WorldWideScience

Sample records for central limit theorems

  1. Illustrating the Central Limit Theorem

    Science.gov (United States)

    Corcoran, Mimi

    2016-01-01

    Statistics is enjoying some well-deserved limelight across mathematics curricula of late. Some statistical concepts, however, are not especially intuitive, and students struggle to comprehend and apply them. As an AP Statistics teacher, the author appreciates the central limit theorem as a foundational concept that plays a crucial role in…

  2. Visualizing the Central Limit Theorem through Simulation

    Science.gov (United States)

    Ruggieri, Eric

    2016-01-01

    The Central Limit Theorem is one of the most important concepts taught in an introductory statistics course, however, it may be the least understood by students. Sure, students can plug numbers into a formula and solve problems, but conceptually, do they really understand what the Central Limit Theorem is saying? This paper describes a simulation…

  3. Central Limit Theorem for Coloured Hard Dimers

    Directory of Open Access Journals (Sweden)

    Maria Simonetta Bernabei

    2010-01-01

    Full Text Available We study the central limit theorem for a class of coloured graphs. This means that we investigate the limit behavior of certain random variables whose values are combinatorial parameters associated to these graphs. The techniques used at arriving this result comprise combinatorics, generating functions, and conditional expectations.

  4. Central Limit Theorem for Nonlinear Hawkes Processes

    CERN Document Server

    Zhu, Lingjiong

    2012-01-01

    Hawkes process is a self-exciting point process with clustering effect whose jump rate depends on its entire past history. It has wide applications in neuroscience, finance and many other fields. Linear Hawkes process has an immigration-birth representation and can be computed more or less explicitly. It has been extensively studied in the past and the limit theorems are well understood. On the contrary, nonlinear Hawkes process lacks the immigration-birth representation and is much harder to analyze. In this paper, we obtain a functional central limit theorem for nonlinear Hawkes process.

  5. A Central Limit Theorem for Punctuated Equilibrium

    OpenAIRE

    Bartoszek, Krzysztof

    2016-01-01

    Current evolutionary biology models usually assume that a phenotype undergoes gradual change. This is in stark contrast to biological intuition, which indicates that change can also be punctuated - the phenotype can jump. Such a jump can especially occur at speciation, i.e. dramatic change occurs that drives the species apart. Here we derive a central limit theorem for punctuated equilibrium. We show that, if adaptation is fast, for weak convergence to hold, dramatic change has to be a rare e...

  6. Randomized central limit theorems: A unified theory

    Science.gov (United States)

    Eliazar, Iddo; Klafter, Joseph

    2010-08-01

    The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles’ aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles’ extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic—scaling all ensemble components by a common deterministic scale. However, there are “random environment” settings in which the underlying scaling schemes are stochastic—scaling the ensemble components by different random scales. Examples of such settings include Holtsmark’s law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)—in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes—and present “randomized counterparts” to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.

  7. A central limit theorem for a new statistic on permutations

    OpenAIRE

    Chatterjee, Sourav; Diaconis, Persi

    2016-01-01

    This paper does three things: It proves a central limit theorem for a novel permutation statistic, the number of descents plus the number of descents in the inverse. It provides a clear illustration of a new approach to proving central limit theorems more generally. It gives us an opportunity to acknowledge the work of our teacher and friend B. V. Rao.

  8. Central limit theorem for reducible and irreducible open quantum walks

    Science.gov (United States)

    Sadowski, Przemysław; Pawela, Łukasz

    2016-07-01

    In this work we aim at proving central limit theorems for open quantum walks on {mathbb {Z}}^d. We study the case when there are various classes of vertices in the network. In particular, we investigate two ways of distributing the vertex classes in the network. First, we assign the classes in a regular pattern. Secondly, we assign each vertex a random class with a transition invariant distribution. For each way of distributing vertex classes, we obtain an appropriate central limit theorem, illustrated by numerical examples. These theorems may have application in the study of complex systems in quantum biology and dissipative quantum computation.

  9. Central Limit Theorems for Multicolor Urns with Dominated Colors

    CERN Document Server

    Berti, Patrizia; Pratelli, Luca; Rigo, Pietro

    2009-01-01

    An urn contains balls of d colors. At each time, a ball is drawn and then replaced together with a random number of balls of the same color. Assuming that some colors are dominated by others, we prove central limit theorems. Some statistical applications are discussed.

  10. Almost Sure Central Limit Theorems for Heavily Trimmed Sums

    Institute of Scientific and Technical Information of China (English)

    Fang WANG; Shi Hong CHENG

    2004-01-01

    We obtain an almost sure central limit theorem (ASCLT) for heavily trimmed sums. We also prove a function-typed ASCLT under the same conditions that assure measurable functions to satisfy the ASCLT for the partial sums of i.i.d. random variables with EX1 = 0, EX12 = 1.

  11. Improving Conceptions in Analytical Chemistry: The Central Limit Theorem

    Science.gov (United States)

    Rodriguez-Lopez, Margarita; Carrasquillo, Arnaldo, Jr.

    2006-01-01

    This article describes the central limit theorem (CLT) and its relation to analytical chemistry. The pedagogic rational, which argues for teaching the CLT in the analytical chemistry classroom, is discussed. Some analytical chemistry concepts that could be improved through an understanding of the CLT are also described. (Contains 2 figures.)

  12. Almost sure central limit theorems for random functions

    Institute of Scientific and Technical Information of China (English)

    LU Chuanrong; QIU Jin; XU Jianjun

    2006-01-01

    Let {Xn,-∞< n <∞} be a sequence of independent identically distributed be a random function such that Tn = ASn+ Rn,where supnE|Rn|<∞ and Rn = o(√n)a.s.,or Rn = O(n1/2-2γ) a.s.,0 <γ< 1/8.In this paper,we prove the almost sure central limit theorem (ASCLT) and the function-typed almost sure central limit theorem (FASCLT) for the random function Tn.As a consequence,it can be shown that ASCLT and FASCLT also hold for U-statistics,Von-Mises statistics,linear processes,moving average processes,error variance estimates in linear models,power sums,product-limit estimators of a continuous distribution,product-limit estimators of a quantile function,etc.

  13. Central limit theorem of linear regression model under right censorship

    Institute of Scientific and Technical Information of China (English)

    何书元; 黄香

    2003-01-01

    In this paper, the estimation of joint distribution F(y,z) of (Y, Z) and the estimation in thelinear regression model Y = b′Z + ε for complete data are extended to that of the right censored data. Theregression parameter estimates of b and the variance of ε are weighted least square estimates with randomweights. The central limit theorems of the estimators are obtained under very weak conditions and the derivedasymptotic variance has a very simple form.

  14. An almost Sure Central Limit Theorem for the Weight Function Sequences of NA Random Variables

    Indian Academy of Sciences (India)

    Qunying Wu

    2011-08-01

    Consider the weight function sequences of NA random variables. This paper proves that the almost sure central limit theorem holds for the weight function sequences of NA random variables. Our results generalize and improve those on the almost sure central limit theorem previously obtained from the i.i.d. case to NA sequences.

  15. The functional central limit theorem for strong near-epoch dependent random variables

    Institute of Scientific and Technical Information of China (English)

    QIU Jin; LIN Zhengyan

    2004-01-01

    The functional central limit theorem for strong near-epoch dependent sequences of random variables is proved.The conditions given improve on previous results in the literature concerning dependence and heterogeneity.

  16. A Functional Central Limit Theorem for a Class of Urn Models

    Indian Academy of Sciences (India)

    Gopal K Basak; Amites Dasgupta

    2005-11-01

    We construct an independent increments Gaussian process associated to a class of multicolor urn models. The construction uses random variables from the urn model which are different from the random variables for which central limit theorems are available in the two color case.

  17. A CENTRAL LIMIT THEOREM FOR STRONG NEAR-EPOCH DEPENDENT RANDOM VARIABLES

    Institute of Scientific and Technical Information of China (English)

    LIN ZHENGYAN; QIU JIN

    2004-01-01

    In this paper, a central limit theorem for strong near-epoch dependent sequences of random variables introduced in [9] is showed. Under the same moments condition,the authors essentially weaken the "size" requirement mentioned in other papers about near epoch dependence.

  18. Central limit theorems for smoothed extreme value estimates of Poisson point processes boundaries

    OpenAIRE

    Girard, Stéphane; Menneteau, Ludovic

    2011-01-01

    In this paper, we give sufficient conditions to establish central limit theorems for boundary estimates of Poisson point processes. The considered estimates are obtained by smoothing some bias corrected extreme values of the point process. We show how the smoothing leads Gaussian asymptotic distributions and therefore pointwise confidence intervals. Some new unidimensional and multidimensional examples are provided.

  19. Central limit theorems for smoothed extreme value estimates of point processes boundaries

    OpenAIRE

    Girard, Stéphane; Menneteau, Ludovic

    2005-01-01

    In this paper, we give sufficient conditions to establish central limit theorems for boundary estimates of Poisson point processes. The considered estimates are obtained by smoothing some bias corrected extreme values of the point process. We show how the smoothing leads Gaussian asymptotic distributions and therefore pointwise confidence intervals. Some new unidimensional and multidimensional examples are provided.

  20. Local Central Limit Theorem for diffusions in a degenerate and unbounded Random Medium

    OpenAIRE

    Chiarini, Alberto; Deuschel, Jean-Dominique

    2015-01-01

    We study a symmetric diffusion $X$ on $\\mathbb{R}^d$ in divergence form in a stationary and ergodic environment, with measurable unbounded and degenerate coefficients. We prove a quenched local central limit theorem for $X$, under some moment conditions on the environment; the key tool is a local parabolic Harnack inequality obtained with Moser iteration technique.

  1. Central limit theorems for directional and linear random variables with applications

    OpenAIRE

    García-Portugués, Eduardo; Crujeiras, Rosa M.; González-Manteiga, Wenceslao

    2014-01-01

    A central limit theorem for the integrated squared error of the directional-linear kernel density estimator is established. The result enables the construction and analysis of two testing procedures based on squared loss: a nonparametric independence test for directional and linear random variables and a goodness-of-fit test for parametric families of directional-linear densities. Limit distributions for both test statistics, and a consistent bootstrap strategy for the goodness-of-fit test, a...

  2. Central Limit Theorems for a Class of Irreducible Multicolor Urn Models

    Indian Academy of Sciences (India)

    Gopal K Basak; Amites Dasgupta

    2007-11-01

    We take a unified approach to central limit theorems for a class of irreducible multicolor urn models with constant replacement matrix. Depending on the eigenvalue, we consider appropriate linear combinations of the number of balls of different colors. Then under appropriate norming the multivariate distribution of the weak limits of these linear combinations is obtained and independence and dependence issues are investigated. Our approach consists of looking at the problem from the viewpoint of recursive equations.

  3. A necessary moment condition for the fractional functional central limit theorem

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Morten Ørregaard

    2012-01-01

    We discuss the moment condition for the fractional functional central limit theorem (FCLT) for partial sums of x(t)=¿^{-d}u(t) , where -1/2classical condition is existence of q=2 and q>1/(d+1/2) moments...... of the innovation sequence. When d is close to -1/2 this moment condition is very strong. Our main result is to show that when -1/2conditions on u(t), the existence of q=1/(d+1/2) moments is in fact necessary for the FCLT for fractionally integrated processes and that q>1/(d+1....../2) moments are necessary for more general fractional processes. Davidson and de Jong (2000, Econometric Theory 16, 643-- 666) presented a fractional FCLT where onlyq>2 finite moments are assumed. As a corollary to our main theorem we show that their moment condition is not sufficient and hence...

  4. Central limit theorems for functionals of large dimensional sample covariance matrix and mean vector in matrix-variate skewed model

    OpenAIRE

    Bodnar, Taras; Mazur, Stepan; Parolya, Nestor

    2016-01-01

    In this paper we consider the asymptotic distributions of functionals of the sample covariance matrix and the sample mean vector obtained under the assumption that the matrix of observations has a matrix variate general skew normal distribution. The central limit theorem is derived for the product of the sample covariance matrix and the sample mean vector. Moreover, we consider the product of an inverse covariance matrix and the mean vector for which the central limit theorem is established a...

  5. Central limit theorem for integrated square error of kernel estimators of spherical density

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Let X1,…,Xn be iid observations of a random variable X with pr obab ility density function f(x) on the q-dimensional unit sphere Ωq I n Rq+1 ,q≥1. Let fn(x)=n-1 c(h)∑ni=1 K[(1-x′Xi)/ h2]be a kernel estimator of f(x). In this paper we establish a central limit theorem for integrated square error of fn under some mild conditions.

  6. Understanding the Functional Central Limit Theorems with Some Applications to Unit Root Testing with Structural Change

    Directory of Open Access Journals (Sweden)

    Juan Carlos Aquino

    2013-06-01

    Full Text Available The application of different unit root statistics is by now a standard practice in empirical work. Even when it is a practical issue, these statistics have complex nonstandard distributions depending on functionals of certain stochastic processes, and their derivations represent a barrier even for many theoretical econometricians. These derivations are based on rigorous and fundamental statistical tools which are not (very well known by standard econometricians. This paper aims to fill this gap by explaining in a simple way one of these fundamental tools: namely, the Functional Central Limit Theorem. To this end, this paper analyzes the foundations and applicability of two versions of the Functional Central Limit Theorem within the framework of a unit root with a structural break. Initial attention is focused on the probabilistic structure of the time series to be considered. Thereafter, attention is focused on the asymptotic theory for nonstationary time series proposed by Phillips (1987a, which is applied by Perron (1989 to study the effects of an (assumed exogenous structural break on the power of the augmented Dickey-Fuller test and by Zivot and Andrews (1992 to criticize the exogeneity assumption and propose a method for estimating an endogenous breakpoint. A systematic method for dealing with efficiency issues is introduced by Perron and Rodriguez (2003, which extends the Generalized Least Squares detrending approach due to Elliot et al. (1996. An empirical application is provided.

  7. Central limit theorem for a class of globally correlated random variables

    Science.gov (United States)

    Budini, Adrián A.

    2016-06-01

    The standard central limit theorem with a Gaussian attractor for the sum of independent random variables may lose its validity in the presence of strong correlations between the added random contributions. Here, we study this problem for similar interchangeable globally correlated random variables. Under these conditions, a hierarchical set of equations is derived for the conditional transition probabilities. This result allows us to define different classes of memory mechanisms that depend on a symmetric way on all involved variables. Depending on the correlation mechanisms and statistics of the single variables, the corresponding sums are characterized by distinct probability densities. For a class of urn models it is also possible to characterize their domain of attraction, which, as in the standard case, is parametrized by the probability density of each random variable. Symmetric and asymmetric q -Gaussian attractors (q <1 ) arise in a particular two-state case of these urn models.

  8. The Almost Sure Central Limit Theorems for the Maxima of Sums under Some New Weak Dependence Assumptions

    Institute of Scientific and Technical Information of China (English)

    Marcin DUDZI(N)SKI; Przemyslaw G(O)RKA

    2013-01-01

    We prove the almost sure central limit theorems for the maxima of partial sums of r.v.'s under a general condition of dependence due to Doukhan and Louhichi.We will separately consider the centered sequences and the sequences with positive expected values.

  9. Survey on normal distributions, central limit theorem, Brownian motion and the related stochastic calculus under sublinear expectations

    Institute of Scientific and Technical Information of China (English)

    PENG ShiGe

    2009-01-01

    This is a survey on normal distributions and the related central limit theorem under sublinear expectation. We also present Brownian motion under sublinear expectations and the related stochastic calculus of Ito's type. The results provide new and robust tools for the problem of probability model uncertainty arising in financial risk, statistics and other industrial problems.

  10. A RANDOM FUNCTIONAL CENTRAL LIMIT THEOREM FOR PROCESSES OF PRODUCT SUMS OF LINEAR PROCESSES GENERATED BY MARTINGALE DIFFERENCES

    Institute of Scientific and Technical Information of China (English)

    WANG YUEBAO; YANG YANG; ZHOU HAIYANG

    2003-01-01

    A random functional central limit theorem is obtained for processes of partial sums andproduct sums of linear processes generated by non-stationary martingale differences. It devel-ops and improves some corresponding results on processes of partial sums of linear processesgenerated by strictly stationary martingale differences, which can be found in [5].

  11. Survey on normal distributions,central limit theorem,Brownian motion and the related stochastic calculus under sublinear expectations

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This is a survey on normal distributions and the related central limit theorem under sublinear expectation.We also present Brownian motion under sublinear expectations and the related stochastic calculus of It?’s type.The results provide new and robust tools for the problem of probability model uncertainty arising in financial risk,statistics and other industrial problems.

  12. A necessary moment condition for the fractional functional central limit theorem

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Morten Ørregaard

    We discuss the moment condition for the fractional functional central limit theorem (FCLT) for partial sums of x_{t}=Delta^{-d}u_{t}, where d in (-1/2,1/2) is the fractional integration parameter and u_{t} is weakly dependent. The classical condition is existence of q>max(2,(d+1/2)^{-1}) moments...... of the innovation sequence. When d is close to -1/2 this moment condition is very strong. Our main result is to show that under some relatively weak conditions on u_{t}, the existence of q≥max(2,(d+1/2)^{-1}) is in fact necessary for the FCLT for fractionally integrated processes and that q>max(2,(d+1....../2)^{-1}) moments are necessary and sufficient for more general fractional processes. Davidson and de Jong (2000) presented a fractional FCLT where only q>2 finite moments are assumed, which is remarkable because it is the only FCLT where the moment condition has been weakened relative to the earlier condition...

  13. A Necessary Moment Condition for the Fractional Functional Central Limit Theorem

    DEFF Research Database (Denmark)

    Johansen, Søren; Nielsen, Morten Ørregaard

    We discuss the moment condition for the fractional functional central limit theorem (FCLT) for partial sums of x(t)=¿^(-d)u(t), where d ¿ (-1/2,1/2) is the fractional integration parameter and u(t) is weakly dependent. The classical condition is existence of q>max(2,(d+1/2)-¹) moments...... of the innovation sequence. When d is close to -1/2 this moment condition is very strong. Our main result is to show that under some relatively weak conditions on u(t), the existence of q=max(2,(d+1/2)-¹) is in fact necessary for the FCLT for fractionally integrated processes and that q>max(2,(d+1/2)-¹) moments...... are necessary and sufficient for more general fractional processes. Davidson and de Jong (2000) presented a fractional FCLT where only q>2 finite moments are assumed, which is remarkable because it is the only FCLT where the moment condition has been weakened relative to the earlier condition. As a corollary...

  14. The Star-Forming Main Sequence as a Natural Consequence of the Central Limit Theorem

    Science.gov (United States)

    Kelson, Daniel David

    2015-08-01

    Star-formation rates (SFR) of disk galaxies correlate with stellar mass, with a small dispersion in SSFR at fixed mass, sigma~0.3 dex. With such scatter this star-formation main sequence (SFMS) has been interpreted as deterministic and fundamental. Here I demonstrate that such a correlation arises naturally from the central limit theorem. The derivation begins by approximating in situ stellar mass growth as a stochastic process, much like a random walk, where the expectation of SFR at any time is equal to the SFR at the previous time. The SFRs of real galaxies, however, do not experience wholly random stochastic changes over time, but change in a highly correlated fashion due to the long reach of gravity and the correlation of structure in the universe. We therefore generalize the results for star-formation as a stochastic process that has random correlations over random and potentially infinite timescales. For unbiased samples of (disk) galaxies we derive expectation values for SSFR and its scatter, such that =2/T, and Sig[SFR/M]=. Note that this relative scatter is independent of mass and time. This derived correlation between SFR and stellar mass, and its evolution, matches published data to z=10 with sufficient accuracy to constrain cosmological parameters from the data. This statistical approach to the diversity of star-formation histories reproduces several important observables, including: the scatter in SSFR at fixed mass; the forms of SFHs of nearby dwarf galaxies and the Milky Way. At least one additional process beyond a single one responsible for in situ stellar mass growth will be required to match the evolution of the stellar mass function, and we discuss ways to generalize the framework. The implied dispersion in SFHs, and the SFMS's insensitivity to timescales of stochasticity, thus substantially limits the ability to connect massive galaxies to their progenitors over long cosmic baselines. Such analytical work shows promise for statisically

  15. Occupancy of phase space, extensivity of Sq, and q-generalized central limit theorem

    Science.gov (United States)

    Tsallis, Constantino

    2006-06-01

    Increasing the number N of elements of a system typically makes the entropy to increase. The question arises on what particular entropic form we have in mind and how it increases with N. Thermodynamically speaking it makes sense to choose an entropy which increases linearly with N for large N, i.e., which is extensive. If the N elements are probabilistically independent (no interactions) or quasi-independent (e.g., short-range interacting), it is known that the entropy which is extensive is that of Boltzmann-Gibbs-Shannon, SBG≡-k∑i=1Wpilnpi. If they are, however, globally correlated (e.g., through long-range interactions), the answer depends on the particular nature of the correlations. There is a large class of correlations (in one way or another related to scale-invariance) for which an appropriate entropy is that on which nonextensive statistical mechanics is based, i.e., Sq≡k(1-∑i=1Wpiq)/q-1 ( S1=SBG), where q is determined by the specific correlations. We briefly review and illustrate these ideas through simple examples of occupation of phase space. A very similar scenario emerges with regard to the central limit theorem (CLT). If the variables that are being summed are independent (or quasi-independent, in the sense that they gradually become independent if N→∞), two basic possibilities exist: if the variance of the random variables that are being composed is finite, the N→∞ attractor in the space of distributions is a Gaussian, whereas if it diverges, it is a Lévy distribution. If the variables that are being summed are however globally correlated, there is no reason to expect the usual CLTs to hold. The N→∞ attractor is expected to depend on the nature of the correlations. That class of correlations (or part of it) that makes Sq to be extensive for q≠1 is expected to have a qe-Gaussian as its N→∞ attractor, where qe depends on q [ qe(q) such that qe(1)=1], and where qe-Gaussians are proportional to [1-(1-qe)β x2] ( β>0; qe<3

  16. A functional central limit theorem for branching random walks, almost sure weak convergence, and applications to random trees

    OpenAIRE

    Grübel, Rudolf; Kabluchko, Zakhar

    2014-01-01

    Let $W_{\\infty}(\\beta)$ be the limit of the Biggins martingale $W_n(\\beta)$ associated to a supercritical branching random walk with mean number of offspring $m$. We prove a functional central limit theorem stating that as $n\\to\\infty$ the process $$ D_n(u):= m^{\\frac 12 n} \\left(W_{\\infty}\\left(\\frac{u}{\\sqrt n}\\right) - W_{n}\\left(\\frac{u}{\\sqrt n}\\right) \\right) $$ converges weakly, on a suitable space of analytic functions, to a Gaussian random analytic function with random variance. Usin...

  17. Limit theorems for 2D invasion percolation

    CERN Document Server

    Damron, Michael

    2010-01-01

    We prove limit theorems and variance estimates for quantities related to ponds and outlets for 2D invasion percolation. We first exhibit several properties of a sequence (O(n)) of outlet variables, the n-th of which gives the number of outlets in the box centered at the origin of side length 2^n. The most important of these properties describe the sequence's renewal structure and exponentially fast mixing behavior. We use these to prove a central limit theorem and strong law of large numbers for (O(n)). We then show consequences of these limit theorems for the pond radii and outlet weights.

  18. Stable convergence and stable limit theorems

    CERN Document Server

    Häusler, Erich

    2015-01-01

    The authors present a concise but complete exposition of the mathematical theory of stable convergence and give various applications in different areas of probability theory and mathematical statistics to illustrate the usefulness of this concept. Stable convergence holds in many limit theorems of probability theory and statistics – such as the classical central limit theorem – which are usually formulated in terms of convergence in distribution. Originated by Alfred Rényi, the notion of stable convergence is stronger than the classical weak convergence of probability measures. A variety of methods is described which can be used to establish this stronger stable convergence in many limit theorems which were originally formulated only in terms of weak convergence. Naturally, these stronger limit theorems have new and stronger consequences which should not be missed by neglecting the notion of stable convergence. The presentation will be accessible to researchers and advanced students at the master's level...

  19. Central limit theorem for integrated square error of kernel estimators of spherical density

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Lincheng

    2001-01-01

    [1] Cruzeiro, A. B., Malliavin, P., Renormalized differential geometry on path spaces: Structural equation, curvature, J. Funct. Anal., 1996, 139: 119-181.[2] Stroock, D. W., Some thoughts about Riemannian structures on path spaces, preprint, 1996.[3] Driver, B., A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact manifold, J. Funct. Anal., 1992, 109: 272-376.[4] Enchev, O., Stroock, D. W., Towards a Riemannian geometry on the path space over a Riemannian manifold, J. Funct. Anal., 1995, 134: 392-416.[5] Hsu, E., Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold, J. Funct. Anal., 1995, 134: 417-450.[6] Lyons, T. J., Qian, Z. M., A class of vector fields on path space, J.Funct. Anal., 1997, 145: 205-223.[7] Li, X. D., Existence and uniqueness of geodesics on path spaces, J. Funct. Anal., to be published.[8] Driver, B., Towards calculus and geometry on path spaces, in Proc. Symp. Pure and Appl. Math. 57 (ed. Cranston, M., Pinsky, M.), Cornell: AMS, 1993, 1995.

  20. Classroom Research: Assessment of Student Understanding of Sampling Distributions of Means and the Central Limit Theorem in Post-Calculus Probability and Statistics Classes

    Science.gov (United States)

    Lunsford, M. Leigh; Rowell, Ginger Holmes; Goodson-Espy, Tracy

    2006-01-01

    We applied a classroom research model to investigate student understanding of sampling distributions of sample means and the Central Limit Theorem in post-calculus introductory probability and statistics courses. Using a quantitative assessment tool developed by previous researchers and a qualitative assessment tool developed by the authors, we…

  1. Computer-Enriched Instruction (CEI) Is Better for Preview Material Instead of Review Material: An Example of a Biostatistics Chapter, the Central Limit Theorem

    Science.gov (United States)

    See, Lai-Chu; Huang, Yu-Hsun; Chang, Yi-Hu; Chiu, Yeo-Ju; Chen, Yi-Fen; Napper, Vicki S.

    2010-01-01

    This study examines the timing using computer-enriched instruction (CEI), before or after a traditional lecture to determine cross-over effect, period effect, and learning effect arising from sequencing of instruction. A 2 x 2 cross-over design was used with CEI to teach central limit theorem (CLT). Two sequences of graduate students in nursing…

  2. Application of the Central Limit Theorem in microbial risk assessment: High number of serving reduces the Coefficient of Variation of food-borne burden-of-illness

    NARCIS (Netherlands)

    Pérez-Rodríguez, F.; Zwietering, M.H.

    2012-01-01

    The Central Limit Theorem (CLT) is proposed as a means of understanding microbial risk in foods from a Public Health perspective. One variant of the CLT states that as the number of random variables, each with a finite mean and variance, increases (¿8), the distribution of the sum (or mean) of those

  3. 随机域最大值的几乎处处中心极限定理%Almost sure central limit theorem on extremes for random field

    Institute of Scientific and Technical Information of China (English)

    汪园芳; 吴群英

    2014-01-01

    设{Xi ;i∈Nd ,d≥2}为独立同分布的随机域,在协方差满足一定条件下,研究独立同分布的随机域最大值的几乎处处中心极限定理,获得权重为加权函数形式的几乎处处中心极限定理。%Let {Xi ;i∈ Nd} be a field of independent ,identically distributed random variables indexed by Nd ,d≥2 .We discussed the almost sure central limit theorem on extremes for random field under some suitable conditions on covariance functions ,and obtained that the almost sure central limit theorem held for the weight function sequences .

  4. Limit theorems for sequences of random trees

    OpenAIRE

    Balding, David; Ferrari, Pablo A.; Fraiman, Ricardo; Sued, Mariela

    2004-01-01

    We consider a random tree and introduce a metric in the space of trees to define the ``mean tree'' as the tree minimizing the average distance to the random tree. When the resulting metric space is compact we have laws of large numbers and central limit theorems for sequence of independent identically distributed random trees. As application we propose tests to check if two samples of random trees have the same law.

  5. Some Limit Theorems in Geometric Processes

    Institute of Scientific and Technical Information of China (English)

    Yeh Lam; Yao-hui Zheng; Yuan-lin Zhang

    2003-01-01

    Geometric process (GP) was introduced by Lam[4,5], it is defined as a stochastic process {Xn, n =1, 2,...} for which there exists a real number a > 0, such that {an-1Xn, n = 1, 2,...} forms a renewal process (RP). In this paper, we study some limit theorems in GP. We first derive the Wald equation for GP and then obtain the limit theorems of the age, residual life and the total life at t for a GP. A general limit theorem for Sn with a > 1 is also studied. Furthermore, we make a comparison between GP and RP, including the comparison of their limit distributions of the age, residual life and the total life at t.

  6. Limit theorems for fragmentation processes with immigration

    CERN Document Server

    Knobloch, Robert

    2012-01-01

    In this paper we extend two limit theorems which were recently obtained for fragmentation processes to such processes with immigration. More precisely, in the setting with immigration we consider a limit theorem for the process counted with a random characteristic as well as the asymptotic behaviour of an empirical measure associated with the stopping line corresponding to the first blocks, in their respective line of descent, that are smaller than a given size. In addition, we determine the asymptotic decay rate of the size of the largest block in a homogeneous fragmentation process with immigration. The techniques used to proves these results are based on submartingale arguments.

  7. Limit theorems for bifurcating integer-valued autoregressive processes

    CERN Document Server

    Blandin, Vassili

    2012-01-01

    We study the asymptotic behavior of the weighted least squares estimators of the unknown parameters of bifurcating integer-valued autoregressive processes. Under suitable assumptions on the immigration, we establish the almost sure convergence of our estimators, together with the quadratic strong law and central limit theorems. All our investigation relies on asymptotic results for vector-valued martingales.

  8. Application of the Central Limit Theorem in microbial risk assessment: high number of servings reduces the Coefficient of Variation of food-borne burden-of-illness.

    Science.gov (United States)

    Pérez-Rodríguez, Fernando; Zwietering, Marcel H

    2012-02-15

    The Central Limit Theorem (CLT) is proposed as a means of understanding microbial risk in foods from a Public Health perspective. One variant of the CLT states that as the number of random variables, each with a finite mean and variance, increases (→∞), the distribution of the sum (or mean) of those variables approximates a normal distribution. On the basis of the CLT, the hypothesis introduced by this paper states that the Coefficient of Variation (CV) of the annual number of food-borne illness cases decreases as a result of a larger number of exposures (or servings) (n). Second-order Monte-Carlo analysis and classical statistics were used to support the hypothesis, based on existing risk models on Listeria monocytogenes in deli meat products focused on elderly people in the United States. Likewise, the hypothesis was tested on epidemiological data of annual incidence of salmonellosis and listeriosis in different countries (i.e. different n). Although different sources of error affected the accuracy of the results, both the Monte-Carlo analysis (in silico) and epidemiological data (in vivo), especially for salmonellosis, demonstrated that the CV of the annual number of cases decreased as n increased as stated by the CLT. Furthermore, results from this work showed that classical statistical methods can be helpful to provide reliable risk estimates based on simple and well-established statistical principles.

  9. Limit Theorems for the Sample Entropy of Hidden Markov Chains

    CERN Document Server

    Han, Guangyue

    2011-01-01

    The Shannon-McMillan-Breiman theorem asserts that the sample entropy of a stationary and ergodic stochastic process converges to the entropy rate of the same process almost surely. In this paper, we focus our attention on the convergence behavior of the sample entropy of a hidden Markov chain. Under certain positivity assumption, we prove that a central limit theorem (CLT) with some Berry-Esseen bound for the sample entropy of a hidden Markov chain, and we use this CLT to establish a law of iterated logarithm (LIL) for the sample entropy.

  10. Limit theorems for self-similar tilings

    CERN Document Server

    Bufetov, Alexander I

    2012-01-01

    We study deviation of ergodic averages for dynamical systems given by self-similar tilings on the plane and in higher dimensions. The main object of our paper is a special family of finitely-additive measures for our systems. An asymptotic formula is given for ergodic integrals in terms of these finitely-additive measures, and, as a corollary, limit theorems are obtained for dynamical systems given by self-similar tilings.

  11. Goedel incompleteness theorems and the limits of their applicability. I

    International Nuclear Information System (INIS)

    This is a survey of results related to the Goedel incompleteness theorems and the limits of their applicability. The first part of the paper discusses Goedel's own formulations along with modern strengthenings of the first incompleteness theorem. Various forms and proofs of this theorem are compared. Incompleteness results related to algorithmic problems and mathematically natural examples of unprovable statements are discussed. Bibliography: 68 titles.

  12. 大数定律及中心极限定理在保险中的应用%Applications of Law of Large Numbers and Central Limit Theorem in Insurance

    Institute of Scientific and Technical Information of China (English)

    王丙参; 魏艳华; 林朱

    2011-01-01

    文中研究了大数定律及中心极限定理的含义及关系,阐述了它们在制定保费及自留额、拟定保险单位数及减少保险个人平均危险值等方面的应用.%It discussed the meanings and relationships of the law of large numbers and Central Limit Theorem, stud- ied the applications in the formulating premium and retention, the insurance units, reducing the average individual risk values, etc.

  13. Reflexivity and the diagonal argument in proofs of limitative theorems

    OpenAIRE

    Młynarski, Kajetan

    2011-01-01

    This paper discusses limitations of reflexive and diagonal arguments as methods of proof of limitative theorems (e.g. G\\"odel's theorem on Entscheidungsproblem, Turing's halting problem or Chaitin-G\\"odel's theorem). The fact, that a formal system contains a sentence, which introduces reflexitivity, does not imply, that the same system does not contain a sentence or a proof procedure which solves this problem. Second basic method of proof - diagonal argument (i.e. showing non-eqiunumerosity o...

  14. Goedel incompleteness theorems and the limits of their applicability. I

    Energy Technology Data Exchange (ETDEWEB)

    Beklemishev, Lev D [Steklov Mathematical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-01-25

    This is a survey of results related to the Goedel incompleteness theorems and the limits of their applicability. The first part of the paper discusses Goedel's own formulations along with modern strengthenings of the first incompleteness theorem. Various forms and proofs of this theorem are compared. Incompleteness results related to algorithmic problems and mathematically natural examples of unprovable statements are discussed. Bibliography: 68 titles.

  15. Some scaled limit theorems for an immigration super-Brownian motion

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper,the small time limit behaviors for an immigration super-Brownian motion are studied,where the immigration is determined by Lebesgue measure.We first prove a functional central limit theorem,and then study the large and moderate deviations associated with this central tendency.

  16. Limit theorems for dilute quantum systems leading to quantum poisson processes

    Science.gov (United States)

    Alicki, Robert; Rudnicki, Sławomir; Sadowski, Sławomir

    1993-12-01

    The limit theorems for sums of independent or correlated operators representing observables of dilute quantum systems and leading to quantum Poisson processes are proved. Examples of systems of unstable particles and a Fermi lattice gas are discussed. For the latter, relations between low density limit and central limit are given.

  17. POISSON LIMIT THEOREM FOR COUNTABLE MARKOV CHAINS IN MARKOVIAN ENVIRONMENTS

    Institute of Scientific and Technical Information of China (English)

    方大凡; 王汉兴; 唐矛宁

    2003-01-01

    A countable Markov chain in a Markovian environment is considered. A Poisson limit theorem for the chain recurring to small cylindrical sets is mainly achieved. In order to prove this theorem, the entropy function h is introduced and the Shannon-McMillan-Breiman theorem for the Markov chain in a Markovian environment is shown. It' s well-known that a Markov process in a Markovian environment is generally not a standard Markov chain, so an example of Poisson approximation for a process which is not a Markov process is given. On the other hand, when the environmental process degenerates to a constant sequence, a Poisson limit theorem for countable Markov chains, which is the generalization of Pitskel's result for finite Markov chains is obtained.

  18. Some functional limit theorems for compound Cox processes

    Science.gov (United States)

    Korolev, Victor Yu.; Chertok, A. V.; Korchagin, A. Yu.; Kossova, E. V.; Zeifman, Alexander I.

    2016-06-01

    An improved version of the functional limit theorem is proved establishing weak convergence of random walks generated by compound doubly stochastic Poisson processes (compound Cox processes) to Lévy processes in the Skorokhod space under more realistic moment conditions. As corollaries, theorems are proved on convergence of random walks with jumps having finite variances to Lévy processes with variance-mean mixed normal distributions, in particular, to stable Lévy processes.

  19. Some Limit Theorems for Negatively Associated Random Variables

    Indian Academy of Sciences (India)

    Yu Miao; Wenfei Xu; Shanshan Chen; Andre Adler

    2014-08-01

    Let $\\{X_n,n≥ 1\\}$ be a sequence of negatively associated random variables. The aim of this paper is to establish some limit theorems of negatively associated sequence, which include the $L^p$-convergence theorem and Marcinkiewicz–Zygmund strong law of large numbers. Furthermore, we consider the strong law of sums of order statistics, which are sampled from negatively associated random variables.

  20. Limit theorems for multi-indexed sums of random variables

    CERN Document Server

    Klesov, Oleg

    2014-01-01

    Presenting the first unified treatment of limit theorems for multiple sums of independent random variables, this volume fills an important gap in the field. Several new results are introduced, even in the classical setting, as well as some new approaches that are simpler than those already established in the literature. In particular, new proofs of the strong law of large numbers and the Hajek-Renyi inequality are detailed. Applications of the described theory include Gibbs fields, spin glasses, polymer models, image analysis and random shapes. Limit theorems form the backbone of probability theory and statistical theory alike. The theory of multiple sums of random variables is a direct generalization of the classical study of limit theorems, whose importance and wide application in science is unquestionable. However, to date, the subject of multiple sums has only been treated in journals. The results described in this book will be of interest to advanced undergraduates, graduate students and researchers who ...

  1. Noncentral limit theorem and the bootstrap for quantiles of dependent data

    OpenAIRE

    Sharipov, Olimjon S.; Wendler, Martin

    2012-01-01

    We will show under minimal conditions on differentiability and dependence that the central limit theorem for quantiles holds and that the block bootstrap is weakly consistent. Under slightly stronger conditions, the bootstrap is strongly consistent. Without the differentiability condition, quantiles might have a non-normal asymptotic distribution and the bootstrap might fail.

  2. Limit Theorems for Monomer-Dimer Mean-Field Models with Attractive Potential

    Science.gov (United States)

    Alberici, Diego; Contucci, Pierluigi; Fedele, Micaela; Mingione, Emanuele

    2016-09-01

    The number of monomers in a monomer-dimer mean-field model with an attractive potential fluctuates according to the central limit theorem when the parameters are outside the critical curve. At the critical point the model belongs to the same universality class of the mean-field ferromagnet. Along the critical curve the monomer and dimer phases coexist.

  3. Limit theorems and inequalities via martingale methods

    Directory of Open Access Journals (Sweden)

    Chazottes Jean-René

    2014-01-01

    Full Text Available In these notes, we first give a brief overwiew of martingales methods, from Paul Lévy (1935 untill now, to explain why these methods have become a central tool in probability, statistics and ergodic theory. Next, we present some recent results for/or based on martingales: exponential bounds for super-martingales, concentration inequalities for Lipschitz functionals of dynamical systems, oracle inequalities for the Cox model in a high dimensional setting, and invariance principles for stationary sequences.

  4. Limit theorems for infinite-dimensional piecewise deterministic processes and applications to stochastic neuron models

    CERN Document Server

    Riedler, Martin G; Wainrib, Gilles

    2011-01-01

    In the present paper we present limit theorems for a sequence of Piecewise Deterministic Markov Processes taking values in Hilbert spaces. This class of processes provides a rigorous framework for stochastic spatial models in which discrete random events are globally coupled with continuous space-dependent variables solving partial differential equations, e.g., stochastic hybrid models of excitable membranes. We derive a law of large numbers which establishes a connection to deterministic macroscopic models and a martingale central limit theorem which connects the stochastic fluctuations to diffusion processes. As a prerequisite we carry out a thorough discussion of Hilbert space valued martingales associated to the PDMPs. Furthermore, these limit theorems provide the basis for a general Langevin approximation to PDMPs, i.e., certain stochastic partial differential equations that are expected to be similar in their dynamics to PDMPs. We apply these results to compartmental-type models of spatially extended ne...

  5. Strong Limit Theorems for Arbitrary Fuzzy Stochastic Sequences

    Institute of Scientific and Technical Information of China (English)

    FEI Wei-yin

    2008-01-01

    Based on fuzzy random variables, the concept of fuzzy stochastic sequences is defined. Strong limit theorems for fuzzy stochastic sequences are established. Some known results in non-fuzzy stochastic sequences are extended. In order to prove results of this paper, the notion of fuzzy martingale difference sequences is also introduced.

  6. The infrared limit of the SRG evolution and Levinson's theorem

    Science.gov (United States)

    Arriola, E. Ruiz; Szpigel, S.; Timóteo, V. S.

    2014-07-01

    On a finite momentum grid with N integration points pn and weights wn (n = 1 , … , N) the Similarity Renormalization Group (SRG) with a given generator G unitarily evolves an initial interaction with a cutoff λ on energy differences, steadily driving the starting Hamiltonian in momentum space Hn,m0 = pn2 δn,m +Vn,m to a diagonal form in the infrared limit (λ → 0), Hn,mG, λ → 0 =E π (n)δn,m, where π (n) is a permutation of the eigenvalues En which depends on G. Levinson's theorem establishes a relation between phase-shifts δ (pn) and the number of bound-states, nB, and reads δ (p1) - δ (pN) =nB π. We show that unitarily equivalent Hamiltonians on the grid generate reaction matrices which are compatible with Levinson's theorem but are phase-inequivalent along the SRG trajectory. An isospectral definition of the phase-shift in terms of an energy-shift is possible but requires in addition a proper ordering of states on a momentum grid such as to fulfill Levinson's theorem. We show how the SRG with different generators G induces different isospectral flows in the presence of bound-states, leading to distinct orderings in the infrared limit. While the Wilson generator induces an ascending ordering incompatible with Levinson's theorem, the Wegner generator provides a much better ordering, although not the optimal one. We illustrate the discussion with the nucleon-nucleon (NN) interaction in the S10 and S31 channels.

  7. Limit theorems in the imitative monomer-dimer mean-field model via Stein's method

    Science.gov (United States)

    Chen, Wei-Kuo

    2016-08-01

    We consider the imitative monomer-dimer model on the complete graph introduced in the work of Alberici et al. [J. Math. Phys. 55, 063301-1-063301-27 (2014)]. It was shown that this model is described by the monomer density and has a phase transition along certain coexistence curve, where the monomer and dimer phases coexist. More recently, it was understood [D. Alberici et al., Commun. Math. Phys. (published online, 2016)] that the monomer density exhibits the central limit theorem away from the coexistence curve and enjoys a non-normal limit theorem at criticality with normalized exponent 3/4. By reverting the model to a weighted Curie-Weiss model with hard core interaction, we establish the complete description of the fluctuation properties of the monomer density on the full parameter space via Stein's method of exchangeable pairs. Our approach recovers what were established in the work of Alberici et al. [Commun. Math. Phys. (published online, 2016)] and furthermore allows to obtain the conditional central limit theorems along the coexistence curve. In all these results, the Berry-Esseen inequalities for the Kolmogorov-Smirnov distance are given.

