WorldWideScience

Sample records for central gray matter

  1. Wave onset in central gray matter - its intrinsic optical signal and phase transitions in extracellular polymers

    Directory of Open Access Journals (Sweden)

    VERA M. FERNANDES-DE-LIMA

    2001-09-01

    Full Text Available The brain is an excitable media in which excitation waves propagate at several scales of time and space. ''One-dimensional'' action potentials (millisecond scale along the axon membrane, and spreading depression waves (seconds to minutes at the three dimensions of the gray matter neuropil (complex of interacting membranes are examples of excitation waves. In the retina, excitation waves have a prominent intrinsic optical signal (IOS. This optical signal is created by light scatter and has different components at the red and blue end of the spectrum. We could observe the wave onset in the retina, and measure the optical changes at the critical transition from quiescence to propagating wave. The results demonstrated the presence of fluctuations preceding propagation and suggested a phase transition. We have interpreted these results based on an extrapolation from Tasaki's experiments with action potentials and volume phase transitions of polymers. Thus, the scatter of red light appeared to be a volume phase transition in the extracellular matrix that was caused by the interactions between the cellular membrane cell coat and the extracellular sugar and protein complexes. If this hypothesis were correct, then forcing extracellular current flow should create a similar signal in another tissue, provided that this tissue was also transparent to light and with a similarly narrow extracellular space. This control tissue exists and it is the crystalline lens. We performed the experiments and confirmed the optical changes. Phase transitions in the extracellular polymers could be an important part of the long-range correlations found during wave propagation in central nervous tissue.O encéfalo é um meio excitável no qual ondas de excitação se propagam em várias escalas de tempo e espaço. Potenciais de axônios ''unidimensionais'' (escala de milisegundos ao longo da membrana axonal e ondas de depressão alastrante (segundos a minutos nas três dimens

  2. Clinical and Morphological Aspects of Gray Matter Heterotopia Type Developmental Malformations

    International Nuclear Information System (INIS)

    Zając-Mnich, Monika; Kostkiewicz, Agnieszka; Guz, Wiesław; Dziurzyńska-Białek, Ewa; Solińska, Anna; Stopa, Joanna; Kucharska-Miąsik, Iwona

    2014-01-01

    Gray matter heterotopia (GMH) is a malformation of the central nervous system characterized by interruption of normal neuroblasts migration between the 7 th and 16 th week of fetal development. The aim of the study was the analysis of clinical symptoms, prevalence rate and the most common concurrent central nervous system (CNS) developmental disorders as well as assessment of characteristic morphological changes of gray matter heterotopia in children hospitalized in our institution between the year 2001 and 2012. We performed a retrospective analysis of patients’ data who were hospitalized in our institution between the year 2001 and 2012. We assessed clinical data and imaging exams in children diagnosed with gray matter heterotopia confirmed in MRI (magnetic resonance imaging). GMH occurred in 26 children hospitalized in our institution between the year 2001 and 2012. Among children with gray matter heterotopia most common clinical symptoms were: epilepsy, intellectual disability and hemiparesis. The commonest location of heterotopic gray matter were fronto-parietal areas of brain parenchyma, mostly subependymal region. Gray matter heterotopia occurred with other developmental disorders of the central nervous system rather than solely and in most cases it was bilateral. Schizencephaly and abnormalities of the corpus callosum were the most often developmental disorders accompanying GMH. 1. Subependymal gray matter heterotopia was more common than subcortical GMH. Subependymal GMH showed tendency to localize in the region of the bodies of the lateral ventricles. The least common was laminar GMH. 2. Gray matter heterotopia occurred more often with other developmental disorders of the central nervous system rather than solely. The most frequent concurrent disorders of the central nervous system were: schizencephaly, developmental abnormalities of the corpus callosum, arachnoid cyst, abnormalities of the septum pellucidum and the fornix. 3. GMH foci were more often

  3. Gray Matter Changes in Demyelinating Disease: Correlations with Clinical Scores.

    Science.gov (United States)

