 (ALK-1 can be positive or negative. Being misdiagnosed as meningitis, hormone therapy with glucocorticoid before biopsy is always used, and massive necrosis and a lot of histocyte proliferation and phagocytosis can be found under histological findings. Therefore, when the material is not enough, primary ALCL of CNS is often misdiagnosed as cerebral infarction or malignant histocytosis and so on. This paper reports a case of primary ALCL of CNS and makes a review of relevant literature, so as to summarize the clinical manifestations and elevate the recognition of clinicians and pathologists on this disease. Methods and Results A 12-year-old boy was admitted because of fever, worsening headache, numbness and weakness of right limbs. MRI showed local gyri swelling and abnormal enhancement of pia mater in the right parietal lobe, expanding to the right temporal lobe, and pia mater enhancement in the left parietal lobe. The right temporo-parietal lobe lesion biopsy revealed irregularly shaped tumor cells of large size, rich and eosinophilic cytoplasm and horseshoe-shaped or kidney-shaped nuclei. Immunohistochemical examination showed tumor cells positive for CD3, CD45RO, CD30, ALK-1 and epithelial membrane antigen (EMA, and negative for CD20 and CD79a. Conclusion Primary ALCL of CNS is an extremely rare tumor which is usually misdiagnosed as meningitis according to clinical and imaging examinations. Therefore, for those patients who are considered as meningitis but with poor treatment effect and replase of illness, brain

  16. Childhood primary angiitis of the central nervous system.

    Science.gov (United States)

    Malik, Muhammad Akbar; Zia-ur-Rehman, Muhammad; Nadeem, Malik Muhammad; Chaudhry, Farooq Rasool; Qureshi, Abid Ali; Nawaz, Muhammad; Malik, Hamza

    2012-09-01

    To analyze the clinical course and magnetic resonance angiographic (MRA) abnormalities in children with primary angiitis of the central nervous system (cPACNS). Cohort study. Neurosciences and Neuroradiology Department of the Children's Hospital, Lahore, from January 2009 to December 2010. The cohort comprised consecutive patients diagnosed as having cPACNS based on clinical findings and identification of arterial stenosis on magnetic resonance angiography (MRA) in the absence of an underlying condition that could cause these findings. The treatment protocol for ischaemic infarcts consisted of induction therapy with intravenous steroids pulses and intravenous immunoglobulin followed by maintenance therapy with azathioprine and low dose aspirin. When indicated, they were treated with anticoagulants at least for 4 weeks along with induction therapy. Patients were followed at a single centre and systemically assessed for clinical presentation, classification of disease as progressive or non-progressive, adverse effects of anticoagulants, aspirin, azathioprine and their hospital course. Sixty-eight children with medium-large vessel cPACNS (62% boys, 38% girls) with mean age of 8.5 ± 3.5 years were enrolled in this study. Motor deficit (70%); headache (64%) and fever (20%) were the commonest symptoms; whereas hemiparesis (60%); seizures 55% (focal 35%, generalized 20%) and decreased conscious level (30%), were the commonest neurological findings. Neuroradiological findings were ischaemic strokes in 50 (73.5%), haemorrhagic strokes in 10 (14.7%) and ischaemic haemorrhagic lesions in 8 cases (11.8%). Angiographically 51 (51/68, 75%) of the cohort had non-progressive (obliterative) and 17 (17/68, 25%) had evidence of progressive arteriopathy at the time of admission. No secondary haemorrhagic lesions were documented among infarcts strokes, which were treated with heparin and oral anticoagulants. Outcome was survival in 56 cases (81.5%) and death in 12 cases (18.5%). All

  17. Neurocitoma no sistema nervoso central Neurocytoma in the central nervous system: a case report

    Directory of Open Access Journals (Sweden)

    José Torquato Severo

    1973-03-01

    Full Text Available É relatado o caso de uma paciente com 6 anos de idade, hospitalizada com síndrome de hipertensão intracraniana. Após o exame neuro-radiológico que evidenciou processo expansivo frontal direito, a paciente foi submetida à cirurgia, durante a qual ocorreu o óbito. O exame histo-patológico do material retirado durante o ato operatório, permitiu o diagnóstico de neurocitoma, tumor raro no sistema nervoso central.The case of a six years old female with intracranial hypertension is reported. After neuro-radiological examination which showed a frontal expansive process at the right side of the brain the patient was operated and died during this intervention. The hystopathological examination of the part of the tissue removed from the tumor revealed a neurocytoma, a rare tumor of the central nervous system.

  18. Recent Understanding on Diagnosis and Management of Central Nervous System Vasculitis in Children

    Directory of Open Access Journals (Sweden)

    Ludovico Iannetti

    2012-01-01

    Full Text Available Central nervous system vasculitides in children may develop as a primary condition or secondary to an underlying systemic disease. Many vasculitides affect both adults and children, while some others occur almost exclusively in childhood. Patients usually present with systemic symptoms with single or multiorgan dysfunction. The involvement of central nervous system in childhood is not frequent and it occurs more often as a feature of subtypes like childhood polyarteritis nodosa, Kawasaki disease, Henoch Schönlein purpura, and Bechet disease. Primary angiitis of the central nervous system of childhood is a reversible cause of severe neurological impairment, including acute ischemic stroke, intractable seizures, and cognitive decline. The first line therapy of CNS vasculitides is mainly based on corticosteroids and immunosuppressor drugs. Other strategies include plasmapheresis, immunoglobulins, and biologic drugs. This paper discusses on current understanding of most frequent primary and secondary central nervous system vasculitides in children including a tailored-diagnostic approach and new evidence regarding treatment.

  19. Candida infection of the central nervous system following neurosurgery: a 12-year review.

    LENUS (Irish Health Repository)

    O'Brien, Deirdre

    2011-06-01

    Candida infection of the central nervous system (CNS) following neurosurgery is relatively unusual but is associated with significant morbidity and mortality. We present our experience with this infection in adults and discuss clinical characteristics, treatment options, and outcome.

  20. Bioactivity of marine organisms: Part 7- Effect of seaweed extract on central nervous system

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; DeSouza, L.; Naik, C.G.; Ambiye, V.; Bhakuni, D.S.; Jain, S.; Goel, A.K.; Srimal, R.C.

    Alcohol extracts of marine algae (Rhodophyceae, Phaeophyceae and Chlorophyceae) was screened for their effect on central nervous system. Of 69 species investigated 8 appeared biologically active, 6 being CNS stimulant, sites and dates of collection...

  1. Insulin in central nervous system: more than just a peripheral hormone

    National Research Council Canada - National Science Library

    Duarte, Ana I; Moreira, Paula I; Oliveira, Catarina R

    2012-01-01

    Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases...

  2. Diagnostic value of NMO-IgG in demyelinating diseases of central nervous system

    Directory of Open Access Journals (Sweden)

    Xiao-min XU

    2016-09-01

    Full Text Available The aquaporin 4 (AQP4 plays an important role in the maintenance of transmembrane water transfer, blood-brain barrier (BBB integrity and homeostasis of central nervous system, and its highly specific autoantibody NMO-IgG has been used as a specific biomarker of neuromyelitis optica. However, in recent years, several studies have found that the positive rate in patients with neuromyelitis optica is not 100%, and it even can be detected in some other demyelinating diseases of central nervous system. This paper aims to make a review of the diagnostic value of NMO-IgG in demyelinating diseases of central nervous system, in order to deepen the understanding of this antibody and guide the clinical diagnosis and differential diagnosis on demyelinating diseases of central nervous system. DOI: 10.3969/j.issn.1672-6731.2016.09.006

  3. Cannabinoid CB1 receptor-interacting proteins: novel targets for central nervous system drug discovery?

    National Research Council Canada - National Science Library

    Smith, Tricia H; Sim-Selley, Laura J; Selley, Dana E

    2010-01-01

    ...), including CB1 and CB2 receptors. The CB1 receptor is the major cannabinoid receptor in the central nervous system and has gained increasing interest as a target for drug discovery for treatment of nausea, cachexia, obesity, pain...

  4. Central nervous system involvement in acute lymphoblastic leukemia: diagnosis by immunophenotyping

    Directory of Open Access Journals (Sweden)

    Camila Silva Peres Cancela

    2013-08-01

    Full Text Available The central nervous system is the most commonly affected extramedullary site in acute lymphoblastic leukemia. Although morphologic evaluation of the cerebrospinal fluid has been traditionally used for diagnosing central nervous system involvement, it is a method of low sensitivity. The present study aimed at evaluating the use of immunophenotyping in the detection of blasts in the cerebrospinal fluid from children and adolescents with acute lymphoblastic leukemia.

  5. Multiple myeloma invasion of the central nervous system

    Directory of Open Access Journals (Sweden)

    Marjanović Slobodan

    2012-01-01

    Full Text Available Introduction. Multiple myeloma (MM is characterized by the presence of neoplastic proliferating plasma cells. The tumor is generally restricted to the bone marrow. The most common complications include renal insufficiency, hypercalcemia, anemia and reccurent infections. The spectrum of MM neurological complications is diverse, however, involvement of MM in the cerebrospinal fluid (CSF and leptomeningeal infiltration are rare considered. In about 1% of the cases, the disease affects the central nervous system (CNS and presents itself in the form of localized intraparenchymal lesions, solitary cerebral plasmocytoma or CNS myelomatosis (LMM. Case report. We presented the clinical course of a 55-year-old man with MM and LMM proven by malignant plasma cells in the CSF, hospitalized with the pain in the thoracic spine. His medical history was uneventful. There had been no evidence of mental or neurological impairment prior to the seizures. Physical examination showed no abnormalities. After a complete staging, the diagnosis of MM type biclonal gammopathia IgG lambda and free lambda light chains in the stage III was confirmed. The treatment started with systemic chemotherapy (with vincristine, doxorubicin plus high-dose dexamethasone - VAD protocol, radiotherapy and bisphosphonate. The patient developed weakness, nausea, febrility, dispnea, bilateral bronchopneumonia, acute renal insufficiency, confusions, headaches and soon thereafter sensomotor aphasias and right hemiparesis. The patient was treated with the adequate therapy including one hemodyalisis. His neurological status was deteriorated, so Multislice Computed Tomography (MSCT of the head was performed and the findings were normal. Analysis of CSF showed pleocytosis, 26 elements/ mL and increased concentrations of proteins. Cytological analysis revealed an increased number of plasma cells (29%. Electrophoretic analysis of proteins disclosed the existance of monoclonal components in the serum

  6. Magnetic resonance imaging characteristics in four dogs with central nervous system neosporosis.

    Science.gov (United States)

    Parzefall, Birgit; Driver, Colin J; Benigni, Livia; Davies, Emma

    2014-01-01

    Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs. © 2014 American College of Veterinary Radiology.

  7. Central and autonomic nervous system links to the APUD system (and their APUDomas).

    Science.gov (United States)

    Baylis, B W; Tranmer, B I; Ohtaki, M

    1993-01-01

    The concept of the APUD system and the APUDomas associated with it has evolved significantly since Pearse's description in the 1960s. Part of this evolution has been an understanding of the relationships between the APUD system and the central and autonomic nervous systems. The APUD system now referred to as the diffuse neuroendocrine system, can be linked to the central nervous system and autonomic nervous system by genetics, embryology, cellular characteristics, anatomy, interaction of the systems, and the immune system. Awareness of these relationships may enable clinicians to better understand APUDomas and lead to better methods of detection of these tumours and their treatment.

  8. Congenital and acquired mitochondrial disorders of the central nervous system

    Directory of Open Access Journals (Sweden)

    V. V. Nikitina

    2014-01-01

    Full Text Available Clinical presentations of disorders of the nervous system manifest in young and middle-aged patients with congenital and acquired mitochondrial dysfunctions and cognitive disorders manifest in patients with mitochondrial diseases more often. Nowadays the effective methods of initial diagnosing of these conditions are neurological and neuropsychological examination of patients, using of biochemical markers of mitochondrial diseases: the indices of lactate, total homocysteine in plasma and liquor. Neuro-visual study (Magnetic resonance imaging of the brain, MR spectroscopy, tractography, diffusion-weighted magnetic resonance imaging of the brain, mitochondrial DNA typing is actually used for the differential diagnosing of mitochondrial diseases with other disorders that are accompanied by demyelinating disorders.

  9. Convection-enhanced delivery to the central nervous system.

    Science.gov (United States)

    Lonser, Russell R; Sarntinoranont, Malisa; Morrison, Paul F; Oldfield, Edward H

    2015-03-01

    Convection-enhanced delivery (CED) is a bulk flow-driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.

  10. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    Science.gov (United States)

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central

  11. MRT of the central nervous system. 2. rev. and enl. ed.; MRT des Zentralnervensystems

    Energy Technology Data Exchange (ETDEWEB)

    Forsting, Michael [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie; Jansen, Olav (ed.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer Radiologie und Neuroradiologie

    2014-11-01

    The book on MRT of the central nervous system includes the following chapters: anatomy, vascular diseases, brain tumors, craniocerebral injuries, infectious diseases, multiple sclerosis and related diseases, metabolic diseases, degenerative diseases, malformations and developmental disorders, hydrocephalus and intracranial hypertension, spinal marrow, degenerative caused spinal and foraminal stenosis, traumata, tumors and tumor-like neoplasm, vascular diseases, inflammations, infections and related diseases, diseases of the peripheral nervous system.

  12. Central nervous system tumors and related intracranial pathologies in radium dial workers

    Energy Technology Data Exchange (ETDEWEB)

    Stebbings, J.H.; Semkiw, W.

    1988-01-01

    Among the female radiation workers in the radium dial industry there is no overall excess of brain or central nervous system tumors. A significant excess did appear, however, in one of three major cohorts; the excess was not due to an excess of gliomas and cannot be ascribed with certainty to radium or external radiation. A significant proportional excess of tumors outside the brain was observed, and is consistent with irradiation of nervous system tissue from adjacent bone. Early deaths from brain abscess or mastoiditis, which are coded as diseases of the nervous system and sense organs, were observed. 12 refs., 11 tabs.

  13. Interleukin-6, a Major Cytokine in the Central Nervous System

    Science.gov (United States)

    Erta, María; Quintana, Albert; Hidalgo, Juan

    2012-01-01

    Interleukin-6 (IL-6) is a cytokine originally identified almost 30 years ago as a B-cell differentiation factor, capable of inducing the maturation of B cells into antibody-producing cells. As with many other cytokines, it was soon realized that IL-6 was not a factor only involved in the immune response, but with many critical roles in major physiological systems including the nervous system. IL-6 is now known to participate in neurogenesis (influencing both neurons and glial cells), and in the response of mature neurons and glial cells in normal conditions and following a wide arrange of injury models. In many respects, IL-6 behaves in a neurotrophin-like fashion, and seemingly makes understandable why the cytokine family that it belongs to is known as neuropoietins. Its expression is affected in several of the main brain diseases, and animal models strongly suggest that IL-6 could have a role in the observed neuropathology and that therefore it is a clear target of strategic therapies. PMID:23136554

  14. [Structural plasticity of the adult central nervous system: insights from the neuroendocrine hypothalamus].

    Science.gov (United States)

    Girardet, Clémence; Bosler, Olivier

    2011-01-01

    Accumulating evidence renders the dogma obsolete according to which the structural organization of the brain would remain essentially stable in adulthood, changing only in response to a need for compensatory processes during increasing age and degeneration. It has indeed become clear from investigations on various models that the adult nervous system can adapt to physiological demands by altering reversibly its synaptic circuits. This potential for structural and functional modifications results not only from the plastic properties of neurons but also from the inherent capacity of the glial cellular components to undergo remodeling as well. This is currently known for astrocytes, the major glial cells in brain which are well-recognized as dynamic partners in the mechanisms of synaptic transmission, and for the tanycytes and pituicytes which contribute to the regulation of neurosecretory processes in neurohemal regions of the hypothalamus. Studies on the neuroendocrine hypothalamus, whose role is central in homeostatic regulations, have gained good insights into the spectacular neuronal-glial rearrangements that may subserve functional plasticity in the adult brain. Following pioneering works on the morphological reorganizations taking place in the hypothalamo-neurohypophyseal system under certain physiological conditions such as dehydration and lactation, studies on the gonadotropic system that orchestrates reproductive functions have re-emphasized the dynamic interplay between neurons and glia in brain structural plasticity processes. This review summarizes the major contributions provided by these researches in the field and also addresses the question of the morphological rearrangements that occur on a 24-h basis in the central component of the circadian clock responsible for the temporal aspects of endocrine regulations. Taken together, the reviewed data highlight the close cooperation between neurons and glia in developing strategies for functional adaptation

  15. [Primary malignant melanoma of the central nervous system: A diagnostic challenge].

    Science.gov (United States)

    Quillo-Olvera, Javier; Uribe-Olalde, Juan Salvador; Alcántara-Gómez, Leopoldo Alberto; Rejón-Pérez, Jorge Dax; Palomera-Gómez, Héctor Guillermo

    2015-01-01

    The rare incidence of primary malignant melanoma of the central nervous system and its ability to mimic other melanocytic tumors on images makes it a diagnostic challenge for the neurosurgeon. A 51-year-old patient, with a tumor located in the right forniceal callosum area. Total surgical excision was performed. Histopathological result was consistent with the diagnosis of primary malignant melanoma of the central nervous system, after ruling out extra cranial and extra spinal melanocytic lesions. The primary malignant melanoma of the central nervous system is extremely rare. There are features in magnetic resonance imaging that increase the diagnostic suspicion; nevertheless there are other tumors with more prevalence that share some of these features through image. Since there is not an established therapeutic standard its prognosis is discouraging. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  16. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    Science.gov (United States)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  17. The Central Nervous System Sites Mediating the Orexigenic Actions of Ghrelin

    Science.gov (United States)

    Mason, B.L.; Wang, Q.; Zigman, J.M.

    2014-01-01

    The peptide hormone ghrelin is important for both homeostatic and hedonic eating behaviors, and its orexigenic actions occur mainly via binding to the only known ghrelin receptor, the growth hormone secretagogue receptor (GHSR). GHSRs are located in several distinct regions of the central nervous system. This review discusses those central nervous system sites that have been found to play critical roles in the orexigenic actions of ghrelin, including hypothalamic nuclei, the hippocampus, the amygdala, the caudal brain stem, and midbrain dopaminergic neurons. Hopefully, this review can be used as a stepping stone for the reader wanting to gain a clearer understanding of the central nervous system sites of direct ghrelin action on feeding behavior, and as inspiration for future studies to provide an even-more-detailed map of the neurocircuitry controlling eating and body weight. PMID:24111557

  18. Molecular pathology and targeted therapy of common tumors in central nervous system

    Directory of Open Access Journals (Sweden)

    Fei YANG

    2014-12-01

    Full Text Available It is difficult to cure central nervous system tumors using traditional method, due to chemotherapy drugs lack of specificity. They kill the tumor cells, and damage normal tissues and organs at the same time. The latest hotspot is targeted therapy on the specific molecules in the molecular pathway of central nervous system tumor cells. This review introduces the relationship between molecularly biological characteristics of medulloblastoma, oligodendrocytoma, glioblastoma and the prognosis in the view of critical intracellular pathway and genetic mutation. Furthermore, it reviews the current situation and progress of targeted therapy of tumors. As a consequence, it offers some new information for the individualized therapy of central nervous system tumors. doi: 10.3969/j.issn.1672-6731.2014.12.017

  19. [Hemangioblastomas of the central nervous system in Camagüey (Cuba)].

    Science.gov (United States)

    Vega-Basulto, S; Silva-Adán, S; Peñones-Montero, R; Mosqueda-Betancourt, G

    Hemangioblastomas of the central nervous system are the most frequent vascular tumours. They are 1 2% of primary nervous system tumours and 8 12% of the posterior fossa neoplasms. The objective is to analize clinical behaviour and long term results of sporadic and Von Hippel Lindau linked hemangioblastomas. It was searched the vacular Neurosurgical Data Bank at Manuel Ascunce Dom nech Hospital between January 1981 and January 2001 to select patients harvoring central nervous system hemangioblastomas histological confirmed. Melmo and Rosen criteria were utilized in Von Hippel Lindau syndrome. We performed a twenty years follow up of this patients. There were 12 patients with central nervous system hemangioblastomas. Average age of presentation was 41 years old. The first case had twenty years since the operation and the last, eight months. 83% were cystic and 17% were solids. There was not surgical mortality. One patient died of renal carcinoma 15 years after the operation on craneal fossa. Central nervous system hemangioblastomas are a cluster of challenge tumours. They are intraxial benign tumours with potential good outcome. We observed sporadic and Von Hippel Lindau linked hemangioblastomas. Patients with this syndrome need clinico imagenological screening to identify new associated lesions.

  20. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Science.gov (United States)

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  1. Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)

    Science.gov (United States)

    Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.

    2015-09-01

    This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.

  2. Central nervous system medications and falls risk in men aged 60-75 years

    DEFF Research Database (Denmark)

    Masud, Tahir; Frost, Morten; Ryg, Jesper

    2013-01-01

    Introduction: drugs acting on the central nervous system (CNS) increase falls risk. Most data on CNS drugs and falls are in women/mixed-sex populations. This study assessed the relationship between CNS drugs and falls in men aged 60-75 years.......Introduction: drugs acting on the central nervous system (CNS) increase falls risk. Most data on CNS drugs and falls are in women/mixed-sex populations. This study assessed the relationship between CNS drugs and falls in men aged 60-75 years....

  3. Central Nervous System Toxoplasmosis in Relapsed Hodgkin's Lymphoma: A Case Report.

    Science.gov (United States)

    Abolghasemi, Hassan; Shahverdi, Ehsan; Jafari, Ramezan; Dolatimehr, Fardin; Khandani, Azam

    2016-08-01

    Patients with immunosuppression have an increased incidence of toxoplasmosis characterized by involvement of the central nervous system. Only a few cases of toxoplasmosis associated with immunosuppressive agents have been reported. Such cases have been reported in immune suppressed patients outside the Iran, but a search of the literature has not revealed any previous reports from this country. We described a 17- year -old male, a known case of Hodgkin's lymphoma with the diagnosis of central nervous system (CNS) toxoplasmosis. As a conclusion, CNS toxoplasmosis should be considered in the differential diagnosis of immunosuppressed patients who present with neurological manifestations.

  4. The application values of cerebrospinal fluid cytological examination by slide centrifugation for diagnosis of central nervous system infectious diseases

    Directory of Open Access Journals (Sweden)

    LIU Ting-ting

    2013-02-01

    Full Text Available According to the analysis of cerebrospnial fluid (CSF cytological examination (by slide centrifugation results of 15 940 central nervous system infectious cases, this cytologic examination method shows definite diagnostic values as follows: 1 better etiological diagnostic value for central nervous system infectious diseases, such as purulent, viral, tuberculous, fungus and parasitic encephalitis meningitis and meningoencephalitis; 2 better differential diagnostic value for acute infectious toxic encephalopathy, meningeal carcinomatosis and central nervous system non-infectious diseases such as tumorous, leukemic and hemorrhagic meningoencephalitis and encephalopathy; 3 better clinical value for severity monitoring and prognostic judgement of central nervous system infectious diseases.

  5. The impact of high and low dose ionising radiation on the central nervous system

    Directory of Open Access Journals (Sweden)

    Calina Betlazar

    2016-10-01

    Full Text Available Responses of the central nervous system (CNS to stressors and injuries, such as ionising radiation, are modulated by the concomitant responses of the brains innate immune effector cells, microglia. Exposure to high doses of ionising radiation in brain tissue leads to the expression and release of biochemical mediators of ‘neuroinflammation’, such as pro-inflammatory cytokines and reactive oxygen species (ROS, leading to tissue destruction. Contrastingly, low dose ionising radiation may reduce vulnerability to subsequent exposure of ionising radiation, largely through the stimulation of adaptive responses, such as antioxidant defences. These disparate responses may be reflective of non-linear differential microglial activation at low and high doses, manifesting as an anti-inflammatory or pro-inflammatory functional state. Biomarkers of pathology in the brain, such as the mitochondrial Translocator Protein 18 kDa (TSPO, have facilitated in vivo characterisation of microglial activation and ‘neuroinflammation’ in many pathological states of the CNS, though the exact function of TSPO in these responses remains elusive. Based on the known responsiveness of TSPO expression to a wide range of noxious stimuli, we discuss TSPO as a potential biomarker of radiation-induced effects.

  6. Immune activation in the central nervous system throughout the course of HIV infection.

    Science.gov (United States)

    Spudich, Serena S

    2016-03-01

    Robust and dynamic innate and adaptive responses characterize the acute central nervous system (CNS) response to HIV and other viral infections. In a state of chronic infection or viral latency, persistent immune activation associates with abnormality in the CNS. Understanding this process is critical, as immune-mediated abnormality in nonrenewable CNS cells may result in long-term neurologic sequelae for HIV-infected individuals. In humans, immune activation is reduced by suppressive combination antiretroviral therapy, but persists at abnormally elevated levels on treatment. CNS immune activation is initiated in acute infection and progressively increases until combination antiretroviral therapy is started. Newly identified characteristics of the CNS immune surveillance network include features of homeostasis and function of brain microglial cells, lymphatic drainage from CNS to cervical lymph nodes, and cells in cerebrospinal fluid associated with neurocognitive impairment. More research is required to determine whether early intervention to reduce infection limits the immunopathology established by sustained immune responses that ultimately fail to resolve infection, and to unravel mechanisms of persistent immune activation during treated HIV so that strategies can be developed to therapeutically protect the brain.

  7. Immune surveillance of the central nervous system in multiple sclerosis– Relevance for therapy and experimental models

    Science.gov (United States)

    Hussain, Rehana Z.; Hayardeny, Liat; Cravens, Petra C.; Yarovinsky, Felix; Eagar, Todd N.; Arellano, Benjamine; Deason, Krystin; Castro-Rojas, Cyd; Stüve, Olaf

    2015-01-01

    Treatment of central nervous system (CNS) autoimmune disorders frequently involves the reduction, or depletion of immune-competent cells. Alternatively, immune cells are being sequestered away from the target organ by interfering with their movement from secondary lymphoid organs, or their migration into tissues. These therapeutic strategies have been successful in multiple sclerosis (MS), the most prevalent autoimmune inflammatory disorder of the CNS. However, many of the agents that are currently approved or in clinical development also have severe potential adverse effects that stem from the very mechanisms that mediate their beneficial effects by interfering with CNS immune surveillance. This review will outline the main cellular components of the innate and adaptive immune system that participate in host defense and maintain immune surveillance of the CNS. Their pathogenic role in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also discussed. Furthermore, an experimental model is introduced that may assist in evaluating the effect of therapeutic interventions on leukocyte homeostasis and function within the CNS. This model or similar models may become a useful tool in the repertoire of pre-clinical tests of pharmacological agents to better explore their potential for adverse events. PMID:25282087

  8. Calcium homeostasis in the central nervous system: adaptation to neurodegeneration

    OpenAIRE

    Yebra, Lluïsa de; Adroer Martori, Rosa; Mahy, Nicole; Ramonet, David; Manuel J Rodríguez

    2001-01-01

    En aquest article, després d'una revisió dels nostres coneixements bàsics sobre moviments del alci neuronal, s'ha resentat el treball fet pel nostre grup durant els últims anys sobre neurodegeneració, juntament amb les dades obtingudes en models animals i humans en l'estudi de la precipitació cerebral del calci. Per tal d'explicar la precipitació del calci s'ha presentat i discutit un model que integra els diversos mecanismes implicats en neurodegeneració des del punt de vista de la rellevànc...

  9. Screening of the central nervous system in children with invasive pulmonary aspergillosis

    NARCIS (Netherlands)

    Broenen, E.; Mavinkurve, A.M.C.; Kamphuis-van Ulzen, K.; Brüggemann, R.J.M.; Verweij, P.E.; Warris, A.

    2014-01-01

    The existing guidelines regarding the management of invasive pulmonary aspergillosis do not recommend screening of the extra-pulmonary sites. Due to the fact that the presence of central nervous system (CNS) aspergillosis will influence treatment decisions regarding which antifungal to use and the

  10. Metallothionein expression in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Ortega-Aznar, A

    2003-01-01

    Multiple sclerosis (MS) is a major chronic demyelinating and inflammatory disease of the central nervous system (CNS) in which oxidative stress likely plays a pathogenic role in the development of myelin and neuronal damage. Metallothioneins (MTs) are antioxidant proteins induced in the CNS by ti...

  11. Sebaceous nevus syndrome, central nervous system malformations, aplasia cutis congenita, limbal dermoid, and pigmented nevus syndrome.

    Science.gov (United States)

    Hsieh, Chih-Wei; Wu, Yu-Hung; Lin, Shuan-Pei; Peng, Chun-Chih; Ho, Che-Sheng

    2012-01-01

    SCALP syndrome is an acronym describing the coincidence of sebaceous nevus syndrome, central nervous system malformations, aplasia cutis congenita, limbal dermoid, and pigmented nevus (giant congenital melanocytic nevus). We present a fourth case of this syndrome. © 2012 Wiley Periodicals, Inc.

  12. Central nervous system Tuberculosis in a man from Cambodia with worsening headaches.

    Science.gov (United States)

    Krauth, Daniel S; Stone-Garza, Kristi K; Amaro, Deirdre E; Reed, Sharon L; Katsivas, Theodoros F

    2017-10-01

    Central nervous system (CNS) tuberculosis should be considered in patients from endemic nations with worsening neurological symptoms. If imaging reveals possible CNS tuberculomas, potentially life-threatening lesions should be excised and analyzed. When disease is less severe, other tissues possibly infected should be biopsied first for diagnosis to avoid neurosurgery.

  13. [Primary central nervous system tumours reported in Cartagena, 2001-2006].

    Science.gov (United States)

    Ramos-Clason, Enrique C; Tuñón-Pitalua, Martha C; Rivas-Muñoz, Fabio A; Veloza-Cabrera, Luis A

    2010-04-01

    Determining the frequency of primary central nervous system tumours diagnosed in Cartagena; Colombia, from 2001-2006 and determining the demographic, epidemiological and clinical characteristics of patients having central nervous system tumours reported by a single institution in Cartagena between 2001 and 2006. A passive epidemiological surveillance descriptive study was carried out. The pathology reports of new diagnosed central nervous system primary tumours from all laboratories in Cartagena were taken and the available clinical records regarding these cases were analysed. The overall incidence rate and incidence rates by year, gender, age and histological type were estimated, with 95 % confidence intervals. Standardised morbidity rates were also calculated. There were 390 such cases during 2001-2006. The overall incidence rate was 6.91/100,000 people-year. Meningiomas were the most frequently occurring histological types (3.46/100,000 people-year). The provenance could only be determined in 43.1 % of cases. Standardised morbidity rates were higher in Cartagena regarding those reported in the United States and by the Colombian National Cancer Institute and the Population-based Cali Cancer Registry. There was a higher incidence of primary central nervous system tumours in Cartagena than in the rest of the country. Registry and surveillance systems should be improved and research into risk factors encouraged.

  14. White matter lesions and encephalopathy in patients treated for primary central nervous system lymphoma

    NARCIS (Netherlands)

    Wassenberg, MWM; Bromberg, JEC; Witkamp, TD; Terhaard, CHJ; Taphoorn, MJB

    A retrospective analysis of the clinical presentations and neuroimaging characteristics of 33 patients with a primary central nervous system lymphoma (PCNL) who received cranial radiotherapy was performed to assess incidence of and risk factors for radiation-induced encephalopathy. CT and MRI scans

  15. A case of central nervous system infection due to Cladophialophora bantiana

    NARCIS (Netherlands)

    Kantarcioglu, A Serda; Guarro, Josep; de Hoog, G Sybren; Apaydin, Hulya; Kiraz, Nuri; Balkan, Ilker Inanç; Ozaras, Resat

    2016-01-01

    BACKGROUND: Cladophialophora bantiana is a melanised mold with a pronounced tropism for the central nervous system, almost exclusively causing human brain abscesses. CASE REPORT: We describe a case of cerebral infection by this fungus in an otherwise healthy 28-year-old coal-miner. Environmental

  16. Seasonality of birth in children with central nervous system tumours in Denmark, 1970-2003

    DEFF Research Database (Denmark)

    Schmidt, L S; Grell, Kathrine; Frederiksen, K

    2008-01-01

    We investigated possible seasonal variation of births among children <20 years with a central nervous system tumour in Denmark (N=1640), comparing them with 2,582,714 children born between 1970 and 2003. No such variation was seen overall, but ependymoma showed seasonal variation.......We investigated possible seasonal variation of births among children

  17. Citrullination of central nervous system proteins during the development of experimental autoimmune encephalomyelitis.

    NARCIS (Netherlands)

    Raijmakers, R.; Vogelzangs, J.H.P.; Croxford, J.L.; Wesseling, P.; Venrooij, W.J.W. van; Pruijn, G.J.M.

    2005-01-01

    Immunization of mammals with central nervous system (CNS)-derived proteins or peptides induces experimental autoimmune encephalomyelitis (EAE), a disease resembling the human autoimmune disease multiple sclerosis (MS). Both diseases are accompanied by destruction of a part of the of the myelin

  18. FMRFamide-like immunoreactivity in the central nervous system of the cephalopod mollusc, Idiosepius notoides

    DEFF Research Database (Denmark)

    Wollesen, Tim; Loesel, R.; Wanninger, Andreas Wilhelm Georg

    2008-01-01

    For more than a century, cephalopod molluscs have been the subject of extensive studies with respect to their complex neuroanatomy and behavior. In comparison to gastropod molluscs surprisingly little work has been carried out on the characterization of neurons in the central nervous system (CNS...

  19. Cerebrospinal fluid pleocytosis in infectious and noninfectious central nervous system disease

    DEFF Research Database (Denmark)

    Baunbæk Egelund, Gertrud; Ertner, Gideon; Langholz Kristensen, Kristina

    2017-01-01

    Cerebrospinal fluid (CSF) analysis is the most important tool for assessing central nervous system (CNS) disease. An elevated CSF leukocyte count rarely provides the final diagnosis, but is almost always an indicator of inflammation within the CNS.The present study investigated the variety...

  20. Targeting the chemokine receptor CXCR3 and its ligand CXCL10 in the central nervous system

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke

    2004-01-01

    focuses on the present data regarding CXCL10 (previously known as IP-10) and CXRC3 in multiple sclerosis, since consistent data has suggested that this chemokine/chemokine receptor pair has a pivotal role in leukocyte recruitment into the central nervous system (CNS) in multiple sclerosis....

  1. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Childhood central nervous system (CNS) germ cell tumors form from germ cells (a type of cell that forms as a fetus develops and later becomes sperm in the testicles or eggs in the ovaries). Learn about the signs, tests to diagnose, and treatment of pediatric germ cell tumors in the brain in this expert-reviewed summary.

  2. Microglia - insights into immune system structure, function, and reactivity in the central nervous system

    DEFF Research Database (Denmark)

    Wirenfeldt, Martin; Babcock, Alicia A; Vinters, Harry V

    2011-01-01

    Microglia are essential cellular components of a well-functioning central nervous system (CNS). The development and establishment of the microglial population differs from the other major cell populations in the CNS i.e. neurons and macroglia (astrocytes and oligodendrocytes). This different...

  3. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    Science.gov (United States)

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  4. Some Central Nervous System Effects of the aqueous Extract of the ...

    African Journals Online (AJOL)

    The leaves of Phyllanthus amarus is used in Southern Nigeria to treat variety of diseases including epilepsy. The aqueous extract of the leaves of Phyllanthus amarus was investigated for some central nervous system effects. Two animals models (maximal electroshock and pentylenetetrazol-induced convulsion), were used ...

  5. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Tani, M; Jensen, J

    1999-01-01

    Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether...

  6. DELAYED EFFECTS OF RADIATION ON THE HUMAN CENTRAL NERVOUS SYSTEM. EARLY AND LATE DELAYED REACTIONS,

    Science.gov (United States)

    Two cases of delayed effects of radiation on the central nervous system of man are reported. One demonstrates the rare early delayed reaction which...involvement. This patient is an extreme example of the well-documented late delayed effects of radiation and is presented for contrast with the patient in

  7. ANTIEPILEPTIC MEDICATION IN PREGNANCY - LATE EFFECTS ON THE CHILDRENS CENTRAL-NERVOUS-SYSTEM DEVELOPMENT

    NARCIS (Netherlands)

    VANDERPOL, MC; HADDERSALGRA, M; HUISJES, HJ; TOUWEN, BCL

    In a follow-up study long-term effects of antenatal exposure to two anticonvulsant drugs, phenobarbital and carbamazepine on central nervous system development were evaluated. Children aged 6 to 13 years of epileptic mothers who used phenobarbital (n = 13), carbamazepine (n = 12), phenobarbital plus

  8. Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system

    DEFF Research Database (Denmark)

    Toft-Hansen, Henrik; Babcock, Alicia A; Millward, Jason M

    2007-01-01

    BACKGROUND: Matrix metalloproteinases (MMPs) are thought to mediate cellular infiltration in central nervous system (CNS) inflammation by cleaving extracellular matrix proteins associated with the blood-brain barrier. The family of MMPs includes 23 proteinases, including six membrane type-MMPs (M...

  9. New onset refractory status epilepticus due to primary angiitis of the central nervous system

    Directory of Open Access Journals (Sweden)

    Rawan K. Matar

    2017-01-01

    Full Text Available Primary Angiitis of the central nervous system is a rare and poorly understood variant of vasculitis. We narrate a case of a 46-year-old male who presented with new onset refractory status epilepticus mimicking autoimmune encephalitis. In this case we are reporting clues that could be useful for diagnosis and extensive literature review on the topic.

  10. Biomarkers in early phase development of central nervous system drugs : a conceptual framework

    NARCIS (Netherlands)

    Post, Jeroen-Paul van der

    2006-01-01

    The main objective of this thesis is to provide a conceptual framework for the use of Central Nervous System (CNS) biomarkers in early phase clinical drug development. In the Introduction the current use of biomarkers in early CNS drug development is discussed. A conceptual framework for the

  11. Vascular, glial, and lymphatic immune gateways of the central nervous system

    NARCIS (Netherlands)

    Engelhardt, Britta; Carare, Roxana O.; Bechmann, Ingo; Fluegel, Alexander; Laman, Jon D.; Weller, Roy O.

    Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system.

  12. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders

    NARCIS (Netherlands)

    De Keyser, Jacques; Mostert, Jop P.; Koch, Marcus W.

    2008-01-01

    Once considered little more than the glue that holds neurons in place, astrocytes are now becoming appreciated for the key roles they play in central nervous system functions. They supply neurons and oligodendrocytes with substrates for energy metabolism, control extracellular water and electrolyte

  13. Epilepsy and other central nervous system diseases in atypical autism: a case control study

    DEFF Research Database (Denmark)

    Mouridsen, Svend Erik; Rich, Bente; Isager, Torben

    2011-01-01

    There is an increased but variable risk of epilepsy in autism spectrum disorders. The objective of this study is to compare the prevalence and types of epilepsy and other central nervous system (CNS) diseases in a clinical sample of 89 individuals diagnosed as children with atypical autism (AA...... epilepsy diagnosis against 11 (4.3%) in the comparison group (P ...

  14. Herpes simplex virus type 2 infections of the central nervous system

    DEFF Research Database (Denmark)

    Omland, Lars Haukali; Vestergaard, Bent Faber; Wandall, Johan

    2008-01-01

    Herpes simplex virus type 2 (HSV-2) infections of the central nervous system (CNS) are rare with meningitis as the most common clinical presentation. We have investigated the clinical spectrum of CNS infections in 49 adult consecutive patients with HSV-2 genome in the cerebrospinal fluid (CSF). HSV...

  15. Pediatric Primitive Neuroectodermal Tumors of the Central Nervous System Differentially Express Granzyme Inhibitors

    NARCIS (Netherlands)

    Vermeulen, Jeroen F; van Hecke, Wim; Spliet, Wim G M; Villacorta Hidalgo, José; Fisch, Paul; Broekhuizen, Roel; Bovenschen, Niels

    2016-01-01

    BACKGROUND: Central nervous system (CNS) primitive neuroectodermal tumors (PNETs) are malignant primary brain tumors that occur in young infants. Using current standard therapy, up to 80% of the children still dies from recurrent disease. Cellular immunotherapy might be key to improve overall

  16. Intrathecal rituximab treatment for pediatric post-transplant lymphoproliferative disorder of the central nervous system.

    NARCIS (Netherlands)

    Glind, G van de; Graaf, S. de; Klein, C.; Cornelissen, M.; Maecker, B.; Loeffen, J.

    2008-01-01

    Post-transplant lymphoproliferative disorder (PTLD) in the central nervous system (CNS) has a poor prognosis. New therapeutic approaches should be explored. We report our experience with intrathecal administration of rituximab in a 10-year-old kidney allograft recipient with PTLD in the CNS. After

  17. Central Nervous System Involvement in Gaucher’s Disease: Radiological Demonstration Case Report

    Directory of Open Access Journals (Sweden)

    Hatice Öztürkmen Akay

    2004-01-01

    Full Text Available Gaucher’s disease is most common sphyngolipid storage disease.Central nervous system involvement is very rare and imaging findings ofthis involvement is not specific.In this case report, we described computed tomographic and magneticresonance findings of cerebral involvement verified with cerebrospinal fluidexamination in a patient with Gaucher’s disease.

  18. Secondary infiltration of the central nervous system in patients with diffuse large B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Talita Maira Bueno da Silveira da Rocha

    2013-01-01

    Full Text Available OBJECTIVE: To investigate the incidence and risk factors of infiltration of the central nervous system after the initial treatment of diffuse large B-cell lymphoma in patients treated at Santa Casa de Misericórdia de São Paulo. METHODS: A total of 133 patients treated for diffuse large B-cell lymphoma from January 2001 to April 2008 were retrospectively analyzed in respect to the incidence and risk factors of secondary central nervous system involvement of lymphoma. Intrathecal prophylaxis was not a standard procedure for patients considered to be at risk. This analysis includes patients whether they received rituximab as first-line treatment or not. RESULTS: Nine of 133 (6.7% patients developed central nervous system disease after a mean observation time of 29 months. The median time to relapse or progression was 7.9 months after diagnosis and all but one patient died despite the treatment administered. Twenty-six (19.5% patients of this cohort received rituximab as first-line treatment and nine (7.1% received intrathecal chemoprophylaxis. Of the nine patients that relapsed, seven (77.7% had parenchymal central nervous system involvement; seven (77.7% had stage III or IV disease; one (11.1% had bone marrow involvement; two (22.2% had received intrathecal chemoprophylaxis; and 3 (33.3% had taken rituximab. In a multivariate analysis, the risk factors for this infiltration were being male, previous use of intrathecal chemotherapy and patients that were refractory to initial treatment. CONCLUSION: Central nervous system infiltration in this cohort is similar to that of previous reports in the literature. As this was a small cohort with a rare event, only three risk factors were important for this infiltration

  19. 75 FR 56548 - Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug...

    Science.gov (United States)

    2010-09-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Joint Meeting of the Peripheral and Central Nervous System... the public. Name of Committees: Peripheral and Central Nervous System Drugs Advisory Committee and the...

  20. Experimental alkylmercurial poisoning in swine. Lesions in the peripheral and central nervous systems

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, K.M.

    1974-01-01

    The effects of alkylmercurial poisoning were studied in 16 pigs poisoned with daily oral doses of a fungicide containing methylmercury 2, 3-dihydroxy propyl mercaptide and methylmercury acetate. Clinical signs included weakness, wobbling gait, blindness, recumbency and death. Microscopic studies of the peripheral nervous system revealed Wallerian degeneration in sensory fibers and neuronal degeneration in dorsal root ganglia. In the central nervous system, there were neuronal degeneration of ischemic type, glial degeneration, gliosis and necrosis of the media of meningeal arterioles. The last mentioned lesion was not extensive. The sequential development of lesions and the absence of segmental demyelination suggest that the primary lesion in the peripheral nervous system was neuronal-axonal degeneration rather than degeneration of the Schwann cell and myelin sheath. 25 references.