  8. Fluctuation limit theorems for age-dependent critical binary branching systems

    Directory of Open Access Journals (Sweden)

    Murillo-Salas Antonio

    2011-03-01

    Full Text Available We consider an age-dependent branching particle system in ℝd, where the particles are subject to α-stable migration (0 < α ≤ 2, critical binary branching, and general (non-arithmetic lifetimes distribution. The population starts off from a Poisson random field in ℝd with Lebesgue intensity. We prove functional central limit theorems and strong laws of large numbers under two rescalings: high particle density, and a space-time rescaling that preserves the migration distribution. Properties of the limit processes such as Markov property, almost sure continuity of paths and generalized Langevin equation, are also investigated.

  9. Simulations and a conditional limit theorem for intermediately subcritical branching processes in random environment

    OpenAIRE

    Böinghoff, Christian; Kersting, Götz

    2012-01-01

    Intermediately subcritical branching processes in random environment are at the borderline between two subcritical regimes and exhibit a particularly rich behavior. In this paper, we prove a functional limit theorem for these processes. It is discussed together with two other recently proved limit theorems for the intermediately subcritical case and illustrated by several computer simulations.

  10. Limit theorems for stationary increments Lévy driven moving averages

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas; Lachièze-Rey, Raphaël; Podolskij, Mark

    kernel function g at 0. First order asymptotic theory essentially comprise three cases: stable convergence towards a certain infinitely divisible distribution, an ergodic type limit theorem and convergence in probability towards an integrated random process. We also prove the second order limit theorem...

  11. A Strong Limit Theorem on Generalized Random Selection for m-valued Random Sequences

    Institute of Scientific and Technical Information of China (English)

    WANGZhong-zhi; XUFu-xia

    2003-01-01

    In this paper, a strong limit theorem on gambling strategy for binary Bernoulli sequence, i.e.irregularity theorem, is extended to random selection for dependent m-valued random variables, via using a new method-differentiability on net. Furthermore, by allowing the selection function to take value in finite interval [-M, M], the conception of random selection is generalized.

  12. Strong limit theorems in noncommutative L2-spaces

    CERN Document Server

    Jajte, Ryszard

    1991-01-01

    The noncommutative versions of fundamental classical results on the almost sure convergence in L2-spaces are discussed: individual ergodic theorems, strong laws of large numbers, theorems on convergence of orthogonal series, of martingales of powers of contractions etc. The proofs introduce new techniques in von Neumann algebras. The reader is assumed to master the fundamentals of functional analysis and probability. The book is written mainly for mathematicians and physicists familiar with probability theory and interested in applications of operator algebras to quantum statistical mechanics.

  13. LIMIT THEOREMS AND OPTIMAL DESIGN WITH ADAPTIVE URN MODELS

    Institute of Scientific and Technical Information of China (English)

    CHEN Guijing; ZHU Chunhua; WANG Yao-hung

    2005-01-01

    In this paper we study urn model, using some available estimates of successes probabilities, and adding particle parameter, we establish adaptive models. We obtain some strong convergence theorems, rates of convergence, asymptotic normality of components in the urn, and estimates. With these asymptotical results, we show that the adaptive designs given in this paper are asymptotically optimal designs.

  14. Quasi-sure Limit Theorem of Parabolic Stochastic Partial Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Xi Cheng ZHANG

    2004-01-01

    In this paper we prove a quasi-sure limit theorem of parabolic stochastic partial differential equations with smooth coefficients and some initial conditions, by the way, we obtain the quasi-sure continuity of the solution.

  15. Limit theorems for Markov processes indexed by continuous time Galton-Watson trees

    CERN Document Server

    Bansaye, Vincent; Marsalle, Laurence; Tran, Viet Chi

    2009-01-01

    We study the evolution of a particle system whose genealogy is given by a supercritical continuous time Galton-Watson tree. The particles move independently according to a Markov process and when a branching event occurs, the offspring locations depend on the position of the mother and the number of offspring. We prove a law of large numbers for the empirical measure of individuals alive at time $t$. This relies on a probabilistic interpretation of its intensity by mean of an auxiliary process. This latter has the same generator as the Markov process along the branches plus additional branching events, associated with jumps of accelerated rate and biased distribution. This comes from the fact that choosing an individual uniformly at time $t$ favors lineages with more branching events and larger offspring number. The central limit theorem is considered on a special case. Several examples are developed, including applications to splitting diffusions, cellular aging, branching L\\'evy processes and ancestral line...

  16. Multi-channel sampling theorems for band-limited signals with fractional Fourier transform

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Multi-channel sampling for band-limited signals is fundamental in the theory of multi-channel parallel A/D environment and multiplexing wireless communication environment. As the fractional Fourier transform has been found wide applications in signal processing fields, it is necessary to consider the multi-channel sampling theorem based on the fractional Fourier transform. In this paper, the multi-channel sampling theorem for the fractional band-limited signal is firstly proposed, which is the generalization of the well-known sampling theorem for the fractional Fourier transform. Since the periodic nonuniformly sampled signal in the fractional Fourier domain has valuable applications, the reconstruction expression for the periodic nonuniformly sampled signal has been then obtained by using the derived multi-channel sampling theorem and the specific space-shifting and phase-shifting properties of the fractional Fourier transform. Moreover, by designing different fractional Fourier filters, we can obtain reconstruction methods for other sampling strategies.

  17. A Class of Strong Limit Theorems and Moment Generating Function Method

    Institute of Scientific and Technical Information of China (English)

    Wen Han LI; Gao Rong LI; Nan Bin CAO

    2012-01-01

    In virtue of the notion of likelihood ratio and moment generating function,the limit properties of the sequences of absolutely continuous random variables are studied,and a class of strong limit theorems represented by inequalities with random bounds are obtained.

  18. Limit theorem for a time-dependent coined quantum walk on the line

    CERN Document Server

    Machida, Takuya

    2010-01-01

    We study time-dependent discrete-time quantum walks on the one-dimensional lattice. We compute the limit distribution of a two-period quantum walk defined by two orthogonal matrices. For the symmetric case, the distribution is determined by one of two matrices. Moreover, limit theorems for two special cases are presented.

  19. A Fluctuation Limit Theorem of Branching Processes with Immigration and Statistical Applications

    CERN Document Server

    Ma, Chunhua

    2009-01-01

    We prove a general fluctuation limit theorem for Galton-Watson branching processes with immigration. The limit is a time-inhomogeneous OU type process driven by a spectrally positive Levy process. As applications of this result, we obtain some asymptotic estimates for the conditional least-squares estimator of the offspring mean.

  20. A New Type of Limit Theorems for the One-Dimensional Quantum Random Walk

    CERN Document Server

    Konno, N

    2002-01-01

    In this paper we consider the one-dimensional quantum random walk X^{\\phi}_n at time n starting from initial qubit state \\phi determined by 2 \\times 2 unitary matrix U. We give a combinatorial expression for the characteristic function of X^{\\phi}_n. The expression clarifies the dependence of it on components of unitary matrix U and initial qubit state \\phi. As a consequence of the above results, we present a new type of limit theorems for the Hadamard walk. In contrast with the de Moivre-Laplace limit theorem, our symmetric case implies that X^{\\phi}_n/n \\Rightarrow Z^{\\phi} where Z^{\\phi} has a density 1 / \\pi (1-x^2) \\sqrt{1-2x^2} for x \\in (- \\sqrt{2}/2, \\sqrt{2}/2). Moreover we discuss some known simulation results based on our limit theorems.

  1. A scaling limit theorem for the parabolic Anderson model with exponential potential

    CERN Document Server

    Lacoin, Hubert

    2010-01-01

    The parabolic Anderson problem is the Cauchy problem for the heat equation with random potential and localized initial condition. In this paper we consider potentials which are constant in time and independent exponentially distributed in space. We study the growth rate of the total mass of the solution in terms of weak and almost sure limit theorems, and the spatial spread of the mass in terms of a scaling limit theorem. The latter result shows that in this case, just like in the case of heavy tailed potentials, the mass gets trapped in a single relevant island with high probability.

  2. A Fluctuation Type Limit Theorem for Jirina Processes with Immigration

    Institute of Scientific and Technical Information of China (English)

    Yu Qiang LI

    2009-01-01

    It is proved by the theory of semigroup that the Ornstein-Uhlenbeck type process with jumps can arise from the fluctuation limit of a sequence of Jirina processes with immigration under suitable moments conditions.

  3. SOME LIMIT THEOREMS FOR SEQUENCES OF PAIRWISE NQD RANDOM VARIABLES

    Institute of Scientific and Technical Information of China (English)

    Gan Shixin; Chen Pingyan

    2008-01-01

    In this article, the authors study some limit properties for sequences of pair- wise NQD random variables, which are not necessarily identically distributed. They obtain Baum and Katz complete convergence and the strong stability of Jamison's weighted sums for pairwise NQD random variables, which may have different distributions. Some well- known results are improved and extended.

  4. Some inequalities and limit theorems under sublinear expectations

    OpenAIRE

    Hu, Ze-Chun; Yang, Yan-Zhi

    2012-01-01

    In this note, we study inequality and limit theory under sublinear expectations. We mainly prove Doob's inequality for submartingale and Kolmogrov's inequality. By Kolmogrov's inequality, we obtain a special version of Kolmogrov's law of large numbers. Finally, we present a strong law of large numbers for independent and identically distributed random variables under one-order type moment condition.

  5. A generalized virial theorem and the balance of kinetic and potential energies in the semiclassical limit

    OpenAIRE

    Yafaev, D. R.

    2010-01-01

    We obtain two-sided bounds on kinetic and potential energies of a bound state of a quantum particle in the semiclassical limit, as the Planck constant $\\hbar\\ri 0$. Proofs of these results rely on the generalized virial theorem obtained in the paper as well as on a decay of eigenfunctions in the classically forbidden region.

  6. HEAVY TRAFFIC LIMIT THEOREMS IN FLUID BUFFER MODELS

    Institute of Scientific and Technical Information of China (English)

    YIN Gang; ZHANG Hanqin

    2004-01-01

    A fluid buffer model with Markov modulated input-output rates is considered.When traffic intensity is near its critical value, the system is known as in heavy traffic.It is shown that a suitably scaled sequence of the equilibrium buffer contents has a weakor distributional limit under heavy traffic conditionsThis weak limit is a functional of adiffusion process determined by the Markov chain modulating the input and output rates.The first passage time of the reflected process is examinedIt is shown that the mean firstpassage time can be obtained via a solution of a Dirichlet problemThen the transitiondensity of the reflected process is derived by solving the Kolmogorov forward equation witha Neumann boundary conditionFurthermore, when the fast changing part of the generatorof the Markov chain is a constant matrix, the representation of the probability distributionof the reflected process is derivedUpper and lower bounds of the probability distributionare also obtained by means of asymptotic expansions of standard normal distribution.

  7. Limit Theorems for Competitive Density Dependent Population Processes

    CERN Document Server

    Parsons, Todd L

    2010-01-01

    Near the beginning of the century, Wright and Fisher devised an elegant, mathematically tractable model of gene reproduction and replacement that laid the foundation for contemporary population genetics. The Wright-Fisher model and its extensions have given biologists powerful tools of statistical inference that enabled the quantification of genetic drift and selection. Given the utility of these tools, we often forget that their model - for mathematical, and not biological reasons - makes assumptions that are violated in most real-world populations. In this paper, I consider an alternative framework that merges P. A. P. Moran's continuous-time Markov chain model of allele frequency with the density dependent models of ecological competition proposed by Gause, Lotka and Volterra, that, unlike Moran's model allow for a stochastically varying -- but bounded -- population size. I require that allele numbers vary according to a density-dependent population process, for which the limiting law of large numbers is a...

  8. Central limit theorems for multiple stochastic integrals and Malliavin calculus

    OpenAIRE

    Nualart, David; Ortiz, Salvador

    2007-01-01

    We give a new characterization for the convergence in distribution to a standard normal law of a sequence of multiple stochastic integrals of a fixed order with variance one, in terms of the Malliavin derivatives of the sequence. We extend our result to the multidimensional case and prove a weak convergence result for a sequence of square integrable random variables.

  9. Almost Sure Central Limit Theorem for a Nonstationary Gaussian Sequence

    OpenAIRE

    Qing-pei Zang

    2010-01-01

    Let be a standardized non-stationary Gaussian sequence, and let denote , . Under some additional condition, let the constants satisfy as for some and , for some , then, we have almost surely for any , where is the indicator function of the event and stands for the standard normal distribution function.

  10. The Central Limit Theorem for Exchangeable Random Variables Without Moments

    OpenAIRE

    Klass, Michael; Teicher, Henry

    1987-01-01

    If $\\{X_n, n \\geq 1\\}$ is an exchangeable sequence with $(1/b_n(\\sum^n_1X_i - a_n)) \\rightarrow N(0, 1)$ for some constants $a_n$ and $0 < b_n \\rightarrow \\infty$ then $b_n/n^\\alpha$ is slowly varying with $\\alpha = 1$ or $\\frac{1}{2}$ and necessary conditions (depending on $\\alpha$) which are also sufficient, are obtained. Three such examples are given, one with infinite mean, one with no positive moments, and the third with almost all conditional distributions belonging to no domain of attr...

  11. A weak limit theorem for numerical approximation of Brownian semi-stationary processes

    DEFF Research Database (Denmark)

    Podolskij, Mark; Thamrongrat, Nopporn

    In this paper we present a weak limit theorem for a numerical approximation of Brownian semi-stationary processes studied in [14]. In the original work of [14] the authors propose to use Fourier transformation to embed a given one dimensional (Levy) Brownian semi-stationary process into a two......-parameter stochastic field. For the latter they use a simple iteration procedure and study the strong approximation error of the resulting numerical scheme given that the volatility process is fully observed. In this work we present the corresponding weak limit theorem for the setting, where the volatility....../drift process needs to be numerically simulated. In particular, weak approximation errors for smooth test functions can be obtained from our asymptotic theory....

  12. Mathematical statistics and limit theorems Festschrift in honour of Paul Deheuvels

    CERN Document Server

    Mason, David; Pfeifer, Dietmar; Steinebach, Josef

    2015-01-01

    This Festschrift in honour of Paul Deheuvels’ 65th birthday compiles recent research results in the area between mathematical statistics and probability theory with a special emphasis on limit theorems. The book brings together contributions from invited international experts to provide an up-to-date survey of the field. Written in textbook style, this collection of original material addresses researchers, PhD and advanced Master students with a solid grasp of mathematical statistics and probability theory.  

  13. Employing Common Limit Range Property to Prove Unified Metrical Common Fixed Point Theorems

    Directory of Open Access Journals (Sweden)

    Mohammad Imdad

    2013-01-01

    Full Text Available The purpose of this paper is to emphasize the role of “common limit range property” to ascertain the existence of common fixed point in metric spaces satisfying an implicit function essentially due to the paper of Ali and Imdad (2008. As an application to our main result, we derive a fixed point theorem for four finite families of self-mappings which can be utilized to derive common fixed point theorems involving any finite number of mappings. Our results improve and extend a host of previously known results including the ones contained in the paper of Ali and Imdad (2008. We also furnish some illustrative examples to support our main results.

  14. Computability, Gödel's incompleteness theorem, and an inherent limit on the predictability of evolution.

    Science.gov (United States)

    Day, Troy

    2012-04-01

    The process of evolutionary diversification unfolds in a vast genotypic space of potential outcomes. During the past century, there have been remarkable advances in the development of theory for this diversification, and the theory's success rests, in part, on the scope of its applicability. A great deal of this theory focuses on a relatively small subset of the space of potential genotypes, chosen largely based on historical or contemporary patterns, and then predicts the evolutionary dynamics within this pre-defined set. To what extent can such an approach be pushed to a broader perspective that accounts for the potential open-endedness of evolutionary diversification? There have been a number of significant theoretical developments along these lines but the question of how far such theory can be pushed has not been addressed. Here a theorem is proven demonstrating that, because of the digital nature of inheritance, there are inherent limits on the kinds of questions that can be answered using such an approach. In particular, even in extremely simple evolutionary systems, a complete theory accounting for the potential open-endedness of evolution is unattainable unless evolution is progressive. The theorem is closely related to Gödel's incompleteness theorem, and to the halting problem from computability theory.

  15. Computability, Gödel's incompleteness theorem, and an inherent limit on the predictability of evolution.

    Science.gov (United States)

    Day, Troy

    2012-04-01

    The process of evolutionary diversification unfolds in a vast genotypic space of potential outcomes. During the past century, there have been remarkable advances in the development of theory for this diversification, and the theory's success rests, in part, on the scope of its applicability. A great deal of this theory focuses on a relatively small subset of the space of potential genotypes, chosen largely based on historical or contemporary patterns, and then predicts the evolutionary dynamics within this pre-defined set. To what extent can such an approach be pushed to a broader perspective that accounts for the potential open-endedness of evolutionary diversification? There have been a number of significant theoretical developments along these lines but the question of how far such theory can be pushed has not been addressed. Here a theorem is proven demonstrating that, because of the digital nature of inheritance, there are inherent limits on the kinds of questions that can be answered using such an approach. In particular, even in extremely simple evolutionary systems, a complete theory accounting for the potential open-endedness of evolution is unattainable unless evolution is progressive. The theorem is closely related to Gödel's incompleteness theorem, and to the halting problem from computability theory. PMID:21849390

  16. On Almost Sure Max-limit Theorems of Complete and Incomplete Samples from Stationary Sequences

    Institute of Scientific and Technical Information of China (English)

    Bin TONG; Zuo Xiang PENG

    2011-01-01

    Let Mn denote the partial maximum of a strictly stationary sequence (Xn). Suppose that some of the random variables of (Xn) can be observed and let (M~)n stand for the maximum of observed random variables from the set {Xi,..., Xn}. In this paper, the almost sure limit theorems related to random vector ((M~),Mn) are considered in terms of i.i.d. case. The related results are also extended to weakly dependent stationary Gaussian sequence as its covariance function satisfies some regular conditions.

  17. A limit theorem for moments in space of the increments of Brownian local time

    OpenAIRE

    Campese, Simon

    2015-01-01

    We proof a limit theorem for moments in space of the increments of Brownian local time. As special cases for the second and third moments, previous results by Chen et al. (Ann. Prob. 38, 2010, no. 1) and Rosen (Stoch. Dyn. 11, 2011, no. 1), which were later reproven by Hu and Nualart (Electron. Commun. Probab. 14, 2009; Electron. Commun. Probab. 15, 2010) and Rosen (S\\'eminaire de Probabilit\\'es XLIII, Springer, 2011) are included. Furthermore, a conjecture of Rosen for the fourth moment is s...

  18. Limit theorems for long memory stochastic volatility models with infinite variance: Partial Sums and Sample Covariances

    CERN Document Server

    Kulik, Rafal

    2011-01-01

    Long Memory Stochastic volatility (LMSV) models capture two standardized features of financial data: the log-returns are uncorrelated, but their squares, or absolute values are (highly) dependent and they may have heavy tails. EGARCH and related models were introduced to model leverage, i.e. negative dependence between previous returns and future volatility. Limit theorems for partial sums, sample variance and sample covariances are basic tools to investigate the presence of long memory and heavy tails and their consequences. In this paper we extend the existing literature on the asymptotic behaviour of the partial sums and the sample covariances of long memory stochastic volatility models in the case of infinite variance. We also consider models with leverage, for which our results are entirely new in the infinite variance case. Depending on the nterplay between the tail behaviour and the intensity of dependence, wo types of convergence rates and limiting distributions can arise. In articular, we show that t...

  19. Frege's theorem

    CERN Document Server

    Heck, Richard G

    2011-01-01

    Frege's Theorem collects eleven essays by Richard G Heck, Jr, one of the world's leading authorities on Frege's philosophy. The Theorem is the central contribution of Gottlob Frege's formal work on arithmetic. It tells us that the axioms of arithmetic can be derived, purely logically, from a single principle: the number of these things is the same as the number of those things just in case these can be matched up one-to-one with those. But that principle seems so utterlyfundamental to thought about number that it might almost count as a definition of number. If so, Frege's Theorem shows that a

  20. Hybrid Fixed Point Theorems in Symmetric Spaces via Common Limit Range Property

    Directory of Open Access Journals (Sweden)

    Imdad Mohammad

    2014-12-01

    Full Text Available In this paper, we point out that some recent results of Vijaywar et al. (Coincidence and common fixed point theorems for hybrid contractions in symmetric spaces, Demonstratio Math. 45 (2012, 611-620 are not true in their present form. With a view to prove corrected and improved versions of such results, we introduce the notion of common limit range property for a hybrid pair of mappings and utilize the same to obtain some coincidence and fixed point results for mappings defined on an arbitrary set with values in symmetric (semi-metric spaces. Our results improve, generalize and extend some results of the existing literature especially due to Imdad et al., Javid and Imdad, Vijaywar et al. and some others. Some illustrative examples to highlight the realized improvements are also furnished.

  1. Theory of truth degrees of formulas in (L)ukasiewicz n-valued propositional logic and a limit theorem

    Institute of Scientific and Technical Information of China (English)

    LI Bijing; WANG Guojun

    2005-01-01

    The concept of truth degrees of formulas in (L)ukasiewicz n-valued proposi tional logic Ln is proposed. A limit theorem is obtained, which says that the truth function (T)n induced by truth degrees converges to the integrated truth function (T) when n converges to infinite. Hence this limit theorem builds a bridge between the discrete valued (L)ukasiewicz logic and the continuous valued (L)ukasiewicz logic. Moreover, the results obrained in the present paper is a natural generalization of the corresponding results obtained in two-valued propositional logic.

  2. Functional limit theorem for moving average processes generated by dependent random variables

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Let {Xt,t≥1} be a moving average process defined byXt = ∞∑j=0bjξt-j , where {bj,j≥0} is a sequence of real numbers and { ξt, ∞< t <∞ } is a doubly infinite sequence of strictly stationary φ- mixing random variables. Under conditions on { bj, j ≥0 }which entail that { Xt, t ≥ 1 } is either a long memory process or a linear process, we study asymptotics of Sn ( s ) = [ns]∑t=1 Xt (properly normalized). When { Xt, t≥1 } is a long memory process, we establish a functional limit theorem. When { Xt, t≥1 } is a linear process, we not only obtain the multi-dimensional weak convergence for { Xt, t≥1 }, but also weaken the moment condition on { ξt, - ∞< t <∞ } and the restriction on { bj,j≥0}. Finally, we give some applications of our results.

  3. Limited utility of Birkhoff's theorem in modified Newtonian dynamics: Nonzero accelerations inside a shell

    International Nuclear Information System (INIS)

    We investigate the consequences of Birkhoff's theorem in general relativity (GR) and in modified Newtonian dynamics (MOND). We study, in particular, the system of a finite-mass test particle inside a spherical shell. In both GR and MOND, we find nonvanishing acceleration for that test particle. The direction of the acceleration is such that it pushes the test particle toward the center of the shell. In GR, the acceleration is found analytically in the case of a small test mass with a small displacement from the center of the shell. In MOND, the acceleration is found analytically in the limit of large test mass and small displacement, and a comparison to numerical values is made. Numerical simulations are done for more general cases with parameters that mimic the system of a galaxy in a cluster. In GR, the acceleration is highly suppressed and physically insignificant. In MOND, on the contrary, the acceleration of the point particle can be a significant fraction of the field just outside of the spherical shell.

  4. Central limit approximations for Markov population processes with countably many types

    CERN Document Server

    Barbour, A D

    2012-01-01

    When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since there is usually no obvious natural upper limit on the number of individuals in a patch, this leads to systems in which there are countably infinitely many possible types of entity. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove central limit theorems for quite general systems of this kind, together with bounds on the rate of convergence in an appropriately chosen weighted $\\ell_1$ norm.

  5. An Improved Result in Almost Sure Central Limit Theory for Products of Partial Sums with Stable Distribution

    Institute of Scientific and Technical Information of China (English)

    Qunying WU

    2012-01-01

    Consider a sequence of i.i.d. positive random variables with the underlying distribution in the domain of attraction of a stable distribution with an exponent in (1,2].A universal result in the almost sure limit theorem for products of partial sums is established.Our results significantly generalize and improve those on the almost sure central limit theory previously obtained by Gonchigdanzan and Rempale and by Gonchigdanzan.In a sense,our results reach the optimal form.

  6. LIMIT THEOREMS FOR KERNEL DENSITY ESTIMATORS IN SPACES OF ARBITRARY NATURE

    Directory of Open Access Journals (Sweden)

    Orlov A. I.

    2015-04-01

    Full Text Available Some estimators of the probability density function in spaces of arbitrary nature are used for various tasks in statistics of non-numerical data. Systematic exposition of the theory of such estimators had a start in our work [2]. This article is a direct continuation of the article [2]. We will regularly use references to conditions and theorems of the article [2], in which we introduced several types of nonparametric estimators of the probability density. We studied more linear estimators. In this article we consider particular cases - kernel density estimates in spaces of arbitrary nature. When estimating the density of the one-dimensional random variable, kernel estimators become the Parzen-Rosenblatt estimators. Asymptotic behavior of kernel density estimators in the general case of an arbitrary nature spaces are devoted to Theorem 1 - 8. Under different conditions we prove the consistency and asymptotic normality of kernel density estimators. We have studied uniform convergence. We have introduced the concept of "preferred rate differences" and studied nuclear density estimators based on it. We have also introduced and studied natural affinity measures which are used in the analysis of the asymptotic behavior of kernel density estimators. We have found the asymptotic behavior of dispersions of kernel density estimators and considered the examples including kernel density estimators in finite-dimensional spaces and in the space of square-integrable functions

  7. Universal central extensions of direct limits of Lie superalgebras

    CERN Document Server

    Neher, Erhard

    2011-01-01

    We show that the universal central extension of a direct limit of perfect Lie superalgebras L_i is (isomorphic to) the direct limit of the universal central extensions of L_i. As an application we describe the universal central extensions of some infinite rank Lie superalgebras.

  8. Herbrand's Fundamental Theorem - an encyclopedia article

    OpenAIRE

    Wirth, Claus-Peter

    2015-01-01

    Herbrand's Fundamental Theorem provides a constructive characterization of derivability in first-order predicate logic by means of sentential logic. Sometimes it is simply called "Herbrand's Theorem", but the longer name is preferable as there are other important "Herbrand theorems" and Herbrand himself called it "Th\\'eor\\`eme fondamental". It was ranked by Bernays [1957] as follows: "In its proof-theoretic form, Herbrand's Theorem can be seen as the central theorem of predicate logic. It exp...

  9. Functional limit theorems for generalized variations of the fractional Brownian sheet

    DEFF Research Database (Denmark)

    Pakkanen, Mikko; Réveillac, Anthony

    and on the smallest component of the Hurst parameter vector of the fBs. The limiting process in the former result is another fBs, independent of the original fBs, whereas the limit given by the latter result is an Hermite sheet, which is driven by the same white noise as the original fBs. As an application, we derive...

  10. Functional limit theorems for generalized variations of the fractional Brownian sheet

    DEFF Research Database (Denmark)

    Pakkanen, Mikko; Réveillac, Anthony

    2016-01-01

    and on the smallest component of the Hurst parameter vector of the fBs. The limiting process in the former result is another fBs, independent of the original fBs, whereas the limit given by the latter result is an Hermite sheet, which is driven by the same white noise as the original fBs. As an application, we derive...

  11. LIMIT THEOREMS FOR WEIGHTED NONLINEAR TRANSFORMATIONS OF GAUSSIAN STATIONARY PROCESSES WITH SINGULAR SPECTRA

    OpenAIRE

    Ivanov, Alexander V.; Leonenko, Nikolai; Ruiz-Medina, María D.; Savich, Irina N.

    2013-01-01

    The limit Gaussian distribution of multivariate weighted functionals of nonlinear transformations of Gaussian stationary processes, having multiple singular spectra, is derived, under very general conditions on the weight function. This paper is motivated by its potential applications in nonlinear regression, and asymptotic inference on nonlinear functionals of Gaussian stationary processes with singular spectra.

  12. Functional Limit Theorems for C-R Increments of lp-Valued Wiener Processes in the H(o)lder Norm

    Institute of Scientific and Technical Information of China (English)

    Qi Cai WEI

    2005-01-01

    In this paper, based on accurately large deviation formulae established in strong topology generated by the H(o)lder norm for l2-valued Wiener processes, we obtain the functional limit theorems for C-R increments of lp-valued Wiener processes in the H(o)lder norm.

  13. The Limit Theorems for Maxima of Stationary Gaussian Processes with Random Index

    Institute of Scientific and Technical Information of China (English)

    Zhong Quan TAN

    2014-01-01

    Let {X(t), t ≥ 0} be a standard (zero-mean, unit-variance) stationary Gaussian process with correlation function r(·) and continuous sample paths. In this paper, we consider the maxima M (T ) = max{X (t),∀t ∈ [0, T ]} with random index TT , where TT/T converges to a non-degenerate distribution or to a positive random variable in probability, and show that the limit distribution of M (TT ) exists under some additional conditions related to the correlation function r(·).

  14. Limit theorems for splitting trees with structured immigration and applications to biogeography

    CERN Document Server

    Richard, Mathieu

    2010-01-01

    We consider a branching process with Poissonian immigration where individuals have inheritable types. At rate $\\theta$, new individuals singly enter the total population and start a new population which evolves like a supercritical, homogeneous, binary Crump-Mode-Jagers process: individuals have i.i.d. lifetimes durations (non necessarily exponential) during which they give birth independently at constant rate b. First, using spine decomposition, we relax previously known assumptions required for a.s. convergence of total population size. Then, we consider three models of structured populations: either all immigrants have a different type, or types are drawn in a discrete spectrum or in a continuous spectrum. In each model, the vector (P_1,P_2,...) of relative abundances of surviving families converges a.s. In the first model, the limit is the GEM distribution with parameter $\\theta/b$.

  15. Berry-Esseen's central limit theorem for non-causal linear processes in Hilbert space

    CERN Document Server

    Machkouri, Mohamed EL

    2010-01-01

    Let $H$ be a real separable Hilbert space and $(a_k)_{k\\in\\mathbb{Z}}$ a sequence of bounded linear operators from $H$ to $H$. We consider the linear process $X$ defined for any $k$ in $\\mathbb{Z}$ by $X_k=\\sum_{j\\in\\mathbb{Z}}a_j(\\varepsilon_{k-j})$ where $(\\varepsilon_k)_{k\\in\\mathbb{Z}}$ is a sequence of i.i.d. centered $H$-valued random variables. We investigate the rate of convergence in the CLT for $X$ and in particular we obtain the usual Berry-Esseen's bound provided that $\\sum_{j\\in\\mathbb{Z}}\\vert j\\vert\\|a_j\\|_{\\mathcal{L}(H)}<+\\infty$ and $\\varepsilon_0$ belongs to $L_H^{\\infty}$.

  16. Central Limit Theorem and bootstrap procedure for Wasserstein's variations with application to structural relationships between distributions

    OpenAIRE

    Del Barrio, Eustasio; Lescornel, Hélène; Loubes, Jean-Michel

    2016-01-01

    Wasserstein barycenters and variance-like criterion using Wasserstein distance are used in many problems to analyze the homo-geneity of collections of distributions and structural relationships between the observations. We propose the estimation of the quantiles of the empirical process of the Wasserstein's variation using a bootstrap procedure. Then we use these results for statistical inference on a distribution registration model for general deformation functions. The tests are based on th...

  17. A Central Limit Theorem for the Volumes of High Excursions of Stationary Associated Random Fields

    Directory of Open Access Journals (Sweden)

    Vadim Demichev

    2015-05-01

    Full Text Available We prove that under certain conditions the excursion sets volumes of stationary positively associated random fields converge after rescaling to the normal distribution as the excursion level and the size of the observation window grow. In addition, we provide a number of examples.

  18. Variances and covariances in the Central Limit Theorem for the output of a transducer

    Science.gov (United States)

    Heuberger, Clemens; Kropf, Sara; Wagner, Stephan

    2015-01-01

    We study the joint distribution of the input sum and the output sum of a deterministic transducer. Here, the input of this finite-state machine is a uniformly distributed random sequence. We give a simple combinatorial characterization of transducers for which the output sum has bounded variance, and we also provide algebraic and combinatorial characterizations of transducers for which the covariance of input and output sum is bounded, so that the two are asymptotically independent. Our results are illustrated by several examples, such as transducers that count specific blocks in the binary expansion, the transducer that computes the Gray code, or the transducer that computes the Hamming weight of the width-w non-adjacent form digit expansion. The latter two turn out to be examples of asymptotic independence. PMID:27087727

  19. Occupancy of phase space, extensivity of Sq, and q-generalized central limit theorem

    OpenAIRE

    Tsallis, Constantino

    2005-01-01

    Increasing the number $N$ of elements of a system typically makes the entropy to increase. The question arises on {\\it what particular entropic form} we have in mind and {\\it how it increases} with $N$. Thermodynamically speaking it makes sense to choose an entropy which increases {\\it linearly} with $N$ for large $N$, i.e., which is {\\it extensive}. If the $N$ elements are probabilistically {\\it independent} (no interactions) or quasi-independent (e.g., {\\it short}-range interacting), it is ...

  20. Central limit theorem for biased random walk on multi-type Galton-Watson trees

    CERN Document Server

    Dembo, Amir

    2010-01-01

    Let T be a rooted multi-type Galton-Watson (MGW) tree of finitely many types with at least one offspring at each vertex, and an offspring distribution with exponential tails. The lambda-biased random walk (X_t, t>=0) on T is the nearest-neighbor random walk which, when at a vertex v with d(v) offspring, moves closer to the root with probability lambda/(lambda+d(v)), and to each of the offspring with probability 1/(lambda+d(v)). This walk is recurrent for lambda >= rho and transient for 0 <= lambda < rho, with rho the Perron-Frobenius eigenvalue for the (assumed) irreducible matrix of expected offspring numbers. We prove the following quenched CLT for the critical value lambda = rho: for almost every T, the process |X_{floor(nt)}|/sqrt{n} converges in law as n tends to infinity to a deterministic positive multiple of a reflected Brownian motion. Following the approach of Peres and Zeitouni (2008) for Galton-Watson trees, our proof is based on a new explicit description of a reversing measure for the walk...

  1. A feasible central limit theory for realised volatility under leverage

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, Neil

    In this note we show that the feasible central limit theory for realised volatility and realised covariation recently developed by Barndor-Nielsen and Shephard applies under arbitrary diusion based leverage eects. Results from a simulation experiment suggest that the feasible version of the limit...

  2. Using the Mean Value Theorem for Integrals to Calculate Limit%利用积分中值定理求极限

    Institute of Scientific and Technical Information of China (English)

    方辉平; 项明寅

    2014-01-01

    积分中值定理是定积分一个很重要的性质,在证明微积分基本定理、根和驻点的存在性、积分不等式和求极限等问题上作用明显。针对用积分中值定理计算积分的极限进行讨论,给出了含特殊点极限的求法,并结合实例分析由于中值点的不确定性导致的计算错误。%The mean value theorem in integral calculus is an important property for definite integral. It's widely applied in proving the basic theorem of calculus, the existence of roots, integral inequality and limit calculation. This paper discusses how to calculate the limit of integrals using the mean value theorem, presenting the calculation method for limits with special-points and analyzing the calculation errors caused by uncertain median points with examples.

  3. Waldhausen's Theorem

    OpenAIRE

    Schleimer, Saul

    2009-01-01

    This note is an exposition of Waldhausen's proof of Waldhausen's Theorem: the three-sphere has a single Heegaard splitting, up to isotopy, in every genus. As a necessary step we also give a sketch of the Reidemeister-Singer Theorem.

  4. Limits to quantum mechanics as a source of magic tricks: Retrodiction and the Bell-Kochen-Specker theorem

    International Nuclear Information System (INIS)

    A trick discovered by Vaidman, Aharanov, and Albert permitting retrodiction of the outcomes of more measurements than one would naively have thought possible is extended to a case in which the retrodicted observables are forbidden all to have values by a Bell-Kochen-Specker theorem. A rather peculiar analysis shows that an even better trick that retrodicts the outcomes of more informative measurements of these same observables is impossible

  5. Range-limited centrality measures in complex networks

    Science.gov (United States)

    Ercsey-Ravasz, Mária; Lichtenwalter, Ryan N.; Chawla, Nitesh V.; Toroczkai, Zoltán

    2012-06-01

    Here we present a range-limited approach to centrality measures in both nonweighted and weighted directed complex networks. We introduce an efficient method that generates for every node and every edge its betweenness centrality based on shortest paths of lengths not longer than ℓ=1,...,L in the case of nonweighted networks, and for weighted networks the corresponding quantities based on minimum weight paths with path weights not larger than wℓ=ℓΔ, ℓ=1,2...,L=R/Δ. These measures provide a systematic description on the positioning importance of a node (edge) with respect to its network neighborhoods one step out, two steps out, etc., up to and including the whole network. They are more informative than traditional centrality measures, as network transport typically happens on all length scales, from transport to nearest neighbors to the farthest reaches of the network. We show that range-limited centralities obey universal scaling laws for large nonweighted networks. As the computation of traditional centrality measures is costly, this scaling behavior can be exploited to efficiently estimate centralities of nodes and edges for all ranges, including the traditional ones. The scaling behavior can also be exploited to show that the ranking top list of nodes (edges) based on their range-limited centralities quickly freezes as a function of the range, and hence the diameter-range top list can be efficiently predicted. We also show how to estimate the typical largest node-to-node distance for a network of N nodes, exploiting the afore-mentioned scaling behavior. These observations were made on model networks and on a large social network inferred from cell-phone trace logs (˜5.5×106 nodes and ˜2.7×107 edges). Finally, we apply these concepts to efficiently detect the vulnerability backbone of a network (defined as the smallest percolating cluster of the highest betweenness nodes and edges) and illustrate the importance of weight-based centrality measures in

  6. Almost Subadditive Extensions of Kingman's Ergodic Theorem

    OpenAIRE

    Schurger, Klaus

    1991-01-01

    Based on two notions of almost subadditivity which were introduced by Derriennic and Schurger, two a.s. limit theorems are proved which both generalize Kingman's subadditive ergodic theorem. These results, being valid under weak moment conditions, are obtained by short proofs. One of these proofs is completely elementary and does not even make use of Birkhoff's ergodic theorem which, instead, is obtained as a by-product. Finally, an improvement of Liggett's a.s. limit theorem is given.

  7. Sustaining Rural Afghanistan under Limited Central Government Influence

    Directory of Open Access Journals (Sweden)

    John William Groninger

    2013-06-01

    Full Text Available Land and water access insecurity, land grabbing, and unstable common property status of critical local resources continue to drive conflicts, rural landlessness and environmental problems throughout many areas of Afghanistan where formal government is weak or entirely absent.  In contrast to traditional development strategies that favor infrastructure enhancement and backed by enforced national policies, we offer Afghan-specific strategies based on resource conservation and increased capacity of local resource management institutions that can function when and where central government cannot be relied upon to assume or maintain a supportive role. Resource conservation and building local capacity are key components of existing and proposed future efforts to increase stability. However, support for these efforts, whether government or community-based, has been limited in portions of rural Afghanistan , apparently due to low stakeholder confidence in retaining access to improved land, water and other critical resources when international forces withdraw. Powerful individuals and groups, operating outside local community structures, are increasingly impacting land use practices. We suggest a thorough assessment of the present and likely future social environment, including awareness of likely conflicts resulting from agricultural or natural resource improvements, before any tangible actions are taken.

  8. The relativistic virial theorem and scale invariance

    CERN Document Server

    Gaite, Jose

    2013-01-01

    The virial theorem is related to the dilatation properties of bound states. This is realized, in particular, by the Landau-Lifshitz formulation of the relativistic virial theorem, in terms of the trace of the energy-momentum tensor. We construct a Hamiltonian formulation of dilatations in which the relativistic virial theorem naturally arises as the condition of stability against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. However, for very relativistic bound states, scale invariance is broken by quantum effects and the virial theorem must include the energy-momentum tensor trace anomaly. This quantum field theory virial theorem is directly related to the Callan-Symanzik equations. The virial theorem is applied to QED and then to QCD, focusing on the bag model of hadrons. In massless QCD, according to the virial theorem, 3/4 of a hadron mass corresponds to quarks and gluons and 1/4 to the trace anomaly.

  9. Limiting Central Bank Credit to the Government; Theory and Practice

    OpenAIRE

    Carlo Cottarelli

    1993-01-01

    This paper examines central bank independence with reference to the constraints on central bank credit to the government, focusing on how such credit should be regulated. It discusses why credit should be contsrained, and in which forms, and how to implement those constraints.

  10. Exact Rates of Convergence of Functional Limit Theorems for Csorgo-Revesz Increments of a Wiener Process

    Institute of Scientific and Technical Information of China (English)

    Wen Sheng WANG

    2002-01-01

    Let {W(t); t ≥ 0} be a standard Wiener process and S be the Strassen set of functions.We investigate the exact rates of convergence to zero (as T →∞) of the variables suP0≤t≤T-aT inff∈ssuP0≤x≤1 |Yt,T(x) - f(x)| and inf0≤t≤T-aT suP0≤x≤1 |Yt,T(x) - f(x)| for any given f ∈ S, whereYt,T(x) = (W(t + xaT) - W(t))(2aT(logTa-1T1 + loglog T))-1/2.We establish a relation between how small the increments are and the functional limit resultsof Csorgo-Revesz increments for a Wiener process. Similar results for partial sums of i.i.d. randomvariables are also given.

  11. Heavy Traffic Limit Theorems for a Queue with Poisson ON/OFF Long-range Dependent Sources and General Service Time Distribution

    Institute of Scientific and Technical Information of China (English)

    Wan-yang DAI

    2012-01-01

    In Internet environment,traffic flow to a link is typically modeled by superposition of ON/OFF based sources.During each ON-period for a particular source,packets arrive according to a Poisson process and packet sizes (hence service times) can be generally distributed.In this paper,we establish heavy traffic limit theorems to provide suitable approximations for the system under first-in first-out (FIFO) and work-conserving service discipline,which state that,wten the lengths of both ON- and OFF-periods are lightly tailed,the sequences of the scaled queue length and workload processes converge weakly to short-range dependent reflecting Gaussian processes,and when the lengths of ON- and/or OFF-periods are heavily tailed with infinite variance,the sequences converge weakly to either reflecting fractional Brownian motions (FBMs) or certain type of longrange dependent reflecting Gaussian processes depending on the choice of scaling as the number of superposed sources tends to infinity.Moreover,the sequences exhibit a state space collapse-like property when the number of sources is large enough,which is a kind of extension of the well-known Little's law for M/M/1 queueing system.Theory to justify the approximations is based on appropriate heavy traffic conditions which essentially mean that the service rate closely approaches the arrival rate when the number of input sources tends to infinity.

  12. The relativistic virial theorem and scale invariance

    OpenAIRE

    Gaite, Jose

    2013-01-01

    The virial theorem is related to the dilatation properties of bound states. This is realized, in particular, by the Landau-Lifshitz formulation of the relativistic virial theorem, in terms of the trace of the energy-momentum tensor. We construct a Hamiltonian formulation of dilatations in which the relativistic virial theorem naturally arises as the condition of stability against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. H...

  13. Central Limit Theorem and bootstrap procedure for Wasserstein's barycenter variations and application to structural relationships between distributions

    OpenAIRE

    Del Barrio, Eustasio; Lescornel, Hélène; Loubes, Jean-Michel

    2016-01-01

    Wasserstein barycenters and variance-like criterion using Wasser-stein distance are used in many problems to analyze the homogeneity of collections of distributions and structural relationships between the observations. We propose the estimation of the quantiles of the empirical process of the Wasserstein's variation using a bootstrap procedure. Then we use these results for statistical inference on a distribution registration model for general deformation functions. The tests are based on th...