    Onu, Mihaela; Aroceanu, Adina; Ferastraoaru, Victor; Bajenaru, Ovidiu

    2015-09-01

    Recent MR studies have shown that, in multiple sclerosis, selective regional, but not global gray matter atrophy occurs in multiple sclerosis. Our aim was to identify specific areas of gray matter volume changes and explore the relationship between atrophy and clinical motor outcomes. Nine patients with relapsing remitting MS and 9 matched healthy controls were recruited. The Multiple Sclerosis Functional Composite was administered. For MR acquisitions, a GE- Genesis- Signa, 1.5T MR system, was used. A voxel-based morphometry (VBM), subcortical structures segmentation (FIRST) and volumetric (SIENAx) FSL tools were used in the study. Group comparison showed atrophy for several gray matter regions. The most important volume reductions were found for subcortical deep gray matter areas. Correlations with clinical scores were checked and specific gray matter areas showed significant volume reductions associated with motor scores (9-hole peg time and 25-feet walk time) and EDSS (Expanded Disability Status Scale). We performed a voxelwise analysis of gray matter changes in MS and found a more prominent atrophy for the subcortical structures than for cortical gray matter. Using an additional analysis (FIRST and SIENAx segmentation/volumetry) we were able to confirm the VBM results and to quantify the degree of atrophy in specific structures. Specific gray matter regions which volume reductions correlate with 25-feet walk, 9-hole peg times and EDSS suggest that 25-feet walk time is the best predictor of disease progression in terms of gray matter reduction.

  4. Gray matter and white matter abnormalities in online game addiction

    International Nuclear Information System (INIS)

    Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han

    2013-01-01

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA

  5. Gray matter and white matter abnormalities in online game addiction.

    Science.gov (United States)

    Weng, Chuan-Bo; Qian, Ruo-Bing; Fu, Xian-Ming; Lin, Bin; Han, Xiao-Peng; Niu, Chao-Shi; Wang, Ye-Han

    2013-08-01

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Gray matter and white matter abnormalities in online game addiction

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Chuan-Bo, E-mail: send007@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); School of Neurosurgery, Anhui Medical University, 81 Meishang Road, Hefei, Anhui Province 230032 (China); Qian, Ruo-Bing, E-mail: rehomail@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Fu, Xian-Ming, E-mail: 506537677@qq.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Lin, Bin, E-mail: 274722758@qq.com [School of Neurosurgery, Anhui Medical University, 81 Meishang Road, Hefei, Anhui Province 230032 (China); Han, Xiao-Peng, E-mail: hanxiaopeng@163.com [Department of Psychology, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Niu, Chao-Shi, E-mail: niuchaoshi@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China); Wang, Ye-Han, E-mail: wangyehan@163.com [Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, Ahui Province 230001 (China); Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Ahui Province 230001 (China)

    2013-08-15

    Online game addiction (OGA) has attracted greater attention as a serious public mental health issue. However, there are only a few brain magnetic resonance imaging studies on brain structure about OGA. In the current study, we used voxel-based morphometry (VBM) analysis and tract-based spatial statistics (TBSS) to investigate the microstructural changes in OGA and assessed the relationship between these morphology changes and the Young's Internet Addiction Scale (YIAS) scores within the OGA group. Compared with healthy subjects, OGA individuals showed significant gray matter atrophy in the right orbitofrontal cortex, bilateral insula, and right supplementary motor area. According to TBSS analysis, OGA subjects had significantly reduced FA in the right genu of corpus callosum, bilateral frontal lobe white matter, and right external capsule. Gray matter volumes (GMV) of the right orbitofrontal cortex, bilateral insula and FA values of the right external capsule were significantly positively correlated with the YIAS scores in the OGA subjects. Our findings suggested that microstructure abnormalities of gray and white matter were present in OGA subjects. This finding may provide more insights into the understanding of the underlying neural mechanisms of OGA.