  1. Late Cerebrovascular Complications After Radiotherapy for Childhood Primary Central Nervous System Tumors.

    Science.gov (United States)

    Passos, João; Nzwalo, Hipólito; Marques, Joana; Azevedo, Ana; Netto, Eduardo; Nunes, Sofia; Salgado, Duarte

    2015-09-01

    Brain radiotherapy plays a central role in the treatment of certain types of childhood primary central nervous system tumors. However, damage to surrounding normal brain tissue causes different acute and chronic medical and neurological complications. Despite the expected increase in number of childhood primary central nervous system tumor survivors, studies assessing the occurrence of late cerebrovascular complications, such as cavernoma, moyamoya, microbleeds, superficial siderosis, and stroke are sparse. We undertook a retrospective consecutive case series review describing the occurrence and characteristics of late cerebrovascular complications in 100 survivors of childhood primary central nervous system tumors treated with radiotherapy. Demographic, clinical, and radiological findings including gradient echo brain magnetic resonance data were retrieved. Late cerebrovascular complications were found in 36 (36%) of the patients included in the study. Mean age at radiotherapy was 8.6 years (3-17) and at diagnosis was 23.9 years (3-38). The majority were males (21; 58%). The most common complications were microbleeds (29/36; 80.6%) and cavernomas 19 (52.8%). In seven (19.4%), late cerebrovascular complications were symptomatic: epilepsy (two), motor and language deficit (two), and sensorineural hearing loss and progressive ataxia (three) associated with cavernomas, stroke, and superficial siderosis, respectively. Follow-up length was associated with an increased diagnosis of late cerebrovascular complications (P therapy (P = 0.046). Factors such as sex, chemotherapy, and histological type of tumor were not correlated with the occurrence of late cerebrovascular complications. Although not usually symptomatic, late cerebrovascular complications occur frequently in survivors of childhood primary central nervous system tumors treated with radiotherapy. Prolonged follow-up increases the probability of diagnosis. The impact and prognostic value of these late

  2. Cardiac biopotentials influence on central nervous system functioning: first steps in hypothesis verification

    Directory of Open Access Journals (Sweden)

    Kondal'skaya Yu.O.

    2012-12-01

    Full Text Available The research goal is to verify the hypothesis on influence of cardiac biopotentials on central nervous system. Materials: 20 healthy individuals aged 18-26 years old have been participated in the investigations. Two groups composed of 10 patients each have been formed. Double increase in heart biopotentials by means of artificial impulse insertion between natural cardiac contractions has been modeled. Artificial impulses have been similar to unaffected ones, produced in a normal heart work. Additional impulses have been generated using external pacemaker and have been linked up with electrodes on the chest. They have been synchronized with the heart rhythm and located in-between R waves. The duration of those impulses has been fully matched to ventricular complex. Their amplitude has been adjusted individually depending on the height of R wave. Nervous system mobility has been used as the indicator reflecting the central nervous system functioning. Degree of mobility has been defined on the basis of tapping test results. The test has been repeated at specific intervals. Groups have been exposed to two adverse testing modes. Additional impulses have been conducted to the patients of group I within an hour over a period of the first and the third 15-minute intervals and to the patients of group II over a period of the second and the fourth 15-minute intervals. In the middle and in the end of each time interval tapping test has been carried out. After preliminary analysis two other modes of stimulation have been tested. The stimulation has been performed within the 40-minute course: over a period of the first 20-minute interval and vice versa. Results: Detailed evaluation has revealed that short-time increase of nervous processes has been checked in combination with decrease in their stability. Conclusion: The data obtained have shown that there is possible influence on central nervous system functioning. The article ends with prospects of further

  3. Laquinimod, a quinoline-3-carboxamide, induces type II myeloid cells that modulate central nervous system autoimmunity.

    Directory of Open Access Journals (Sweden)

    Ulf Schulze-Topphoff

    Full Text Available Laquinimod is a novel oral drug that is currently being evaluated for the treatment of relapsing-remitting (RR multiple sclerosis (MS. Using the animal model for multiple sclerosis, experimental autoimmune encephalomyelitis (EAE, we examined how laquinimod promotes immune modulation. Oral laquinimod treatment reversed established RR-EAE and was associated with reduced central nervous system (CNS inflammation, decreased Th1 and Th17 responses, and an increase in regulatory T cells (Treg. In vivo laquinimod treatment inhibited donor myelin-specific T cells from transferring EAE to naive recipient mice. In vivo laquinimod treatment altered subpopulations of myeloid antigen presenting cells (APC that included a decrease in CD11c(+CD11b(+CD4(+ dendritic cells (DC and an elevation of CD11b(hiGr1(hi monocytes. CD11b(+ cells from these mice exhibited an anti-inflammatory type II phenotype characterized by reduced STAT1 phosphorylation, decreased production of IL-6, IL-12/23 and TNF, and increased IL-10. In adoptive transfer, donor type II monocytes from laquinimod-treated mice suppressed clinical and histologic disease in recipients with established EAE. As effects were observed in both APC and T cell compartments, we examined whether T cell immune modulation occurred as a direct effect of laquinimod on T cells, or as a consequence of altered APC function. Inhibition of Th1 and Th17 differentiation was observed only when type II monocytes or DC from laquinimod-treated mice were used as APC, regardless of whether myelin-specific T cells were obtained from laquinimod-treated or untreated mice. Thus, laquinimod modulates adaptive T cell immune responses via its effects on cells of the innate immune system, and may not influence T cells directly.

  4. Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder.

    Science.gov (United States)

    Ellis, Ronald J; Letendre, Scott; Vaida, Florin; Haubrich, Richard; Heaton, Robert K; Sacktor, Ned; Clifford, David B; Best, Brookie M; May, Susanne; Umlauf, Anya; Cherner, Mariana; Sanders, Chelsea; Ballard, Craig; Simpson, David M; Jay, Cheryl; McCutchan, J Allen

    2014-04-01

    Antiretroviral (ARV) medications differentially penetrate across the blood-brain barrier into central nervous system (CNS) tissues, potentially influencing their effectiveness in treating brain infection. This randomized controlled clinical trial (RCT) called for 120 participants at 5 study sites to be randomized 1:1 to CNS-targeted (CNS-T) or non-CNS-T ART. Entry clinical factors such as ARV experience were balanced across arms using an adaptive randomization approach. The primary outcome, change in neurocognitive performance, was measured as the difference in global deficit score (GDS) from baseline to week 16. The study was terminated early on the recommendation of its data safety monitoring board on the basis of slow accrual and a low likelihood of detecting a difference in the primary outcome. No safety concerns were identified. Of 326 participants screened, 59 met entry criteria and were randomized. The primary intent-to-treat analysis included 49 participants who completed week 16. These comprised 39 men and 10 women with a mean age of 44 years (SD, 10 years), and median nadir and current CD4(+) T-cell counts of 175 cells/µL and 242 cells/µL, respectively. The proportional improvement in GDS from baseline was nonsignificantly larger (7%; 95% confidence interval [CI], -31% to 62%) in the CNS-T arm than in the non-CNS-T arm, representing a treatment effect size of 0.09 (95% CI, -.48 to .65). Prespecified secondary analysis showed a trend interaction (P = .087), indicating that participants who had baseline plasma virologic suppression may have benefited from CNS-T. This study found no evidence of neurocognitive benefit for a CNS-T strategy in HIV-associated neurocognitive disorders. A benefit for a subgroup or small overall benefits could not be excluded. Clinical Trials Registration NCT00624195.

  5. Management of Pediatric Central Nervous System Demyelinating Disorders: Consensus of United States Neurologists

    Science.gov (United States)

    Waldman, Amy T.; Gorman, Mark P.; Rensel, Mary R.; Austin, Tracy E.; Hertz, Deborah P.; Kuntz, Nancy L.

    2014-01-01

    Demyelinating diseases are a group of autoimmune inflammatory disorders affecting the central nervous system in adults and children; however, the diagnosis, evaluation, and treatment of these disorders are primarily based on adult data. The purpose of this study was to assess the practice patterns of US physicians who specialize in treating acquired central nervous system demyelinating diseases in children and adolescents. The Delphi technique was used to identify areas of consensus in management and treatment. Forty-two experts in the field participated in the process. Intravenous methylprednisolone was the first-line treatment of choice for acute episodes of all forms of demyelinating disease; however, consensus was lacking regarding specific dose, treatment duration, and use of an oral taper. First-line disease-modifying therapies for pediatric multiple sclerosis were interferons and glatiramer acetate, chosen based on perceived efficacy and tolerability, respectively. Areas lacking agreement among the expert panel and requiring further research are identified. PMID:21518802

  6. Polyoma BK virus: an emerging opportunistic infectious agent of the human central nervous system

    Directory of Open Access Journals (Sweden)

    Rodrigo Lopes da Silva

    Full Text Available BK virus, a double-stranded DNA virus, is a member of the Polyomaviridae family which is known to infect humans. Clinical evidence of disease is mostly encountered in immunosuppressed individuals such as AIDS patients or those who undergo renal or bone marrow transplantation where complications associated with BKV infection manifest commonly as a polyomavirus nephropathy or hemorrhagic cystitis, respectively. Recent evidence suggests that in addition to the JC virus (the other member of the same family known to be strongly neurotropic and responsible for the progressive multifocal leukoencephalopathy, BK virus can infect and cause clinically relevant disease in the human central nervous system. In this mini-review, an analysis of the literature is made. A special focus is given to alert clinicians to the possibility of this association during the differential diagnosis of infections of the central nervous system in the immunocompromised host.

  7. Management of pediatric central nervous system demyelinating disorders: consensus of United States neurologists.

    Science.gov (United States)

    Waldman, Amy T; Gorman, Mark P; Rensel, Mary R; Austin, Tracy E; Hertz, Deborah P; Kuntz, Nancy L

    2011-06-01

    Demyelinating diseases are a group of autoimmune inflammatory disorders affecting the central nervous system in adults and children; however, the diagnosis, evaluation, and treatment of these disorders are primarily based on adult data. The purpose of this study was to assess the practice patterns of US physicians who specialize in treating acquired central nervous system demyelinating diseases in children and adolescents. The Delphi technique was used to identify areas of consensus in management and treatment. Forty-two experts in the field participated in the process. Intravenous methylprednisolone was the first-line treatment of choice for acute episodes of all forms of demyelinating disease; however, consensus was lacking regarding specific dose, treatment duration, and use of an oral taper. First-line disease-modifying therapies for pediatric multiple sclerosis were interferons and glatiramer acetate, chosen based on perceived efficacy and tolerability, respectively. Areas lacking agreement among the expert panel and requiring further research are identified.

  8. Connexin: a potential novel target for protecting the central nervous system?

    Directory of Open Access Journals (Sweden)

    Hong-yan Xie

    2015-01-01

    Full Text Available Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings regarding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer′s disease, Parkinson′s disease, X-linked Charcot-Marie-Tooth disease, Pelizaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system.

  9. The Role of Serotonin beyond the Central Nervous System during Embryogenesis

    OpenAIRE

    Lv, Junhua; Liu, Feng

    2017-01-01

    Serotonin, or 5-hydroxytryptamine (5-HT), is a well-known neurotransmitter that plays vital roles in neural activities and social behaviors. Clinically, deficiency of serotonin is linked with many psychiatric disorders. Interestingly, a large proportion of serotonin is also produced outside the central nervous system (CNS). There is increasing evidence demonstrating important roles of serotonin in the peripheral tissues. Here, we will describe the multiple biological functions of serotonin in...

  10. Protozoa traversal of the blood-brain barrier to invade the central nervous system.

    Science.gov (United States)

    Elsheikha, Hany M; Khan, Naveed Ahmed

    2010-07-01

    Neuropathogenic protozoa have evolved strategies to breach the blood-brain barrier and invade the central nervous system. These include transcellular, paracellular and the Trojan horse routes but the associated molecular mechanisms remain incompletely understood. Here, we summarize the current understanding of protozoa penetration across the blood-brain barrier, focusing on Plasmodium, Babesia, Trypanosoma, Toxoplasma, Acanthamoeba and Balamuthia. Advances in understanding the molecular pathways will offer opportunities for the rational development of novel therapeutic interventions.

  11. A Coumarin-Based Fluorescent Probe as a Central Nervous System Disease Biomarker

    OpenAIRE

    Yap, Ann-Chee; Mahamad, Ummi; Lim, Shen-Yang; Kim, Hae-Jo; Choo, Yeun-Mun

    2014-01-01

    Homocysteine and methylmalonic acid are important biomarkers for diseases associated with an impaired central nervous system (CNS). A new chemoassay utilizing coumarin-based fluorescent probe 1 to detect the levels of homocysteine is successfully implemented using Parkinson's disease (PD) patients' blood serum. In addition, a rapid identification of homocysteine and methylmalonic acid levels in blood serum of PD patients was also performed using the liquid chromatography-mass spectrometry (LC...

  12. Gene expression alterations in central nervous system neoplasms with EGFR amplification

    OpenAIRE

    Moedas, Marco Filipe Semião

    2009-01-01

    Tese de mestrado, Biologia (Biologia Molecular Humana), 2009, Universidade de Lisboa, Faculdade de Ciências Central Nervous System (CNS) Neoplasms are characterized by their cell of origin and their histopathological features. Tumors of glial cell origin (Gliomas) are the most frequent, with Glioblastoma Multiforme (GBM) rising as the most common. GBM tumors of grade IV accordingly with the World Health Organization (WHO), are generally lethal, with a median survival time of 4.9 months, an...

  13. Possible Link Between Chronic Periodontal Disease and Central Nervous System Pathologies

    OpenAIRE

    Ramírez Chan DDS, MSc, PhD, Karol

    2015-01-01

    Systemic infection and/or inflammation has been related with an increased risk of brain abscesses, cerebrovascular disease, cognitive impairment and other pathological states of the brain. Therefore, it is plausible, that a chronic infection and inflammation disease, such as periodontitis, may affect the central nervous system (CNS). Chronic periodontal disease is a condition that causes breakdown of the supporting tissues of the teeth, alveolar bone and soft tissues. Chronic periodontitis is...

  14. Central Nervous System Toxoplasmosis in Relapsed Hodgkin?s Lymphoma: A Case Report

    OpenAIRE

    Abolghasemi, Hassan; Shahverdi, Ehsan; Jafari, Ramezan; Dolatimehr, Fardin; Khandani, Azam

    2016-01-01

    Introduction Patients with immunosuppression have an increased incidence of toxoplasmosis characterized by involvement of the central nervous system. Only a few cases of toxoplasmosis associated with immunosuppressive agents have been reported. Such cases have been reported in immune suppressed patients outside the Iran, but a search of the literature has not revealed any previous reports from this country. Case Presentation We described a 17- year -old male, a known case of Hodgkin?s lymphom...

  15. Central Nervous System Control of Gastrointestinal Motility and Secretion and Modulation of Gastrointestinal Functions

    OpenAIRE

    Browning, Kirsteen N.; Travagli, R. Alberto

    2014-01-01

    Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathet...

  16. Central nervous system uptake of intranasal glutathione in Parkinson?s disease

    OpenAIRE

    Mischley, Laurie K; Conley, Kevin E.; Shankland, Eric G.; Kavanagh, Terrance J.; Rosenfeld, Michael E.; Duda, John E; White, Collin C.; Wilbur, Timothy K; De La Torre, Prysilla U; Padowski, Jeannie M.

    2016-01-01

    Glutathione (GSH) is depleted early in the course of Parkinson?s disease (PD), and deficiency has been shown to perpetuate oxidative stress, mitochondrial dysfunction, impaired autophagy, and cell death. GSH repletion has been proposed as a therapeutic intervention. The objective of this study was to evaluate whether intranasally administered reduced GSH, (in)GSH, is capable of augmenting central nervous system GSH concentrations, as determined by magnetic resonance spectroscopy in 15 partici...

  17. Blast phase transformation of chronic myelogenous leukemia presenting with central nervous system manifestation.

    Science.gov (United States)

    Chikkannaiah, Panduranga; Chandranaik, Deepak Devlanaik; Erappa, Nagaraj; Reddy, Bharat; Venkataramappa, Srinivasamurthy

    2016-01-01

    Chronic myelogenous leukemia (CML) is the most common of all leukemia constituting 15-20% of all leukemia. The clinical course of the diseases runs in two to three phases, initial chronic phase followed by accelerated phase or blast phase. Blast phase most commonly presents clinically as fever, splenomegaly, and bone pain. Here, we present a case of CML in blast phase presenting with central nervous system manifestation in a 55-year-old patient with a brief review of the literature.

  18. Clinical features and early treatment response of central nervous system involvement in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Levinsen, Mette; Taskinen, Mervi; Abrahamsson, Jonas

    2014-01-01

    BACKGROUND: Central nervous system (CNS) involvement in childhood acute lymphoblastic leukemia (ALL) remains a therapeutic challenge. PROCEDURE: To explore leukemia characteristics of patients with CNS involvement at ALL diagnosis, we analyzed clinical features and early treatment response of 744...... had higher leukocyte count compared with patients with CNS1 (P symptoms....... Symptoms or clinical findings were present among 27 of 54 patients with CNS3 versus only 7 of 39 patients with CNS2 and 15 of 75 patients with TLP+ (P 

  19. Vascular, glial, and lymphatic immune gateways of the central nervous system

    OpenAIRE

    Engelhardt, Britta; Carare, Roxana O; Bechmann, Ingo; Fluegel, Alexander; Jon D Laman; Weller, Roy O.

    2016-01-01

    Immune privilege of the central nervous system (CNS) has been ascribed to the presence of a blood-brain barrier and the lack of lymphatic vessels within the CNS parenchyma. However, immune reactions occur within the CNS and it is clear that the CNS has a unique relationship with the immune system. Recent developments in high-resolution imaging techniques have prompted a reassessment of the relationships between the CNS and the immune system. This review will take these developments into accou...

  20. INFLUENCE OF ETHANOL AND ITS FIRST METHABOLITE ACETALDEHYDE ON THE CENTRAL NERVOUS SYSTEM

    OpenAIRE

    Lucija Šarc; Metoda Lipnik Štangelj

    2009-01-01

    Background Ethanol, a legal drug, is a big social problem in our country. First of all because of addiction development and also due to consequences of the chronic alcoholism. Ethanol effects to almost all organ systems. Consequences of its both, acute and chronic effects, are visible especially in the central nervous system (CNS). Mechanisms of ethanol toxic effects have been already well researched. Lately, many studies attributed at least a part of ethanol effects to its fir...

  1. Fanconi anemia: correlating central nervous system malformations and genetic complementation groups

    Energy Technology Data Exchange (ETDEWEB)

    Johnson-Tesch, Benjamin A. [University of Minnesota, Department of Radiology, Minneapolis, MN (United States); Gawande, Rakhee S.; Nascene, David R. [University of Minnesota, Department of Radiology, Neuroradiology Section, Minneapolis, MN (United States); Zhang, Lei [University of Minnesota, Biostatistical Design and Analysis Centre, Minneapolis, MN (United States); MacMillan, Margaret L. [University of Minnesota, Blood and Marrow Transplant Program, Department of Pediatrics, Minneapolis, MN (United States)

    2017-06-15

    Congenital central nervous system abnormalities in children with Fanconi anemia are poorly characterized, especially with regard to specific genetic complementation groups. To characterize the impact of genetic complementation groups on central nervous system anatomy. Through chart review we identified 36 patients with Fanconi anemia with available brain MRIs at the University of Minnesota (average age, 11.3 years; range, 1-43 years; M:F=19:17), which we reviewed and compared to 19 age- and sex-matched controls (average age, 7.9 years; range, 2-18 years; M:F=9:10). Genotypic information was available for 27 patients (15 FA-A, 2 FA-C, 3 FA-G, and 7 FA-D1 [biallelic mutations in BRCA2 gene]). Of the 36 patients, 61% had at least one congenital central nervous system or skull base abnormality. These included hypoplastic clivus (n=12), hypoplastic adenohypophysis (n=11), platybasia (n=8), pontocerebellar hypoplasia (n=7), isolated pontine hypoplasia (n=4), isolated vermis hypoplasia (n=3), and ectopic neurohypophysis (n=6). Average pituitary volume was significantly less in patients with Fanconi anemia (P<0.0001) than in controls. Basal angle was significantly greater in Fanconi anemia patients (P=0.006), but the basal angle of those with FA-D1 was not significantly different from controls (P=0.239). Clivus length was less in the Fanconi anemia group (P=0.002), but significance was only observed in the FA-D1 subgroup (P<0.0001). Of the seven patients meeting criteria for pontocerebellar hypoplasia, six belonged to the FA-D1 group. Patients with Fanconi anemia have higher incidences of ectopic neurohypophysis, adenohypophysis hypoplasia, platybasia and other midline central nervous system skull base posterior fossa abnormalities than age- and sex-matched controls. Patients with posterior fossa abnormalities, including pontocerebellar hypoplasia, are more likely to have biallelic BRCA2 mutations. (orig.)

  2. Fetal Central Nervous System Anomalies Detected by Magnetic Resonance Imaging: A Two-Year Experience

    OpenAIRE

    Sepideh Sefidbakht; Sakineh Dehghani; Maryam Safari; Homeira Vafaei; Maryam Kasraeian

    2016-01-01

    Background Magnetic resonance imaging (MRI) is gradually becoming more common for thorough visualization of the fetus than ultrasound (US), especially for neurological anomalies, which are the most common indications for fetal MRI and are a matter of concern for both families and society. Objectives We investigated fetal MRIs carried out in our center for frequency of central nervous system anomalies. This is the first such report...

  3. Tachykinin-1 in the Central Nervous System Regulates Adiposity in Rodents

    OpenAIRE

    Trivedi, Chitrang; Shan, Xiaoye; Tung, Yi-Chun Loraine; Kabra, Dhiraj; Holland, Jenna; Amburgy, Sarah; Heppner, Kristy; Kirchner, Henriette; Giles S. H. Yeo; Perez-Tilve, Diego

    2015-01-01

    Ghrelin is a circulating hormone that targets the central nervous system to regulate feeding and adiposity. The best-characterized neural system that mediates the effects of ghrelin on energy balance involves the activation of neuropeptide Y/agouti-related peptide neurons, expressed exclusively in the arcuate nucleus of the hypothalamus. However, ghrelin receptors are expressed in other neuronal populations involved in the control of energy balance. We combined laser capture microdissection o...

  4. Study of Incidence of Pediatric Central Nervous System Tumors as Per Age Group.

    Directory of Open Access Journals (Sweden)

    Nidhi S. Soni

    2015-12-01

    Full Text Available Introduction: CNS tumors are the most common solid tumors in children. Tumors of the central nervous system can be divided into primary intracranial tumours that arise from parenchyma of brain, pituitary gland, covering of brain & secondary intracranial tumours which represent local extension from regional tumours or metastasis from primary malignancy in the body. The most common location of the brain tumours in childhood is below the tentorium within the posterior cranial fossa. Materials and methods: Surgical specimen of central nervous system of children (0 to 14 year of age group received from August 2013 to November 2015, in the Tertiary care center, Ahmedabad were studied with keeping the following features in mind: Age, Sex and site of tumours. Results: Fifty eight cases of central Nervous system Tumours between the age of 0 to 14 years over a period of 2.5 years at civil hospital, Ahmedabad were studied. Incidence were more common in male (60.34% than female(39.66% 89.65% were intracranial to 10.35% were intraspinal tumours.Commonly encountered tumour in descending order of frequency were Medulloblastoma (27.58%, astrocytoma (24.13%, Ependymoma (20.68%. All medulloblastomas arose infratentorial, schwannomas arose intraspinal and meningiomas in cranial cavity are supratentorial. Conclusion: CNS Tumors constitute a large proportion of cancers in childhood. They differ from adult CNS tumors both histologically and location wise. Site of the tumor is significant as it can lead to fatal consequences

  5. [Clinical Manifestations, Imaging Features and Pathological Diagnosis of Primary Central Nervous System Lymphoma].

    Science.gov (United States)

    Wang, Hai-Li; Zhang, Zhong-Mian

    2018-02-01

    To analyze the clinical manifestations, imaging features and pathological diagnosis of patients with primary central nervous system lymphoma. The clinical data of 50 patients with primary central nervous system lymphoma admitted in our hospital from February 2016 to February 2008 were retrospectively analyzed. All the patients were examined by routine pathology and immunohistochemical staining. Among them 15 cases were examined by MVD and VEGF, and the other 15 glioma patients were taken as control group. In 50 patients, the disease was chronic, and the main clinical symptoms were numbness, cognitive disorder and disorder of consciousnessetc. Brain CT image of 33 cases (66%) mainly showed slightly higher density; 46 cases (92%) had head enhanced MRI lesions; 38 cases (76%) showed intracranial multiple lesions, 36 cases (72%) showed invasion of supratentorial, and 11 cases showed midline invasion (22%). Pathological diagnosis confirmed 47 cases (94%) with diffuse large B cell lymphoma, the proliferation index of the Ki-67(90%) in 41 case (82%) was higher. Primary central nervous system lymphoma is manifested with diffuse large B cell lymphoma as its main type, or with complicated clinical manifestations, lacks of features and certain imaging characteristics, but a few patients are easily pathologically misdiagnosed, therefore the biopsy is necessary for diagnosis of these patients.

  6. KCC3 axonopathy: neuropathological features in the central and peripheral nervous system.

    Science.gov (United States)

    Auer, Roland N; Laganière, Janet L; Robitaille, Yves O; Richardson, John; Dion, Patrick A; Rouleau, Guy A; Shekarabi, Masoud

    2016-09-01

    Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC) is an autosomal recessive disease of the central and peripheral nervous system that presents as early-onset polyneuropathy. Patients are hypotonic and areflexic from birth, with abnormal facial features and atrophic muscles. Progressive peripheral neuropathy eventually confines them to a wheelchair in the second decade of life, and death occurs by the fourth decade. We here define the neuropathologic features of the disease in autopsy tissues from eight cases. Both developmental and neurodegenerative features were found. Hypoplasia or absence of the major telencephalic commissures and a hypoplasia of corticospinal tracts to half the normal size, were the major neurodevelopmental defects we observed. Despite being a neurodegenerative disease, preservation of brain weight and a conspicuous absence of neuronal or glial cell death were signal features of this disease. Small tumor-like overgrowths of axons, termed axonomas, were found in the central and peripheral nervous system, indicating attempted axonal regeneration. We conclude that the neurodegenerative deficits in HMSN/ACC are primarily caused by an axonopathy superimposed upon abnormal development, affecting peripheral but also central nervous system axons, all ultimately because of a genetic defect in the axonal cotransporter KCC3.

  7. A Case Of Primary Central Nervous System Vasculitis Who Presented With Status Epilepticus

    Directory of Open Access Journals (Sweden)

    Sırma Geyik

    2014-12-01

    Full Text Available Primary central nervous system vasculitis (PCNV is limited with central nervous system and rare vasculitis that mostly seen in middle-aged men. PCNV vasculitis is usually presented that headache, dementia, stroke and multifocal common neurological symptoms. PCNV especially involves small medium-sized leptomeningeal and cortical arteries. 43 years old male patient who have been progressive forgetfulness and headache for 3 years. He applied with recurrent that before starting right focal and than sprawling whole body which generalized tonic-clonic seizures to us. During management that he was transfered to the intensive care unit due to status epilepticus (SE. Later than we found right hemiparesis, motor aphasia and right babinski positivity in neurologic examination. Diffusion restriction was revealed in left MCA territory in diffusion magnetic resonance imaging(MRI. EEG showed two types abnormality that a slow background ritm and epileptiform activity. Biochemistry of blood, complete blood count, blood sedimentation rate, CRP and markers of vasculitis were found in the normal range. Cerebral anjiography revealed that irregularities in the distal vascular areas and fusiform aneurysm at the top of basilar artery. He was consulted with rheumatology and diagnosed central nervous system vasculitis with the existing findings. Biopsy couldn't be taken from the brain to verify the diagnosis. Finally, we applied treatment that pulse steroid and cyclophosphamide to patient. This case has been presented due to emphasize that PCNV rarely may play a role in the etiology of recurrent stroke and status epilepticus.

  8. [Enteroviral central nervous system infections in children treated at a hospital in Lima, Peru].

    Science.gov (United States)

    Espinoza, Iván O; Ochoa, Theresa J; Mosquito, Susan; Barletta, Francesca; Hernández, Roger; Medina, María del Pilar; Stiglich, María Luisa; Ugarte, Claudia; Guillén, Daniel

    2011-12-01

    To determine the frequency and clinical features of central nervous system infections caused by enterovirus in children treated at the Hospital Nacional Cayetano Heredia in Lima, Peru. A prospective, descriptive study was performed from April 2008 to March 2010. Patients aged 1 month - 14 years with clinical diagnosis of encephalitis or aseptic meningitis were included. We investigated the presence of enterovirus, herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2) and varicella-zoster virus (VZV) by polymerase chain reaction (PCR). 97 patients were included, out of which 69 % had acute encephalitis and 31 % acute meningitis. Enteroviruses were identified in 52,6% of all acute non-bacterial central nervous system infections; corresponding to 83,3 % of meningitis and 38,8 % of encephalitis. There were no cases of infection due to HSV-1, HSV-2 or VZV. Enterovirus infections reached 82,9 % in the warm months (November-January) and 28,6 % in the colder months (May-July). Enteroviruses are the principal etiologic agents in acute aseptic meningitis and encephalitis in pediatric patients in Lima, Peru. Enteroviruses have a seasonal epidemiological pattern with a clear increase in the number of cases during the summer months. It is useful to have this rapid diagnostic method available as an aid in the management of acute central nervous system infections.

  9. Expression of receptor tyrosine kinase RYK in developing rat central nervous system.

    Science.gov (United States)

    Kamitori, K; Machide, M; Osumi, N; Kohsaka, S

    1999-04-12

    Receptor tyrosine kinase RYK is a mammalian homologue of Drosophila Lio, which is involved in learning and memory and in axon guidance. We cloned a rat ryk gene and characterized its expression pattern in the central nervous system. Northern blot analysis of the whole brain revealed that the RYK mRNA was abundant during the period from 13 to 18 embryonic days (E13-18) and it decreased by E20. In the postnatal brain, the RYK signal was higher in postnatal one week (P1W) cerebrum and in P2W cerebellum than in later stages. In situ hybridization revealed that RYK was expressed throughout the central nervous system, mainly in the ventricular zone on E11 and E13. On E18 and E20, the remarkable level of RYK mRNA was detected in the ventricular zone as well as in the cortical plate of the forebrain. These two regions overlapped the immunoreactive areas of nestin and MAP2, a neural stem cell marker and a mature neural marker, respectively. Moreover, the double-labeling analysis showed that the same cells expressed both RYK and nestin in the ventricular zone. In the postnatal brain, RYK was predominantly expressed in neurons of various regions. These observations suggest that RYK plays a contributory role as a multifunctional molecule in the differentiation and maturation of neuronal cells in the central nervous system. Copyright 1999 Elsevier Science B.V.

  10. Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Meredith Harrison-Brown

    2016-12-01

    Full Text Available Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as “assistants” in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several ‘checkpoints’ from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets.

  11. Tachykinin-1 in the central nervous system regulates adiposity in rodents.

    Science.gov (United States)

    Trivedi, Chitrang; Shan, Xiaoye; Tung, Yi-Chun Loraine; Kabra, Dhiraj; Holland, Jenna; Amburgy, Sarah; Heppner, Kristy; Kirchner, Henriette; Yeo, Giles S H; Perez-Tilve, Diego

    2015-05-01

    Ghrelin is a circulating hormone that targets the central nervous system to regulate feeding and adiposity. The best-characterized neural system that mediates the effects of ghrelin on energy balance involves the activation of neuropeptide Y/agouti-related peptide neurons, expressed exclusively in the arcuate nucleus of the hypothalamus. However, ghrelin receptors are expressed in other neuronal populations involved in the control of energy balance. We combined laser capture microdissection of several nuclei of the central nervous system expressing the ghrelin receptor (GH secretagoge receptor) with microarray gene expression analysis to identify additional neuronal systems involved in the control of central nervous system-ghrelin action. We identified tachykinin-1 (Tac1) as a gene negatively regulated by ghrelin in the hypothalamus. Furthermore, we identified neuropeptide k as the TAC1-derived peptide with more prominent activity, inducing negative energy balance when delivered directly into the brain. Conversely, loss of Tac1 expression enhances the effectiveness of ghrelin promoting fat mass gain both in male and in female mice and increases the susceptibility to diet-induced obesity in ovariectomized mice. Taken together, our data demonstrate a role TAC1 in the control energy balance by regulating the levels of adiposity in response to ghrelin administration and to changes in the status of the gonadal function.

  12. Intraventricular ciprofloxacin usage in treatment of multidrug-resistant central nervous system infections: report of four cases

    Directory of Open Access Journals (Sweden)

    Ayse Karaaslan

    2014-12-01

    Full Text Available In recent years, multidrug-resistant microorganisms appear as important nosocomial pathogens which treatment is quite difficult. As sufficient drug levels could not be achieved in cerebrospinal fluid during intravenous antibiotic therapy for central nervous system infections and due to multidrug-resistance treatment alternatives are limited. In this study, four cases of central nervous system infections due to multidrug-resistant microorganisms who were successfully treated with removal of the devices and intraventricular ciprofloxacin are presented. In conclusion, intraventricular ciprofloxacin can be used for treatment of central nervous system infections if the causative microorganism is sensitive to the drug and no other alternative therapy is available.

  13. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions.

    Science.gov (United States)

    Browning, Kirsteen N; Travagli, R Alberto

    2014-10-01

    Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.

  14. Combining etoposide and dexrazoxane synergizes with radiotherapy and improves survival in mice with central nervous system tumors

    DEFF Research Database (Denmark)

    Hofland, Kenneth Francis; Thougaard, Annemette Vinding; Dejligbjerg, Marielle

    2005-01-01

    PURPOSE: The treatment of patients with brain metastases is presently ineffective, but cerebral chemoradiotherapy using radiosensitizing agents seems promising. Etoposide targets topoisomerase II, resulting in lethal DNA breaks; such lesions may increase the effect of irradiation, which also depe...... nervous system tumors. This regimen may thus improve radiation therapy of central nervous system tumors....

  15. Development of the central nervous system in guinea pig (Cavia porcellus, Rodentia, Caviidae

    Directory of Open Access Journals (Sweden)

    Fernanda Menezes de Oliveira e Silva

    Full Text Available Abstract: This study describes the development of the central nervous system in guinea pigs from 12th day post conception (dpc until birth. Totally, 41 embryos and fetuses were analyzed macroscopically and by means of light and electron microscopy. The neural tube closure was observed at day 14 and the development of the spinal cord and differentiation of the primitive central nervous system vesicles was on 20th dpc. Histologically, undifferentiated brain tissue was observed as a mass of mesenchymal tissue between 18th and 20th dpc, and at 25th dpc the tissue within the medullary canal had higher density. On day 30 the brain tissue was differentiated on day 30 and the spinal cord filling throughout the spinal canal, period from which it was possible to observe cerebral and cerebellar stratums. At day 45 intumescences were visualized and cerebral hemispheres were divided, with a clear division between white and gray matter in brain and cerebellum. Median sulcus of the dorsal spinal cord and the cauda equina were only evident on day 50. There were no significant structural differences in fetuses of 50 and 60 dpc, and animals at term were all lissencephalic. In conclusion, morphological studies of the nervous system in guinea pig can provide important information for clinical studies in humans, due to its high degree of neurological maturity in relation to its short gestation period, what can provide a good tool for neurological studies.

  16. Leishmania amastigotes in the central nervous system of a naturally infected dog.

    Science.gov (United States)

    Márquez, Merce; Pedregosa, José Raúl; López, Jesús; Marco-Salazar, Paola; Fondevila, Dolors; Pumarola, Martí

    2013-01-01

    A 4-year-old male Labrador Retriever dog was presented with a 10-day history of tetraplegia, depression, and absent postural reflexes. The cerebrospinal fluid was positive for Leishmania spp. DNA. At necropsy, a 2-cm long mass was observed adhered to C(7) and C(8) left spinal nerves. Microscopically, nerve fiber destruction together with mixed inflammatory infiltration was observed in the spinal nerves. Cervical spinal cord sections showed multifocal, diffuse granulomatous inflammation in the white matter. In the brain, perivascular infiltrates were observed in some areas together with subtle pallor of the parenchyma. Immunohistochemistry for Leishmania infantum confirmed the presence of amastigotes in the spinal nerves, spinal cord, brain parenchyma, and choroid plexuses. The current study describes the presence of Leishmania amastigotes in nervous tissue inciting radiculoneuritis, myelitis, and mild meningoencephalitis, suggesting a likely route by which L. infantum amastigotes reach and affect the central nervous system parenchyma.

  17. Application of the 2012 revised diagnostic definitions for paediatric multiple sclerosis and immune-mediated central nervous system demyelination disorders

    NARCIS (Netherlands)

    van Pelt, E. Danielle; Neuteboom, Rinze F.; Ketelslegers, Immy A.; Boon, Maartje; Catsman-Berrevoets, Coriene E.; Hintzen, Rogier Q.

    Background Recently, the International Paediatric Multiple Sclerosis Study Group (IPMSSG) definitions for the diagnosis of immune-mediated acquired demyelinating syndromes (ADS) of the central nervous system, including paediatric multiple sclerosis (MS), have been revised. Objective To evaluate the

  18. The security circuit: a proposed construct for the central nervous system.

    Science.gov (United States)

    Halpern, G J; O'Connell, B E

    2000-05-01

    The theory of the Security Circuit offers a new conceptual framework for the numerous brain functions pertaining to survival. Many such activities are related to the coordination of the conventional physiological systems in the maintenance of homeostasis and the defense of the internal environment. This work, however, focuses on that aspect of brain function that makes possible man's interaction with external environment, thereby facilitating individual and group adaptation and survival. In our schema we greatly enlarge the conceptualization of the autonomic nervous system. We postulate the existence of a central mechanism pertaining to the security and survival function. In its action the complex physiological ANS substrate designated the Security Circuit, is likened to a whirlpool bath, in which balance is maintained with respect to electrically-charged particles rather than water. The use of the Jacuzzi (or whirlpool bath) format makes it possible to tie together the components of the triune brain (MacLean), which consists of R-complex, limbic system, and neocortex. The forebrain, in part, is viewed as the depository of biological symbolism for a huge number of elements, which vary with the individual. Among these are security and support figures, and others that make up meaningful relationships. These are seen as represented on posts, consisting of either individual, or else groupings, of neurons which are linked to the limbic system to trigger oft predictable patterns of behavior and/or emotional expression. The limbic system serves as the energizer in arousal-defense. It also serves to trigger instinctive and other psychomotor patterns in the pursuit of goals which have survival value, while simultaneously producing the chemistry behind emotions useful to man. Some of these psychomotor patterns (i.e., behavior) facilitate the provision of nutrients and warmth for the individual, and so ensure internal homeostasis, while others effectuate group action towards

  19. Incidence and risk factors for central nervous system relapse in children and adolescents with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Camila Silva Peres Cancela

    2012-01-01

    Full Text Available BACKGROUND: Despite all the advances in the treatment of childhood acute lymphoblastic leukemia, central nervous system relapse remains an important obstacle to curing these patients. This study analyzed the incidence of central nervous system relapse and the risk factors for its occurrence in children and adolescents with acute lymphoblastic leukemia. METHODS: This study has a retrospective cohort design. The studied population comprised 199 children and adolescents with a diagnosis of acute lymphoblastic leukemia followed up at Hospital das Clinicas, Universidade Federal de Minas Gerais (HC-UFMG between March 2001 and August 2009 and submitted to the Grupo Brasileiro de Tratamento de Leucemia da Infância - acute lymphoblastic leukemia (GBTLI-LLA-99 treatment protocol. RESULTS: The estimated probabilities of overall survival and event free survival at 5 years were 69.5% ( 3.6% and 58.8% ( 4.0%, respectively. The cumulative incidence of central nervous system (isolated or combined relapse was 11.0% at 8 years. The estimated rate of isolated central nervous system relapse at 8 years was 6.8%. In patients with a blood leukocyte count at diagnosis > 50 x 10(9/L, the estimated rate of isolated or combined central nervous system relapse was higher than in the group with a count 50 x 10(9/L at diagnosis seems to be a significant prognostic factor for a higher incidence of central nervous system relapse in childhood acute lymphoblastic leukemia.

  20. Incidence and risk factors for central nervous system relapse in children and adolescents with acute lymphoblastic leukemia

    Science.gov (United States)

    Cancela, Camila Silva Peres; Murao, Mitiko; Viana, Marcos Borato; de Oliveira, Benigna Maria

    2012-01-01

    Background Despite all the advances in the treatment of childhood acute lymphoblastic leukemia, central nervous system relapse remains an important obstacle to curing these patients. This study analyzed the incidence of central nervous system relapse and the risk factors for its occurrence in children and adolescents with acute lymphoblastic leukemia. Methods This study has a retrospective cohort design. The studied population comprised 199 children and adolescents with a diagnosis of acute lymphoblastic leukemia followed up at Hospital das Clinicas, Universidade Federal de Minas Gerais (HC-UFMG) between March 2001 and August 2009 and submitted to the Grupo Brasileiro de Tratamento de Leucemia da Infância - acute lymphoblastic leukemia (GBTLI-LLA-99) treatment protocol. Results The estimated probabilities of overall survival and event free survival at 5 years were 69.5% (± 3.6%) and 58.8% (± 4.0%), respectively. The cumulative incidence of central nervous system (isolated or combined) relapse was 11.0% at 8 years. The estimated rate of isolated central nervous system relapse at 8 years was 6.8%. In patients with a blood leukocyte count at diagnosis ≥ 50 x 109/L, the estimated rate of isolated or combined central nervous system relapse was higher than in the group with a count 50 x 109/L at diagnosis seems to be a significant prognostic factor for a higher incidence of central nervous system relapse in childhood acute lymphoblastic leukemia. PMID:23323068

  1. Neuro-Coagulopathy: Blood Coagulation Factors in Central Nervous System Diseases.

    Science.gov (United States)

    De Luca, Ciro; Virtuoso, Assunta; Maggio, Nicola; Papa, Michele

    2017-10-12

    Blood coagulation factors and other proteins, with modulatory effects or modulated by the coagulation cascade have been reported to affect the pathophysiology of the central nervous system (CNS). The protease-activated receptors (PARs) pathway can be considered the central hub of this regulatory network, mainly through thrombin or activated protein C (aPC). These proteins, in fact, showed peculiar properties, being able to interfere with synaptic homeostasis other than coagulation itself. These specific functions modulate neuronal networks, acting both on resident (neurons, astrocytes, and microglia) as well as circulating immune system cells and the extracellular matrix. The pleiotropy of these effects is produced through different receptors, expressed in various cell types, in a dose- and time-dependent pattern. We reviewed how these pathways may be involved in neurodegenerative diseases (amyotrophic lateral sclerosis, Alzheimer's and Parkinson's diseases), multiple sclerosis, ischemic stroke and post-ischemic epilepsy, CNS cancer, addiction, and mental health. These data open up a new path for the potential therapeutic use of the agonist/antagonist of these proteins in the management of several central nervous system diseases.

  2. [Genetic Syndromes Predisposing to Tumors of Central Nervous System in Children].

    Science.gov (United States)

    Krutílková, V

    2016-01-01

    The overall incidence of childhood malignancies is rather low. Central nervous system tumours constitute the largest group of solid tumours among children. In contrast to adult population, a genetic predisposition is frequently associated with these malignancies (it is assumed to occur in approximately 15-25% of all childhood tumours) and there is also a number of monogenic hereditary syndromes known to be associated with brain tumours. The purpose of this article is to present an overview of genetic syndromes reported to increase the risk of childhood central nervous system tumours. The outlined tumour predispositions are divided into two groups. Firstly, syndromes with multisystem manifestation, where neoplasia is one of the components, whereas the distinguishing symptom is usually non-oncological. Secondly, there are syndromes that are diagnosed by the associated neoplasm withou any other noticeable phenotypic manifestation. A brief description of particular diseases is provided with a focus on associated central nervous system tumours. Detection of a tumour predisposition in a child is important not only for the child itself, but also for its family relatives. Often, a modification of treatment is necessary in regards to a genetic diagnosis. With the evolution of personalised medicine the possibility of "tailored" therapy will probably be a demanded solution. Last but not least, it is crucial to provide the child with a specialised preventive care owing to the risk of another potential malignancy. The diagnosis of hereditary cancer predisposition has also a big impact on the relatives of the patient. It enables to specify their oncological risk and arrange a specialised preventive care program, if needed. For high-risk parents planning another pregnancy there is a possibility to prevent the transfer of a certain disposition with the aid of preimplantation and prenatal genetic testing.

  3. Febrile ulceronecrotic Mucha-Habermann disease with central nervous system vasculitis.

    Science.gov (United States)

    Rosman, Ilana S; Liang, Ling-Chih; Patil, Sushama; Bayliss, Susan J; White, Andrew J

    2013-01-01

    Febrile ulceronecrotic Mucha-Habermann disease (FUMHD) is a severe variant of pityriasis lichenoides et varioliformis acuta (PLEVA). We report a case of FUMHD in an 11-year-old boy who subsequently developed neurologic symptoms and was found to have necrotizing vasculitis on brain biopsy. Over 5 years of follow-up, he had one biopsy-proven recurrence of his skin lesions and continued rehabilitation and treatment for residual neurologic complications. This case provides histological evidence of central nervous system vasculitis associated with FUMHD. Our patient's disease was eventually controlled with cyclophosphamide. © 2012 Wiley Periodicals, Inc.