  14. Central limit theorem for germination-growth models in R d with non-Poisson locations

    OpenAIRE

    Chiu, S. N.; Quine, M. P.

    2001-01-01

    Seeds are randomly scattered in Rd according to an m-dependent point process. Each seed has its own potential germination time. From each seed that succeeds in germinating, a spherical inhibited region grows to prohibit germination of any seed with later potential germination time. We show that under certain conditions on the distribution of the potential germination time, the number of germinated seeds in a large region has an asymptotic normal distribution.

  15. Double soft theorem for perturbative gravity

    Science.gov (United States)

    Saha, Arnab Priya

    2016-09-01

    Following up on the recent work of Cachazo, He and Yuan [1], we derive the double soft graviton theorem in perturbative gravity. We show that the double soft theorem derived using CHY formula precisely matches with the perturbative computation involving Feynman diagrams. In particular, we find how certain delicate limits of Feynman diagrams play an important role in obtaining this equivalence.

  16. Vorticity, Stokes' Theorem and the Gauss's Theorem

    Science.gov (United States)

    Narayanan, M.

    2004-12-01

    Vorticity is a property of the flow of any fluid and moving fluids acquire properties that allow an engineer to describe that particular flow in greater detail. It is important to recognize that mere motion alone does not guarantee that the air or any fluid has vorticity. Vorticity is one of four important quantities that define the kinematic properties of any fluid flow. The Navier-Stokes equations are the foundation of fluid mechanics, and Stokes' theorem is used in nearly every branch of mechanics as well as electromagnetics. Stokes' Theorem also plays a vital role in many secondary theorems such as those pertaining to vorticity and circulation. However, the divergence theorem is a mathematical statement of the physical fact that, in the absence of the creation or destruction of matter, the density within a region of space can change only by having it flow into, or away from the region through its boundary. This is also known as Gauss's Theorem. It should also be noted that there are many useful extensions of Gauss's Theorem, including the extension to include surfaces of discontinuity in V. Mathematically expressed, Stokes' theorem can be expressed by considering a surface S having a bounding curve C. Here, V is any sufficiently smooth vector field defined on the surface and its bounding curve C. Integral (Surface) [(DEL X V)] . dS = Integral (Contour) [V . dx] In this paper, the author outlines and stresses the importance of studying and teaching these mathematical techniques while developing a course in Hydrology and Fluid Mechanics. References Arfken, G. "Gauss's Theorem." 1.11 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 57-61, 1985. Morse, P. M. and Feshbach, H. "Gauss's Theorem." In Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 37-38, 1953. Eric W. Weisstein. "Divergence Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DivergenceTheorem.html

  17. Improvement of Hartman's linearization theorem

    Institute of Scientific and Technical Information of China (English)

    SHI; Jinlin(史金麟)

    2003-01-01

    Hartman's linearization theorem tells us that if matrix A has no zero real part and f(x) isbounded and satisfies Lipchitz condition with small Lipchitzian constant, then there exists a homeomorphismof Rn sending the solutions of nonlinear system x' = Ax + f(x) onto the solutions of linear system x' = Ax.In this paper, some components of the nonlinear item f(x) are permitted to be unbounded and we provethe result of global topological linearization without any special limitation and adding any condition. Thus,Hartman's linearization theorem is improved essentially.

  18. Lagrange Theorem for polygroups

    Directory of Open Access Journals (Sweden)

    alireza sedighi

    2014-12-01

    Full Text Available So far?, ?isomorphism theorems in hyperstructure were proved for different structures of polygroups?, ?hyperrings and etc?. ?In this paper?, ?the polygroups properties is studied with the introduction of a suitable equivalence relation?. ?We show that the above relation is strongly regular?. ?Our main purpose in the paper is investigating Lagrang theorem and other expressing of isomorphism theorems for polygroups?.

  19. Self-organized criticality attributed to a central limit-like convergence effect

    Science.gov (United States)

    Kendal, Wayne S.

    2015-03-01

    Self-organized criticality is a hypothesis used to explain the origin of 1 / f noise and other scaling behaviors. Despite being proposed nearly 30 years ago, no consensus exists as to its exact definition or mathematical mechanism(s). Recently, a model for 1 / f noise was proposed based on a family of statistical distributions known as the Tweedie exponential dispersion models. These distributions are characterized by an inherent scale invariance that manifests as a variance to mean power law, called fluctuation scaling; they also serve as foci of convergence in a limit theorem on independent and identically distributed distributions. Fluctuation scaling can be modeled by self-similar stochastic processes that relate the variance to mean power law to 1 / f noise through their correlation structure. A hypothesis is proposed whereby the effects of self-organized criticality are mathematically modeled by the Tweedie distributions and their convergence behavior as applied to self-similar stochastic processes. Sandpile model fluctuations are shown to manifest 1 / f noise, fluctuation scaling, and to conform to the Tweedie compound Poisson distribution. The Tweedie models and their convergence theorem allow for a mechanistic explanation of 1 / f noise and fluctuation scaling in phenomena conventionally attributed to self-organized criticality, thus providing a paradigm shift in our understanding of these phenomena.

  20. Virial theorem for radiating accretion discs

    OpenAIRE

    Mach, Patryk

    2011-01-01

    A continuum version of the virial theorem is derived for a radiating self-gravitating accretion disc around a compact object. The central object is point-like, but we can avoid the regularization of its gravitational potential. This is achieved by applying a modified Pohozaev-Rellich identity to the gravitational potential of the disk only. The theorem holds for general stationary configurations, including discontinuous flows (shock waves, contact discontinuities). It is used to test numerica...

  1. Universal restrictions to the conversion of heat into work derived from the analysis of the Nernst theorem as a uniform limit

    CERN Document Server

    Martin-Olalla, J M; Martin-Olalla, Jose-Maria; Luna, Alfredo Rey de

    2003-01-01

    We revisit the relationship between the Nernst theorem and the Kelvin-Planck statement of the second law. We propose that the exchange of entropy uniformly vanishes as the temperature goes to zero. The analysis of this assumption shows that is equivalent to the fact that the compensation of a Carnot engine scales with the absorbed heat so that the Nernst theorem should be embedded in the statement of the second law. ----- Se analiza la relaci{\\'o}n entre el teorema de Nernst y el enunciado de Kelvin-Planck del segundo principio de la termodin{\\'a}mica. Se{\\~n}alamos el hecho de que el cambio de entrop{\\'\\i}a tiende uniformemente a cero cuando la temperatura tiende a cero. El an{\\'a}lisis de esta hip{\\'o}tesis muestra que es equivalente al hecho de que la compensaci{\\'o}n de una m{\\'a}quina de Carnot escala con el calor absorbido del foco caliente, de forma que el teorema de Nernst puede derivarse del enunciado del segundo principio.

  2. Godel's theorem is invalid

    OpenAIRE

    Saa, Diego

    2005-01-01

    Goedel's results have had a great impact in diverse fields such as philosophy, computer sciences and fundamentals of mathematics. The fact that the rule of mathematical induction is contradictory with the rest of clauses used by Goedel to prove his undecidability and incompleteness theorems is proved in this paper. This means that those theorems are invalid.

  3. Integral fluctuation theorem for the housekeeping heat

    International Nuclear Information System (INIS)

    The housekeeping heat Qhk is the dissipated heat necessary to maintain the violation of detailed balance in nonequilibrium steady states. By analysing the evolution of its probability distribution, we prove an integral fluctuation theorem (exp[-βQhk]) = 1 valid for arbitrary-driven transitions between steady states. We discuss Gaussian limiting cases and the difference between the new theorem and both the Hatano-Sasa and the Jarzynski relation. (letter to the editor)

  4. Integral fluctuation theorem for the housekeeping heat

    OpenAIRE

    Speck, T.; Seifert, U.

    2005-01-01

    The housekeeping heat $Q\\hk$ is the dissipated heat necessary to maintain the violation of detailed balance in nonequilibrium steady states. By analyzing the evolution of its probability distribution, we prove an integral fluctuation theorem $\\mean{\\exp[-\\beta Q\\hk]}=1$ valid for arbitrary driven transitions between steady states. We discuss Gaussian limiting cases and the difference between the new theorem and both the Hatano-Sasa and the Jarzynski relation.

  5. Double Soft Theorem for Perturbative Gravity

    CERN Document Server

    Saha, Arnab Priya

    2016-01-01

    Following up on the recent work of Cachazo, He and Yuan \\cite{arXiv:1503.04816 [hep-th]}, we derive the double soft graviton theorem in perturbative gravity. We show that the double soft theorem derived using CHY formula precisely matches with the perturbative computation involving Feynman diagrams. In particular, we find how certain delicate limits of Feynman diagrams play an important role in obtaining this equivalence.

  6. Quantum Rate Distortion, Reverse Shannon Theorems, and Source-Channel Separation

    OpenAIRE

    Datta, Nilanjana; Hsieh, Min-Hsiu; Wilde, Mark M.

    2013-01-01

    We derive quantum counterparts of two key theorems of classical information theory, namely, the rate distortion theorem and the source-channel separation theorem. The rate-distortion theorem gives the ultimate limits on lossy data compression, and the source-channel separation theorem implies that a two-stage protocol consisting of compression and channel coding is optimal for transmitting a memoryless source over a memoryless channel. In spite of their importance in the classical domain, the...

  7. A novel sampling theorem on the sphere

    CERN Document Server

    McEwen, J D

    2011-01-01

    We develop a novel sampling theorem on the sphere and corresponding fast algorithms by associating the sphere with the torus through a periodic extension. The fundamental property of any sampling theorem is the number of samples required to represent a band-limited signal. To represent exactly a signal on the sphere band-limited at L, all sampling theorems on the sphere require O(L^2) samples. However, our sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere and an asymptotically identical, but smaller, number of samples than the Gauss-Legendre sampling theorem. The complexity of our algorithms scale as O(L^3), however, the continual use of fast Fourier transforms reduces the constant prefactor associated with the asymptotic scaling considerably, resulting in algorithms that are fast. Furthermore, we do not require any precomputation and our algorithms apply to both scalar and spin functions on the sphere without any change in computational comple...

  8. To string together six theorems of physics by Pythagoras theorem

    OpenAIRE

    Cui, H. Y.

    2002-01-01

    In this paper, we point out that there are at lest six theorems in physics sharing common virtue of Pythagoras theorem, so that it is possible to string these theorems together with the Pythagoras theorem for physics teaching, the six theorems are Newton's three laws of motion, universal gravitational force, Coulomb's law, and the formula of relativistic dynamics. Knowing the internal relationships between them, which have never been clearly revealed by other author, will benefit the logic of...

  9. To string together six theorems of physics by Pythagoras theorem

    CERN Document Server

    Cui, H Y

    2002-01-01

    In this paper, we point out that there are at lest six theorems in physics sharing common virtue of Pythagoras theorem, so that it is possible to string these theorems together with the Pythagoras theorem for physics teaching, the six theorems are Newton's three laws of motion, universal gravitational force, Coulomb's law, and the formula of relativistic dynamics. Knowing the internal relationships between them, which have never been clearly revealed by other author, will benefit the logic of physics teaching.

  10. On the Equivalence of Weyl Theorem and Generalized Weyl Theorem

    Institute of Scientific and Technical Information of China (English)

    M. BERKANI

    2007-01-01

    We know that an operator T acting on a Banach space satisfying generalized Weyl's theorem also satisfies Weyl's theo rem. Conversely we show that if all isolated eigenvalues of T are poles of its resolvent and if T satisfies Weyl's theorem, then it also satisfies generalized Weyl's theorem. We give also a similar result for the equivalence of a-Weyl's theorem and generalized a-Weyl's theorem. Using these results, we study the case of polaroid operators, and in particular paranormal operators.

  11. Virial Theorem and Hypervirial Theorem in a spherical geometry

    OpenAIRE

    Li, Yan; Zhang, Fu-Lin; Chen, Jing-Ling

    2010-01-01

    The Virial Theorem in the one- and two-dimensional spherical geometry are presented, in both classical and quantum mechanics. Choosing a special class of Hypervirial operators, the quantum Hypervirial relations in the spherical spaces are obtained. With the aid of the Hellmann-Feynman Theorem, these relations can be used to formulate a \\emph{perturbation theorem without wave functions}, corresponding to the Hypervirial-Hellmann-Feynman Theorem perturbation theorem of Euclidean geometry. The o...

  12. Automated theorem proving.

    Science.gov (United States)

    Plaisted, David A

    2014-03-01

    Automated theorem proving is the use of computers to prove or disprove mathematical or logical statements. Such statements can express properties of hardware or software systems, or facts about the world that are relevant for applications such as natural language processing and planning. A brief introduction to propositional and first-order logic is given, along with some of the main methods of automated theorem proving in these logics. These methods of theorem proving include resolution, Davis and Putnam-style approaches, and others. Methods for handling the equality axioms are also presented. Methods of theorem proving in propositional logic are presented first, and then methods for first-order logic. WIREs Cogn Sci 2014, 5:115-128. doi: 10.1002/wcs.1269 CONFLICT OF INTEREST: The authors has declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:26304304

  13. Trigonometry, Including Snell's Theorem.

    Science.gov (United States)

    Kent, David

    1980-01-01

    Aspects of the instruction of trigonometry in secondary school mathematics are reviewed. Portions of this document cover basic introductions, a student-developed theorem, the cosine rule, inverse functions, and a sample outdoor activity. (MP)

  14. Two preservation theorems

    OpenAIRE

    Zapletal, Jindrich

    2005-01-01

    I prove preservation theorems for countable support iteration of proper forcing concerning certain classes of capacities and submeasures. New examples of forcing notions and connections with measure theory are included.

  15. Voting, Lobbying, and the Decentralization Theorem

    OpenAIRE

    Lockwood, Benjamin

    2007-01-01

    This paper revisits the fiscal "decentralization theorem", by relaxing the role of the assumption that governments are benevolent, while retaining the assumption of policy uniformity. If instead, decisions are made by direct majority voting, (i) centralization can welfare-dominate decentralization even if there are no externalities and regions are heterogenous; (ii) decentralization can welfare-dominate centralization even if there are positive externalities and regions are hom...

  16. Navier Stokes Theorem in Hydrology

    Science.gov (United States)

    Narayanan, M.

    2005-12-01

    In a paper presented at the 2004 AGU International Conference, the author outlined and stressed the importance of studying and teaching certain important mathematical techniques while developing a course in Hydrology and Fluid Mechanics. The Navier-Stokes equations are the foundation of fluid mechanics, and Stokes' theorem is used in nearly every branch of mechanics as well as electromagnetics. Stokes' Theorem also plays a vital role in many secondary theorems such as those pertaining to vorticity and circulation. Mathematically expressed, Stokes' theorem can be expressed by considering a surface S having a bounding curve C. Here, V is any sufficiently smooth vector field defined on the surface and its bounding curve C. In an article entitled "Corrections to Fluid Dynamics" R. F. Streater, (Open Systems and Information Dynamics, 10, 3-30, 2003.) proposes a kinetic model of a fluid in which five macroscopic fields, the mass, energy, and three components of momentum, are conserved. The dynamics is constructed using the methods of statistical dynamics, and results in a non-linear discrete-time Markov chain for random fields on a lattice. In the continuum limit he obtains a non-linear coupled parabolic system of field equations, showing a correction to the Navier-Stokes equations. In 2001, David Hoff published an article in Journees Equations aux derivees partielles. (Art. No. 7, 9 p.). His paper is entitled : Dynamics of Singularity Surfaces for Compressible Navier-Stokes Flows in Two Space Dimensions. In his paper, David Hoff proves the global existence of solutions of the Navier-Stokes equations of compressible, barotropic flow in two space dimensions with piecewise smooth initial data. These solutions remain piecewise smooth for all time, retaining simple jump discontinuities in the density and in the divergence of the velocity across a smooth curve, which is convected with the flow. The strengths of these discontinuities are shown to decay exponentially in time

  17. STABILITY OF GAS CLOUDS IN GALACTIC NUCLEI: AN EXTENDED VIRIAL THEOREM

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xian; Cuadra, Jorge [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 782-0436 Santiago (Chile); Amaro-Seoane, Pau, E-mail: xchen@astro.puc.cl, E-mail: jcuadra@astro.puc.cl, E-mail: Pau.Amaro-Seoane@aei.mpg.de [Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam (Germany)

    2016-03-10

    Cold gas entering the central 1–10{sup 2} pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulate a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.

  18. Stability of Gas Clouds in Galactic Nuclei: An Extended Virial Theorem

    Science.gov (United States)

    Chen, Xian; Amaro-Seoane, Pau; Cuadra, Jorge

    2016-03-01

    Cold gas entering the central 1-102 pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulate a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to further include an external tidal field, which is equally crucial for the stability in the region of our interest—in dense star clusters, around SMBHs. We apply our extended Virial theorem to find new solutions to controversial problems, namely, the stability of the gas clumps in AGN tori, the circum-nuclear disk in the Galactic Center, and the central molecular zone of the Milky Way. The masses we derive for these structures are orders of magnitude smaller than the commonly used Virial masses (equivalent to the Jeans mass). Moreover, we prove that these clumps are stable, contrary to what one would naively deduce from the Roche (tidal) limit.

  19. (L)ukasiewicz命题逻辑中命题的Borel概率真度理论和极限定理%Theory of Borel Probability Truth Degrees of Propositions in (L)ukasiewicz Propositional Logics and a Limit Theorem

    Institute of Scientific and Technical Information of China (English)

    周红军

    2012-01-01

    通过视赋值集为通常乘积拓扑空间,利用其上的Borel概率测度在n值及连续值Lukasiewicz命题逻辑系统中引入了命题的Borel概率真度概念,讨论了它的基本性质,特别是给出了n值情形中概率真度函数的积分表示定理,并得到了其与连续情形概率真度函数之间关系的一个极限定理.结果表明,计量逻辑学中命题的真度概念只是所研究工作的一个特例,因而基于概率真度概念可以为不确定性推理建立一种更为宽泛的计量化模型.%By means of Borel probability measures on the valuation set endowed with the usual product topology, the notion of probability truth degrees of propositions in n-valued and [0,1]-valued (L)ukasiewicz propositional logics is introduced. Its basic properties are investigated, and the integral representation theorem and the limit theorem of probability truth degree functions in n-valued case, in particular, are obtained. Theses results show that the notion of truth degree existing in quantitative logic is just a particular case of Borel probability truth degrees, and a more general quantitative model based on the notion of Borel probability truth degree for uncertainty reasoning can be then established.

  20. ON RANGE DECOMPOSITION THEOREMS

    Institute of Scientific and Technical Information of China (English)

    吴利生

    1990-01-01

    We prove the following theorems.Theorem 1.Suppose f:X→Y is a closed map.X is a ωγ and β space,then Y=Y0∪(∪n=1∞Yn),where f-1(y) is countably compact for each y ∈Y0 and Yn is closed discrete in Y for each n≥1,Theorem 2-3:Suppose f:X→Y is a closed map,X is stratifable space,then Y=Y0 ∪(∪n=1∞Yn),where f-1(y) is compact for each y∈Y0 and Yn is closed discrete in Y for each n≥1.

  1. The Fermi's Bayes Theorem

    CERN Document Server

    D'Agostini, G

    2005-01-01

    It is curious to learn that Enrico Fermi knew how to base probabilistic inference on Bayes theorem, and that some influential notes on statistics for physicists stem from what the author calls elsewhere, but never in these notes, {\\it the Bayes Theorem of Fermi}. The fact is curious because the large majority of living physicists, educated in the second half of last century -- a kind of middle age in the statistical reasoning -- never heard of Bayes theorem during their studies, though they have been constantly using an intuitive reasoning quite Bayesian in spirit. This paper is based on recollections and notes by Jay Orear and on Gauss' ``Theoria motus corporum coelestium'', being the {\\it Princeps mathematicorum} remembered by Orear as source of Fermi's Bayesian reasoning.

  2. Converse Barrier Certificate Theorem

    DEFF Research Database (Denmark)

    Wisniewski, Rafael; Sloth, Christoffer

    2013-01-01

    This paper presents a converse barrier certificate theorem for a generic dynamical system.We show that a barrier certificate exists for any safe dynamical system defined on a compact manifold. Other authors have developed a related result, by assuming that the dynamical system has no singular...... points in the considered subset of the state space. In this paper, we redefine the standard notion of safety to comply with generic dynamical systems with multiple singularities. Afterwards, we prove the converse barrier certificate theorem and illustrate the differences between ours and previous work by...

  3. Goldstone theorem revisited

    CERN Document Server

    Kartavtsev, Alexander

    2014-01-01

    According to the Goldstone theorem a scalar theory with a spontaneously broken global symmetry contains strictly massless states. In this letter we identify a loophole in the current-algebra proof of the theorem. Therefore, the question whether in models with Mexican hat potential the tangential excitations are strictly massless or are just almost massless as compared to the radial ones remains open. We also argue that mass of the tangential excitations approaches zero even if the symmetry is not spontaneously broken but a combination of the field components invariant under the symmetry transformations acquires a large vacuum expectation value.

  4. Formality theorem for gerbes

    DEFF Research Database (Denmark)

    Bressler, Paul; Gorokhovsky, Alexander; Nest, Ryszard;

    2015-01-01

    The main result of the present paper is an analogue of Kontsevich formality theorem in the context of the deformation theory of gerbes. We construct an L∞L∞ deformation of the Schouten algebra of multi-vectors which controls the deformation theory of a gerbe.......The main result of the present paper is an analogue of Kontsevich formality theorem in the context of the deformation theory of gerbes. We construct an L∞L∞ deformation of the Schouten algebra of multi-vectors which controls the deformation theory of a gerbe....

  5. Virial Theorem and Scale Transformations.

    Science.gov (United States)

    Kleban, Peter

    1979-01-01

    Discussed is the virial theorem, which is useful in classical, quantum, and statistical mechanics. Two types of derivations of this theorem are presented and the relationship between the two is explored. (BT)

  6. Gödel's Theorem

    NARCIS (Netherlands)

    Dalen, D. van

    2008-01-01

    The following pages make form a new chapter for the book Logic and Structure. This chapter deals with the incompleteness theorem, and contains enough basic material for the treatment of the required notions of computability, representability and the like. This chapter will appear in the next edition

  7. An order drop theorem

    Directory of Open Access Journals (Sweden)

    Mihai Turinici

    2006-11-01

    Full Text Available A drop theorem on ordered metric spaces is established from the (pre order version of Ekeland’s variational principle in Turinici [An St UAIC Ia (Math, 36 (1990, 329-352]. The logical equivalence between these results is also discussed.

  8. An order drop theorem

    OpenAIRE

    Mihai Turinici

    2006-01-01

    A drop theorem on ordered metric spaces is established from the (pre) order version of Ekeland’s variational principle in Turinici [An St UAIC Ia (Math), 36 (1990), 329-352]. The logical equivalence between these results is also discussed.

  9. Gödel's Theorem

    OpenAIRE

    Dalen, D. van

    2008-01-01

    The following pages make form a new chapter for the book Logic and Structure. This chapter deals with the incompleteness theorem, and contains enough basic material for the treatment of the required notions of computability, representability and the like. This chapter will appear in the next edition of Logic and Structure. Comments are welcome.

  10. Multivariate irregular sampling theorem

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper,we prove a Marcinkiewicz-Zygmund type inequality for multivariate entire functions of exponential type with non-equidistant spaced sampling points. And from this result,we establish a multivariate irregular Whittaker-Kotelnikov-Shannon type sampling theorem.

  11. Normal Limits, Nonnormal Limits, and the Bootstrap for Quantiles of Dependent Data

    OpenAIRE

    Sharipov, O. Sh.; Wendler, M.

    2012-01-01

    We will show under very weak conditions on differentiability and dependence that the central limit theorem for quantiles holds and that the block bootstrap is weakly consistent. Under slightly stronger conditions, the bootstrap is strongly consistent. Without the differentiability condition, quantiles might have a non-normal asymptotic distribution and the bootstrap might fail.

  12. Maximum principle and convergence of central schemes based on slope limiters

    KAUST Repository

    Mehmetoglu, Orhan

    2012-01-01

    A maximum principle and convergence of second order central schemes is proven for scalar conservation laws in dimension one. It is well known that to establish a maximum principle a nonlinear piecewise linear reconstruction is needed and a typical choice is the minmod limiter. Unfortunately, this implies that the scheme uses a first order reconstruction at local extrema. The novelty here is that we allow local nonlinear reconstructions which do not reduce to first order at local extrema and still prove maximum principle and convergence. © 2011 American Mathematical Society.

  13. Discovering the Theorem of Pythagoras

    Science.gov (United States)

    Lattanzio, Robert (Editor)

    1988-01-01

    In this 'Project Mathematics! series, sponsored by the California Institute of Technology, Pythagoraus' theorem a(exp 2) + b(exp 2) = c(exp 2) is discussed and the history behind this theorem is explained. hrough live film footage and computer animation, applications in real life are presented and the significance of and uses for this theorem are put into practice.

  14. An Improved Subadditive Ergodic Theorem

    OpenAIRE

    Liggett, Thomas M.

    1985-01-01

    A new version of Kingman's subadditive ergodic theorem is presented, in which the subadditivity and stationarity assumptions are relaxed without weakening the conclusions. This result applies to a number of situations that were not covered by Kingman's original theorem. The proof involves a rather simple reduction to the additive case, where Birkhoff's ergodic theorem can be applied.

  15. How to Understand a Theorem?

    Science.gov (United States)

    Abramovitz, Buma; Berezina, Miryam; Berman, Abraham; Shvartsman, Ludmila

    2009-01-01

    In this article we describe the process of studying the assumptions and the conclusion of a theorem. We tried to provide the students with exercises and problems where we discuss the following questions: What are the assumptions of a theorem and what are the conclusions? What is the geometrical meaning of a theorem? What happens when one or more…

  16. An Extension of Sobolev's Theorem

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Sobolev's Theorem is the most fundamental theorem in the theory of Invariant Cubature Formulas (ICFs). In this paper, a quantitative structure is established for the classical ICFs. Enlightened by this structure, the author generalizes the concept of ICFs and extends the Sobolev's Theorem to the case of generalized ICFs. Several illustrative examples are given.

  17. Sampling theorems and compressive sensing on the sphere

    CERN Document Server

    McEwen, J D; Thiran, J -Ph; Vandergheynst, P; Van De Ville, D; Wiaux, Y

    2011-01-01

    We discuss a novel sampling theorem on the sphere developed by McEwen & Wiaux recently through an association between the sphere and the torus. To represent a band-limited signal exactly, this new sampling theorem requires less than half the number of samples of other equiangular sampling theorems on the sphere, such as the canonical Driscoll & Healy sampling theorem. A reduction in the number of samples required to represent a band-limited signal on the sphere has important implications for compressive sensing, both in terms of the dimensionality and sparsity of signals. We illustrate the impact of this property with an inpainting problem on the sphere, where we show superior reconstruction performance when adopting the new sampling theorem.

  18. Virial theorem and hypervirial theorem in a spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Li Yan; Chen Jingling [Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071 (China); Zhang Fulin, E-mail: flzhang@tju.edu.cn, E-mail: chenjl@nankai.edu.cn [Physics Department, School of Science, Tianjin University, Tianjin 300072 (China)

    2011-09-09

    The virial theorem in the one- and two-dimensional spherical geometry are presented in both classical and quantum mechanics. Choosing a special class of hypervirial operators, the quantum hypervirial relations in the spherical spaces are obtained. With the aid of the Hellmann-Feynman theorem, these relations can be used to formulate a perturbation theorem without wavefunctions, corresponding to the hypervirial-Hellmann-Feynman theorem perturbation theorem of Euclidean geometry. The one-dimensional harmonic oscillator and two-dimensional Coulomb system in the spherical spaces are given as two sample examples to illustrate the perturbation method. (paper)

  19. A Class of Limit Theorems of Moving Averages for END Random Variables%END随机序列滑动平均的若干极限定理

    Institute of Scientific and Technical Information of China (English)

    胡松; 汪忠志

    2013-01-01

    利用条件E(exp{t?X1|1/p})<∞,(p>1),证明END随机序列滑动平均的极限定理,给出形如(logn)-p(n+(log n)p)∑(k=n+1)Xk的滑动平均的上下界,得到了经典强大数定律.%The classical strong law of large numbers is generalized to the case of END random variables of the form (logn)-p/(n+(logn)p) Σ(k=n+1) Xk with the condition E(exp{t∣X1∣1/p})<∞,(p>l), by identifying its upper and lower limit.

  20. Thermal Tachyons and the "g"-Theorem

    OpenAIRE

    Chaudhuri, Shyamoli

    2002-01-01

    We give a pedagogical introduction to Affleck and Ludwig's g-theorem, distinguishing its applications in field theory vs string theory. We clarify the recent proposal that the vacuum degeneracy $g$ of a noncompact worldsheet sigma model with a continuous spectrum of scaling dimensions is lowered under renormalization group flow while preserving the central charge. As an illustration we argue that the IR stable endpoint of the relevant flow of the worldsheet RG induced by a thermal tachyon in ...

  1. Some Approximation Theorems

    Indian Academy of Sciences (India)

    N V Rao

    2003-02-01

    The general theme of this note is illustrated by the following theorem: Theorem 1. Suppose is a compact set in the complex plane and 0 belongs to the boundary . Let $\\mathcal{A}(K)$ denote the space of all functions on such that is holomorphic in a neighborhood of and (0) = 0. Also for any given positive integer , let $\\mathcal{A}(m, K)$ denote the space of all such that is holomorphic in a neighborhood of and $f(0) = f'(0) = \\cdots = f^{(m)}(0) = 0$. Then $\\mathcal{A}(m, K)$ is dense in $\\mathcal{A}(K)$ under the supremum norm on provided that there exists a sector $W = \\{re^{i}; 0 ≤ r ≤ , ≤ ≤ \\}$ such that $W \\cap K = \\{0\\}$. (This is the well-known Poincare's external cone condition).} We present various generalizations of this result in the context of higher dimensions replacing holomorphic with harmonic.

  2. The holographic F theorem

    CERN Document Server

    Taylor, Marika

    2016-01-01

    The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension $3/2 < \\Delta < 5/2$. Therefore the strongest version of the F theorem is in general violated.

  3. Negishi's Theorem and Method

    OpenAIRE

    Vela Velupillai, K.

    2011-01-01

    Takashi Negishi's remarkable youthful contribution to welfare economics, general equilibrium theory and, with the benefit of hindsight, also to one strand of computable general equilibrium theory, all within the span of six pages in one article, has become one of the modern classics of general equilibrium theory and mathematical economics. Negishi's celebrated theorem and what has been called Negishi's Method have formed one foundation for computable general equilibrium theory. In this paper ...

  4. The Recovery Theorem

    OpenAIRE

    Stephen A. Ross

    2011-01-01

    We can only estimate the distribution of stock returns but we observe the distribution of risk neutral state prices. Risk neutral state prices are the product of risk aversion - the pricing kernel - and the natural probability distribution. The Recovery Theorem enables us to separate these and to determine the market's forecast of returns and the market's risk aversion from state prices alone. Among other things, this allows us to determine the pricing kernel, the market risk premium, the pro...

  5. Convergence theorems for lattice group-valued measures

    CERN Document Server

    Boccuto, Antonio

    2015-01-01

    Convergence Theorems for Lattice Group-valued Measures explains limit and boundedness theorems for measures taking values in abstract structures. The eBook begins with a historical survey about these topics since the beginning of the last century, moving on to basic notions and preliminaries on filters/ideals, lattice groups, measures and tools which are featured in the rest of this text. Readers will also find a survey on recent classical results about limit, boundedness and extension theorems for lattice group-valued measures followed by information about recent developments on these kinds o

  6. THREE SOLUTIONS THEOREMS FOR NONLINEAR OPERATOR EQUATIONS AND APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    SUN Jingxian; XU Xi'an

    2005-01-01

    In this paper, some three solutions theorems about a class of operators which are said to be limit-increasing are obtained. Some applications to the second order differential equations boundary value problems are given.

  7. Sandwich classification theorem

    Directory of Open Access Journals (Sweden)

    Alexey Stepanov

    2015-09-01

    Full Text Available The present note arises from the author's talk at the conference ``Ischia Group Theory 2014''. For subgroups FleN of a group G denote by Lat(F,N the set of all subgroups of N , containing F . Let D be a subgroup of G . In this note we study the lattice LL=Lat(D,G and the lattice LL ′ of subgroups of G , normalized by D . We say that LL satisfies sandwich classification theorem if LL splits into a disjoint union of sandwiches Lat(F,N G (F over all subgroups F such that the normal closure of D in F coincides with F . Here N G (F denotes the normalizer of F in G . A similar notion of sandwich classification is introduced for the lattice LL ′ . If D is perfect, i.,e. coincides with its commutator subgroup, then it turns out that sandwich classification theorem for LL and LL ′ are equivalent. We also show how to find basic subroup F of sandwiches for LL ′ and review sandwich classification theorems in algebraic groups over rings.

  8. Bourgain's discretization theorem

    CERN Document Server

    Giladi, Ohad; Schechtman, Gideon

    2011-01-01

    Bourgain's discretization theorem asserts that there exists a universal constant $C\\in (0,\\infty)$ with the following property. Let $X,Y$ be Banach spaces with $\\dim X=n$. Fix $D\\in (1,\\infty)$ and set $\\d= e^{-n^{Cn}}$. Assume that $\\mathcal N$ is a $\\d$-net in the unit ball of $X$ and that $\\mathcal N$ admits a bi-Lipschitz embedding into $Y$ with distortion at most $D$. Then the entire space $X$ admits a bi-Lipschitz embedding into $Y$ with distortion at most $CD$. This mostly expository article is devoted to a detailed presentation of a proof of Bourgain's theorem. We also obtain an improvement of Bourgain's theorem in the important case when $Y=L_p$ for some $p\\in [1,\\infty)$: in this case it suffices to take $\\delta= C^{-1}n^{-5/2}$ for the same conclusion to hold true. The case $p=1$ of this improved discretization result has the following consequence. For arbitrarily large $n\\in \\N$ there exists a family $\\mathscr Y$ of $n$-point subsets of ${1,...,n}^2\\subseteq \\R^2$ such that if we write $|\\mathscr ...

  9. Factors Limiting Centralized Land Circulation in China from the Perspective of Farmers’ Property Right

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    At present,there are many factors limiting large area centralized,rapid development,and moderately large-scale land operation in China.These factors include(i) the existing land utilization system is still at adaptation stage,and it lacks universal agreement of people on large-scale land operation;(ii) farmers’ dependence on land is great;(iii) it is difficult to transfer surplus labor;(iv) there is no positive connection between promotion of moderately large-scale land operation and realization of increase of farmers’ income;(v) it remains to be proved whether large-scale operation can become a stable rural occupation and whether big farming households can grow to professional farmers;(vi) large-scale land operation in rural areas may lead to waste of resources;(vii) the promotion of large-scale land operation may cause other social contradictions.

  10. Limit theorems for translation flows (published version)

    OpenAIRE

    Bufetov, Alexander I.

    2012-01-01

    Comment: The results of this paper are already contained in the preprint arXiv:0804.3970. The exposition here is different: instead of general Markov compacta, Veech's zippered rectangles are used. 69 pages, 3 figures; Annals of Mathematics, 2012, online at http://annals.math.princeton.edu/articles/7111

  11. A Limit Theorem for Double Arrays

    OpenAIRE

    Rosalsky, Andrew; Teicher, Henry

    1981-01-01

    The main result establishes that row sums $S_n$ of a double array of rowwise independent, infinitesimal (or merely uniformly asymptotically constant) random variables satisfying $\\lim \\sup |S_n - M_n| \\leq M_0 < \\infty$ a.c. (for some choice of constants $M_n$), obey a weak law of large numbers, i.e., $S_n - \\operatorname{med} S_n$ converges in probability to 0. No moment assumptions are imposed on the individual summands and zero-one laws are unavailable. As special cases, a new result for w...

  12. A theorem in relativistic electronics

    Science.gov (United States)

    Yongjian, Yu

    1990-04-01

    This paper presents a theorem that connects the dispersion relation of the Electron Cyclotron Maser' and the oscillation equation of the Gyromonotron. This theorem gives us a simple way of obtaining the osscillating characteristics of the Gyromonotron provided that dispersion relation of the ECRM is given. Though the theorem is proved only with the case of ECRM and Gyromonotron, it holds for other kinds of Electron Masers, FEL4etc. and corresponding osscillators.

  13. Stability of Gas Clouds in Galactic Nuclei: An Extended Virial Theorem

    CERN Document Server

    Chen, Xian; Cuadra, Jorge

    2015-01-01

    Cold gas entering the central $1$ to $10^2$ pc of a galaxy fragments and condenses into clouds. The stability of the clouds determines whether they will be turned into stars or can be delivered to the central supermassive black hole (SMBH) to turn on an active galactic nucleus (AGN). The conventional criteria to assess the stability of these clouds, such as the Jeans criterion and Roche (or tidal) limit, are insufficient here, because they assume the dominance of self-gravity in binding a cloud, and neglect external agents, such as pressure and tidal forces, which are common in galactic nuclei. We formulate a new scheme for judging this stability. We first revisit the conventional Virial theorem, taking into account an external pressure, to identify the correct range of masses that lead to stable clouds. We then extend the theorem to include an external tidal field, crucial for the stability in the region of interest -- in dense star clusters, around SMBHs. We apply our extended Virial theorem to find the cor...

  14. Tau leaping of stiff stochastic chemical systems via local central limit approximation

    International Nuclear Information System (INIS)

    Stiffness manifests in stochastic dynamic systems in a more complex manner than in deterministic systems; it is not only important for a time-stepping method to remain stable but it is also important for the method to capture the asymptotic variances accurately. In the context of stochastic chemical systems, time stepping methods are known as tau leaping. Well known existing tau leaping methods have shortcomings in this regard. The implicit tau method is far more stable than the trapezoidal tau method but underestimates the asymptotic variance. On the other hand, the trapezoidal tau method which estimates the asymptotic variance exactly for linear systems suffers from the fact that the transients of the method do not decay fast enough in the context of very stiff systems. We propose a tau leaping method that possesses the same stability properties as the implicit method while it also captures the asymptotic variance with reasonable accuracy at least for the test system S1↔S2. The proposed method uses a central limit approximation (CLA) locally over the tau leaping interval and is referred to as the LCLA-τ. The CLA predicts the mean and covariance as solutions of certain differential equations (ODEs) and for efficiency we solve these using a single time step of a suitable low order method. We perform a mean/covariance stability analysis of various possible low order schemes to determine the best scheme. Numerical experiments presented show that LCLA-τ performs favorably for stiff systems and that the LCLA-τ is also able to capture bimodal distributions unlike the CLA itself. The proposed LCLA-τ method uses a split implicit step to compute the mean update. We also prove that any tau leaping method employing a split implicit step converges in the fluid limit to the implicit Euler method as applied to the fluid limit differential equation

  15. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes.

    Science.gov (United States)

    Tautenhahn, Susanne; Lichstein, Jeremy W; Jung, Martin; Kattge, Jens; Bohlman, Stephanie A; Heilmeier, Hermann; Prokushkin, Anatoly; Kahl, Anja; Wirth, Christian

    2016-06-01

    Fire is a primary driver of boreal forest dynamics. Intensifying fire regimes due to climate change may cause a shift in boreal forest composition toward reduced dominance of conifers and greater abundance of deciduous hardwoods, with potential biogeochemical and biophysical feedbacks to regional and global climate. This shift has already been observed in some North American boreal forests and has been attributed to changes in site conditions. However, it is unknown if the mechanisms controlling fire-induced changes in deciduous hardwood cover are similar among different boreal forests, which differ in the ecological traits of the dominant tree species. To better understand the consequences of intensifying fire regimes in boreal forests, we studied postfire regeneration in five burns in the Central Siberian dark taiga, a vast but poorly studied boreal region. We combined field measurements, dendrochronological analysis, and seed-source maps derived from high-resolution satellite images to quantify the importance of site conditions (e.g., organic layer depth) vs. seed availability in shaping postfire regeneration. We show that dispersal limitation of evergreen conifers was the main factor determining postfire regeneration composition and density. Site conditions had significant but weaker effects. We used information on postfire regeneration to develop a classification scheme for successional pathways, representing the dominance of deciduous hardwoods vs. evergreen conifers at different successional stages. We estimated the spatial distribution of different successional pathways under alternative fire regime scenarios. Under intensified fire regimes, dispersal limitation of evergreen conifers is predicted to become more severe, primarily due to reduced abundance of surviving seed sources within burned areas. Increased dispersal limitation of evergreen conifers, in turn, is predicted to increase the prevalence of successional pathways dominated by deciduous hardwoods

  16. Handling transmission limitations in the central power network; Haandtering av overfoeringsbegrensninger

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    From 1996, the Norwegian and Swedish power markets were joined and a common power exchange was established. The two countries deal differently with bottlenecks (transmission obstruction) in their central networks. This report compares methods for dealing with such bottlenecks and looks at the alternatives. It emphasises the efficiency of pricing and incentives and the possibility of exercising market power under the different methods. Norway uses a method of price regions, or bottleneck tax. Prices are determined for the various price regions so as to keep the power flow below specified bounds. A surplus region is assigned a lower price than a deficit region and the bottleneck tax is the difference in price between two such price regions. The Swedish system is based on a counter purchase concept. In his offer to the spotmarket, the supplier has bound himself to provide a certain amount to the current system price regardless of network limitations. Up-regulation means that he produces more than this amount. Down-regulation means that he is paid for supplying less than he had offered to the current system price. In up- or down-regulation, compensation is given as the difference between the system price and the price on the counter purchase market. The main conclusions are: (1) Counter purchase is unsuitable as the main strategy for Norway. (2) Counter purchase may be suitable with short-lived and unpredicted bottlenecks; price regions may be suitable for long-lasting and predicted bottlenecks. Time is a central factor. (3) Present-day models for bottleneck management in Norway and Sweden do not give the optimum short-term load distribution on the network. In general, the current Norwegian system works fairly well, although it might be worthwhile to consider a system that approaches node pricing. 3 refs., 34 figs., 3 tabs.

  17. Food limitation of sea lion pups and the decline of forage off central and southern California.

    Science.gov (United States)

    McClatchie, Sam; Field, John; Thompson, Andrew R; Gerrodette, Tim; Lowry, Mark; Fiedler, Paul C; Watson, William; Nieto, Karen M; Vetter, Russell D

    2016-03-01

    California sea lions increased from approximately 50 000 to 340 000 animals in the last 40 years, and their pups are starving and stranding on beaches in southern California, raising questions about the adequacy of their food supply. We investigated whether the declining sea lion pup weight at San Miguel rookery was associated with changes in abundance and quality of sardine, anchovy, rockfish and market squid forage. In the last decade off central California, where breeding female sea lions from San Miguel rookery feed, sardine and anchovy greatly decreased in biomass, whereas market squid and rockfish abundance increased. Pup weights fell as forage food quality declined associated with changes in the relative abundances of forage species. A model explained 67% of the variance in pup weights using forage from central and southern California and 81% of the variance in pup weights using forage from the female sea lion foraging range. A shift from high to poor quality forage for breeding females results in food limitation of the pups, ultimately flooding animal rescue centres with starving sea lion pups. Our study is unusual in using a long-term, fishery-independent dataset to directly address an important consequence of forage decline on the productivity of a large marine predator. Whether forage declines are environmentally driven, are due to a combination of environmental drivers and fishing removals, or are due to density-dependent interactions between forage and sea lions is uncertain. However, declining forage abundance and quality was coherent over a large area (32.5-38° N) for a decade, suggesting that trends in forage are environmentally driven.