  7. Gray Matter Volumes in Patients with Chronic Fatigue Syndrome

    Directory of Open Access Journals (Sweden)

    Le-wei Tang

    2015-01-01

    Full Text Available Chronic fatigue syndrome (CFS is a debilitating and complex disorder characterized by profound fatigue with uncertain pathologic mechanism. Neuroimage may be an important key to unveil the central nervous system (CNS mechanism in CFS. Although most of the studies found gray matter (GM volumes reduced in some brain regions in CFS, there are many factors that could affect GM volumes in CFS, including chronic pain, stress, psychiatric disorder, physical activity, and insomnia, which may bias the results. In this paper, through reviewing recent literatures, we discussed these interferential factors, which overlap with the symptoms of CFS.

  8. Viscoelasticity of subcortical gray matter structures.

    Science.gov (United States)

    Johnson, Curtis L; Schwarb, Hillary; D J McGarry, Matthew; Anderson, Aaron T; Huesmann, Graham R; Sutton, Bradley P; Cohen, Neal J

    2016-12-01

    Viscoelastic mechanical properties of the brain assessed with magnetic resonance elastography (MRE) are sensitive measures of microstructural tissue health in neurodegenerative conditions. Recent efforts have targeted measurements localized to specific neuroanatomical regions differentially affected in disease. In this work, we present a method for measuring the viscoelasticity in subcortical gray matter (SGM) structures, including the amygdala, hippocampus, caudate, putamen, pallidum, and thalamus. The method is based on incorporating high spatial resolution MRE imaging (1.6 mm isotropic voxels) with a mechanical inversion scheme designed to improve local measures in pre-defined regions (soft prior regularization [SPR]). We find that in 21 healthy, young volunteers SGM structures differ from each other in viscoelasticity, quantified as the shear stiffness and damping ratio, but also differ from the global viscoelasticity of the cerebrum. Through repeated examinations on a single volunteer, we estimate the uncertainty to be between 3 and 7% for each SGM measure. Furthermore, we demonstrate that the use of specific methodological considerations-higher spatial resolution and SPR-both decrease uncertainty and increase sensitivity of the SGM measures. The proposed method allows for reliable MRE measures of SGM viscoelasticity for future studies of neurodegenerative conditions. Hum Brain Mapp 37:4221-4233, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Gray Matter Concentration Abnormality in Brains of Narcolepsy Patients

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Eun Yeon; Tae, Woo Suk; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2009-12-15

    To investigate gray matter concentration changes in the brains of narcoleptic patients. Twenty-nine narcoleptic patient with cataplexy and 29 age and sex-matched normal subjects (mean age, 31 years old) underwent volumetric MRIs. The MRIs were spatially normalized to a standard T1 template and subdivided into gray matter, white matter, and cerebrospinal fluid (CSF). These segmented images were then smoothed using a 12-mm full width at half maximum (FWHM) isotropic Gaussian kernel. An optimized voxel-based morphometry protocol was used to analyze brain tissue concentrations using SPM2 (statistical parametric mapping). A one-way analysis of variance was applied to the concentration analysis of gray matter images. Narcoleptics with cataplexy showed reduced gray matter concentration in bilateral thalami, left gyrus rectus, bilateral frontopolar gyri, bilateral short insular gyri, bilateral superior frontal gyri, and right superior temporal and left inferior temporal gyri compared to normal subjects (uncorrected p < 0.001). Furthermore, small volume correction revealed gray matter concentration reduction in bilateral nuclei accumbens, hypothalami, and thalami (false discovery rate corrected p < 0.05). Gray matter concentration reductions were observed in brain regions related to excessive daytime sleepiness, cognition, attention, and memory in narcoleptics with cataplexy

  10. Gray Matter Is Targeted in First-Attack Multiple Sclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Schutzer, Steven E.; Angel, Thomas E.; Liu, Tao; Schepmoes, Athena A.; Xie, Fang; Bergquist, Jonas P.; Vecsei, Lazlo' ; Zadori, Denes; Camp, David G.; Holland, Bart K.; Smith, Richard D.; Coyle, Patricia K.