  4. Fungal Infections of the Central Nervous System in Small Animals: Clinical Features, Diagnosis, and Management.

    Science.gov (United States)

    Bentley, R Timothy; Taylor, Amanda R; Thomovsky, Stephanie A

    2018-01-01

    Small animal mycoses vary geographically. Different clinical presentations are seen in animals with infection of the central nervous system (CNS), including multifocal meningoencephalomyelitis, intracranial lesions that accompany sinonasal lesions, rapidly progressive ventriculitis, or solitary granuloma of the brain or spinal cord. Systemic, nasal, or extraneural clinical signs are common but, especially in granuloma cases, do not always occur. Surgery may have a diagnostic and therapeutic role in CNS granuloma. There have been recent advancements in serology. Fluconazole, voriconazole, and posaconazole cross the blood-brain barrier, but voriconazole is neurotoxic to cats. Liposomal and lipid-encapsulated formulations of amphotericin B are preferred. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Potential Central Nervous System Involvement in Sudden Unexpected Infant Deaths and the Sudden Infant Death Syndrome.

    Science.gov (United States)

    Thach, Bradley T

    2015-07-01

    Sudden unexpected infant death (SUID) in infancy which includes Sudden Infant Death Syndrome (SIDS) is the commonest diagnosed cause of death in the United States for infants 1 month to 1 year of age. Central nervous system mechanisms likely contribute to many of these deaths. We discuss some of these including seizure disorders, prolonged breath holding, arousal from sleep and its habituation, laryngeal reflex apnea potentiated by upper airway infection, and failure of brainstem-mediated autoresuscitation. In the conclusions section, we speculate how lives saved through back sleeping might result in later developmental problems in certain infants who otherwise might have died while sleeping prone. © 2015 American Physiological Society.

  6. Granulocytic invasion of the central nervous system after hematopoietic stem cell transplantation for systemic lupus erythematosus.

    Science.gov (United States)

    Muraro, Paolo A; Nikolov, Nikolay P; Butman, John A; Abati, Andrea; Gea-Banacloche, Juan; Gress, Ronald; Lipsky, Peter; Illei, Gabor; Pavletic, Steven

    2006-06-01

    We report on the likely mechanism of an exacerbation of neurological symptoms developed during immune reconstitution after autologous non-myeloablative hematopoietic stem cell transplantation in a 33-year-old man with systemic lupus erythematosus- associated recurrent transverse myelitis. Cerebrospinal fluid examination revealed prominent neutrophilic pleocytosis and no evidence of infection or of reactivation of lupus. Following a course of corticosteroid treatment the exacerbation resolved completely and the patient's neurological function continued to improve, resulting in net gain above pre-treatment for over 1 year follow-up without maintenance immunosuppression. Granulocytic invasion of the central nervous system represents a novel and possibly preventable cause of neurological complications during haematologic reconstitution.

  7. HEARING IMPAIRMENT IN CHILDREN WITH PERINATAL INJURIES OF CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    E. V. Shishkinskaya

    2012-01-01

    Full Text Available The results of two-stage audiologic examination (otoacoustic emissions method and assessment of auditory evoked potentials of 74 term and premature newborns are shown in this article. All patients received treatment for perinatal injuries of central nervous system (cerebral ischemia of various stages of severity. The assessment of brainstem auditory evoked potentials was established to be the most informative diagnostic method both in term and premature infants, moreover the majority of newborns with perinatal brain injuries had increased latencies of brainstem auditory evoked potentials parameters and signs of acoustic analyzer dysfunction, which character depended on the severity of cerebral ischemia.

  8. Regional Differences in Viral Growth and Central Nervous System Injury Correlate with Apoptosis

    OpenAIRE

    Richardson-Burns, Sarah M.; Tyler, Kenneth L.

    2004-01-01

    Infection of neonatal mice with reovirus T3 Dearing (T3D), the prototypic neurotropic reovirus, causes fatal encephalitis associated with neuronal injury and virus-induced apoptosis throughout the brain. T3D variant K (VarK) is an antigenic variant that has a nearly 1 million-fold reduction in neurovirulence following intracerebral (i.c.) inoculation compared to T3D and a restricted pattern of central nervous system injury with damage limited to the hippocampus, sparing other brain regions. W...

  9. Minimal neuropsychological sequelae following prophylactic treatment of the central nervous system in adult leukaemia and lymphoma.

    OpenAIRE

    Tucker, J.; Prior, P. F.; Green, C R; Ede, G. M.; Stevenson, J. F.; Gawler, J; Jamal, G A; Charlesworth, M.; Thakkar, C. M.; Patel, P.

    1989-01-01

    The potential long-term toxicity of central nervous system prophylaxis (CNS-P) in adult acute lymphoblastic leukaemia (ALL, n = 17) and non-Hodgkin's lymphoma (NHL, n = 7) was investigated in a multidisciplinary study. At least 4 years had elapsed from CNS-P (mean 11.5 years) for all patients. Neurological history and physical examination were unremarkable; minor signs were commoner in older patients (P less than 0.02). Psychometry yielded normal results, but individual verbal IQ generally ex...

  10. Research progress of HIV-associated central nervous system infections and neurosyphilis in China

    Directory of Open Access Journals (Sweden)

    Ying PENG

    2016-08-01

    Full Text Available Currently, acquired immunodeficiency syndrome (AIDS and syphilis are widely epidemic all over the world, which has seriously jeopardized public health security. In China, studies on human immunodeficiency virus (HIV-associated central nervous system (CNS damage and neurosyphilis are increasing. This paper reviews related literatures on HIV-associated CNS infection and neurosyphilis, and summarizes the epidemiological characteristics, pathogenesis, clinical features, diagnosis and treatment strategies, so as to provide new clues for further exploration into clinical diagnosis and treatment. DOI: 10.3969/j.issn.1672-6731.2016.07.003

  11. A coumarin-based fluorescent probe as a central nervous system disease biomarker.

    Science.gov (United States)

    Yap, Ann-Chee; Mahamad, Ummi Affah; Lim, Shen-Yang; Kim, Hae-Jo; Choo, Yeun-Mun

    2014-11-10

    Homocysteine and methylmalonic acid are important biomarkers for diseases associated with an impaired central nervous system (CNS). A new chemoassay utilizing coumarin-based fluorescent probe 1 to detect the levels of homocysteine is successfully implemented using Parkinson's disease (PD) patients' blood serum. In addition, a rapid identification of homocysteine and methylmalonic acid levels in blood serum of PD patients was also performed using the liquid chromatography-mass spectrometry (LC-MS). The results obtained from both analyses were in agreement. The new chemoassay utilizing coumarin-based fluorescent probe 1 offers a cost- and time-effective method to identify the biomarkers in CNS patients.

  12. A Coumarin-Based Fluorescent Probe as a Central Nervous System Disease Biomarker

    Directory of Open Access Journals (Sweden)

    Ann-Chee Yap

    2014-11-01

    Full Text Available Homocysteine and methylmalonic acid are important biomarkers for diseases associated with an impaired central nervous system (CNS. A new chemoassay utilizing coumarin-based fluorescent probe 1 to detect the levels of homocysteine is successfully implemented using Parkinson’s disease (PD patients’ blood serum. In addition, a rapid identification of homocysteine and methylmalonic acid levels in blood serum of PD patients was also performed using the liquid chromatography-mass spectrometry (LC-MS. The results obtained from both analyses were in agreement. The new chemoassay utilizing coumarin-based fluorescent probe 1 offers a cost- and time-effective method to identify the biomarkers in CNS patients.

  13. Klotho Protein: Its Role in Aging and Central Nervous System Pathology.

    Science.gov (United States)

    Boksha, I S; Prokhorova, T A; Savushkina, O K; Tereshkina, E B

    2017-09-01

    This review is devoted to Klotho protein and recent evidences for its functions in the brain. Information on transcriptional regulation of the klotho gene and posttranslational modifications of the protein resulting in multiple forms of Klotho is reviewed. Evidence is summarized that Klotho regulates the activity of protein factors, enzymes, and receptors, including data suggesting the importance of its glycosidase activity. Effects of Klotho on components of the glutamatergic neurotransmitter system, signal cascades involving protein kinases and protein phosphorylation, as well as oligodendrocyte differentiation and myelination are discussed. A possible contribution is proposed for Klotho levels in the development of central nervous system pathologies including mental disorders.

  14. Creatine kinase in the serum of patients with acute infections of the central nervous system

    DEFF Research Database (Denmark)

    Peterslund, N A; Heinsvig, E M; Christensen, K D

    1985-01-01

    Serum creatine kinase was assessed in 94 consecutive patients without convulsions admitted to hospital due to suspicion of infection of the central nervous system. No reliable discrimination between patients with aseptic and those with bacterial meningitis was obtained. Patients with bacterial...... of bacterial meningitis. The highest serum CK value found in patients with encephalitis was 725 U/l. Reference values for control patients with meningism were 16-269 U/1. In a subset of 9 patients creatine kinase isoenzyme analysis was performed. In all cases only muscle type (MM) isoenzyme was found...

  15. Central Nervous System Strongyloidiasis and Cryptococcosis in an HIV-Infected Patient Starting Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Mónica Rodríguez

    2012-01-01

    Full Text Available We report a case of Strongyloides stercoralis hyperinfection syndrome with central nervous system involvement, in a patient with late human immunodeficiency virus (HIV infection starting antiretroviral therapy, in whom Strongyloides stercoralis larvae and Cryptococcus neoformans were isolated antemortem from cerebrospinal fluid. Our patient was not from an endemic region for the parasite, so strongyloidiasis was not originally suspected. For this reason, we conclude that Strongyloides stercoralis infection should be suspected in HIV-infected patients starting antiretroviral therapy in order to avoid potential fatal outcomes.

  16. [Central nervous system infections in HIV patients in the era of high activity antiretroviral treatment].

    Science.gov (United States)

    Rivas González, P; Fernández Guerrero, M L

    2005-06-01

    Although the incidence of most central nervous system infections in HIV+ patients has decreased after the introduction of the modern antiretroviral treatments, they are still a major cause of morbidity and mortality. New technologies in molecular biology and neuroradiology establish the diagnosis in many cases and have decreased the need for cerebral biopsy. Prognosis has improved substantially after the introduction of high activity antiretroviral treatment; more active treatments are needed, however, for infections as PML or citomegalovirus encephalitis because of their still unacceptably high mortality.

  17. West Nile Virus Infection in the Central Nervous System [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Evandro R. Winkelmann

    2016-01-01

    Full Text Available West Nile virus (WNV, a neurotropic single-stranded flavivirus has been the leading cause of arboviral encephalitis worldwide.  Up to 50% of WNV convalescent patients in the United States were reported to have long-term neurological sequelae.  Neither antiviral drugs nor vaccines are available for humans.  Animal models have been used to investigate WNV pathogenesis and host immune response in humans.  In this review, we will discuss recent findings from studies in animal models of WNV infection, and provide new insights on WNV pathogenesis and WNV-induced host immunity in the central nervous system.

  18. Unusual location of central nervous system langerhans cell histiocytosis: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. Yup; Lee, Jae Kyu; Kim, Chan Kyo; Lee, Chang Hyun; Kang, Chang Ho; Chung, Phil Wook [Armed Forces Capital Hospital, Seongnam (Korea, Republic of)

    2003-03-01

    Langerhans cell histiocytosis of the central nervous system (CNS) usually involves the hypothalamic-pituitary axis, and T1-weighted MR images normally demonstrate infundibular thickening and/or a mass lesion in the hypothalamus and the absence of a posterior pituitary 'bright spot'. We recently encountered a case of CNS langerhans cell histiocytosis with no posterior pituitary 'bright spot' and with lesions involving the cerebellum and basal ganglia but not the hypothalamic-pituitary axis.

  19. Nanomaterials for delivery of nucleic acid to the central nervous system (CNS)

    DEFF Research Database (Denmark)

    Wang, Danyang; Wu, Lin-Ping

    2017-01-01

    -related disease, such as neurodegeneration and disorders, suitable, safe and effective drug delivery nanocarriers have to been developed to overcome the blood brain barrier (BBB), which is the most inflexible barrier in human body. Here, we highlight the structure and function of barriers in the central nervous......Billions of dollars have been invested in the therapeutic application of nucleic acid-based agents in humans in recent years. There are inspirable data from ongoing clinical trial for different diseases. However, in order to widely apply nucleic acid in prevention, diagnosis and treatment of age...

  20. Secondary superficial siderosis of the central nervous system in a patient presenting with sensorineural hearing loss

    Energy Technology Data Exchange (ETDEWEB)

    Lemmerling, M.; De Praeter, G.; Mollet, P.; Mortele, K.; Kunnen, M. [Univ. Hospital, Gent (Belgium). Dept. of Radiol.; Dhooge, I. [Department of Otorhinolaryngology, University Hospital Gent, Gent (Belgium); Mastenbroek, G. [Department of Neurology, Streekziekenhuis De Honte, Terneuzen (Netherlands)

    1998-05-01

    We present a 50-year-old man who was investigated for sensorineural hearing loss. On MRI of the brain superficial siderosis of the central nervous system was seen, while MRI of the spine revealed an ependymoma of the cauda equina. This case illustrates the importance of performing T2-weighted imaging of the brain and posterior fossa when sensorineural hearing loss is present. Spine imaging is mandatory when superficial siderosis of the brain is diagnosed without identification of a bleeding source in the brain. (orig.) With 5 figs., 10 refs.

  1. Noncoding RNA regulation of dopamine signaling in diseases of the central nervous system

    Directory of Open Access Journals (Sweden)

    William Carrick

    2016-10-01

    Full Text Available Dopaminergic neurotransmission mediates a majority of the vital central nervous system functions. Disruption of these synaptic events provokes a multitude of neurological pathologies, including Parkinson’s, schizophrenia, depression and addiction. Growing evidence supports a key role for noncoding RNA (ncRNA regulation in the synapse. This review will discuss the role of both short and long ncRNAs in dopamine signaling, including bioinformatic examination of the pathways they target. Specifically, we focus on the contribution of ncRNAs to dopaminergic dysfunction in neurodegenerative as well as psychiatric disease.

  2. Tangier disease: central nervous system impairment in a case of syringomyelia-like syndrome.

    Science.gov (United States)

    Pietrini, V; Pinna, V; Milone, F F

    1990-09-01

    A neuroradiological investigation of the central nervous system (CNS) in a case of Tangier disease presenting as a syringomyelia-like syndrome is reported. No syringomyelinic cavities were found. However, MRI showed cervical spinal cord atrophy and scattered foci of greater density with T2 weighted images in the white matter of the frontal, parietal and occipital lobes. Cerebral and cervical spinal cord involvement in the course of Tangier disease is now shown for the first time. The authors postulate that the MRI detected alterations are related to the underlying illness.

  3. Immune Responses to West Nile Virus Infection in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Hyelim Cho

    2012-12-01

    Full Text Available West Nile virus (WNV continues to cause outbreaks of severe neuroinvasive disease in humans and other vertebrate animals in the United States, Europe, and other regions of the world. This review discusses our understanding of the interactions between virus and host that occur in the central nervous system (CNS, the outcome of which can be protection, viral pathogenesis, or immunopathogenesis. We will focus on defining the current state of knowledge of WNV entry, tropism, and host immune response in the CNS, all of which affect the balance between injury and successful clearance.

  4. Immune Responses to West Nile Virus Infection in the Central Nervous System

    Science.gov (United States)

    Cho, Hyelim; Diamond, Michael S.

    2012-01-01

    West Nile virus (WNV) continues to cause outbreaks of severe neuroinvasive disease in humans and other vertebrate animals in the United States, Europe, and other regions of the world. This review discusses our understanding of the interactions between virus and host that occur in the central nervous system (CNS), the outcome of which can be protection, viral pathogenesis, or immunopathogenesis. We will focus on defining the current state of knowledge of WNV entry, tropism, and host immune response in the CNS, all of which affect the balance between injury and successful clearance. PMID:23247502

  5. Progressive Pseudolithiasis Associated with the Intravenous Administration of Ceftriaxone in Patients with Central Nervous System Infections.

    Science.gov (United States)

    Tsukagoshi, Setsuki; Ishizawa, Kunihiko; Hirayanagi, Kimitoshi; Nagamine, Shun; Makioka, Kouki; Fujita, Yukio; Ikeda, Yoshio

    2017-10-11

    We report four adult cases of ceftriaxone (CTRX)-induced pseudolithiasis and nephrolithiasis. With the exception of case 1, none of our cases showed abdominal symptoms. Our patients, who had central nervous system (CNS) infections, had been treated with CTRX (4 g/day) for 35-69 days. CTRX-induced pseudolithiasis and nephrolithiasis can appear depending on the total dose of CTRX and the duration for which it is administered. Patients with bacterial CNS infections who are treated with CTRX are typically treated with higher doses for longer periods. It should be recognized that these patients are at higher risk of developing CTRX-induced pseudolithiasis and nephrolithiasis.

  6. QRAR models for central nervous system drugs using biopartitioning micellar chromatography.

    Science.gov (United States)

    Quiñones-Torrelo, C; Martin-Biosca, Y; Martínez-Pla, J J; Sagrado, S; Villanueva-Camañas, R M; Medina-Hernández, M J

    2002-04-01

    The capability of biopartitioning Micellar Chromatography, BMC, to describe and estimate pharmacokinetic and pharmacodynamic parameters of central nervous system drugs is reviewed in this article. BMC is a mode of micellar liquid chromatography, MLC, that uses micellar mobile phases of Brij35 (polyoxyethilene(23) lauryl ether) prepared in physiological conditions (pH, ionic strength). The retention of a drug in this system depends on its hydrophobic, electronic and steric properties, which also determine its biological activity. The results of BMC studies suggest that this in vitro approach is an attractive useful tool to be implemented into the lead optimization step of drug development scheme.

  7. Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-12-1-0051 TITLE: Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System ...Central Nervous System Following Neural Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0051 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Robert...mature mammalian central nervous system (CNS), unlike the peripheral nervous system (PNS), is incapable of axon regeneration. There are currently two

  8. Isolated Richter's syndrome in central nervous system: case report Sindrome de Richter isolada em sistema nervoso central: relato de caso

    Directory of Open Access Journals (Sweden)

    Lucilene S.R. Resende

    2005-06-01

    Full Text Available Diffuse large cell non Hodgkin's lymphoma associated with chronic lymphoid leukemia (CLL, or Richter's syndrome, is a rare and serious complication. Isolated Richter's syndrome in the central nervous system is very rare; only 12 cases have been reported. We describe a 74-year-old patient with diffuse large cell non Hodgkin's lymphoma in the right frontal region with the appearance of multiform glioblastoma.Linfoma não Hodgkin difuso de grandes células em paciente portador de leucemia linfóide crônica (LLC, ou síndrome de Richter, é complicação rara e grave nesta leucemia. Síndrome de Richter isolada no sistema nervoso central é muito rara, tendo sido encontrados apenas 12 casos descritos. Descrevemos paciente de 74 anos, que apresentou linfoma não Hodgkin difuso de grandes células em região frontal direita, simulando glioblastoma multiforme.

  9. Sex differences in the effects of androgens acting in the central nervous system on metabolism

    Science.gov (United States)

    Morford, Jamie; Mauvais-Jarvis, Franck

    2016-01-01

    One of the most sexually dimorphic aspects of metabolic regulation is the bidirectional modulation of glucose and energy homeostasis by testosterone in males and females. Testosterone deficiency predisposes men to metabolic dysfunction, with excess adiposity, insulin resistance, and type 2 diabetes, whereas androgen excess predisposes women to insulin resistance, adiposity, and type 2 diabetes. This review discusses how testosterone acts in the central nervous system, and especially the hypothalamus, to promote metabolic homeostasis or dysfunction in a sexually dimorphic manner. We compare the organizational actions of testosterone, which program the hypothalamic control of metabolic homeostasis during development, and the activational actions of testosterone, which affect metabolic function after puberty. We also discuss how the metabolic effect of testosterone is centrally mediated via the androgen receptor. PMID:28179813

  10. Neonatal head ultrasound: systematic approach to congenital Central Nervous System anomalies. A pictorial essay.

    Science.gov (United States)

    Yoon, Hye-Kyung; Cho, Seong Whi

    2016-09-01

    Brain ultrasound is widely used for the screening of prematurely born babies. Although the best imaging modality for the central nervous system anomaly is brain MRI, the first imaging study in the post-natal period is brain ultrasonography in most cases. Anomalies could be found incidentally on screening ultrasound, or in those cases already suspected on prenatal ultrasound. In order not to miss congenital structural abnormalities of the brain on screening ultrasound, systematic approaches would be very helpful. The ventricles and sylvian fissures are very important structures to suspect central nervous system anomalies: they are symmetric structures so we should look for any asymmetry or maldevelopment. And then, on sagittal images, the midline structures including the corpus callosum and cerebellar vermis should be observed carefully. Finally, we should look for any abnormality in gyration or cortical development. Skull defect with herniation of intracranial contents, a spectrum of encephalo-meningocele, could be also identified on ultrasound. Congenital infections such as cytomegalovirus infection may show ventriculomegaly and malformation of the cortical development on imaging studies.

  11. Intraventricular Delivery of siRNA Nanoparticles to the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Rishab Shyam

    2015-01-01

    Full Text Available Alzheimer's disease (AD is a progressive neurodegenerative disease currently lacking effective treatment. Efficient delivery of siRNA via nanoparticles may emerge as a viable therapeutic approach to treat AD and other central nervous system disorders. We report here the use of a linear polyethyleneimine (LPEI-g-polyethylene glycol (PEG copolymer-based micellar nanoparticle system to deliver siRNA targeting BACE1 and APP, two therapeutic targets of AD. Using LPEI-siRNA nanoparticles against either BACE1 or APP in cultured mouse neuroblastoma (N2a cells, we observe selective knockdown, respectively, of BACE1 or APP. The encapsulation of siRNA by LPEI-g-PEG carriers, with different grafting degrees of PEG, leads to the formation of micellar nanoparticles with distinct morphologies, including worm-like, rod-like, or spherical nanoparticles. By infusing these shaped nanoparticles into mouse lateral ventricles, we show that rod-shaped nanoparticles achieved the most efficient knockdown of BACE1 in the brain. Furthermore, such knockdown is evident in spinal cords of these treated mice. Taken together, our findings indicate that the shape of siRNA-encapsulated nanoparticles is an important determinant for their delivery and gene knockdown efficiency in the central nervous system.

  12. [Magnetic resonance imaging features of Cryptococcus infection in central nervous system in patients with AIDS].

    Science.gov (United States)

    Xu, Chuanjun; Hu, Zhiliang; Wei, Hongxia; Yang, Yongfeng; Du, Chao; Gu, Jianping

    2017-10-28

    To investigate the magnetic resonance imaging (MRI) features of Cryptococcus infection in central nervous system patients with acquired immune deficiency syndrome (AIDS).
 Methods: The retrospective study on magnetic resonance imaging (MRI) and clinical data of cryptococcal meningitis (CM) was carried out between July 2011 and March 2017. These patients had not received anti-retroviral treatment. Patients with other specific or suspicious diseases in the central nervous system were not included in the analysis.
 Results: A total of 39 patients were included in the analysis, with CD4 cell counts of 13.0×106/L [(0-205)×106/L], and 94.9% (37/39) of patients with CD4 cell count system Cryptococcus infection may not be low, and the lesions are mostly located in the basal ganglia. It most frequently displays the dilated VRS/gelatinous spseudocysts. It can also be showed cryptococcal granuloma. Postcontrast T1-weighted MRI often reveals no enhancement or mild enhancement.

  13. Syringomyelia in demyelinating disease of the central nervous system: Report of two cases

    Directory of Open Access Journals (Sweden)

    Savić Dejan

    2011-01-01

    Full Text Available Introduction. Syringomyelia is a cavitary extension inside the spinal cord which can be either symptomatic or congenitally-idiopathic. Syringomyelia during the course of the disease in patients presenting with clinically definite multiple sclerosis was described earlier. Syringomyelia in patients presenting with a clinically isolated syndrome suggestive of multiple sclerosis is unusual. Case Outline. We present two patients presenting with demy-elinating disease of the central nervous system with syringomyelia in the cervical and thoracic spinal cord. We did not find classical clinical signs of syringomyelia in our patients, but we disclosed syringomyelia incidentally during magnetic resonance exploration. Magnetic resonance exploration using the gadolinium contrast revealed the signs of active demyelinating lesions in the spinal cord in one patient but not in the other. Conclusion. Syringomyelia in demyelinating disease of the central nervous system opens the question whether it is a coincidental finding or a part of clinical features of the disease. Differentiation of the significance of syringomyelia finding in these patients plays a role in the choice of treatment concept in such patients.

  14. Application value of magnetic resonance imaging in diagnosing central nervous system lymphoma.

    Science.gov (United States)

    Zhang, Shanhua; Li, Hongjun; Zhu, Rongguang; Zhang, Mingming

    2016-01-01

    To describe the magnetic resonance imaging (MRI) appearance of central nervous system lymphoma. We retrospectively reviewed MRI images of 40 patients who had pathologically proven primary central nervous system lymphoma (PCNSL) and received treatment in Binzhou People's Hospital, Shandong, China from January to December in 2014. Location, size and form of tumor was observed and relevant data were recorded for analysis. Foci of 40 cases of PCNSL all located in brain, among which. 18 cases were single (45.0%) and 22 cases were multiple (55.5%). Of 96 Foci, 84 were supratentorial, 12 were subtentorial. Enhanced MRI scanning showed that, most Foci had significant homogenous enhancement, shaping as multiple nodular or lumpy, and few had ring-enhancement. MRI suggested that, T1 signal of most Foci concentrated on low signal segment and T2 signal gathered on high signal segment, suggesting a significant homogeneous enhancement; moreover, mild and medium edema surrounded the tumor. They were pathologically confirmed as B cell derived non-hodgkin lymphoma. Except one case of Burkitt lymphoma, the others were all diffuse large B cell lymphoma which was observed with diffuse distribution of cancer cells (little cytoplasm, large nucleus, rough perichromatin granule) in same size. Fifteen cases were observed with sleeve-like infiltration of cancer cells around blood vessels. No case was found with hemorrhage, necrosis or calcification. Pathological foundation of PCNSL determines its characteristic MRI performance. Typical case of PCNSL can be diagnosed accurately by MRI.

  15. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system

    Science.gov (United States)

    Segura-Uribe, Julia J.; Pinto-Almazán, Rodolfo; Coyoy-Salgado, Angélica; Fuentes-Venado, Claudia E.; Guerra-Araiza, Christian

    2017-01-01

    Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1), MAP2, neurofilament 38 (NF38) by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects. PMID:28966632

  16. Targeting choroid plexus epithelia and ventricular ependyma for drug delivery to the central nervous system

    Directory of Open Access Journals (Sweden)

    Stopa Edward G

    2011-01-01

    Full Text Available Abstract Background Because the choroid plexus (CP is uniquely suited to control the composition of cerebrospinal fluid (CSF, there may be therapeutic benefits to increasing the levels of biologically active proteins in CSF to modulate central nervous system (CNS functions. To this end, we sought to identify peptides capable of ligand-mediated targeting to CP epithelial cells reasoning that they could be exploited to deliver drugs, biotherapeutics and genes to the CNS. Methods A peptide library displayed on M13 bacteriophage was screened for ligands capable of internalizing into CP epithelial cells by incubating phage with CP explants for 2 hours at 37C and recovering particles with targeting capacity. Results Three peptides, identified after four rounds of screening, were analyzed for specific and dose dependant binding and internalization. Binding was deemed specific because internalization was prevented by co-incubation with cognate synthetic peptides. Furthermore, after i.c.v. injection into rat brains, each peptide was found to target phage to epithelial cells in CP and to ependyma lining the ventricles. Conclusion These data demonstrate that ligand-mediated targeting can be used as a strategy for drug delivery to the central nervous system and opens the possibility of using the choroid plexus as a portal of entry into the brain.

  17. Insulin hormone: Mechanism and effects on the body and relationship with central nervous system

    Directory of Open Access Journals (Sweden)

    B. Zuhal Altunkaynak

    2012-06-01

    Full Text Available Diabetes mellitus (DM is one of the most common andchronic disease all over the world. It is characterized witheither insulin deficiency or insulin resistance. Insulin is ahormone which is secreted by beta cells in the LangerhansIslets of pancreas and playing a role in carbohydratemetabolism regulation in association with glucagon. Regardingthe insulin’s effects on carbohydrates, almost inall tissues (except brain insulin increases the facilitateddiffusion of glucose into cells and shows and an effect toreduce the blood glucose levels. In other words, it haveregulator role on blood sugar level; insulin secretion isknown to be associated with an increase in the amountof energy. Insulin secretion is related with increasing glucoselevel. It has been shown that it is closely relatedwith intracellular enzymes and has a stimulating effecton transcription of glucokinase, pyruvate kinase, phosphofructokinase and fructose-2,6 biphosphatase thatare glicolytic and an inhibitory effect on transcription ofphosphophenolpyruvate carboxykinase that is gluconeogenetic.Besides being the primary regulator of carbohydratemetabolism, insulin also has an important effect onlipid and protein metabolisms that are interrelated withcarbohydrate metabolism. For the basis of diabetes effectson Central Nervous system (CNS two mechanismsare emphasized; first is the oxidative stress developeddue to metabolic changes and the second is damagesof calcium ion metabolism. In this review, it was intendedto reach detailed information by reviewing insulin’s basiceffect mechanism, its reflection on cellular level and itsrelationship with central nervous system.

  18. Incidence, risk factors and outcome of nosocomial pneumonia in patients with central nervous system infections

    Directory of Open Access Journals (Sweden)

    Gajović Olgica

    2011-01-01

    Full Text Available Introduction. Pneumonia is the most frequent nosocomial infection in intensive care units. The reported frequency varies with definition, the type of hospital or intensive care units and the population of patients. The incidence ranges from 6.8-27%. Objective. The objective of this study was to determine the frequency, risk factors and mortality of nosocomial pneumonia in intensive care patients. Methods. We analyzed retrospectively and prospectively the collected data of 180 patients with central nervous system infections who needed to stay in the intensive care unit for more than 48 hours. This study was conducted from 2003 to 2009 at the Clinical Centre of Kragujevac. Results. During the study period, 54 (30% patients developed nosocomial pneumonia. The time to develop pneumonia was 10±6 days. We found that the following risk factors for the development of nosocomial pneumonia were statistically significant: age, Glasgow Coma Scale (GCS score <9, mechanical ventilation, duration of mechanical ventilation, tracheostomy, presence of nasogastric tube and enteral feeding. The most commonly isolated pathogens were Klebsiella-Enterobacter spp. (33.3%, Pseudomonas aeruginosa (24.1%, Acinetobacter spp. (16.6% and Staphylococcus aureus (25.9%. Conclusion. Nosocomial pneumonia is the major cause of morbidity and mortality of patients with central nervous system infections. Patients on mechanical ventilation are particularly at a high risk. The mortality rate of patients with nosocomial pneumonia was 54.4% and it was five times higher than in patients without pneumonia.

  19. Recommendations regarding imaging of the central nervous system in fetuses and neonates

    Directory of Open Access Journals (Sweden)

    Ewa Helwich

    2014-06-01

    Full Text Available An abnormal presentation of the central nervous system in a fetus during a screening examination is an indication for extended diagnosis, the aim of which is to explain the character of such an anomaly (a congenital defect, destructive effect of intrauterine infection or abnormality with reasons that are difficult to explain. Knowledge of normal development sequence of the fetal brain, which is discussed in this paper, is the basis for correct interpretation of imaging findings. Together with the increase in survival of preterm neonates, a high risk of early brain damage is still a problem in this extremely immature population. Therefore, imaging examinations become necessary. The paper presents intrauterine and postnatal risk factors of early brain damage as well as classification of such lesions, of hemorrhagic and hypoxic-ischemic etiology. The diagnosis of the cerebellum damage, which is currently believed to be a significant cause of autism, is emphasized. The evolution of lesions over time is also presented. Moreover, the elements of diagnosis important for prognosis are stressed. The standards of imaging examinations of the central nervous system include the schedule of ultrasound examinations and provide indications for extended diagnosis with the use of magnetic resonance imaging.

  20. Central nervous system gene expression changes in a transgenic mouse model for bovine spongiform encephalopathy

    Directory of Open Access Journals (Sweden)

    Tortosa Raül

    2011-10-01

    Full Text Available Abstract Gene expression analysis has proven to be a very useful tool to gain knowledge of the factors involved in the pathogenesis of diseases, particularly in the initial or preclinical stages. With the aim of finding new data on the events occurring in the Central Nervous System in animals affected with Bovine Spongiform Encephalopathy, a comprehensive genome wide gene expression study was conducted at different time points of the disease on mice genetically modified to model the bovine species brain in terms of cellular prion protein. An accurate analysis of the information generated by microarray technique was the key point to assess the biological relevance of the data obtained in terms of Transmissible Spongiform Encephalopathy pathogenesis. Validation of the microarray technique was achieved by RT-PCR confirming the RNA change and immunohistochemistry techniques that verified that expression changes were translated into variable levels of protein for selected genes. Our study reveals changes in the expression of genes, some of them not previously associated with prion diseases, at early stages of the disease previous to the detection of the pathological prion protein, that might have a role in neuronal degeneration and several transcriptional changes showing an important imbalance in the Central Nervous System homeostasis in advanced stages of the disease. Genes whose expression is altered at early stages of the disease should be considered as possible therapeutic targets and potential disease markers in preclinical diagnostic tool development. Genes non-previously related to prion diseases should be taken into consideration for further investigations.

  1. Candida infection of the central nervous system following neurosurgery: a 12-year review.

    LENUS (Irish Health Repository)

    O'Brien, Deirdre

    2012-02-01

    BACKGROUND: Candida infection of the central nervous system (CNS) following neurosurgery is relatively unusual but is associated with significant morbidity and mortality. We present our experience with this infection in adults and discuss clinical characteristics, treatment options, and outcome. METHODS: All episodes of Candida isolated from the central nervous system were identified by searching our laboratory database. Review of the cases was performed by means of a retrospective chart review. RESULTS: Eleven episodes of Candida CSF infection following neurosurgery were identified over a 12-year period. Candida albicans was the predominant species isolated (n = 8, 73%). All infections were associated with foreign intracranial material, nine with external ventricular drains (82%), one with a ventriculoperitoneal shunt, one with a lumbar drain, and one with Gliadel wafers (1,3-bis [2-chloroethyl]-1-nitrosurea). Fluconazole or liposomal amphotericin B were the most common anti-fungal agents used. The mortality rate identified in our series was 27%. CONCLUSIONS: Candida infection following neurosurgery remains a relatively rare occurrence but one that causes significant mortality. These are complex infections, the management of which benefits from a close liaison between the clinical microbiologist and neurosurgeon. Prompt initiation of antifungal agents and removal of infected devices offers the best hope of a cure.

  2. Primary angiitis of the central nervous system: an ante-mortem diagnosis.

    Directory of Open Access Journals (Sweden)

    Singh S

    2000-10-01

    Full Text Available A rare case of primary angiitis of the central nervous system (PACNS is reported with its clinical and magnetic resonance imaging (MRI features. A 20-year-old girl presented with headache, projectile vomiting, unsteadiness of gait and urgency of micturition. She had left seventh nerve upper motor neuron type paresis, increased tone in all four limbs, exaggerated deep tendon reflexes, cerebellar signs, and papilloedema. Cerebrospinal fluid showed lymphocytosis with elevated protein and normal glucose level. Cerebral computerised tomographic scan and MRI showed bilateral diffuse asymmetric supra- and infra-tentorial lesions (predominantly in the supratentorial and left cerebrum. On MRI, the lesions were hyperintense on T2, and proton density-weighted images and hypointense on T1-weighted images. Based on the clinical findings of raised intracranial tension and MRI features, initial diagnoses of gliomatosis cerebrii, tuberculous meningitis, primary central nervous system lymphoma and chronic viral encephalitis were considered. PACNS was not included in the initial differentials and, an open brain biopsy was advised which established the definitive diagnosis.

  3. Insights into Initial Demyelinating Episodes of Central Nervous System during Puerperium.

    Science.gov (United States)

    Wu, Qian; Chen, Bo; Liu, Na; Hu, Yang; Pan, Chao; Zhang, Ping; Tang, Zhou-Ping; Bu, Bi-Tao

    2017-08-05

    Inflammatory demyelinating disease of central nervous system (CNS) is an inflammatory disease characterized by a high childbearing female predominance. Labor-related alterations for postpartum demyelinating attacks are not entirely clear. This study aimed to summarize clinical features of female patients of reproductive age with initial CNS inflammatory demyelinating attacks during puerperium. Fourteen female patients with initial demyelinating events during puerperium between January 2013 and December 2016 were retrospectively studied. Records of clinical features, neuroimaging, serum antibodies, cerebrospinal fluid (CSF) findings, annualized relapse rate (ARR), and treatment were analyzed. Among 14 patients, 5 patients were diagnosed with multiple sclerosis (MS), four as neuromyelitis optica (NMO), two as longitudinal extensive transverse myelitis, two as clinical isolated syndrome (CIS), and one as acute brainstem syndrome. All the 14 puerperal female patients presented with more than one manifestation of hemiplegia, paraplegia, uroschesis, visual loss or dysarthria, and with mild to moderate abnormalities of CSF. Attacks occurred during the first trimester postpartum and cesarean section was the main delivery way (n = 10). Median Expanded Disability Status Scale (EDSS) scores were 5.0 (range: 2.0-9.0) at the onset and 2.5 (range: 0-7.0) at the end of follow-ups. Patients with MS and CIS had a significantly lower EDSS scores than patients with NMO spectrum disorders (P demyelinating diseases of central nervous system.

  4. Poliovirus trafficking toward central nervous system via human poliovirus receptor-dependent and -independent pathway.

    Directory of Open Access Journals (Sweden)

    Seii eOHKA

    2012-04-01

    Full Text Available In humans, paralytic poliomyelitis results from the invasion of the central nervous system by circulating poliovirus (PV via the blood-brain barrier (BBB. After the virus enters the central nervous system (CNS, it replicates in neurons, especially in motor neurons (MNs, inducing the cell death that causes paralytic poliomyelitis. Along with this route of dissemination, neural pathway has been reported in humans, monkeys, and PV-sensitive human PV receptor (hPVR/CD155-transgenic (Tg mice. We demonstrated that a fast retrograde axonal transport process is required for PV dissemination through the sciatic nerve of hPVR-Tg mice and that intramuscularly inoculated PV causes paralysis in a hPVR-dependent manner. We also showed that hPVR-independent axonal transport of PV exists in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist in these mice. Circulating PV after intravenous inoculation in mice cross the BBB at a high rate in a hPVR-independent manner. Recently, we identified transferrin receptor 1 (TfR1 of mouse brain capillary endothelial cells as a binding protein to PV, implicating that TfR1 is a possible receptor for PV to permeate the BBB.

  5. Proposal for research and education: joint lectures and practicals on central nervous system anatomy and physiology.

    Science.gov (United States)

    Kageyama, Ikuo; Yoshimura, Ken; Satoh, Yoshihide; Nanayakkara, Chinthani D; Pallegama, Ranjith W; Iwasaki, Shin-Ichi

    2016-07-01

    We coordinated anatomy and physiology lectures and practicals to facilitate an integrated understanding of morphology and function in a basic medical science program for dental students and to reduce the time spent on basic science education. This method is a means to provide the essential information and skills in less time. The overall impression was that the practice of joint central nervous system lectures and practicals was an efficient method for students, which suggests that joint lectures might also be useful for clinical subjects. About two-thirds of students felt that the joint anatomy and physiology lecture on the central nervous system was useful and necessary in understanding the relationship between morphology and function, at least for this subject. One-third of students were neutral on the effectiveness of this method. However, the survey results suggest that improvements are needed in the method and timing of joint lectures and practicals. The present teaching approach can be further improved by conducting combined lectures in which the form and function of anatomic structures are presented by the relevant departments during the same lecture. Finally, joint lecturers and practicals offer an opportunity to increase student understanding of the importance of new research findings by the present authors and other researchers.

  6. Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensis.

    Science.gov (United States)

    Chen, Qiang; Lin, Gui-miao; Wu, Nan; Tang, Sheng-wei; Zheng, Zhi-jia; Lin, Marie Chia-mi; Xu, Gai-xia; Liu, Hao; Deng, Yue-yue; Zhang, Xiao-yun; Chen, Si-ping; Wang, Xiao-mei; Niu, Han-ben

    2016-05-01

    Magnetic field exposure is an accepted safe and effective modality for nerve injury. However, it is clinically used only as a supplement or salvage therapy at the later stage of treatment. Here, we used a planarian Girardia sinensis decapitated model to investigate beneficial effects of early rotary non-uniform magnetic fields (RMFs) exposure on central nervous regeneration. Our results clearly indicated that magnetic stimulation induced from early RMFs exposure significantly promoted neural regeneration of planarians. This stimulating effect is frequency and intensity dependent. Optimum effects were obtained when decapitated planarians were cultured at 20 °C, starved for 3 days before head-cutting, and treated with 6 Hz 0.02 T RMFs. At early regeneration stage, RMFs exposure eliminated edema around the wound and facilitated subsequent formation of blastema. It also accelerated cell proliferation and recovery of neuron functionality. Early RMFs exposure up-regulated expression of neural regeneration related proteins, EGR4 and Netrin 2, and mature nerve cell marker proteins, NSE and NPY. These results suggest that RMFs therapy produced early and significant benefit in central nervous regeneration, and should be clinically used at the early stage of neural regeneration, with appropriate optimal frequency and intensity. © 2016 Wiley Periodicals, Inc.

  7. The role of myelin in Theiler's virus persistence in the central nervous system.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Roussarie

    2007-02-01

    Full Text Available Theiler's virus, a picornavirus, persists for life in the central nervous system of mouse and causes a demyelinating disease that is a model for multiple sclerosis. The virus infects neurons first but persists in white matter glial cells, mainly oligodendrocytes and macrophages. The mechanism, by which the virus traffics from neurons to glial cells, and the respective roles of oligodendrocytes and macrophages in persistence are poorly understood. We took advantage of our previous finding that the shiverer mouse, a mutant with a deletion in the myelin basic protein gene (Mbp, is resistant to persistent infection to examine the role of myelin in persistence. Using immune chimeras, we show that resistance is not mediated by immune responses or by an efficient recruitment of inflammatory cells into the central nervous system. With both in vivo and in vitro experiments, we show that the mutation does not impair the permissiveness of neurons, oligodendrocytes, and macrophages to the virus. We demonstrate that viral antigens are present in cytoplasmic channels of myelin during persistent infection of wild-type mice. Using the optic nerve as a model, we show that the virus traffics from the axons of retinal ganglion cells to the cytoplasmic channels of myelin, and that this traffic is impaired by the shiverer mutation. These results uncover an unsuspected axon to myelin traffic of Theiler's virus and the essential role played by the infection of myelin/oligodendrocyte in persistence.

  8. [The pathological TDP-43 protein expression in the central nervous system of motor neuron disease].

    Science.gov (United States)

    Zhu, Mingwei; Liu, Jia; Wang, Luning; Gui, Qiuping

    2015-01-01

    To understand pathological TDP-43 features in the central nervous systems of patients with clinically and autopsy confirmed motor neuron disease (MND). The clinical and histopathological features of 4 cases with MND confirmed by autopsy were summarized; anti-ubiquitin (Ub) and anti-TDP-43 immunohistochemical staining were carried out on tissue of brains and spinal cords from 4 cases with MND and 3 control cases without history of neurological disorders. These 4 cases presented with typical clinical and histologic features of MND. Ub-positive inclusions were observed in brain and spinal cord from 3 cases with the Ub-positive inclusions of skein- round- and lewy body- like structures. Strong TDP-43 pathological staining in brain and spinal cord was identified in 2 cases with MND presented as neuronal and glial cytoplasmic inclusions with various shapes. The TDP-43 positive inclusions were widely distributed in the motor cortex of brain and the anterior horn of spinal cord. TDP-43 weak staining in the spinal cord tissue was observed in 1 case with MND. No Ub- and TDP-43 positive inclusions were found in 3 control cases. There is widespread pathological TDP-43 expression in the central nervous system of MND. TDP-43 positive inclusions in MND have relatively high specificity. It is worth further study on their formation mechanism.