  18. A Step-wise Approach to the Determination of the Lower Limit of Analysis of the Calibration line

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    2008-01-01

    . residuals, the more favourable concentration range of calibration could be obtained by iteration using only but a few steps. This condition links the lower limit of analysis (LLA) to an upper limit of analysis (ULA), and thus completes the statistically appropriate extension of the calibration line......, preferably above 100, as to fulfil the conditions of the central-limit theorem....

  19. Theorems on Positive Data: On the Uniqueness of NMF

    Directory of Open Access Journals (Sweden)

    Hans Laurberg

    2008-01-01

    Full Text Available We investigate the conditions for which nonnegative matrix factorization (NMF is unique and introduce several theorems which can determine whether the decomposition is in fact unique or not. The theorems are illustrated by several examples showing the use of the theorems and their limitations. We have shown that corruption of a unique NMF matrix by additive noise leads to a noisy estimation of the noise-free unique solution. Finally, we use a stochastic view of NMF to analyze which characterization of the underlying model will result in an NMF with small estimation errors.

  20. Experimental studies of the transient fluctuation theorem using liquid crystals

    Indian Academy of Sciences (India)

    Soma Datta; Arun Roy

    2009-05-01

    In a thermodynamical process, the dissipation or production of entropy can only be positive or zero, according to the second law of thermodynamics. However, the laws of thermodynamics are applicable to large systems in the thermodynamic limit. Recently a fluctuation theorem, known as the transient fluctuation theorem (TFT), which generalizes the second law of thermodynamics to small systems has been proposed. This theorem has been tested in small systems such as a colloidal particle in an optical trap. We report for the first time an analogous experimental study of TFT in a spatially extended system using liquid crystals.

  1. A-Browder's Theorem and Generalized a-Weyl's Theorem

    Institute of Scientific and Technical Information of China (English)

    Xiao Hong CAO

    2007-01-01

    Two variants of the essential approximate point spectrum are discussed. We find for example that if one of them coincides with the left Drazin spectrum then the generalized a-Weyl's theorem holds, and conversely for a-isoloid operators. We also study the generalized a-Weyl's theorem for Class A operators.

  2. A new VLA/e-MERLIN limit on central images in the gravitational lens system CLASS B1030+074

    Science.gov (United States)

    Quinn, Jonathan; Jackson, Neal; Tagore, Amitpal; Biggs, Andrew; Birkinshaw, Mark; Chapman, Scott; De Zotti, Gianfranco; McKean, John; Pérez-Fournon, Ismael; Scott, Douglas; Serjeant, Stephen

    2016-07-01

    We present the new Very Large Array 22 GHz and extended Multi-Element Remote-Linked Interferometer Network 5 GHz observations of CLASS B1030+074, a two-image strong gravitational lens system whose background source is a compact flat-spectrum radio quasar. In such systems we expect a third image of the background source to form close to the centre of the lensing galaxy. The existence and brightness of such images is important for investigation of the central mass distributions of lensing galaxies, but only one secure detection has been made so far in a galaxy-scale lens system. The noise levels achieved in our new B1030+074 images reach 3 μJy beam-1 and represent an improvement in central image constraints of nearly an order of magnitude over previous work, with correspondingly better resulting limits on the shape of the central mass profile of the lensing galaxy. Simple models with an isothermal outer power-law slope now require either the influence of a central supermassive black hole (SMBH), or an inner power-law slope very close to isothermal, in order to suppress the central image below our detection limit. Using the central mass profiles inferred from light distributions in Virgo galaxies, moved to z = 0.5, and matching to the observed Einstein radius, we now find that 45 per cent of such mass profiles should give observable central images, 10 per cent should give central images with a flux density still below our limit, and the remaining systems have extreme demagnification produced by the central SMBH. Further observations of similar objects will therefore allow proper statistical constraints to be placed on the central properties of elliptical galaxies at high redshift.

  3. OTTER, Resolution Style Theorem Prover

    International Nuclear Information System (INIS)

    1 - Description of program or function: OTTER (Other Techniques for Theorem-proving and Effective Research) is a resolution-style theorem-proving program for first-order logic with equality. OTTER includes the inference rules binary resolution, hyper-resolution, UR-resolution, and binary para-modulation. These inference rules take as small set of clauses and infer a clause. If the inferred clause is new and useful, it is stored and may become available for subsequent inferences. Other capabilities are conversion from first-order formulas to clauses, forward and back subsumption, factoring, weighting, answer literals, term ordering, forward and back demodulation, and evaluable functions and predicates. 2 - Method of solution: For its inference process OTTER uses the given-clause algorithm, which can be viewed as a simple implementation of the set of support strategy. OTTER maintains three lists of clauses: axioms, sos (set of support), and demodulators. OTTER is not automatic. Even after the user has encoded a problem into first-order logic or into clauses, the user must choose inference rules, set options to control the processing of inferred clauses, and decide which input formulae or clauses are to be in the initial set of support and which, if any, equalities are to be demodulators. If OTTER fails to find a proof, the user may try again different initial conditions. 3 - Restrictions on the complexity of the problem - Maxima of: 5000 characters in an input string, 64 distinct variables in a clause, 51 characters in any symbol. The maxima can be changed by finding the appropriate definition in the header.h file, increasing the limit, and recompiling OTTER. There are a few constraints on the order of commands

  4. Limit laws for Zipf's law

    International Nuclear Information System (INIS)

    In this communication we establish stochastic limit laws leading from Zipf's law to Pareto's and Heaps' laws. We consider finite ensembles governed by Zipf's law and study their asymptotic statistics as the ensemble size tends to infinity. A Lorenz-curve analysis establishes three types of limit laws for the ensembles' statistical structure: 'communist', 'monarchic', and Paretian. Further considering a dynamic setting in which the ensembles grow stochastically in time, a functional central limit theorem analysis establishes a Gaussian approximation for the ensembles' stochastic growth. The Gaussian approximation provides a generalized and corrected formulation of Heaps' law. (fast track communication)

  5. Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea

    KAUST Repository

    Ziegler, M.

    2014-07-26

    Many coral species display changing distribution patterns across coral reef depths. While changes in the underwater light field and the ability to associate with different photosynthetic symbionts of the genus Symbiodinium explain some of the variation, the limits to physiological plasticity are unknown for most corals. In the central Red Sea, colonies of the branching coral Pocillopora verrucosa are most abundant in shallow high light environments and become less abundant in water depths below 10 m. To further understand what determines this narrow distribution, we conducted a cross-depths transplant experiment looking at physiological plasticity and acclimation in regard to depth. Colonies from 5, 10, and 20 m were collected, transplanted to all depths, and re-investigated after 30 and 210 d. All coral colonies transplanted downward from shallow to deep water displayed an increase in photosynthetic light-harvesting pigments, which resulted in higher photosynthetic efficiency. Shallow-water specimens transplanted to deeper water showed a significant decrease in total protein content after 30 and 210 d under low light conditions compared to specimens transplanted to shallow and medium depths. Stable isotope data suggest that heterotrophic input of carbon was not increased under low light, and consequently, decreasing protein levels were symptomatic of decreasing photosynthetic rates that could not be compensated for through higher light-harvesting efficiency. Our results provide insights into the physiological plasticity of P. verrucosa in changing light regimes and explain the observed depth distribution pattern. Despite its high abundance in shallow reef waters, P. verrucosa possesses limited heterotrophic acclimation potential, i.e., the ability to support its mainly photoautotrophic diet through heterotrophic feeding. We conclude that P. verrucosa might be a species vulnerable to sudden changes in underwater light fields resulting from processes such as

  6. Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea

    Science.gov (United States)

    Ziegler, Maren; Roder, Cornelia M.; Büchel, Claudia; Voolstra, Christian R.

    2014-12-01

    Many coral species display changing distribution patterns across coral reef depths. While changes in the underwater light field and the ability to associate with different photosynthetic symbionts of the genus Symbiodinium explain some of the variation, the limits to physiological plasticity are unknown for most corals. In the central Red Sea, colonies of the branching coral Pocillopora verrucosa are most abundant in shallow high light environments and become less abundant in water depths below 10 m. To further understand what determines this narrow distribution, we conducted a cross-depths transplant experiment looking at physiological plasticity and acclimation in regard to depth. Colonies from 5, 10, and 20 m were collected, transplanted to all depths, and re-investigated after 30 and 210 d. All coral colonies transplanted downward from shallow to deep water displayed an increase in photosynthetic light-harvesting pigments, which resulted in higher photosynthetic efficiency. Shallow-water specimens transplanted to deeper water showed a significant decrease in total protein content after 30 and 210 d under low light conditions compared to specimens transplanted to shallow and medium depths. Stable isotope data suggest that heterotrophic input of carbon was not increased under low light, and consequently, decreasing protein levels were symptomatic of decreasing photosynthetic rates that could not be compensated for through higher light-harvesting efficiency. Our results provide insights into the physiological plasticity of P. verrucosa in changing light regimes and explain the observed depth distribution pattern. Despite its high abundance in shallow reef waters, P. verrucosa possesses limited heterotrophic acclimation potential, i.e., the ability to support its mainly photoautotrophic diet through heterotrophic feeding. We conclude that P. verrucosa might be a species vulnerable to sudden changes in underwater light fields resulting from processes such as

  7. Cateter Venoso Central de Inserção Periférica: limites e possibilidades

    Directory of Open Access Journals (Sweden)

    Jaqueline Petry

    2012-12-01

    Full Text Available O presente estudo objetivou identificar limites e possibilidades de expansão do uso do Peripherally Inserted Central Catheters (PICC em unidades neonatais e pediátricas para outras unidades de internação. Trata-se de uma pesquisa exploratório-descritiva de abordagem qualitativa. A coleta de dados ocorreu em agosto e setembro de 2010, por meio de entrevista semiestruturada, com dez enfermeiros de um hospital do Rio Grande do Sul. A análise dos dados resultou em duas categorias: fatores limitadores da expansão do uso do PICC – falta de conhecimento técnico de profissionais de saúde, elevado custo do procedimento, enfrentamento dessa inovação tecnológica e a especificidade desse recurso – e fatores facilitadores para a expansão do PICC – benefícios para o paciente, diminuição do estresse da equipe e a otimização do tempo de trabalho. Conclui-se que a produção de boas evidências sobre o uso do PICC podem auxiliar os profissionais e as instituições utilizarem melhor esse recurso, beneficiando a qualidade da atenção.

  8. Geometry of the Adiabatic Theorem

    Science.gov (United States)

    Lobo, Augusto Cesar; Ribeiro, Rafael Antunes; Ribeiro, Clyffe de Assis; Dieguez, Pedro Ruas

    2012-01-01

    We present a simple and pedagogical derivation of the quantum adiabatic theorem for two-level systems (a single qubit) based on geometrical structures of quantum mechanics developed by Anandan and Aharonov, among others. We have chosen to use only the minimum geometric structure needed for the understanding of the adiabatic theorem for this case.…

  9. Abelian theorems for Whittaker transforms

    Directory of Open Access Journals (Sweden)

    Richard D. Carmichael

    1987-01-01

    Full Text Available Initial and final value Abelian theorems for the Whittaker transform of functions and of distributions are obtained. The Abelian theorems are obtained as the complex variable of the transform approaches 0 or ∞ in absolute value inside a wedge region in the right half plane.

  10. Energy Budget and the Virial Theorem in Interstellar Clouds

    OpenAIRE

    Vazquez-Semadeni, Enrique

    1997-01-01

    The Virial Thoerem is a mathematical expression obtained from the equation of motion for a fluid, which describes the energy budget of particular regions within the flow. This course reviews the basic theory leading to the Virial Theorem, discusses its applicability and limitations, and then summarizes observational results concerning the physical and statistical properties of interstellar clouds which are normally understood in terms of the Virial Theorem, in particular the so-called ``Larso...

  11. Andreev's Theorem on hyperbolic polyhedra

    CERN Document Server

    Roeder, R K W; Dunbar, W D; Roeder, Roland K. W.; Hubbard, John H.; Dunbar, William D.

    2004-01-01

    In 1970, E. M. Andreev published a classification of all three-dimensional compact hyperbolic polyhedra having non-obtuse dihedral angles. Given a combinatorial description of a polyhedron, $C$, Andreev's Theorem provides five classes of linear inequalities, depending on $C$, for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron realizing $C$ with the assigned dihedral angles. Andreev's Theorem also shows that the resulting polyhedron is unique, up to hyperbolic isometry. Andreev's Theorem is both an interesting statement about the geometry of hyperbolic 3-dimensional space, as well as a fundamental tool used in the proof for Thurston's Hyperbolization Theorem for 3-dimensional Haken manifolds. It is also remarkable to what level the proof of Andreev's Theorem resembles (in a simpler way) the proof of Thurston. We correct a fundamental error in Andreev's proof of existence and also provide a readable new proof of the other parts of the proof of And...

  12. Some Theorems on Generalized Basic Hypergeometric Series

    Directory of Open Access Journals (Sweden)

    A. D. Wadhwa

    1972-07-01

    Full Text Available In an earlier paper the author has established two theorems on generalized hypergeometric functions. In each theorem a numerator differs from a denominator by a positive integer. These theorems were further used to prove some theorems on the sums of Kampe de Feriet functions. Here, we have established the theorems which are the basic analogues of the theorems proved in the earlier paper.

  13. Combinatorial Reciprocity Theorems

    CERN Document Server

    Beck, Matthias

    2012-01-01

    A common theme of enumerative combinatorics is formed by counting functions that are polynomials evaluated at positive integers. In this expository paper, we focus on four families of such counting functions connected to hyperplane arrangements, lattice points in polyhedra, proper colorings of graphs, and $P$-partitions. We will see that in each instance we get interesting information out of a counting function when we evaluate it at a \\emph{negative} integer (and so, a priori the counting function does not make sense at this number). Our goals are to convey some of the charm these "alternative" evaluations of counting functions exhibit, and to weave a unifying thread through various combinatorial reciprocity theorems by looking at them through the lens of geometry, which will include some scenic detours through other combinatorial concepts.

  14. Central nervous system granulomastous phlebitis with limited extracranial involvement of the heart and lungs: An autopsy case.

    Science.gov (United States)

    Mlakar, Jernej; Zorman, Jerneja Videčnik; Matičič, Mojca; Vrabec, Matej; Alibegović, Armin; Popović, Mara

    2016-02-01

    Primary angiitis of the central nervous system is a rare condition, usually with an insidious onset. There is a wide variety of histological types (granulomatous, lymphocytic or necrotizing vasculitis) and types of vessel involved (arteries, veins or both). Most cases are idiopathic. We describe a first case of idiopathic granulomatous central nervous system phlebitis with additional limited involvement of the heart and lung, exclusively affecting small and medium sized veins in a 22-year-old woman, presenting as a sub acute headache. The reasons for this peculiar limitation of inflammation to the veins and the involvement of the heart and lungs are unknown.

  15. A limited role for suppression in the central field of individuals with strabismic amblyopia.

    Directory of Open Access Journals (Sweden)

    Brendan T Barrett

    Full Text Available BACKGROUND: Although their eyes are pointing in different directions, people with long-standing strabismic amblyopia typically do not experience double-vision or indeed any visual symptoms arising from their condition. It is generally believed that the phenomenon of suppression plays a major role in dealing with the consequences of amblyopia and strabismus, by preventing images from the weaker/deviating eye from reaching conscious awareness. Suppression is thus a highly sophisticated coping mechanism. Although suppression has been studied for over 100 years the literature is equivocal in relation to the extent of the retina that is suppressed, though the method used to investigate suppression is crucial to the outcome. There is growing evidence that some measurement methods lead to artefactual claims that suppression exists when it does not. METHODOLOGY/RESULTS: Here we present the results of an experiment conducted with a new method to examine the prevalence, depth and extent of suppression in ten individuals with strabismic amblyopia. Seven subjects (70% showed no evidence whatsoever for suppression and in the three individuals who did (30%, the depth and extent of suppression was small. CONCLUSIONS: Suppression may play a much smaller role in dealing with the negative consequences of strabismic amblyopia than previously thought. Whereas recent claims of this nature have been made only in those with micro-strabismus our results show extremely limited evidence for suppression across the central visual field in strabismic amblyopes more generally. Instead of suppressing the image from the weaker/deviating eye, we suggest the visual system of individuals with strabismic amblyopia may act to maximise the possibilities for binocular co-operation. This is consistent with recent evidence from strabismic and amblyopic individuals that their binocular mechanisms are intact, and that, just as in visual normals, performance with two eyes is better than

  16. Generalized Sampling Theorem for Bandpass Signals

    Directory of Open Access Journals (Sweden)

    Prokes Ales

    2006-01-01

    Full Text Available The reconstruction of an unknown continuously defined function from the samples of the responses of linear time-invariant (LTI systems sampled by the th Nyquist rate is the aim of the generalized sampling. Papoulis (1977 provided an elegant solution for the case where is a band-limited function with finite energy and the sampling rate is equal to times cutoff frequency. In this paper, the scope of the Papoulis theory is extended to the case of bandpass signals. In the first part, a generalized sampling theorem (GST for bandpass signals is presented. The second part deals with utilizing this theorem for signal recovery from nonuniform samples, and an efficient way of computing images of reconstructing functions for signal recovery is discussed.

  17. Paraconsistent Probabilities: Consistency, Contradictions and Bayes’ Theorem

    Directory of Open Access Journals (Sweden)

    Juliana Bueno-Soler

    2016-09-01

    Full Text Available This paper represents the first steps towards constructing a paraconsistent theory of probability based on the Logics of Formal Inconsistency (LFIs. We show that LFIs encode very naturally an extension of the notion of probability able to express sophisticated probabilistic reasoning under contradictions employing appropriate notions of conditional probability and paraconsistent updating, via a version of Bayes’ theorem for conditionalization. We argue that the dissimilarity between the notions of inconsistency and contradiction, one of the pillars of LFIs, plays a central role in our extended notion of probability. Some critical historical and conceptual points about probability theory are also reviewed.

  18. The Weinberg-Witten theorem on massless particles: an essay

    International Nuclear Information System (INIS)

    In this essay we deal with the Weinberg-Witten theorem which imposes limitations on massless particles. First we motivate a classification of massless particles given by the Poincare group as the symmetry group of Minkowski spacetime. We then use the fundamental structure of the background in the form of Poincare covariance to derive restrictions on charged massless particles known as the Weinberg-Witten theorem. We address possible misunderstandings in the proof of this theorem motivated by several papers on this topic. In the last section the consequences of the theorem are discussed. We treat it in the context of known particles and as a constraint for emergent theories. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  19. Complex integration and Cauchy's theorem

    CERN Document Server

    Watson, GN

    2012-01-01

    This brief monograph by one of the great mathematicians of the early twentieth century offers a single-volume compilation of propositions employed in proofs of Cauchy's theorem. Developing an arithmetical basis that avoids geometrical intuitions, Watson also provides a brief account of the various applications of the theorem to the evaluation of definite integrals.Author G. N. Watson begins by reviewing various propositions of Poincaré's Analysis Situs, upon which proof of the theorem's most general form depends. Subsequent chapters examine the calculus of residues, calculus optimization, the

  20. -Dimensional Fractional Lagrange's Inversion Theorem

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2013-01-01

    Full Text Available Using Riemann-Liouville fractional differential operator, a fractional extension of the Lagrange inversion theorem and related formulas are developed. The required basic definitions, lemmas, and theorems in the fractional calculus are presented. A fractional form of Lagrange's expansion for one implicitly defined independent variable is obtained. Then, a fractional version of Lagrange's expansion in more than one unknown function is generalized. For extending the treatment in higher dimensions, some relevant vectors and tensors definitions and notations are presented. A fractional Taylor expansion of a function of -dimensional polyadics is derived. A fractional -dimensional Lagrange inversion theorem is proved.

  1. 75 FR 38452 - Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska License Limitation...

    Science.gov (United States)

    2010-07-02

    ... National Oceanic and Atmospheric Administration 50 CFR Part 679 RIN 0648-AY42 Fisheries of the Exclusive Economic Zone Off Alaska; Central Gulf of Alaska License Limitation Program; Amendment 86 AGENCY: National... (FMP) is available for public review and comment. The groundfish fisheries in the exclusive...

  2. Statistics, Causality and Bell's theorem

    CERN Document Server

    Gill, Richard D

    2012-01-01

    Bell's (1964) theorem is popularly supposed to establish the non-locality of quantum physics as a mathematical-physical theory. Building from this, observed violation of Bell's inequality in experiments such as that of Aspect and coworkers (1982) is popularly supposed to provide empirical proof of non-locality in the real world. This paper reviews recent work on Bell's theorem, linking it to issues in causality as understood by statisticians. The paper starts with a new proof of a strong (finite sample) version of Bell's theorem which relies only on elementary arithmetic and (counting) probability. This proof underscores the fact that Bell's theorem tells us that quantum theory is incompatible with the conjunction of three cherished and formerly uncontroversial physical principles, nicknamed here locality, realism, and freedom. The first, locality, is obviously connected to causality: causal influences need time to propagate spatially. Less obviously, the other two principles, realism and freedom, are also fo...

  3. KAM Theorem and Renormalization Group

    OpenAIRE

    E. Simone; Kupiainen, A.

    2007-01-01

    We give an elementary proof of the analytic KAM theorem by reducing it to a Picard iteration of a PDE with quadratic nonlinearity, the so called Polchinski renormalization group equation studied in quantum field theory.

  4. The Second Noether Theorem on Time Scales

    Directory of Open Access Journals (Sweden)

    Agnieszka B. Malinowska

    2013-01-01

    Full Text Available We extend the second Noether theorem to variational problems on time scales. As corollaries we obtain the classical second Noether theorem, the second Noether theorem for the h-calculus and the second Noether theorem for the q-calculus.

  5. The Kolmogorov-Riesz compactness theorem

    CERN Document Server

    Hanche-Olsen, Harald

    2009-01-01

    We show that the Arzela-Ascoli theorem and Kolmogorov compactness theorem both are consequences of a simple lemma on compactness in metric spaces. Their relation to Helly's theorem is discussed. The paper contains a detailed discussion on the historical background of the Kolmogorov compactness theorem.

  6. Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes

    Science.gov (United States)

    Woolgar, Eric; Wylie, William

    2016-02-01

    We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the "pure Bakry-Émery" N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able to extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (-∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (-∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.

  7. Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Woolgar, Eric, E-mail: ewoolgar@ualberta.ca [Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1 (Canada); Wylie, William, E-mail: wwylie@syr.edu [215 Carnegie Building, Department of Mathematics, Syracuse University, Syracuse, New York 13244 (United States)

    2016-02-15

    We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the “pure Bakry-Émery” N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able to extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (−∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (−∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.

  8. Noether theorems and higher derivatives

    OpenAIRE

    Townsend, Paul K.

    2016-01-01

    A simple proof of Noether's first theorem involves the promotion of a constant symmetry parameter $\\epsilon$ to an arbitrary function of time, the Noether charge $Q$ is then the coefficient of $\\dot\\epsilon$ in the variation of the action. Here we examine the validity of this proof for Lagrangian mechanics with arbitrarily-high time derivatives, in which context "higher-level" analogs of Noether's theorem can be similarly proved, and "Noetherian charges" read off from, e.g. the coefficient of...

  9. Complex extension of Wigner's theorem

    CERN Document Server

    Brody, Dorje C

    2013-01-01

    Wigner's theorem asserts that an isometric (probability conserving) transformation on a quantum state space must be generated by a Hamiltonian that is Hermitian. It is shown that when the Hermiticity condition on the Hamiltonian is relaxed, we obtain the following complex generalisation of Wigner's theorem: a holomorphically projective (complex geodesic-curves preserving) transformation on a quantum state space must be generated by a Hamiltonian that is not necessarily Hermitian.

  10. Local virial and tensor theorems.

    Science.gov (United States)

    Cohen, Leon

    2011-11-17

    We show that for any wave function and potential the local virial theorem can always be satisfied 2K(r) = r·ΔV by choosing a particular expression for the local kinetic energy. In addition, we show that for each choice of local kinetic energy there are an infinite number of quasi-probability distributions which will generate the same expression. We also consider the local tensor virial theorem. PMID:21863837

  11. Local virial and tensor theorems.

    Science.gov (United States)

    Cohen, Leon

    2011-11-17

    We show that for any wave function and potential the local virial theorem can always be satisfied 2K(r) = r·ΔV by choosing a particular expression for the local kinetic energy. In addition, we show that for each choice of local kinetic energy there are an infinite number of quasi-probability distributions which will generate the same expression. We also consider the local tensor virial theorem.

  12. Acceptable Complexity Measures of Theorems

    OpenAIRE

    Grenet, Bruno

    2009-01-01

    In 1931, G\\"odel presented in K\\"onigsberg his famous Incompleteness Theorem, stating that some true mathematical statements are unprovable. Yet, this result gives us no idea about those independent (that is, true and unprovable) statements, about their frequency, the reason they are unprovable, and so on. Calude and J\\"urgensen proved in 2005 Chaitin's "heuristic principle" for an appropriate measure: the theorems of a finitely-specified theory cannot be significantly more complex than the t...

  13. Goedel's Incompleteness Theorems hold vacuously

    OpenAIRE

    Anand, Bhupinder Singh

    2002-01-01

    In an earlier paper, "Omega-inconsistency in Goedel's formal system: a constructive proof of the Entscheidungsproblem" (math/0206302), I argued that a constructive interpretation of Goedel's reasoning establishes any formal system of Arithmetic as omega-inconsistent. It follows from this that Goedel's Theorem VI holds vacuously. In this paper I show that Goedel's Theorem XI essentially states that, if we assume there is a P-formula [Con(P)] whose standard interpretation is equivalent to the a...

  14. Soft Theorems from Conformal Field Theory

    CERN Document Server

    Lipstein, Arthur E

    2015-01-01

    Strominger and collaborators recently proposed that soft theorems for gauge and gravity amplitudes can be interpreted as Ward identities of a 2d CFT at null infinity. In this paper, we will consider a specific realization of this CFT known as ambitwistor string theory, which describes 4d Yang-Mills and gravity with any amount of supersymmetry. Using 4d ambitwistor string theory, we derive soft theorems in the form of an infinite series in the soft momentum which are valid to subleading order in gauge theory and sub-subleading order in gravity. Furthermore, we describe how the algebra of soft limits can be encoded in the braiding of soft vertex operators on the worldsheet and point out a simple relation between soft gluon and soft graviton vertex operators which suggests an interesting connection to color-kinematics duality. Finally, by considering ambitwistor string theory on a genus one worldsheet, we compute the 1-loop correction to the subleading soft graviton theorem due to infrared divergences.

  15. Soft theorems from conformal field theory

    Science.gov (United States)

    Lipstein, Arthur E.

    2015-06-01

    Strominger and collaborators recently proposed that soft theorems for gauge and gravity amplitudes can be interpreted as Ward identities of a 2d CFT at null infinity. In this paper, we will consider a specific realization of this CFT known as ambitwistor string theory, which describes 4d Yang-Mills and gravity with any amount of supersymmetry. Using 4d ambtwistor string theory, we derive soft theorems in the form of an infinite series in the soft momentum which are valid to subleading order in gauge theory and sub-subleading order in gravity. Furthermore, we describe how the algebra of soft limits can be encoded in the braiding of soft vertex operators on the worldsheet and point out a simple relation between soft gluon and soft graviton vertex operators which suggests an interesting connection to color-kinematics duality. Finally, by considering ambitwistor string theory on a genus one worldsheet, we compute the 1-loop correction to the subleading soft graviton theorem due to infrared divergences.

  16. Soft Theorems from Effective Field Theory

    CERN Document Server

    Larkoski, Andrew J; Stewart, Iain W

    2014-01-01

    The singular limits of massless gauge theory amplitudes are described by an effective theory, called soft-collinear effective theory (SCET), which has been applied most successfully to make all-orders predictions for observables in collider physics and weak decays. At tree-level, the emission of a soft gauge boson at subleading order in its energy is given by the Low-Burnett-Kroll theorem, with the angular momentum operator acting on a lower-point amplitude. For well separated particles at tree-level, we prove the Low-Burnett-Kroll theorem using matrix elements of subleading SCET Lagrangian and operator insertions which are individually gauge invariant. These contributions are uniquely determined by gauge invariance and the reparametrization invariance (RPI) symmetry of SCET. RPI in SCET is connected to the infinite-dimensional asymptotic symmetries of the S-matrix. The Low-Burnett-Kroll theorem is generically spoiled by on-shell corrections, including collinear loops and collinear emissions. We demonstrate t...

  17. Distributed Online Judge System for Interactive Theorem Provers

    Directory of Open Access Journals (Sweden)

    Mizuno Takahisa

    2014-03-01

    Full Text Available In this paper, we propose a new software design of an online judge system for interactive theorem proving. The distinctive feature of this architecture is that our online judge system is distributed on the network and especially involves volunteer computing. In volunteers’ computers, network bots (software robots are executed and donate computational resources to the central host of the online judge system. Our proposed design improves fault tolerance and security. We gave an implementation to two different styles of interactive theorem prover, Coq and ACL2, and evaluated our proposed architecture. From the experiment on the implementation, we concluded that our architecture is efficient enough to be used practically.

  18. Distributed Online Judge System for Interactive Theorem Provers

    Science.gov (United States)

    Mizuno, Takahisa; Nishizaki, Shin-ya

    2014-03-01

    In this paper, we propose a new software design of an online judge system for interactive theorem proving. The distinctive feature of this architecture is that our online judge system is distributed on the network and especially involves volunteer computing. In volunteers' computers, network bots (software robots) are executed and donate computational resources to the central host of the online judge system. Our proposed design improves fault tolerance and security. We gave an implementation to two different styles of interactive theorem prover, Coq and ACL2, and evaluated our proposed architecture. From the experiment on the implementation, we concluded that our architecture is efficient enough to be used practically.

  19. The non-relativistic limit of (central-extended) Poincare group and some consequences for quantum actualization

    CERN Document Server

    Ardenghi, J S; Campoamor-Sturberg, R; 10.1063/1.3243822

    2010-01-01

    The nonrelativistic limit of the centrally extended Poincar\\'e group is considered and their consequences in the modal Hamiltonian interpretation of quantum mechanics are discussed [ O. Lombardi and M. Castagnino, Stud. Hist. Philos. Mod. Phys 39, 380 (2008) ; J. Phys, Conf. Ser. 128, 012014 (2008) ]. Through the assumption that in quantum field theory the Casimir operators of the Poincar\\'e group actualize, the nonrelativistic limit of the latter group yields to the actualization of the Casimir operators of the Galilei group, which is in agreement with the actualization rule of previous versions of modal Hamiltonian interpretation [ Ardenghi et al., Found. Phys. (submitted)

  20. A new VLA/e-MERLIN limit on central images in the gravitational lens system CLASS B1030+074

    CERN Document Server

    Quinn, Jonathan; Tagore, Amitpal; Biggs, Andrew; Birkinshaw, Mark; Chapman, Scott; De Zotti, Gianfranco; McKean, John; Perez-Fournon, Ismael; Scott, Douglas; Serjeant, Stephen

    2016-01-01

    We present new VLA 22-GHz and e-MERLIN 5-GHz observations of CLASS B1030+074, a two-image strong gravitational lens system whose background source is a compact flat-spectrum radio quasar. In such systems we expect a third image of the background source to form close to the centre of the lensing galaxy. The existence and brightness of such images is important for investigation of the central mass distributions of lensing galaxies, but only one secure detection has been made so far in a galaxy-scale lens system. The noise levels achieved in our new B1030+074 images reach 3 microJy/beam and represent an improvement in central image constraints of nearly an order of magnitude over previous work, with correspondingly better resulting limits on the shape of the central mass profile of the lensing galaxy. Simple models with an isothermal outer power law slope now require either the influence of a central supermassive black hole, or an inner power law slope very close to isothermal, in order to suppress the central i...

  1. Nambu-Goldstone theorem and spin-statistics theorem

    Science.gov (United States)

    Fujikawa, Kazuo

    2016-05-01

    On December 19-21 in 2001, we organized a yearly workshop at Yukawa Institute for Theoretical Physics in Kyoto on the subject of “Fundamental Problems in Field Theory and their Implications”. Prof. Yoichiro Nambu attended this workshop and explained a necessary modification of the Nambu-Goldstone theorem when applied to non-relativistic systems. At the same workshop, I talked on a path integral formulation of the spin-statistics theorem. The present essay is on this memorable workshop, where I really enjoyed the discussions with Nambu, together with a short comment on the color freedom of quarks.

  2. A novel sampling theorem on the rotation group

    CERN Document Server

    McEwen, J D; Leistedt, B; Peiris, H V; Wiaux, Y

    2015-01-01

    We develop a novel sampling theorem for functions defined on the three-dimensional rotation group SO(3) by associating the rotation group with the three-torus through a periodic extension. Our sampling theorem requires $4L^3$ samples to capture all of the information content of a signal band-limited at $L$, reducing the number of required samples by a factor of two compared to other equiangular sampling theorems. We present fast algorithms to compute the associated Fourier transform on the rotation group, the so-called Wigner transform, which scale as $O(L^4)$, compared to the naive scaling of $O(L^6)$. For the common case of a low directional band-limit $N$, complexity is reduced to $O(N L^3)$. Our fast algorithms will be of direct use in speeding up the computation of directional wavelet transforms on the sphere. We make our SO3 code implementing these algorithms publicly available.

  3. Fluctuation theorems for quantum processes

    CERN Document Server

    Albash, Tameem; Marvian, Milad; Zanardi, Paolo

    2013-01-01

    We present fluctuation theorems and moment generating function equalities for generalized thermodynamic observables and quantum dynamics described by completely positive trace preserving (CPTP) maps, with and without feedback control. Our results include the quantum Jarzynski equality and Crooks fluctuation theorem, and clarify the special role played by the thermodynamic work and thermal equilibrium states in previous studies. We show that unitality replaces micro-reversibility as the condition for the physicality of the reverse process in our fluctuation theorems. We present an experimental application of our theory to the problem of extracting the system-bath coupling magnitude, which we do for a system of pairs of coupled superconducting flux qubits undergoing quantum annealing.

  4. New Double Soft Emission Theorems

    CERN Document Server

    Cachazo, Freddy; Yuan, Ellis Ye

    2015-01-01

    We study the behavior of the tree-level S-matrix of a variety of theories as two particles become soft. By analogy with the recently found subleading soft theorems for gravitons and gluons, we explore subleading terms in double soft emissions. We first consider double soft scalar emissions and find subleading terms that are controlled by the angular momentum operator acting on hard particles. The order of the subleading theorems depends on the presence or not of color structures. Next we obtain a compact formula for the leading term in a double soft photon emission. The theories studied are a special Galileon, DBI, Einstein-Maxwell-Scalar, NLSM and Yang-Mills-Scalar. We use the recently found CHY representation of these theories in order to give a simple proof of the leading order part of all these theorems

  5. The Variation Theorem Applied to H-2+: A Simple Quantum Chemistry Computer Project

    Science.gov (United States)

    Robiette, Alan G.

    1975-01-01

    Describes a student project which requires limited knowledge of Fortran and only minimal computing resources. The results illustrate such important principles of quantum mechanics as the variation theorem and the virial theorem. Presents sample calculations and the subprogram for energy calculations. (GS)

  6. Noether theorems and higher derivatives

    CERN Document Server

    Townsend, Paul K

    2016-01-01

    A simple proof of Noether's first theorem involves the promotion of a constant symmetry parameter $\\epsilon$ to an arbitrary function of time; the Noether charge $Q$ is then the coefficient of $\\dot\\epsilon$ in the variation of the action. Here we examine the validity of this proof for Lagrangian mechanics with arbitrarily-high time derivatives, in which context "higher-level" analogs of Noether's theorem can be similarly proved, and "Noetherian charges" read off from, e.g. the coefficient of $\\ddot \\epsilon$ in the variation of the action. While $Q=0$ implies a restricted gauge invariance, an unrestricted gauge invariance requires zero Noetherian charges too. Some illustrative examples are considered.

  7. Nonperturbative Adler-Bardeen theorem

    International Nuclear Information System (INIS)

    The Adler-Bardeen theorem has been proven only as a statement valid at all orders in perturbation theory, without any control on the convergence of the series. In this paper we prove a nonperturbative version of the Adler-Bardeen theorem in d=2 by using recently developed technical tools in the theory of Grassmann integration. The proof is based on the assumption that the boson propagator decays fast enough for large momenta. If the boson propagator does not decay, as for Thirring contact interactions, the anomaly in the WI (Ward Identities) is renormalized by higher order contributions

  8. A Stokes theorem for everyone

    CERN Document Server

    Pasicki, Lech

    2011-01-01

    Many versions of the Stokes theorem are known. More advanced of them require complicated mathematical machinery to be formulated which discourages the users. Our theorem is sufficiently simple to suit the handbooks and yet it is pretty general, as we assume the differential form to be continuous on a compact set F(A) and C1 "inside" while F(A) is built of "bricks" and its inner part is a C1 manifold. There is no problem of orientability and the integrals under consideration are convergent. The proof is based on integration by parts and inner approximation.

  9. Limited irrigation of corn-based no-till crop rotations in west central Great Plains.

    Science.gov (United States)

    Identifying the most profitable crop rotation for an area is a continuous research challenge. The objective of this study was to evaluate 2, 3, and 4 yr. limited irrigation corn (Zea mays L.) based crop rotations for grain yield, available soil water, crop water productivity, and profitability in co...

  10. A low upper mass limit for the central black hole in the late-type galaxy NGC 4414

    CERN Document Server

    Thater, Sabine; Bourne, Martin A; Cappellari, Michele; de Zeeuw, Tim; Emsellem, Eric; Magorrian, John; McDermid, Richard M; Sarzi, Marc; van de Ven, Glenn

    2016-01-01

    We present our mass estimate of the central black hole in the isolated spiral galaxy NGC 4414. Using natural guide star adaptive optics assisted observations with the Gemini Near-Infrared Integral Field Spectrometer (NIFS) and the natural seeing Gemini Multi-Object Spectrographs-North (GMOS), we derived two-dimensional stellar kinematic maps of NGC 4414 covering the central 1.5 arcsec and 10 arcsec, respectively, at a NIFS spatial resolution of 0.13 arcsec. The kinematic maps reveal a regular rotation pattern and a central velocity dispersion dip down to around 105 km/s. We constructed dynamical methods using two different methods: Jeans anisotropic dynamical modeling and axisymmetric Schwarzschild modeling. Both modeling methods give consistent results, but we cannot constrain the lower mass limit and only measure an upper limit for the black hole mass of Mbh= 1.56 x 10^6 Msun(at 3 sigma level) which is at least 1 sigma below the recent Mbh-sigma_e relations. Further tests with dark matter, mass-to-light rat...

  11. Sunflower (Helianthus annuus) pollination in California's Central Valley is limited by native bee nest site location.

    Science.gov (United States)

    Sardiñas, Hillary S; Tom, Kathleen; Ponisio, Lauren Catherine; Rominger, Andrew; Kremen, Claire

    2016-03-01

    The delivery of ecosystem services by mobile organisms depends on the distribution of those organisms, which is, in turn, affected by resources at local and landscape scales. Pollinator-dependent crops rely on mobile animals like bees for crop production, and the spatial relationship between floral resources and nest location for these central-place foragers influences the delivery of pollination services. Current models that map pollination coverage in agricultural regions utilize landscape-level estimates of floral availability and nesting incidence inferred from expert opinion, rather than direct assessments. Foraging distance is often derived from proxies of bee body size, rather than direct measurements of foraging that account for behavioral responses to floral resource type and distribution. The lack of direct measurements of nesting incidence and foraging distances may lead to inaccurate mapping of pollination services. We examined the role of local-scale floral resource presence from hedgerow plantings on nest incidence of ground-nesting bees in field margins and within monoculture, conventionally managed sunflower fields in California's Central Valley. We tracked bee movement into fields using fluorescent powder. We then used these data to simulate the distribution of pollination services within a crop field. Contrary to expert opinion, we found that ground-nesting native bees nested both in fields and edges, though nesting rates declined with distance into field. Further, we detected no effect of field-margin floral enhancements on nesting. We found evidence of an exponential decay rate of bee movement into fields, indicating that foraging predominantly occurred in less than 1% of medium-sized bees' predicted typical foraging range. Although we found native bees nesting within agricultural fields, their restricted foraging movements likely centralize pollination near nest sites. Our data thus predict a heterogeneous distribution of pollination services

  12. Central diabetes insipidus as a very late relapse limited to the pituitary stalk in Langerhans cell histiocytosis.

    Science.gov (United States)

    Nakagawa, Shunsuke; Shinkoda, Yuichi; Hazeki, Daisuke; Imamura, Mari; Okamoto, Yasuhiro; Kawakami, Kiyoshi; Kawano, Yoshifumi

    2016-07-01

    Central diabetes insipidus (CDI) and relapse are frequently seen in multifocal Langerhans cell histiocytosis (LCH). We present two females with multifocal LCH who developed CDI 9 and 5 years after the initial diagnosis, respectively, as a relapse limited to the pituitary stalk. Combination chemotherapy with cytarabine reduced the mass in the pituitary stalk. Although CDI did not improve, there has been no anterior pituitary hormone deficiency (APHD), neurodegenerative disease in the central nervous system (ND-CNS) or additional relapse for 2 years after therapy. It was difficult to predict the development of CDI in these cases. CDI might develop very late in patients with multifocal LCH, and therefore strict follow-up is necessary, especially with regard to symptoms of CDI such as polydipsia and polyuria. For new-onset CDI with LCH, chemotherapy with cytarabine might be useful for preventing APHD and ND-CNS. PMID:27089406

  13. A normal form theorem around symplectic leaves

    NARCIS (Netherlands)

    Crainic, M.N.; Marcut, I.T.

    2012-01-01

    We prove the Poisson geometric version of the Local Reeb Stability (from foliation theory) and of the Slice Theorem (from equivariant geometry), which is also a generalization of Conn’s linearization theorem.

  14. Interpolation theorems on weighted Lorentz martingale spaces

    Institute of Scientific and Technical Information of China (English)

    Yong JIAO; Li-ping FAN; Pei-de LIU

    2007-01-01

    In this paper several interpolation theorems on martingale Lorentz spaces are given. The proofs are based on the atomic decompositions of martingale Hardy spaces over weighted measure spaces. Applying the interpolation theorems, we obtain some inequalities on martingale transform operator.

  15. The Two Bell's Theorems of John Bell

    CERN Document Server

    Wiseman, Howard M

    2014-01-01

    Many of the heated arguments about the meaning of "Bell's theorem" arise because this phrase can refer to two different theorems that John Bell proved, the first in 1964 and the second in 1976. His 1964 theorem is the incompatibility of quantum phenomena with the dual assumptions of locality and determinism. His 1976 theorem is the incompatibility of quantum phenomena with the unitary property of local causality. This is contrary to Bell's own later assertions, that his 1964 theorem began with that single, and indivisible, assumption of local causality (even if not by that name). While there are other forms of Bell's theorems --- which I present to explain the relation between Jarrett-completeness, "weak locality", and EPR-completeness --- I maintain that Bell's two versions are the essential ones. Although the two Bell's theorems are logically equivalent, their assumptions are not, and the different versions of the theorem suggest quite different conclusions, which are embraced by different communities. For ...

  16. Von Laue's theorem and its applications

    CERN Document Server

    Wang, Changbiao

    2012-01-01

    Von Laue's theorem is strictly proved in detail to clarify confusions in textbook and literature. This theorem is used to analyze the classical electron and the static electric field confined in a finite region of space.