    2013-09-10

    The cause of multiple sclerosis (MS), its driving pathogenesis at the earliest stages, and what factors allow the first clinical attack to manifest remain unknown. Some imaging studies suggest gray rather than white matter may be involved early, and some postulate this may be predictive of developing MS. Other imaging studies are in conflict. To determine if there was objective molecular evidence of gray matter involvement in early MS we used high-resolution mass spectrometry to identify proteins in the cerebrospinal fluid (CSF) of first-attack MS patients (two independent groups) compared to established relapsing remitting (RR) MS and controls. We found that the CSF proteins in first-attack patients were differentially enriched for gray matter components (axon, neuron, synapse). Myelin components did not distinguish these groups. The results support that gray matter dysfunction is involved early in MS, and also may be integral for the initial clinical presentation.

  11. Longitudinal Study of Gray Matter Changes in Parkinson Disease.

    Science.gov (United States)

    Jia, X; Liang, P; Li, Y; Shi, L; Wang, D; Li, K

    2015-12-01

    The pathology of Parkinson disease leads to morphological brain volume changes. So far, the progressive gray matter volume change across time specific to patients with Parkinson disease compared controls remains unclear. Our aim was to investigate the pattern of gray matter changes in patients with Parkinson disease and to explore the progressive gray matter volume change specific to patients with Parkinson disease with disease progression by using voxel-based morphometry analysis. Longitudinal cognitive assessment and structural MR imaging of 89 patients with Parkinson disease (62 men) and 55 healthy controls (33 men) were from the Parkinson's Progression Markers Initiative data base, including the initial baseline and 12-month follow-up data. Two-way analysis of covariance was performed with covariates of age, sex, years of education, imaging data from multiple centers, and total intracranial volume by using Diffeomorphic Anatomical Registration Through Exponentiated Lie Algebra tool from SPM8 software. Gray matter volume changes for patients with Parkinson disease were detected with decreased gray matter volume in the frontotemporoparietal areas and the bilateral caudate, with increased gray matter volume in the bilateral limbic/paralimbic areas, medial globus pallidus/putamen, and the right occipital cortex compared with healthy controls. Progressive gray matter volume decrease in the bilateral caudate was found for both patients with Parkinson disease and healthy controls, and this caudate volume was positively associated with cognitive ability for both groups. The progressive gray matter volume increase specific to the patients with Parkinson disease was identified close to the left ventral lateral nucleus of thalamus, and a positive relationship was found between the thalamic volume and the tremor scores in a subgroup with tremor-dominant patients with Parkinson disease. The observed progressive changes in gray matter volume in Parkinson disease may provide

  12. Correlation between white matter damage and gray matter lesions in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Xue-mei Han

    2017-01-01

    Full Text Available We observed the characteristics of white matter fibers and gray matter in multiple sclerosis patients, to identify changes in diffusion tensor imaging fractional anisotropy values following white matter fiber injury. We analyzed the correlation between fractional anisotropy values and changes in whole-brain gray matter volume. The participants included 20 patients with relapsing-remitting multiple sclerosis and 20 healthy volunteers as controls. All subjects underwent head magnetic resonance imaging and diffusion tensor imaging. Our results revealed that fractional anisotropy values decreased and gray matter volumes were reduced in the genu and splenium of corpus callosum, left anterior thalamic radiation, hippocampus, uncinate fasciculus, right corticospinal tract, bilateral cingulate gyri, and inferior longitudinal fasciculus in multiple sclerosis patients. Gray matter volumes were significantly different between the two groups in the right frontal lobe (superior frontal, middle frontal, precentral, and orbital gyri, right parietal lobe (postcentral and inferior parietal gyri, right temporal lobe (caudate nucleus, right occipital lobe (middle occipital gyrus, right insula, right parahippocampal gyrus, and left cingulate gyrus. The voxel sizes of atrophic gray matter positively correlated with fractional anisotropy values in white matter association fibers in the patient group. These findings suggest that white matter fiber bundles are extensively injured in multiple sclerosis patients. The main areas of gray matter atrophy in multiple sclerosis are the frontal lobe, parietal lobe, caudate nucleus, parahippocampal gyrus, and cingulate gyrus. Gray matter atrophy is strongly associated with white matter injury in multiple sclerosis patients, particularly with injury to association fibers.