  9. The allometry of the central nervous system during the postembryonic development of the spider Eratigena atrica.

    Science.gov (United States)

    Napiórkowska, Teresa; Kobak, Jarosław

    2017-11-01

    During ontogenesis, the size of a spider body, tissues and organs increases dramatically. The aim of the study was to estimate changes in the central nervous system of postembryonic stages of Eratigena atrica and compare them with the literature data on species differing in behavioural traits. Allometric analysis involved evaluation of histological slides embedded in paraffin and stained with hematoxylin and eosin. The reduced major axis regression (RMA) was applied to find allometric relationships between the volumes of the particular parts of the body. All the measured parts of the central nervous system (CNS) were negatively allometrically related to the volume of the prosoma, showing that the increment of the CNS was lower than that of the entire body. The growth of the brain was negatively allometrically related to the growth of the CNS but the increment of the subesophageal ganglion was greater than that of the CNS, exhibiting a positive allometry. Within both these structures, the increase in neuropil volume was greater than the growth of the cortex (cell body rind). Thus, in postembryonic development, the share of the subesophageal ganglion and neuropil in the total volume of the CNS increased, whereas that of the brain and cortex decreased. The mode of the CNS development in E. atrica is similar to that observed in other arthropods, including Argiope aurantia, a spider of different ecology and behaviour. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of estrogen receptor modulators on cytoskeletal proteins in the central nervous system

    Directory of Open Access Journals (Sweden)

    Julia J Segura-Uribe

    2017-01-01

    Full Text Available Estrogen receptor modulators are compounds of interest because of their estrogenic agonistic/antagonistic effects and tissue specificity. These compounds have many clinical applications, particularly for breast cancer treatment and osteoporosis in postmenopausal women, as well as for the treatment of climacteric symptoms. Similar to estrogens, neuroprotective effects of estrogen receptor modulators have been described in different models. However, the mechanisms of action of these compounds in the central nervous system have not been fully described. We conducted a systematic search to investigate the effects of estrogen receptor modulators in the central nervous system, focusing on the modulation of cytoskeletal proteins. We found that raloxifene, tamoxifen, and tibolone modulate some cytoskeletal proteins such as tau, microtuble-associated protein 1 (MAP1, MAP2, neurofilament 38 (NF38 by different mechanisms of action and at different levels: neuronal microfilaments, intermediate filaments, and microtubule-associated proteins. Finally, we emphasize the importance of the study of these compounds in the treatment of neurodegenerative diseases since they present the benefits of estrogens without their side effects.

  11. What Strategy Central Nervous System Uses to Perform a Movement Balanced? Biomechatronical Simulation of Human Lifting

    Directory of Open Access Journals (Sweden)

    Ali Leylavi Shoushtari

    2013-01-01

    Full Text Available How does the central nervous system control the body posture during various tasks despite a redundancy? It's a well-known question existed in such fields of study as biomechanics and bioengineering. Some techniques based on muscle and torques synergies are presented to study the function which Central Nervous System uses to addresses the kinetic redundancy in musculoskeletal system. The human body with its whole numerous joints considered as a hyper redundant structure which caused to be seemed that it is impossible for CNS to control and signal such system. To solve the kinematic redundancy in previous studies it is hypothesize that CNS functions as an optimizer, such of that are the task-based algorithms which search to find optimal solution for each specific task. In this research a new objective function based on ankle torques during movement is implemented to guarantee the stability of motion. A 2D 5DOF biomechatronical model of human body is subjected to lifting task simulation. The simulation process implements inverse dynamics as major constraint to consider the dynamics of motion for predicted postures. In the previous optimization-based techniques which are used to simulate the human movements, the motion stability was guaranteed by a nonlinear inequality constraint which restricts the total moment arm of the links to an upper and lower boundary. In this method, there is no need to use this constraint. The results show that the simulated postures are normal and the predicted motion is performed completely balanced.

  12. Lumped Parameter Models of the Central Nervous System for VIIP Research

    Science.gov (United States)

    Vera, J.; Mulugeta, L.; Nelson, E. S.; Raykin, J.; Feola, A.; Gleason, R.; Samuels, B.; Myers, J. G.

    2015-01-01

    INTRODUCTION: Current long-duration missions to the International Space Station and future exploration-class missions beyond low-Earth orbit, such as to Mars and asteroids, expose astronauts to increased risk of Visual Impairment and Intracranial Pressure (VIIP) syndrome [1]. It has been hypothesized that the headward shift of cerebral spinal fluid (CSF) and blood in microgravity may cause significant elevation of intracranial pressure (ICP), which in turn induces VIIP syndrome through biomechanical pathways [1, 2]. However, there is insufficient evidence to confirm this hypothesis. In this light, we are developing lumped-parameter models of fluid transport in the central nervous system (CNS) as a means to simulate the influence of microgravity on ICP. The CNS models will also be used in concert with the lumped parameter and finite element models of the eye described in the realted IWS abstracts submitted by Nelson et al., Feola et al. and Ethier et al. METHODS: We have developed a nine compartment CNS model (Figure 1) capable of both time-dependent and steady state fluid transport simulations, based on the works of Stevens et al. [3]. The breakdown of compartments within the model includes: vascular (3), CSF (2), brain (1) and extracranial (3). The boundary pressure in the Central Arteries [A] node is prescribed using an oscillating pressure function PA(t) simulating the carotid pulsatile pressure wave as developed by Linninger et al. [4]. For each time step, pressures are integrated through time using an adaptive-timestep 4th and 5th order Runga-Kutta solver. Once pressures are found, constitutive equations are used to solve for flowrates (Q) between each compartment. In addition to fluid flow between the different compartments, compliance (C) interactions between neighboring compartments are represented. We are also developing a second CNS model based on the works of Linninger et al. [4] which takes a more granular approach to represent the interactions of the

  13. Neo-adjuvant chemotherapy followed by radiotherapy adapted to the tumour response in the primary seminoma of the central nervous system: experience of the Pitie-Salpetriere Hospital and review of literature; Chimiotherapie neoadjuvante suivie d'une radiotherapie adaptee a la reponse tumorale dans les tumeurs germinales seminomateuses du systeme nerveux central: experience de l'hopital de la Pitie-Salpetriere et revue de la litterature

    Energy Technology Data Exchange (ETDEWEB)

    Calugaru, V.; Taillibert, S.; Lang, P.; Simon, J.M.; Mazeron, J.J. [Groupe Hospitalier de la Pitie-Salpetriere, APHP, Service de Radiotherapie Oncologique, 75 - Paris (France); Taillibert, S.; Delattre, J.Y. [Groupe Hospitalier de la Pitie-Salpetriere, APHP, Service de Neuro-Oncologie, 75 - Paris (France)

    2007-05-15

    Purpose. Retrospective analysis of ten cases of germinoma of the central nervous system treated in Pitie Salpetriere Hospital, Paris. Patients and methods- - Ten male patients were treated from 1997 to 2005 for histologically verified primary seminoma of the central nervous system. The median age was 27 years (range 18 0 years). Our option for the treatment was the association of 3 cycles of neo-adjuvant chemotherapy (cisplatin and etoposide) to radiotherapy. Five patients received a craniospinal radiotherapy of 30 Gy (for one patient 36 Gy) followed by a tumoral boost from 20 to 24 Gy. For five patients, irradiated volume was limited to the tumour, total dose from 24 to 54 Gy (for three patients the total dose was from 24 to 30 Gy). Surgery was used for five patients, but only in one case was macroscopic complete. Results. Six patients were in situation of complete remission after neo-adjuvant chemotherapy. All the patients were in situation of complete remission after the irradiation. All the patients were alive free of disease with a median follow-up 46 months (range 13 0 months). Conclusion. In spite of the fact that the intracranial germinal tumours are not the subject of a consensual treatment strategy, this retrospective analysis pleads in favour of chemotherapy followed by limited dose and volume irradiation. (authors)

  14. [Role of alpha-MSH and related peptides in the central nervous system].

    Science.gov (United States)

    Delbende, C; Jegou, S; Tranchand-Bunel, D; Leroux, P; Tonon, M C; Mocaër, E; Pelletier, G; Vaudry, H

    1985-01-01

    Alpha-melanocyte stimulating hormone (alpha-MSH) is a tridecapeptide secreted by intermediate lobe cells and synthesized in the brain as well. As a hormonal peptide, the physiological function of alpha-MSH consists mainly in the control of pigment movements within dermal melanophores. At the pituitary level, alpha-MSH secretion is under multifactorial control: it is inhibited by dopamine and GABA and stimulated by corticoliberin (CRF), thyroliberin (TRH), beta-adrenergic agonists and (or) serotonin. Identification of alpha-MSH containing neurons in the hypothalamus and other brain regions (septum, thalamus, mid-brain, striatum, hippocampus, cerebral cortex and spinal cord) has been carried out by means of immunological and biochemical techniques combined with bioassays. In the central nervous system (CNS) as in the hypophysis, alpha-MSH is synthesized from a high molecular weight precursor, pro-opiomelanocortin (POMC). Maturation of this protein yield similar end products in the hypothalamus and the intermediate lobe. Several peptides chemically related to alpha-MSH are generated including the desacetyl and monoacetyl (authentic alpha-MSH) forms; the latter has the greatest behavioral activity. The demonstration that alpha-MSH has numerous central nervous system effects has raised the possibility that this neuropeptide acts as a neuromodulator or a neurotransmitter. In the rat, intra-cerebroventricular administration of ACTH/MSH peptides induces the stretching-yawning syndrome (SYS) which is frequently preceded by excessive grooming. This excessive grooming is blocked by neuroleptics indicating that the central dopaminergic neurons are implicated in this behavioral effect of the peptide. alpha-MSH is involved in memory, arousal and attention; in hypophysectomized animals, the learning ability is restored after administration of MSH or related peptides. Injection of alpha-MSH delays also extinction of passive avoidance behavior and affects performances motivated by

  15. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Trebst, C; Sørensen, Torben Lykke; Kivisäkk, P

    2001-01-01

    Mononuclear phagocytes (monocytes, macrophages, and microglia) are considered central to multiple sclerosis (MS) pathogenesis. Molecular cues that mediate mononuclear phagocyte accumulation and activation in the central nervous system (CNS) of MS patients may include chemokines RANTES/CCL5 and ma...

  16. Fulminant listerial infection of the central nervous system in an otherwise healthy patient: a case report

    Directory of Open Access Journals (Sweden)

    Karakitsos Dimitrios

    2009-06-01

    Full Text Available Abstract Introduction The mortality of listerial rhombo-encephalitis exceeds 26% and may involve otherwise healthy patients. A case is presented of a man with fatal listerial infection of the central nervous system that was monitored in an intensive care unit. Case presentation A 42-year-old, previously healthy man was admitted with fever of 39°C, blurred vision, confusion and headache. He had right-sided central facial paresis, bilateral absent gag reflex and bilateral cerebellar ataxia. After a few hours, he became septic and developed bilateral vocal cord paralysis and airway obstruction. He was intubated and put on mechanical ventilation. Computed tomography brain scans revealed multiple frontal hypodense areas and slight hydrocephalus. Cerebrospinal fluid findings included pleocytosis of 4200 cells/μL (77% neutrophils, protein of 114 mg/dL and normal glucose levels. Listerial infection was suspected; therefore ampicillin was added to his initial therapeutic regimen, already including ceftriaxone and gentamicin. All cultures were negative, and no immunologic abnormality could be documented, but the patient's clinical condition deteriorated rapidly. Continuous neuromonitoring by means of transcranial Doppler and optic nerve sonography along with follow-up computed tomography brain scans confirmed the severity of the brain damage; hence, dexamethasone and mannitol were also administered. The patient was clinically documented as 'brain dead' 7 days after his admission to the intensive care unit; thereafter, blood- and post-mortem brain tissue cultures grew Listeria monocytogenes. Conclusion This case report illustrates the importance of neuromonitoring in patients with severe brain damage. We also show that, despite prompt antibiotic treatment and dexamethasone administration, listerial infection of the central nervous system can be lethal.

  17. Unexperienced mechanical effects of muscular fatigue can be predicted by the Central Nervous System as revealed by anticipatory postural adjustments.

    Science.gov (United States)

    Monjo, Florian; Forestier, Nicolas

    2014-09-01

    Muscular fatigue effects have been shown to be compensated by the implementation of adaptive compensatory neuromuscular strategies, resulting in modifications of the initial motion coordination. However, no studies have focused on the efficiency of the feedforward motor commands when muscular fatigue occurs for the first time during a particular movement. This study included 18 healthy subjects who had to perform arm-raising movements in a standing posture at a maximal velocity before and after a fatiguing procedure involving focal muscles. The arm-raising task implies the generation of predictive processes of control, namely Anticipatory Postural Adjustments (APAs), whose temporal and quantitative features have been shown to be dependent on the kinematics of the upcoming arm-raising movement. By altering significantly the kinematic profile of the focal movement with a fatiguing procedure, we sought to find out whether APAs scaled to the lower mechanical disturbance. APAs were measured using surface electromyography. Following the fatiguing procedure, acceleration peaks of the arm movement decreased by ~27%. APAs scaled to this lower fatigue-related disturbance during the very first trial post-fatigue, suggesting that the Central Nervous System can predict unexperienced mechanical effects of muscle fatigue. It is suggested that these results are accounted for by prediction processes in which the central integration of the groups III and IV afferents leads to an update of the internal model by remapping the relationship between focal motor command magnitude and the actual mechanical output.

  18. Behaviour of oligodendrocytes and Schwann cells in an experimental model of toxic demyelination of the central nervous system

    OpenAIRE

    Dominguita Lühers Graça; Eduardo Fernandes Bondan; Luis Antonio Violin Dias Pereira; Cristina Gevehr Fernandes; Paulo César Maiorka

    2001-01-01

    Oligodendrocytes and Schwann cells are engaged in myelin production, maintenance and repairing respectively in the central nervous system (CNS) and the peripheral nervous system (PNS). Whereas oligodendrocytes act only within the CNS, Schwann cells are able to invade the CNS in order to make new myelin sheaths around demyelinated axons. Both cells have some limitations in their activities, i.e. oligodendrocytes are post-mitotic cells and Schwann cells only get into the CNS in the absence of a...

  19. SOD1 Lysine 123 Acetylation in the Adult Central Nervous System

    Directory of Open Access Journals (Sweden)

    Michael Kaliszewski

    2016-12-01

    Full Text Available Superoxide dismutase 1 (SOD1 knockout (Sod1-/- mice exhibit an accelerated aging phenotype. In humans, SOD1 mutations are linked to familial amyotrophic lateral sclerosis (ALS, and post-translational modification (PTM of wild-type SOD1 has been associated with sporadic ALS. Reversible acetylation regulates many enzymes and proteomic studies have identified SOD1 acetylation at lysine 123 (K123. The function and distribution of K123-acetylated SOD1 (Ac-K123 SOD1 in the nervous system is unknown. Here, we generated polyclonal rabbit antibodies against Ac-K123 SOD1. Sod1 deletion in Sod1-/- mice, K123 mutation, or preabsorption with Ac-K123 peptide all abolished antibody binding. Using immunohistochemistry, we assessed Ac-K123 SOD1 distribution in the normal adult mouse nervous system. In the cerebellum, Ac-K123 SOD1 staining was prominent in cell bodies of the granular cell layer and Purkinje cell dendrites and interneurons of the molecular cell layer. In the hippocampus, Ac-K123 SOD1 staining was strong in the fimbria, subiculum, pyramidal cells, and Schaffer collateral fibers of the cornus ammonis (CA1 region and granule and neuronal progenitor cells of the dentate gyrus. In addition, labeling was observed in the choroid plexus and the ependyma of the brain ventricles and central canal of the spinal cord. In the olfactory bulb, Ac-K123 SOD1 staining was prominent in axons of sensory neurons, in cell bodies of interneurons, and neurites of the mitral and tufted cells. In the retina, labeling was strong in the retinal ganglion cell layer and axons of retinal ganglion cells, the inner nuclear layer, and cone photoreceptors of the outer nuclear layer. In summary, our findings describe Ac-K123 SOD1 distribution to distinct regions and cell types of the normal nervous system.

  20. Specific lipidome signatures in central nervous system from methionine-restricted mice.

    Science.gov (United States)

    Jové, Mariona; Ayala, Victòria; Ramírez-Núñez, Omar; Naudí, Alba; Cabré, Rosanna; Spickett, Corinne M; Portero-Otín, Manuel; Pamplona, Reinald

    2013-06-07

    Membrane lipid composition is an important correlate of the rate of aging of animals. Dietary methionine restriction (MetR) increases lifespan in rodents. The underlying mechanisms have not been elucidated but could include changes in tissue lipidomes. In this work, we demonstrate that 80% MetR in mice induces marked changes in the brain, spinal cord, and liver lipidomes. Further, at least 50% of the lipids changed are common in the brain and spinal cord but not in the liver, suggesting a nervous system-specific lipidomic profile of MetR. The differentially expressed lipids includes (a) specific phospholipid species, which could reflect adaptive membrane responses, (b) sphingolipids, which could lead to changes in ceramide signaling pathways, and (c) the physiologically redox-relevant ubiquinone 9, indicating adaptations in phase II antioxidant response metabolism. In addition, specific oxidation products derived from cholesterol, phosphatidylcholine, and phosphatidylethanolamine were significantly decreased in the brain, spinal cord, and liver from MetR mice. These results demonstrate the importance of adaptive responses of membrane lipids leading to increased stress resistance as a major mechanistic contributor to the lowered rate of aging in MetR mice.

  1. Growth Arrest Specific 1 (GAS1) Is Abundantly Expressed in the Adult Mouse Central Nervous System

    Science.gov (United States)

    Zarco, Natanael; Bautista, Elizabeth; Cuéllar, Manola; Vergara, Paula; Flores-Rodriguez, Paola; Aguilar-Roblero, Raúl

    2013-01-01

    Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS. PMID:23813868

  2. Peripheral nervous system genes expressed in central neurons induce growth on inhibitory substrates.

    Directory of Open Access Journals (Sweden)

    William J Buchser

    Full Text Available Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs. Peripheral nervous system (PNS neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS's enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG or permissive (laminin substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX. Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons.

  3. Chemokines Referee Inflammation within the Central Nervous System during Infection and Disease

    Directory of Open Access Journals (Sweden)

    Douglas M. Durrant

    2014-01-01

    Full Text Available The discovery that chemokines and their receptors are expressed by a variety of cell types within the normal adult central nervous system (CNS has led to an expansion of their repertoire as molecular interfaces between the immune and nervous systems. Thus, CNS chemokines are now divided into those molecules that regulate inflammatory cell migration into the CNS and those that initiate CNS repair from inflammation-mediated tissue damage. Work in our laboratory throughout the past decade has sought to elucidate how chemokines coordinate leukocyte entry and interactions at CNS endothelial barriers, under both homeostatic and inflammatory conditions, and how they promote repair within the CNS parenchyma. These studies have identified several chemokines, including CXCL12 and CXCL10, as critical regulators of leukocyte migration from perivascular locations. CXCL12 additionally plays an essential role in promoting remyelination of injured white matter. In both scenarios we have shown that chemokines serve as molecular links between inflammatory mediators and other effector molecules involved in neuroprotective processes.

  4. Toxocariasis of the central nervous system: with report of two cases

    Directory of Open Access Journals (Sweden)

    Moreira-Silva Sandra F.

    2004-01-01

    Full Text Available Clinical involvement of the nervous system in visceral larva migrans due to Toxocara is rare, although in experimental animals the larvae frequently migrate to the brain. A review of the literature from the early 50's to date found 29 cases of brain involvement in toxocariasis. In 20 cases, various clinical and laboratory manifestations of eosinophilic meningitis, encephalitis, myelitis or radiculopathy were reported. We report two children with neurological manifestations, in which there was cerebrospinal fluid pleocytosis with marked eosinophilia and a positive serology for Toxocara both in serum and CSF. Serology for Schistosoma mansoni, Cysticercus cellulosae, Toxoplasma and cytomegalovirus were negative in CSF, that was sterile in both cases. Improvement of signs and symptoms after specific treatment (albendazole or thiabendazole was observed in the two cases. A summary of data described in the 25 cases previously reported is presented and we conclude that in cases of encephalitis and myelitis with cerebrospinal fluid pleocytosis and eosinophilia, parasitic infection of the central nervous system should be suspected and serology should be performed to establish the correct diagnosis and treatment.

  5. Growth arrest specific 1 (GAS1) is abundantly expressed in the adult mouse central nervous system.

    Science.gov (United States)

    Zarco, Natanael; Bautista, Elizabeth; Cuéllar, Manola; Vergara, Paula; Flores-Rodriguez, Paola; Aguilar-Roblero, Raúl; Segovia, José

    2013-10-01

    Growth arrest specific 1 (GAS1) is a pleiotropic protein that induces apoptosis and cell arrest in different tumors, but it is also involved in the development of the nervous system and other tissues and organs. This dual ability is likely caused by its capacity to interact both by inhibiting the intracellular signaling cascade induced by glial cell-line derived neurotrophic factor and by facilitating the activity of the sonic hedgehog pathway. The presence of GAS1 mRNA has been described in adult mouse brain, and here we corroborated this observation. We then proceeded to determine the distribution of the protein in the adult central nervous system (CNS). We detected, by western blot analysis, expression of GAS1 in olfactory bulb, caudate-putamen, cerebral cortex, hippocampus, mesencephalon, medulla oblongata, cerebellum, and cervical spinal cord. To more carefully map the expression of GAS1, we performed double-label immunohistochemistry and noticed expression of GAS1 in neurons in all brain areas examined. We also observed expression of GAS1 in astroglial cells, albeit the pattern of expression was more restricted than that seen in neurons. Briefly, in the present article, we report the widespread distribution and cellular localization of the GAS1 native protein in adult mammalian CNS.

  6. Amylin Acts in the Central Nervous System to Increase Sympathetic Nerve Activity

    Science.gov (United States)

    Fernandes-Santos, Caroline; Zhang, Zhongming; Morgan, Donald A.; Guo, Deng-Fu; Russo, Andrew F.

    2013-01-01

    The pancreatic hormone amylin acts in the central nervous system (CNS) to decrease food intake and body weight. We hypothesized that amylin action in the CNS promotes energy expenditure by increasing the activity of the sympathetic nervous system. In mice, ip administration of amylin significantly increased c-Fos immunoreactivity in hypothalamic and brainstem nuclei. In addition, mice treated with intracerebroventricular (icv) amylin (0.1 and 0.2 nmol) exhibited a dose-related decrease in food intake and body weight, measured 4 and 24 hours after treatment. The icv injection of amylin also increased body temperature in mice. Using direct multifiber sympathetic nerve recording, we found that icv amylin elicited a significant and dose-dependent increase in sympathetic nerve activity (SNA) subserving thermogenic brown adipose tissue (BAT). Of note, icv injection of amylin also evoked a significant and dose-related increase in lumbar and renal SNA. Importantly, icv pretreatment with the amylin receptor antagonist AC187 (20 nmol) abolished the BAT SNA response induced by icv amylin, indicating that the sympathetic effects of amylin are receptor-mediated. Conversely, icv amylin-induced BAT SNA response was enhanced in mice overexpressing the amylin receptor subunit, RAMP1 (receptor-activity modifying protein 1), in the CNS. Our data demonstrate that CNS action of amylin regulates sympathetic nerve outflow to peripheral tissues involved in energy balance and cardiovascular function. PMID:23645151

  7. Effects of low-dose prenatal irradiation on the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    Scientists are in general agreement about the effects of prenatal irradiation, including those affecting the central nervous system (CNS). Differing concepts and research approaches have resulted in some uncertainties about some quantitative relationships, underlying interpretations, and conclusions. Examples of uncertainties include the existence of a threshold, the quantitative relationships between prenatal radiation doses and resulting physical and functional lesions, and processes by which lesions originate and develop. A workshop was convened in which scientists with varying backgrounds and viewpoints discussed these relationships and explored ways in which various disciplines could coordinate concepts and methodologies to suggest research directions for resolving uncertainties. This Workshop Report summarizes, in an extended fashion, salient features of the presentations on the current status of our knowledge about the radiobiology and neuroscience of prenatal irradiation and the relationships between them.

  8. Clinical features and early treatment response of central nervous system involvement in childhood acute lymphoblastic leukemia.

    Science.gov (United States)

    Levinsen, Mette; Taskinen, Mervi; Abrahamsson, Jonas; Forestier, Erik; Frandsen, Thomas L; Harila-Saari, Arja; Heyman, Mats; Jonsson, Olafur G; Lähteenmäki, Päivi M; Lausen, Birgitte; Vaitkevičienė, Goda; Asberg, Ann; Schmiegelow, Kjeld

    2014-08-01

    Central nervous system (CNS) involvement in childhood acute lymphoblastic leukemia (ALL) remains a therapeutic challenge. To explore leukemia characteristics of patients with CNS involvement at ALL diagnosis, we analyzed clinical features and early treatment response of 744 patients on Nordic-Baltic trials. CNS status was classified as CNS1 (no CSF blasts), CNS2 ( 0.15). The 12-year event-free survival for patients with leukemic mass on neuroimaging did not differ from patients with negative or no scan (0.50 vs. 0.60; P = 0.7) or between patients with symptoms or signs suggestive of CNS leukemia and patients without such characteristics (0.50 vs. 0.61; P = 0.2). CNS involvement at diagnosis is associated with adverse prognostic features but does not indicate a less chemosensitive leukemia. © 2014 Wiley Periodicals, Inc.

  9. Cochlear implantation in patients affected by superficial hemosiderosis of the central nervous system.

    Science.gov (United States)

    Berrettini, S; De Vito, A; Bruschini, L; Fortunato, S; Forli, F

    2012-01-01

    The objectives of the study were to: report three more cases of cochlear implantation (CI) in patients affected by superficial hemosiderosis of the central nervous system (SH-CNS); assess whether CI may be a viable option in this disease. The study was conducted in a tertiary referral center. Pre-operative and post-operative clinical notes of three patients with SH-CNS were reviewed. Two out of three cases showed very good results with CI in sentence perception in noise over 90%. For the other case, hearing performance was very low. He showed only disyllabic word identification abilities in a closed set (40%). Cochlear implantation may be a viable option for patients with severe to profound sensorineural hearing loss due to SH-CNS. In these cases, an adequate pre-operative counseling, explaining the possibility of poor post-operative results and/or the worsening of the outcomes in the following years, is important.

  10. Primary angiitis of the central nervous system with diffuse cerebral mass effect and giant cells.

    LENUS (Irish Health Repository)

    Kinsella, J A

    2012-02-01

    Primary angiitis of the central nervous system (PACNS), also called primary CNS vasculitis, is an idiopathic inflammatory condition affecting only intracranial and spinal cord vessels, particularly medium-sized and smaller arteries and arterioles. Angiography and histopathology typically do not reveal evidence of systemic vasculitis.(1,2) Histopathology usually reveals granulomatous inflammation affecting arterioles and small arteries of the parenchyma and\\/or leptomeninges, similar to that seen in Takayasu\\'s or giant cell arteritis.(1-3) We report a patient with biopsy-proven PACNS with giant cells and cerebral mass effect on MRI. Magnetic resonance angiography and cerebral angiography appeared normal and there was no evidence of extracranial vasculitis.

  11. Drug transport into the central nervous system: using newer findings about the blood-brain barriers.

    Science.gov (United States)

    Banks, William A

    2012-06-01

    The blood-brain barriers (BBBs) represent one of the biggest challenges for the effective delivery of drugs today. Discoveries made in the last 30 years offer new strategies for central nervous system (CNS) drug development, but have yet to be fully incorporated into the field. Here, we examine seven recently discovered aspects of the BBB and how they have been or could be developed for drug delivery. These areas are brain-to-blood (efflux) transporters, immune cell trafficking into the brain under physiologic conditions, mechanisms by which antibodies can access the CNS, Trojan horse delivery systems, blood-to-brain transport systems for biologicals, lectin interactions and ligand modifications that enhance BBB penetration, and secretory capacities of cells comprising the BBBs.

  12. Effective components of Chinese herbs reduce central nervous system function decline induced by iron overload

    Directory of Open Access Journals (Sweden)

    Xian-hui Dong

    2015-01-01

    Full Text Available Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer′s disease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer′s disease patients. An APP swe/PS1ΔE9 double transgenic mouse model of Alzheimer′s disease was used. The intragastric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer′s disease. These compounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer′s disease.

  13. [Neuroimaging of Langerhans cell histiocytosis in the central nervous system of children].

    Science.gov (United States)

    De La Hoz Polo, M; Rebollo Polo, M; Fons Estupiña, C; Muchart López, J; Cruz Martinez, O

    2015-01-01

    Langerhans cell histiocytosis (LCH) is a rare disease characterized by the accumulation within tissues of anomalous dendritic cells similar to Langerhans cells. The clinical presentation varies, ranging from the appearance of a single bone lesion to multisystemic involvement. Central nervous system (CNS) involvement, manifesting as diabetes insipidus secondary to pituitary involvement, has been known since the original description of the disease. Two types of CNS lesions are currently differentiated. The first, pseudotumoral lesions with infiltration by Langerhans cells, most commonly manifests as pituitary infiltration. The second, described more recently, consists of neurodegenerative lesions of the CNS associated with neurologic deterioration. This second type of lesion constitutes a complication of the disease; however, there is no consensus about the cause of this complication. Our objective was to describe the radiologic manifestations of LCH in the CNS in pediatric patients. Copyright © 2013 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  14. Management of pediatric central nervous system emergencies: a review for general radiologists.

    Science.gov (United States)

    Rebollo Polo, M

    2016-05-01

    To review the most common and most important diseases and disorders of the central nervous system (CNS) in pediatric emergencies, discussing the indications for different imaging tests in each context. In pediatric patients, acute neurologic symptoms (seizures, deteriorating level of consciousness, focal neurologic deficits, etc.) can appear in diverse clinical situations (trauma, child abuse, meningoencephalitis, ischemia…). It is important to decide on the most appropriate neuroimaging diagnostic algorithm for each situation and age group, as well as to know the signs of the most typical lesions that help us in the etiological differential diagnosis. Pediatric patients' increased vulnerability to ionizing radiation and the possible need for sedation in studies that require more time are factors that should be taken into account when indicating an imaging test. It is essential to weigh the risks and benefits for the patient and to avoid unnecessary studies. Copyright © 2016 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  15. A psychodynamic model of behavior after acute central nervous system damage.

    Science.gov (United States)

    Groswasser, Z; Stern, M J

    1998-02-01

    This article describes a conceptual psychodynamic model for understanding the neurobehavioral manifestations of acute central nervous system damage (ACNSD) displayed by patients during the rehabilitation process. According to the proposed model, patientsO behavioral responses are viewed as their only means of emotional expression and therefore may not be considered entirely abnormal when viewed from the perspective of patientsO interpersonal contexts. An improved understanding of the dynamic processes through which recovering patients with ACNSD journey may lead to better interaction between the patient and the therapeutic environment, the interdisciplinary team, and family members. Combining this proposed psychodynamic model with an emerging understanding of the neurobehavioral foundations of aggression and depression may also lead to a more rational approach to intervention with various psychopharmacologic agents. During the rehabilitation process, understanding patients' cognitive deficits, motivational drives, and emotional needs and proper implementation of medical and environmental treatment can ultimately lead to a better psychosocial outcome.

  16. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    Directory of Open Access Journals (Sweden)

    Bruna Fernandes Azevedo

    2012-01-01

    Full Text Available Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced.

  17. Pharmacological studies of the aqueous extract of Sapindus trifoliatus on central nervous system: possible antimigraine mechanisms.

    Science.gov (United States)

    Arulmozhi, D K; Veeranjaneyulu, A; Bodhankar, S L; Arora, S K

    2005-03-21

    The aqueous extract of pericarp of fruits of Sapindus trifoliatus (ST) Linn., family Sapindaceae was evaluated for its potential effects on central nervous system in mice. The extract at doses 20 and 100 mg/kg, i.p. significantly (p < 0.001) reduced the spontaneous locomotor activity and at 100 mg/kg, increased the thiopental-induced sleeping time. In rota-rod motor co-ordination test, ST at 100 mg/kg, i.p. significantly (p < 0.05-0.01) reduced the endurance time. Further ST exhibited no protection against maximal electroshock (MES)- and pentylenetetrazole (PTZ)-induced convulsions in mice. In receptor radioligand binding studies, ST exhibited affinity towards dopaminergic, alpha-adrenergic and muscarnic receptors. The findings suggest that, ST may possess principles with potential neuroleptic properties.

  18. Risk of defeats in the central nervous system during deep space missions.

    Science.gov (United States)

    Kokhan, Viktor S; Matveeva, Marina I; Mukhametov, Azat; Shtemberg, Andrey S

    2016-12-01

    Space flight factors (SFF) significantly affect the operating activity of astronauts during deep space missions. Gravitational overloads, hypo-magnetic field and ionizing radiation are the main SFF that perturb the normal activity of the central nervous system (CNS). Acute and chronic CNS risks include alterations in cognitive abilities, reduction of motor functions and behavioural changes. Multiple experimental works have been devoted to the SFF effects on integrative functional activity of the brain; however, the model parameters utilized have not always been ideal and consistent. Even less is known regarding the combined effects of these SFF in a real interplanetary mission, for example to Mars. Our review aims to systemize and analyse the last advancements in astrobiology, with a focus on the combined effects of SFF; as well as to discuss on unification of the parameters for ground-based models of deep space missions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Progress in the Biological Understanding and Management of Breast Cancer-Associated Central Nervous System Metastases

    Science.gov (United States)

    Gonzalez-Angulo, Ana M.

    2013-01-01

    Metastasis to the central nervous system (CNS) is a devastating neurological complication of systemic cancer. Brain metastases from breast cancer have been documented to occur in approximately 10%–16% of cases over the natural course of the disease with leptomeningeal metastases occurring in approximately 2%–5% of cases of breast cancer. CNS metastases among women with breast cancer tend to occur among those who are younger, have larger tumors, and have a more aggressive histological subtype such as the triple negative and HER2-positive subtypes. Treatment of CNS metastases involves various combinations of whole brain radiation therapy, surgery, stereotactic radiosurgery, and chemotherapy. We will discuss the progress made in the treatment and prevention of breast cancer-associated CNS metastases and will delve into the biological underpinnings of CNS metastases including evaluating the role of breast tumor subtype on the incidence, natural history, prognostic outcome, and impact of therapeutic efficacy. PMID:23740934

  20. Diverse roles of extracellular calcium-sensing receptor in the central nervous system

    DEFF Research Database (Denmark)

    Bandyopadhyay, Sanghamitra; Tfelt-Hansen, Jacob; Chattopadhyay, Naibedya

    2010-01-01

    The G-protein-coupled calcium-sensing receptor (CaSR), upon activation by Ca(2+) or other physiologically relevant polycationic molecules, performs diverse functions in the brain. The CaSR is widely expressed in the central nervous system (CNS) and is characterized by a robust increase in its...... expression, activation, signaling, and functions. In normal physiology as well as in pathologic conditions, CaSR is activated by signals arising from mineral ions, amino acids, polyamines, glutathione, and amyloid-beta in conjunction with Ca(2+) and other divalent cationic ligands. CaSR activation regulates...... membrane excitability of neurons and glia and affects myelination, olfactory and gustatory signal integration, axonal and dendritic growth, and gonadotrophin-releasing hormonal-neuronal migration. Insofar as the CaSR is a clinically important therapeutic target for parathyroid disorders, development of its...

  1. Gestational trophoblastic disease: does central nervous system chemoprophylaxis have a role?

    Science.gov (United States)

    Gillespie, A M; Siddiqui, N; Coleman, R E; Hancock, B W

    1999-01-01

    In the UK there are standardized surveillance procedures for gestational trophoblastic disease. However, there are differences in practice between the two treatment centres in terms of definition of persistent gestational trophoblastic disease, prognostic risk assessment and chemotherapeutic regimens. The role of prophylactic chemotherapy for cerebral micrometastatic disease in persistent gestational trophoblastic disease is unclear. We have analysed the outcome of 69 patients with lung metastases who elsewhere might have received prophylactic intrathecal chemotherapy. Of the 69 patients, 67 received intravenous chemotherapy only. The other two patients had cerebral metastases at presentation. One patient who received only intravenous chemotherapy subsequently developed a cerebral metastasis, but this patient's initial treatment was compromised by non-compliance. This experience supports our current policy of not treating patients with pulmonary metastases, without clinical evidence of central nervous system (CNS) involvement, with prophylactic intrathecal therapy. © 1999 Cancer Research Campaign PMID:10098770

  2. Risk Factors for Subsequent Central Nervous System Tumors in Pediatric Allogeneic Hematopoietic Cell Transplant

    DEFF Research Database (Denmark)

    Gabriel, Melissa; Shaw, Bronwen E; Brazauskas, Ruta

    2017-01-01

    Survivors of hematopoietic cell transplantation (HCT) are at risk of subsequent solid tumors, including central nervous system (CNS) tumors. The risk of CNS tumors after HCT in pediatric HCT recipients is not known. We evaluated the incidence and risk factors for CNS tumors in pediatric recipients...... of allogeneic HCT reported to the Center for International Blood and Marrow Transplant Research between 1976 and 2008. A case control design was used. There were no CNS tumors in the nonmalignant cohort (n = 4543) or in those undergoing HCT for solid tumors (n = 26). There were 59 CNS tumors in 8720 patients...... transplanted for hematologic malignancies. In comparison with the general population, pediatric HCT recipients with hematologic malignancies had a 33 times higher than expected rate of CNS tumors (95% confidence interval, 22.98 to 45.77; P 

  3. Advanced diffusion MRI and biomarkers in the central nervous system: a new approach.

    Science.gov (United States)

    Martín Noguerol, T; Martínez Barbero, J P

    The introduction of diffusion-weighted sequences has revolutionized the detection and characterization of central nervous system (CNS) disease. Nevertheless, the assessment of diffusion studies of the CNS is often limited to qualitative estimation. Moreover, the pathophysiological complexity of the different entities that affect the CNS cannot always be correctly explained through classical models. The development of new models for the analysis of diffusion sequences provides numerous parameters that enable a quantitative approach to both diagnosis and prognosis as well as to monitoring the response to treatment; these parameters can be considered potential biomarkers of health and disease. In this update, we review the physical bases underlying diffusion studies and diffusion tensor imaging, advanced models for their analysis (intravoxel coherent motion and kurtosis), and the biological significance of the parameters derived. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Enhanced microglial clearance of myelin debris in T cell-infiltrated central nervous system

    DEFF Research Database (Denmark)

    Nielsen, Helle Hvilsted; Ladeby, Rune; Fenger, Christina

    2009-01-01

    Acute multiple sclerosis lesions are characterized by accumulation of T cells and macrophages, destruction of myelin and oligodendrocytes, and axonal damage. There is, however, limited information on neuroimmune interactions distal to sites of axonal damage in the T cell-infiltrated central nervous...... system. We investigated T-cell infiltration, myelin clearance, microglial activation, and phagocytic activity distal to sites of axonal transection through analysis of the perforant pathway deafferented dentate gyrus in SJL mice that had received T cells specific for myelin basic protein (TMBP...... with TMBP but not TOVA enhanced the microglial response to axonal transection and microglial phagocytosis of myelin debris associated with the degenerating axons. Because myelin antigen-specific immune responses may provoke protective immunity, increased phagocytosis of myelin debris might enhance...

  5. POSSIBILITIES OF BREAST FEEDING ORGANIZATION FOR CHILDREN WITH PERINATAL LESIONS OF CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    O. L. Lukoyanova

    2012-01-01

    Full Text Available Acute and/or chronic hypoxia is a leading cause of perinatal lesions of central nervous system. Severe consequences of this condition can be the reason of temporary withdrawal from breast-feeding started soon after birth. Study objectives included: scrutiny of lactation establishment, influence of various factors on lactation duration in mothers of children with perinatal lesions of CNS. Study included 86 pairs mother-child, with duration of 12 months. It has been shown that in cases where breast feeding was impossible, regular expression of breast milk with the help of breast pump in the early lactation period allows not only to organize breast feeding by the time of discharge from the hospital, but also to extend its duration almost to the normal one. Severity of perinatal CNS lesion does not correspond with the duration of lactation period of the mother.

  6. Glial cells of the central nervous system of Bothrops jararaca (Reptilia, Ofidae: an ultrastructural study

    Directory of Open Access Journals (Sweden)

    Eduardo F. Bondan

    2015-07-01

    Full Text Available Abstract Although ultrastructural characteristics of mature neuroglia in the central nervous system (CNS are very well described in mammals, much less is known in reptiles, especially serpents. In this context, two specimens of Bothrops jararaca were euthanized for morphological analysis of CNS glial cells. Samples from telencephalon, mesencephalon and spinal cord were collected and processed for light and transmission electron microscopy investigation. Astrocytes, oligodendrocytes, microglial cells and ependymal cells, as well as myelin sheaths, presented similar ultrastructural features to those already observed in mammals and tended to maintain their general aspect all over the distinct CNS regions observed. Morphological similarities between reptilian and mammalian glia are probably linked to their evolutionary conservation throughout vertebrate phylogeny.

  7. A case of Erdheim Chester disease with central nervous system involvement

    Directory of Open Access Journals (Sweden)

    Anil Kumar Patil

    2015-01-01

    Full Text Available Erdheim Chester disease (ECD is a rare non-Langerhans cell histiocytosis, commonly involving the musculoskeletal system. Other tissue can also be involved, including the central nervous system with wide spectrum of clinical features, at times being nonspecific. This can cause diagnostic dilemmas with delay in diagnosis and initiation of therapy. Here we describe a 63-year-old man who had presented with ataxia and behavioral changes, bony pains, weight loss, and fatigue. His computed tomography (CT, 99Tc scintigraphy and histopathological features on bone biopsy were consistent with ECD. Thus, ECD should be considered as a differential diagnosis in patients presenting with bony pain and nonspecific features of multiorgan involvement.

  8. Biology of Adeno-Associated Viral Vectors in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Giridhar eMurlidharan

    2014-09-01

    Full Text Available Gene therapy is a promising approach for treating a spectrum of neurological and neurodegenerative disorders by delivering corrective genes to the central nervous system (CNS. In particular, Adeno-Associated Viruses (AAV have emerged as promising tools for clinical gene transfer in a broad range of genetic disorders with neurological manifestations. In the current review, we have attempted to bridge our understanding of the biology of different AAV strains with their transduction profiles, cellular tropisms and transport mechanisms within the CNS. Continued efforts to dissect AAV-host interactions within the brain are likely to aid in the development of improved vectors for CNS-directed gene transfer applications in the clinic.

  9. Space-brain: The negative effects of space exposure on the central nervous system.

    Science.gov (United States)

    Jandial, Rahul; Hoshide, Reid; Waters, J Dawn; Limoli, Charles L

    2018-01-01

    Journey to Mars will be a large milestone for all humankind. Throughout history, we have learned lessons about the health dangers associated with exploratory voyages to expand our frontiers. Travelling through deep space, the final frontier, is planned for the 2030s by NASA. The lessons learned from the adverse health effects of space exposure have been encountered from previous, less-lengthy missions. Prolonged multiyear deep space travel to Mars could be encumbered by significant adverse health effects, which could critically affect the safety of the mission and its voyagers. In this review, we discuss the health effects of the central nervous system by space exposure. The negative effects from space radiation and microgravity have been detailed. Future aims and recommendations for the safety of the voyagers have been discussed. With proper planning and anticipation, the mission to Mars can be done safely and securely.

  10. PICK1 expression in the Drosophila central nervous system primarily occurs in the neuroendocrine system

    DEFF Research Database (Denmark)

    Jansen, Anna M; Nässel, Dick R; Madsen, Kenneth L

    2009-01-01

    in the adult and larval Drosophila central nervous system. PICK1 was found in cell bodies in the subesophageal ganglion, the antennal lobe, the protocerebrum, and the neuroendocrine center pars intercerebralis. The cell types that express PICK1 were identified using GAL4 enhancer trap lines. The PICK1...... (AMPA) receptor subunit GluR2 and the dopamine transporter. PICK1 is strongly implicated in GluR2 trafficking and synaptic plasticity. In mammals, PICK1 has been characterized extensively in cell culture studies. To study PICK1 in an intact system, we characterized PICK1 expression immunohistochemically...... neurons in the neuroendocrine system, which express the transcription factor DIMM and the amidating enzyme peptidylglycine-alpha-hydroxylating monooxygenase (PHM). The PICK1-positive cells include neurosecretory cells that produce the insulin-like peptide dILP2. PICK1 expression in insulin-producing cells...

  11. Gut-central nervous system axis is a target for nutritional therapies

    Directory of Open Access Journals (Sweden)

    Pimentel Gustavo D

    2012-04-01

    Full Text Available Abstract Historically, in the 1950s, the chemist Linus Pauling established a relationship between decreased longevity and obesity. At this time, with the advent of studies involving the mechanisms that modulate appetite control, some researchers observed that the hypothalamus is the "appetite centre" and that peripheral tissues have important roles in the modulation of gut inflammatory processes and levels of hormones that control food intake. Likewise, the advances of physiological and molecular mechanisms for patients with obesity, type 2 diabetes mellitus, inflammatory bowel diseases, bariatric surgery and anorexia-associated diseases has been greatly appreciated by nutritionists. Therefore, this review highlights the relationship between the gut-central nervous system axis and targets for nutritional therapies.