  17. On the Putnam-Fuglede theorem

    Directory of Open Access Journals (Sweden)

    Yin Chen

    2004-01-01

    Full Text Available We extend the Putnam-Fuglede theorem and the second-degree Putnam-Fuglede theorem to the nonnormal operators and to an elementary operator under perturbation by quasinilpotents. Some asymptotic results are also given.

  18. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter;

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  19. JACKSON'S THEOREM FOR COMPACT GROUPS

    Institute of Scientific and Technical Information of China (English)

    H. Vaezi; S. F. Rzaev

    2002-01-01

    In this article we consider the generalized shift operator defined by(Sh.f)(g) = ∫Gf (tut-1g)dton compact group G and by help of this operator we define "Spherical" modulus of continuity. So we proveStechkin and Jackson type theorems.

  20. Angle Defect and Descartes' Theorem

    Science.gov (United States)

    Scott, Paul

    2006-01-01

    Rene Descartes lived from 1596 to 1650. His contributions to geometry are still remembered today in the terminology "Descartes' plane". This paper discusses a simple theorem of Descartes, which enables students to easily determine the number of vertices of almost every polyhedron. (Contains 1 table and 2 figures.)

  1. Discovering the Inscribed Angle Theorem

    Science.gov (United States)

    Roscoe, Matt B.

    2012-01-01

    Learning to play tennis is difficult. It takes practice, but it also helps to have a coach--someone who gives tips and pointers but allows the freedom to play the game on one's own. Learning to act like a mathematician is a similar process. Students report that the process of proving the inscribed angle theorem is challenging and, at times,…

  2. Microwave electronics Slater's perturbation theorem

    International Nuclear Information System (INIS)

    Slater's perturbation theorem is one of the most useful for both experiments and theories of microwave electronics. In particular, this is applied to measurements of the field strengths in standing-wave systems. Since a traveling wave can be represented by a linear combination of two standing waves, the field measurement is also possible in a traveling-wave system. The theorem tells us the amount of the shift in a resonant frequency arising from a metallic body. Since the amount is dependent upon the square of the electric and magnetic field strengths at the metallic body, one can obtain the field strengths at the metallic body from the measured frequency shift. First the theorem is derived in Sec. 2. We then discuss the implications of the theorem by deriving it intuitively in Sec. 3. The perturbation of the field due to a metallic body is described in Sec. 4, where the frequency shift is actually related to the field strengths. In Sec. 5, we describe how to determine the impedance by using the data thus measured. Examples of field measurement are shown in Sec. 6 together with the impedance measurement. (author)

  3. GENERALIZED RECIPROCAL THEOREMS AND THEIR APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    付宝连

    2002-01-01

    Generalized reciprocal theorems of non-coupled and coupled systems , which are valid for two deformed bodies with different constitutive relations are established by generalizing the idea of Betti ' s reciprocal theorem. When the constitutive relations of the two deformed bodies are all alike and linear elastic, the generalized reciprocal theorem of non-coupled systems just becomes Betti' s . Meanwhile, the generalized reciprocal theorems are applied to simulate calculations in elasticity.

  4. Restriction limits and main drivers of fruit production in palm in central Amazonia

    Science.gov (United States)

    Freitas, Cintia; Costa, Flávia R. C.; Barbosa, Carlos Eduardo; Cintra, Renato

    2016-11-01

    Adult plants incapable of producing viable offspring inflate our perception of the size of population distribution. We propose that species occurrence is limited to a subset of the environmental gradient and that it changes as ontogenetic development progresses. Moreover, fruit production is associated with site-specific environmental conditions. We sampled 2988 adult individuals from nine palm species in 30 plots (40 × 250 m) and used a larger data set including 42 other plots distributed along a continuous topo-edaphic gradient in a terra firme forest near Manaus, Brazil. Five out of nine palm species were more restricted to a sub-section of the topo-edaphic gradient in the adult-size phase. More specifically, reproductive individuals of species Attalea attaleoides and A. microcarpa had even more restricted distributions than adult-sized, non-reproductive plants. Successive environmental filtering and competition probably acting through selective mortality led to increasing habitat restriction, with reproductive adults being restricted to a smaller part of the region than juveniles and adults. Water availability and nutrients limited both the ability to produce fruits and the amount of fruit production. Previous studies have reported stronger habitat associations for older plants than for seedlings or juveniles, but we show here that some species are more restricted at their reproductive stage. Plant specializations to local conditions may be more common than currently acknowledged, and a significant portion of individuals in a population might represent sinks. Such strong environmental limitations of reproductive plants should also be considered in management of species with economic value and in conservation planning.

  5. Raychaudhuri equation and singularity theorems in Finsler spacetimes

    CERN Document Server

    Minguzzi, E

    2015-01-01

    The Raychaudhuri equation and its consequences for chronality are studied in the context of Finsler spacetimes. It is proved that all the notable singularity theorems of Lorentzian geometry extend to the Finslerian domain, e.g. Hawking's, Penrose's, Hawking and Penrose's, Geroch's, Gannon's, Tipler's, Kriele's, Topological Censorship's, and so on. It is argued that all the notable results in causality theory connected to achronal sets, future sets, domains of dependence, limit curve theorems, length functional, Lorentzian distance, geodesic connectedness, extend to the Finslerian domain. Results concerning the spacetime asymptotic structure and horizons differentiability are also included.

  6. A generalized no-broadcasting theorem

    OpenAIRE

    Barnum, H.; Barrett, J; Leifer, M.; Wilce, A.

    2007-01-01

    We prove a generalized version of the no-broadcasting theorem, applicable to essentially \\emph{any} nonclassical finite-dimensional probabilistic model satisfying a no-signaling criterion, including ones with ``super-quantum'' correlations. A strengthened version of the quantum no-broadcasting theorem follows, and its proof is significantly simpler than existing proofs of the no-broadcasting theorem.

  7. Pythagorean Theorem Proofs: Connecting Interactive Websites

    Science.gov (United States)

    Lin, Cheng-Yao

    2007-01-01

    There are over 400 proofs of the Pythagorean Theorem. Some are visual proofs, others are algebraic. This paper features several proofs of the Pythagorean Theorem in different cultures--Greek, Chinese, Hindu and American. Several interactive websites are introduced to explore ways to prove this beautiful theorem. (Contains 8 figures.)

  8. An Algebraic Identity Leading to Wilson Theorem

    OpenAIRE

    Ruiz, Sebastian Martin

    2004-01-01

    In most text books on number theory Wilson Theorem is proved by applying Lagrange theorem concerning polynomial congruences.Hardy and Wright also give a proof using cuadratic residues. In this article Wilson theorem is derived as a corollary to an algebraic identity.

  9. On Brayton and Moser's missing stability theorem

    NARCIS (Netherlands)

    Jeltsema, D.; Scherpen, J. M. A.

    2005-01-01

    In the early 1960s, Brayton and Moser proved three theorems concerning the stability of nonlinear electrical circuits. The applicability of each theorem depends on three different conditions on the type of admissible nonlinearities in circuit. Roughly speaking, this means that the theorems apply to

  10. Ordering in mechanical geometry theorem proving

    Institute of Scientific and Technical Information of China (English)

    李洪波¥

    1997-01-01

    Ordering in mechanical geometry theorem proving is studied from geometric viewpoint and some new ideas are proposed. For Thebault’s theorem which is the most difficult theorem that has ever been proved by Wu’ s method, a very simple proof using Wu’s method under a linear order is discovered.

  11. Convolution theorems for the linear canonical transform and their applications

    Institute of Scientific and Technical Information of China (English)

    DENG Bing; TAO Ran; WANG Yue

    2006-01-01

    As generalization of the fractional Fourier transform (FRFT), the linear canonical transform (LCT) has been used in several areas, including optics and signal processing. Many properties for this transform are already known, but the convolution theorems, similar to the version of the Fourier transform, are still to be determined. In this paper, the authors derive the convolution theorems for the LCT, and explore the sampling theorem and multiplicative filter for the band limited signal in the linear canonical domain. Finally, the sampling and reconstruction formulas are deduced, together with the construction methodology for the above mentioned multiplicative filter in the time domain based on fast Fourier transform (FFT), which has much lower computational load than the construction method in the linear canonical domain.

  12. The F-Theorem and F-Maximization

    CERN Document Server

    Pufu, Silviu S

    2016-01-01

    This contribution contains a review of the role of the three-sphere free energy F in recent developments related to the F-theorem and F-maximization. The F-theorem states that for any Lorentz-invariant RG trajectory connecting a conformal field theory CFT_UV in the ultraviolet to a conformal field theory CFT_IR, the F-coefficient decreases: F_UV > F_IR. I provide many examples of CFTs where one can compute F, approximately or exactly, and discuss various checks of the F-theorem. F-maximization is the principle that in an N=2 SCFT, viewed as the deep IR limit of an RG trajectory preserving N=2 supersymmetry, the superconformal R-symmetry maximizes F within the set of all R-symmetries preserved by the RG trajectory. I review the derivation of this result and provide examples.

  13. Hadronic interactions of the J/ψ and Adler's theorem

    International Nuclear Information System (INIS)

    Effective Lagrangian models of charmonium have recently been used to estimate dissociation cross sections with light hadrons. Detailed study of the symmetry properties reveals possible shortcomings relative to chiral symmetry. We therefore propose a new Lagrangian and point out distinguishing features amongst the different approaches. Moreover, we test the models against Adler's theorem, which requires, in the appropriate limit, the decoupling of pions from the theory for the normal parity sector. Using the newly proposed Lagrangian, which exhibits SUL(Nf)xSUR(Nf) symmetry and complies with Adler's theorem, we find dissociation cross sections with pions that are reduced in an energy-dependent way, with respect to cases where the theorem is not fulfilled

  14. Limit Theory for Panel Data Models with Cross Sectional Dependence and Sequential Exogeneity.

    Science.gov (United States)

    Kuersteiner, Guido M; Prucha, Ingmar R

    2013-06-01

    The paper derives a general Central Limit Theorem (CLT) and asymptotic distributions for sample moments related to panel data models with large n. The results allow for the data to be cross sectionally dependent, while at the same time allowing the regressors to be only sequentially rather than strictly exogenous. The setup is sufficiently general to accommodate situations where cross sectional dependence stems from spatial interactions and/or from the presence of common factors. The latter leads to the need for random norming. The limit theorem for sample moments is derived by showing that the moment conditions can be recast such that a martingale difference array central limit theorem can be applied. We prove such a central limit theorem by first extending results for stable convergence in Hall and Hedye (1980) to non-nested martingale arrays relevant for our applications. We illustrate our result by establishing a generalized estimation theory for GMM estimators of a fixed effect panel model without imposing i.i.d. or strict exogeneity conditions. We also discuss a class of Maximum Likelihood (ML) estimators that can be analyzed using our CLT.

  15. Permission of change of limits in the vapor generators of the Atucha I Nuclear Central

    International Nuclear Information System (INIS)

    In the mark of the modification of the Atucha-I Nuclear Central Installation (CNA-I) as consequence of the Introduction of the System 'Second Drain of Heat' (SSC), the Entity Responsible for the CNA-I (NASA) requested authorization to the Nuclear Regulatory Authority (ARN) to modify the value of the minimum level of water in the secondary side in the Steam generators (GVs) to activate the signal 'shoot of the Cut of the Reactor' (RESA-LLV). As the level in the GVs is one of those parameters that are used to shoot the Emergency Feeding System (RX), component of the SSC System, also was analyzed the change in the activation of the shoot signal of the 'Second Drain of Heat' (2SSC-LLV). The ARN uses for the study of the nuclear safety of nuclear power plants, the series of prediction programs RELAP5/MOD3.X. It participates of the evaluation and maintenance activities of these codes through specific agreements with the U.S. Nuclear Regulatory Commission (US-NRC). It is necessary to account with programs of this type since the ARN it licenses the construction and operation of Nuclear Power Plants (NPPs) and other outstanding facilities and it inquires its operation according to its own standards. With these tools its are auditing the calculations that the Responsible Entities of the operation make to guarantee the operability of the NPPs assisting the mentioned standards. The analysis with computational codes is used as a tool to achieve the best understanding in the behavior of the plant in union with the engineering approach, the manual calculations, the data analysis and the experience in the operation of the machine. (Author)

  16. Carbon balance indicates a time limit for cultivation of organic soils in central Switzerland

    Science.gov (United States)

    Paul, Sonja; Ammann, Christof; Alewell, Christine; Leifeld, Jens

    2016-04-01

    Peatlands serve as important carbon sinks. Globally, more than 30% of the soil organic carbon is stored in organic soils, although they cover only 3% of the land surface. The agricultural use of organic soils usually requires drainage thereby transforming these soils from a net carbon sink into a net source. Currently, about 2 to 3 Gt CO2 are emitted world-wide from degrading organic soils (Joosten 2011; Parish et al. 2008) which is ca. 5% of the total anthropogenic emissions. Besides these CO2 emissions, the resulting subsidence of drained peat soils during agricultural use requires that drainage system are periodically renewed and finally to use pumping systems after progressive subsidence. In Switzerland, the Seeland region is characterised by fens which are intensively used for agriculture since 1900. The organic layer is degrading and subsequently getting shallower and the underlying mineral soil, as lake marl or loam, is approaching the surface. The questions arises for how long and under which land use practises and costs these soils can be cultivated in the near future. The study site was under crop rotation until 2009 when it was converted to extensively used grassland with the water regime still being regulated. The soil is characterised by a degraded organic horizon of 40 to 70 cm. Since December 2014 we are measuring the carbon exchange of this grassland using the Eddy-Covariance method. For 2015, the carbon balance indicates that the degraded fen is a strong carbon source, with approximately 500 g C m‑2 a‑1. The carbon balance is dominated by CO2 emissions and harvest. Methane emissions are negligible. With the gained emission factors different future scenarios are evaluated for the current cultivation practise of organic soils in central Switzerland. Joosten, H., 2011: Neues Geld aus alten Mooren: Über die Erzeugung von Kohlenstoffzertifikaten aus Moorwiedervernässungen. Telma Beiheft 4, 183-202. Parish, F., A. Sirin, D. Charman, H. Joosten, T

  17. Carbon balance indicates a time limit for cultivation of organic soils in central Switzerland

    Science.gov (United States)

    Paul, Sonja; Ammann, Christof; Alewell, Christine; Leifeld, Jens

    2016-04-01

    Peatlands serve as important carbon sinks. Globally, more than 30% of the soil organic carbon is stored in organic soils, although they cover only 3% of the land surface. The agricultural use of organic soils usually requires drainage thereby transforming these soils from a net carbon sink into a net source. Currently, about 2 to 3 Gt CO2 are emitted world-wide from degrading organic soils (Joosten 2011; Parish et al. 2008) which is ca. 5% of the total anthropogenic emissions. Besides these CO2 emissions, the resulting subsidence of drained peat soils during agricultural use requires that drainage system are periodically renewed and finally to use pumping systems after progressive subsidence. In Switzerland, the Seeland region is characterised by fens which are intensively used for agriculture since 1900. The organic layer is degrading and subsequently getting shallower and the underlying mineral soil, as lake marl or loam, is approaching the surface. The questions arises for how long and under which land use practises and costs these soils can be cultivated in the near future. The study site was under crop rotation until 2009 when it was converted to extensively used grassland with the water regime still being regulated. The soil is characterised by a degraded organic horizon of 40 to 70 cm. Since December 2014 we are measuring the carbon exchange of this grassland using the Eddy-Covariance method. For 2015, the carbon balance indicates that the degraded fen is a strong carbon source, with approximately 500 g C m-2 a-1. The carbon balance is dominated by CO2 emissions and harvest. Methane emissions are negligible. With the gained emission factors different future scenarios are evaluated for the current cultivation practise of organic soils in central Switzerland. Joosten, H., 2011: Neues Geld aus alten Mooren: Über die Erzeugung von Kohlenstoffzertifikaten aus Moorwiedervernässungen. Telma Beiheft 4, 183-202. Parish, F., A. Sirin, D. Charman, H. Joosten, T

  18. Limiting the Number of Lumens in Peripherally Inserted Central Catheters to Improve Outcomes and Reduce Cost: A Simulation Study.

    Science.gov (United States)

    Ratz, David; Hofer, Timothy; Flanders, Scott A; Saint, Sanjay; Chopra, Vineet

    2016-07-01

    BACKGROUND The number of peripherally inserted central catheter (PICC) lumens is associated with thrombotic and infectious complications. Because multilumen PICCs are not necessary in all patients, policies that limit their use may improve safety and cost. OBJECTIVE To design a simulation-based analysis to estimate outcomes and cost associated with a policy that encourages single-lumen PICC use. METHODS Model inputs, including risk of complications and costs associated with single- and multilumen PICCs, were obtained from available literature and a multihospital collaborative quality improvement project. Cost savings and reduction in central line-associated bloodstream infection and deep vein thrombosis events from institution of a single-lumen PICC default policy were reported. RESULTS According to our model, a hospital that places 1,000 PICCs per year (25% of which are single-lumen and 75% multilumen) experiences annual PICC-related maintenance and complication costs of $1,228,598 (95% CI, $1,053,175-$1,430,958). In such facilities, every 5% increase in single-lumen PICC use would prevent 0.5 PICC-related central line-associated bloodstream infections and 0.5 PICC-related deep vein thrombosis events, while saving $23,500. Moving from 25% to 50% single-lumen PICC utilization would result in total savings of $119,283 (95% CI, $74,030-$184,170) per year. Regardless of baseline prevalence, a single-lumen default PICC policy would be associated with approximately 10% cost savings. Findings remained robust in multiway sensitivity analyses. CONCLUSION Hospital policies that limit the number of PICC lumens may enhance patient safety and reduce healthcare costs. Studies measuring intended and unintended consequences of this approach, followed by rapid adoption, appear necessary. Infect Control Hosp Epidemiol 2016;37:811-817. PMID:27033138

  19. Generalized theorems for nonlinear state space reconstruction.

    Directory of Open Access Journals (Sweden)

    Ethan R Deyle

    Full Text Available Takens' theorem (1981 shows how lagged variables of a single time series can be used as proxy variables to reconstruct an attractor for an underlying dynamic process. State space reconstruction (SSR from single time series has been a powerful approach for the analysis of the complex, non-linear systems that appear ubiquitous in the natural and human world. The main shortcoming of these methods is the phenomenological nature of attractor reconstructions. Moreover, applied studies show that these single time series reconstructions can often be improved ad hoc by including multiple dynamically coupled time series in the reconstructions, to provide a more mechanistic model. Here we provide three analytical proofs that add to the growing literature to generalize Takens' work and that demonstrate how multiple time series can be used in attractor reconstructions. These expanded results (Takens' theorem is a special case apply to a wide variety of natural systems having parallel time series observations for variables believed to be related to the same dynamic manifold. The potential information leverage provided by multiple embeddings created from different combinations of variables (and their lags can pave the way for new applied techniques to exploit the time-limited, but parallel observations of natural systems, such as coupled ecological systems, geophysical systems, and financial systems. This paper aims to justify and help open this potential growth area for SSR applications in the natural sciences.

  20. The no-ghost theorem for string theory in curved backgrounds with a flat timelike direction

    CERN Document Server

    Asano, M; Asano, Masako; Natsuume, Makoto

    2000-01-01

    It is well-known that the standard no-ghost theorem can be extended to the general c=26 CFT with d-dimensional Minkowski spacetime M^{(1,d-1)} and a compact unitary CFT K of central charge c_{K} = 26-d. The theorem has been established under the assumption d \\geq 2 so far. We prove the no-ghost theorem for d=1, i.e., when only the timelike direction is flat. This is done using the technique of Frenkel, Garland and Zuckerman.

  1. Time dependent electromagnetic fields and 4-dimensional Stokes' theorem

    CERN Document Server

    Andosca, Ryan

    2016-01-01

    Stokes' theorem is central to many aspects of physics -- electromagnetism, the Aharonov-Bohm effect, and Wilson loops to name a few. However, the pedagogical examples and research work almost exclusively focus on situations where the fields are time-independent so that one need only deal with purely spatial line integrals ({\\it e.g.} $\\oint {\\bf A} \\cdot d{\\bf x}$) and purely spatial area integrals ({\\it e.g.} $\\int (\

  2. The Classical Version of Stokes' Theorem Revisited

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2005-01-01

    Using only fairly simple and elementary considerations - essentially from first year undergraduate mathematics - we prove that the classical Stokes' theorem for any given surface and vector field in $\\mathbb{R}^{3}$ follows from an application of Gauss' divergence theorem to a suitable modification...... of the vector field in a tubular shell around the given surface. The intuitive appeal of the divergence theorem is thus applied to bootstrap a corresponding intuition for Stokes' theorem. The two stated classical theorems are (like the fundamental theorem of calculus) nothing but shadows of the general version...... of Stokes' theorem for differential forms on manifolds. The main points in the present paper, however, is firstly that this latter fact usually does not get within reach for students in first year calculus courses and secondly that calculus textbooks in general only just hint at the correspondence alluded...

  3. The classical version of Stokes' Theorem revisited

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations - essentially from first year undergraduate mathematics - we show how the classical Stokes' theorem for any given surface and vector field in $\\mathbb{R}^{3}$ follows from an application of Gauss' divergence theorem to a suitable modification...... of the vector field in a tubular shell around the given surface. The two stated classical theorems are (like the fundamental theorem of calculus) nothing but shadows of the general version of Stokes' theorem for differential forms on manifolds. The main points in the present paper, however, is firstly...... that this latter fact usually does not get within reach for students in first year calculus courses and secondly that calculus textbooks in general only just hint at the correspondence alluded to above. Our proof that Stokes' theorem follows from Gauss' divergence theorem goes via a well known and often used...

  4. Bell's theorem, accountability and nonlocality

    International Nuclear Information System (INIS)

    Bell's theorem is a fundamental theorem in physics concerning the incompatibility between some correlations predicted by quantum theory and a large class of physical theories. In this paper, we introduce the hypothesis of accountability, which demands that it is possible to explain the correlations of the data collected in many runs of a Bell experiment in terms of what happens in each single run. Under this assumption, and making use of a recent result by Colbeck and Renner (2011 Nature Commun. 2 411), we then show that any nontrivial account of these correlations in the form of an extension of quantum theory must violate parameter independence. Moreover, we analyze the violation of outcome independence of quantum mechanics and show that it is also a manifestation of nonlocality. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell's theorem’. (paper)

  5. Lectures on Fermat's last theorem

    International Nuclear Information System (INIS)

    The report presents the main ideas involved in the approach towards the so-called Fermat's last theorem (FLT). The discussion leads to the point where recent work of A. Wiles starts and his work is not discussed. After a short history of the FLT and of the present approach, are discussed the elliptic curves and the modular forms with their relations, the Taniyama-Shimura-Well conjecture and the FLT

  6. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  7. A Miniaturisation of Ramsey's Theorem

    Science.gov (United States)

    de Smet, Michiel; Weiermann, Andreas

    We approximate the strength of the infinite Ramsey Theorem by iterating a finitary version. This density principle, in the style of Paris, together with PA will give rise to a first-order theory which achieves a lot of the strength of ACA0 and the original infinitary version. To prove our result, we use a generalisation of the results by Bigorajska and Kotlarski about partitioning α-large sets.

  8. Dynamic Newton-Puiseux Theorem

    OpenAIRE

    Mannaa, Bassel; Coquand, Thierry

    2013-01-01

    A constructive version of Newton-Puiseux theorem for computing the Puiseux expansions of algebraic curves is presented. The proof is based on a classical proof by Abhyankar. Algebraic numbers are evaluated dynamically; hence the base field need not be algebraically closed and a factorization algorithm of polynomials over the base field is not needed. The extensions obtained are a type of regular algebras over the base field and the expansions are given as formal power series over these algebras.

  9. Compactness theorems of fuzzy semantics

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The relationship among diverse fuzzy semantics vs. the corresponding logic consequence operators has been analyzed systematically. The results that compactness and logical compactness of fuzzy semantics are equivalent to compactness and continuity of the logic consequence operator induced by the semantics respectively have been proved under certain conditions. A general compactness theorem of fuzzy semantics have been established which says that every fuzzy semantics defined on a free algebra with members corresponding to continuous functions is compact.

  10. An improvement of Papadakis' theorem

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhihua; MU Lehua; ZHANG Peixuan

    2004-01-01

    There exist many orthonormal wavelets which cannot be derived by multiresolution analysis (MRA) with a single scaling function.In 2000,Papadakis announced that any orthonormal wavelet is derived by a generalized MRA with countable scaling functions at most.We improve Papadakis' theorem and find that for any othonormal wavelet,the least number of the corresponding scaling functions is just the essential supremum of the dimension function of the orthonormal wavelet.Moreover,we construct directly the fewest scaling functions.

  11. An exactly solvable model for Brownian motion : IV. Susceptibility and Nyquist's theorem

    NARCIS (Netherlands)

    Ullersma, P.

    1966-01-01

    By means of an exactly solvable model, treated in a previous paper1), the relation between the microscopic and macroscopic susceptibility is discussed. Furthermore, the limits of the validity of Nyquist's theorem are given.

  12. On Harnack's theorem and extensions

    Science.gov (United States)

    Costa, Antonio F.; Parlier, Hugo

    Harnack's theorem states that the fixed points of an orientation reversing involution of a compact orientable surface of genus g are a set of k disjoint simple closed geodesic where 0≤ k≤ g+1 . The first goal of this article is to give a purely geometric, complete and self-contained proof of this fact. In the case where the fixed curves of the involution do not separate the surface, we prove an extension of this theorem, by exhibiting the existence of auxiliary invariant curves with interesting properties. Although this type of extension is well known (see, for instance, Comment. Math. Helv. 57(4): 603-626 (1982) and Transl. Math. Monogr., vol. 225, Amer. Math. Soc., Providence, RI, 2004), our method also extends the theorem in the case where the surface has boundary. As a byproduct, we obtain a geometric method on how to obtain these auxiliary curves. As a consequence of these constructions, we obtain results concerning presentations of Non-Euclidean crystallographic groups and a new proof of a result on the set of points corresponding to real algebraic curves in the compactification of the Moduli space of complex curves of genus g , overline{M_{g}} . More concretely, we establish that given two real curves there is a path in overline{M_{g}} which passes through at most two singular curves, a result of M. Seppaelae (Ann. Sci. Ecole Norm. Sup. (4), 24(5), 519-544 (1991)).

  13. On a curvature-statistics theorem

    Energy Technology Data Exchange (ETDEWEB)

    Calixto, M [Departamento de Matematica Aplicada y Estadistica, Universidad Politecnica de Cartagena, Paseo Alfonso XIII 56, 30203 Cartagena (Spain); Aldaya, V [Instituto de Astrofisica de Andalucia, Apartado Postal 3004, 18080 Granada (Spain)], E-mail: Manuel.Calixto@upct.es

    2008-08-15

    The spin-statistics theorem in quantum field theory relates the spin of a particle to the statistics obeyed by that particle. Here we investigate an interesting correspondence or connection between curvature ({kappa} = {+-}1) and quantum statistics (Fermi-Dirac and Bose-Einstein, respectively). The interrelation between both concepts is established through vacuum coherent configurations of zero modes in quantum field theory on the compact O(3) and noncompact O(2; 1) (spatial) isometry subgroups of de Sitter and Anti de Sitter spaces, respectively. The high frequency limit, is retrieved as a (zero curvature) group contraction to the Newton-Hooke (harmonic oscillator) group. We also make some comments on the physical significance of the vacuum energy density and the cosmological constant problem.

  14. Scaling limit and convergence of smoothed covariance for gradient models with non-convex potential

    OpenAIRE

    Hilger, Susanne

    2016-01-01

    A discrete gradient model for interfaces is studied. The interaction potential is a non-convex perturbation of the quadratic gradient potential. Based on a representation for the finite volume Gibbs measure obtained via a renormalization group analysis by Adams, Koteck\\'{y} and M\\"uller in [AKM] it is proven that the scaling limit is a continuum massless Gaussian free field. From probabilistic point of view, this is a Central Limit Theorem for strongly dependent random fields. Additionally, t...

  15. The Helmholtz theorem and retarded fields

    CERN Document Server

    Heras, Ricardo

    2016-01-01

    Textbooks frequently use the Helmholtz theorem to derive expressions for the electrostatic and magnetostatic fields but they do not usually apply this theorem to derive expressions for the time-dependent electric and magnetic fields, even when there is no formal objection to doing so because the proof of the theorem does not involve time derivatives but only spatial derivatives. Here we address the question as to whether the Helmholtz theorem is useful to derive expressions for the fields of Maxwell's equations. We show that when this theorem is applied to Maxwell's equations we obtain instantaneous expressions of the electric and magnetic fields, which are formally correct but of little practical usefulness. We then discuss two generalizations of the theorem which are shown to be useful to derive the retarded fields.

  16. The Helmholtz theorem and retarded fields

    Science.gov (United States)

    Heras, Ricardo

    2016-11-01

    Textbooks frequently use the Helmholtz theorem to derive expressions for electrostatic and magnetostatic fields but they do not usually apply this theorem to derive expressions for time-dependent electric and magnetic fields, even when there is no formal objection to doing so because the proof of the theorem does not involve time derivatives but only spatial derivatives. Here we address the question as to whether the Helmholtz theorem is useful in deriving expressions for the fields of Maxwell’s equations. We show that when this theorem is applied to Maxwell’s equations we obtain instantaneous expressions of the electric and magnetic fields, which are formally correct but of little practical usefulness. We then discuss two generalizations of the theorem which are shown to be useful in deriving the retarded fields.

  17. Symbolic logic and mechanical theorem proving

    CERN Document Server

    Chang, Chin-Liang

    1969-01-01

    This book contains an introduction to symbolic logic and a thorough discussion of mechanical theorem proving and its applications. The book consists of three major parts. Chapters 2 and 3 constitute an introduction to symbolic logic. Chapters 4-9 introduce several techniques in mechanical theorem proving, and Chapters 10 an 11 show how theorem proving can be applied to various areas such as question answering, problem solving, program analysis, and program synthesis.

  18. Counterexamples To Bertini Theorems for Test Ideals

    OpenAIRE

    Bydlon, Andrew

    2016-01-01

    In algebraic geometry, Bertini theorems are an extremely important tool. A generalization of the classical theorem to multiplier ideals show that multiplier ideals restrict to a general hyperplane section. In characteristic $p > 0$, the test ideal can be seen to be the characteristic $p > 0$ analog of the multiplier ideal. However, in this paper it is shown that the same type of Bertini type theorem does not hold for test ideals.

  19. Bringing Theorem Proving to the (sonic) Masses

    OpenAIRE

    Gallego Arias, Emilio Jesús; Pin, Benoît; Jouvelot, Pierre,

    2015-01-01

    We explore the intersection of interactive theorem proving and digital signal processing through the use of web-based, rich interfaces. Traditionally, the barrier to entry to interactive theorem proving has been high.Provers are complex systems using obscure programming languages, and libraries may be underdocumented and use formalisms and notations far from the standard domain-specific practice. Thus, it doesn't come at a surprise that interactive theorem proving has seldom been explored in ...

  20. Expanding the Interaction Equivalency Theorem

    Directory of Open Access Journals (Sweden)

    Brenda Cecilia Padilla Rodriguez

    2015-06-01

    Full Text Available Although interaction is recognised as a key element for learning, its incorporation in online courses can be challenging. The interaction equivalency theorem provides guidelines: Meaningful learning can be supported as long as one of three types of interactions (learner-content, learner-teacher and learner-learner is present at a high level. This study sought to apply this theorem to the corporate sector, and to expand it to include other indicators of course effectiveness: satisfaction, knowledge transfer, business results and return on expectations. A large Mexican organisation participated in this research, with 146 learners, 30 teachers and 3 academic assistants. Three versions of an online course were designed, each emphasising a different type of interaction. Data were collected through surveys, exams, observations, activity logs, think aloud protocols and sales records. All course versions yielded high levels of effectiveness, in terms of satisfaction, learning and return on expectations. Yet, course design did not dictate the types of interactions in which students engaged within the courses. Findings suggest that the interaction equivalency theorem can be reformulated as follows: In corporate settings, an online course can be effective in terms of satisfaction, learning, knowledge transfer, business results and return on expectations, as long as (a at least one of three types of interaction (learner-content, learner-teacher or learner-learner features prominently in the design of the course, and (b course delivery is consistent with the chosen type of interaction. Focusing on only one type of interaction carries a high risk of confusion, disengagement or missed learning opportunities, which can be managed by incorporating other forms of interactions.

  1. Bayesian Posteriors Without Bayes' Theorem

    CERN Document Server

    Hill, Theodore P

    2012-01-01

    The classical Bayesian posterior arises naturally as the unique solution of several different optimization problems, without the necessity of interpreting data as conditional probabilities and then using Bayes' Theorem. For example, the classical Bayesian posterior is the unique posterior that minimizes the loss of Shannon information in combining the prior and the likelihood distributions. These results, direct corollaries of recent results about conflations of probability distributions, reinforce the use of Bayesian posteriors, and may help partially reconcile some of the differences between classical and Bayesian statistics.

  2. Cosmological Perturbations and the Weinberg Theorem

    CERN Document Server

    Akhshik, Mohammad; Jazayeri, Sadra

    2015-01-01

    The celebrated Weinberg theorem in cosmological perturbation theory states that there always exist two adiabatic scalar modes in which the comoving curvature perturbation is conserved on super-horizon scales. In particular, when the perturbations are generated from a single source, such as in single field models of inflation, both of the two allowed independent solutions are adiabatic and conserved on super-horizon scales. There are few known examples in literature which violate this theorem. We revisit the theorem and specify the loopholes in some technical assumptions which violate the theorem in models of non-attractor inflation, fluid inflation, solid inflation and in the model of pseudo conformal universe.

  3. A generalized preimage theorem in global analysis

    Institute of Scientific and Technical Information of China (English)

    MA; Jipu

    2001-01-01

    [1]Ma Jipu, (1.2) inverses of operators between Banach spaces and conjugacy theorem, Chinese Annals of Math., B, 1999, 20(1): 57.[2]Ma Jipu, Rank theorem of operators between Banach spaces, Science in China, Ser. A, 2000, 43(1): 1.[3]Ma Jipu, Local conjugacy theorem, rank theorems in advenced calculus and a generalized principle constructing Banach manifolds, Science in China, Ser. A, 2000, 43(12): 1233.[4]Zeidler, A. E., Nonlinear Function Analysis and Its Applications, IV: Applications to Mathematical Physics, New York: Springer-Verlag, 1988.

  4. Bit-Blasting ACL2 Theorems

    Directory of Open Access Journals (Sweden)

    Sol Swords

    2011-10-01

    Full Text Available Interactive theorem proving requires a lot of human guidance. Proving a property involves (1 figuring out why it holds, then (2 coaxing the theorem prover into believing it. Both steps can take a long time. We explain how to use GL, a framework for proving finite ACL2 theorems with BDD- or SAT-based reasoning. This approach makes it unnecessary to deeply understand why a property is true, and automates the process of admitting it as a theorem. We use GL at Centaur Technology to verify execution units for x86 integer, MMX, SSE, and floating-point arithmetic.

  5. Constructive and Computable Hahn-Banach Theorems for the (Second) Fundamental Theorem of Welfare Economics

    OpenAIRE

    Vela Velupillai, K.

    2014-01-01

    The Hahn-Banach Theorem plays a crucial role in the second fundamental theorem of welfare economics. To date, all mathematical economics and advanced general equilibrium textbooks concentrate on using nonconstructive or incomputable versions of this celebrated theorem. In this paper we argue for the introduction of constructive or computable Hahn-Banach theorems in mathematical economics and advanced general equilibrium theory. The suggested modification would make applied and policy-oriented...

  6. An elementary derivation of the quantum virial theorem from Hellmann-Feynman theorem

    Science.gov (United States)

    İpekoğlu, Y.; Turgut, S.

    2016-07-01

    A simple proof of the quantum virial theorem that can be used in undergraduate courses is given. The proof proceeds by first showing that the energy eigenvalues of a Hamiltonian remain invariant under a scale transformation. Then invoking the Hellmann-Feynman theorem produces the final statement of the virial theorem.

  7. Implications for compressed sensing of a new sampling theorem on the sphere

    CERN Document Server

    McEwen, J D; Thiran, J -Ph; Vandergheynst, P; Van De Ville, D; Wiaux, Y

    2011-01-01

    A sampling theorem on the sphere has been developed recently, requiring half as many samples as alternative equiangular sampling theorems on the sphere. A reduction by a factor of two in the number of samples required to represent a band-limited signal on the sphere exactly has important implications for compressed sensing, both in terms of the dimensionality and sparsity of signals. We illustrate the impact of this property with an inpainting problem on the sphere, where we show the superior reconstruction performance when adopting the new sampling theorem compared to the alternative.

  8. The Virial Theorem and the Ground State Problem in Polaron Theory

    OpenAIRE

    Kashirina, N. I.; Lakhno, V. D.; Tulub, A. V.

    2013-01-01

    The virial theorem for the translation-invariant theory of a polaron [3] is discussed. It is shown that, in [3], Tulub made a nonoptimal choice of variational parameters in the strong-coupling limit, which led to the violation of the virial relations. The introduction of an additional variational parameter to the test function reduces the polaron energy and makes it possible to satisfy the relations of the virial theorem for a strong-coupling polaron (the Pekar 1 : 2 : 3 : 4 theorem).

  9. The virial theorem and the ground state problem in polaron theory

    Energy Technology Data Exchange (ETDEWEB)

    Kashirina, N. I., E-mail: n_kashirina@mail.ru [National Academy of Sciences of Ukraine, Institute of Semiconductor Physics (Ukraine); Lakhno, V. D., E-mail: lak@impb.psn.ru [Russian Academy of Sciences, Institute of Mathematical Problems of Biology (Russian Federation); Tulub, A. V., E-mail: tulub@NK7099.Spb.edu [St. Petersburg State University (Russian Federation)

    2012-05-15

    The virial theorem for the translation-invariant theory of a polaron [3] is discussed. It is shown that, in [3], Tulub made a nonoptimal choice of variational parameters in the strong-coupling limit, which led to the violation of the virial relations. The introduction of an additional variational parameter to the test function reduces the polaron energy and makes it possible to satisfy the relations of the virial theorem for a strong-coupling polaron (the Pekar 1: 2: 3: 4 theorem).

  10. A Poncelet theorem for lines

    CERN Document Server

    Vallès, Jean

    2012-01-01

    Our aim is to prove a Poncelet type theorem for a line configuration on the complex projective. More precisely, we say that a polygon with 2n sides joining 2n vertices A1, A2,..., A2n is well inscribed in a configuration Ln of n lines if each line of the configuration contains exactly two points among A1, A2, ..., A2n. Then we prove : "Let Ln be a configuration of n lines and D a smooth conic in the complex projective plane. If it exists one polygon with 2n sides well inscribed in Ln and circumscribed around D then there are infinitely many such polygons. In particular a general point in Ln is a vertex of such a polygon." We propose an elementary proof based on Fr\\'egier's involution. We begin by recalling some facts about these involutions. Then we explore the following question : When does the product of involutions correspond to an involution? It leads to Pascal theorem, to its dual version proved by Brianchon, and to its generalization proved by M\\"obius.

  11. Freiman's theorem for solvable groups

    CERN Document Server

    Tao, Terence

    2009-01-01

    Freiman's theorem asserts, roughly speaking, if that a finite set in a torsion-free abelian group has small doubling, then it can be efficiently contained in (or controlled by) a generalised arithmetic progression. This was generalised by Green and Ruzsa to arbitrary abelian groups, where the controlling object is now a coset progression. We extend these results further to solvable groups of bounded derived length, in which the coset progressions are replaced by the more complicated notion of a ``coset nilprogression''. As one consequence of this result, any subset of such a solvable group of small doubling is is controlled by a set whose iterated products grow polynomially, and which are contained inside a virtually nilpotent group. As another application we establish a strengthening of the Milnor-Wolf theorem that all solvable groups of polynomial growth are virtually nilpotent, in which only one large ball needs to be of polynomial size. This result complements recent work of Breulliard-Green, Fisher-Katz-...

  12. Double Soft Theorems in Gauge and String Theories

    CERN Document Server

    Volovich, Anastasia; Zlotnikov, Michael

    2015-01-01

    We investigate the tree-level S-matrix in gauge theories and open superstring theory with several soft particles. We show that scattering amplitudes with two or three soft gluons of non-identical helicities behave universally in the limit, with multi-soft factors which are not the product of individual soft gluon factors. The results are obtained from the BCFW recursion relations in four dimensions, and further extended to arbitrary dimensions using the CHY formula. We also find new soft theorems for double soft limits of scalars and fermions in N=4 and pure N=2 SYM. Finally, we show that the double-soft-scalar theorems can be extended to open superstring theory without receiving any alpha' corrections.

  13. Brownian limits, local limits, extreme value and variance asymptotics for convex hulls in the ball

    CERN Document Server

    Calka, Pierre; Yukich, J E

    2009-01-01

    The paper of Schreiber and Yukich [40] establishes an asymptotic representation for random convex polytope geometry in the unit ball $\\B_d, d \\geq 2,$ in terms of the general theory of stabilizing functionals of Poisson point processes as well as in terms of the so-called generalized paraboloid growth process. This paper further exploits this connection, introducing also a dual object termed the paraboloid hull process. Via these growth processes we establish local functional and measure-level limit theorems for the properly scaled radius-vector and support functions as well as for curvature measures and $k$-face empirical measures of convex polytopes generated by high density Poisson samples. We use general techniques of stabilization theory to establish Brownian sheet limits for the defect volume and mean width functionals, and we provide explicit variance asymptotics and central limit theorems for the $k$-face and intrinsic volume functionals. We establish extreme value theorems for radius-vector and suppo...

  14. Hadronic interactions of the J/psi and Adler's theorem

    OpenAIRE

    Bourque, A.; Gale, C.; Haglin, K. L.

    2004-01-01

    Effective Lagrangian models of charmonium have recently been used to estimate dissociation cross sections with light hadrons. Detailed study of the symmetry properties reveals possible shortcomings relative to chiral symmetry. We therefore propose a new Lagrangian and point out distinguishing features amongst the different approaches. Moreover, we test the models against Adler's theorem, which requires, in the appropriate limit, the decoupling of pions from the theory for the normal parity se...

  15. Fire Regime in Marginal Jack Pine Populations at Their Southern Limit of Distribution, Riding Mountain National Park, Central Canada

    Directory of Open Access Journals (Sweden)

    Jacques C. Tardif

    2016-09-01

    Full Text Available In central Canada, long fire history reconstructions are rare. In a context where both anthropogenic and climate influences on fire regime have changed, Parks Canada has a mandate to maintain ecological integrity. Here we present a fire history derived from fire-scarred jack pine (Pinus banksiana Lamb. trees growing at their southern distribution limit in Riding Mountain National Park (RMNP. In Lake Katherine Fire Management Unit (LKFMU, a subregion within the park, fire history was reconstructed from archival records, tree-ring records, and charcoal in lake sediment. From about 1450 to 1850 common era (CE the fire return intervals varied from 37 to 125 years, according to models. During the period 1864–1930 the study area burned frequently (Weibull Mean Fire Intervals between 2.66 and 5.62 years; this period coincided with the end of First Nations occupation and the start of European settlement. Major recruitment pulses were associated with the stand-replacing 1864 and 1894 fires. This period nevertheless corresponded to a reduction in charcoal accumulation. The current fire-free period in LKFMU (1930–today coincides with RMNP establishment, exclusion of First Nations land use and increased fire suppression. Charcoal accumulation further decreased during this period. In the absence of fire, jack pine exclusion in LKFMU is foreseeable and the use of prescribed burning is advocated to conserve this protected jack pine ecosystem, at the southern margins of its range, and in the face of potential climate change.