  13. B-Cell Depletion Attenuates White and Gray Matter Pathology in Marmoset Experimental Autoimmune Encephalomyelitis

    NARCIS (Netherlands)

    Kap, Yolanda S.; Bauer, Jan; van Driel, Nikki; Bleeker, Wim K.; Parren, Paul W. H. I.; Kooi, Evert-Jan; Geurts, Jeroen J. G.; Laman, Jon D.; Craigen, Jenny L.; Blezer, Erwin; 't Hart, Bert A.

    2011-01-01

    This study investigated the effect of CD20-positive B-cell depletion on central nervous system (CNS) white and gray matter pathology in experimental autoimmune encephalomyelitis in common marmosets, a relevant preclinical model of multiple sclerosis. Experimental autoimmune encephalomyelitis was

  14. Lateral cervical nucleus projections to periaqueductal gray matter in cat

    NARCIS (Netherlands)

    Mouton, LJ; Klop, EM; Broman, J; Zhang, ML; Holstege, G; Zhang, Mengliang

    2004-01-01

    The midbrain periaqueductal gray matter (PAG) integrates the basic responses necessary for survival of individuals and species. Examples are defense behaviors such as fight, flight, and freezing, but also sexual behavior, vocalization, and micturition. To control these behaviors the PAG depends on

  15. Dance and music share gray matter structural correlates.

    Science.gov (United States)

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2017-02-15

    Intensive practise of sensorimotor skills, such as music and dance, is associated with brain structural plasticity. While the neural correlates of music have been well-investigated, less is known about the neural correlates of dance. Additionally, the gray matter structural correlates of dance versus music training have not yet been directly compared. The objectives of the present study were to compare gray matter structure as measured by surface- and voxel-based morphometry between expert dancers, expert musicians and untrained controls, as well as to correlate gray matter structure with performance on dance- and music-related tasks. Dancers and musicians were found to have increased cortical thickness compared to controls in superior temporal regions. Gray matter structure in the superior temporal gyrus was also correlated with performance on dance imitation, rhythm synchronization and melody discrimination tasks. These results suggest that superior temporal regions are important in both dance- and music-related skills and may be affected similarly by both types of long-term intensive training. This work advances knowledge of the neural correlates of dance and music, as well as training-associated brain plasticity in general. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Atrophy of gray and white matters in the brain during aging

    International Nuclear Information System (INIS)

    Takeda, Shumpei; Matsuzawa, Taiju; Ito, Hisao.

    1984-01-01

    We studied atrophy of gray and white matter during aging in 57 males and 44 females with no neurological disturbances using x-ray computed tomography. The ages ranged from 12 to 80 years. Brain atrophy was expressed as brain volume index: 100% x [(brain volume/cranial cavity volume) in individual subjects]/[(brain volume/cranial cavity volume) in normal subjects of 20-39 years]. Atrophy of gray and white matter volume was expressed as gray and white matter volume indices: 100% x (apparent gray or white matter volume index in individual subjects)/(apparent gray or white matter volume index in normal subjects whose brain volume index was greater than 98%), where apparent gray and white matter volume indices were expressed as 100% x [(gray or white matter volume/cranial cavity volume) in individual subjects]/[(gray or white matter volume/cranial cavity volume) in normal subjects of 20-39 years]. Both the gray and white matter volume indices changed proportionally to the brain volume index (p<0.001). As the brain atrophy advanced, the gray matter volume index decreased more than the white matter volume index (P<0.001). Decrease in the gray and white matter volume indices was statistically significant only in seventies (P<0.002 for gray matter, P<0.05 for white matter). (author)

  17. Microstructural abnormalities in white and gray matter in obese adolescents with and without type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Arie Nouwen

    2017-01-01

    Conclusion/interpretation: Our data shows that adolescent obesity alone results in reduced gray matter volume and that adolescent type 2 diabetes is associated with both white and gray matter abnormalities.