  12. PET/MRI of central nervous system: current status and future perspective

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhen Lu; Zhang, Long Jiang [Jinling Hospital, Medical School of Nanjing University, Department of Medical Imaging, Nanjing, Jiangsu (China)

    2016-10-15

    Imaging plays an increasingly important role in the early diagnosis, prognosis prediction and therapy response evaluation of central nervous system (CNS) diseases. The newly emerging hybrid positron emission tomography/magnetic resonance imaging (PET/MRI) can perform ''one-stop-shop'' evaluation, including anatomic, functional, biochemical and metabolic information, even at the molecular level, for personalised diagnoses and treatments of CNS diseases. However, there are still several problems to be resolved, such as appropriate PET detectors, attenuation correction and so on. This review will introduce the basic physical principles of PET/MRI and its potential clinical applications in the CNS. We also provide the future perspectives for this field. (orig.)

  13. NEUROSPECIFIC ENOLASE IN DIAGNOSTICS FOR PERINATAL DAMAGE TO THE CENTRAL NERVOUS SYSTEM IN PREMATURE INFANTS

    Directory of Open Access Journals (Sweden)

    E.G. Novopol'tseva

    2010-01-01

    Full Text Available Neurospecific enolase is an endoenzyme of the central nervous system (CNS present in neurons of the brain and peripheral neuraltissue. This is currently the only known general marker of all differentiated neurons. The article illustrates the results of determining this enzyme in premature infants with fetal infections and assessment of their importance as a marker of damage to CNS in this group of children. A high level of neurospecific enolase in children with infectious and inflammatory diseases is not only the marker of damage to blood-brain barrier, but also reflects the nature of damage (hypoxia, intoxication, inflammation. This parameter in premature infants with various pathologies may serve as a degree of perinatal damage severity, and along with other parameters, determine the performed therapy tactics. Key words: neurospecific enolase, marker of CNS damage, perinatal damage, children. (Pediatric Pharmacology. – 2010; 7(3:66-70

  14. Kinin Receptor Antagonists as Potential Neuroprotective Agents in Central Nervous System Injury

    Directory of Open Access Journals (Sweden)

    Anna V Leonard

    2010-09-01

    Full Text Available Injury to the central nervous system initiates complex physiological, cellular and molecular processes that can result in neuronal cell death. Of interest to this review is the activation of the kinin family of neuropeptides, in particular bradykinin and substance P. These neuropeptides are known to have a potent pro-inflammatory role and can initiate neurogenic inflammation resulting in vasodilation, plasma extravasation and the subsequent development of edema. As inflammation and edema play an integral role in the progressive secondary injury that causes neurological deficits, this review critically examines kinin receptor antagonists as a potential neuroprotective intervention for acute brain injury, and more specifically, traumatic brain and spinal cord injury and stroke.

  15. The soft mechanical signature of glial scars in the central nervous system

    Science.gov (United States)

    Moeendarbary, Emad; Weber, Isabell P.; Sheridan, Graham K.; Koser, David E.; Soleman, Sara; Haenzi, Barbara; Bradbury, Elizabeth J.; Fawcett, James; Franze, Kristian

    2017-03-01

    Injury to the central nervous system (CNS) alters the molecular and cellular composition of neural tissue and leads to glial scarring, which inhibits the regrowth of damaged axons. Mammalian glial scars supposedly form a chemical and mechanical barrier to neuronal regeneration. While tremendous effort has been devoted to identifying molecular characteristics of the scar, very little is known about its mechanical properties. Here we characterize spatiotemporal changes of the elastic stiffness of the injured rat neocortex and spinal cord at 1.5 and three weeks post-injury using atomic force microscopy. In contrast to scars in other mammalian tissues, CNS tissue significantly softens after injury. Expression levels of glial intermediate filaments (GFAP, vimentin) and extracellular matrix components (laminin, collagen IV) correlate with tissue softening. As tissue stiffness is a regulator of neuronal growth, our results may help to understand why mammalian neurons do not regenerate after injury.

  16. Central Nervous System Regenerative Failure: Role of Oligodendrocytes, Astrocytes, and Microglia

    Science.gov (United States)

    Silver, Jerry; Schwab, Martin E.; Popovich, Phillip G.

    2015-01-01

    Animal studies are now showing the exciting potential to achieve significant functional recovery following central nervous system (CNS) injury by manipulating both the inefficient intracellular growth machinery in neurons, as well as the extracellular barriers, which further limit their regenerative potential. In this review, we have focused on the three major glial cell types: oligodendrocytes, astrocytes, and microglia/macrophages, in addition to some of their precursors, which form major extrinsic barriers to regrowth in the injured CNS. Although axotomized neurons in the CNS have, at best, a limited capacity to regenerate or sprout, there is accumulating evidence that even in the adult and, especially after boosting their growth motor, neurons possess the capacity for considerable circuit reorganization and even lengthy regeneration when these glial obstacles to neuronal regrowth are modified, eliminated, or overcome. PMID:25475091

  17. Survival from tumours of the central nervous system in Danish children

    DEFF Research Database (Denmark)

    Erdmann, Friederike; Winther, Jeanette Falck; Dalton, Susanne Oksbjerg

    2018-01-01

    + siblings 3.60; CI 1.52; 8.53) and a trend of better survival was observed for children with parents of younger age at child's diagnosis and poorer survival of children with parents of older age. Despite free and uniform access to health care services, some family circumstances appear to affect survival......Little is known about social inequalities in childhood cancer survival. We investigated the impact of family circumstances on survival from paediatric central nervous system (CNS) tumours in a nationwide, register-based cohort of Danish children. All children born between 1973 and 2006...... associations between survival and any family characteristic. Analyses by CNS tumour subtypes showed reduced survival for children with glioma when living outside of Copenhagen (HR 1.55; CI 1.03; 2.35). For embryonal CNS tumours, the number of full siblings was associated with worse survival (HR for having 3...

  18. Methotrexate plus idarubicin improves outcome of patients with primary central nervous system lymphoma

    Science.gov (United States)

    Xu, Xiaoping; Chen, Bobin; Zhu, Chen; Li, Pei; Chen, Zi; Ding, Tianling; Ma, Yan; Yuan, Yan; Lin, Zhiguang

    2017-01-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma with poor long-term survival. This study assessed methotrexate (MTX) plus idarubicin (IDA) in treating patients of PCNSL comparing to MTX alone therapy. A total of 100 patients were retrospectively enrolled and subjected to MTX alone (n = 52) and MTX plus IDA (n = 48). The completed response (CR) rate in patients treated with MTX plus IDA was 62.50%, and overall response (OR) rate was 79.17%, which in MTX alone cohort were 42.31% and 63.46% respectively. Median progression-free survival (PFS) of patients treated with MTX plus IDA was significantly better than those treated with MTX alone (18.35 months vs.8.45months, P = 0.000). The MTX plus IDA regimen exhibited a significantly better control of PCNSL. Further studies would be needed to confirm these results. PMID:28881844

  19. Fighting the Monster: Applying the Host Damage Framework to Human Central Nervous System Infections

    Directory of Open Access Journals (Sweden)

    Anil A. Panackal

    2016-03-01

    Full Text Available The host damage-response framework states that microbial pathogenesis is a product of microbial virulence factors and collateral damage from host immune responses. Immune-mediated host damage is particularly important within the size-restricted central nervous system (CNS, where immune responses may exacerbate cerebral edema and neurological damage, leading to coma and death. In this review, we compare human host and therapeutic responses in representative nonviral generalized CNS infections that induce archetypal host damage responses: cryptococcal menigoencephalitis and tuberculous meningitis in HIV-infected and non-HIV-infected patients, pneumococcal meningitis, and cerebral malaria. Consideration of the underlying patterns of host responses provides critical insights into host damage and may suggest tailored adjunctive therapeutics to improve disease outcome.

  20. Vitamin D in multiple sclerosis and central nervous system demyelinating disease--a review.

    Science.gov (United States)

    Burton, Jodie M; Costello, Fiona E

    2015-06-01

    The role of vitamin D as both a risk factor and a disease modifier in multiple sclerosis (MS) has a storied history with ongoing accumulation of supportive convergent evidence from animal data, clinical studies and trials, and biomarkers of disease. A detailed review of the published literature ranging from in vivo immune studies to human clinical studies of epidemiology, physiology, immunology, clinical, and radiological markers was undertaken. There is compelling evidence that vitamin D is not only a risk factor for central nervous system (CNS) demyelinating disease (namely MS) but also seems to modify both the inflammatory and neurodegenerative elements of the disease, with large-scale treatment trials underway. The authors also address questions of interest that remain unanswered. Vitamin D is an important contributor and modifiable risk factor in CNS demyelinating disease. Further work will determine whether it is also neuroprotective and if such benefits will apply to other inflammatory and degenerative neurological diseases.

  1. A retrospective study of viral central nervous system infections: relationship amongst aetiology, clinical course and outcome.

    Science.gov (United States)

    Calleri, Guido; Libanore, Valentina; Corcione, Silvia; De Rosa, Francesco G; Caramello, Pietro

    2017-04-01

    To describe the clinical pattern of viral central nervous system (CNS) infections and compare meningitis and encephalitis. This is a retrospective study reporting the clinical characteristics and outcome of 138 cases of viral meningitis and meningoencephalitis in a real life experience at a referral centre in Turin, Northern Italy. Enteroviruses were predominant in younger patients who were mainly presenting with signs of meningitis, had shorter hospital admission and absence of complications, whereas herpesviruses had more often signs of encephalitis, were more frequent in elderly patients, had longer hospital admission and frequent complications and sequelae. Two main clinical entities with different epidemiology, clinical aspects and prognosis may be identified within the group of viral CNS inefctions.

  2. [Autochthonous acute viral and bacterial infections of the central nervous system (meningitis and encephalitis)].

    Science.gov (United States)

    Pérez-Ruiz, Mercedes; Vicente, Diego; Navarro-Marí, José María

    2008-07-01

    Rapid diagnosis of acute viral and bacterial infections of the central nervous system (meningitis and encephalitis) is highly important for the clinical management of the patient and helps to establish early therapy that may solve life-threatening situations, to avoid unnecessary empirical treatments, to reduce hospital stay, and to facilitate appropriate interventions in the context of public health. Molecular techniques, especially real-time polymerase chain reaction, have become the fastest and most sensitive diagnostic procedures for autochthonous viral meningitis and encephalitis, and their role is becoming increasingly important for the diagnosis and control of most frequent acute bacterial meningitides. Automatic and closed systems may encourage the widespread and systematic use of molecular techniques for the diagnosis of these neurological syndromes in most laboratories.

  3. IgG-index predicts neurological morbidity in patients with infectious central nervous system diseases

    Directory of Open Access Journals (Sweden)

    Deisenhammer Florian

    2010-07-01

    Full Text Available Abstract Background Prognosis assessment of patients with infectious and neoplastic disorders of the central nervous system (CNS may still pose a challenge. In this retrospective cross-sectional study the prognostic value of basic cerebrospinal fluid (CSF parameters in patients with bacterial meningitis, viral meningoencephalitis and leptomeningeal metastases were evaluated. Methods White blood cell count, CSF/serum glucose ratio, protein, CSF/serum albumin quotient and Immunoglobulin indices for IgG, IgA and IgM were analyzed in 90 patients with bacterial meningitis, 117 patients with viral meningoencephalitis and 36 patients with leptomeningeal metastases in a total of 480 CSF samples. Results In the initial spinal tap, the IgG-index was the only independent predictor for unfavorable outcome (GOS Conclusion The present study suggests that in infectious CNS diseases an elevated IgG-Index might be an additional marker for the early identification of patients at risk for neurological morbidity.

  4. Central Nervous System Prophylaxis for Aggressive B-cell Lymphoma: Who, What, and When?

    Science.gov (United States)

    Schmitz, Norbert; Nickelsen, Maike; Savage, Kerry J

    2016-12-01

    Central nervous system (CNS) relapse of aggressive B-cell lymphoma is a rare but serious complication with poor survival. Different approaches have been used to define risks factors for CNS relapse and establish prophylactic measures. Although patients with low or intermediate risk of CNS relapse should not undergo special diagnostic or therapeutic measures, CNS MRI as well as cytology and flow cytometry of the cerebrospinal fluid are suggested for high-risk patients (and patients with testicular involvement) at diagnosis, and prophylactic high-dose methotrexate in patients without proven CNS involvement. Future risk and treatment models may include molecular features and new treatment options. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cannabis, Cannabinoids, and Cerebral Metabolism: Potential Applications in Stroke and Disorders of the Central Nervous System.

    Science.gov (United States)

    Latorre, Julius Gene S; Schmidt, Elena B

    2015-09-01

    No compound has generated more attention in both the scientific and recently in the political arena as much as cannabinoids. These diverse groups of compounds referred collectively as cannabinoids have both been vilified due to its dramatic and potentially harmful psychotropic effects and glorified due to its equally dramatic and potential application in a number of acute and chronic neurological conditions. Previously illegal to possess, cannabis, the plant where natural form of cannabinoids are derived, is now accepted in a growing number of states for medicinal purpose, and some even for recreational use, increasing opportunities for more scientific experimentation. The purpose of this review is to summarize the growing body of literature on cannabinoids and to present an overview of our current state of knowledge of the human endocannabinoid system in the hope of defining the future of cannabinoids and its potential applications in disorders of the central nervous system, focusing on stroke.

  6. [Arachnoid cysts of the central nervous system. Algorithms and recommendations for management].

    Science.gov (United States)

    Ros López, Bienvenido; Martín Gallego, Álvaro; Iglesias Moroño, Sara

    2016-01-01

    The symptoms related to the presence of arachnoid cysts in the Central Nervous System depend on the size of the cyst and its growth rate, its location and, in some cases, the associated CSF dynamic disorder. Sometimes there is acute clinical presentation due to cyst rupture or acute bleeding. Although it is generally accepted that asymptomatic or paucisymptomatic cysts do not require surgical treatment, there is no consensus on the therapeutic approach of choice in symptomatic cases. The aim of this paper is to review the literature, analyzing the pros and cons of the three main surgical options (microsurgery, neuroendoscopy, and CSF shunt) based primarily on the location of the cyst. Although treatment must be always individualized, basic management recommendations may be offered. Copyright © 2015 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  7. From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases.

    Science.gov (United States)

    Dubois-Dalcq, Monique; Williams, Anna; Stadelmann, Christine; Stankoff, Bruno; Zalc, Bernard; Lubetzki, Catherine

    2008-07-01

    In the central nervous system (CNS) of man, evolutionary pressure has preserved some capability for remyelination while axonal regeneration is very limited. In contrast, two efficient programmes of regeneration exist in the adult fish CNS, neurite regrowth and remyelination. The rapidity of CNS remyelination is critical since it not only restores fast conduction of nerve impulses but also maintains axon integrity. If myelin repair fails, axons degenerate, leading to increased disability. In the human CNS demyelinating disease multiple sclerosis (MS), remyelination often takes place in the midst of inflammation. Here, we discuss recent studies that address the innate repair capabilities of the axon-glia unit from fish to man. We propose that expansion of this research field will help find ways to maintain or enhance spontaneous remyelination in man.

  8. Muscle high-energy phosphates in central nervous system disorders. The phosphorus MRS experience.

    Science.gov (United States)

    Argov, Z; De Stefano, N; Arnold, D L

    1997-12-01

    Phosphorus magnetic resonance spectroscopy (MRS) was used to study muscle phosphates metabolism in several brain disorders. Those with primary mitochondrial encephalomyopathies showed the typical pattern of impaired oxidative metabolism at rest and during recovery after exercise. In migraine, Parkinson's disease and alternating hemiplegia muscle MRS observations lend support to a possible mitochondrial dysfunction. Similar observations in multiple sclerosis are probably the result of secondary deconditioning. In post polio syndrome and in some of the hereditary ataxias, elevated intracellular inorganic phosphates may be the result of another, yet unknown, metabolic impairment. Thus, muscle phosphate metabolism may be altered in various central nervous system (CNS) disorders by different metabolic impairments. All these possibilities should be taken into account when evaluating MRS results in brain diseases.

  9. Immune responses to non-tumor antigens in the central nervous system

    Directory of Open Access Journals (Sweden)

    Amanda K. Huber

    2014-11-01

    Full Text Available The central nervous system (CNS, once viewed as an immune privileged site protected by the blood-brain barrier (BBB, is now known to be a dynamic immunological environment through which immune cells migrate to prevent and respond to events such as localized infection. During these responses, endogenous glial cells, including astrocytes and microglia, become highly reactive and may secrete inflammatory mediators that regulate BBB permeability and recruit additional circulating immune cells. Here, we discuss the various roles played by astrocytes, microglia, and infiltrating immune cells during host immunity to non-tumor antigens in the CNS, focusing first on bacterial and viral infections, and then turning to responses directed against self-antigens in the setting of CNS autoimmunity.

  10. Recent Advances of the NLRP3 Inflammasome in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Keren Zhou

    2016-01-01

    Full Text Available Inflammasomes are multiprotein complexes that trigger the activation of caspases-1 and subsequently the maturation of proinflammatory cytokines interleukin-1β and interleukin-18. These cytokines play a critical role in mediating inflammation and innate immunity response. Among various inflammasome complexes, the NLRP3 inflammasome is the best characterized, which has been demonstrated as a crucial role in various diseases. Here, we review recently described mechanisms that are involved in the activation and regulation of NLRP3 inflammasome. In addition, we summarize the recent researches on the role of NLRP3 inflammasome in central nervous system (CNS diseases, including traumatic brain injury, ischemic stroke and hemorrhagic stroke, brain tumor, neurodegenerative diseases, and other CNS diseases. In conclusion, the NLRP3 inflammasome may be a promising therapeutic target for these CNS diseases.

  11. The pharmacological effects of Salvia species on the central nervous system.

    Science.gov (United States)

    Imanshahidi, Mohsen; Hosseinzadeh, Hossein

    2006-06-01

    Salvia is an important genus consisting of about 900 species in the family Lamiaceae. Some species of Salvia have been cultivated world wide for use in folk medicine and for culinary purposes. The dried root of Salvia miltiorrhiza, for example, has been used extensively for the treatment of coronary and cerebrovascular disease, sleep disorders, hepatitis, hepatocirrhosis, chronic renal failure, dysmenorrhea, amenorrhea, carbuncles and ulcers. S. officinalis, S. leriifolia, S. haematodes, S. triloba and S. divinorum are other species with important pharmacological effects. In this review, the pharmacological effects of Salvia species on the central nervous system will be reviewed. These include sedative and hypnotic, hallucinogenic, skeletal muscle relaxant, analgesic, memory enhancing, anticonvulsant, neuroprotective and antiparkinsonian activity, as well as the inhibition of ethanol and morphine withdrawal syndrome.

  12. Immune and Inflammatory Responses in the Central Nervous System: Modulation by Astrocytes

    DEFF Research Database (Denmark)

    Penkowa, Milena; hidalgo, juan; aschner, michael

    2008-01-01

    Beyond their long-recognized support functions, astrocytes are active partners of neurons in processing information, synaptic integration, and production of trophic factors, just to name a few. Both microglia and astrocytes produce and secrete a number of cytokines, modulating and integrating...... the communication between hematogenous cells and resident cells of the central nervous system (CNS). This review will address (1) the functions of astrocytes in the normal brain and (2) their role in surveying noxious stimuli within the brain, with particular emphasis on astrocytic responses to damage or disease......, a process referred to as reactive astrogliosis/ astrocytosis. In addition, the review will discuss (3) the role of astrocytes as an abundant cellular source for immunoregulatory (cytokines) factors, and their fundamental roles in the type and extent of CNS immune and inflammatory responses. (4) Recent...

  13. The Continuing Value of Ultrastructural Observation in Central Nervous System Neoplasms in Children

    Directory of Open Access Journals (Sweden)

    Na Rae Kim

    2015-11-01

    Full Text Available Central nervous system (CNS neoplasms are the second most common childhood malignancy after leukemia and the most common solid organ neoplasm in children. Diagnostic dilemmas with small specimens from CNS neoplasms are often the result of multifactorial etiologies such as frozen or fixation artifact, biopsy size, or lack of knowledge about rare or unfamiliar entities. Since the late 1950s, ultrastructural examination has been used in the diagnosis of CNS neoplasms, though it has largely been replaced by immunohistochemical and molecular cytogenetic studies. Nowadays, pathologic diagnosis of CNS neoplasms is achieved through intraoperative cytology, light microscopy, immunohistochemistry, and molecular cytogenetic results. However, the utility of electron microscopy (EM in the final diagnosis of CNS neoplasms and investigation of its pathogenetic origin remains critical. Here, we reviewed the distinguishing ultrastructural features of pediatric CNS neoplasms and emphasize the continuing value of EM in the diagnosis of CNS neoplasms.

  14. Acute and prolonged complement activation in the central nervous system during herpes simplex encephalitis.

    Science.gov (United States)

    Eriksson, Charlotta E; Studahl, Marie; Bergström, Tomas

    2016-06-15

    Herpes simplex encephalitis (HSE) is characterized by a pronounced inflammatory activity in the central nervous system (CNS). Here, we investigated the acute and prolonged complement system activity in HSE patients, by using enzyme-linked immunosorbent assays (ELISAs) for numerous complement components (C). We found increased cerebrospinal fluid concentrations of C3a, C3b, C5 and C5a in HSE patients compared with healthy controls. C3a and C5a concentrations remained increased also compared with patient controls. Our results conclude that the complement system is activated in CNS during HSE in the acute phase, and interestingly also in later stages supporting previous reports of prolonged inflammation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. NEUROGENETIC ASPECTS OF PERINATAL HYPOXIC-ISCHEMIC AFFECTIONS OF THE CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    George A. Karkashadze

    2016-01-01

    Full Text Available Neurogenetics is a thriving young science greatly contributing to the generally accepted concept of the brain development in health and disease. Thereby; scientists are not only able to highlight new key points in traditional ideas about the origin of diseases; but also to completely rethink their view on the problem of pathology development. In particular; new data on neurogenetics of perinatal affections of the central nervous system (CNS has appeared. Genetic factors in varying degrees affect perinatal hypoxic-ischemic CNS affections. Prematurity determination stays the most studied among them. Nevertheless; there is increasing evidence of significant epigenetic regulations of neuro-expression caused by hypoxia; malnutrition of a pregnant woman; stress; smoking; alcohol; drugs that either directly pathologically affect the developing brain; or form a brain phenotype sensitive to a perinatal CNS affection. New data obliges to change the approaches to prevention of perinatal CNS affections.

  16. Primary central nervous system angiosarcoma: a case report and literature review.

    Science.gov (United States)

    La Corte, Emanuele; Acerbi, Francesco; Schiariti, Marco; Broggi, Morgan; Maderna, Emanuela; Pollo, Bianca; Nunziata, Raffaele; Maccagnano, Elio; Ferroli, Paolo

    2015-04-01

    Angiosarcoma is a rare vascular malignant neoplasm that mainly occurs in skin and soft tissues. Intracranial localization is very rare and only a few cases have been reported. This report intends to present the clinical, radiological and pathological pictures of a primary central nervous system angiosarcoma along with a review of the literature. A 35-year-old woman presented at our institution with weakness and sensory disturbances of her right hand. Neuroimaging revealed a roughly round, hemorrhagic and moderately enhancing lesion in the left frontal posterior region. The tumor was totally removed under awake anesthesia and continuous monitoring of motor and language functions. Histopathology revealed an epithelioid angiosarcoma. Radical removal, followed by adjuvant radiotherapy and chemotherapy, is able to completely control the disease for a relatively long period. © 2014 Japanese Society of Neuropathology.

  17. Influence of bee pollen on the central nervous system of animals

    Directory of Open Access Journals (Sweden)

    O. V. Severynovs’ka

    2007-02-01

    Full Text Available Influence of bee pollen on the state of the central nervous system of white laboratory rats is studied. The behavioural reactions were estimated in „an opened field”. The bioelectric activity recording was conducted on frontoparietal cortex, dorsal hippocampus and hypothalamus with the standard electro-physiology equipment. It is shown that bee pollen results in the increase of absolute indices of constituents of brain electric activity, in the reduction of the part of slow low-frequency and in the increase of power of fast high-frequency components. It becomes apparent as a rise in the spontaneous motive activity and development of orientative-trying strategy of behaviour, which specifies on favourable influence of this preparation on CNS.

  18. Primary angiitis of central nervous system: The story of a great masquerader

    Directory of Open Access Journals (Sweden)

    Bhupender Kumar Bajaj

    2015-01-01

    Full Text Available Primary angiitis of central nervous system (PACNS is characterized by non-caseating granulomatous angiitis restricted to CNS. The condition often masquerades as migraine, stroke, epilepsy, dementia, demyelinating disorder and CNS infection. The protean manifestations frequently lead to misdiagnoses. We present a case of a young male from rural background that remained undiagnosed for years as the possibility of PACNS was not considered. He had history suggestive of migraine-like headaches followed by seizures. Subsequently, he developed rapidly progressive dementia and two episodes of hemorrhagic strokes over a short period. The diagnosis was finally clinched by the absence of evidence of systemic vasculitis and the presence of characteristic non-caseating granuloma around vessels of duramater and cerebral parenchyma on brain biopsy. He was started on pulse therapy with intravenous cyclophosphamide and methylprednisolone. The current literature about the condition and its management is reviewed in this report.

  19. Central nervous system activity of the ethanol leaf extract of Sida acuta in rats.

    Science.gov (United States)

    Ibironke, G F; Umukoro, A S; Ajonijebu, D C

    2014-03-01

    The study investigated the pharmacological effects of ethanol extract of Sida acuta leaves on central nervous system activities in mice. Adult male mice (18 - 25g) were used for the study. The extract was administered orally in male mice and evaluated in the following tests: forced swimming, tail suspension, formalin-induced paw licking, acetic acid--induced mouse writhing and apomorphine-induced stereotypy. The results revealed a reduction in the frequency of abdominal constrictions induced by acetic acid, decreased licking times in both phases of the formalin test, reduction in immobility times in forced swimming and tail suspension tests. However, the extract produced no effect on apomorphine-induced stereotyped behaviour. These results suggest that the ethanol extract of Sida acuta contains psychoactive substances with analgesic and antidepressant-like properties which may be beneficial in the management of pain.

  20. Acute viral infections of the central nervous system, 2014-2016, Greece.

    Science.gov (United States)

    Papa, Anna; Papadopoulou, Elpida

    2017-11-23

    In order to investigate the viral etiology of acute infections of central nervous system (CNS), multiplex and single PCRs combined with serology for arboviruses were applied on samples from 132 hospitalized patients in Greece during May 2014-December 2016. A viral pathogen was detected in 52 of 132 (39.4%) cases with acute CNS infection. Enteroviruses predominated (15/52, 28.8%), followed by West Nile virus (9/52, 17.3%). Phleboviruses, varicella-zoster virus, and Epstein-Barr virus accounted for 15.4%, 13.5%, and 11.5% of the cases, respectively. The study gives an insight into the etiology of viral CNS infections in a Mediterranean country, where arboviruses should be included in the differential diagnosis of acute CNS infections. © 2017 Wiley Periodicals, Inc.

  1. Role of Microglia in Oxidative Toxicity Associated with Encephalomycarditis Virus Infection in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Yasuhisa Ano

    2012-06-01

    Full Text Available The single-stranded RNA encephalomyocarditis virus (EMCV can replicate in the central nervous system (CNS and lead to prominent brain lesions in the stratum pyramidale hippocampus and the stratum granulosum cerebelli. Activated microglia cells infected by EMCV produce a massive burst of reactive oxygen species (ROS via NADPH oxidase 2 (NOX2 activation, leading to neuronal death. Balancing this effect is mechanisms by which ROS are eliminated from the CNS. Cellular prion protein (PrPC plays an important antioxidant role and contributes to cellular defense against EMCV infection. This review introduces recent knowledge on brain injury induced by EMCV infection via ROS generation as well as the involvement of various mediators and regulators in the pathogenesis.

  2. Trends in tumors in the central nervous system in elderly in Denmark, 2008-2012

    DEFF Research Database (Denmark)

    Dahlrot, Rikke H; Poulsen, Frantz R; Nguyen, Nina N. T. T.

    2016-01-01

    Background Tumors in the central nervous system (CNS) comprise a heterogeneous group of tumors with different treatment strategies and prognoses. Current treatment regimens are based on studies on patients mainly younger than 70 years. The aim of the present study was to analyze and describe trends....... The increase is seen mainly in the elderly patients, and especially in women aged 84-89 and 90 + at the time of diagnosis. During the same time period, the mortality rates increased within all age groups, most significantly in patients aged 70 years or older. This may reflect an increased focus...... survival further in the increasing group of elderly patients more knowledge about treatment of these patients is needed....

  3. Gut-central nervous system axis is a target for nutritional therapies.

    Science.gov (United States)

    Pimentel, Gustavo D; Micheletti, Thayana O; Pace, Fernanda; Rosa, José C; Santos, Ronaldo V T; Lira, Fabio S

    2012-04-10

    Historically, in the 1950s, the chemist Linus Pauling established a relationship between decreased longevity and obesity. At this time, with the advent of studies involving the mechanisms that modulate appetite control, some researchers observed that the hypothalamus is the "appetite centre" and that peripheral tissues have important roles in the modulation of gut inflammatory processes and levels of hormones that control food intake. Likewise, the advances of physiological and molecular mechanisms for patients with obesity, type 2 diabetes mellitus, inflammatory bowel diseases, bariatric surgery and anorexia-associated diseases has been greatly appreciated by nutritionists. Therefore, this review highlights the relationship between the gut-central nervous system axis and targets for nutritional therapies.

  4. [A case of primary central nervous system anaplastic lymphoma kinase positive anaplastic large cell lymphoma manifested as a unilateral pachymeningits].

    Science.gov (United States)

    Fujisawa, Etsuco; Shibayama, Hidehiro; Mitobe, Fumi; Katada, Fumiaki; Sato, Susumu; Fukutake, Toshio

    2017-11-25

    There have been 23 reports of primary central nervous system anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma in the literature. Here we report the 24th case of a 40-year-old man who presented with occipital headache for one month. His contrast-enhanced brain MRI showed enhancement around the right temporal lobe, which suggested a diagnosis of hypertrophic pachymeningitis. He improved with steroid therapy. After discharge, however, he was readmitted with generalized convulsive seizures. Finally, he was diagnosed as primary central nervous system ALK-positive anaplastic large cell lymphoma by brain biopsy. Primary central nervous system lymphoma invading dura matter can rarely manifests as a unilateral pachymeningitis. Therefore, in case of pachymeningitis, we should pay attention to the possibility of infiltration of lymophoma with meticulous clinical follow-up.

  5. Implementation of Intraoperative Neurophysiological Monitoring during Endovascular Procedures in the Central Nervous System

    Science.gov (United States)

    Martinez Piñeiro, Alicia; Cubells, Carles; Garcia, Pablo; Castaño, Carlos; Dávalos, Antonio; Coll-Canti, Jaume

    2015-01-01

    Background and Objective Intraoperative monitoring (IOM) has been used in different surgical disciplines since the 1980s. Nonetheless, regular routine use of IOM in interventional neuroradiology units has only been reported in a few centers. The aim of this study is to report our experience, 1 year after deciding to implement standardized IOM during endovascular treatment of vascular abnormalities of the central nervous system. Methods Basic recordings included somatosensory-evoked potentials (SEPs) and motor-evoked potentials (MEPs). Corticobulbar motor-evoked potentials and flash-visual-evoked potentials were also recorded depending on the topography of the lesion. Intra-arterial provocative tests (PTs) with amobarbital and lidocaine were also performed. All patients except 1 were under total intravenous anesthesia. Clinical outcome was assessed prospectively and correlated with IOM events. Results Twelve patients and 15 procedures were monitored during the inclusion period. Significant IOM events were detected during 3 of the 15 procedures (20%). We observed temporary MEP changes in 2 cases which resolved after interruption of the embolization or application of corrective measures, leaving no postoperative neurological deficits. In 1 case, persistent SEP and MEP deterioration was detected secondary to a frontal hematoma, resulting in mild sensory-motor deficit in the right upper extremity after the procedure. Overall, 12 PTs (4 spinal cord and 8 brain abnormalities) were performed using lidocaine and sodium amytal injections. One positive result occurred after the injection of lidocaine. No false negatives were detected. Conclusions IOM may provide continuous real-time data about the functional status of eloquent areas and pathways of the central nervous system in patients under general anesthesia. It therefore allows us to detect early neurological damage in time to perform specific actions that may prevent irreversible neurological deficits. PMID:26019712

  6. Clinicopathological Features and Outcomes in Primary Central Nervous System Lymphoma: A 10-year Experience.

    Science.gov (United States)

    Puligundla, Chaitanya Krishna; Bala, Stalin; Karnam, Ashok Kumar; Gundeti, Sadashivudu; Paul, Tara Roshni; Uppin, Megha S; Maddali, Lakshmi Srinivas

    2017-01-01

    Primary central nervous system lymphoma (PCNSL) is a variant of extranodal lymphoma, accounting for 4% of primary central nervous system tumors. PCNSL was more common in immunocompetent individuals. International Extranodal Lymphoma Study Group (IELSG) scoring was used for prognostication. High-dose methotrexate regimens along with radiotherapy improved outcomes in PCNSL. The aim of this study is to analyze the clinical and pathological features, progression-free survival (PFS), and overall survival (OS) in patients with PCNSL. Data of patients with PCNSL between 2005 and 2016 were retrospectively analyzed. Outcome was analyzed in patients who received chemotherapy. GraphPad Prism software for Windows Version 6 was used to plot the Kaplan-Meier curves for PFS and OS. Log-rank test was used to calculate P values. P < 0.05 was considered as statistically significant. A total of 42 patients were available for analysis. Of these, 34 patients who received chemotherapy were evaluable for outcome parameters. The median age at presentation was 46 years (range, 10-75) with male-to-female ratio of 2.2:1. Only 2 (4.7%) patients were HIV positive. Diffuse large B-cell lymphoma (DLBCL) was the most common histology seen in 41 (97.6%) patients. Using IELSG risk scoring, scores of 8 (19%), 19 (45.2%), and 15 (35.8%) were stratified into low, intermediate, and high risk. The median PFS and OS were 11 months (range, 2-72) and 15.9 months (2.4-80.4), respectively. The median OS was 36.2 months (range, 8.8-72), 15.6 months (2-36), and 6.1 months (2.6-12.7) in low-, intermediate-, and high-risk groups, respectively, which was statistically significant (P = 0.0002). Immunocompetent patients with PCNSL outnumber immunocompromised patients. DLBCL was the most common histology, and IELSG risk stratification significantly predicts the outcome in PCNSL.

  7. Isolated central nervous system relapse of chronic myeloid leukemia after allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Fuchs Mary

    2012-08-01

    Full Text Available Abstract Background This case report highlights the relevance of quantifying the BCR-ABL gene in cerebrospinal fluid of patients with suspected relapse of chronic myeloid leukemia in the central nervous system. Case presentation We report on a female patient with isolated central nervous system relapse of chronic myeloid leukemia (CML during peripheral remission after allogeneic hematopoietic stem cell transplantation. The patient showed a progressive cognitive decline as the main symptom. MRI revealed a hydrocephalus and an increase in cell count in the cerebrospinal fluid (CSF with around 50% immature blasts in the differential count. A highly elevated BCR-ABL/ ABL ratio was detected in the CSF, whilst the ratio for peripheral blood and bone marrow was not altered. On treatment of the malresorptive hydrocephalus with shunt surgery, the patient showed an initial cognitive improvement, followed by a secondary deterioration. At this time, the cranial MRI showed leukemic infiltration of lateral ventricles walls. Hence, intrathecal administration of cytarabine, methotrexate, and dexamethasone was initiated, which caused a significant decrease of cells in the CSF. Soon after, the patient demonstrated significant cognitive improvement with a good participation in daily activities. At a later time point, after the patient had lost the major molecular response of CML, therapy with dasatinib was initiated. In a further follow-up, the patient was neurologically and hematologically stable. Conclusions In patients with treated CML, the rare case of an isolated CNS blast crisis has to be taken into account if neurological symptoms evolve. The analysis of BCR-ABL in the CSF is a further option for the reliable detection of primary isolated relapse of CML in these patients.

  8. Pharmacological prion protein silencing accelerates central nervous system autoimmune disease via T cell receptor signalling.

    Science.gov (United States)

    Hu, Wei; Nessler, Stefan; Hemmer, Bernhard; Eagar, Todd N; Kane, Lawrence P; Leliveld, S Rutger; Müller-Schiffmann, Andreas; Gocke, Anne R; Lovett-Racke, Amy; Ben, Li-Hong; Hussain, Rehana Z; Breil, Andreas; Elliott, Jeffrey L; Puttaparthi, Krishna; Cravens, Petra D; Singh, Mahendra P; Petsch, Benjamin; Stitz, Lothar; Racke, Michael K; Korth, Carsten; Stüve, Olaf

    2010-02-01

    The primary biological function of the endogenous cellular prion protein has remained unclear. We investigated its biological function in the generation of cellular immune responses using cellular prion protein gene-specific small interfering ribonucleic acid in vivo and in vitro. Our results were confirmed by blocking cellular prion protein with monovalent antibodies and by using cellular prion protein-deficient and -transgenic mice. In vivo prion protein gene-small interfering ribonucleic acid treatment effects were of limited duration, restricted to secondary lymphoid organs and resulted in a 70% reduction of cellular prion protein expression in leukocytes. Disruption of cellular prion protein signalling augmented antigen-specific activation and proliferation, and enhanced T cell receptor signalling, resulting in zeta-chain-associated protein-70 phosphorylation and nuclear factor of activated T cells/activator protein 1 transcriptional activity. In vivo prion protein gene-small interfering ribonucleic acid treatment promoted T cell differentiation towards pro-inflammatory phenotypes and increased survival of antigen-specific T cells. Cellular prion protein silencing with small interfering ribonucleic acid also resulted in the worsening of actively induced and adoptively transferred experimental autoimmune encephalomyelitis. Finally, treatment of myelin basic protein(1-11) T cell receptor transgenic mice with prion protein gene-small interfering ribonucleic acid resulted in spontaneous experimental autoimmune encephalomyelitis. Thus, central nervous system autoimmune disease was modulated at all stages of disease: the generation of the T cell effector response, the elicitation of T effector function and the perpetuation of cellular immune responses. Our findings indicate that cellular prion protein regulates T cell receptor-mediated T cell activation, differentiation and survival. Defects in autoimmunity are restricted to the immune system and not the central

  9. Central nervous system gadolinium accumulation in patients undergoing periodical contrast MRI screening for hereditary tumor syndromes.

    Science.gov (United States)

    Vergauwen, Evelynn; Vanbinst, Anne-Marie; Brussaard, Carola; Janssens, Peter; De Clerck, Dieter; Van Lint, Michel; Houtman, Anne C; Michel, Olaf; Keymolen, Kathelijn; Lefevere, Bieke; Bohler, Susanne; Michielsen, Dirk; Jansen, Anna C; Van Velthoven, Vera; Gläsker, Sven

    2018-01-01

    Patients with hereditary tumor syndromes undergo periodical magnetic resonance imaging (MRI) screening with Gadolinium contrast. Gadolinium accumulation has recently been described in the central nervous system after repeated administrations. The prevalence and rate of accumulation in different subgroups of patients are unknown. Neither are the mechanism nor clinical impact. This may cause uncertainty about the screening. To explore the prevalence and rate of Gadolinium accumulation in different subgroups, we retrospectively analyzed MRIs of patients with von Hippel-Lindau disease (VHL) and Tuberous Sclerosis Complex (TSC). We determined the prevalence and rate of accumulation in the dentate nucleus and globus pallidus on unenhanced T1-weighted MRI from VHL and TSC patients. We compared the signal intensities of these regions to the signal intensity of the pons. We evaluated the impact of number of MRIs, kidney function and liver function on Gadolinium accumulation. Twenty eight VHL patients and 24 TSC patients were included. The prevalence of accumulation in the dentate nucleus and globus pallidus increased linearly according to number of Gadolinium enhanced MRIs and was higher in the VHL group (100%). A significant linear correlation between number of MRIs and increased signal intensity was observed in the VHL group. Gadolinium accumulation occurs in almost all patients undergoing contrast MRI screening after >5 MRIs. We advocate a screening protocol for patients with hereditary tumor syndromes that minimizes the Gadolinium dose. This can be accomplished by using a single administration to simultaneously screen for brain, spine and/or abdominal lesions, using an MRI protocol focused on either VHL- or TSC-specific lesions. Higher prevalence and rate of accumulation in VHL patients may be explained by the typical vascular leakage accompanying central nervous system hemangioblastomas.

  10. Adaptive Cellular Stress Pathways as Therapeutic Targets of Dietary Phytochemicals: Focus on the Nervous System

    Science.gov (United States)

    Jo, Dong-Gyu; Park, Daeui; Chung, Hae Young

    2014-01-01

    During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied. PMID:24958636

  11. The central nervous system of sea cucumbers (Echinodermata: Holothuroidea shows positive immunostaining for a chordate glial secretion

    Directory of Open Access Journals (Sweden)

    Grondona Jesus M

    2009-06-01

    Full Text Available Abstract Background Echinoderms and chordates belong to the same monophyletic taxon, the Deuterostomia. In spite of significant differences in body plan organization, the two phyla may share more common traits than was thought previously. Of particular interest are the common features in the organization of the central nervous system. The present study employs two polyclonal antisera raised against bovine Reissner's substance (RS, a secretory product produced by glial cells of the subcomissural organ, to study RS-like immunoreactivity in the central nervous system of sea cucumbers. Results In the ectoneural division of the nervous system, both antisera recognize the content of secretory vacuoles in the apical cytoplasm of the radial glia-like cells of the neuroepithelium and in the flattened glial cells of the non-neural epineural roof epithelium. The secreted immunopositive material seems to form a thin layer covering the cell apices. There is no accumulation of the immunoreactive material on the apical surface of the hyponeural neuroepithelium or the hyponeural roof epithelium. Besides labelling the supporting cells and flattened glial cells of the epineural roof epithelium, both anti-RS antisera reveal a previously unknown putative glial cell type within the neural parenchyma of the holothurian nervous system. Conclusion Our results show that: a the glial cells of the holothurian tubular nervous system produce a material similar to Reissner's substance known to be synthesized by secretory glial cells in all chordates studied so far; b the nervous system of sea cucumbers shows a previously unrealized complexity of glial organization. Our findings also provide significant clues for interpretation of the evolution of the nervous system in the Deuterostomia. It is suggested that echinoderms and chordates might have inherited the RS-producing radial glial cell type from the central nervous system of their common ancestor, i.e., the last common

  12. THE POLYPEPTIDE STIMULATOR APPLICATION IN COMPLEX TREATMENT OF COGNITIVE DISORDERS IN CHILDREN WITH DISEASES OF THE CENTRAL NERVOUS SYSTEM

    Directory of Open Access Journals (Sweden)

    S. A. Nemkova

    2012-01-01

    Full Text Available The results of the review of studies on the polypeptide nootropic neurometabolic stimulator in a complex correction of cognitive impairment in children with diseases of the central nervous system are given in the article. It is shown that cognitive-modulating effect is the leading feature of the drug, and in a combination with nootropic, neurotrophic, neuroprotective, reparative and anticonvulsive effects, as well as antioxidant, anti-stress and metabolic actions, which determines its high therapeutic efficacy in a complex correction of cognitive impairment in various central nervous system diseases in children.

  13. Adaptive Central Force Optimization Algorithm Based on the Stability Analysis

    Directory of Open Access Journals (Sweden)

    Weiyi Qian

    2015-01-01

    Full Text Available In order to enhance the convergence capability of the central force optimization (CFO algorithm, an adaptive central force optimization (ACFO algorithm is presented by introducing an adaptive weight and defining an adaptive gravitational constant. The adaptive weight and gravitational constant are selected based on the stability theory of discrete time-varying dynamic systems. The convergence capability of ACFO algorithm is compared with the other improved CFO algorithm and evolutionary-based algorithm using 23 unimodal and multimodal benchmark functions. Experiments results show that ACFO substantially enhances the performance of CFO in terms of global optimality and solution accuracy.

  14. Radiation-free allogeneic conditioning with fludarabine, carmustine, and thiotepa for acute lymphoblastic leukemia and other hematologic malignancies necessitating enhanced central nervous system activity

    National Research Council Canada - National Science Library

    Christopoulos, Petros; Bertz, Hartmut; Ihorst, Gabriele; Marks, Reinhard; Wäsch, Ralph; Finke, Jürgen

    2012-01-01

    .... For less-fit patients with acute lymphoblastic leukemia and other hematologic malignancies frequently affecting the central nervous system, we designed a radiation-free regimen with fludarabine...