  16. Interpolation theorems on weighted Lorentz martingale spaces

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper several interpolation theorems on martingale Lorentz spaces are given.The proofs are based on the atomic decompositions of martingale Hardy spaces over weighted measure spaces.Applying the interpolation theorems,we obtain some inequalities on martingale transform operator.

  17. Euler and the Fundamental Theorem of Algebra.

    Science.gov (United States)

    Duham, William

    1991-01-01

    The complexity of the proof of the Fundamental Theorem of Algebra makes it inaccessible to lower level students. Described are more understandable attempts of proving the theorem and a historical account of Euler's efforts that relates the progression of the mathematical process used and indicates some of the pitfalls encountered. (MDH)

  18. Anisotropic weak Hardy spaces and interpolation theorems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, the authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also given. As some applications of the above results, the authors prove some interpolation theorems and obtain the boundedness of the singular integral operators on these Hardy spaces.

  19. Boundary contributions to the hypervirial theorem

    OpenAIRE

    Esteve, J. G.; Falceto, F.; Giri, Pulak Ranjan

    2012-01-01

    It is shown that under certain boundary conditions the virial theorem has to be modified. We analyze the origin of the extra term and compute it in particular examples. The Coulomb and harmonic oscillator with point interaction have been studied in the light of this generalization of the virial theorem.

  20. A Generalization of the Prime Number Theorem

    Science.gov (United States)

    Bruckman, Paul S.

    2008-01-01

    In this article, the author begins with the prime number theorem (PNT), and then develops this into a more general theorem, of which many well-known number theoretic results are special cases, including PNT. He arrives at an asymptotic relation that allows the replacement of certain discrete sums involving primes into corresponding differentiable…

  1. Generalized Fibonacci Numbers and Blackwell's Renewal Theorem

    OpenAIRE

    Christensen, Sören

    2010-01-01

    We investigate a connection between generalized Fibonacci numbers and renewal theory for stochastic processes. Using Blackwell's renewal theorem we find an approximation to the generalized Fibonacci numbers. With the help of error estimates in the renewal theorem we figure out an explicit representation.

  2. The Ahlfors lemma and Picard's theorems

    OpenAIRE

    Simonič, Aleksander

    2015-01-01

    The article introduces Ahlfors' generalization of the Schwarz lemma. With this powerful geometric tool of complex functions in one variable, we are able to prove some theorems concerning the size of images under holomorphic mappings, including the celebrated Picard's theorems. The article concludes with a brief insight into the theory of Kobayashi hyperbolic complex manifolds.

  3. No-cloning theorem in thermofield dynamics

    CERN Document Server

    Prudencio, Thiago

    2011-01-01

    Here we apply the no-cloning theorem from quantum information in the thermofield dynamics (TFD) scenario, relating the doubling procedure of TFD to a cloning machine process. As a consequence we use the no-cloning theorem to demonstrate that the thermal vaccuum state defined in TFD is necessarilly a mixed state.

  4. No-cloning theorem in thermofield dynamics

    OpenAIRE

    Prudencio, Thiago

    2011-01-01

    We discuss the relation between the no-cloning theorem from quantum information and the doubling procedure used in the formalism of thermofield dynamics (TFD). We also discuss how to apply the no-cloning theorem in the context of thermofield states defined in TFD. Consequences associated to mixed states, von Neumann entropy and thermofield vacuum are also addressed.

  5. Abel's Theorem in the Noncommutative Case

    OpenAIRE

    Leitenberger, Frank

    2005-01-01

    We define noncommutative binary forms. Using the typical representation of Hermite we prove the fundamental theorem of algebra and we derive a noncommutative Cardano formula for cubic forms. We define quantized elliptic and hyperelliptic differentials of the first kind. Following Abel we prove Abel's Theorem.

  6. Convergence theorems for intermediate problems. II

    OpenAIRE

    Beattie, C. A.; Greenlee, W. M.

    2002-01-01

    Convergence theorems for the practical eigenvector free methods of Gay and Goerisch are obtained under a variety of hypotheses, so that our theorems apply to both traditional boundary-value problems and atomic problems. In addition, we prove convergence of the T*T method of Bazley and Fox without an alignment of projections hypothesis required in previous literature.

  7. Non perturbative Adler-Bardeen Theorem

    OpenAIRE

    Mastropietro, Vieri

    2006-01-01

    The Adler-Bardeen theorem has been proved only as a statement valid at all orders in perturbation theory, without any control on the convergence of the series. In this paper we prove a nonperturbative version of the Adler-Bardeen theorem in $d=2$ by using recently developed technical tools in the theory of Grassmann integration.

  8. The Classical Version of Stokes' Theorem Revisited

    Science.gov (United States)

    Markvorsen, Steen

    2008-01-01

    Using only fairly simple and elementary considerations--essentially from first year undergraduate mathematics--we show how the classical Stokes' theorem for any given surface and vector field in R[superscript 3] follows from an application of Gauss' divergence theorem to a suitable modification of the vector field in a tubular shell around the…

  9. Aspects of the Flavour Expansion Theorem

    CERN Document Server

    Paraskevas, M

    2015-01-01

    The Flavour Expansion Theorem, which has been recently proposed as a more general and elegant algebraic method, for the derivation of the commonly used Mass Insertion Approximation, is revisited. The theorem is reviewed, with respect to its straightforward applications in Flavour physics, and compared against the standard diagrammatic flavour basis techniques, in cases where the latter become inadequate.

  10. A Metrized Duality Theorem for Markov Processes

    DEFF Research Database (Denmark)

    Kozen, Dexter; Mardare, Radu Iulian; Panangaden, Prakash

    2014-01-01

    We extend our previous duality theorem for Markov processes by equipping the processes with a pseudometric and the algebras with a notion of metric diameter. We are able to show that the isomorphisms of our previous duality theorem become isometries in this quantitative setting. This opens the wa...

  11. A New Fixed Point Theorem and Applications

    Directory of Open Access Journals (Sweden)

    Min Fang

    2013-01-01

    Full Text Available A new fixed point theorem is established under the setting of a generalized finitely continuous topological space (GFC-space without the convexity structure. As applications, a weak KKM theorem and a minimax inequalities of Ky Fan type are also obtained under suitable conditions. Our results are different from known results in the literature.

  12. The Euler Line and Nine-Point-Circle Theorems.

    Science.gov (United States)

    Eccles, Frank M.

    1999-01-01

    Introduces the Euler line theorem and the nine-point-circle theorem which emphasize transformations and the power of functions in a geometric concept. Presents definitions and proofs of theorems. (ASK)

  13. Limit theory for planar Gilbert tessellations

    CERN Document Server

    Schreiber, Tomasz

    2010-01-01

    A Gilbert tessellation arises by letting linear segments (cracks) in the plane unfold in time with constant speed, starting from a homogeneous Poisson point process of germs in randomly chosen directions. Whenever a growing edge hits an already existing one, it stops growing in this direction. The resulting process tessellates the plane. The purpose of the present paper is to establish law of large numbers, variance asymptotics and a central limit theorem for geometric functionals of such tessellations. The main tool applied is the stabilization theory for geometric functionals.

  14. A class of generalized Shannon-McMillan theorems for arbitrary discrete information source

    OpenAIRE

    WANG, Kangkang

    2011-01-01

    In this study, a class of strong limit theorems for the relative entropy densities of random sum of arbitrary information source are discussed by constructing the joint distribution and nonnegative super martingales. As corollaries, some Shannon-McMillan theorems for arbitrary information source, mth-order Markov information source and non-memory information source are obtained and some results for the discrete information source which have been obtained by authors are extended.

  15. Generalized fluctuation theorems for classical systems

    CERN Document Server

    Agarwal, G S

    2015-01-01

    Fluctuation theorems have a very special place in the study of non equilibrium dynamics of physical systems. The form in which it is used most extensively is the Gallavoti-Cohen Fluctuation Theorem which is in terms of the distribution of the work $p(W)/p(-W)=\\exp(\\alpha W)$. We derive the general form of the fluctuation theorems for an arbitrary Gaussian Markov process and find conditions when the parameter $\\alpha$ becomes a universal parameter $1/kT$. As an application we consider fluctuation theorems for classical cyclotron motion of an electron in a parabolic potential. The motion of the electron is described by four coupled Langevin equations and thus is non-trivial. The generalized theorems are equally valid for non-equilibrium steady states.

  16. Gleason's Theorem for Rectangular JBW-Triples

    Science.gov (United States)

    Edwards, C. Martin; Rüttimann, Gottfried T.

    A JBW*-triple B is said to be rectangular if there exists a W*-algebra A and a pair (p,q) of centrally equivalent elements of the complete orthomodular lattice of projections in A such that B is isomorphic to the JBW*-triple pAq. Any weak*-closed injective operator space provides an example of a rectangular JBW*-triple. The principal order ideal of the complete *-lattice of centrally equivalent pairs of projections in a W*-algebra A, generated by (p,q), forms a complete lattice that is order isomorphic to the complete lattice of weak*-closed inner ideals in B and to the complete lattice of structural projections on B. Although not itself, in general, orthomodular, possesses a complementation that allows for definitions of orthogonality, centre, and central orthogonality to be given. A less familiar notion in lattice theory, that is well-known in the theory of Jordan algebras and Jordan triple systems, is that of rigid collinearity of a pair (e2,f2) and (e2,f2) of elements of . This is defined and characterized in terms of properties of . A W*-algebra A is sometimes thought of as providing a model for a statistical physical system. In this case B, or, equivalently, pAq, may be thought of as providing a model for a fixed sub-system of that represented by A. Therefore, may be considered to represent the set consisting of a particular kind of sub-system of that represented by pAq. Central orthogonality and rigid collinearity of pairs of elements of may be regarded as representing two different types of disjointness, the former, classical disjointness, and the latter, decoherence, of the two sub-systems. It is therefore natural to consider bounded measures m on that are additive on centrally orthogonal and rigidly collinear pairs of elements. Using results of J.D.M. Wright, it is shown that, provided that neither of the two hereditary sub-W*-algebras pAp and qAq of A has a weak*-closed ideal of Type I2, such measures are precisely those that are the restrictions of

  17. Uniqueness theorems in linear elasticity

    CERN Document Server

    Knops, Robin John

    1971-01-01

    The classical result for uniqueness in elasticity theory is due to Kirchhoff. It states that the standard mixed boundary value problem for a homogeneous isotropic linear elastic material in equilibrium and occupying a bounded three-dimensional region of space possesses at most one solution in the classical sense, provided the Lame and shear moduli, A and J1 respectively, obey the inequalities (3 A + 2 J1) > 0 and J1>O. In linear elastodynamics the analogous result, due to Neumann, is that the initial-mixed boundary value problem possesses at most one solution provided the elastic moduli satisfy the same set of inequalities as in Kirchhoffs theorem. Most standard textbooks on the linear theory of elasticity mention only these two classical criteria for uniqueness and neglect altogether the abundant literature which has appeared since the original publications of Kirchhoff. To remedy this deficiency it seems appropriate to attempt a coherent description ofthe various contributions made to the study of uniquenes...

  18. Isotropy theorem for cosmological vector fields

    CERN Document Server

    Cembranos, J A R; Maroto, A L; Jareño, S J Núñez

    2012-01-01

    We consider homogeneous abelian vector fields in an expanding universe. We find a mechanical analogy in which the system behaves as a particle moving in three dimensions under the action of a central potential. In the case of bounded and rapid evolution compared to the rate of expansion, we show by making use of the virial theorem that for arbitrary potential and polarization pattern, the average energy-momentum tensor is always diagonal and isotropic despite the intrinsic anisotropic evolution of the vector field. For simple power-law potentials of the form V=\\lambda (A^\\mu A_\\mu)^n, the average equation of state is found to be w=(n-1)/(n+1). This implies that vector coherent oscillations could act as natural dark matter or dark energy candidates. Finally, we show that under very general conditions, the average energy-momentum tensor of a rapidly evolving bounded vector field in any background geometry is always isotropic and has the perfect fluid form for any locally inertial observer.

  19. 基于贝叶斯定理与洪水预报误差抬高水库汛限水位的风险分析%Risk analysis of raising reservoir flood limited water level based on Bayes theorem and flood forecast error

    Institute of Scientific and Technical Information of China (English)

    周如瑞; 卢迪; 王本德; 周惠成

    2016-01-01

    The development of hydrometeorological forecast technology offers important opportunities for reservoir dynamic control of flood limited water level. Economic benefits can be improved by raising the flood limited water level, but there is certain flood control risk. The purpose of this study was to propose a risk analysis method of upper bound of dynamic control of flood limited water level in order to provide the support for the development of dynamic control of flood limited water level. The proposed risk analysis method was based on Bayes theorem and flood forecast error characteristics. Qinghe reservoir, located in the northeast of China, was taken as an example. 21 flood events of actual and forecast runoff from the year 1964 to 2013 were used. For large reservoirs that has the ability for multi-year regulation, decision makers of flood control operation concern a lot about runoff forecast accuracy because the design flood is controlled by the flood volume. First, maximum entropy method was selected to simulate the runoff prediction error probability density function of 21 flood events, also forecast error range was calculated. According to the actual need of runoff forecast error in Qinghe reservoir, the range was divided into 6 zones, and distribution probabilities of runoff forecast errors in each zone, namely the prior probability distributions of flood forecasting errors were obtained by integrating the density function. Then, the probabilities of the highest water levels being higher than corresponding designed levels within different flood forecast error bounds were studied, and the risks of different flood forecast errors were inferred by Bayes theorem when the highest water level in flood regulation met with the design flood frequency. Based on the risk analysis method, risks of each design water level considering flood forecast information were compared with risks of conventional mode. The proposed risk analysis method of upper bound of dynamic

  20. Quantum macrostates, equivalence of ensembles, and an H-theorem

    Science.gov (United States)

    De Roeck, Wojciech; Maes, Christian; Netočný, Karel

    2006-07-01

    Before the thermodynamic limit, macroscopic averages need not commute for a quantum system. As a consequence, aspects of macroscopic fluctuations or of constrained equilibrium require a careful analysis, when dealing with several observables. We propose an implementation of ideas that go back to John von Neumann's writing about the macroscopic measurement. We apply our scheme to the relation between macroscopic autonomy and an H-theorem, and to the problem of equivalence of ensembles. In particular, we show how the latter is related to the asymptotic equipartition theorem. The main point of departure is an expression of a law of large numbers for a sequence of states that start to concentrate, as the size of the system gets larger, on the macroscopic values for the different macroscopic observables. Deviations from that law are governed by the entropy.

  1. Zero modes of various graphene configurations from the index theorem

    CERN Document Server

    Pachos, J K; Stone, M; Hatzinikitas, Agapitos; Pachos, Jiannis K.; Stone, Michael

    2007-01-01

    In this article we consider a graphene sheet that is folded in various compact geometries with arbitrary topology described by a certain genus, $g$. While the Hamiltonian of these systems is defined on a lattice one can take the continuous limit. The obtained Dirac-like Hamiltonian describes well the low energy modes of the initial system. Starting from first principles we derive an index theorem that corresponds to this Hamiltonian. This theorem relates the zero energy modes of the graphene sheet with the topology of the compact lattice. For $g=0$ and $g=1$ these results coincide with the analytical and numerical studies performed for fullerene molecules and carbon nanotubes while for higher values of $g$ they give predictions for more complicated molecules.

  2. Sampling Theorem in Terms of the Bandwidth and Sampling Interval

    Science.gov (United States)

    Dean, Bruce H.

    2011-01-01

    An approach has been developed for interpolating non-uniformly sampled data, with applications in signal and image reconstruction. This innovation generalizes the Whittaker-Shannon sampling theorem by emphasizing two assumptions explicitly (definition of a band-limited function and construction by periodic extension). The Whittaker- Shannon sampling theorem is thus expressed in terms of two fundamental length scales that are derived from these assumptions. The result is more general than what is usually reported, and contains the Whittaker- Shannon form as a special case corresponding to Nyquist-sampled data. The approach also shows that the preferred basis set for interpolation is found by varying the frequency component of the basis functions in an optimal way.

  3. Newton's Theorem of Revolving Orbits in General Relativity

    CERN Document Server

    Christian, Pierre

    2016-01-01

    Newton's theorem of revolving orbits states that one can multiply the angular speed of a Keplerian orbit by a factor $k$ by applying a radial inverse cubed force proportional to $(1-k^2)$. In this paper we derive two generalizations of this theorem in general relativity, valid for the motion of massive particles in any static, spherically symmetric metrics. The first generalization, which we named the "force" picture, generalizes Newton's radial inverse cubed force by a corresponding four-force. The second generalization, which we named the "metric" picture, instead modifies the metric of the system to produce the multiplication in angular speed. Further, we verify the Newtonian limits of both generalizations and demonstrate that there is no such generalization for rotating metrics.

  4. Moving mirrors and the fluctuation-dissipation theorem

    CERN Document Server

    Stargen, D Jaffino; Sriramkumar, L

    2016-01-01

    We investigate the random motion of a mirror in (1 + 1)-dimensions that is immersed in a thermal bath of massless scalar particles which are interacting with the mirror through a boundary condition. Imposing the Dirichlet or the Neumann boundary conditions on the moving mirror, we evaluate the mean radiation reaction force on the mirror and the correlation function describing the fluctuations in the force about the mean value. From the correlation function thus obtained, we explicitly establish the fluctuation-dissipation theorem governing the moving mirror. Using the fluctuation-dissipation theorem, we compute the mean-squared displacement of the mirror at finite and zero temperature. We clarify a few points concerning the various limiting behavior of the mean-squared displacement of the mirror. While we recover the standard result at finite temperature, we find that the mirror diffuses logarithmically at zero temperature, confirming similar conclusions that have been arrived at earlier in this context. We a...

  5. The pointwise Hellmann-Feynman theorem

    Directory of Open Access Journals (Sweden)

    David Carfì

    2010-02-01

    Full Text Available In this paper we study from a topological point of view the Hellmann-Feynman theorem of Quantum Mechanics. The goal of the paper is twofold: On one hand we emphasize the role of the strong topology in the classic version of the theorem in Hilbert spaces, for what concerns the kind of convergence required on the space of continuous linear endomorphisms, which contains the space of (continuous observables.On the other hand we state and prove a new pointwise version of the classic Hellmann-Feynman theorem. This new version is not yet present in the literature and follows the idea of A. Bohm concerning the topology which is desiderable to use in Quantum Mechanics. It is indeed out of question that this non-trivial new version of the Hellmann-Feynman theorem is the ideal one - for what concerns the continuous observables on Hilbert spaces, both from a theoretical point of view, since it is the strongest version obtainable in this context - we recall that the pointwise topology is the coarsest one compatible with the linear structure of the space of continuous observables -, and from a practical point of view, because the pointwise topology is the easiest to use among topologies: it brings back the problems to the Hilbert space topology. Moreover, we desire to remark that this basic theorem of Quantum Mechanics, in his most desiderable form, is deeply interlaced with two cornerstones of Functional Analysis: the Banach-Steinhaus theorem and the Baire theorem.

  6. An algebraic spin and statistics theorem

    CERN Document Server

    Guido, I D

    1994-01-01

    Abstract. A spin-statistics theorem and a PCT theorem are obtained in the context of the superselection sectors in Quantum Field Theory on a 4-dimensional space-time. Our main assumption is the requirement that the modular groups of the von Neumann algebras of local observables associated with wedge regions act geometrically as pure Lorentz transformations. Such a property, satisfied by the local algebras generated by Wightman fields because of the Bisognano-Wichmann theorem, is regarded as a natural primitive assumption.

  7. Linear Sequences and Weighted Ergodic Theorems

    Directory of Open Access Journals (Sweden)

    Tanja Eisner

    2013-01-01

    Full Text Available We present a simple way to produce good weights for several types of ergodic theorem including the Wiener-Wintner type multiple return time theorem and the multiple polynomial ergodic theorem. These weights are deterministic and come from orbits of certain bounded linear operators on Banach spaces. This extends the known results for nilsequences and return time sequences of the form for a measure preserving system and , avoiding in the latter case the problem of finding the full measure set of appropriate points .

  8. Existence theorems for ordinary differential equations

    CERN Document Server

    Murray, Francis J

    2007-01-01

    Theorems stating the existence of an object-such as the solution to a problem or equation-are known as existence theorems. This text examines fundamental and general existence theorems, along with the Picard iterants, and applies them to properties of solutions and linear differential equations.The authors assume a basic knowledge of real function theory, and for certain specialized results, of elementary functions of a complex variable. They do not consider the elementary methods for solving certain special differential equations, nor advanced specialized topics; within these restrictions, th

  9. Interval logic. Proof theory and theorem proving

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Marthedal

    2002-01-01

    . By theorem proving we understand the activity of proving theorems of a logic with the assistance of a computer. The goal of this thesis is to improve theorem proving support for interval logics such that larger and more realistic case-studies of real-time systems can be conducted using these formalisms...... of a direction of an interval, and present a sound and complete Hilbert proof system for it. Because of its generality, SIL can conveniently act as a general formalism in which other interval logics can be encoded. We develop proof theory for SIL including both a sequent calculus system and a labelled natural...

  10. Haag's theorem in renormalised quantum field theories

    CERN Document Server

    Klaczynski, Lutz

    2016-01-01

    We review a package of no-go results in axiomatic quantum field theory with Haag's theorem at its centre. Since the concept of operator-valued distributions in this framework comes very close to what we believe canonical quantum fields are about, these results are of consequence to quantum field theory: they suggest the seeming absurdity that this highly victorious theory is incapable of describing interactions. We single out unitarity of the interaction picture's intertwiner as the most salient provision of Haag's theorem and critique canonical perturbation theory to argue that renormalisation bypasses Haag's theorem by violating this very assumption.

  11. On Soft Theorems And Form Factors In N=4 SYM Theory

    CERN Document Server

    Bork, L V

    2015-01-01

    Soft theorems for the form factors of 1/2-BPS and Konishi operator supermultiplets are derived at tree level in N=4 SYM theory. They have a form identical to the one in the amplitude case. For MHV sectors of stress tensor and Konishi supermultiplets loop corrections to soft theorems are considered at one loop level. They also appear to have universal form in soft limit. Possible generalization of the on-shell diagrams to the form factors based on leading soft behavior is suggested. Finally, we give some comments on inverse soft limit and integrability of form factors in the limit $q^2\\to 0$

  12. Quadratic Goldreich-Levin Theorems

    CERN Document Server

    Tulsiani, Madhur

    2011-01-01

    Decomposition theorems in classical Fourier analysis enable us to express a bounded function in terms of few linear phases with large Fourier coefficients plus a part that is pseudorandom with respect to linear phases. The Goldreich-Levin algorithm can be viewed as an algorithmic analogue of such a decomposition as it gives a way to efficiently find the linear phases associated with large Fourier coefficients. In the study of "quadratic Fourier analysis", higher-degree analogues of such decompositions have been developed in which the pseudorandomness property is stronger but the structured part correspondingly weaker. For example, it has previously been shown that it is possible to express a bounded function as a sum of a few quadratic phases plus a part that is small in the $U^3$ norm, defined by Gowers for the purpose of counting arithmetic progressions of length 4. We give a polynomial time algorithm for computing such a decomposition. A key part of the algorithm is a local self-correction procedure for Re...

  13. Security Theorems via Model Theory

    Directory of Open Access Journals (Sweden)

    Joshua Guttman

    2009-11-01

    Full Text Available A model-theoretic approach can establish security theorems for cryptographic protocols. Formulas expressing authentication and non-disclosure properties of protocols have a special form. They are quantified implications for all xs . (phi implies for some ys . psi. Models (interpretations for these formulas are *skeletons*, partially ordered structures consisting of a number of local protocol behaviors. *Realized* skeletons contain enough local sessions to explain all the behavior, when combined with some possible adversary behaviors. We show two results. (1 If phi is the antecedent of a security goal, then there is a skeleton A_phi such that, for every skeleton B, phi is satisfied in B iff there is a homomorphism from A_phi to B. (2 A protocol enforces for all xs . (phi implies for some ys . psi iff every realized homomorphic image of A_phi satisfies psi. Hence, to verify a security goal, one can use the Cryptographic Protocol Shapes Analyzer CPSA (TACAS, 2007 to identify minimal realized skeletons, or "shapes," that are homomorphic images of A_phi. If psi holds in each of these shapes, then the goal holds.

  14. Remarks on the Cayley-Hamilton Theorem

    OpenAIRE

    Gatto, Letterio; Scherbak, Inna

    2015-01-01

    We revisit the classical theorem by Cayley and Hamilton, "{\\em each endomorphism is a root of its own characteristic polynomial}", from the point of view of {\\em Hasse--Schmidt derivations on an exterior algebra}

  15. Affine and Projective Tree Metric Theorems

    CERN Document Server

    Harel, Matan; Pachter, Lior

    2011-01-01

    The tree metric theorem provides a combinatorial four point condition that characterizes dissimilarity maps derived from pairwise compatible split systems. A similar (but weaker) four point condition characterizes dissimilarity maps derived from circular split systems (Kalmanson metrics). The tree metric theorem was first discovered in the context of phylogenetics and forms the basis of many tree reconstruction algorithms, whereas Kalmanson metrics were first considered by computer scientists, and are notable in that they are a non-trivial class of metrics for which the traveling salesman problem is tractable. We present a unifying framework for these theorems based on combinatorial structures that are used for graph planarity testing. These are (projective) PC-trees, and their affine analogs, PQ-trees. In the projective case, we generalize a number of concepts from clustering theory, including hierarchies, pyramids, ultrametrics and Robinsonian matrices, and the theorems that relate them. As with tree metric...

  16. On the failure of Bell's theorem

    OpenAIRE

    Bene, Gyula

    1997-01-01

    Using a new approach to quantum mechanics we revisit Hardy's proof for Bell's theorem and point out a loophole in it. We also demonstrate on this example that quantum mechanics is a local realistic theory.

  17. Yet another proof of Szemeredi's theorem

    CERN Document Server

    Green, Ben

    2010-01-01

    Using the density-increment strategy of Roth and Gowers, we derive Szemeredi's theorem on arithmetic progressions from the inverse conjectures GI(s) for the Gowers norms, recently established by the authors and Ziegler.

  18. Transformation groups and the virial theorem

    NARCIS (Netherlands)

    Kampen, N.G. van

    1972-01-01

    A generalization of Noether's result for classical mechanics is given, which shows that the virial theorem is related to an invariance property of the Lagrange function. Two examples are discussed in detail.

  19. TRANSVERSAL SPACES AND FIXED POINT THEOREMS

    OpenAIRE

    Sinia N. Ješić; Milan R. Tasković; Nataša Babačev

    2007-01-01

    In this paper we define Transversal functional probabilistic spaces (upper and lower) as a natural extension of Metric spaces, Probabilistic metric spaces and Fuzzy metric spaces. Also, we formulate and prove some fixed and common fixed point theorems.

  20. Two No-Go Theorems on Superconductivity

    CERN Document Server

    Tada, Yasuhiro

    2016-01-01

    We study lattice superconductors such as attractive Hubbard models. As is well known, Bloch's theorem asserts absence of persistent current in ground states and equilibrium states for general fermion systems. While the statement of the theorem is true, we can show that the theorem cannot exclude possibility of a surface persistent current. Such a current can be stabilized by boundary magnetic fields which do not penetrate into the bulk region of a superconductor, provided emergence of massive photons, i.e., Meissner effect. Therefore, we can expect that a surface persistent current is realized for a ground/equilibrium state in the sense of stability against local perturbations. We also apply Elitzur's theorem to superconductors at finite temperatures. As a result, we prove absence of symmetry breaking of the global U(1) phase of electrons for almost all gauge fixings. These observations suggest that the nature of superconductivity is the emergence of massive photons rather than the symmetry breaking of the U(...

  1. A generalized preimage theorem in global analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The concept of locally fine point and generalized regular valueof a C1 map between Banach spaces were carried over C1 map between Banach manifolds. Hence the preimage theorem, a principle constructing Banach manifolds in global analysis, is generalized.

  2. Lambda-mu-calculus and Bohm's theorem

    OpenAIRE

    David, René; Py, Walter

    2001-01-01

    The lambda mu-calculus is an extension of the lambda-calculus that has been introduced by M. Parigot to give an algorithmic content to classical proofs. We show that Bohm's theorem fails in this calculus.

  3. The virial theorem for nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima (Mexico); Fernandez, Francisco M [INIFTA (UNLP, CCT La Plata-CONICET), Division Quimica Teorica, Blvd 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)], E-mail: paolo.amore@gmail.com, E-mail: fernande@quimica.unlp.edu.ar

    2009-09-15

    We show that the virial theorem provides a useful simple tool for approximating nonlinear problems. In particular, we consider conservative nonlinear oscillators and obtain the same main result derived earlier from the expansion in Chebyshev polynomials. (letters and comments)

  4. The Michaelis-Menten-Stueckelberg Theorem

    Directory of Open Access Journals (Sweden)

    Alexander N. Gorban

    2011-05-01

    Full Text Available We study chemical reactions with complex mechanisms under two assumptions: (i intermediates are present in small amounts (this is the quasi-steady-state hypothesis or QSS and (ii they are in equilibrium relations with substrates (this is the quasiequilibrium hypothesis or QE. Under these assumptions, we prove the generalized mass action law together with the basic relations between kinetic factors, which are sufficient for the positivity of the entropy production but hold even without microreversibility, when the detailed balance is not applicable. Even though QE and QSS produce useful approximations by themselves, only the combination of these assumptions can render the possibility beyond the “rarefied gas” limit or the “molecular chaos” hypotheses. We do not use any a priori form of the kinetic law for the chemical reactions and describe their equilibria by thermodynamic relations. The transformations of the intermediate compounds can be described by the Markov kinetics because of their low density (low density of elementary events. This combination of assumptions was introduced by Michaelis and Menten in 1913. In 1952, Stueckelberg used the same assumptions for the gas kinetics and produced the remarkable semi-detailed balance relations between collision rates in the Boltzmann equation that are weaker than the detailed balance conditions but are still sufficient for the Boltzmann H-theorem to be valid. Our results are obtained within the Michaelis-Menten-Stueckelbeg conceptual framework.

  5. A New GLKKM Theorem and Its Application to Abstract Economies

    Institute of Scientific and Technical Information of China (English)

    WEN Kai-ting

    2012-01-01

    In this paper,a new GLKKM theorem in L-convex spaces is established.As applications,a new fixed point theorem and a maximal element theorem are obtained in Lconvex spaces.Finally,equilibrium existence theorems for abstract economies and qualitative games in L-convex spaces are yielded.

  6. Slowly changing potential problems in Quantum Mechanics: Adiabatic theorems, ergodic theorems, and scattering

    Science.gov (United States)

    Fishman, S.; Soffer, A.

    2016-07-01

    We employ the recently developed multi-time scale averaging method to study the large time behavior of slowly changing (in time) Hamiltonians. We treat some known cases in a new way, such as the Zener problem, and we give another proof of the adiabatic theorem in the gapless case. We prove a new uniform ergodic theorem for slowly changing unitary operators. This theorem is then used to derive the adiabatic theorem, do the scattering theory for such Hamiltonians, and prove some classical propagation estimates and asymptotic completeness.

  7. A Converse of Fermat's Little Theorem

    Science.gov (United States)

    Bruckman, P. S.

    2007-01-01

    As the name of the paper implies, a converse of Fermat's Little Theorem (FLT) is stated and proved. FLT states the following: if p is any prime, and x any integer, then x[superscript p] [equivalent to] x (mod p). There is already a well-known converse of FLT, known as Lehmer's Theorem, which is as follows: if x is an integer coprime with m, such…

  8. A Theorem on Combinatorial Group Theory

    Institute of Scientific and Technical Information of China (English)

    何伯和

    2000-01-01

    Let F= F(X) be a free group of rand n, A be a finite subset of F(X) and x∈X be a generator. The theorem states that x can be denoted as a rotation-inserting word of A if x is in the normal closure of A in F(X). Finally, an application of the theorem in Heegaard splitting of 3manifolds is given.

  9. The two Bell's theorems of John Bell

    International Nuclear Information System (INIS)

    Many of the heated arguments about the meaning of ‘Bell's theorem’ arise because this phrase can refer to two different theorems that John Bell proved, the first in 1964 and the second in 1976. His 1964 theorem is the incompatibility of quantum phenomena with the dual assumptions of locality and determinism. His 1976 theorem is the incompatibility of quantum phenomena with the unitary property of local causality. This is contrary to Bell's own later assertions, that his 1964 theorem began with that single, and indivisible, assumption of local causality (even if not by that name). While there are other forms of Bell's theorems—which I present to explain the relation between Jarrett-completeness, ‘fragile locality’, and EPR-completeness—I maintain that Bell's two versions are the essential ones. Although the two Bell's theorems are logically equivalent, their assumptions are not, and the different versions of the theorem suggest quite different conclusions, which are embraced by different communities. For realists, the notion of local causality, ruled out by Bell's 1976 theorem, is motivated implicitly by Reichenbach's principle of common cause and explicitly by the principle of relativistic causality, and it is the latter which must be forgone. Operationalists pay no heed to Reichenbach's principle, but wish to keep the principle of relativistic causality, which, bolstered by an implicit ‘principle of agent-causation’, implies their notion of locality. Thus for operationalists, Bell's theorem is the 1964 one, and implies that it is determinism that must be forgone. I discuss why the two ‘camps’ are drawn to these different conclusions, and what can be done to increase mutual understanding. (review article)

  10. q-Deformed Dynamics and Virial Theorem

    OpenAIRE

    Zhang, Jian-zu

    2002-01-01

    In the framework of the q-deformed Heisenberg algebra the investigation of $q$-deformation of Virial theorem explores that q-deformed quantum mechanics possesses better dynamical property. It is clarified that in the case of the zero potential the theoretical framework for the q-deformed Virial theorem is self-consistent. In the selfadjoint states the q-deformed uncertainty relation essentially deviates from the Heisenberg one.

  11. Has the Goldstone theorem been revisited?

    CERN Document Server

    Guerrieri, A

    2014-01-01

    A recent paper (arXiv:1404.5619) claimed the presence of a loophole in the current-algebra proof of Goldstone Theorem. The enforcing of manifest covariance would lead to contradictory results also in scalar theory. We show that the argument proposed is not in contradiction with covariance, thus not invalidating the theorem. Moreover, the counterexample proposed of a scalar operator with a non-zero vacuum expectation value in an unbroken theory is ill-defined.

  12. A new proof of Goodstein's Theorem

    OpenAIRE

    Perez, Juan A.

    2009-01-01

    Goodstein sequences are numerical sequences in which a natural number m, expressed as the complete normal form to a given base a, is modified by increasing the value of the base a by one unit and subtracting one unit from the resulting expression. As initially defined, the first term of the Goodstein sequence is the complete normal form of m to base 2. Goodstein's Theorem states that, for all natural numbers, the Goodstein sequence eventually terminates at zero. Goodstein's Theorem was origin...

  13. Epistemological Consequences of the Incompleteness Theorems

    OpenAIRE

    Raguní, Giuseppe

    2016-01-01

    After highlighting the cases in which the semantics of a language cannot be mechanically reproduced (in which case it is called inherent), the main epistemological consequences of the first incompleteness Theorem for the two fundamental arithmetical theories are shown: the non-mechanizability for the truths of the first-order arithmetic and the peculiarities for the model of the second-order arithmetic. Finally, the common epistemological interpretation of the second incompleteness Theorem is...

  14. Virial theorems for trapped cold atoms

    OpenAIRE

    Werner, Félix

    2008-01-01

    A few small corrections We present a general virial theorem for quantum particles with arbitrary zero-range or finite-range interactions in an arbitrary external potential. We deduce virial theorems for several situations relevant to trapped cold atoms: zero-range interactions with and without Efimov effect, hard spheres, narrow Feshbach resonances, and finite-range interactions. If the scattering length $a$ is varied adiabatically in the BEC-BCS crossover, we find that the trapping potent...

  15. Shafranov's virial theorem and magnetic plasma confinement

    OpenAIRE

    Faddeev, Ludvig; Freyhult, Lisa; Niemi, Antti J.; Rajan, Peter

    2000-01-01

    Shafranov's virial theorem implies that nontrivial magnetohydrodynamical equilibrium configurations must be supported by externally supplied currents. Here we extend the virial theorem to field theory, where it relates to Derrick's scaling argument on soliton stability. We then employ virial arguments to investigate a realistic field theory model of a two-component plasma, and conclude that stable localized solitons can exist in the bulk of a finite density plasma. These solitons entail a non...

  16. On the Significance of the Gottesman-Knill Theorem

    CERN Document Server

    Cuffaro, Michael E

    2013-01-01

    According to the Gottesman-Knill theorem, quantum algorithms utilising operations chosen from a particular restricted set are efficiently simulable classically. Since some of these algorithms involve entangled states, it is commonly concluded that entanglement is not sufficient to enable quantum computers to outperform classical computers. It is argued in this paper, however, that what the Gottesman-Knill theorem shows us is only that if we limit ourselves to the Gottesman-Knill operations, we will not have used the entanglement with which we have been provided to its full potential, for all of the Gottesman-Knill operations are such that their associated statistics (even when they involve entangled states) are reproducible in a local hidden variables theory. It is further argued that considering the Gottesman-Knill theorem is illuminating, not only for our understanding of quantum computation, but also for our understanding of what we take to be a plausible local hidden variables theory, as well as for our u...

  17. Quantum De Moivre-Laplace theorem for noninteracting indistinguishable particles

    CERN Document Server

    Shchesnovich, V S

    2016-01-01

    The De Moivre-Laplace theorem applied to a Galton board says that probability distribution of $N$ balls over output bins takes a Gaussian form as $N\\to \\infty$. A quantum version of the theorem for $N$ noninteracting indistinguishable bosons (fermions) in a unitary $M$-mode network is discovered: the average probability distribution of particles over bins in a random network converges to a Gaussian law as $N\\to\\infty$, where their quantum statistics enters through the particle density $N/M$. The quantum De Moivre-Laplace theorem applies to an arbitrary partition of output modes into small number of bins and, moreover, for a given network with averaging over allowed input configurations. For $N\\gg 1$ the Gaussian law is a good approximation for an exact probability distribution over bins in a network without symmetries. In the thermodynamic limit $N\\to\\infty$ a finite difference in probability in a random network between indistinguishable bosons, fermions, and distinguishable particles is possible only at a no...

  18. Mental Constructions for The Group Isomorphism Theorem

    Directory of Open Access Journals (Sweden)

    Arturo Mena-Lorca

    2016-03-01

    Full Text Available The group isomorphism theorem is an important subject in any abstract algebra undergraduate course; nevertheless, research shows that it is seldom understood by students. We use APOS theory and propose a genetic decomposition that separates it into two statements: the first one for sets and the second with added structure. We administered a questionnaire to students from top Chilean universities and selected some of these students for interviews to gather information about the viability of our genetic decomposition. The students interviewed were divided in two groups based on their familiarity with equivalence relations and partitions. Students who were able to draw on their intuition of partitions were able to reconstruct the group theorem from the set theorem, while those who stayed on the purely algebraic side could not. Since our approach to learning this theorem was successful, it may be worthwhile to gather data while teaching it the way we propose here in order to check how much the learning of the group isomorphism theorem is improved. This approach could be expanded to other group homomorphism theorems provided further analysis is conducted: going from the general (e.g., sets to the particular (e.g., groups might not always the best strategy, but in some cases we may just be turning to more familiar settings.

  19. Optical theorem detectors for active scatterers

    Science.gov (United States)

    Marengo, Edwin A.; Tu, Jing

    2015-10-01

    We develop a new theory of the optical theorem for scalar fields in nonhomogeneous media which can be bounded or unbounded. It applies to arbitrary lossless backgrounds and quite general probing fields. The derived formulation holds for arbitrary passive scatterers, which can be dissipative, as well as for the more general class of active scatterers which are composed of a (passive) scatterer component and an active, radiating (antenna) component. The generalization of the optical theorem to active scatterers is relevant to many applications such as surveillance of active targets including certain cloaks and invisible scatterers and wireless communications. The derived theoretical framework includes the familiar real power optical theorem describing power extinction due to both dissipation and scattering as well as a novel reactive optical theorem related to the reactive power changes. The developed approach naturally leads to three optical theorem indicators or statistics which can be used to detect changes or targets in unknown complex media. The paper includes numerical simulation results that illustrate the application of the derived optical theorem results to change detection in complex and random media.

  20. Combinatorial theorems in sparse random sets

    CERN Document Server

    Conlon, D

    2010-01-01

    We develop a new technique that allows us to show in a unified way that many well-known combinatorial theorems, including Tur\\'an's theorem, Szemer\\'edi's theorem and Ramsey's theorem, hold almost surely inside sparse random sets. For instance, we extend Tur\\'an's theorem to the random setting by showing that for every epsilon > 0 and every positive integer t >= 3 there exists a constant C such that, if G is a random graph on n vertices where each edge is chosen independently with probability at least C n^{-2/(t+1)}, then, with probability tending to 1 as n tends to infinity, every subgraph of G with at least (1 - \\frac{1}{t-1} + epsilon) e(G) edges contains a copy of K_t. This is sharp up to the constant C. We also show how to prove sparse analogues of structural results, giving two main applications, a stability version of the random Tur\\'an theorem stated above and a sparse hypergraph removal lemma. Many similar results have recently been obtained independently in a different way by Schacht and by Friedgut...

  1. The modified Poynting theorem and the concept of mutual energy

    CERN Document Server

    Zhao, Shuang-ren; Yang, Kang; Yang, Xingang; Yang, Xintie

    2015-01-01

    The Poynting theorem is generalized to the modified Poynting theorem. In the modified Poynting theorem the electromagnetic field is superimposition of different electromagnetic fields including the field of retarded potential and advanced potential. The media epsilon (permittivity) and mu (permeability) can also be different in the different fields. The concept of mutual energy is introduced which is the difference between the total energy and self-energy. Using the modified Poynting theorem with the concept of the mutual energy the modified mutual energy theorem is derived. Applying time-offset transform and time integral to the modified mutual energy theorem, the time-correlation modified mutual energy theorem is obtained. Assume there are only two fields which are retarded potential, and there is only one media, the modified time-correlation energy theorem becomes the time-correlation energy theorem, which is also referred as the time-correlation reciprocity theorem. Assume there are two electromagnetic fi...

  2. Numerical Limit Analysis:

    DEFF Research Database (Denmark)

    Damkilde, Lars

    2007-01-01

    Limit State analysis has a long history and many prominent researchers have contributed. The theoretical foundation is based on the upper- and lower-bound theorems which give a very comprehensive and elegant formulation on complicated physical problems. In the pre-computer age Limit State analysi...

  3. Coincidence Theorems with Applications to Minimax Inequalities, Section Theorem, Best Approximation and Multiobjective Games in Topological Spaces

    Institute of Scientific and Technical Information of China (English)

    Lei DENG; Ming Ge YANG

    2006-01-01

    Some new coincidence theorems involving admissible set-valued mappings are proved in general noncompact topological spaces. As applications, some new minimax inequalities, section theorem, best approximation theorem, existence theorems of weighted Nash equilibria and Pareto equilibria for multiobjective games are given in general topological spaces.

  4. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models.

    Science.gov (United States)

    Chavanis, Pierre-Henri; Sire, Clément

    2006-06-01

    We derive the virial theorem appropriate to the generalized Smoluchowski-Poisson (GSP) system describing self-gravitating Brownian particles in an overdamped limit. We extend previous works by considering the case of an unbounded domain and an arbitrary equation of state. We use the virial theorem to study the diffusion (evaporation) of an isothermal Brownian gas above the critical temperature Tc in dimension d = 2 and show how the effective diffusion coefficient and the Einstein relation are modified by self-gravity. We also study the collapse at T = Tc and show that the central density increases logarithmically with time instead of exponentially in a bounded domain. Finally, for d > 2, we show that the evaporation of the system is essentially a pure diffusion slightly slowed down by self-gravity. We also study the linear dynamical stability of stationary solutions of the GSP system representing isolated clusters of particles and investigate the influence of the equation of state and of the dimension of space on the dynamical stability of the system. PMID:16906910

  5. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models.

    Science.gov (United States)

    Chavanis, Pierre-Henri; Sire, Clément

    2006-06-01

    We derive the virial theorem appropriate to the generalized Smoluchowski-Poisson (GSP) system describing self-gravitating Brownian particles in an overdamped limit. We extend previous works by considering the case of an unbounded domain and an arbitrary equation of state. We use the virial theorem to study the diffusion (evaporation) of an isothermal Brownian gas above the critical temperature Tc in dimension d = 2 and show how the effective diffusion coefficient and the Einstein relation are modified by self-gravity. We also study the collapse at T = Tc and show that the central density increases logarithmically with time instead of exponentially in a bounded domain. Finally, for d > 2, we show that the evaporation of the system is essentially a pure diffusion slightly slowed down by self-gravity. We also study the linear dynamical stability of stationary solutions of the GSP system representing isolated clusters of particles and investigate the influence of the equation of state and of the dimension of space on the dynamical stability of the system.

  6. The Hellmann–Feynman theorem, the comparison theorem, and the envelope theory

    Directory of Open Access Journals (Sweden)

    Claude Semay

    2015-01-01

    Full Text Available The envelope theory is a convenient method to compute approximate solutions for bound state equations in quantum mechanics. It is shown that these approximate solutions obey a kind of Hellmann–Feynman theorem, and that the comparison theorem can be applied to these approximate solutions for two ordered Hamiltonians.

  7. Generalized Virial Theorem and Pressure Relation for a strongly correlated Fermi gas

    OpenAIRE

    Tan, Shina

    2008-01-01

    For a two-component Fermi gas in the unitarity limit (ie, with infinite scattering length), there is a well-known virial theorem, first shown by J. E. Thomas et al, Phys. Rev. Lett. 95, 120402 (2005). A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure, first shown in co...

  8. Possibilities and limitations of analogue methods for studying the dynamics of nuclear power stations; Possibilites et limitations du calcul analogique pour les etudes dynamiques de centrales nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Caillet, C.; Deat, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    speciaux que l'on decrit en discutant la validite des approximations choisies. 4. Les simulateurs de machines tournantes: on souligne le caractere particulier que presentent les calculs des machines tournantes en raison de la necessite ou l'on est de passer par l'intermediaire d'abaques. On propose l'utilisation d'une memoire a acces aleatoire permettant un traitement analogique de ces problemes. 5. Etude d'une centrale nucleaire: on etudie, sur un exemple, les problemes poses par l'interconnexion d'elements du type precedent pour la simulation de grands ensembles (centrales nucleaires) et on souligne le role des elements ordinaires de calcul. 6. Conclusion: on souligne la necessite pour toutes ces etudes, de disposer d'un materiel de qualite et on discute la signification des resultats ainsi obtenus. (auteur)

  9. Permission of change of limits in the vapor generators of the Atucha I Nuclear Central; Permiso de cambio de limites en los GVs de la CNA-I

    Energy Technology Data Exchange (ETDEWEB)

    Ventura, M. [Autoridad Regulatoria Nuclear, Av. Libertador 8250 (1429), Capital Federal (Argentina)]. e-mail: mventura@sede.arn.gov.ar

    2006-07-01

    In the mark of the modification of the Atucha-I Nuclear Central Installation (CNA-I) as consequence of the Introduction of the System 'Second Drain of Heat' (SSC), the Entity Responsible for the CNA-I (NASA) requested authorization to the Nuclear Regulatory Authority (ARN) to modify the value of the minimum level of water in the secondary side in the Steam generators (GVs) to activate the signal 'shoot of the Cut of the Reactor' (RESA-LLV). As the level in the GVs is one of those parameters that are used to shoot the Emergency Feeding System (RX), component of the SSC System, also was analyzed the change in the activation of the shoot signal of the 'Second Drain of Heat' (2SSC-LLV). The ARN uses for the study of the nuclear safety of nuclear power plants, the series of prediction programs RELAP5/MOD3.X. It participates of the evaluation and maintenance activities of these codes through specific agreements with the U.S. Nuclear Regulatory Commission (US-NRC). It is necessary to account with programs of this type since the ARN it licenses the construction and operation of Nuclear Power Plants (NPPs) and other outstanding facilities and it inquires its operation according to its own standards. With these tools its are auditing the calculations that the Responsible Entities of the operation make to guarantee the operability of the NPPs assisting the mentioned standards. The analysis with computational codes is used as a tool to achieve the best understanding in the behavior of the plant in union with the engineering approach, the manual calculations, the data analysis and the experience in the operation of the machine. (Author)

  10. Limit Theorems for some Branching Measure-Valued Processes

    CERN Document Server

    Cloez, Bertrand

    2011-01-01

    We consider a particles system, where, the particles move independently according to a Markov process and branching event occurs at an inhomogeneous time. The offspring locations and their number may depend on the position of the mother. Our setting capture, for instance, the processes indexed by Galton-Watson tree. We first determine the asymptotic behaviour of the empirical measure. The proof is based on an expression of the empirical measure using an auxiliary process. This latter is not distributed as a one cell lineage, there is a biased phenomenon. Our model is a microscopic description of a random (discrete) population of individuals. We then obtain a large population approximation as weak solution of a growth- fragmentation equation. We illustrate our result with two examples. The first one is a size-structured population model which describes the mitosis and the second one can model a parasite infection.

  11. Some Limit Theorems for Weighted Sums of Random Variable Fields

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Let{X-n,-n∈Nd} be a field of Banach space valued random variables, 0 <r<p≤2 and{a-n,-k,(-n,-k)∈Nd×Nd,-k≤-n} a triangular array of real numbers, where Nd is the d-dimensional lattice(d≥1). Under the minimal condition that {‖X-n‖r,-n∈Nd} is {|a-n,-k|r,(-n,-k)} ∈Nd×Nd,-k≤-n}-uniformly integrable, we show that ∑(-k≤-n)(a-n,-kX-k)Lr(or a.s.)→0 as |-n|→∞. In the above, if 0<r<1, the random variables are not needed to be independent. If 1≤r<p≤2, and Banach space valued random variables are independent with mean zero we assume the Banach space is of type p. If 1≤r<p≤2 and Banach space valued random variables are not independent we assume the Banach space is p-smoothable.

  12. Completely Monotone Multisequences, Symmetric Probabilities and a Normal Limit Theorem

    Indian Academy of Sciences (India)

    J C Gupta

    2000-11-01

    Let G, be the set of all partial completely monotone multisequences of order and degree , i.e., multisequences (1, 2,$\\ldots$ ,k), 1, 2,$\\ldots$ , = 0, 1, 2,$\\ldots$ ,1 + 2 + \\$cdots$ + ≤ n, (0,0,$\\ldots$ ,0) = 1 and $(-1)^{_0}^{_0}$ (1, 2,$\\ldots$ ,)≥ 0 whenever 0 ≤ -(1 + 2 +$\\cdots$ +) where (1, 2,$\\ldots$ ,)=(1+1, 2,$\\ldots$ ,)+ (1,2+1,$\\ldots$ ,)+$\\cdots$ + (1, 2,$\\ldots$ ,+1)-(1,2,$\\ldots$ ,)$. Further, let $\\prod_{n,k}$ be the set of all symmetric probabilities on ${0, 1, 2,\\ldots ,k}^{n}$. We establish a one-to-one correspondence between the sets G, and $\\prod_{n, k}$ and use it to formulate and answer interesting questions about both. Assigning to G, the uniform probability measure, we show that, as → ∞ , any fixed section {(1, 2,$\\ldots$ ,), 1 ≤ $\\sum ≤ }, properly centered and normalized, is asymptotically multivariate normal. That is, $\\left\\{\\sqrt{\\left(\\binom{n+k}{k}\\right)}((1, 2,\\ldots ,)-c_0(1, 2,\\ldots ,), 1≤ _1+2+\\cdots +_k≤ m\\right\\}$ converges weakly to MVN[0,]; the centering constants 0(1, 2,$\\ldots$ ,) and the asymptotic covariances depend on the moments of the Dirichlet $(1, 1,\\ldots ,1; 1)$ distribution on the standard simplex in .

  13. Limiting theorems for the nodes in binary search trees

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We consider three random variables Xn, Yn and Zn, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random variables are got, and it is also shown that Xn, Yn and Zn are all asymptotically normal as n →∞ by applying the contraction method.

  14. The limiting theorems of random quadratic forms and their application

    Institute of Scientific and Technical Information of China (English)

    PAN; Guangming; MIAO; Baiqi; TAN; Changchun

    2005-01-01

    The strong convergence and convergence rate of the random quadratic formss1T(S1S1T)ms1 and s1T(SST)ms1 are set up. The application of these results in wireless communication is given. Simulation results are presented.

  15. Limiting theorems for the nodes in binary search trees

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We consider three random variables X_n, Y_n and Z_n, which represent the numbers of the nodes with 0, 1, and 2 children, in the binary search trees of size n. The expectation and variance of the three above random variables are got, and it is also shown that X_n, Y_n and Z_n are all asymptotically normal as n→∞by applying the contraction method.

  16. Local conjugacy theorem, rank theorems in advanced calculus and a generalized principle for constructing Banach manifolds

    Institute of Scientific and Technical Information of China (English)

    马吉溥

    2000-01-01

    Applications of locally fine property for operators are further developed. Let E and F be Banach spaces and f: U( x0) E—→F be C1 nonlinear map, where U (x0) is an open set containing point x0∈ E. With the locally fine property for Frechet derivatives f’ (x) and generalized rank theorem for f ’( x), a local conjugacy theorem, i. e. a characteristic condition for f being conjugate to f (x0) near x0,is proved. This theorem gives a complete answer to the local conjugacy problem. Consequently, several rank theorems in advanced calculus are established, including a theorem for C1 Fredholm map which has been so far unknown. Also with this property the concept of regular value is extended, which gives rise to a generalized principle for constructing Banach submanifolds.

  17. Local conjugacy theorem, rank theorems in advanced calculus and a generalized principle for constructing Banach manifolds

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Applications of locally fine property for operators are further developed. Let E and F be Banach spaces and f: be C1 nonlinear map, where U (x0) is an open set containing point x0∈E. With the locally fine property for Frechet derivatives f′(x) and generalized rank theorem for f′(x), a local conjugacy theorem, i.e. a characteristic condition for f being conjugate to f′(x0) near x0,is proved. This theorem gives a complete answer to the local conjugacy problem. Consequently, several rank theorems in advanced calculus are established, including a theorem for C1 Fredholm map which has been so far unknown. Also with this property the concept of regular value is extended, which gives rise to a generalized principle for constructing Banach submanifolds.

  18. Developmental endothelial locus-1 (Del-1) is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination

    OpenAIRE

    Choi, E.Y.; Lim, J-H; Neuwirth, A.; Economopoulou, M; Chatzigeorgiou, A; Chung, K-J; Bittner, S.; Lee, S-H; Langer, H; Samus, M; Kim, H.; Cho, G-S; Ziemssen, T; Bdeir, K; Chavakis, E

    2014-01-01

    Inflammation in the central nervous system (CNS) and disruption of its immune privilege are major contributors to the pathogenesis of multiple sclerosis (MS) and of its rodent counterpart, experimental autoimmune encephalomyelitis (EAE). We have previously identified developmental endothelial locus-1 (Del-1) as an endogenous anti-inflammatory factor, which inhibits integrin-dependent leukocyte adhesion. Here we show that Del-1 contributes to the immune privilege status of the CNS. Intriguingl...

  19. Goldstone's Theorem on a Light-Like Plane

    Science.gov (United States)

    Beane, Silas R.

    2015-09-01

    I review various aspects of chiral symmetry and its spontaneous breaking on null planes, including the interesting manner in which Goldstone's theorem is realized and the constraints that chiral symmetry imposes on the null-plane Hamiltonians. Specializing to QCD with N massless flavors, I show that there is an interesting limit in which the chiral constraints on the null-plane Hamiltonians can be solved to give the spin-flavor algebra SU(2 N), recovering a result originally found by Weinberg using different methods.

  20. Dai-Freed theorem and topological phases of matter

    Science.gov (United States)

    Yonekura, Kazuya

    2016-09-01

    We describe a physics derivation of theorems due to Dai and Freed about the Atiyah-Patodi-Singer eta-invariant which is important for anomalies and topological phases of matter. This is done by studying a massive fermion. The key role is played by the wave function of the ground state in the Hilbert space of the fermion in the large mass limit. The ground state takes values in the determinant line bundle and has nontrivial Berry phases which characterize the low energy topological phases.

  1. Virial theorem and gravitational equilibrium with a cosmological constant

    OpenAIRE

    Nowakowski, Marek; Sanabria, Juan Carlos; García, Alejandro

    2012-01-01

    Starting from the Newtonian limit of Einstein's equations in the presence of a positive cosmological constant, we obtain a new version of the virial theorem and a condition for gravitational equilibrium. Such a condition takes the form ρ > λρvac, where ρ is the mean density of an astrophysical system (e.g. galaxy, galaxy cluster or supercluster), λ is a quantity which depends only on the shape of the system, and ρvac is the vacuum density. We conclude that gravitational stability might be ...

  2. Double Soft Theorems and Shift Symmetry in Nonlinear Sigma Models

    CERN Document Server

    Low, Ian

    2015-01-01

    We show both the leading and subleading double soft theorems of the nonlinear sigma model follow from a shift symmetry enforcing Adler's zero condition in the presence of an unbroken global symmetry. They do not depend on the underlying coset G/H and are universal infrared behaviors of Nambu-Goldstone bosons. Although nonlinear sigma models contain an infinite number of interaction vertices, the double soft limit is determined entirely by a single four-point interaction, together with the existence of Adler's zeros.

  3. Dai-Freed theorem and topological phases of matter

    CERN Document Server

    Yonekura, Kazuya

    2016-01-01

    We describe a physics derivation of theorems due to Dai and Freed about the Atiyah-Patodi-Singer eta-invariant which is important for anomalies and topological phases of matter. This is done by studying a massive fermion. The key role is played by the wave function of the ground state in the Hilbert space of the fermion in the large mass limit. The ground state takes values in the determinant line bundle and has nontrivial Berry phases which characterize the low energy topological phases.

  4. Ergodic theorem, ergodic theory, and statistical mechanics.

    Science.gov (United States)

    Moore, Calvin C

    2015-02-17

    This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundamental problem of the subject--namely, the rationale for the hypothesis that time averages can be set equal to phase averages. The evolution of this problem is traced from the origins of statistical mechanics and Boltzman's ergodic hypothesis to the Ehrenfests' quasi-ergodic hypothesis, and then to the ergodic theorems. We discuss communications between von Neumann and Birkhoff in the Fall of 1931 leading up to the publication of these papers and related issues of priority. These ergodic theorems initiated a new field of mathematical-research called ergodic theory that has thrived ever since, and we discuss some of recent developments in ergodic theory that are relevant for statistical mechanics. PMID:25691697

  5. WEYL'S TYPE THEOREMS AND HYPERCYCLIC OPERATORS

    Institute of Scientific and Technical Information of China (English)

    M.H. M. Rashid

    2012-01-01

    For a bounded operator T acting on an infinite dimensional separable Hilbert space H,we prove the following assertions: (i) If T or T* ∈ SC,then generalized aBrowder's theorem holds for f(T) for every f ∈ Hol(σ(T)).(ii) If T or T* ∈ HC has topological uniform descent at all λ ∈ iso(σ(T)),then generalized Weyl's theorem holds for f(T) for every f ∈ Hol(σ(T)).(iii) If T ∈ HC has topological uniform descent at all λ ∈ E(T),then T satisfies generalized Weyl's theorem.(iv) Let T ∈ HC.If T satisfies the growth condition Gd(d ≥ 1),then generalized Weyl's theorem holds for f(T) for every f ∈ Hol(σ(T)).(v) If T ∈ SC,then,f(σSBF-+ (T)) =σSBF-+ (f(T)) for all f ∈ Hol(σ(T)).(vi) Let T be a-isoloid such that T* ∈ HC.If T - λI has finite ascent at every λ ∈ Ea(T)and if F is of finite rank on H such that TF =FT,then T + F obeys generalized a-Weyl's theorem.

  6. Generalized fluctuation theorems for classical systems

    Science.gov (United States)

    Agarwal, G. S.; Dattagupta, Sushanta

    2015-11-01

    The fluctuation theorem has a very special place in the study of nonequilibrium dynamics of physical systems. The form in which it is used most extensively is the Gallavoti-Cohen fluctuation theorem which is in terms of the distribution of the work p (W )/p (-W )=exp(α W ) . We derive the general form of the fluctuation theorems for an arbitrary multidimensional Gaussian Markov process. Interestingly, the parameter α is by no means universal, hitherto taken for granted in the case of linear Gaussian processes. As a matter of fact, conditions under which α does become a universal parameter 1 /K T are found to be rather restrictive. As an application we consider fluctuation theorems for classical cyclotron motion of an electron in a parabolic potential. The motion of the electron is described by four coupled Langevin equations and thus is nontrivial. The generalized theorems are equally valid for nonequilibrium steady states and could be especially important in the presence of anisotropic diffusion.

  7. Anti-Bell - Refutation of Bell's theorem

    Science.gov (United States)

    Barukčić, Ilija

    2012-12-01

    In general, Albert Einstein as one of "the founding fathers of quantum mechanics" had some problems to accept especially the Copenhagen dominated interpretation of quantum mechanics. Einstein's dissatisfaction with Copenhagen's interpretation of quantum mechanics, the absence of locality and causality within the Copenhagen dominated quantum mechanics lead to the well known Einstein, Podolsky and Rosen thought experiment. According to Einstein et al., the Copenhagen dominated quantum mechanics cannot be regarded as a complete physical theory. The Einstein, Podolsky and Rosen thought experiment was the origin of J. S. Bell's publication in 1964; known as Bell's theorem. Meanwhile, some dramatic violations of Bell's inequality (by so called Bell test experiments) have been reported which is taken as an empirical evidence against local realism and causality at quantum level and as positive evidence in favor of the Copenhagen dominated quantum mechanics. Thus far, Quantum mechanics is still regarded as a "strictly" non-local theory. The purpose of this publication is to refute Bell's original theorem. Thus far, if we accept Bell's theorem as correct, we must accept that +0> = +1. We can derive a logical contradiction out of Bell's theorem, Bell's theorem is refuted.

  8. Some Integral Type Fixed Point Theorems for Non-Self-Mappings Satisfying Generalized (ψ,φ-Weak Contractive Conditions in Symmetric Spaces

    Directory of Open Access Journals (Sweden)

    Marwan Amin Kutbi

    2014-01-01

    weakly compatible mappings in symmetric spaces satisfying generalized (ψ,φ-contractive conditions employing the common limit range property. We furnish some interesting examples which support our main theorems. Our results generalize and extend some recent results contained in Imdad et al. (2013 to symmetric spaces. Consequently, a host of metrical common fixed theorems are generalized and improved. In the process, we also derive a fixed point theorem for four finite families of mappings which can be utilized to derive common fixed point theorems involving any number of finite mappings.

  9. STRONG LAW OF LARGE NUMBERS AND SHANNON-MCMILLAN THEOREM FOR MARKOV CHAINS FIELD ON CAYLEY TREE

    Institute of Scientific and Technical Information of China (English)

    杨卫国; 刘文

    2001-01-01

    This paper studies the strong law of large numbers and the Shannom-McMillan theorem for Markov chains field on Cayley tree. The authors first prove the strong law of large number on the frequencies of states and orderd couples of states for Markov chains field on Cayley tree. Then they prove thc Shannon-McMillan theorem with a.e. convergence for Markov chains field on Cayley tree. In the proof, a new technique in the study the strong limit theorem in probability theory is applied.

  10. On Bayes' theorem for improper mixtures

    CERN Document Server

    McCullagh, Peter; 10.1214/11-AOS892

    2011-01-01

    Although Bayes's theorem demands a prior that is a probability distribution on the parameter space, the calculus associated with Bayes's theorem sometimes generates sensible procedures from improper priors, Pitman's estimator being a good example. However, improper priors may also lead to Bayes procedures that are paradoxical or otherwise unsatisfactory, prompting some authors to insist that all priors be proper. This paper begins with the observation that an improper measure on Theta satisfying Kingman's countability condition is in fact a probability distribution on the power set. We show how to extend a model in such a way that the extended parameter space is the power set. Under an additional finiteness condition, which is needed for the existence of a sampling region, the conditions for Bayes's theorem are satisfied by the extension. Lack of interference ensures that the posterior distribution in the extended space is compatible with the original parameter space. Provided that the key finiteness conditio...

  11. Causality, Bell's theorem, and Ontic Definiteness

    CERN Document Server

    Henson, Joe

    2011-01-01

    Bell's theorem shows that the reasonable relativistic causal principle known as "local causality" is not compatible with the predictions of quantum mechanics. It is not possible maintain a satisfying causal principle of this type while dropping any of the better-known assumptions of Bell's theorem. However, another assumption of Bell's theorem is the use of classical logic. One part of this assumption is the principle of "ontic definiteness", that is, that it must in principle be possible to assign definite truth values to all propositions treated in the theory. Once the logical setting is clarified somewhat, it can be seen that rejecting this principle does not in any way undermine the type of causal principle used by Bell. Without ontic definiteness, the deterministic causal condition known as Einstein Locality succeeds in banning superluminal influence (including signalling) whilst allowing correlations that violate Bell's inequalities. Objections to altering logic, and the consequences for operational and...

  12. Bayes' theorem: scientific assessment of experience

    Directory of Open Access Journals (Sweden)

    Lex Rutten

    2010-10-01

    Full Text Available Homeopathy is based on experience and this is a scientific procedure if we follow Bayes' theorem. Unfortunately this is not the case at the moment. Symptoms are added to our materia medica based on absolute occurrence, while Bayes theorem tells us that this should be based on relative occurrence. Bayes theorem can be applied on prospective research, but also on retrospective research and consensus based on a large number of cases. Confirmation bias is an important source of false data in experience based systems like homeopathy. Homeopathic doctors should become more aware of this and longer follow-up of cases could remedy this. The existing system of adding symptoms to our materia medica is obsolete.

  13. Generalizations of the Abstract Boundary singularity theorem

    CERN Document Server

    Whale, Ben E; Scott, Susan M

    2015-01-01

    The Abstract Boundary singularity theorem was first proven by Ashley and Scott. It links the existence of incomplete causal geodesics in strongly causal, maximally extended spacetimes to the existence of Abstract Boundary essential singularities, i.e., non-removable singular boundary points. We give two generalizations of this theorem: the first to continuous causal curves and the distinguishing condition, the second to locally Lipschitz curves in manifolds such that no inextendible locally Lipschitz curve is totally imprisoned. To do this we extend generalized affine parameters from $C^1$ curves to locally Lipschitz curves.

  14. Pauli and the spin-statistics theorem

    CERN Document Server

    Duck, Ian M

    1997-01-01

    This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties. Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that

  15. Jarzynski's theorem for lattice gauge theory

    CERN Document Server

    Caselle, Michele; Nada, Alessandro; Panero, Marco; Toniato, Arianna

    2016-01-01

    Jarzynski's theorem is a well-known equality in statistical mechanics, which relates fluctuations in the work performed during a non-equilibrium transformation of a system, to the free-energy difference between two equilibrium states. In this article, we extend Jarzynski's theorem to lattice gauge theory, and present examples of applications for two challenging computational problems, namely the calculation of interface free energies and the determination of the equation of state. We conclude with a discussion of further applications of interest in QCD and in other strongly coupled gauge theories, in particular for the Schroedinger functional and for simulations at finite density using reweighting techniques.

  16. The aftermath of the intermediate value theorem

    Directory of Open Access Journals (Sweden)

    Morales Claudio H

    2004-01-01

    Full Text Available The solvability of nonlinear equations has awakened great interest among mathematicians for a number of centuries, perhaps as early as the Babylonian culture (3000–300 B.C.E.. However, we intend to bring to our attention that some of the problems studied nowadays appear to be amazingly related to the time of Bolzano's era (1781–1848. Indeed, this Czech mathematician or perhaps philosopher has rigorously proven what is known today as the intermediate value theorem, a result that is intimately related to various classical theorems that will be discussed throughout this work.

  17. The aftermath of the intermediate value theorem

    Directory of Open Access Journals (Sweden)

    Claudio H. Morales

    2004-08-01

    Full Text Available The solvability of nonlinear equations has awakened great interest among mathematicians for a number of centuries, perhaps as early as the Babylonian culture (3000–300 B.C.E.. However, we intend to bring to our attention that some of the problems studied nowadays appear to be amazingly related to the time of Bolzano's era (1781–1848. Indeed, this Czech mathematician or perhaps philosopher has rigorously proven what is known today as the intermediate value theorem, a result that is intimately related to various classical theorems that will be discussed throughout this work.

  18. Jarzynski's theorem for lattice gauge theory

    Science.gov (United States)

    Caselle, Michele; Costagliola, Gianluca; Nada, Alessandro; Panero, Marco; Toniato, Arianna

    2016-08-01

    Jarzynski's theorem is a well-known equality in statistical mechanics, which relates fluctuations in the work performed during a nonequilibrium transformation of a system, to the free-energy difference between two equilibrium ensembles. In this article, we apply Jarzynski's theorem in lattice gauge theory, for two examples of challenging computational problems, namely the calculation of interface free energies and the determination of the equation of state. We conclude with a discussion of further applications of interest in QCD and in other strongly coupled gauge theories, in particular for the Schrödinger functional and for simulations at finite density using reweighting techniques.

  19. Asymptotic symmetries and subleading soft graviton theorem

    Science.gov (United States)

    Campiglia, Miguel; Laddha, Alok

    2014-12-01

    Motivated by the equivalence between the soft graviton theorem and Ward identities for the supertranslation symmetries belonging to the Bondi, van der Burg, Metzner and Sachs (BMS) group, we propose a new extension (different from the so-called extended BMS) of the BMS group that is a semidirect product of supertranslations and Diff(S2) . We propose a definition for the canonical generators associated with the smooth diffeomorphisms and show that the resulting Ward identities are equivalent to the subleading soft graviton theorem of Cachazo and Strominger.

  20. The Heisenberg Uncertainty Principle and the Nyquist-Shannon Sampling Theorem

    Directory of Open Access Journals (Sweden)

    Millette P. A.

    2013-07-01

    Full Text Available The derivation of the Heisenberg Uncertainty Principle (HUP from the Uncertainty Theorem of Fourier Transform theory demonstrates that the HUP arises from the dependency of momentum on a wave number that exists at the quantum level. It also establishes that the HUP is purely a relationship between the effective widths of Fourier transform pairs of variables (i.e. conjugate variables. We note that the HUP is not a quantum mechanical measurement principle per se. We introduce the Quantum Mechanical equivalent of the Nyquist-Shannon Sampling Theorem of Fourier Transform theory, and show that it is a better principle to describe the measurement limitations of Quantum Mechanics. We show that Brillouin zones in Solid State Physics are a manifestation of the Nyquist-Shannon Sampling Theorem at the quantum level. By comparison with other fields where Fourier Transform theory is used, we propose that we need todiscern between measurement limitations and inherent limitations when interpreting the impact of the HUP on the nature of the quantum level. We further propose that while measurement limitations result in our perception of indeterminism at the quantum level, there is no evidence that there are any inherent limitations at the quantum level, based on the Nyquist-Shannon Sampling Theorem

  1. The flux-summation theorem and the 'evolution of dominance'.

    Science.gov (United States)

    Agutter, Paul S

    2008-10-21

    The flux-summation theorem (FST) is a central principle of metabolic control analysis. It describes how the control of flux through any metabolic pathway of arbitrary complexity is distributed among the component reaction steps. Two issues concerning the FST are discussed in this paper. First, it has been suggested that the theorem could, in principle, be inapplicable under certain conditions, i.e. the sum of the control coefficients of all the enzymes supporting a pathway could exceed unity. Such conditions have not been found in any species so far studied, so in practice the FST is always applicable. I argue that applicability of the FST is a precondition for phenotypic robustness and therefore for survival. Second, the FST provides a basis for explaining dominance that renders Fisher's 'modifier genes' hypothesis otiose. Some recent misunderstandings of metabolic control analysis have led to the claim that this explanation is flawed and therefore that Fisher's hypothesis can and should be reinstated. Here, these suggestions are refuted.

  2. Towards a No-Lose Theorem for Naturalness

    CERN Document Server

    Curtin, David

    2015-01-01

    We derive a phenomenological no-lose theorem for naturalness up to the TeV scale, which applies when quantum corrections to the Higgs mass from top quarks are canceled by perturbative BSM particles (top partners) of similar multiplicity due to to some symmetry. Null results from LHC searches already seem to disfavor such partners if they are colored. Any partners with SM charges and ~TeV masses will be exhaustively probed by the LHC and a future 100 TeV collider. Therefore, we focus on neutral top partners. While these arise in Twin Higgs theories, we analyze neutral top partners as model-independently as possible using EFT and Simplified Model methods. We classify all perturbative neutral top partner structures in order to compute their irreducible low-energy signatures at proposed future lepton and hadron colliders, as well as the irreducible tunings suffered in each scenario. Central to our theorem is the assumption that SM-charged BSM states appear in the UV completion of neutral naturalness, which is the...

  3. Statistical properties of the universal limit map of grazing bifurcations

    Science.gov (United States)

    Li, Denghui; Chen, Hebai; Xie, Jianhua

    2016-09-01

    In this paper, the statistical properties of an interval map, having a square-root singular point which characterizes grazing bifurcations of impact oscillators, are studied. Firstly, we show that in some parameter regions the map admits an induced Markov structure with an exponential decay tail of the return times. Then we prove that the map has a unique mixing absolutely continuous invariant probability measure. Finally, by applying the Markov tower method, we prove that exponential decay of correlations and the central limit theorem hold for Hölder continuous observations.

  4. Limit loads in nozzles

    International Nuclear Information System (INIS)

    The static method for the evaluation of the limit loads of a perfectly elasto-plastic structure is presented. Using the static theorem of Limit Analysis and the Finite Element Method, a lower bound for the colapso load can be obtained through a linear programming problem. This formulation if then applied to symmetrically loaded shells of revolution and some numerical results of limit loads in nozzles are also presented. (Author)

  5. An existence theorem for Volterra integrodifferential equations with infinite delay

    Directory of Open Access Journals (Sweden)

    Ferenc Izsak

    2003-01-01

    Full Text Available Using Schauder's fixed point theorem, we prove an existence theorem for Volterra integrodifferential equations with infinite delay. As an appplication, we consider an $n$ species Lotka-Volterra competitive system.

  6. Green's Theorem for Generalized Fractional Derivatives

    OpenAIRE

    Odzijewicz, Tatiana; Malinowska, Agnieszka B.; Delfim F. M. Torres

    2012-01-01

    We study three types of generalized partial fractional operators. An extension of Green's theorem, by considering partial fractional derivatives with more general kernels, is proved. New results are obtained, even in the particular case when the generalized operators are reduced to the standard partial fractional derivatives and fractional integrals in the sense of Riemann-Liouville or Caputo.

  7. Stokes' theorem, volume growth and parabolicity

    CERN Document Server

    Valtorta, Daniele

    2010-01-01

    We present some new Stokes'type theorems on complete non-compact manifolds that extend, in different directions, previous work by Gaffney and Karp and also the so called Kelvin-Nevanlinna-Royden criterion for (p-)parabolicity. Applications to comparison and uniqueness results involving the p-Laplacian are deduced.

  8. On the Non-Abelian Stokes Theorem

    OpenAIRE

    Diakonov, Dmitri; Petrov, Victor

    2000-01-01

    We present the non-Abelian Stokes theorem for the Wilson loop in various forms and discuss its meaning. Its validity has been recently questioned by Faber, Ivanov, Troitskaya and Zach. We demonstrate that all points of their criticism are based on mistakes in mathematics. Finally, we derive a variant of our formula for the Wilson loop in lattice regularization.

  9. JACKSON‘S THEOREM FOR COMPACT GROUPS

    Institute of Scientific and Technical Information of China (English)

    H.Vaezi; S.F.Rzaev

    2002-01-01

    In this article we consider the generalized shift operator defined by (Shuf)(g)=∫Gf(tut-1g)dt on compact group G and by help of this operator we define “Spherical” modulus of continuity.So we prove Stechkin and Jackson type theorems.

  10. SOME REFINEMENTS OF ENESTROM-KAKEYA THEOREM

    Institute of Scientific and Technical Information of China (English)

    A.Aziz; B.A.Zargar

    2007-01-01

    In this paper we present certain interesting refinements of a well-known Enestrom-Kakeya theorem in the theory of distribution of zeros of polynomials which among other things also improve upon some results of Aziz and Mohammad, Govil and Rehman and others.

  11. Generalization of the Hellmann-Feynman theorem

    Energy Technology Data Exchange (ETDEWEB)

    Esteve, J.G., E-mail: esteve@unizar.e [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Biocomputacion y Fisica de Sistemas complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza (Spain); Falceto, Fernando [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza (Spain); Instituto de Biocomputacion y Fisica de Sistemas complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza (Spain); Garcia Canal, C. [Laboratorio de Fisica Teorica, Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and IFLP-CONICET (Argentina)

    2010-01-25

    The well-known Hellmann-Feynman theorem of quantum mechanics connected with the derivative of the eigenvalues with respect to a parameter upon which the Hamiltonian depends, is generalized to include cases in which the domain of definition of the Hamiltonian of the system also depends on that parameter.

  12. Answering Junior Ant's "Why" for Pythagoras' Theorem

    Science.gov (United States)

    Pask, Colin

    2002-01-01

    A seemingly simple question in a cartoon about Pythagoras' Theorem is shown to lead to questions about the nature of mathematical proof and the profound relationship between mathematics and science. It is suggested that an analysis of the issues involved could provide a good vehicle for classroom discussions or projects for senior students.…

  13. On Noethers theorem in quantum field theory

    International Nuclear Information System (INIS)

    Extending an earlier construction of local generators of symmetries in (S. Doplicher, 1982) to space-time and supersymmetries, we establish a weak form of Noethers theorem in quantum field theory. We also comment on the physical significance of the 'split property', underlying our analysis, and discuss some local aspects of superselection rules following from our results. (orig./HSI)

  14. Lagrange’s Four-Square Theorem

    Directory of Open Access Journals (Sweden)

    Watase Yasushige

    2015-02-01

    Full Text Available This article provides a formalized proof of the so-called “the four-square theorem”, namely any natural number can be expressed by a sum of four squares, which was proved by Lagrange in 1770. An informal proof of the theorem can be found in the number theory literature, e.g. in [14], [1] or [23].

  15. Some Generalizations of Jungck's Fixed Point Theorem

    Directory of Open Access Journals (Sweden)

    J. R. Morales

    2012-01-01

    Full Text Available We are going to generalize the Jungck's fixed point theorem for commuting mappings by mean of the concepts of altering distance functions and compatible pair of mappings, as well as, by using contractive inequalities of integral type and contractive inequalities depending on another function.

  16. A Bijective Proof For Forest Reciprocity Theorem

    CERN Document Server

    Huang, ShinnYih

    2009-01-01

    In this paper, we study the graph polynomial that counts spanning rooted forests f_g of a given graph. This polynomial has a remarkable reciprocity property. We give a new bijective proof for this theorem which has Prufer coding as a special case.

  17. Kelvin's Canonical Circulation Theorem in Hall Magnetohydrodynamics

    CERN Document Server

    Shivamoggi, B K

    2016-01-01

    The purpose of this paper is to show that, thanks to the restoration of the legitimate connection between the current density and the plasma flow velocity in Hall magnetohydrodynamics (MHD), Kelvin's Circulation Theorem becomes valid in Hall MHD. The ion-flow velocity in the usual circulation integral is now replaced by the canonical ion-flow velocity.

  18. Random fixed point theorems on product spaces

    OpenAIRE

    Ismat Beg; Naseer Shahzad

    1993-01-01

    The existence of random fixed point of a locally contractive random operator in first variable on product spaces is proved. The concept “continuous random height-selection” is discussed. Some random fixed point theorems for nonexpansive self and nonself maps are also obtained in product spaces.

  19. Automated theorem proving theory and practice

    CERN Document Server

    Newborn, Monty

    2001-01-01

    As the 21st century begins, the power of our magical new tool and partner, the computer, is increasing at an astonishing rate. Computers that perform billions of operations per second are now commonplace. Multiprocessors with thousands of little computers - relatively little! -can now carry out parallel computations and solve problems in seconds that only a few years ago took days or months. Chess-playing programs are on an even footing with the world's best players. IBM's Deep Blue defeated world champion Garry Kasparov in a match several years ago. Increasingly computers are expected to be more intelligent, to reason, to be able to draw conclusions from given facts, or abstractly, to prove theorems-the subject of this book. Specifically, this book is about two theorem-proving programs, THEO and HERBY. The first four chapters contain introductory material about automated theorem proving and the two programs. This includes material on the language used to express theorems, predicate calculus, and the rules of...

  20. Non-Archimedean Big Picard Theorems

    OpenAIRE

    Cherry, William

    2002-01-01

    A non-Archimedean analog of the classical Big Picard Theorem, which says that a holomorphic map from the punctured disc to a Riemann surface of hyperbolic type extends accross the puncture, is proven using Berkovich's theory of non-Archimedean analytic spaces.

  1. INTERPOLATION THEOREMS FOR SELF-ADJOINT OPERATORS

    Institute of Scientific and Technical Information of China (English)

    Shijun Zheng

    2009-01-01

    We prove a complex and a real interpolation theorems on Besov spaces and Triebel-Lizorkin spaces associated with a selfadjoint operator L, without assuming the gra-dient estimate for its spectral kernel. The result applies to the cases where L is a uniformly elliptic operator or a Schr(o)dinger operator with electro-magnetic potential.

  2. Donsker-Type Theorem for BSDEs

    OpenAIRE

    Briand, Philippe; Delyon, Bernard; Mémin, Jean

    2001-01-01

    This paper is devoted to the proof of Donsker's theorem for backward stochastic differential equations (BSDEs for short). The main objective is to give a simple method to discretize in time a BSDE. Our approach is based upon the notion of ``convergence of filtrations'' and covers the case of a $(y,z)$-dependent generator.

  3. An extension theorem for conformal gauge singularities

    CERN Document Server

    Tod, Paul

    2007-01-01

    We analyse conformal gauge, or isotropic, singularities in cosmological models in general relativity. Using the calculus of tractors, we find conditions in terms of tractor curvature for a local extension of the conformal structure through a cosmological singularity and prove a local extension theorem.

  4. Tennis Rackets and the Parallel Axis Theorem

    Science.gov (United States)

    Christie, Derek

    2014-01-01

    This simple experiment uses an unusual graph straightening exercise to confirm the parallel axis theorem for an irregular object. Along the way, it estimates experimental values for g and the moment of inertia of a tennis racket. We use Excel to find a 95% confidence interval for the true values.

  5. Sandwich reactor lattices and Bloch's theorem

    International Nuclear Information System (INIS)

    The study of the neutron flux distribution in repetitive sandwiches of reactor material leads to results analogous to the 1-dimensional form of Bloch's theorem for the electronic structure in crystals. This principle makes it possible to perform analytically accurate homogenisations of sandwich lattices The method has been extended to cover multi group diffusion and transport theory. (author)

  6. Extended Kelvin theorem in relativistic magnetohydrodynamics

    OpenAIRE

    Bekenstein, Jacob D.; Oron, Asaf

    2000-01-01

    We prove the existence of a generalization of Kelvin's circulation theorem in general relativity which is applicable to perfect isentropic magnetohydrodynamic flow. The argument is based on a new version of the Lagrangian for perfect magnetohydrodynamics. We illustrate the new conserved circulation with the example of a relativistic magnetohydrodynamic flow possessing three symmetries.

  7. The virial theorem and planetary atmospheres

    OpenAIRE

    Toth, Viktor T.

    2010-01-01

    We derive a version of the virial theorem that is applicable to diatomic planetary atmospheres that are in approximate thermal equilibrium at moderate temperatures and pressures and are sufficiently thin such that the gravitational acceleration can be considered constant. We contrast a pedagogically inclined theoretical presentation with the actual measured properties of air.

  8. The virial theorem for nonlinear problems

    OpenAIRE

    Amore, Paolo; Fernández, Francisco M.

    2009-01-01

    We show that the virial theorem provides a useful simple tool for approximating nonlinear problems. In particular we consider conservative nonlinear oscillators and a bifurcation problem. In the former case we obtain the same main result derived earlier from the expansion in Chebyshev polynomials.

  9. A coupling approach to Doob's theorem

    OpenAIRE

    Kulik, Alexei; Scheutzow, Michael

    2014-01-01

    We provide a coupling proof of Doob's theorem which says that the transition probabilities of a regular Markov process which has an invariant probability measure $\\mu$ converge to $\\mu$ in the total variation distance. In addition we show that non-singularity (rather than equivalence) of the transition probabilities suffices to ensure convergence of the transition probabilities for $\\mu$-almost all initial conditions.

  10. A strictly-positive mass theorem

    International Nuclear Information System (INIS)

    We show that the ADM 4-momentum of an isolated gravitational system (spatially asymptotically flat spacetime) satisfying the dominant energy condition cannot be null-like unless it is flat. Together with the positive mass theorem, this implies that the ADM 4-momentum of an isolated gravitational system must be strictly time-like. (orig.)

  11. Multiplier theorems for special Hermite expansions on

    Institute of Scientific and Technical Information of China (English)

    张震球; 郑维行

    2000-01-01

    The weak type (1,1) estimate for special Hermite expansions on Cn is proved by using the Calderon-Zygmund decomposition. Then the multiplier theorem in Lp(1 < p < ω ) is obtained. The special Hermite expansions in twisted Hardy space are also considered. As an application, the multipli-ers for a certain kind of Laguerre expansions are given in Lp space.

  12. Crum's Theorem for 'Discrete' Quantum Mechanics

    OpenAIRE

    Odake, Satoru; Sasaki, Ryu

    2009-01-01

    In one-dimensional quantum mechanics, or the Sturm-Liouville theory, Crum's theorem. describes the relationship between the original and the associated Hamiltonian systems, which are iso-spectral except for the lowest energy state. Its counterpart in 'discrete' quantum mechanics is formulated algebraically, elucidating the basic structure of the discrete quantum mechanics, whose Schrodinger equation is a difference equation.

  13. Crum's Theorem for `Discrete' Quantum Mechanics

    OpenAIRE

    Odake, Satoru; Sasaki, Ryu

    2009-01-01

    In one-dimensional quantum mechanics, or the Sturm-Liouville theory, Crum's theorem describes the relationship between the original and the associated Hamiltonian systems, which are iso-spectral except for the lowest energy state. Its counterpart in `discrete' quantum mechanics is formulated algebraically, elucidating the basic structure of the discrete quantum mechanics, whose Schr\\"odinger equation is a difference equation.