  15. Effects of caffeine on the electrophysiological, cognitive and motor responses of the central nervous system

    Directory of Open Access Journals (Sweden)

    Deslandes A.C.

    2005-01-01

    Full Text Available Caffeine is the most consumed psychoactive substance in the world. The effects of caffeine have been studied using cognitive and motor measures, quantitative electroencephalography (qEEG and event-related potentials. However, these methods are not usually employed in combination, a fact that impairs the interpretation of the results. The objective of the present study was to analyze changes in electrophysiological, cognitive and motor variables with the ingestion of caffeine, and to relate central to peripheral responses. For this purpose we recorded event-related potentials and eyes-closed, resting EEG, applied the Stroop test, and measured reaction time. Fifteen volunteers took caffeine (400 mg or placebo in a randomized, crossover, double-blind design. A significant reduction of alpha absolute power over the entire scalp and of P300 latency at the Fz electrode were observed after caffeine ingestion. These results are consistent with a stimulatory effect of caffeine, although there was no change in the attention (Stroop test or in reaction time. The qEEG seems to be the most sensitive index of the changes produced by caffeine in the central nervous system since it proved to be capable of detecting changes that were not evident in the tests of cognitive or motor performance.

  16. NSAIDs, Opioids, Cannabinoids and the Control of Pain by the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Horacio Vanegas

    2010-04-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs act upon peripheral tissues and upon the central nervous system to produce analgesia. A major central target of NSAIDs is the descending pain control system. The rostral structures of the descending pain control system send impulses towards the spinal cord and regulate the transmission of pain messages. Key structures of the descending pain control system are the periaqueductal gray matter (PAG and the rostral ventromedial region of the medulla (RVM, both of which are critical targets for endogenous opioids and opiate pharmaceuticals. NSAIDs also act upon PAG and RVM to produce analgesia and, if repeatedly administered, induce tolerance to themselves and cross-tolerance to opioids. Experimental evidence shows that this is due to an interaction of NSAIDs with endogenous opioids along the descending pain control system. Analgesia by NSAIDs along the descending pain control system also requires an activation of the CB1 endocannabinoid receptor. Several experimental approaches suggest that opioids, NSAIDs and cannabinoids in PAG and RVM cooperate to decrease GABAergic inhibition and thus enhance the descending flow of impulses that inhibit pain.

  17. Insulin in Central Nervous System: More than Just a Peripheral Hormone

    Directory of Open Access Journals (Sweden)

    Ana I. Duarte

    2012-01-01

    Full Text Available Insulin signaling in central nervous system (CNS has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD considered as the “brain-type diabetes.” In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human “healthy” longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.

  18. Magnetic resonance imaging of miliary tuberculosis of the central nervous system in children with tuberculous meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Janse van Rensburg, Pieter; Andronikou, Savvas; Pienaar, Manana [University of Stellenbosch, Department of Radiology, Faculty of Health Sciences, Tygerberg (South Africa); Toorn, Ronald van [University of Stellenbosch, Department of Paediatrics and Child Health, Faculty of Health Sciences, Tygerberg (South Africa)

    2008-12-15

    Tuberculous meningitis (TBM) is closely associated with miliary tuberculosis and a pathogenetic relationship is suspected, although it has been proposed that the two processes are unrelated. To describe miliary tuberculosis of the central nervous system (CNS) on MRI in children with TBM. A retrospective descriptive study of 32 paediatric TBM patients referred for MRI. The presence of miliary nodules in the CNS was recorded. Lesions were categorized according to their distribution, enhancement pattern, size and signal characteristics. A miliary distribution of nodules was present in 88% of patients. All patients with a miliary distribution had leptomeningeal nodules and 18% of these patients had deep parenchymal nodules in addition. At least one tuberculoma with central T2 hypointensity was identified in 39% of patients. The high prevalence of miliary leptomeningeal nodules in the CNS of children with TBM is significant because it points to a pathogenetic relationship that has long been suspected on epidemiological grounds. Our findings challenge the concept that miliary tuberculosis is only an incidental finding in TBM patients and suggest that it plays an integral part in the pathogenesis. (orig.)

  19. Non-centralized and functionally localized nervous system of ophiuroids: evidence from topical anesthetic experiments

    Directory of Open Access Journals (Sweden)

    Yoshiya Matsuzaka

    2017-04-01

    Full Text Available Ophiuroids locomote along the seafloor by coordinated rhythmic movements of multi-segmented arms. The mechanisms by which such coordinated movements are achieved are a focus of interest from the standpoints of neurobiology and robotics, because ophiuroids appear to lack a central nervous system that could exert centralized control over five arms. To explore the underlying mechanism of arm coordination, we examined the effects of selective anesthesia to various parts of the body of ophiuroids on locomotion. We observed the following: (1 anesthesia of the circumoral nerve ring completely blocked the initiation of locomotion; however, initiation of single arm movement, such as occurs during the retrieval of food, was unaffected, indicating that the inability to initiate locomotion was not due to the spread of the anesthetic agent. (2 During locomotion, the midsegments of the arms periodically made contact with the floor to elevate the disc. In contrast, the distal segments of the arms were pointed aborally and did not make contact with the floor. (3 When the midsegments of all arms were anesthetized, arm movements were rendered completely uncoordinated. In contrast, even when only one arm was left intact, inter-arm coordination was preserved. (4 Locomotion was unaffected by anesthesia of the distal arms. (5 A radial nerve block to the proximal region of an arm abolished coordination among the segments of that arm, rendering it motionless. These findings indicate that the circumoral nerve ring and radial nerves play different roles in intra- and inter-arm coordination in ophiuroids.

  20. Epochal neuroinflammatory role of high mobility group box 1 in central nervous system diseases

    Directory of Open Access Journals (Sweden)

    Seidu A. Richard

    2017-05-01

    Full Text Available The central nervous system (CNS is enriched with a developed reaction reserve dubbed “neuroinflammation”, which facilitates it to cope with pathogens, toxins, traumata and degeneration. Inflammation is a significant biological activity in reaction to injury, infection, and trauma agonized by cells or tissues. A positive inflammatory reaction mechanism removes attacking pathogens, initiating wound healing and angiogenesis. The High Mobility Group Box 1 (HMGB1 protein is abundant and ubiquitous nuclear proteins that bind to DNA, nucleosome and other multi-protein complexes in a dynamic and reversible fashion to regulate DNA processing in the context of chromatin. Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. HMGB1 protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP. This DAMP, in conjunction with other factors such as cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. With regards to these various disease condition above, our review focus on the role of HMGB1 and CNS Diseases.

  1. Central nervous system involvement in patients with HCV-related cryoglobulinemia: review and a case report

    Directory of Open Access Journals (Sweden)

    B. Canesi

    2011-09-01

    Full Text Available Introduction: Few well-documented cases of central nervous system involvement in patients with mixed cryoglobulinemia and/or HCV infection have been reported. We can distinguish between acute or subacute diffuse and focal lesions (transient ischemic attack-like syndromes and cerebrovascular accidents. Methods: A search of two electronic databases (Medline and EMBASE was conducted from the year of their inception (1966 for Medline and 1988 for EMBASE to September 2000. The search strategy employed entailed combining these terms: Cryoglobulinemia, Central Nervous System, Hepatitis C, chronic hepatitis. Cryoglobulinemia and Central Nervous System were also used as free test words. We analysed articles with case reports and the most frequent articles on the references list. Pathogenesis: The main pathophysiologic mechanism of cerebral involvement is ischemia (or rarely hemorrhage due to diffuse or segmental vasculitis of the small cerebral vessels. In these cases a brain MRI usually shows single or multiple increased T2 signals. Furthermore an occasional occlusive vasculopathy without vasculitis was documented histologically. In these patients ischemia could be started or enhanced by the engorgement of the microvasculature by clumps of red cells and by aggregates of cryoglobulins. In the same patients vasculitis and hemoreological abnormalities can affect the clinical picture of the cerebral involvement in mixed cryoglobulinemia. Finally, the detection of HCV in the lesions induces a hypothesis that, in some cases, CNS involvement could be directly related to chronic HCV infection, even in the absence of cryoglobulin production. Case report: We describe a 63 year-old woman with acute severe encephalopathy. Laboratory evaluation revealed a high positive test result for rheumatoid factor (3390 U/ml and hypocomplementemia (C4 less than 1.67 mg/dl. Protein immunofixation electrophoresis demonstrated 5% monoclonal proteins (IgM/k and IgG/k, 3

  2. Acute Myeloid Leukemia With Central Nervous System Involvement in Children: Experience From the French Protocol Analysis ELAM02.

    Science.gov (United States)

    Felix, Arthur; Leblanc, Thierry; Petit, Arnaud; Nelkem, Brigitte; Bertrand, Yves; Gandemer, Virginie; Sirvent, Anne; Paillard, Catherine; Schmitt, Claudine; Rohrlich, Pierre Simon; Fenneteau, Odile; Ragu, Christine; Michel, Gerard; Auvrignon, Anne; Baruchel, André; Leverger, Guy

    2018-01-01

    Central nervous system (CNS) involvement at diagnosis of pediatric acute myeloid leukemia (AML) is not considered as an independent prognostic factor. This study describes the prognostic value of pediatric AML with CNS involvement at diagnosis. Pediatric patients were treated for de novo AML in the French multicenter trial ELAM02. Lumbar puncture was carried out in the first week, and the treatment was adapted to the CNS status. No patient received CNS radiotherapy. The patients were classified into 2 groups: CNS+ and CNS-. Of the 438 patients, 16% (n=70) had CNS involvement at diagnosis, and 29% showed clinical signs. The patients with CNS disease were younger (40% were below 2 y old), had a higher white blood cell count (median of 45 vs. 13 G/L), and had M4 and M5 morphologies. The complete remission rate was similar at 92.8% for CNS+ and 88.5% for CNS-. There was no significant difference between the CNS+ and the CNS- group in overall survival (76% and 71%, respectively) and event-free survival (57% and 52%, respectively). Regarding the occurrence of first relapse, the CNS+ group had a higher combined relapse rate of 26.1% compared with 10% for the CNS- group. The results indicate that CNS involvement at diagnosis of pediatric AML is not an independent prognostic factor. Triple intrathecal chemotherapy combined with high-dose intravenous cytarabine should be the first-line treatment for CNS disease.

  3. Current Advances in Checkpoint Inhibitors: Lessons from Non-Central Nervous System Cancers and Potential for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Natasha Lakin

    2017-07-01

    Full Text Available The adaptive immune system depends on the sequence of antigen presentation, activation, and then inhibition to mount a proportionate response to a threat. Tumors evade the immune response partly by suppressing T-cell activity using immune checkpoints. The use of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4, programmed cell death 1 (PD-1, and programmed cell death ligand 1 (PD-L1 antibodies counteract this suppression, thereby enhancing the antitumor activity of the immune system. This approach has proven efficacy in melanoma, renal cancer, and lung cancer. There is growing evidence that the central nervous system is accessible to the immune system in the diseased state. Moreover, glioblastomas (GBMs attract CTLA-4-expressing T-cells and express PD-L1, which inhibit activation and continuation of a cytotoxic T-cell response, respectively. This may contribute to the evasion of the host immune response by GBM. Trials are in progress to determine if checkpoint inhibitors will be of benefit in GBM. Radiotherapy could also be helpful in promoting inflammation, enhancing the immunogenicity of tumors, disrupting the blood–brain barrier and creating greater antigen release. The combination of radiotherapy and checkpoint inhibitors has been promising in preclinical trials but is yet to show efficacy in humans. In this review, we summarize the mechanism and current evidence for checkpoint inhibitors in gliomas and other solid tumors, examine the rationale of combining radiotherapy with checkpoint inhibitors, and discuss the potential benefits and pitfalls of this approach.

  4. Immune surveillance of the central nervous system in multiple sclerosis--relevance for therapy and experimental models.

    Science.gov (United States)

    Hussain, Rehana Z; Hayardeny, Liat; Cravens, Petra C; Yarovinsky, Felix; Eagar, Todd N; Arellano, Benjamine; Deason, Krystin; Castro-Rojas, Cyd; Stüve, Olaf

    2014-11-15

    Treatment of central nervous system (CNS) autoimmune disorders frequently involves the reduction, or depletion of immune-competent cells. Alternatively, immune cells are being sequestered away from the target organ by interfering with their movement from secondary lymphoid organs, or their migration into tissues. These therapeutic strategies have been successful in multiple sclerosis (MS), the most prevalent autoimmune inflammatory disorder of the CNS. However, many of the agents that are currently approved or in clinical development also have severe potential adverse effects that stem from the very mechanisms that mediate their beneficial effects by interfering with CNS immune surveillance. This review will outline the main cellular components of the innate and adaptive immune system that participate in host defense and maintain immune surveillance of the CNS. Their pathogenic role in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also discussed. Furthermore, an experimental model is introduced that may assist in evaluating the effect of therapeutic interventions on leukocyte homeostasis and function within the CNS. This model or similar models may become a useful tool in the repertoire of pre-clinical tests of pharmacological agents to better explore their potential for adverse events. Published by Elsevier B.V.

  5. Widespread gene transfer in the central nervous system of cynomolgus macaques following delivery of AAV9 into the cisterna magna

    Directory of Open Access Journals (Sweden)

    Christian Hinderer

    2014-01-01

    Full Text Available Adeno-associated virus serotype 9 (AAV9 vectors have recently been shown to transduce cells throughout the central nervous system of nonhuman primates when injected into the cerebrospinal fluid (CSF, a finding which could lead to a minimally invasive approach to treat genetic and acquired diseases affecting the entire CNS. We characterized the transduction efficiency of two routes of vector administration into the CSF of cynomolgus macaques—lumbar puncture, which is typically used in clinical practice, and suboccipital puncture, which is more commonly used in veterinary medicine. We found that delivery of vector into the cisterna magna via suboccipital puncture is up to 100-fold more efficient for achieving gene transfer to the brain. In addition, we evaluated the inflammatory response to AAV9-mediated GFP expression in the nonhuman primate CNS. We found that while CSF lymphocyte counts increased following gene transfer, there were no clinical or histological signs of immune toxicity. Together these data indicate that delivery of AAV9 into the cisterna magna is an effective method for achieving gene transfer in the CNS, and suggest that adapting this uncommon injection method for human trials could vastly increase the efficiency of gene delivery.

  6. Transcriptome analysis of the central nervous system of the mollusc Lymnaea stagnalis

    Directory of Open Access Journals (Sweden)

    Coorssen JR

    2009-09-01

    Full Text Available Abstract Background The freshwater snail Lymnaea stagnalis (L. stagnalis has served as a successful model for studies in the field of Neuroscience. However, a serious drawback in the molecular analysis of the nervous system of L. stagnalis has been the lack of large-scale genomic or neuronal transcriptome information, thereby limiting the use of this unique model. Results In this study, we report 7,712 distinct EST sequences (median length: 847 nucleotides of a normalized L. stagnalis central nervous system (CNS cDNA library, resulting in the largest collection of L. stagnalis neuronal transcriptome data currently available. Approximately 42% of the cDNAs can be translated into more than 100 consecutive amino acids, indicating the high quality of the library. The annotated sequences contribute 12% of the predicted transcriptome size of 20,000. Surprisingly, approximately 37% of the L. stagnalis sequences only have a tBLASTx hit in the EST library of another snail species Aplysia californica (A. californica even using a low stringency e-value cutoff at 0.01. Using the same cutoff, approximately 67% of the cDNAs have a BLAST hit in the NCBI non-redundant protein and nucleotide sequence databases (nr and nt, suggesting that one third of the sequences may be unique to L. stagnalis. Finally, using the same cutoff (0.01, more than half of the cDNA sequences (54% do not have a hit in nematode, fruitfly or human genome data, suggesting that the L. stagnalis transcriptome is significantly different from these species as well. The cDNA sequences are enriched in the following gene ontology functional categories: protein binding, hydrolase, transferase, and catalytic enzymes. Conclusion This study provides novel molecular insights into the transcriptome of an important molluscan model organism. Our findings will contribute to functional analyses in neurobiology, and comparative evolutionary biology. The L. stagnalis CNS EST database is available at http://www.Lymnaea.org/.

  7. Central nervous system abnormalities in fibromyalgia and chronic fatigue syndrome: new concepts in treatment.

    Science.gov (United States)

    Gur, Ali; Oktayoglu, Pelin

    2008-01-01

    Fibromyalgia (FM) and chronic fatigue syndrome (CFS) are poorly understood disorders that share similar demographic and clinical characteristics. The etiology and pathophysiology of these diseases remain unclear. Because of the similarities between both disorders it was suggested that they share a common pathophysiological mechanisms, namely, central nervous system (CNS) dysfunction. Current hypotheses center on atypical sensory processing in the CNS and dysfunction of skeletal muscle nociception and the hypothalamic-pituitary-adrenal (HPA) axis. Researches suggest that the (CNS) is primarily involved in both disorders in regard to the pain, fatigue and sleep disturbances. Many patients experience difficulty with concentration and memory and many others have mood disturbance, including depression and anxiety. Although fibromyalgia is common and associated with substantial morbidity and disability, there are no US Food and Drug Administration (FDA)-approved treatments except pregabalin. Recent pharmacological treatment studies about fibromyalgia have focused on selective serotonin and norepinephrine (NE) reuptake inhibitors, which enhance serotonin and NE neurotransmission in the descending pain pathways and lack many of the adverse side effects associated with tricyclic medications. CFS is a descriptive term used to define a recognisable pattern of symptoms that cannot be attributed to any alternative condition. The symptoms are currently believed to be the result of disturbed brain function. To date, no pharmacological agent has been reliably shown to be effective treatment for CFS. Management strategies are therefore primarily directed at relief of symptoms and minimising impediments to recovery. This chapter presents data demonstrating CFS, abnormal pain processing and autonomic nervous system (ANS) dysfunction in FM and CFS and concludes by reviewing the new concepts in treatments in CFS and FM.

  8. Transcriptome analysis of the central nervous system of the mollusc Lymnaea stagnalis.

    Science.gov (United States)

    Feng, Z-P; Zhang, Z; van Kesteren, R E; Straub, V A; van Nierop, P; Jin, K; Nejatbakhsh, N; Goldberg, J I; Spencer, G E; Yeoman, M S; Wildering, W; Coorssen, J R; Croll, R P; Buck, L T; Syed, N I; Smit, A B

    2009-09-23

    The freshwater snail Lymnaea stagnalis (L. stagnalis) has served as a successful model for studies in the field of Neuroscience. However, a serious drawback in the molecular analysis of the nervous system of L. stagnalis has been the lack of large-scale genomic or neuronal transcriptome information, thereby limiting the use of this unique model. In this study, we report 7,712 distinct EST sequences (median length: 847 nucleotides) of a normalized L. stagnalis central nervous system (CNS) cDNA library, resulting in the largest collection of L. stagnalis neuronal transcriptome data currently available. Approximately 42% of the cDNAs can be translated into more than 100 consecutive amino acids, indicating the high quality of the library. The annotated sequences contribute 12% of the predicted transcriptome size of 20,000. Surprisingly, approximately 37% of the L. stagnalis sequences only have a tBLASTx hit in the EST library of another snail species Aplysia californica (A. californica) even using a low stringency e-value cutoff at 0.01. Using the same cutoff, approximately 67% of the cDNAs have a BLAST hit in the NCBI non-redundant protein and nucleotide sequence databases (nr and nt), suggesting that one third of the sequences may be unique to L. stagnalis. Finally, using the same cutoff (0.01), more than half of the cDNA sequences (54%) do not have a hit in nematode, fruitfly or human genome data, suggesting that the L. stagnalis transcriptome is significantly different from these species as well. The cDNA sequences are enriched in the following gene ontology functional categories: protein binding, hydrolase, transferase, and catalytic enzymes. This study provides novel molecular insights into the transcriptome of an important molluscan model organism. Our findings will contribute to functional analyses in neurobiology, and comparative evolutionary biology. The L. stagnalis CNS EST database is available at http://www.Lymnaea.org/.

  9. Development and regulation of chloride homeostasis in the central nervous system

    Directory of Open Access Journals (Sweden)

    Miho eWatanabe

    2015-09-01

    Full Text Available GABA (γ-aminobutyric acid is the main inhibitory neurotransmitter of the mature central nervous system. The developmental switch of GABAergic transmission from excitation to inhibition is induced by changes in Cl- gradients, which are generated by cation-Cl- co-transporters. An accumulation of Cl- by the Na+-K+-2Cl- co-transporter (NKCC1 increases the intracellular Cl- concentration ([Cl-]i such that GABA depolarizes neuronal precursors and immature neurons. The subsequent ontogenetic switch, i.e., upregulation of the Cl--extruder KCC2, which is a neuron-specific K+-Cl- co-transporter, with or without downregulation of NKCC1, results in low [Cl-]i levels and the hyperpolarizing action of GABA in mature neurons. Development of Cl- homeostasis depends on developmental changes in NKCC1 and KCC2 expression. Generally, developmental shifts (decreases in [Cl-]i parallel the maturation of the nervous system, e.g., early in the spinal cord, hypothalamus and thalamus, followed by the limbic system, and last in the neocortex. There are several regulators of KCC2 and/or NKCC1 expression, including BDNF, insulin-like growth factor, and CFTR. Therefore, regionally different expression of these regulators may also contribute to the regional developmental shifts of Cl- homeostasis. KCC2 and NKCC1 functions are also regulated by phosphorylation by enzymes such as PKC, Src-family tyrosine kinases, and WNK1-4 and their downstream effectors SPAK-OSR1. In addition, activation of these kinases is modulated by humoral factors such as estrogen and taurine. Because these transporters use the electrochemical driving force of Na+ and K+ ions, topographical interaction with the Na+-K+ ATPase and its modulators such as creatine kinase should modulate functions of Cl- transporters. Therefore, regional developmental regulation of these regulators and modulators of Cl- transporters may also play a pivotal role in the development of Cl- homeostasis.

  10. Semaphorin6A acts as a gate keeper between the central and the peripheral nervous system

    Directory of Open Access Journals (Sweden)

    Sadhu Rejina

    2007-12-01

    Full Text Available Abstract Background During spinal cord development, expression of chicken SEMAPHORIN6A (SEMA6A is almost exclusively found in the boundary caps at the ventral motor axon exit point and at the dorsal root entry site. The boundary cap cells are derived from a population of late migrating neural crest cells. They form a transient structure at the transition zone between the peripheral nervous system (PNS and the central nervous system (CNS. Ablation of the boundary cap resulted in emigration of motoneurons from the ventral spinal cord along the ventral roots. Based on its very restricted expression in boundary cap cells, we tested for a role of Sema6A as a gate keeper between the CNS and the PNS. Results Downregulation of Sema6A in boundary cap cells by in ovo RNA interference resulted in motoneurons streaming out of the spinal cord along the ventral roots, and in the failure of dorsal roots to form and segregate properly. PlexinAs interact with class 6 semaphorins and are expressed by both motoneurons and sensory neurons. Knockdown of PlexinA1 reproduced the phenotype seen after loss of Sema6A function both at the ventral motor exit point and at the dorsal root entry site of the lumbosacral spinal cord. Loss of either PlexinA4 or Sema6D function had an effect only at the dorsal root entry site but not at the ventral motor axon exit point. Conclusion Sema6A acts as a gate keeper between the PNS and the CNS both ventrally and dorsally. It is required for the clustering of boundary cap cells at the PNS/CNS interface and, thus, prevents motoneurons from streaming out of the ventral spinal cord. At the dorsal root entry site it organizes the segregation of dorsal roots.

  11. Analytical challenges for measuring steroid responses to stress, neurodegeneration and injury in the central nervous system.

    Science.gov (United States)

    Schumacher, Michael; Guennoun, Rachida; Mattern, Claudia; Oudinet, Jean-Paul; Labombarda, Florencia; De Nicola, Alejandro F; Liere, Philippe

    2015-11-01

    Levels of steroids in the adult central nervous system (CNS) show marked changes in response to stress, degenerative disorders and injury. However, their analysis in complex matrices such as fatty brain and spinal cord tissues, and even in plasma, requires accurate and precise analytical methods. Radioimmunoassays (RIA) and enzyme-linked immunosorbent assays, even with prepurification steps, do not provide sufficient specificity, and they are at the origin of many inconsistent results in the literature. The analysis of steroids by mass spectrometric methods has become the gold standard for accurate and sensitive steroid analysis. However, these technologies involve multiple purification steps prone to errors, and they only provide accurate reference values when combined with careful sample workup. In addition, the interpretation of changes in CNS steroid levels is not an easy task because of their multiple sources: the endocrine glands and the local synthesis by neural cells. In the CNS, decreased steroid levels may reflect alterations of their biosynthesis, as observed in the case of chronic stress, post-traumatic stress disorders or depressive episodes. In such cases, return to normalization by administering exogenous hormones or by stimulating their endogenous production may have beneficial effects. On the other hand, increases in CNS steroids in response to acute stress, degenerative processes or injury may be part of endogenous protective or rescue programs, contributing to the resistance of neural cells to stress and insults. The aim of this review is to encourage a more critical reading of the literature reporting steroid measures, and to draw attention to the absolute need for well-validated methods. We discuss reported findings concerning changing steroid levels in the nervous system by insisting on methodological issues. An important message is that even recent mass spectrometric methods have their limits, and they only become reliable tools if combined

  12. Evidence against mobile pulleys on the rectus muscles and inferior oblique muscle: central nervous system controls ocular kinematics.

    Science.gov (United States)

    Jampel, Robert S; Shi, Dian X

    2006-01-01

    To provide evidence against the existence of orbital pulleys. Interpretation of magnetic resonance imaging (MRI) scans; video eye tracking; ocular motor nerve stimulations; and clinical observations. No pulleys or planes splitting the extraocular muscles into layers were noted on MRI scans. Smooth muscle does not antagonize striate muscle. There is no physiological evidence that human rectus pulleys shift the ocular rotational axes to attain commutative behavior. In the monkey and humans, the axes of rotation are not determined by eye position. Operations on the extraocular muscles reveal no pulleys. The somatosensory system of the central nervous system controls the extraocular muscles. The autonomic nervous and the hormonal systems control the infrastructure of the orbit vital for the function of the extraocular muscles. The three systems are integrated and controlled by the central nervous system. Neural circuits are necessary to compensate for extraocular muscle abnormalities. There are no pulleys.

  13. Homozygous Nonsense Mutations in KIAA1279 Are Associated with Malformations of the Central and Enteric Nervous Systems

    Science.gov (United States)

    Brooks, Alice S. ; Bertoli-Avella, Aida M. ; Burzynski, Grzegorz M. ; Breedveld, Guido J. ; Osinga, Jan ; Boven, Ludolf G. ; Hurst, Jane A. ; Mancini, Grazia M. S. ; Lequin, Maarten H. ; de Coo, Rene F. ; Matera, Ivana ; de Graaff, Esther ; Meijers, Carel ; Willems, Patrick J. ; Tibboel, Dick ; Oostra, Ben A. ; Hofstra, Robert M. W. 

    2005-01-01

    We identified, by homozygosity mapping, a novel locus on 10q21.3-q22.1 for Goldberg-Shprintzen syndrome (GOSHS) in a consanguineous Moroccan family. Phenotypic features of GOSHS in this inbred family included microcephaly and mental retardation, which are both central nervous system defects, as well as Hirschsprung disease, an enteric nervous system defect. Furthermore, since bilateral generalized polymicogyria was diagnosed in all patients in this family, this feature might also be considered a key feature of the syndrome. We demonstrate that homozygous nonsense mutations in KIAA1279 at 10q22.1, encoding a protein with two tetratrico peptide repeats, underlie this syndromic form of Hirschsprung disease and generalized polymicrogyria, establishing the importance of KIAA1279 in both enteric and central nervous system development. PMID:15883926

  14. Potential Clinical Impact of The Filmarray Meningitis Encephalitis Panel In Children With Suspected Central Nervous System Infections

    Science.gov (United States)

    Messacar, Kevin; Breazeale, Garrett; Robinson, Christine C.; Dominguez, Samuel R.

    2016-01-01

    The FilmArray Meningitis Encephalitis Panel, a multiplex PCR for testing of cerebrospinal fluid, was compared to conventional diagnostic methods in children with suspected central nervous system infections. The panel had comparable diagnostic yield (96% agreement) and improved time-to-diagnosis by 10.3 hours with potential for more judicious antimicrobial use, particularly acyclovir. PMID:27342782

  15. Primary angiitis of the central nervous system presenting with subacute and fatal course of disease: a case report

    Directory of Open Access Journals (Sweden)

    Börnke Christian

    2005-09-01

    Full Text Available Abstract Background Primary angiitis of the central nervous system is an idiopathic disorder characterized by vasculitis within the dural confines. The clinical presentation shows a wide variation and the course and the duration of disease are heterogeneous. This rare but treatable disease provides a diagnostic challenge owing to the lack of pathognomonic tests and the necessity of a histological confirmation. Case presentation A 28-year-old patient presenting with headache and fluctuating signs of encephalopathy was treated on the assumption of viral meningoencephalitis. The course of the disease led to his death 10 days after hospital admission. Postmortem examination revealed primary angiitis of the central nervous system. Conclusion Primary angiitis of the central nervous system should always be taken into consideration when suspected infectious inflammation of the central nervous system does not respond to treatment adequately. In order to confirm the diagnosis with the consequence of a modified therapy angiography and combined leptomeningeal and brain biopsy should be considered immediately.

  16. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system

    NARCIS (Netherlands)

    Hol, Elly M.; Pekny, Milos

    Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a

  17. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system

    NARCIS (Netherlands)

    Hol, E.M.; Pekny, M.

    2015-01-01

    Glial fibrillary acidic protein (GFAP) is the hallmark intermediate filament (IF; also known as nanofilament) protein in astrocytes, a main type of glial cells in the central nervous system (CNS). Astrocytes have a range of control and homeostatic functions in health and disease. Astrocytes assume a

  18. Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system

    DEFF Research Database (Denmark)

    Sørensen, Torben Lykke; Trebst, Corinna; Kivisäkk, Pia

    2002-01-01

    T-cell accumulation in the central nervous system (CNS) is considered crucial to the pathogenesis of multiple sclerosis (MS). We found that the majority of T cells within the cerebrospinal fluid (CSF) compartment expressed the CXC chemokine receptor 3 (CXCR), independent of CNS inflammation. Quan...

  19. Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system philadelphia chromosome positive leukemia

    NARCIS (Netherlands)

    K. Porkka (Kimmo); P. Koskenvesa (Perttu); T. Lundan (Tuija); J. Rimpiläinen (Johanna); S. Mustjoki (Satu); R. Smykla (Richard); R. Wild (Robert); R. Luo (Roger); M. Arnan (Montserrat); B. Brethon (Benoit); L. Eccersley (Lydia); H. Hjorth-Hansen (Henrik); M. Höglund (Martin); H. Klamova (Hana); H. Knutsen (Håvar); S. Parikh (Suhag); E. Raffoux (Emmanuel); F. Gruber (Franz); F. Brito-Babapulle (Finella); H. Dombret (Hervé); R.F. Duarte (Rafael); E. Elonen (Erkki); R. Paquette (Ron); C.M. Zwaan (Christian Michel); F.Y.F. Lee (Francis)

    2008-01-01

    textabstractAlthough imatinib, a BCR-ABL tyrosine kinase inhibitor, is used to treat acute Philadelphia chromosome-positive (Ph+) leukemia, it does not prevent central nervous system (CNS) relapses resulting from poor drug penetration through the blood-brain barrier. Imatinib and dasatinib (a

  20. [Prevalence of central nervous system tumours and histological identification in the operated patient: 20 years of experience].

    Science.gov (United States)

    Anaya-Delgadillo, Gustavo; de Juambelz-Cisneros, Pedro Pablo; Fernández-Alvarado, Basilio; Pazos-Gómez, Fernando; Velasco-Torre, Andrea; Revuelta-Gutiérrez, Rogelio

    Central nervous system tumours comprise a heterogeneous group of neoplasms with great histological diversity. Despite the rising prevalence of these tumours in developing countries, some places like Mexico and Latin America have no representative studies that show the real impact of these tumours in our population. To describe the characteristics of the primary and secondary tumours of the central nervous system in the last 20 years in a Mexican institution. Patients with histopathological diagnosis from 1993 to 2013 in our institution, grouping them according to WHO classification 2007, characterising them by age group, gender, and anatomical location. There were a total of 511 tumours of the central nervous system. Of those, 292 were women and 219 men, with a ratio 1.3: 1, and a mean age of 49.3 years. Tumours with higher prevalence were: Meningeal tumours, 171 (33%), followed by neuroepithelial, 121 (24%). Astrocytoma had the highest prevalence in paediatric patients, whereas in those older than 20 years it was the meningioma. The supratentorial location was the most involved. This is the first study of a series of cases in Mexico that is performed by taking into account benign and malignant tumours of the central nervous system, with patients of all age groups with a range of 20 years. While this work only represents a retrospective analysis of an institution, it can be a strong indication of the epidemiology of these tumours in our environment. Copyright © 2016. Publicado por Masson Doyma México S.A.

  1. The pathogenesis of cysts accompanying intra-axial primary and metastatic tumors of the central nervous system

    NARCIS (Netherlands)

    Lohle, PNM; Wurzer, HAL; Seelen, PJ; Kingma, LM; Go, KG

    1998-01-01

    Recent reports have suggested that cyst formation accompanying astrocytomas in the central nervous system (CNS) is due to an edematous process caused by blood-brain barrier (BBB) disruption and not a result of necrosis. This study is performed to investigate whether the hypothesis of cyst formation

  2. Comorbidities and factors associated with central nervous system infections and death in non-perinatal listeriosis : a clinical case series

    NARCIS (Netherlands)

    Maertens De Noordhout, C; Devleesschauwer, B; Maertens De Noordhout, A; Blocher, J; Haagsma, J A; Havelaar, A H; Speybroeck, N

    2016-01-01

    BACKGROUND: Listeriosis is a rare disease caused by the bacterium Listeria monocytogenes and mainly affects at risk people. Listeriosis can lead to sepsis, central nervous system (CNS) infections and death. The objectives of this study were to describe and quantify comorbidities and neurological

  3. In vitro Alternative Methodologies for Central Nervous System Assessment: A Critique using Nanoscale Materials as an Example.

    Science.gov (United States)

    Identifying the potential health hazards to the central nervous system of a new family of materials presents many challenges. Whole-animal toxicity testing has been the tradition, but in vitro methods have been steadily gaining popularity. There are numerous challenges in testing...

  4. Specific interaction of central nervous system myelin basic protein with lipids effects of basic protein on glucose leakage from liposomes

    NARCIS (Netherlands)

    Gould, R.M.; London, Y.

    1972-01-01

    The leakage from liposomes preloaded with glucose was continuously monitored in a Perkin-Elmer Model 356 dual beam spectrophotometer using an enzyme-linked assay system. The central nervous system myelin basic protein (A1 protein) caused a 3–4-fold increase in the rate of leakage from liposomes

  5. Central Nervous System Mechanisms Linking the Consumption of Palatable High-Fat Diets to the Defense of Greater Adiposity

    OpenAIRE

    Ryan, Karen K.; Woods, Stephen C.; Seeley, Randy J.

    2012-01-01

    The central nervous system (CNS) plays key role in the homeostatic regulation of body weight. Satiation and adiposity signals, providing acute and chronic information about available fuel, are produced in the periphery and act in the brain to influence energy intake and expenditure, resulting in the maintenance of stable adiposity. Diet-induced obesity (DIO) does not result from a failure of these central homeostatic circuits. Rather, the threshold for defended adiposity is increased in envir...

  6. Sarcoma indiferenciado primário no sistema nervoso central Primary undifferentiated sarcoma of the central nervous system

    Directory of Open Access Journals (Sweden)

    Milton Marcio Machota Junior

    2012-04-01

    Full Text Available INTRODUÇÃO: O sarcoma de sistema nervoso central (SNC é uma neoplasia rara, com incidência de 0,1% a 4,3% dos tumores intracranianos. São tumores agressivos com prognóstico reservado e a maioria é tratada com ressecção radical. RELATO: Homem, 29 anos, com episódios de crises convulsivas e diagnóstico de hemorragia intraparenquimatosa. Durante a cirurgia, foi identificada lesão bem delimitada. A histologia demonstrou neoplasia fusocelular com atipias e numerosas mitoses. Os únicos marcadores imuno-histoquímicos positivos foram vimentina e S-100. O diagnóstico foi de sarcoma indiferenciado de alto grau. CONCLUSÃO: No diagnóstico diferencial de sarcomas de SNC, devem-se excluir lesões metastáticas e gliossarcoma.INTRODUCTION: The central nervous system (CNS sarcoma is a rare neoplasm with an incidence of 0.1% to 4.3% in intracranial tumors. They are aggressive with poor prognosis, and mostly treated with radical resection. REPORT: 29 year-old male patient with episodes of seizures and diagnosed with intraparenchymal hemorrhage. During the surgery a well-defined lesion was identified. Histology showed a spindle cell neoplasm with atypia and numerous mitoses. The immunohistochemical markers were positive only for vimentin and S-100. The diagnosis was high-grade undifferentiated sarcoma. CONCLUSION: Metastatic lesions and gliosarcoma should be excluded in the differential diagnosis of CNS sarcomas.

  7. Fetal Central Nervous System Anomalies Detected by Magnetic Resonance Imaging: A Two-Year Experience

    Science.gov (United States)

    Sefidbakht, Sepideh; Dehghani, Sakineh; Safari, Maryam; Vafaei, Homeira; Kasraeian, Maryam

    2016-01-01

    Background Magnetic resonance imaging (MRI) is gradually becoming more common for thorough visualization of the fetus than ultrasound (US), especially for neurological anomalies, which are the most common indications for fetal MRI and are a matter of concern for both families and society. Objectives We investigated fetal MRIs carried out in our center for frequency of central nervous system anomalies. This is the first such report in southern Iran. Materials and Methods One hundred and seven (107) pregnant women with suspicious fetal anomalies in prenatal ultrasound entered a cross-sectional retrospective study from 2011 to 2013. A 1.5 T Siemens Avanto scanner was employed for sequences, including T2 HASTE and Trufisp images in axial, coronal, and sagittal planes to mother’s body, T2 HASTE and Trufisp relative to the specific fetal body part being evaluated, and T1 flash images in at least one plane based on clinical indication. We investigated any abnormality in the central nervous system and performed descriptive analysis to achieve index of frequency. Results Mean gestational age ± standard deviation (SD) for fetuses was 25.54 ± 5.22 weeks, and mean maternal age ± SD was 28.38 ± 5.80 years Eighty out of 107 (74.7%) patients who were referred with initial impression of borderline ventriculomegaly. A total of 18 out of 107 (16.82%) patients were found to have fetuses with CNS anomalies and the remainder were neurologically normal. Detected anomalies were as follow: 3 (16.6%) fetuses each had the Dandy-Walker variant and Arnold-Chiari II (with myelomeningocele). Complete agenesis of corpus callosum, partial agenesis of corpus callosum, and aqueductal stenosis were each seen in 2 (11.1%) fetuses. Arnold-Chiari II without myelomeningocele, anterior spina bifida associated with neurenteric cyst, arachnoid cyst, lissencephaly, and isolated enlarged cisterna magna each presented in one (5.5%) fetus. One fetus had concomitant schizencephaly and complete agenesis of

  8. Complement selectively elicits glutamate release from nerve endings in different regions of mammal central nervous system.

    Science.gov (United States)

    Merega, Elisa; Di Prisco, Silvia; Lanfranco, Massimiliano; Severi, Paolo; Pittaluga, Anna

    2014-05-01

    Our study was aimed at investigating whether complement, a complex of soluble and membrane-associated serum proteins, could, in addition to its well-documented post-synaptic activity, also pre-synaptically affect the release of classic neurotransmitters in central nervous system (CNS). Complement (dilution 1 : 10 to 1 : 10000) elicited the release of preloaded [(3) H]-d-aspartate ([(3) H]d-ASP) and endogenous glutamate from mouse cortical synaptosomes in a dilution-dependent manner. It also evoked [(3) H]d-ASP release from mouse hippocampal, cerebellar, and spinal cord synaptosomes, as well as from rat and human cortical nerve endings, but left unaltered the release of GABA, [(3) H]noradrenaline or [(3) H]acetylcholine. Lowering external Na(+) (from 140 to 40 mM) or Ca(2+) (from 1.2 to 0.1 mM) ions prevented the 1 : 300 complement-evoked [(3) H]d-ASP release from mouse cortical synaptosomes. Complement-induced releasing effect was unaltered in synaptosomes entrapped with the Ca(2+) ions chelator 1,2-bis-(2-aminophenoxy) ethane-N,N,N',N', tetra-acetic acid or with pertussis toxin. Nifedipine,/ω-conotoxin GVIA/ω-conotoxin MVIIC mixture as well as the vesicular ATPase blocker bafilomycin A1 were also inefficacious. The excitatory amino acid transporter blocker DL-threo-ß-benzyloxyaspartic acid, on the contrary, reduced the complement-evoked releasing effect in a concentration-dependent manner. We concluded that complement-induced releasing activity is restricted to glutamatergic nerve endings, where it was accounted for by carrier-mediated release. Our observations afford new insights into the molecular events accounting for immune and CNS crosstalk. We investigated whether complement, a complex of soluble and membrane-associated serum proteins, could pre-synaptically affect the release of classic neurotransmitters in the central nervous system (CNS). Our data provide evidence that complement-induced releasing activity is restricted to glutamatergic nerve endings

  9. Infiltration Pattern of Blood Monocytes into the Central Nervous System during Experimental Herpes Simplex Virus Encephalitis.

    Directory of Open Access Journals (Sweden)

    Rafik Menasria

    Full Text Available The kinetics and distribution of infiltrating blood monocytes into the central nervous system and their involvement in the cerebral immune response together with resident macrophages, namely microglia, were evaluated in experimental herpes simplex virus 1 (HSV-1 encephalitis (HSE. To distinguish microglia from blood monocyte-derived macrophages, chimeras were generated by conditioning C57BL/6 recipient mice with chemotherapy regimen followed by transplantation of bone morrow-derived cells that expressed the green fluorescent protein. Mice were infected intranasally with a sub-lethal dose of HSV-1 (1.2 x 10(6 plaque forming units. Brains were harvested prior to and on days 4, 6, 8 and 10 post-infection for flow cytometry and immunohistochemistry analysis. The amounts of neutrophils (P < 0.05 and "Ly6C hi" inflammatory monocytes (P < 0.001 significantly increased in the CNS compared to non-infected controls on day 6 post-infection, which corresponded to more severe clinical signs of HSE. Levels decreased on day 8 for both leukocytes subpopulations (P < 0.05 for inflammatory monocytes compared to non-infected controls to reach baseline levels on day 10 following infection. The percentage of "Ly6C low" patrolling monocytes significantly increased (P < 0.01 at a later time point (day 8, which correlated with the resolution phase of HSE. Histological analysis demonstrated that blood leukocytes colonized mostly the olfactory bulb and the brainstem, which corresponded to regions where HSV-1 particles were detected. Furthermore, infiltrating cells from the monocytic lineage could differentiate into activated local tissue macrophages that express the microglia marker, ionized calcium-binding adaptor molecule 1. The lack of albumin detection in the brain parenchyma of infected mice showed that the infiltration of blood leukocytes was not necessarily related to a breakdown of the blood-brain barrier but could be the result of a functional recruitment. Thus

  10. Fetal Central Nervous System Anomalies Detected by Magnetic Resonance Imaging: A Two-Year Experience.

    Science.gov (United States)

    Sefidbakht, Sepideh; Dehghani, Sakineh; Safari, Maryam; Vafaei, Homeira; Kasraeian, Maryam

    2016-08-01

    Magnetic resonance imaging (MRI) is gradually becoming more common for thorough visualization of the fetus than ultrasound (US), especially for neurological anomalies, which are the most common indications for fetal MRI and are a matter of concern for both families and society. We investigated fetal MRIs carried out in our center for frequency of central nervous system anomalies. This is the first such report in southern Iran. One hundred and seven (107) pregnant women with suspicious fetal anomalies in prenatal ultrasound entered a cross-sectional retrospective study from 2011 to 2013. A 1.5 T Siemens Avanto scanner was employed for sequences, including T2 HASTE and Trufisp images in axial, coronal, and sagittal planes to mother's body, T2 HASTE and Trufisp relative to the specific fetal body part being evaluated, and T1 flash images in at least one plane based on clinical indication. We investigated any abnormality in the central nervous system and performed descriptive analysis to achieve index of frequency. Mean gestational age ± standard deviation (SD) for fetuses was 25.54 ± 5.22 weeks, and mean maternal age ± SD was 28.38 ± 5.80 years Eighty out of 107 (74.7%) patients who were referred with initial impression of borderline ventriculomegaly. A total of 18 out of 107 (16.82%) patients were found to have fetuses with CNS anomalies and the remainder were neurologically normal. Detected anomalies were as follow: 3 (16.6%) fetuses each had the Dandy-Walker variant and Arnold-Chiari II (with myelomeningocele). Complete agenesis of corpus callosum, partial agenesis of corpus callosum, and aqueductal stenosis were each seen in 2 (11.1%) fetuses. Arnold-Chiari II without myelomeningocele, anterior spina bifida associated with neurenteric cyst, arachnoid cyst, lissencephaly, and isolated enlarged cisterna magna each presented in one (5.5%) fetus. One fetus had concomitant schizencephaly and complete agenesis of the corpus callosum. MRI is superior to ultrasound

  11. Conductive polymers for controlled release and treatment of central nervous system injury

    Science.gov (United States)

    Saigal, Rajiv

    As one of the most devastating forms of neurotrauma, spinal cord injury remains a challenging clinical problem. The difficulties in treatment could potentially be resolved by better technologies for therapeutic delivery. In order to develop new approaches to treating central nervous system injury, this dissertation focused on using electrically-conductive polymers, controlled drug release, and stem cell transplantation. We first sought to enhance the therapeutic potential of neural stem cells by electrically increasing their production of neurotrophic factors (NTFs), important molecules for neuronal cell survival, differentiation, synaptic development, plasticity, and growth. We fabricated a new cell culture device for growing neural stem cells on a biocompatible, conductive polymer. Electrical stimulation via the polymer led to upregulation of NTF production by neural stem cells. This approach has the potential to enhance stem cell function while avoiding the pitfalls of genetic manipulation, possibly making stem cells more viable as a clinical therapy. Seeing the therapeutic potential of conductive polymers, we extended our studies to an in vivo model of spinal cord injury (SCI). Using a novel fabrication and extraction technique, a conductive polymer was fabricated to fit to the characteristic pathology that follows contusive SCI. Assessed via quantitative analysis of MR images, the conductive polymer significantly reduced compression of the injured spinal cord. Further characterizing astroglial and neuronal response of injured host tissue, we found significant neuronal sparing as a result of this treatment. The in vivo studies also demonstrated improved locomotor recovery mediated by a conductive polymer scaffold over a non-conductive control. We next sought to take advantage of conductive polymers for local, electronically-controlled release of drugs. Seeking to overcome reported limitations in drug delivery via polypyrrole, we first embedded drugs in poly

  12. Central nervous system medication use in older adults with intellectual disability: Results from the successful ageing in intellectual disability study.

    Science.gov (United States)

    Chitty, Kate M; Evans, Elizabeth; Torr, Jennifer J; Iacono, Teresa; Brodaty, Henry; Sachdev, Perminder; Trollor, Julian N

    2016-04-01

    Information on the rates and predictors of polypharmacy of central nervous system medication in older people with intellectual disability is limited, despite the increased life expectancy of this group. This study examined central nervous system medication use in an older sample of people with intellectual disability. Data regarding demographics, psychiatric diagnoses and current medications were collected as part of a larger survey completed by carers of people with intellectual disability over the age of 40 years. Recruitment occurred predominantly via disability services across different urban and rural locations in New South Wales and Victoria. Medications were coded according to the Monthly Index of Medical Specialties central nervous system medication categories, including sedatives/hypnotics, anti-anxiety agents, antipsychotics, antidepressants, central nervous system stimulants, movement disorder medications and anticonvulsants. The Developmental Behaviour Checklist for Adults was used to assess behaviour. Data were available for 114 people with intellectual disability. In all, 62.3% of the sample was prescribed a central nervous system medication, with 47.4% taking more than one. Of those who were medicated, 46.5% had a neurological diagnosis (a seizure disorder or Parkinson's disease) and 45.1% had a psychiatric diagnosis (an affective or psychotic disorder). Linear regression revealed that polypharmacy was predicted by the presence of neurological and psychiatric diagnosis, higher Developmental Behaviour Checklist for Adults scores and male gender. This study is the first to focus on central nervous system medication in an older sample with intellectual disability. The findings are in line with the wider literature in younger people, showing a high degree of prescription and polypharmacy. Within the sample, there seems to be adequate rationale for central nervous system medication prescription. Although these data do not indicate non-adherence to

  13. Classifying Pediatric Central Nervous System Tumors through near Optimal Feature Selection and Mutual Information: A Single Center Cohort

    Directory of Open Access Journals (Sweden)

    Mohammad Faranoush

    2013-10-01

    Full Text Available Background: Labeling, gathering mutual information, clustering and classificationof central nervous system tumors may assist in predicting not only distinct diagnosesbased on tumor-specific features but also prognosis. This study evaluates the epidemi-ological features of central nervous system tumors in children who referred to Mahak’sPediatric Cancer Treatment and Research Center in Tehran, Iran.Methods: This cohort (convenience sample study comprised 198 children (≤15years old with central nervous system tumors who referred to Mahak's PediatricCancer Treatment and Research Center from 2007 to 2010. In addition to the descriptiveanalyses on epidemiological features and mutual information, we used the LeastSquares Support Vector Machines method in MATLAB software to propose apreliminary predictive model of pediatric central nervous system tumor feature-labelanalysis. Results:Of patients, there were 63.1% males and 36.9% females. Patients' mean±SDage was 6.11±3.65 years. Tumor location was as follows: supra-tentorial (30.3%, infra-tentorial (67.7% and 2% (spinal. The most frequent tumors registered were: high-gradeglioma (supra-tentorial in 36 (59.99% patients and medulloblastoma (infra-tentorialin 65 (48.51% patients. The most prevalent clinical findings included vomiting,headache and impaired vision. Gender, age, ethnicity, tumor stage and the presence ofmetastasis were the features predictive of supra-tentorial tumor histology.Conclusion: Our data agreed with previous reports on the epidemiology of centralnervous system tumors. Our feature-label analysis has shown how presenting features maypartially predict diagnosis. Timely diagnosis and management of central nervous systemtumors can lead to decreased disease burden and improved survival. This may be furtherfacilitated through development of partitioning, risk prediction and prognostic models.

  14. Primary Angiitis of the Central Nervous System: Magnetic Resonance Imaging Spectrum of Parenchymal, Meningeal, and Vascular Lesions at Baseline.

    Science.gov (United States)

    Boulouis, Grégoire; de Boysson, Hubert; Zuber, Mathieu; Guillevin, Loïc; Meary, Eric; Costalat, Vincent; Pagnoux, Christian; Naggara, Olivier

    2017-05-01

    Primary angiitis of the central nervous system remains challenging. To report an overview and pictorial review of brain magnetic resonance imaging findings in adult primary angiitis of the central nervous system and to determine the distribution of parenchymal, meningeal, and vascular lesions in a large multicentric cohort. Adult patients from the French COVAC cohort (Cohort of Patients With Primary Vasculitis of the Central Nervous System), with biopsy or angiographically proven primary angiitis of the central nervous system and brain magnetic resonance imaging available at the time of diagnosis were included. A systematic imaging review was performed blinded to clinical data. Sixty patients met inclusion criteria. Mean age was 45 years (±12.9). Patients initially presented focal deficit(s) (83%), headaches (53%), cognitive disorder (40%), and seizures (38.3%). The most common magnetic resonance imaging finding observed in 42% of patients was multiterritorial, bilateral, distal acute stroke lesions after small to medium artery distribution, with a predominant carotid circulation distribution. Hemorrhagic infarctions and parenchymal hemorrhages were also frequently found in the cohort (55%). Acute convexity subarachnoid hemorrhage was found in 26% of patients and 42% demonstrated pre-eminent leptomeningeal enhancement, which is found to be significantly more prevalent in biopsy-proven patients (60% versus 28%; P =0.04). Seven patients had tumor-like presentations. Seventy-seven percent of magnetic resonance angiographic studies were abnormal, revealing proximal/distal stenoses in 57% and 61% of patients, respectively. Adult primary angiitis of the central nervous system is a heterogenous disease, with multiterritorial, distal, and bilateral acute stroke being the most common pattern of parenchymal lesions found on magnetic resonance imaging. Our findings suggest a higher than previously thought prevalence of hemorrhagic transformation and other hemorrhagic

  15. [A study of selective neuronal vulnerability in the human central nervous system].

    Science.gov (United States)

    Naudí, Alba; Jové, Mariona; Ayala, Victoria; Cabré, Rosanna; Portero-Otin, Manuel; Ferrer, Isidre; Pamplona, Reinald

    2013-01-01

    The concept of 'selective neuronal vulnerability' refers to the differential sensitivity of neuronal populations in the nervous system to stresses that cause cell damage and lead to neurodegeneration. Because oxidative stress play a causal role in the physiological aging process, and it is often invoked as an aetiopathogenic and/or pathophysiological mechanism for neurodegeneration, in the present work we propose that the molecular bases of selective neuronal vulnerability is linked with cell adaptations related to oxidative stress. The grey substance of 5 different regions from healthy human subjects (n=7) were selected: i) to evaluate their membrane fatty acid profile by chromatographic methods, ii) to determine their membrane susceptibility to peroxidation, and iii) to recognise potential mechanisms involved in its regulation. The results showed significant inter-regional differences in the fatty acid profile, basically due to the content of mono- and highly polyunsaturated fatty acids; changes that, in turn, induce significant differences in theirs susceptibilities to peroxidation, as well as differences that can be ascribed to the desaturase activity. Thus, the cross-regional comparative approach seems to confirm the idea that the level of cell membrane unsaturation may be a key trait associated with selective neuronal vulnerability. Copyright © 2013 SEGG. Published by Elsevier Espana. All rights reserved.

  16. Robust Central Nervous System Pathology in Transgenic Mice following Peripheral Injection of α-Synuclein Fibrils.

    Science.gov (United States)

    Ayers, Jacob I; Brooks, Mieu M; Rutherford, Nicola J; Howard, Jasie K; Sorrentino, Zachary A; Riffe, Cara J; Giasson, Benoit I

    2017-01-15

    Misfolded α-synuclein (αS) is hypothesized to spread throughout the central nervous system (CNS) by neuronal connectivity leading to widespread pathology. Increasing evidence indicates that it also has the potential to invade the CNS via peripheral nerves in a prion-like manner. On the basis of the effectiveness following peripheral routes of prion administration, we extend our previous studies of CNS neuroinvasion in M83 αS transgenic mice following hind limb muscle (intramuscular [i.m.]) injection of αS fibrils by comparing various peripheral sites of inoculations with different αS protein preparations. Following intravenous injection in the tail veins of homozygous M83 transgenic (M83(+/+)) mice, robust αS pathology was observed in the CNS without the development of motor impairments within the time frame examined. Intraperitoneal (i.p.) injections of αS fibrils in hemizygous M83 transgenic (M83(+/-)) mice resulted in CNS αS pathology associated with paralysis. Interestingly, injection with soluble, nonaggregated αS resulted in paralysis and pathology in only a subset of mice, whereas soluble Δ71-82 αS, human βS, and keyhole limpet hemocyanin (KLH) control proteins induced no symptoms or pathology. Intraperitoneal injection of αS fibrils also induced CNS αS pathology in another αS transgenic mouse line (M20), albeit less robustly in these mice. In comparison, i.m. injection of αS fibrils was more efficient in inducing CNS αS pathology in M83 mice than i.p. or tail vein injections. Furthermore, i.m. injection of soluble, nonaggregated αS in M83(+/-) mice also induced paralysis and CNS αS pathology, although less efficiently. These results further demonstrate the prion-like characteristics of αS and reveal its efficiency to invade the CNS via multiple routes of peripheral administration. The misfolding and accumulation of α-synuclein (αS) inclusions are found in a number of neurodegenerative disorders and is a hallmark feature of Parkinson

  17. Etiologic agents of central nervous system infections among febrile hospitalized patients in the country of Georgia.

    Directory of Open Access Journals (Sweden)

    Tamar Akhvlediani

    Full Text Available OBJECTIVES: There is a large spectrum of viral, bacterial, fungal, and prion pathogens that cause central nervous system (CNS infections. As such, identification of the etiological agent requires multiple laboratory tests and accurate diagnosis requires clinical and epidemiological information. This hospital-based study aimed to determine the main causes of acute meningitis and encephalitis and enhance laboratory capacity for CNS infection diagnosis. METHODS: Children and adults patients clinically diagnosed with meningitis or encephalitis were enrolled at four reference health centers. Cerebrospinal fluid (CSF was collected for bacterial culture, and in-house and multiplex RT-PCR testing was conducted for herpes simplex virus (HSV types 1 and 2, mumps virus, enterovirus, varicella zoster virus (VZV, Streptococcus pneumoniae, HiB and Neisseria meningitidis. RESULTS: Out of 140 enrolled patients, the mean age was 23.9 years, and 58% were children. Bacterial or viral etiologies were determined in 51% of patients. Five Streptococcus pneumoniae cultures were isolated from CSF. Based on in-house PCR analysis, 25 patients were positive for S. pneumoniae, 6 for N. meningitidis, and 1 for H. influenzae. Viral multiplex PCR identified infections with enterovirus (n = 26, VZV (n = 4, and HSV-1 (n = 2. No patient was positive for mumps or HSV-2. CONCLUSIONS: Study findings indicate that S. pneumoniae and enteroviruses are the main etiologies in this patient cohort. The utility of molecular diagnostics for pathogen identification combined with the knowledge provided by the investigation may improve health outcomes of CNS infection cases in Georgia.

  18. Whole transcriptome sequencing enables discovery and analysis of viruses in archived primary central nervous system lymphomas.

    Science.gov (United States)

    DeBoever, Christopher; Reid, Erin G; Smith, Erin N; Wang, Xiaoyun; Dumaop, Wilmar; Harismendy, Olivier; Carson, Dennis; Richman, Douglas; Masliah, Eliezer; Frazer, Kelly A

    2013-01-01

    Primary central nervous system lymphomas (PCNSL) have a dramatically increased prevalence among persons living with AIDS and are known to be associated with human Epstein Barr virus (EBV) infection. Previous work suggests that in some cases, co-infection with other viruses may be important for PCNSL pathogenesis. Viral transcription in tumor samples can be measured using next generation transcriptome sequencing. We demonstrate the ability of transcriptome sequencing to identify viruses, characterize viral expression, and identify viral variants by sequencing four archived AIDS-related PCNSL tissue samples and analyzing raw sequencing reads. EBV was detected in all four PCNSL samples and cytomegalovirus (CMV), JC polyomavirus (JCV), and HIV were also discovered, consistent with clinical diagnoses. CMV was found to express three long non-coding RNAs recently reported as expressed during active infection. Single nucleotide variants were observed in each of the viruses observed and three indels were found in CMV. No viruses were found in several control tumor types including 32 diffuse large B-cell lymphoma samples. This study demonstrates the ability of next generation transcriptome sequencing to accurately identify viruses, including DNA viruses, in solid human cancer tissue samples.

  19. Central neural circuitry in the jellyfish Aglantha: a model 'simple nervous system'.

    Science.gov (United States)

    Mackie, George O

    2004-01-01

    Like other hydrozoan medusae, Aglantha lacks a brain, but the two marginal nerve rings function together as a central nervous system. Twelve neuronal and two excitable epithelial conduction systems are described and their interactions summarized. Aglantha differs from most medusae in having giant axons. It can swim and contract its tentacles in two distinct ways (escape and slow). Escape responses are mediated primarily by giant axons but conventional interneurons are also involved in transmission of information within the nerve rings during one form of escape behavior. Surprisingly, giant axons provide the motor pathway to the swim muscles in both escape and slow swimming. This is possible because these axons can conduct calcium spikes as well as sodium spikes and do so on an either/or basis without overlap. The synaptic and ionic bases for these responses are reviewed. During feeding, the manubrium performs highly accurate flexions to points at the margin. At the same time, the oral lips flare open. The directional flexions are conducted by FMRFamide immunoreactive nerves, the lip flaring by an excitable epithelium lining the radial canals. Inhibition of swimming during feeding is due to impulses propagated centrifugally in the same epithelium. Aglantha probably evolved from an ancestor possessing a relatively simple wiring plan, as seen in other hydromedusae. Acquisition of giant axons resulted in considerable modification of this basic plan, and required novel solutions to the problems of integrating escape with non-escape circuitry. Copyright 2004 S. Karger AG, Basel

  20. EBV driven natural killer cell disease of the central nervous system presenting as subacute cognitive decline.

    Science.gov (United States)

    Brett, Francesca M; Flavin, Richard; Chen, Daphne; Loftus, Teresa; Looby, Seamus; McCarthy, Allan; de Gascun, Cillian; Jaffe, Elaine S; Nor, Nurul; Javadpour, Mohsen; McCabe, Dominick

    2017-11-01

    Brain biopsy in patients presenting with subacute encephalopathyis never straightforward and only undertaken when a 'treatable condition' is a realistic possibility. This 63 year old right handed, immunocompetent Caucasian woman presented with an 8 month history of rapidly progressive right-sided hearing impairment, a 4 month history of intermittent headaches, tinnitus, 'dizziness', dysphagia, nausea and vomiting, with the subsequent evolution of progressive gait ataxia and a subacute global encephalopathy. The possibility of CJD was raised. Brain biopsy was carried out. Western blot for prion protein was negative. She died 9 days later and autopsy brain examination confirmed widespread subacute infarction due to an EBV positive atypical NK/T-cell infiltrate with positivity for CD3, CD56, granzyme B, perforin and EBER with absence of CD4, CD5 and CD8 expression. Molecular studies for T-cell clonality were attempted but failed due to insufficient DNA quality. Serology was consistent with past EBV infection (EBV VCA and EBNA IgG Positive). There was no evidence of disease outside the CNS. Primary central nervous system NK/T-cell lymphoma is extremely rare. The rare reported cases all present with a discrete intracranial mass, unlike the diffuse infiltrative pattern in this case. Whilst the diffuse interstitial pattern is reminiscent of chronic active EBV infection (CAEBV) seen in other organ systems such as the liver and bone marrow, the clinical presentation and epidemiologic profile are not typical for CAEBV.

  1. EBV driven natural killer cell disease of the central nervous system presenting as subacute cognitive decline

    Directory of Open Access Journals (Sweden)

    Francesca M. Brett

    2017-11-01

    This 63 year old right handed, immunocompetent Caucasian woman presented with an 8 month history of rapidly progressive right-sided hearing impairment, a 4 month history of intermittent headaches, tinnitus, ‘dizziness’, dysphagia, nausea and vomiting, with the subsequent evolution of progressive gait ataxia and a subacute global encephalopathy. The possibility of CJD was raised. Brain biopsy was carried out. Western blot for prion protein was negative. She died 9 days later and autopsy brain examination confirmed widespread subacute infarction due to an EBV positive atypical NK/T-cell infiltrate with positivity for CD3, CD56, granzyme B, perforin and EBER with absence of CD4, CD5 and CD8 expression. Molecular studies for T-cell clonality were attempted but failed due to insufficient DNA quality. Serology was consistent with past EBV infection (EBV VCA and EBNA IgG Positive. There was no evidence of disease outside the CNS. Primary central nervous system NK/T-cell lymphoma is extremely rare. The rare reported cases all present with a discrete intracranial mass, unlike the diffuse infiltrative pattern in this case. Whilst the diffuse interstitial pattern is reminiscent of chronic active EBV infection (CAEBV seen in other organ systems such as the liver and bone marrow, the clinical presentation and epidemiologic profile are not typical for CAEBV.

  2. Virtual reality ultrasound imaging of the normal and abnormal fetal central nervous system.

    Science.gov (United States)

    Tutschek, B; Pilu, G

    2009-09-01

    In fetal ultrasound imaging, teaching and experience are of paramount importance to improve prenatal detection rates of fetal abnormalities. Yet both aspects depend on exposure to normal and, in particular, abnormal 'specimens'. We aimed to generate a number of simple virtual reality (VR) objects of the fetal central nervous system for use as educational tools. We applied a recently proposed algorithm for the generation of fetal VR object movies to the normal and abnormal fetal brain and spine. Interactive VR object movies were generated from ultrasound volume data from normal fetuses and fetuses with typical brain or spine anomalies. Pathognomonic still images from all object movies were selected and annotated to enable recognition of these features in the object movies. Forty-six virtual reality object movies from 22 fetuses (two with normal and 20 with abnormal brains) were generated in an interactive display format (QuickTime) and key images were annotated. The resulting .mov files are available for download from the website of this journal. VR object movies can be generated from educational ultrasound volume datasets, and may prove useful for teaching and learning normal and abnormal fetal anatomy.

  3. Gene network underlying the glial regenerative response to central nervous system injury.

    Science.gov (United States)

    Kato, Kentaro; Losada-Perez, Maria; Hidalgo, Alicia

    2018-01-01

    Although the central nervous system does not regenerate, injury induces repair and regenerative responses in glial cells. In mammals, activated microglia clear up apoptotic cells and debris resulting from the injury, astrocytes form a scar that contains the lesion, and NG2-glia elicit a prominent regenerative response. NG2-glia regenerate themselves and differentiate into oligodendrocytes, which remyelinate axons leading to some recovery of locomotion. The regenerative response of glial cells is evolutionarily conserved across the animals and Drosophila genetics revealed an underlying gene network. This involves the genes Notch, kon-tiki, eiger, dorsal, and prospero, homologues of mammalian Notch1, ng2, TNF, NFκB, and prox1, respectively. Feedback loops between these genes enable a surge in proliferation in response to injury and ensuing differentiation. Negative feedback sets a timer for proliferation, and prevents uncontrolled growth that could lead to glioma. Remarkable parallels are found in these genetic relationships between fruit flies and mammals. Drosophila findings provide insights into gene functions that could be manipulated in stem cells and progenitors for therapeutic repair. Developmental Dynamics 247:85-93, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine.

    Science.gov (United States)

    Haghikia, Aiden; Jörg, Stefanie; Duscha, Alexander; Berg, Johannes; Manzel, Arndt; Waschbisch, Anne; Hammer, Anna; Lee, De-Hyung; May, Caroline; Wilck, Nicola; Balogh, Andras; Ostermann, Annika I; Schebb, Nils Helge; Akkad, Denis A; Grohme, Diana A; Kleinewietfeld, Markus; Kempa, Stefan; Thöne, Jan; Demir, Seray; Müller, Dominik N; Gold, Ralf; Linker, Ralf A

    2015-10-20

    Growing empirical evidence suggests that nutrition and bacterial metabolites might impact the systemic immune response in the context of disease and autoimmunity. We report that long-chain fatty acids (LCFAs) enhanced differentiation and proliferation of T helper 1 (Th1) and/or Th17 cells and impaired their intestinal sequestration via p38-MAPK pathway. Alternatively, dietary short-chain FAs (SCFAs) expanded gut T regulatory (Treg) cells by suppression of the JNK1 and p38 pathway. We used experimental autoimmune encephalomyelitis (EAE) as a model of T cell-mediated autoimmunity to show that LCFAs consistently decreased SCFAs in the gut and exacerbated disease by expanding pathogenic Th1 and/or Th17 cell populations in the small intestine. Treatment with SCFAs ameliorated EAE and reduced axonal damage via long-lasting imprinting on lamina-propria-derived Treg cells. These data demonstrate a direct dietary impact on intestinal-specific, and subsequently central nervous system-specific, Th cell responses in autoimmunity, and thus might have therapeutic implications for autoimmune diseases such as multiple sclerosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Application of synchrotron radiation for elemental microanalysis of human central nervous system tissue

    Energy Technology Data Exchange (ETDEWEB)

    Szczerbowska-Boruchowska, M.; Lankosz, M.; Ostachowicz, J. [Mining University, Dept. of Radipmetry, Faculty of Physics and Nuclear Techniques, Krakow (Poland); Adamek, D.; Krygowska-Wajs, A.; Tomik, B.; Szczudlik, A. [Jagiellonian University, Institute of Neurology, Collegium Medicum, Krakow (Poland); Simionovici, A.; Bohic, S. [European Synchrotron Radiation Facility ESRF, 38 - Grenoble (France)

    2002-08-01

    The pathogenesis of two neuro-degenerative diseases i.e, Parkinson's Disease (PD) and amyotrophic lateral sclerosis (ALS) are still not known. It is supposed that disturbance of metal ions homeostasis may promote degeneration and atrophy of neurons. As a preliminary study, the quantitative and topographic elemental analysis of selected parts of human brain and spinal cord was performed using synchrotron microbeam-X ray fluorescence ({mu}-SXRF) technique. The samples were taken during the autopsy from patients with PD, ALS and from patients died due to non-neurological conditions events. X-ray fluorescence imaging showed that increased concentration of selected elements are observed in neurons perikaryal parts in compare with surrounding area. Moreover, comparable analysis showed significant differences in accumulation of selected elements between the pathological and control case. The investigations indicate that micro-beam of synchrotron radiation can be satisfactory applied for analysis of central nervous system tissue providing useful information about distribution and contents of elements at the single cell level. (authors)

  6. Neutron activation analysis of the central nervous system tissues in neurological diseases

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1994-07-01

    As the diseases due to excessive metals in living bodies and the metals of their causes, Minamata disease due to Hg, itai-itai disease due to Cd, dialysis brain disease due to Al, hemochromatosis due to Fe, Wilson disease due to Cu and so on have been known. Also as the neural diseases, in which the possibility that metals take part in them is presumed, there are amyotrophic lateral sclerosis, Alzheimer disease, Parkinson disease, Parkinsonism dementia and so on. In order to know the causes of the diseases due to excessive metals in living bodies and neurological diseases, the authors have measured Cu, Ca, Al, Mn, Zn and Fe in central nervous system tissues by activation analysis nondestructive method. The cases investigated were 4 cases of hepatocerebral diseases, 6 cases of ALS, 4 cases of Parkinson disease, 4 cases of Parkinsonism dementia, 4 cases of multiple sclerosis and 5 cases without CNS disease for the control. The method of measurement is described. The results for respective diseases are reported. Cu and Fe are in the relation of mirror images, and Cu formed Cu-superoxide dismutase (SOD) similarly to Zn and Mn as SOD carrier metals, and protects living bodies and CNS from oxidative stress. (K.I.).

  7. Some proposals regarding the organization of the central nervous system control of penile erection.

    Science.gov (United States)

    McKenna, K E

    2000-07-01

    Recent research on the central nervous control of penile erection is discussed. A framework for this control is based upon principles put forward by Frank Beach regarding the neuroendocrine regulation of male copulatory behavior. The current discussion is focused primarily on a subset, penile erection. The spinal cord contains all the necessary components for the production of penile erection. This requires a multisegmental coordination among penile vasodilator and vasoconstrictor autonomic neurons, pudendal motoneurons responsible for penile rigidity and autonomic neurons which control extra-penile blood flow. Genital sensory stimulation can activate this spinal network. The spinal cord is also under excitatory and inhibitory control from supraspinal sites. Penile erection can be driven by supraspinal input alone and supraspinal control can inhibit the erectile effects of genital stimulation.An important aspect of the CNS control of penile erection is that there are extensive interconnections between most of the brain sites identified to date. Most of the pathways are characterized by reciprocal connections. A large number of the CNS sites also receive genital sensory information. Thus, descending control may itself be modulated by ascending sensory pathways which relay information from the genitalia. This raises the possibility that penile erection may involve a positive feedback system. Receptors for gonadal hormones have been identified throughout the neuraxis. However, strong evidence for the control of male sexual function by gonadal hormones has been identified only for forebrain sites. The functional role of brainstem and spinal gonadal hormone receptors has not yet been clarified.

  8. Embolic Foreign Material in the Central Nervous System of Pediatric Autopsy Patients With Instrumented Heart Disease.

    Science.gov (United States)

    Torre, Matthew; Lechpammer, Mirna; Paulson, Vera; Prabhu, Sanjay; Marshall, Audrey C; Juraszek, Amy L; Padera, Robert F; Bundock, Elizabeth A; Vargas, Sara O; Folkerth, Rebecca D

    2017-07-01

    Upon detection of foreign-body embolization to the central nervous system (CNS) following a specific invasive cardiovascular procedure in 1 autopsied child, we undertook a quality assurance analysis to determine whether other patients had had similar events. Autopsies of all infants and children with history of cardiac catheterization, heart surgery on cardiopulmonary bypass, and/or extracorporeal membrane oxygenation over a 5-year period at a single tertiary care institution were reviewed for light-microscopic evidence of foreign material. Of the 24 patients meeting clinical criteria (13 females, 11 males; ages 6 days to 20 years, median age 7.5 months), 8 (33%) had foreign embolic material to the CNS. The material was associated with a cellular inflammatory reaction in all cases, with a subset associated with infarcts. No embolic foreign material was detected in 14 age-matched patients without history of cardiovascular procedures. Particles acquired from ex vivo manipulation of a catheter type utilized in at least 1 of the affected patients demonstrated similar histologic characteristics. We conclude that, in addition to recognized risks of hypoxic-ischemic brain damage in congenital cardiopulmonary disease, potential brain insult exists in the form of instrumentation-related foreign emboli to the cerebral vasculature. Cardiac catheters are a potential source of foreign embolic material. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  9. Targetable genetic features of primary testicular and primary central nervous system lymphomas.

    Science.gov (United States)

    Chapuy, Bjoern; Roemer, Margaretha G M; Stewart, Chip; Tan, Yuxiang; Abo, Ryan P; Zhang, Liye; Dunford, Andrew J; Meredith, David M; Thorner, Aaron R; Jordanova, Ekaterina S; Liu, Gang; Feuerhake, Friedrich; Ducar, Matthew D; Illerhaus, Gerald; Gusenleitner, Daniel; Linden, Erica A; Sun, Heather H; Homer, Heather; Aono, Miyuki; Pinkus, Geraldine S; Ligon, Azra H; Ligon, Keith L; Ferry, Judith A; Freeman, Gordon J; van Hummelen, Paul; Golub, Todd R; Getz, Gad; Rodig, Scott J; de Jong, Daphne; Monti, Stefano; Shipp, Margaret A

    2016-02-18

    Primary central nervous system lymphomas (PCNSLs) and primary testicular lymphomas (PTLs) are extranodal large B-cell lymphomas (LBCLs) with inferior responses to current empiric treatment regimens. To identify targetable genetic features of PCNSL and PTL, we characterized their recurrent somatic mutations, chromosomal rearrangements, copy number alterations (CNAs), and associated driver genes, and compared these comprehensive genetic signatures to those of diffuse LBCL and primary mediastinal large B-cell lymphoma (PMBL). These studies identify unique combinations of genetic alterations in discrete LBCL subtypes and subtype-selective bases for targeted therapy. PCNSLs and PTLs frequently exhibit genomic instability, and near-uniform, often biallelic, CDKN2A loss with rare TP53 mutations. PCNSLs and PTLs also use multiple genetic mechanisms to target key genes and pathways and exhibit near-uniform oncogenic Toll-like receptor signaling as a result of MYD88 mutation and/or NFKBIZ amplification, frequent concurrent B-cell receptor pathway activation, and deregulation of BCL6. Of great interest, PCNSLs and PTLs also have frequent 9p24.1/PD-L1/PD-L2 CNAs and additional translocations of these loci, structural bases of immune evasion that are shared with PMBL. © 2016 by The American Society of Hematology.

  10. Expanding Role of T Cells in Human Autoimmune Diseases of the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Deepti Pilli

    2017-06-01

    Full Text Available It is being increasingly recognized that a dysregulation of the immune system plays a vital role in neurological disorders and shapes the treatment of the disease. Aberrant T cell responses, in particular, are key in driving autoimmunity and have been traditionally associated with multiple sclerosis. Yet, it is evident that there are other neurological diseases in which autoreactive T cells have an active role in pathogenesis. In this review, we report on the recent progress in profiling and assessing the functionality of autoreactive T cells in central nervous system (CNS autoimmune disorders that are currently postulated to be primarily T cell driven. We also explore the autoreactive T cell response in a recently emerging group of syndromes characterized by autoantibodies against neuronal cell-surface proteins. Common methodology implemented in T cell biology is further considered as it is an important determinant in their detection and characterization. An improved understanding of the contribution of autoreactive T cells expands our knowledge of the autoimmune response in CNS disorders and can offer novel methods of therapeutic intervention.

  11. AAV9-mediated central nervous system–targeted gene delivery via cisterna magna route in mice

    Directory of Open Access Journals (Sweden)

    Vera Lukashchuk

    2016-01-01

    Full Text Available Current barriers to the use of adeno-associated virus serotype 9 (AAV9 in clinical trials for treating neurological disorders are its high expression in many off-target tissues such as liver and heart, and lack of cell specificity within the central nervous system (CNS when using ubiquitous promoters such as human cytomegalovirus (CMV or chicken-β-actin hybrid (CAG. To enhance targeting the transgene expression in CNS cells, self-complementary (sc AAV9 vectors, scAAV9-GFP vectors carrying neuronal Hb9 and synapsin 1, and nonspecific CMV and CAG promoters were constructed. We demonstrate that synapsin 1 and Hb9 promoters exclusively targeted neurons in vitro, although their strengths were up to 10-fold lower than that of CMV. In vivo analyses of mouse tissue after scAAV9-GFP vector delivery via the cisterna magna revealed a significant advantage of synapsin 1 promoter over both Hb9 variants in targeting neurons throughout the brain, since Hb9 promoters were driving gene expression mainly within the motor-related areas of the brain stem. In summary, this study demonstrates that cisterna magna administration is a safe alternative to intracranial or intracerebroventricular vector delivery route using scAAV9, and introduces a novel utility of the Hb9 promoter for the targeted gene expression for both in vivo and in vitro applications.

  12. Neuroinflammation as Fuel for Axonal Regeneration in the Injured Vertebrate Central Nervous System

    Directory of Open Access Journals (Sweden)

    Ilse Bollaerts

    2017-01-01

    Full Text Available Damage to the central nervous system (CNS is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies.

  13. Neuronal classification and distribution in the central nervous system of the female mud crab, Scylla olivacea.

    Science.gov (United States)

    Kornthong, Napamanee; Tinikul, Yotsawan; Khornchatri, Kanjana; Saeton, Jirawat; Magerd, Sirilug; Suwansa-Ard, Saowaros; Kruangkum, Thanapong; Hanna, Peter J; Sobhon, Prasert

    2014-03-01

    The mud crab, Scylla olivacea, is one of the most economically valuable marine species in Southeast Asian countries. However, commercial cultivation is disadvantaged by reduced reproductive capacity in captivity. Therefore, an understanding of the general and detailed anatomy of central nervous system (CNS) is required before investigating the distribution and functions of neurotransmitters, neurohormones, and other biomolecules, involved with reproduction. We found that the anatomical structure of the brain is similar to other crabs. However, the ventral nerve cord (VNC) is unlike other caridian and dendrobrachiate decapods, as the subesophageal (SEG), thoracic and abdominal ganglia are fused, due to the reduction of abdominal segments and the tail. Neurons in clusters within the CNS varied in sizes, and we found that there were five distinct size classes (i.e., very small globuli, small, medium, large, and giant). Clusters in the brain and SEG contained mainly very small globuli and small-sized neurons, whereas, the VNC contained small-, medium-, large-, and giant-sized neurons. We postulate that the different sized neurons are involved in different functions. Copyright © 2013 Wiley Periodicals, Inc.

  14. Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia Essential Oil on Central Nervous System Targets

    Directory of Open Access Journals (Sweden)

    Víctor López

    2017-05-01

    Full Text Available Lavender essential oil is traditionally used and approved by the European Medicines Agency (EMA as herbal medicine to relieve stress and anxiety. Some animal and clinical studies reveal positive results in models of anxiety and depression although very little research has been done on molecular mechanisms. Our work consisted of evaluating the effects of lavender (Lavandula angustifolia essential oil on central nervous system well-established targets, such as MAO-A, SERT, GABAAand NMDA receptors as well as in vitro models of neurotoxicity. The results showed that lavender essential oil and its main components exert affinity for the glutamate NMDA-receptor in a dose-dependent manner with an IC50 value of 0.04 μl/mL for lavender oil. In addition, lavender and linalool were also able to bind the serotonin transporter (SERT whereas they did not show affinity for GABAA-benzodiazepine receptor. In three different models of neurotoxicity, lavender did not enhance the neurotoxic insult and improved viability of SH-SY5Y cells treated with hydrogen peroxide. According to our data, the anxiolytic and antidepressant-like effects attributed to lavender may be due to an antagonism on the NMDA-receptor and inhibition of SERT. This study suggests that lavender essential oil may exert pharmacological properties via modulating the NMDA receptor, the SERT as well as neurotoxicity induced by hydrogen peroxide.

  15. Immune System Activation and Depression: Roles of Serotonin in the Central Nervous System and Periphery.

    Science.gov (United States)

    Robson, Matthew J; Quinlan, Meagan A; Blakely, Randy D

    2017-05-17

    Serotonin (5-hydroxytryptamine, 5-HT) has long been recognized as a key contributor to the regulation of mood and anxiety and is strongly associated with the etiology of major depressive disorder (MDD). Although more known for its roles within the central nervous system (CNS), 5-HT is recognized to modulate several key aspects of immune system function that may contribute to the development of MDD. Copious amounts of research have outlined a connection between alterations in immune system function, inflammation status, and MDD. Supporting this connection, peripheral immune activation results in changes in the function and/or expression of many components of 5-HT signaling that are associated with depressive-like phenotypes. How 5-HT is utilized by the immune system to effect CNS function and ultimately behaviors related to depression is still not well understood. This Review summarizes the evidence that immune system alterations related to depression affect CNS 5-HT signaling that can alter MDD-relevant behaviors and that 5-HT regulates immune system signaling within the CNS and periphery. We suggest that targeting the interrelationships between immune and 5-HT signaling may provide more effective treatments for subsets of those suffering from inflammation-associated MDD.

  16. CENTRAL NERVOUS SYSTEM INVOLVEMENT IN ADULT ACUTE LYMPHOBLASTIC LEUKEMIA: DIAGNOSTIC TOOLS, PROPHYLAXIS AND THERAPY

    Directory of Open Access Journals (Sweden)

    Maria Ilaria Del Principe

    2014-11-01

    Full Text Available In adult patients with acute lymphoblastic leukemia (ALL, Central Nervous System (CNS involvement is associated with a very poor prognosis. The diagnostic assessment of this condition relies on the use of neuroradiology, conventional cytology (CC and flow cytometry (FCM. Among these approaches, which is the gold standard it is still a matter of debate. Neuroradiology and CC have a limited sensitivity with a higher rate of false negative results. FCM demonstrated a superior sensitivity over CC, particularly when low levels of CNS infiltrating cells are present. Although prospective studies of large series of patients are still awaited, a positive finding by FCM appears to anticipate an adverse outcome even if CC shows no infiltration. Current strategies for adult ALL CNS-directed prophylaxis or therapy involve systemic and intrathecal chemotherapy and radiation therapy. Actually, early and frequent intrathecal injection of cytostatic combined with systemic chemotherapy is the most effective strategy to reduce the frequency of CNS involvement. In patients with CNS overt ALL, at diagnosis or upon relapse, allogenic hematopoietic stem cell transplantation might be considered. This review will discuss risk factors, diagnostic techniques for identification of CNS infiltration and modalities of prophylaxis and therapy to manage it.

  17. Neuromyelitis optica (NMO)--an autoimmune disease of the central nervous system (CNS).

    Science.gov (United States)

    Asgari, N; Owens, T; Frøkiaer, J; Stenager, E; Lillevang, S T; Kyvik, K O

    2011-06-01

    In the past 10 years, neuromyelitis optica (NMO) has evolved from Devic's categorical clinical description into a broader disease spectrum. Serum IgG antibodies have been identified in NMO patients with the water channel aquaporin-4 (AQP4) as their main target antigen. AQP4 antibodies/NMO-IgG have been shown to be a highly specific and moderately sensitive serum biomarker for NMO. The immunopathology of NMO lesions supports that anti-AQP4 antibodies/NMO-IgG are involved in the pathogenesis of NMO. In vitro studies have demonstrated that human NMO-IgG induce necrosis and impair glutamate transport in astrocytes. Certain ethnic groups, notably of Asian and African origin, seem to be more susceptible to NMO than others. The genetic background for these putative differences is not known, a weak human leucocyte antigen association has been identified. AQP4 gene variants could represent a genetic susceptibility factor for different clinical phenotypes within the NMO spectrum. Experimental models have been described including a double-transgenic myelin-specific B- and T-cell mouse. NMO-like disease has been induced with passive transfer of human anti-AQP4 antibodies to the plasma of mice with pre-established experimental autoimmune encephalomyelitis or by intrathecal administration to naive mice. NMO may be characterized as a channelopathy of the central nervous system with autoimmune characteristics. © 2010 John Wiley & Sons A/S.

  18. Clinical effects of air pollution on the central nervous system; a review.

    Science.gov (United States)

    Babadjouni, Robin M; Hodis, Drew M; Radwanski, Ryan; Durazo, Ramon; Patel, Arati; Liu, Qinghai; Mack, William J

    2017-09-01

    The purpose of this review is to describe recent clinical and epidemiological studies examining the adverse effects of urban air pollution on the central nervous system (CNS). Air pollution and particulate matter (PM) are associated with neuroinflammation and reactive oxygen species (ROS). These processes affect multiple CNS pathways. The conceptual framework of this review focuses on adverse effects of air pollution with respect to neurocognition, white matter disease, stroke, and carotid artery disease. Both children and older individuals exposed to air pollution exhibit signs of cognitive dysfunction. However, evidence on middle-aged cohorts is lacking. White matter injury secondary to air pollution exposure is a putative mechanism for neurocognitive decline. Air pollution is associated with exacerbations of neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. Increases in stroke incidences and mortalities are seen in the setting of air pollution exposure and CNS pathology is robust. Large populations living in highly polluted environments are at risk. This review aims to outline current knowledge of air pollution exposure effects on neurological health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Membrane-initiated estrogen signaling via Gq-coupled GPCR in the central nervous system.

    Science.gov (United States)

    Vail, Gwyndolin; Roepke, Troy A

    2018-01-29

    The last few decades have revealed increasing complexity and depth to our knowledge of receptor-mediated estrogen signaling. Nuclear estrogen receptors (ERs) ERα and ERβ remain the fundamental dogma, but recent research targeting membrane-bound ERs urges for a more expanded view on ER signaling. ERα and ERβ are also involved in membrane-delineated signaling alongside membrane-specific G protein-coupled estrogen receptor 1 (GPER1), ER-X, and the Gq-coupled membrane ER (Gq-mER). Membrane ERs are responsible for eliciting rapid responses to estrogen signaling, and their importance has been increasingly indicated in central nervous system (CNS) regulation of such functions as reproduction, energy homeostasis, and stress. While the Gq-mER signaling pathway is well characterized, the receptor structure and gene remains uncharacterized, although it is not similar to the nuclear ERα/β. This review will describe the current knowledge of this putative membrane ER and its selective ligand, STX, from its initial characterization in hypothalamic melanocortin circuitry to recent research exploring its role in the CNS outside of the hypothalamus. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Pseudopapillary pattern in intra-operative squash smear preparations of central nervous system germinomas.

    Science.gov (United States)

    Ates, D; Kosemehmetoglu, K; Onder, S; Soylemezoglu, F

    2014-02-01

    Although the morphology of central nervous system (CNS) germ cell tumours is very similar to that of gonadal germ cell tumours, some architectural changes may dominate the microscopic appearance of CNS germinomas leading to misdiagnosis at low-power magnification. We report five cases of CNS germinoma demonstrating delicate pseudopapillary fronds on squash smear preparations. The age of the patients ranged from 5 to 21 years (mean 14). Three were female and two male. Three patients presented with symptoms of diabetes insipidus, including polydipsia and polyuria, while absence seizures, meaningless speech, hemiparesia, weight loss, insufficient breast development, amenorrhoea and symptoms of raised intracranial pressure were also encountered depending on the location of the tumours. Tumours were located in the hypophysis in two cases and in the suprasellar region in three. During the intra-operative pathological consultation, evenly distributed pseudopapillary or papillary structures formed the dominant pattern in the squash preparations of all cases. The neoplastic cells were characterized by pale variably vacuolated cytoplasm, pleomorphic nuclei with irregular membranes, and several prominent nucleoli. Variable numbers of small lymphocytes were also found. Intracranial germinomas may commonly exhibit a pseudopapillary pattern on squash smears that may cause misdiagnosis as neoplasms with papillary morphology. Careful examination of cellular details is essential in order to reach the correct diagnosis. © 2013 John Wiley & Sons Ltd.

  1. [Cannabis: Effects in the Central Nervous System. Therapeutic, societal and legal consequences].