  14. Average sampling theorems for shift invariant subspaces

    Institute of Scientific and Technical Information of China (English)

    孙文昌; 周性伟

    2000-01-01

    The sampling theorem is one of the most powerful results in signal analysis. In this paper, we study the average sampling on shift invariant subspaces, e.g. wavelet subspaces. We show that if a subspace satisfies certain conditions, then every function in the subspace is uniquely determined and can be reconstructed by its local averages near certain sampling points. Examples are given.

  15. Pauli and The Spin-Statistics Theorem

    International Nuclear Information System (INIS)

    This book makes broadly accessible an understandable proof of the infamous spin-statistics theorem. This widely known but little-understood theorem is intended to explain the fact that electrons obey the Pauli exclusion principle. This fact, in turn, explains the periodic table of the elements and their chemical properties.Therefore, this one simply stated fact is responsible for many of the principal features of our universe, from chemistry to solid state physics to nuclear physics to the life cycle of stars.In spite of its fundamental importance, it is only a slight exaggeration to say that 'everyone knows the spin-statistics theorem, but no one understands it'. This book simplifies and clarifies the formal statements of the theorem, and also corrects the invariably flawed intuitive explanations which are frequently put forward. The book will be of interest to many practising physicists in all fields who have long been frustrated by the impenetrable discussions on the subject which have been available until now.It will also be accessible to students at an advanced undergraduate level as an introduction to modern physics based directly on the classical writings of the founders, including Pauli, Dirac, Heisenberg, Einstein and many others

  16. Two Theorems on Calculating the Relative Entropy of Entanglement

    Institute of Scientific and Technical Information of China (English)

    WU Sheng-Jun; ZHANG Yong-De; WU Qiang

    2001-01-01

    We present two theorems on calculating the relative entropy of entanglement. Theorem 1 is an extension of Vedral and Plenio's theorem (Phys. Rev. A 57 (1998) 1619) for pure states, which is useful for calculating the relative entropy of entanglement for all pure states as well as for a class of mixed states. Theorem 2 gives the relative entropy of entanglement for any bipartite state whose tripartite purification has two separable reduced bipartite states.

  17. Theorems of Tarski's Undefinability and Godel's Second Incompleteness - Computationally

    OpenAIRE

    Salehi, Saeed

    2015-01-01

    We show that the existence of a finitely axiomatized theory which can prove all the true $\\Sigma_1$ sentences may imply Godel's Second Incompleteness Theorem, by incorporating some bi-theoretic version of the derivability conditions (first discussed by Detlefsen~2001). We also argue that Tarski's theorem on the undefinability of truth is Godel's first incompleteness theorem relativized to definable oracles; here a unification of these two theorems is shown.

  18. Ehrenfest theorem, Galilean invariance and nonlinear Schr"odinger equations

    CERN Document Server

    Kälbermann, G

    2003-01-01

    Galilean invariant Schr"odinger equations possessing nonlinear terms coupling the amplitude and the phase of the wave function can violate the Ehrenfest theorem. An example of this kind is provided. The example leads to the proof of the theorem: A Galilean invariant Schr"odinger equation derived from a lagrangian density obeys the Ehrenfest theorem. The theorem holds for any linear or nonlinear lagrangian.

  19. The Application of Mutual Energy Theorem in Expansion of Radiation Field in Spherical Waves

    CERN Document Server

    Zhao, Shuang-Ren

    2016-01-01

    In recent years the shperical wave expansion method has been widely applied to the theory and calculation of electromagnetic fields. But the inner product exist in reference[1] is defined on the Banach space[2]. Through redefining the inner product this article limits the wave expansion method to Hibert space[3]. For this reason the mutual energy theorem is introduced.

  20. Quantum Effects on the Deflection of Light and the Gauss-Bonnet Theorem

    CERN Document Server

    Jusufi, Kimet

    2016-01-01

    In this letter we apply the Gauss--Bonnet theorem to calculate the deflection angle by a quantum corrected Schwarzschild black hole in the weak limit approximation. In particular, we calculate the light deflection by two types of quantum corrected black holes: the renormalization group improved Schwarzschild solution and the quantum corrected Schwarzschild solution in Bohmian quantum mechanics. We start from the corresponding optical metrics to use then the Gauss--Bonnet theorem and calculate the Gaussian curvature in both cases. Finally, we calculate the leading terms of the deflection angle and show that quantum corrections modifies the deflection angle in both solutions.

  1. Ensemble Input of Group III/IV Muscle Afferents to CNS: A Limiting Factor of Central Motor Drive During Endurance Exercise from Normoxia to Moderate Hypoxia.

    Science.gov (United States)

    Amann, Markus; Dempsey, Jerome A

    2016-01-01

    We recently hypothesized that across the range of normoxia to severe hypoxia the major determinant of central motor drive (CMD) during endurance exercise switches from a predominantly peripheral origin to a hypoxic-sensitive central component of fatigue. We found that peripheral locomotor muscle fatigue (pLMF) is the prevailing factor limiting central motor drive and therefore exercise performance from normoxia to moderate hypoxia (SaO2 > 75 %). In these levels of arterial hypoxemia, the development of pLMF is confined to a certain limit which varies between humans-pLMF does not develop to this limit in more severe hypoxia (SaO2 endurance exercise with the purpose to regulate and restrict the level of exercise-induced pLMF to an "individual critical threshold." To experimentally test this model, we pharmacologically blocked somatosensory pathways originating in the working limbs during cycling exercise in normoxia. After initial difficulties with a local anesthetic (epidural lidocaine, L3-L4) and associated loss of locomotor muscle strength we switched to an intrathecally applied opioid analgesic (fentanyl, L3-L4). These experiments were the first ever to selectively block locomotor muscle afferents during high-intensity cycling exercise without affecting maximal locomotor muscle strength. In the absence of opioid-mediated neural feedback from the working limbs, CMD was increased and end-exercise pLMF substantially exceeded, for the first time, the individual critical threshold of peripheral fatigue. The outcome of these studies confirm our hypothesis claiming that afferent feedback inhibits CMD and restricts the development of pLMF to an individual critical threshold as observed from normoxia up to moderate hypoxia. PMID:27343106

  2. Pushing the limits - two new species of Pteromalus (Hymenoptera, Chalcidoidea, Pteromalidae) from Central Europe with remarkable morphology.

    Science.gov (United States)

    Baur, Hannes

    2015-01-01

    Two new species, Pteromalusbriani sp. n. and Pteromalusjanstai sp. n., with unusual characters are described from the Central Plateau and the Alps in Switzerland, respectively. Pteromalusbriani sp. n. is remarkable in that it has the metatibia quite abruptly expanded before the middle. This type of modification of the hind tibia is unique within the Pteromalidae and probably also the entire Chalcidoidea. It is also very rare in other parasitic wasps, where it is suspected to be associated with pheromone glands. The species is a gregarious endoparasitoid of pupae of Vanessaatalanta (Linnaeus) and Aglaisurticae (Linnaeus), two common butterflies (Lepidoptera: Nymphalidae) in Europe. It is furthermore a koinobiont parasitoid ovipositing in an early larval stage of the host. The other species, Pteromalusjanstai sp. n., shows a flattened mesosoma. A dorsoventrally depressed body is a unique feature within the genus Pteromalus, but known from a number species in unrelated genera and subfamilies. The two records demonstrate that it is possible to discover entirely new species with extraordinary characters even in one of the taxonomically most thoroughly explored parts of the world.

  3. Pushing the limits – two new species of Pteromalus (Hymenoptera, Chalcidoidea, Pteromalidae) from Central Europe with remarkable morphology

    Science.gov (United States)

    Baur, Hannes

    2015-01-01

    Abstract Two new species, Pteromalus briani sp. n. and Pteromalus janstai sp. n., with unusual characters are described from the Central Plateau and the Alps in Switzerland, respectively. Pteromalus briani sp. n. is remarkable in that it has the metatibia quite abruptly expanded before the middle. This type of modification of the hind tibia is unique within the Pteromalidae and probably also the entire Chalcidoidea. It is also very rare in other parasitic wasps, where it is suspected to be associated with pheromone glands. The species is a gregarious endoparasitoid of pupae of Vanessa atalanta (Linnaeus) and Aglais urticae (Linnaeus), two common butterflies (Lepidoptera: Nymphalidae) in Europe. It is furthermore a koinobiont parasitoid ovipositing in an early larval stage of the host. The other species, Pteromalus janstai sp. n., shows a flattened mesosoma. A dorsoventrally depressed body is a unique feature within the genus Pteromalus, but known from a number species in unrelated genera and subfamilies. The two records demonstrate that it is possible to discover entirely new species with extraordinary characters even in one of the taxonomically most thoroughly explored parts of the world. PMID:26261432

  4. Pushing the limits – two new species of Pteromalus (Hymenoptera, Chalcidoidea, Pteromalidae from Central Europe with remarkable morphology

    Directory of Open Access Journals (Sweden)

    Hannes Baur

    2015-07-01

    Full Text Available Two new species, Pteromalus briani sp. n. and P. janstai sp. n., with unusual characters are described from the Central Plateau and the Alps in Switzerland, respectively. P. briani sp. n. is remarkable in that it has the metatibia quite abruptly expanded before the middle. This type of modification of the hind tibia is unique within the Pteromalidae and probably also the entire Chalcidoidea. It is also very rare in other parasitic wasps, where it is suspected to be associated with pheromone glands. The species is a gregarious endoparasitoid of pupae of Vanessa atalanta (Linnaeus and Aglais urticae (Linnaeus, two common butterflies (Lepidoptera: Nymphalidae in Europe. It is furthermore a koinobiont parasitoid ovipositing in an early larval stage of the host. The other species, P. janstai sp. n., shows a flattened mesosoma. A dorsoventrally depressed body is a unique feature within the genus Pteromalus, but known from a number species in unrelated genera and subfamilies. The two records demonstrate that it is possible to discover entirely new species with extraordinary characters even in one of the taxonomically most thoroughly explored parts of the world.

  5. The Interpretability of Inconsistency: Feferman's Theorem and Related Results

    NARCIS (Netherlands)

    Visser, Albert

    2014-01-01

    This paper is an exposition of Feferman's Theorem concerning the interpretability of inconsistency and of further insights directly connected to this result. Feferman's Theorem is a strengthening of the Second Incompleteness Theorem. It says, in metaphorical paraphrase, that it is not just the case

  6. ON GÖDEL'S INCOMPLETENESS THEOREM(S), ARTIFICIAL INTELLIGENCE/LIFE, AND HUMAN MIND

    OpenAIRE

    CHRISTIANTO, V.; FLORENTIN SMARANDACHE

    2015-01-01

    In the present paper we have discussed concerning Gödel’s incompleteness theorem(s) and plausible implications to artificial intelligence/life and human mind. Perhaps we should agree with Sullins III, that the value of this finding is not to discourage certain types of research in AL, but rather to help move us in a direction where we can more clearly define the results of that research.

  7. Applications of square-related theorems

    Science.gov (United States)

    Srinivasan, V. K.

    2014-04-01

    The square centre of a given square is the point of intersection of its two diagonals. When two squares of different side lengths share the same square centre, there are in general four diagonals that go through the same square centre. The Two Squares Theorem developed in this paper summarizes some nice theoretical conclusions that can be obtained when two squares of different side lengths share the same square centre. These results provide the theoretical basis for two of the constructions given in the book of H.S. Hall and F.H. Stevens , 'A Shorter School Geometry, Part 1, Metric Edition'. In page 134 of this book, the authors present, in exercise 4, a practical construction which leads to a verification of the Pythagorean theorem. Subsequently in Theorems 29 and 30, the authors present the standard proofs of the Pythagorean theorem and its converse. In page 140, the authors present, in exercise 15, what amounts to a geometric construction, whose verification involves a simple algebraic identity. Both the constructions are of great importance and can be replicated by using the standard equipment provided in a 'geometry toolbox' carried by students in high schools. The author hopes that the results proved in this paper, in conjunction with the two constructions from the above-mentioned book, would provide high school students an appreciation of the celebrated theorem of Pythagoras. The diagrams that accompany this document are based on the free software GeoGebra. The author formally acknowledges his indebtedness to the creators of this free software at the end of this document.

  8. Bringing Bell's theorem back to the domain of Particle Physics & Cosmology

    CERN Document Server

    Hiesmayr, Beatrix C

    2015-01-01

    John St. Bell was a physicist working most of his time at CERN and contributing intensively and sustainably to the development of Particle Physics and Collider Physics. As a hobby he worked on so-called "foundations of quantum theory", that was that time very unpopular, even considered to be scientifically taboo. His 1964-theorem, showing that predictions of local realistic theories are different to those of quantum theory, initiated a new field in quantum physics: quantum information theory. The violation of Bell's theorem, for instance, is a necessary and sufficient criterion for generating a secure key for cryptography at two distant locations. This contribution shows how Bell's theorem can be brought to the realm of high energy physics and presents the first conclusive experimental feasible test for weakly decaying neutral mesons on the market. Strong experimental and theoretical limitations make a Bell test in weakly decaying systems such as mesons and hyperons very challenging, however, these systems sh...

  9. On weakly periodic-like rings and commutativity theorems

    Directory of Open Access Journals (Sweden)

    Abu-Khuzam Hazar

    2006-12-01

    Full Text Available A ring $R$ is called periodic if, for every $x$ in $R$, there exist distinct positive integers $m$ and $n$ such that $x^m=x^n$. An element $x$ of $R$ is called potent if $x^k=x$ for some integer $k>1$. A ring $R$ is called weakly periodic if every $x$ in $R$ can be written in the form $x=a+b$ for some nilpotent element $a$ and some potent element $b$ in $R$. A ring $R$ is called weakly periodic-like if every element $x$ in $R$ which is not in the center $C$ of $R$ can be written in the form $x=a+b$, with $a$ nilpotent and $b$ potent. Some structure and commutativity theorems are established for weakly periodic-like rings $R$ satisfying certain torsion-freeness hypotheses along with conditions involving some elements being central.

  10. Developmental endothelial locus-1 is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination.

    Science.gov (United States)

    Choi, E Y; Lim, J-H; Neuwirth, A; Economopoulou, M; Chatzigeorgiou, A; Chung, K-J; Bittner, S; Lee, S-H; Langer, H; Samus, M; Kim, H; Cho, G-S; Ziemssen, T; Bdeir, K; Chavakis, E; Koh, J-Y; Boon, L; Hosur, K; Bornstein, S R; Meuth, S G; Hajishengallis, G; Chavakis, T

    2015-07-01

    Inflammation in the central nervous system (CNS) and disruption of its immune privilege are major contributors to the pathogenesis of multiple sclerosis (MS) and of its rodent counterpart, experimental autoimmune encephalomyelitis (EAE). We have previously identified developmental endothelial locus-1 (Del-1) as an endogenous anti-inflammatory factor, which inhibits integrin-dependent leukocyte adhesion. Here we show that Del-1 contributes to the immune privilege status of the CNS. Intriguingly, Del-1 expression decreased in chronic-active MS lesions and in the inflamed CNS in the course of EAE. Del-1-deficiency was associated with increased EAE severity, accompanied by increased demyelination and axonal loss. As compared with control mice, Del-1(-/-) mice displayed enhanced disruption of the blood-brain barrier and increased infiltration of neutrophil granulocytes in the spinal cord in the course of EAE, accompanied by elevated levels of inflammatory cytokines, including interleukin-17 (IL-17). The augmented levels of IL-17 in Del-1-deficiency derived predominantly from infiltrated CD8(+) T cells. Increased EAE severity and neutrophil infiltration because of Del-1-deficiency was reversed in mice lacking both Del-1 and IL-17 receptor, indicating a crucial role for the IL-17/neutrophil inflammatory axis in EAE pathogenesis in Del-1(-/-) mice. Strikingly, systemic administration of Del-1-Fc ameliorated clinical relapse in relapsing-remitting EAE. Therefore, Del-1 is an endogenous homeostatic factor in the CNS protecting from neuroinflammation and demyelination. Our findings provide mechanistic underpinnings for the previous implication of Del-1 as a candidate MS susceptibility gene and suggest that Del-1-centered therapeutic approaches may be beneficial in neuroinflammatory and demyelinating disorders. PMID:25385367

  11. Developmental endothelial locus-1 (Del-1) is a homeostatic factor in the central nervous system limiting neuroinflammation and demyelination

    Science.gov (United States)

    Neuwirth, Ales; Economopoulou, Matina; Chatzigeorgiou, Antonios; Chung, Kyoung-Jin; Bittner, Stefan; Lee, Seung-Hwan; Langer, Harald; Samus, Maryna; Kim, Hyesoon; Cho, Geum-Sil; Ziemssen, Tjalf; Bdeir, Khalil; Chavakis, Emmanouil; Koh, Jae-Young; Boon, Louis; Hosur, Kavita; Bornstein, Stefan R.; Meuth, Sven G.; Hajishengallis, George; Chavakis, Triantafyllos

    2014-01-01

    Inflammation in the central nervous system (CNS) and disruption of its immune privilege are major contributors to the pathogenesis of multiple sclerosis (MS) and of its rodent counterpart, experimental autoimmune encephalomyelitis (EAE). We have previously identified developmental endothelial locus-1 (Del-1) as an endogenous anti-inflammatory factor, which inhibits integrin-dependent leukocyte adhesion. Here we show that Del-1 contributes to the immune privilege status of the CNS. Intriguingly, Del-1 expression decreased in chronic active MS lesions and in the inflamed CNS in the course of EAE. Del-1-deficiency was associated with increased EAE severity, accompanied by increased demyelination and axonal loss. As compared to control mice, Del-1−/− mice displayed enhanced disruption of the blood brain barrier and increased infiltration of neutrophil granulocytes in the spinal cord in the course of EAE, accompanied by elevated levels of inflammatory cytokines, including IL-17. The augmented levels of IL-17 in Del-1-deficiency derived predominantly from infiltrated CD8+ T cells. Increased EAE severity and neutrophil infiltration due to Del-1-deficiency was reversed in mice lacking both Del-1 and IL-17-receptor, indicating a crucial role for the IL-17/neutrophil inflammatory axis in EAE pathogenesis in Del-1−/− mice. Strikingly, systemic administration of Del-1-Fc ameliorated clinical relapse in relapsing-remitting EAE. Therefore, Del-1 is an endogenous homeostatic factor in the CNS protecting from neuroinflammation and demyelination. Our findings provide mechanistic underpinnings for the previous implication of Del-1 as a candidate MS susceptibility gene and suggest that Del-1-centered therapeutic approaches may be beneficial in neuroinflammatory and demyelinating disorders. PMID:25385367

  12. Limits for the central production of Theta^+ and Xi^{--} pentaquarks in 920 GeV pA collisions

    CERN Document Server

    Abt, I; Agari, M; Albrecht, H; Aleksandrov, A; Amaral, V S; Amorim, A; Aplin, S J; Aushev, V; Bagaturia, Yu S; Balagura, V; Bargiotti, M; Barsukova, O; Bastos, J; Batista, J; Bauer, C; Bauer, T S; Belkov, A; Belotelov, I; Bertin, A; Bobchenko, B M; Böcker, M; Bogatyrev, A; Böhm, G; Brauer, M; Bruinsma, M; Bruschi, M; Buchholz, P; Buran, T; Carvalho, J; Conde, P; Cruse, C; Dam, M; Danielsen, K M; Danilov, M; De Castro, S; Deppe, H; Dong, X; Dreis, H B; Egorytchev, V; Ehret, K; Eisele, F; Emeliyanov, D; Essenov, S; Fabbri, Franco Luigi; Faccioli, P; Feuerstack-Raible, M; Flammer, J; Fominykh, B A; Funcke, M; Garrido, L; Giacobbe, B; Glass, J; Goloubkov, D; Golubkov, Yu A; Golutvin, A; Golutvin, I A; Gorbounov, I; Gorisek, A; Gouchtchine, O; Goulart, D C; Gradl, S; Gradl, W; Grimaldi, F; Guilitsky, Yu; Hansen, J D; Hernández, J M; Hofmann, W; Hott, T; Hulsbergen, W D; Husemann, U; Igonkina, O; Ispiryan, M; Jagla, T; Jiang, C; Kapitza, H; Karabekyan, S; Karpenko, N; Keller, S; Kessler, J; Khasanov, F M; Kiryushin, Yu T; Knöpfle, K T; Kolanoski, H; Korpar, S; Krauss, C; Kreuzer, P; Krizan, P; Krücker, D; Kupper, S; Kvaratskheliia, T; Lanyov, A V; Lau, K; Lewendel, B; Lohse, T; Lomonosov, B N; Männer, R; Masciocchi, S; Massa, I; Matchikhilian, I; Medin, G; Medinnis, M; Mevius, M; Michetti, A; Mikhailov, Yu; Mizuk, R; Muresan, R; Zur Nedden, M; Negodaev, M A; Nörenberg, M; Nowak, S; Núñez-Pardo de Vera, M T; Ouchrif, M; Ould-Saada, F; Padilla, C; Peralta, D; Pernack, R; Pestotnik, R; Piccinini, M; Pleier, M A; Poli, M; Popov, V; Pose, A; Pose, D; Prystupa, S; Pugatch, V; Pylypchenko, Y; Pyrlik, J; Reeves, K; Ressing, D; Rick, H; Riu, I; Robmann, P; Rostovtseva, I; Rybnikov, V; Sánchez, F; Sbrizzi, A; Schmelling, M; Schmidt, B; Schreiner, A; Schröder, H; Schwartz, A J; Schwarz, A S; Schwenninger, B; Schwingenheuer, B; Sciacca, F; Semprini-Cesari, N; Shuvalov, S; Silva, L; Smirnov, K V; Sozuer, L; Solunin, S; Somov, A; Somov, S; Spengler, J; Spighi, R; Spiridonov, A A; Stanovnik, A; Staric, M; Stegmann, C; Subramanian, H S; Symalla, M; Tikhomirov, I; Titov, M; Tsakov, I; Uwer, U; Van Eldik, C; Vasilev, Yu; Villa, M; Vitale, A; Vukotic, I; Wahlberg, H; Walenta, Albert H; Walter, M; Wang, J J; Wegener, D; Werthenbach, U; Wolters, H; Wurth, R; Wurz, A; Zaitsev, Yu; Zavertyaev, M V; Zech, G; Zeuner, T; Zhelezov, A; Zheng, Z; Zimmermann, R; Zivko, T; Zoccoli, A

    2004-01-01

    We have searched for Theta^+(1540) and Xi^{--}(1862) pentaquark candidates in proton-induced reactions on C, Ti and W targets at mid-rapidity and \\sqrt{s} = 41.6 GeV. In 2x10^8 inelastic events we find no evidence for narrow (sigma~5 MeV) signals in the Theta^+ -> pK_s and Xi^{--} -> Xi^-pi^- channels; our 95% CL upper limits (UL) for the inclusive production cross section times branching fraction Bx(dsigma/dy)|_{y~0} are 3.7 and 2.5 microb/N. The UL of the yield ratio of [Theta^+ / Lambda(1520)] < 2.7% is significantly lower than model predictions. Our UL of [BxXi^{--} / Xi(1530)^0] < 4% is at variance with the results that have provided first evidence for the Xi^{--} signal.

  13. Soft theorems from string theory

    Energy Technology Data Exchange (ETDEWEB)

    Di Vecchia, Paolo [The Niels Bohr Institute, University of Copenhagen (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden); Marotta, Raffaele [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli (Italy); Complesso Universitario di Monte S. Angelo, Napoli (Italy); Mojaza, Matin [Nordita, KTH Royal Institute of Technology and Stockholm University (Sweden)

    2016-04-15

    Soft behaviour of closed string amplitudes involving dilatons, gravitons and anti-symmetric tensors, is studied in the framework of bosonic string theory. The leading double soft limit of gluons is analysed as well, starting from scattering amplitudes computed in the open bosonic string. Field theory expressions are then obtained by sending the string tension to infinity. The presented results have been derived in the papers of Ref [1]. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. On spurious detection of linear response and misuse of the fluctuation-dissipation theorem in finite time series

    Science.gov (United States)

    Gottwald, Georg A.; Wormell, J. P.; Wouters, Jeroen

    2016-09-01

    Using a sensitive statistical test we determine whether or not one can detect the breakdown of linear response given observations of deterministic dynamical systems. A goodness-of-fit statistics is developed for a linear statistical model of the observations, based on results for central limit theorems for deterministic dynamical systems, and used to detect linear response breakdown. We apply the method to discrete maps which do not obey linear response and show that the successful detection of breakdown depends on the length of the time series, the magnitude of the perturbation and on the choice of the observable. We find that in order to reliably reject the assumption of linear response for typical observables sufficiently large data sets are needed. Even for simple systems such as the logistic map, one needs of the order of 106 observations to reliably detect the breakdown with a confidence level of 95 %; if less observations are available one may be falsely led to conclude that linear response theory is valid. The amount of data required is larger the smaller the applied perturbation. For judiciously chosen observables the necessary amount of data can be drastically reduced, but requires detailed a priori knowledge about the invariant measure which is typically not available for complex dynamical systems. Furthermore we explore the use of the fluctuation-dissipation theorem (FDT) in cases with limited data length or coarse-graining of observations. The FDT, if applied naively to a system without linear response, is shown to be very sensitive to the details of the sampling method, resulting in erroneous predictions of the response.

  15. Limits for the central production of Theta+ and Xi(--)pentaquarks in 920-GeV pA collisions.

    Science.gov (United States)

    Abt, I; Adams, M; Agari, M; Albrecht, H; Aleksandrov, A; Amaral, V; Amorim, A; Aplin, S J; Aushev, V; Bagaturia, Y; Balagura, V; Bargiotti, M; Barsukova, O; Bastos, J; Batista, J; Bauer, C; Bauer, Th S; Belkov, A; Belkov, Ar; Belotelov, I; Bertin, A; Bobchenko, B; Böcker, M; Bogatyrev, A; Bohm, G; Bräuer, M; Bruinsma, M; Bruschi, M; Buchholz, P; Buran, T; Carvalho, J; Conde, P; Cruse, C; Dam, M; Danielsen, K M; Danilov, M; Castro, S De; Deppe, H; Dong, X; Dreis, H B; Egorytchev, V; Ehret, K; Eisele, F; Emeliyanov, D; Essenov, S; Fabbri, L; Faccioli, P; Feuerstack-Raible, M; Flammer, J; Fominykh, B; Funcke, M; Garrido, Ll; Giacobbe, B; Gläss, J; Goloubkov, D; Golubkov, Y; Golutvin, A; Golutvin, I; Gorbounov, I; Gorisek, A; Gouchtchine, O; Goulart, D C; Gradl, S; Gradl, W; Grimaldi, F; Groth-Jensen, J; Guilitsky, Yu; Hansen, J D; Hernández, J M; Hofmann, W; Hott, T; Hulsbergen, W; Husemann, U; Igonkina, O; Ispiryan, M; Jagla, T; Jiang, C; Kapitza, H; Karabekyan, S; Karpenko, N; Keller, S; Kessler, J; Khasanov, F; Kiryushin, Yu; Klinkby, E; Knöpfle, K T; Kolanoski, H; Korpar, S; Krauss, C; Kreuzer, P; Krizan, P; Krücker, D; Kupper, S; Kvaratskheliia, T; Lanyov, A; Lau, K; Lewendel, B; Lohse, T; Lomonosov, B; Männer, R; Masciocchi, S; Massa, I; Matchikhilian, I; Medin, G; Medinnis, M; Mevius, M; Michetti, A; Mikhailov, Yu; Mizuk, R; Muresan, R; Zur Nedden, M; Negodaev, M; Nörenberg, M; Nowak, S; Núñez Pardo de Vera, M T; Ouchrif, M; Ould-Saada, F; Padilla, C; Peralta, D; Pernack, R; Pestotnik, R; Piccinini, M; Pleier, M A; Poli, M; Popov, V; Pose, A; Pose, D; Prystupa, S; Pugatch, V; Pylypchenko, Y; Pyrlik, J; Reeves, K; Ressing, D; Rick, H; Riu, I; Robmann, P; Rostovtseva, I; Rybnikov, V; Sánchez, F; Sbrizzi, A; Schmelling, M; Schmidt, B; Schreiner, A; Schröder, H; Schwartz, A J; Schwarz, A S; Schwenninger, B; Schwingenheuer, B; Sciacca, F; Semprini-Cesari, N; Shuvalov, S; Silva, L; Smirnov, K; Sözüer, L; Solunin, S; Somov, A; Somov, S; Spengler, J; Spighi, R; Spiridonov, A; Stanovnik, A; Staric, M; Stegmann, C; Subramania, H S; Symalla, M; Tikhomirov, I; Titov, M; Tsakov, I; Uwer, U; van Eldik, C; Vassiliev, Yu; Villa, M; Vitale, A; Vukotic, I; Wahlberg, H; Walenta, A H; Walter, M; Wang, J J; Wegener, D; Werthenbach, U; Wolters, H; Wurth, R; Wurz, A; Zaitsev, Yu; Zavertyaev, M; Zech, G; Zeuner, T; Zhelezov, A; Zheng, Z; Zimmermann, R; Zivko, T; Zoccoli, A

    2004-11-19

    We have searched for Theta+(1540) and Xi(--)(1862) pentaquark candidates in proton-induced reactions on C, Ti, and W targets at midrapidity and square root of s = 41.6 GeV. In 2 x 10(8) inelastic events we find no evidence for narrow (sigma approximately 5 MeV) signals in the Theta+ --> pK0(S) and Xi(--) --> Xi- pi- channels; our 95% C.L. upper limits (UL) for the inclusive production cross section times branching fraction B dsigma/dy/(y approximately 0) are (4-16) mub/N for a Theta+ mass between 1521 and 1555 MeV, and 2.5 mub/N for the Xi(--). The UL of the yield ratio of Theta+/Lambda(1520) < (3-12)% is significantly lower than model predictions. Our UL of B Xi(--)/Xi(1530)0 < 4% is at variance with the results that have provided the first evidence for the Xi(--). PMID:15600999

  16. Intermediate convergents and a metric theorem of Khinchin

    CERN Document Server

    Haynes, Alan K

    2009-01-01

    A landmark theorem in the metric theory of continued fractions begins this way: Select a non-negative real function $f$ defined on the positive integers and a real number $x$, and form the partial sums $s_n$ of $f$ evaluated at the partial quotients $a_1,..., a_n$ in the continued fraction expansion for $x$. Does the sequence $\\{s_n/n\\}$ have a limit as $n\\rar\\infty$? In 1935 A. Y. Khinchin proved that the answer is yes for almost every $x$, provided that the function $f$ does not grow too quickly. In this paper we are going to explore a natural reformulation of this problem in which the function $f$ is defined on the rationals and the partial sums in question are over the intermediate convergents to $x$ with denominators less than a prescribed amount. By using some of Khinchin's ideas together with more modern results we are able to provide a quantitative asymptotic theorem analogous to the classical one mentioned above.

  17. Causarum Investigatio and the Two Bell's Theorems of John Bell

    CERN Document Server

    Wiseman, Howard M

    2015-01-01

    "Bell's theorem" can refer to two different theorems that John Bell proved, the first in 1964 and the second in 1976. His 1964 theorem is the incompatibility of quantum phenomena with the joint assumptions of Locality and Predetermination. His 1976 theorem is their incompatibility with the single property of Local Causality. This is contrary to Bell's own later assertions, that his 1964 theorem began with the assumption of Local Causality, even if not by that name. Although the two Bell's theorems are logically equivalent, their assumptions are not. Hence, the earlier and later theorems suggest quite different conclusions, embraced by operationalists and realists, respectively. The key issue is whether Locality or Local Causality is the appropriate notion emanating from Relativistic Causality, and this rests on one's basic notion of causation. For operationalists the appropriate notion is what is here called the Principle of Agent-Causation, while for realists it is Reichenbach's Principle of common cause. By...

  18. Non-Gaussian Limiting Laws for the Entries of Regular Functions of the Wigner Matrices

    CERN Document Server

    Pastur, L

    2011-01-01

    This paper is a continuation of our paper "Fluctuations of Matrix Elements of Regular Functions of Gaussian Random Matrices", J. Stat. Phys. (134), 147--159 (2009), in which we proved the Central Limit Theorem for the matrix elements of differential functions of the real symmetric random Gaussian matrices (GOE). Here we consider the real symmetric random Wigner matrices having independent (modulo symmetry conditions) but not necessarily Gaussian entries. We show that in this case the matrix elements of sufficiently smooth functions of these random matrices have in general another limiting law which coincides essentially with the probability law of matrix entries.

  19. Multideviations: The hidden structure of Bell's theorems

    CERN Document Server

    Fogel, Brandon

    2015-01-01

    Specification of the strongest possible Bell inequalities for arbitrarily complicated physical scenarios -- any number of observers choosing between any number of observables with any number of possible outcomes -- is currently an open problem. Here I provide a new set of tools, which I refer to as "multideviations", for finding and analyzing these inequalities for the fully general case. In Part I, I introduce the multideviation framework and then use it to prove an important theorem: the Bell distributions can be generated from the set of joint distributions over all observables by deeming specific degrees of freedom unobservable. In Part II, I show how the theorem provides a new method for finding tight Bell inequalities. I then specify a set of new tight Bell inequalities for arbitrary event spaces -- the "even/odd" inequalities -- which have a straightforward interpretation when expressed in terms of multideviations. The even/odd inequalities concern degrees of freedom that are independent of those invol...

  20. Parameterized quantum field theory without Haag's theorem

    CERN Document Server

    Seidewitz, Ed

    2015-01-01

    Under the normal assumptions of quantum field theory, Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum field theory is currently the only practical approach for addressing scattering for realistic interactions, and it has been spectacularly successful in making empirical predictions. This paper explains this success by showing that quantum field theory can be formulated, using an invariant, fifth path parameter in addition to the usual four position parameters, in such a way that Haag's theorem no longer applies, but such that the Dyson perturbation expansion for the sc...

  1. H-theorem in quantum physics

    Science.gov (United States)

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.

    2016-09-01

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.

  2. H-theorem in quantum physics.

    Science.gov (United States)

    Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M

    2016-01-01

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy. PMID:27616571

  3. Locomotion in complex fluids: Integral theorems

    CERN Document Server

    Lauga, Eric

    2014-01-01

    The biological fluids encountered by self-propelled cells display complex microstructures and rheology. We consider here the general problem of low-Reynolds number locomotion in a complex fluid. {Building on classical work on the transport of particles in viscoelastic fluids,} we demonstrate how to mathematically derive three integral theorems relating the arbitrary motion of an isolated organism to its swimming kinematics {in a non-Newtonian fluid}. These theorems correspond to three situations of interest, namely (1) squirming motion in a linear viscoelastic fluid, (2) arbitrary surface deformation in a weakly non-Newtonian fluid, and (3) small-amplitude deformation in an arbitrarily non-Newtonian fluid. Our final results, valid for a wide-class of {swimmer geometry,} surface kinematics and constitutive models, at most require mathematical knowledge of a series of Newtonian flow problems, and will be useful to quantity the locomotion of biological and synthetic swimmers in complex environments.

  4. On c-theorems in arbitrary dimensions

    CERN Document Server

    Bhattacharyya, Arpan; Sen, Kallol; Sinha, Aninda

    2012-01-01

    The dilaton action in 3+1 dimensions plays a crucial role in the proof of the a-theorem. This action arises using Wess-Zumino consistency conditions and crucially relies on the existence of the trace anomaly. Since there are no anomalies in odd dimensions, it is interesting to ask how such an action could arise otherwise. Motivated by this we use the AdS/CFT correspondence to examine both even and odd dimensional CFTs. We find that in even dimensions, by promoting the cut-off to a field, one can get an action for this field which coincides with the WZ action in flat space. In three dimensions, we observe that by finding an exact Hamilton-Jacobi counterterm, one can find a non-polynomial action which is invariant under global Weyl rescalings. We comment on how this finding is tied up with the F-theorem conjectures.

  5. Wigner-Eckart theorem for induced symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Klein, D.J. (Texas A and M University, Galveston (USA). Department of Marine Sciences); Seligman, T.H. (Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Fisica)

    1982-01-01

    A unified treatment is given for all group-theoretic problems arising from the evaluation of matrix elements involving operators and states of induced symmetries. To achieve this general treatment two group-theoretic theorems are proven, the first characterizing recoupling coefficients between different symmetry adaptation schemes, and the second making a double coset factorization of a group algebraic matrix basis element. A number of problems previously discussed in the literature, including the conventional Wigner-Eckart theorem and more recent double coset expansions of matrix elements, are realized as special cases in the present treatment. These results entail two new types of recoupling coefficients, namely DC coefficients and 3-symmetry symbols, so that some of their properties are indicated.

  6. A Dirichlet unit theorem for Drinfeld modules

    OpenAIRE

    Taelman, Lenny

    2009-01-01

    We show that the module of integral points on a Drinfeld module satisfies a an analogue of Dirichlet's unit theorem, despite its failure to be finitely generated. As a consequence, we obtain a construction of a canonical finitely generated sub-module of the module of integral points. We use the results to give a precise formulation of a conjectural analogue of the class number formula.

  7. Stability theorems for symplectic and contact pairs

    OpenAIRE

    Bande, G.; Ghiggini, P.; Kotschick, D.

    2004-01-01

    We prove Gray--Moser stability theorems for complementary pairs of forms of constant class defining symplectic pairs, contact-symplectic pairs and contact pairs. We also consider the case of contact-symplectic and contact-contact structures, in which the constant class condition on a one-form is replaced by the condition that its kernel hyperplane distribution have constant class in the sense of E. Cartan.

  8. A New Extension Theorem for Concave Operators

    OpenAIRE

    Jian-wen Peng; Wei-dong Rong; Jen-Chih Yao

    2009-01-01

    We present a new and interesting extension theorem for concave operators as follows. Let be a real linear space, and let be a real order complete PL space. Let the set be convex. Let be a real linear proper subspace of , with , where for some . Let be a concave operator such that whenever and . Then there exists a concave operator such that (i) is an extension of , that is, for all , and (ii) whenever .

  9. Asymptotic representation theorems for poverty indices

    OpenAIRE

    Lo, Gane Samb; Sall, Serigne Touba

    2010-01-01

    We set general conditions under which the general poverty index, which summarizes all the available indices, is asymptotically represented with some empirical processes. This representation theorem offers a general key, in most directions, for the asymptotics of the bulk of poverty indices and issues in poverty analysis. Our representation results uniformly hold on a large collection of poverty indices. They enable the continuous measure of poverty with longitudinal data.

  10. From the Goldbach Conjecture to the Theorem

    CERN Document Server

    Pereyra, P H

    2007-01-01

    In the present work we demonstrate that the so called Goldbach conjecture from 1742, All positive even numbers greater than two can be expressed as a sum of two primes, due to Leonhard Euler, is a true statement. This result is partially based on the Wilson theorem, and complementary on our reasoning to cast the problem into a diophantine equation. The latter is the master equation for the conjectures proof.

  11. Hildebrandt's theorem for the essential spectrum

    Directory of Open Access Journals (Sweden)

    Janko Bračič

    2015-01-01

    Full Text Available We prove a variant of Hildebrandt's theorem which asserts that the convex hull of the essential spectrum of an operator \\(A\\ on a complex Hilbert space is equal to the intersection of the essential numerical ranges of operators which are similar to \\(A\\. As a consequence, it is given a necessary and sufficient condition for zero not being in the convex hull of the essential spectrum of \\(A\\.

  12. An isomorphism theorem for random interlacements

    OpenAIRE

    Sznitman, Alain-Sol

    2011-01-01

    We consider continuous-time random interlacements on a transient weighted graph. We prove an identity in law relating the field of occupation times of random interlacements at level u to the Gaussian free field on the weighted graph. This identity is closely linked to the generalized second Ray-Knight theorem, and uniquely determines the law of occupation times of random interlacements at level u.

  13. A simple proof of Sarkozy's theorem

    CERN Document Server

    Lyall, Neil

    2011-01-01

    It is a striking and elegant fact (proved independently by Furstenberg and Sarkozy) that in any subset of the natural numbers of positive upper density there necessarily exist two distinct elements whose difference is given by a perfect square. In this article we present a new and simple proof of this result by adapting an argument originally developed by Croot and Sisask to give a new proof of Roth's theorem.

  14. Theorems for Asymptotic Safety of Gauge Theories

    CERN Document Server

    Bond, Andrew D

    2016-01-01

    We classify the weakly interacting fixed points of general gauge theories coupled to matter and explain how the competition between gauge and matter fluctuations gives rise to a rich spectrum of high- and low-energy fixed points. The pivotal role played by Yukawa couplings is emphasized. Necessary and sufficient conditions for asymptotic safety of gauge theories are also derived, in conjunction with strict no go theorems. Implications for phase diagrams of gauge theories and physics beyond the Standard Model are indicated.

  15. On the Danilov-Gizatullin Isomorphism Theorem

    OpenAIRE

    Flenner, Hubert; Kaliman, Shulim; ZAIDENBERG, MIKHAIL

    2008-01-01

    A Danilov-Gizatullin surface is a normal affine surface V, which is a complement to an ample section S in a Hirzebruch surface of index d. By a surprising result due to Danilov and Gizatullin, V depends only on the self-intersection number of S and neither on d nor on S. In this note we provide a new and simple proof of this Isomorphism Theorem.

  16. Uniform Zariski's Theorem On Fundamental Groups

    OpenAIRE

    Kaliman, Shulim

    1997-01-01

    The Zariski theorem says that for every hypersurface in a complex projective (resp. affine) space of dimension at least 3 and for every generic plane in the projective (resp. affine) space the natural embedding generates an isomorphism of the fundamental groups of the complements to the hypersurface in the plane and in the space. If a family of hypersurfaces depends algebraically on parameters then it is not true in general that there exists a plane such that the natural embedding generates i...

  17. Stochastic Reynolds theorem and generalized subgrid tensor

    OpenAIRE

    Resseguier, Valentin; Mémin, Etienne; Chapron, Bertrand

    2015-01-01

    International audience We propose a representation that allows decomposing the flow velocity in terms of a smooth component and a highly oscillating random component. This decomposion leads through a stochastic representation of the Reynolds transport theorem to a large-scale expression of the Navier-Stokes equations. In this work we show the benefit of such a representation to construct low order dynamical systems that include naturally a dissipative term related to the action of the smal...

  18. Reciprocity Theorems for Ab Initio Force Calculations

    CERN Document Server

    Wei, C; Mele, E J; Rappe, A M; Lewis, Steven P.; Rappe, Andrew M.

    1996-01-01

    We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules.

  19. The Lebesgue decomposition theorem for arbitrary contents

    OpenAIRE

    König, Heinz

    2005-01-01

    The decomposition theorem named after Lebesgue asserts that certain set functions have canonical representations as sums of particular set functions called the absolutely continuous and the singular ones with respect to some fixed set function. The traditional versions are for the bounded measures with respect to some fixed measure on a \\sigma algebra, in final form due to Hahn 1921, and for the bounded contents with respect to some fixed content on an algebra, due to Bochner-Phillips 194...

  20. Virial Theorem in Nonlocal Newtonian Gravity

    OpenAIRE

    Bahram Mashhoon

    2015-01-01

    Nonlocal gravity is the recent classical nonlocal generalization of Einstein’s theory of gravitation in which the past history of the gravitational field is taken into account. In this theory, nonlocality appears to simulate dark matter. The virial theorem for the Newtonian regime of nonlocal gravity theory is derived and its consequences for “isolated” astronomical systems in virial equilibrium at the present epoch are investigated. In particular, for a sufficiently isolated nearby galaxy in...