    Science.gov (United States)

    Rivera-Olmos, Víctor Manuel; Parra-Bernal, Marisela C

    2016-01-01

    The consumption of marijuana extracted from Cannabis sativa and indica plants involves an important cultural impact in Mexico. Their psychological stimulatory effect is widely recognized; their biochemical and molecular components interact with CB1 and CB2 (endocannabinoid system) receptors in various central nervous system structures (CNS) and immune cells. The psychoactive element Δ-9-tetrahydrocannabinol (THC) can be reproduced synthetically. Systematic reviews show evidence of therapeutic effectiveness of therapeutic marijuana only for certain symptoms of multiple sclerosis (spasticity, spasms and pain), despite attempts for its widespread use, including refractory childhood epilepsy. Evidence indicates significant adverse effects of smoked marijuana on the structure, functioning and brain connectivity. Cannabis exposure during pregnancy affects fetal brain development, potentially leading to later behavioral problems in children. Neuropsychological tests and advanced imaging techniques show involvement in the learning process in adolescents with substance use. Also, marijuana increases the cognitive impairment in patients with multiple sclerosis. Social and ethical consequences to legally free marijuana for recreational use may be deleterious transcendentally. The medicinal or psychoactive cannabinol no addictive effect requires controlled proven efficacy and safety before regulatory approval studies.

  2. PARANEOPLASTIC DAMAGE TO THE CENTRAL AND PERIPHERAL NERVOUS SYSTEM IN BREAST CANCER: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    E. S. Koroleva

    2017-01-01

    Full Text Available Paraneoplastic neurological syndrome involves the concurrent development of cancer and neurologicaldiseases. Breast cancer is the second most common cancer associated with paraneoplastic damage to the central and peripheral nervous system. Autoimmune genesis of the disease is characterized by the presence of highly specific onconeural antibodies, which selectively affect neurons in the brain cord, spinal cord and spinal ganglia, and cause the onset of neurological symptoms within 2 years before cancer is detected. Six well-characterized onconeural antibodies detected in the blood serum of breast cancer patients can be used for the laboratory diagnosis of paraneoplastic neurological syndrome. Of them, anti-Hu, anti-CV2 and anti-amphiphysin antibodies cause polyneuropathy most often. Anti-Yo antibody is usually associated with cerebellar degeneration. Multiple neuronal autoantibodies can be simultaneously detected in a patient. Removal of the tumor may lead to stabilization and even partial regression of the neurological symptoms in 70 % of patients. Therefore, the surgical treatment of cancer should consider not only the tumor extension, but also the severity and progression of neurological deficit. We present a case of paraneoplastic cerebellar degeneration and paraneoplastic polyneuropathy in a 50-year-old woman with the neurological symptoms appeared 5 months before breast infiltrating ductal carcinoma was detected. The current approaches to the diagnosis of paraneoplastic neurological syndrome, as well as feasibility of radical removal of the tumor due to progression of neurological deficit were discussed.

  3. Whole transcriptome sequencing enables discovery and analysis of viruses in archived primary central nervous system lymphomas.

    Directory of Open Access Journals (Sweden)

    Christopher DeBoever

    Full Text Available Primary central nervous system lymphomas (PCNSL have a dramatically increased prevalence among persons living with AIDS and are known to be associated with human Epstein Barr virus (EBV infection. Previous work suggests that in some cases, co-infection with other viruses may be important for PCNSL pathogenesis. Viral transcription in tumor samples can be measured using next generation transcriptome sequencing. We demonstrate the ability of transcriptome sequencing to identify viruses, characterize viral expression, and identify viral variants by sequencing four archived AIDS-related PCNSL tissue samples and analyzing raw sequencing reads. EBV was detected in all four PCNSL samples and cytomegalovirus (CMV, JC polyomavirus (JCV, and HIV were also discovered, consistent with clinical diagnoses. CMV was found to express three long non-coding RNAs recently reported as expressed during active infection. Single nucleotide variants were observed in each of the viruses observed and three indels were found in CMV. No viruses were found in several control tumor types including 32 diffuse large B-cell lymphoma samples. This study demonstrates the ability of next generation transcriptome sequencing to accurately identify viruses, including DNA viruses, in solid human cancer tissue samples.

  4. [NEW OPPORTUNITIES IN NEURO-REHABILITATION: ROBOT MEDIATED THERAPY IN CONDITONS POST CENTRAL NERVOUS SYSTEM IMPAIRMENTS].

    Science.gov (United States)

    Fazekas, Gábor; Tavaszi, Ibolya; Tóth, András

    2016-03-30

    Decreasing the often-seen multiple disabilities as a consequence of central nervous system impairments requires broadening of the tools of rehabilitation. A promising opportunity for this purpose is the application of physiotherapy robots. The development of such devices goes back a quarter of century. Nowadays several robots are commercially available both for supporting upper and lower limb therapy. The aim is never to replace the therapists, but rather to support and supplement their work. It is worthwhile applying these devices for goal-oriented exercises in high repetition, which one physically fatiguing for the therapist or for the correction of functional movement by various strategies. Robot mediated therapy is also useful for motivation of the patient and making the rehabilitation programme more versatile. Robots can be used for assessment of the neuromotor status as well. Several clinical studies have been executed in this field, all over the world. Meta-analyses based on randomized, controlled trials show that supplementing the traditional physiotherapy with a robot-mediated component presents advantage for the patients. Further studies are necessary to clarify which modality and intensity of the exercises, in which group of patients, in which stage lead to the expected outcome.

  5. Minimal neuropsychological sequelae following prophylactic treatment of the central nervous system in adult leukaemia and lymphoma.

    Science.gov (United States)

    Tucker, J; Prior, P F; Green, C R; Ede, G M; Stevenson, J F; Gawler, J; Jamal, G A; Charlesworth, M; Thakkar, C M; Patel, P

    1989-11-01

    The potential long-term toxicity of central nervous system prophylaxis (CNS-P) in adult acute lymphoblastic leukaemia (ALL, n = 17) and non-Hodgkin's lymphoma (NHL, n = 7) was investigated in a multidisciplinary study. At least 4 years had elapsed from CNS-P (mean 11.5 years) for all patients. Neurological history and physical examination were unremarkable; minor signs were commoner in older patients (P less than 0.02). Psychometry yielded normal results, but individual verbal IQ generally exceeded performance IQ, with a trend to more marked differences in younger adults (P = 0.06). EEG was scored and differed significantly from that of controls, with a tendency to more marked (but still minor) abnormalities in younger patients (P = 0.06). Brainstem auditory evoked potentials demonstrated significant but generally minor abnormality in 24% of patients. CT brain scan revealed widening of cerebral hemisphere sulci to greater than 3 mm in 38% of patients; cerebral atrophy was commoner in the older group (P less than 0.02) and those with neurological signs (P less than 0.02). MRI brain scans were normal in all patients tested. Thus, following standard CNS-P for ALL at this hospital, there is a 5% primary CNS relapse rate, and only minimal, mainly subclinical, long-term neuropsychological toxicity.

  6. Experimental pharmacological research regarding some newly synthesized benzamides on central nervous system functions

    Directory of Open Access Journals (Sweden)

    Cornel Chiriță

    2017-10-01

    Full Text Available Three newly synthesized benzamides by the Department of Pharmaceutical Chemistry of the Faculty of pharmacy from the University of Medicine and Pharmacy „Carol Davila” Bucharest were tested in order to determine whether these new molecules have similar effects on the central nervous system as those already in therapeutic use belonging to the same chemical group, such as tiapride (neuroleptic or lidocaine (local anaesthetic. Tests were carried out on NMRI mice which were given new compounds, conventionally named I5C, I14C, and II5C in a dose of 1/20 of the lethal dose 50% (LD50, as previously determined. They received this treatment daily for 21 days. The evasive–investigating capacity of mice was determined using the platform test, and the motor activity using an Activity cage device. The results have shown that compounds I5C and II5C decrease the investigation capacity of the mice; and compound I5C inhibits motor activity, while II5C stimulates it. Thus we concluded that only compounds I5C and II5C have a neuroleptic potential that might be investigated further.

  7. Toscana meningoencephalitis: a comparison to other viral central nervous system infections

    Science.gov (United States)

    Jaijakul, Siraya; Arias, Cesar A.; Hossein, Monir; Arduino, Roberto C.; Wootton, Susan H.; Hasbun, Rodrigo

    2012-01-01

    Background Toscana virus (TOSV) is an emerging pathogen causing central nervous system (CNS) infection in Mediterranean countries, mostly during summer season. Objectives To compare the clinical and laboratory characteristics of Toscana CNS infections to the most common viral pathogens seen in the United States. Study Design We performed a case series of patients with 41 TOSV infection and compared the clinical characteristics, laboratory findings, imaging results and clinical outcomes to the most commonly recognized viral causes of meningoencephalitis in the US (enterovirus (n=60), herpes simplex virus (n=48), and west nile virus (n=30) from our multi-center study of patients with aseptic meningoencephalitis syndromes in the Greater Houston area. Results TOSV infection occurs in different age groups compared to enterovirus, HSV, and WNV. All infections most frequently occur during summer-fall except HSV which distributes throughout the year. All patients with TOSV had history of travel to endemic areas. There are differences in clinical presentation and CSF findings comparing TOSV and enterovirus, HSV, and WNV infection. There are no significant differences in outcomes of each infection except WNV meningoencephalitis which had a poorer outcome compared to TOSV infection. Conclusions TOSV is an emerging pathogen that should be considered in the differential diagnosis of patients with CNS infections and a recent travel history to endemic areas. PMID:22867730

  8. Evaluation of central nervous system effects of Citrus limon essential oil in mice

    Directory of Open Access Journals (Sweden)

    Lidianne Mayra Lopes Campêlo

    2011-05-01

    Full Text Available The central nervous system (CNS depressant and anticonvulsant activities of Citrus limon (L. Osbeck, Rutaceae, essential oil (EO were investigated in animal models. The EO (50, 100 and 150 mg/kg injected by oral route (p.o. in mice caused a significant decrease in the motor activity of animals when compared with the control group, up to thirty days after the administration and the dose of 150 mg/kg significantly reduced the remaining time of the animals on the Rota-rod apparatus. Additionally, C. limon essential oil was also capable to promote an increase of latency for development of convulsions induced by pentylenetetrazole (PTZ. The administration of FLU (10 mg/kg, i.p., GABA A-benzodiazepine (GABA-BZD receptor antagonist, antagonized the effect of C. limon essential oil at higher dose. This C. limon essential oil was also capable to promote an increase of latency for development of convulsions induced by picrotoxin (PIC at higher dose. In the same way, the anticonvulsant effect of the EO was affected by pretreatment with flumazenil, a selective antagonist of benzodiazepine site of GABA A receptor. These results suggest a possible CNS depressant and anticonvulsant activities in mice that needs further investigation.

  9. Bioassay-guided evaluation of central nervous system effects of citronellal in rodents

    Directory of Open Access Journals (Sweden)

    Mônica S. Melo

    2011-07-01

    Full Text Available The central nervous system (CNS depressant and anticonvulsant activities of citronellal (CT were investigated in animal models. The CT in doses of 100, 200 and 400 mg/kg injected by i.p. route in mice caused a significant decrease in the motor activity of animals when compared with the control group. The highest dose of CT significantly reduced the remaining time of the animals on the Rota-rod apparatus up to 2 h. Additionally, CT at doses 100, 200 and 400 mg/ kg (i.p. was also capable to promote an increase of latency for development of convulsions induced by pentylenetetrazole (PTZ. It was efficient in prevents the tonic convulsions induced by maximal electroshock (MES in doses of 200 and 400 mg/kg, resulting in 30 and 40% of protection, respectively. This compound was also capable to promote an increase of latency for development of convulsions induced by picrotoxin (PIC at 400 mg/kg. In the same way, the anticonvulsant effect of CT was affected by pretreatment with flumazenil, a selective antagonist of benzodiazepine site of GABA A receptor. These results suggest a possible CNS depressant and anticonvulsant activities.

  10. Accelerated Course of Experimental Autoimmune Encephalomyelitis in PD-1-Deficient Central Nervous System Myelin Mutants

    Science.gov (United States)

    Kroner, Antje; Schwab, Nicholas; Ip, Chi Wang; Ortler, Sonja; Göbel, Kerstin; Nave, Klaus-Armin; Mäurer, Mathias; Martini, Rudolf; Wiendl, Heinz

    2009-01-01

    It is assumed that the onset and course of autoimmune inflammatory central nervous system (CNS) disorders (eg, multiple sclerosis) are influenced by factors that afflict immune regulation as well as CNS vulnerability. We challenged this concept experimentally by investigating how genetic alterations that affect myelin (primary oligodendrocyte damage in PLPtg mice) and/or T-cell regulation (deficiency of PD-1) influence both the onset and course of an experimental autoimmune CNS inflammatory disease [MOG35-55-induced experimental autoimmune encephalomyelitis (EAE)]. We observed that double pathology was associated with a significantly earlier onset of disease, a slight increase in the neurological score, an increase in the number of infiltrating cells, and enhanced axonal degeneration compared with wild-type mice and the respective, single mutant controls. Double-mutant PLPtg/PD-1−/− mice showed an increased production of interferon-γ by CNS immune cells at the peak of disease. Neither PD-1 deficiency nor oligodendropathy led to detectable spread of antigenic MHC class I- or class II-restricted epitopes during EAE. However, absence of PD-1 clearly increased the propensity of T lymphocytes to expand, and the number of clonal expansions reliably reflected the severity of the EAE disease course. Our data show that the interplay between immune dysregulation and myelinopathy results in a stable exacerbation of actively induced autoimmune CNS inflammation, suggesting that the combination of several pathological issues contributes significantly to disease susceptibility or relapses in human disease. PMID:19443704

  11. Application of dental nanomaterials: potential toxicity to the central nervous system.

    Science.gov (United States)

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.

  12. Management of Viral Central Nervous System Infections: A Primer for Clinicians

    Directory of Open Access Journals (Sweden)

    P Brandon Bookstaver

    2017-04-01

    Full Text Available Viruses are a common cause of central nervous system (CNS infections with many host, agent, and environmental factors influencing the expression of viral diseases. Viruses can be responsible for CNS disease through a variety of mechanisms including direct infection and replication within the CNS resulting in encephalitis, infection limited to the meninges, or immune-related processes such as acute disseminated encephalomyelitis. Common pathogens including herpes simplex virus, varicella zoster, and enterovirus are responsible for the greatest number of cases in immunocompetent hosts. Other herpes viruses (eg, cytomegalovirus, John Cunningham virus are more common in immunocompromised hosts. Arboviruses such as Japanese encephalitis virus and Zika virus are important pathogens globally, but the prevalence varies significantly by geographic region and often season. Early diagnosis from radiographic evidence and molecular (eg, rapid diagnostics is important for targeted therapy. Antivirals may be used effectively against some pathogens, although several viruses have no effective treatment. This article provides a review of epidemiology, diagnostics, and management of common viral pathogens in CNS disease.

  13. [Central nervous system abnormalities related to congenital fibrosis of extraocular muscles].

    Science.gov (United States)

    Moguel-Ancheita, Silvia; Rodríguez-Garcidueñas, Wendolyn

    2009-01-01

    We undertook this study to describe central nervous system (CNS) abnormalities associated with congenital cranial dysinnervation disorders (CCDD). This was a retrospective, observational, transversal and descriptive study including patients with congenital fibrotic strabismus. We analyzed clinical files of patients from 2001 to 2006. Neurological lesions were reported. Restrictive strabismus was demonstrated in all cases. Sixteen patients were included: nine males and seven females. Different neurological lesions were reported: corpus callosum anomalies, severe cortipathy, epilepsy, cavum vergae, nystagmus, occipital subarachnoid cyst, and hydrocephalus. Mental retardation was reported in 56% of patients. Different malformations were reported: genital malformations, trigonocephalus, camptodactyly, mild facial hypoplasia, low set ears, and agenesis of left ear. Blepharoptosis was present in 81% of patients. The most frequent form of strabismus was exotropia (56%), hypotropia in 37.5%, hypertropia 18.7%, "A" pattern 18.7%, and esotropia in 6.25%. Affection was cranial nerve III, 93.75%; cranial nerve VI, 6.25%; cranial nerve VII, 6.25%; and lesion to cranial nerve II in eight cases (50%). We have suggested that failure in early stages of embryology of the CNS can lead to the development of paralytic strabismus and generate secondary fibrotic changes, not only in muscle structures but also in other orbital tissues. That is the reason why we have used the term "congenital fibrotic strabismus" to report cases included in CCDD. We have demonstrated the strong association of mental retardation and neurological alterations. Multidisciplinary rehabilitation is relevant for these patients.

  14. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Science.gov (United States)

    Tosi, Umberto; Marnell, Christopher S.; Chang, Raymond; Cho, William C.; Ting, Richard; Maachani, Uday B.; Souweidane, Mark M.

    2017-01-01

    Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents. PMID:28208698

  15. Neuroradiologic Characteristics of Primary Angiitis of the Central Nervous System According to the Affected Vessel Size.

    Science.gov (United States)

    Thaler, Christian; Kaufmann-Bühler, Ann-Katrin; Gansukh, Tserenchunt; Gansukh, Amarjargal; Schuster, Simon; Bachmann, Henrike; Thomalla, Götz; Magnus, Tim; Matschke, Jakob; Fiehler, Jens; Siemonsen, Susanne

    2017-09-05

    Magnetic resonance imaging (MRI) has an important impact in diagnosing primary angiitis of the central nervous system (PACNS). However, neuroradiologic findings may vary immensely, making an easy and definite diagnosis challenging. In this retrospective, single center study, we analyzed neuroradiologic findings of patients with PACNS diagnosed at our hospital between 2009 and 2014. Furthermore, we classified patients according to the affected vessel size and compared imaging characteristics between the subgroups. Thirty-three patients were included (mean age 43 [±15.3] years, 17 females) in this study. Patients with positive angiographic findings were classified as either medium or large vessel PACNS and presented more ischemic lesions (p < 0.001) and vessel wall enhancement (p = 0.017) compared to patients with small vessel PACNS. No significant differences were detected for the distribution of contrast-enhancing lesions (parenchymal or leptomeningeal), hemorrhages, or lesions with mass effect. Twenty-five patients underwent brain biopsy. Patients with medium or large vessel PACNS were less likely to have positive biopsy results. It is essential to differentiate between small and medium/large vessel PACNS since results in MRI, digital subtraction angiography and brain biopsy may differ immensely. Since image quality of MR scanners improves gradually and brain biopsy may often be nonspecific or negative, our results emphasize the importance of MRI/MRA in the diagnosis process of PACNS.

  16. Targeting AGEs Signaling Ameliorates Central Nervous System Diabetic Complications in Rats

    Directory of Open Access Journals (Sweden)

    Mohamed Naguib Zakaria

    2015-01-01

    Full Text Available Diabetes is a chronic endocrine disorder associated with several complications as hypertension, advanced brain aging, and cognitive decline. Accumulation of advanced glycation end products (AGEs is an important mechanism that mediates diabetic complications. Upon binding to their receptor (RAGE, AGEs mediate oxidative stress and/or cause cross-linking with proteins in blood vessels and brain tissues. The current investigation was designed to investigate the effect of agents that decrease AGEs signaling, perindopril which increases soluble RAGE (sRAGE and alagebrium which cleaves AGEs cross-links, compared to the standard antidiabetic drug, gliclazide, on the vascular and central nervous system (CNS complications in STZ-induced (50 mg/kg, IP diabetes in rats. Perindopril ameliorated the elevation in blood pressure seen in diabetic animals. In addition, both perindopril and alagebrium significantly inhibited memory decline (performance in the Y-maze, neuronal degeneration (Fluoro-Jade staining, AGEs accumulation in serum and brain, and brain oxidative stress (level of reduced glutathione and activities of catalase and malondialdehyde. These results suggest that blockade of AGEs signaling after diabetes induction in rats is effective in reducing diabetic CNS complications.

  17. Exploring Pharmacological Mechanisms of Lavender (Lavandula angustifolia) Essential Oil on Central Nervous System Targets

    Science.gov (United States)

    López, Víctor; Nielsen, Birgitte; Solas, Maite; Ramírez, Maria J.; Jäger, Anna K.

    2017-01-01

    Lavender essential oil is traditionally used and approved by the European Medicines Agency (EMA) as herbal medicine to relieve stress and anxiety. Some animal and clinical studies reveal positive results in models of anxiety and depression although very little research has been done on molecular mechanisms. Our work consisted of evaluating the effects of lavender (Lavandula angustifolia) essential oil on central nervous system well-established targets, such as MAO-A, SERT, GABAAand NMDA receptors as well as in vitro models of neurotoxicity. The results showed that lavender essential oil and its main components exert affinity for the glutamate NMDA-receptor in a dose-dependent manner with an IC50 value of 0.04 μl/mL for lavender oil. In addition, lavender and linalool were also able to bind the serotonin transporter (SERT) whereas they did not show affinity for GABAA-benzodiazepine receptor. In three different models of neurotoxicity, lavender did not enhance the neurotoxic insult and improved viability of SH-SY5Y cells treated with hydrogen peroxide. According to our data, the anxiolytic and antidepressant-like effects attributed to lavender may be due to an antagonism on the NMDA-receptor and inhibition of SERT. This study suggests that lavender essential oil may exert pharmacological properties via modulating the NMDA receptor, the SERT as well as neurotoxicity induced by hydrogen peroxide. PMID:28579958

  18. Maladaptive change of body representation in the brain after damage to central or peripheral nervous system.

    Science.gov (United States)

    Oouchida, Yutaka; Sudo, Tamami; Inamura, Tetsunari; Tanaka, Naofumi; Ohki, Yukari; Izumi, Shin-ichi

    2016-03-01

    Our brain has great flexibility to cope with various changes in the environment. Use-dependent plasticity, a kind of functional plasticity, plays the most important role in this ability to cope. For example, the functional recovery of paretic limb motor movement during post-stroke rehabilitation depends mainly on how much it is used. Patients with hemiparesis, however, tend to gradually disuse the paretic limb because of its motor impairment. Decreased use of the paretic hand then leads to further functional decline brought by use-dependent plasticity. To break this negative loop, body representation, which is the conscious and unconscious information regarding body state stored in the brain, is key for using the paretic limb because it plays an important role in selecting an effector while a motor program is generated. In an attempt to understand body representation in the brain, we reviewed animal and human literature mainly on the alterations of the sensory maps in the primary somatosensory cortex corresponding to the changes in limb usage caused by peripheral or central nervous system damage. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  19. Control Points To Reduce Movement of Central Nervous System Tissue during Beef Slaughter.

    Science.gov (United States)

    Aalhus, J L; Thacker, R D; Larsen, I L; Roberts, J C; Price, M A; Juárez, M

    2017-02-01

    Consumption of central nervous system tissue (CNST) from cattle with bovine spongiform encephalopathy (BSE) is thought to cause the human neurological disease, variant Creutzfeldt-Jacob disease. To identify points of cross-contamination of beef carcasses with CNST, 55 young beef cattle were slaughtered and processed through a federally inspected multispecies abattoir. The objectives of this study were to evaluate CNST spread following the placement of a plug in the penetration site of the skull after captive bolt stunning, to evaluate cross-contamination of carcasses before and after splitting, to compare the effects of hot water pasteurization (84°C for 10 s) versus cold water wash (10°C for 30 s) for reducing CNST on the carcass, and to examine other possible sources of cross-contamination in the abattoir. Results indicated that the use of a plastic plug reduced CNST contamination near the bolt penetration site. This study also confirmed that carcass splitting resulted in an increase in CNST contamination at various areas of the carcass. Hot water pasteurization appeared to be an effective means of removing CNST contamination from carcasses in most of the areas sampled.

  20. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  1. Antiviral Type I and Type III Interferon Responses in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Thomas Michiels

    2013-03-01

    Full Text Available The central nervous system (CNS harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i preventing neuroinvasion and infection of CNS cells; ii the identity of IFN-producing cells in the CNS; iii the antiviral activity of ISGs; and iv the activity of viral proteins of neurotropic viruses that target the IFN pathway.

  2. [Central nervous tuberculosis in patients non-VIH: seven case reports].

    Science.gov (United States)

    Mazodier, K; Bernit, E; Faure, V; Rovery, C; Gayet, S; Seux, V; Donnet, A; Brouqui, P; Disdier, P; Schleinitz, N; Kaplanski, G; Veit, V; Harlé, J-R

    2003-02-01

    Tuberculosis involving the central nervous system (CNS) is rarely observed in non immuno-compromised hosts. We report herin the various clinical, biological and radiological manifestations observed in 7 patients with CNS tuberculosis. Clinical and biological records of 7 patients with CNS tuberculosis were retrospectively studied. All patients had encephalic CT-scan and MRI in the course of the disease. 5 women and 2 men with a mean age of 38.4 years initially initially presented with headache (n = 6), fever (n = 5), meningeal irritation (n = 3), localizing neurological signs (n = 1). Lumbar punction revealed lymphocytic meningitis (n = 6/7). Mycobacterium tuberculosis or bovis was isolated in 3 patients only. Cerebral tomodensitography or magnetic resonance imaging were initially normal in most of cases (n = 4/7), but discovered in the course of disease basilar meningitis (n = 6), hydrocephalus (n = 6), abcess or tuberculoma (n = 4). In all the patients, initiation of the treatment was complicated by clinical and/or biological deterioration, called paradoxal reaction, leading in all cases to glucocorticoid adjunction, with various final results. Indeed, 4 patients developed neurological sequelae. No patient died. CNS tuberculosis is a rare disease in non immunocompromised patients whose diagnostic may be difficult due to the absence of specific clinical symptoms, negative initial radiological examination, as well as delayed and often negative bacterial isolation. Paradoxal reaction appeared to be frequent despite specific antibiotherapy and underlines the beneficial effects of addictive corticosteroids.

  3. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system.

    Science.gov (United States)

    Silva, Gabriel A

    2010-06-01

    Nanotechnology is the science and engineering concerned with the design, synthesis, and characterization of materials and devices that have a functional organization in at least one dimension on the nanometer (i.e., one billionth of a meter) scale. The potential impact of bottom up self-assembling nanotechnology, custom made molecules that self-assemble or self-organize into higher ordered structures in response to a defined chemical or physical cue, and top down lithographic type technologies where detail is engineered at smaller scales starting from bulk materials, stems from the fact that these nanoengineered materials and devices exhibit emergent mesocale and macroscale chemical and physical properties that are often different than their constituent nanoscale building block molecules or materials. As such, applications of nanotechnology to medicine and biology allow the interaction and integration of cells and tissues with nanoengineered substrates at a molecular (i.e., subcellular) level with a very high degree of functional specificity and control. This review considers applications of nanotechnology aimed at the neuroprotection and functional regeneration of the central nervous system (CNS) following traumatic or degenerative insults, and nanotechnology approaches for delivering drugs and other small molecules across the blood-brain barrier. It also discusses developing platform technologies that may prove to have broad applications to medicine and physiology, including some being developed for rescuing or replacing anatomical and/or functional CNS structures.

  4. Tamoxifen accelerates the repair of demyelinated lesions in the central nervous system

    Science.gov (United States)

    Gonzalez, Ginez A.; Hofer, Matthias P.; Syed, Yasir A.; Amaral, Ana I.; Rundle, Jon; Rahman, Saifur; Zhao, Chao; Kotter, Mark R. N.

    2016-01-01

    Enhancing central nervous system (CNS) myelin regeneration is recognized as an important strategy to ameliorate the devastating consequences of demyelinating diseases such as multiple sclerosis. Previous findings have indicated that myelin proteins, which accumulate following demyelination, inhibit remyelination by blocking the differentiation of rat oligodendrocyte progenitor cells (OPCs) via modulation of PKCα. We therefore screened drugs for their potential to overcome this differentiation block. From our screening, tamoxifen emerges as a potent inducer of OPC differentiation in vitro. We show that the effects of tamoxifen rely on modulation of the estrogen receptors ERα, ERβ, and GPR30. Furthermore, we demonstrate that administration of tamoxifen to demyelinated rats in vivo accelerates remyelination. Tamoxifen is a well-established drug and is thus a promising candidate for a drug to regenerate myelin, as it will not require extensive safety testing. In addition, Tamoxifen plays an important role in biomedical research as an activator of inducible genetic models. Our results highlight the importance of appropriate controls when using such models. PMID:27554391

  5. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors

    Directory of Open Access Journals (Sweden)

    Umberto Tosi

    2017-02-01

    Full Text Available Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.

  6. The polarity protein Scribble regulates myelination and remyelination in the central nervous system.

    Directory of Open Access Journals (Sweden)

    Andrew A Jarjour

    2015-03-01

    Full Text Available The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS, requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial development and is up-regulated in mature oligodendrocytes where it is localised to both developing and mature CNS myelin sheaths. Knockdown of Scribble expression in cultured oligodendroglia results in disrupted morphology and myelination initiation. When Scribble expression is conditionally eliminated in the myelinating glia of transgenic mice, myelin initiation in CNS is disrupted, both during development and following focal demyelination, and longitudinal extension of the myelin sheath is disrupted. At later stages of myelination, Scribble acts to negatively regulate myelin thickness whilst suppressing the extracellular signal-related kinase (ERK/mitogen-activated protein kinase (MAP kinase pathway, and localises to non-compact myelin flanking the node of Ranvier where it is required for paranodal axo-glial adhesion. These findings demonstrate an essential role for the evolutionarily-conserved regulators of intracellular polarity in myelination and remyelination.

  7. Axonal selection and myelin sheath generation in the central nervous system.

    Science.gov (United States)

    Simons, Mikael; Lyons, David A

    2013-08-01

    The formation of myelin in the central nervous system is a multi-step process that involves coordinated cell-cell interactions and dramatic changes in plasma membrane architecture. First, oligodendrocytes send our numerous highly ramified processes to sample the axonal environment and decide which axon(s) to select for myelination. After this decision is made and individual axon to oligodendrocyte contact has been established, the exploratory process of the oligodendrocyte is converted into a flat sheath that spreads and winds along and around its associated axon to generate a multilayered membrane stack. By compaction of the opposing extracellular layers of membrane and extrusion of almost all cytoplasm from the intracellular domain of the sheath, the characteristic membrane-rich multi-lamellar structure of myelin is formed. Here we highlight recent advances in identifying biophysical and signalling based mechanisms that are involved in axonal selection and myelin sheath generation by oligodendrocytes. A thorough understanding of the mechanisms underlying these events is a prerequisite for the design of novel myelin repair strategies in demyelinating and dysmyelinating diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Immunoassay for the Detection of Animal Central Nervous Tissue in Processed Meat and Feed Products.

    Science.gov (United States)

    Rao, Qinchun; Richt, Juergen A; Hsieh, Yun-Hwa Peggy

    2016-05-11

    An indirect competitive enzyme-linked immunosorbent assay (icELISA) based on the detection of the thermal-stable central nervous tissue (CNT) marker protein, myelin basic protein (MBP), was developed to detect animal CNT in processed meat and feedstuffs. Two meat samples (cooked at 100 °C for 30 min and autoclaved at 133 °C for 20 min) of bovine brain in beef and two feed samples (bovine brain meal in beef meal and in soybean meal) were prepared at levels of 0.0008, 0.0031, 0.0063, 0.0125, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8, and 1.6%. An anti-MBP monoclonal antibody (mAb3E3) was produced using the hybridoma technique and characterized using Western blot. The optimized icELISA was CNT-specific without cross-reactivity with either meat (beef and pork) or soybean meal samples and had low intra-assay (%CV ≤ 3.5) and interassay variability (%CV ≤ 3.3), with low detection limits for bovine MBP (6.4 ppb) and bovine CNT spiked in both meat (0.05%) and feed (0.0125%) samples. This assay is therefore suitable for the quantitative detection of trace amounts of contaminated animal CNT in processed food and feed products.

  9. Central Nervous Insulin Signaling in Sleep-Associated Memory Formation and Neuroendocrine Regulation.

    Science.gov (United States)

    Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred

    2016-05-01

    The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18-30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information.

  10. Exploring parental factors related to weight management in survivors of childhood central nervous system tumors.

    Science.gov (United States)

    Santa Maria, Diane; Swartz, Maria C; Markham, Christine; Chandra, Joya; McCurdy, Sheryl; Basen-Engquist, Karen

    2014-01-01

    Childhood central nervous system tumor survivors (CCNSTS) are at risk for adverse health issues. Little research has been conducted to explore the role of parental factors in weight management to mitigate adverse health outcomes. We conducted 9 group interviews (n=20) with CCNSTS, their parents, and health care providers to ascertain parental factors that may influence weight management practices in CCNSTS. Three main themes were identified: parenting style, parent-child connectedness, and food and physical activity (PA) environment. Although most parents adopted an authoritative parenting style related to diet and PA practices, some adopted a permissive parenting style. Participants expressed high levels of connection that may hinder the development of peer relationships and described the food and PA environments that promote or hinder weight management through parental modeling of healthy eating and PA and access to healthy food and activities. Weight management interventions for CCNSTS may experience greater benefit from using a family-focused approach, promoting positive food and PA environments, parental modeling of healthy eating and exercise, and partnering with youth to adopt weight management behaviors.

  11. Central nervous system tumors and agricultural exposures in the prospective cohort AGRICAN.

    Science.gov (United States)

    Piel, Clément; Pouchieu, Camille; Tual, Séverine; Migault, Lucile; Lemarchand, Clémentine; Carles, Camille; Boulanger, Mathilde; Gruber, Anne; Rondeau, Virginie; Marcotullio, Elisabeth; Lebailly, Pierre; Baldi, Isabelle

    2017-11-01

    Studies in farmers suggest a possible role of pesticides in the occurrence of Central Nervous System (CNS) tumors but scientific evidence is still insufficient. Using data from the French prospective agricultural cohort AGRICAN (Agriculture & Cancer), we investigated the associations between exposure of farmers and pesticide users to various kinds of crops and animal farming and the incidence of CNS tumors, overall and by subtypes. Over the 2005-2007, 181,842 participants completed the enrollment questionnaire that collected a complete job calendar with lifetime history of farming types. Associations were estimated using proportional hazards models with age as underlying timescale. During a 5.2 years average follow-up, 273 incident cases of CNS tumors occurred, including 126 gliomas and 87 meningiomas. Analyses showed several increased risks of CNS tumors in farmers, especially in pesticide users (hazard ratio = 1.96; 95% confidence interval: 1.11-3.47). Associations varied with tumor subtypes and kinds of crop and animal farming. The main increases in risk were observed for meningiomas in pig farmers and in farmers growing sunflowers, beets and potatoes and for gliomas in farmers growing grasslands. In most cases, more pronounced risk excesses were observed among pesticide applicators. Even if we cannot completely rule out the contribution of other factors, pesticide exposures could be of primary concern to explain these findings. © 2017 UICC.

  12. Regenerative medicine for central nervous system disorders: Role of therapeutic molecules in stem cell therapy

    Directory of Open Access Journals (Sweden)

    Paola Suárez-Meade

    2015-01-01

    Full Text Available The efficacy of stem cell therapy is greatly influenced by their secretory properties. Evidence suggests that there is a high concentration of growth factors such as brain-derived neurotrophic factor (BDNF, vascular endothelial growth factor (VEGF, and glial cell line-derived neurotrophic factor (GDNF after stem cell transplantation. Also, the presence of therapeutic molecules and cytokines such as stem cell factor (SCF, stromal cell-derived factor-1α (SDF-1α, RNAs, nuclear enriched abundant transcript 1 (NEAT1, and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1 is consistent throughout several studies. Apart from modulating the homeostasis of the surrounding tissues, these factors have pleiotropic properties over the host tissue, among which are angiogenic, anti-inflammatory, antiapoptotic, and neurogenic effects. In the present manuscript, we discuss the different secretion factors and their beneficial activity after stem cell transplantation. Recent developments in emerging technologies for coadjunctive therapies that may aid in stem cell transplantation into the central nervous system, such as cell encapsulation, molecular Trojan horses, and viral vectors, are also presented in this article.

  13. Evidence Report: Risk of Acute and Late Central Nervous System Effects from Radiation Exposure

    Science.gov (United States)

    Nelson, Gregory A.; Simonsen, Lisa; Huff, Janice L.

    2016-01-01

    Possible acute and late risks to the central nervous system (CNS) from galactic cosmic rays (GCR) and solar particle events (SPE) are concerns for human exploration of space. Acute CNS risks may include: altered cognitive function, reduced motor function, and behavioral changes, all of which may affect performance and human health. Late CNS risks may include neurological disorders such as Alzheimer's disease (AD), dementia and premature aging. Although detrimental CNS changes are observed in humans treated with high-dose radiation (e.g., gamma rays and 9 protons) for cancer and are supported by experimental evidence showing neurocognitive and behavioral effects in animal models, the significance of these results on the morbidity to astronauts has not been elucidated. There is a lack of human epidemiology data on which to base CNS risk estimates; therefore, risk projection based on scaling to human data, as done for cancer risk, is not possible for CNS risks. Research specific to the spaceflight environment using animal and cell models must be compiled to quantify the magnitude of CNS changes in order to estimate this risk and to establish validity of the current permissible exposure limits (PELs). In addition, the impact of radiation exposure in combination with individual sensitivity or other space flight factors, as well as assessment of the need for biological/pharmaceutical countermeasures, will be considered after further definition of CNS risk occurs.

  14. Central nervous system infections masquerading as cerebrovascular accidents: Case series and review of literature.

    Science.gov (United States)

    Hayes, Lisa; Malhotra, Prashant

    2014-01-01

    Central nervous system (CNS) infections can have various presentations including Cerebrovascular accidents (CVA) which may go unrecognized as a presentation of infection. We describe three cases of different CNS infections complicated by CVA. Case 1 describes a 27-year-old man, presenting with symptoms consistent with a transient ischemic attack found to have racemose neurocysticercosis. Case 2 describes a 55-year-old man with low grade fevers for 4 weeks accompanied by visual and gait disturbances and delayed speech diagnosed with multiple small left thalamocapsular and superior cerebellar infarcts secondary to cryptococcal meningitis. The third case describes a man with pneumococcal meningitis complicated by cerebellar infarcts. CNS vascular compromise secondary to infections may be due to vasculitis, an immune-mediated parainfectious process causing vasospasm or thrombosis, or a hypercoagulable state with endothelial dysfunction. Patients with CVAs are at risk for aspiration pneumonia, urinary tract infections (especially catheter related) and other nosocomial infections and their clinical presentation may be very similar to CNS infections. The cases described demonstrate that CNS infections need to be considered in the differential diagnosis of CVAs presenting with fevers. The signs and symptoms of non-CNS infections associated with CVAs may be clinically indistinguishable from those of CNS infections. The outcomes of untreated CNS infections are extremely poor. It is thus imperative to have a high index of suspicion for CNS infection when evaluating CVAs with fevers or other signs of infection.

  15. Targeting 14-3-3 adaptor protein-protein interactions to stimulate central nervous system repair

    Directory of Open Access Journals (Sweden)

    Andrew Kaplan

    2017-01-01

    Full Text Available The goal of developing treatments for central nervous system (CNS injuries is becoming more attainable with the recent identification of various drugs that can repair damaged axons. These discoveries have stemmed from screening efforts, large expression datasets and an improved understanding of the cellular and molecular biology underlying axon growth. It will be important to continue searching for new compounds that can induce axon repair. Here we describe how a family of adaptor proteins called 14-3-3s can be targeted using small molecule drugs to enhance axon outgrowth and regeneration. 14-3-3s bind to many functionally diverse client proteins to regulate their functions. We highlight the recent discovery of the axon-growth promoting activity of fusicoccin-A, a fungus-derived small molecule that stabilizes 14-3-3 interactions with their client proteins. Here we discuss how fusicoccin-A could serve as a starting point for the development of drugs to induce CNS repair.

  16. Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil.

    Science.gov (United States)

    Freire, Cristiana M Murbach; Marques, Márcia Ortiz M; Costa, Mirtes

    2006-04-21

    Ocimum gratissimum L. (Lamiaceae) and other species of the same genus are used as medicines to treat central nervous system (CNS) diseases, commonly encountered in warm regions of the world. The chemical composition of Ocimum gratissimum essential oil varies according to their chemotypes: timol, eugenol or geraniol. In this study, the essential oil type eugenol was extracted by hydrodistillation in each of the four seasons of the year. Activity upon CNS was evaluated in the open-field and rota-rod tests; sleeping time induced by sodium pentobarbital (PBS, 40 mg/kg, intra-peritoneally, i.p.) and anticonvulsant activity against seizures induced by both pentylenetetrazole (PTZ; 85 mg/kg, s.c.) and maximal electroshock (MES, 50 mA, 0.11 s) were determined. Essential oils obtained in each season were effective in increasing the sleeping duration and a preparation obtained in Spring was able to protect animals against tonic seizures induced by electroshock. In each season, eugenol and 1,8-cineole were the most abundant compounds, and in Spring the essential oil presented the greatest relative percentage of sesquiterpenes, suggesting that these compounds could explain the differences observed in the biological activity in essential oils obtained in different seasons of the year.

  17. Development of figurative language skills following central nervous system-directed chemotherapy delivered in early childhood.

    Science.gov (United States)

    Dowling, Emma K; Lewis, Fiona M; Murdoch, Bruce E

    2014-04-01

    Central nervous system (CNS)-directed chemotherapy is delivered for the treatment of childhood acute lymphoblastic leukaemia (ALL). Figurative language deficits have been described in children following CNS-directed chemotherapy; however, comprehensive analysis of figurative interpretation errors, potentially providing clinical utility to assist with intervention planning, has never been performed. The present study aimed to compare the figurative language skills of seven children treated with CNS-directed chemotherapy for ALL before the age of 6 years (mean age at diagnosis 3 years 10 months) and a matched control group of children, using the Test of Language Competence-Expanded Edition (TLC-E) Figurative Language sub-test. It was hypothesised that the children treated with CNS-directed chemotherapy would demonstrate a decreased performance in and an alternative method of interpreting figurative language. The results suggest no negative effects of CNS-directed chemotherapy on figurative language. There were no statistically significant differences between groups for TLC-E Figurative Language sub-test composite scores and picture component errors, nor were there clinically significant differences observed from descriptive comparisons of individual case data and error analysis. As these skills continue to emerge beyond childhood, the need to monitor skill development in ALL survivors beyond childhood is highlighted.

  18. Current understanding of circulating tumor cells – potential value in malignancies of the central nervous system

    Directory of Open Access Journals (Sweden)

    Lukasz A. Adamczyk

    2015-08-01

    Full Text Available Detection of circulating tumor cells (CTCs in the blood via so-called 'liquid biopsies' carries enormous clinical potential in malignancies of the central nervous system (CNS because of the potential to follow disease evolution with a blood test, without the need for repeat neurosurgical procedures with their inherent risk of patient morbidity. To date studies in non-CNS malignancies, particularly in breast cancer, show increasing reproducibility of detection methods for these rare tumor cells in the circulation. However, no method has yet received full recommendation to use in clinical practice, in part because of lack of a sufficient evidence base regarding clinical utility. In CNS malignancies one of the main challenges is finding a suitable biomarker for identification of these cells, because automated systems such as the widely used Cell Search system are reliant on markers such as the epithelial cell adhesion molecule (EpCAM which are not present in CNS tumors. This review examines methods for CTC enrichment and detection, and reviews the progress in non-CNS tumors and the potential for using this technique in human brain tumors.

  19. Dengue Virus Type 2: Protein Binding and Active Replication in Human Central Nervous System Cells

    Directory of Open Access Journals (Sweden)

    Ma Isabel Salazar

    2013-01-01

    Full Text Available An increased number of dengue cases with neurological complications have been reported in recent years. The lack of reliable animal models for dengue has hindered studies on dengue virus (DENV pathogenesis and cellular tropism in vivo. We further investigate the tropism of DENV for the human central nervous system (CNS, characterizing DENV interactions with cell surface proteins in human CNS cells by virus overlay protein binding assays (VOPBA and coimmunoprecipitations. In VOPBA, three membrane proteins (60, 70, and 130 kDa from the gray matter bound the entire virus particle, whereas only a 70 kDa protein bound in white matter. The coimmunoprecipitation assays revealed three proteins from gray matter consistently binding virus particles, one clearly distinguishable protein (~32 kDa and two less apparent proteins (100 and 130 kDa. Monoclonal anti-NS3 targeted the virus protein in primary cell cultures of human CNS treated with DENV-2, which also stained positive for NeuH, a neuron-specific marker. Thus, our results indicate (1 that DENV-2 exhibited a direct tropism for human neurons and (2 that human neurons sustain an active DENV replication as was demonstrated by the presence of the NS3 viral antigen in primary cultures of these cells treated with DENV-2.

  20. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment

    Science.gov (United States)

    Howell, Matthew D.; Gottschall, Paul E.

    2013-01-01

    The extracellular matrix in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, extracellular matrix aggregate in brain, the chondroitin sulfate-bearing proteoglycans known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the chondroitin sulfate chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity—including changes in neurite outgrowth and dendritic spine remodeling—and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the proteoglycan core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity. PMID:22626649