  18. Evaluation of Subependymal Gray Matter Heterotopias on Fetal MRI.

    Science.gov (United States)

    Nagaraj, U D; Peiro, J L; Bierbrauer, K S; Kline-Fath, B M

    2016-04-01

    Subependymal grey matter heterotopias are seen in a high proportion of children with Chiari II malformation and are potentially clinically relevant. However, despite its growing use, there is little in the literature describing its detection on fetal MRI. Our aim was to evaluate the accuracy in diagnosing subependymal gray matter heterotopias in fetuses with spinal dysraphism on fetal MR imaging. This study is a retrospective analysis of 203 fetal MRIs performed at a single institution for spinal dysraphism during a 10-year period. Corresponding obstetric sonography, postnatal imaging, and clinical/operative reports were reviewed. Of the fetal MRIs reviewed, 95 fetuses were included in our analysis; 23.2% (22/95) were suspected of having subependymal gray matter heterotopias on fetal MR imaging prospectively. However, only 50% (11/22) of these cases were confirmed on postnatal brain MR imaging. On postnatal brain MR imaging, 28.4% (27/95) demonstrated imaging findings consistent with subependymal gray matter heterotopia. Only 40.7% (11/27) of these cases were prospectively diagnosed on fetal MR imaging. Fetal MR imaging is limited in its ability to identify subependymal gray matter heterotopias in fetuses with spinal dysraphism. It is believed that this limitation relates to a combination of factors, including artifacts from fetal motion, the very small size of fetal neuroanatomy, differences in imaging techniques, and, possibly, irregularity related to denudation of the ependyma/subependyma in the presence of spinal dysraphism and/or stretching of the germinal matrix in ventriculomegaly. © 2016 by American Journal of Neuroradiology.

  19. Differences in gray matter structure correlated to nationalism and patriotism

    OpenAIRE

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko

    2016-01-01

    Nationalism and patriotism both entail positive evaluations of one?s nation. However, the former inherently involves derogation of other nations, whereas the latter is independent of comparisons with other nations. We used voxel-based morphometry and psychological measures and determined nationalism and patriotism?s association with gray matter density (rGMD) and their cognitive nature in healthy individuals (433 men and 344 women; age, 20.7???1.9 years) using whole-brain multiple regression ...

  20. Regional gray matter variation in male-to-female transsexualism

    Science.gov (United States)

    Luders, Eileen; Sánchez, Francisco J.; Gaser, Christian; Toga, Arthur W.; Narr, Katherine L.; Hamilton, Liberty S.; Vilain, Eric

    2009-01-01

    Gender identity—one's sense of being a man or a woman—is a fundamental perception experienced by all individuals that extends beyond biological sex. Yet, what contributes to our sense of gender remains uncertain. Since individuals who identify as transsexual report strong feelings of being the opposite sex and a belief that their sexual characteristics do not reflect their true gender, they constitute an invaluable model to understand the biological underpinnings of gender identity. We analyzed MRI data of 24 male-to-female (MTF) transsexuals not yet treated with cross-sex hormones in order to determine whether gray matter volumes in MTF transsexuals more closely resemble people who share their biological sex (30 control men), or people who share their gender identity (30 control women). Results revealed that regional gray matter variation in MTF transsexuals is more similar to the pattern found in men than in women. However, MTF transsexuals show a significantly larger volume of regional gray matter in the right putamen compared to men. These findings provide new evidence that transsexualism is associated with distinct cerebral pattern, which supports the assumption that brain anatomy plays a role in gender identity. PMID:19341803

  1. Regional gray matter variation in male-to-female transsexualism.

    Science.gov (United States)

    Luders, Eileen; Sánchez, Francisco J; Gaser, Christian; Toga, Arthur W; Narr, Katherine L; Hamilton, Liberty S; Vilain, Eric

    2009-07-15

    Gender identity-one's sense of being a man or a woman-is a fundamental perception experienced by all individuals that extends beyond biological sex. Yet, what contributes to our sense of gender remains uncertain. Since individuals who identify as transsexual report strong feelings of being the opposite sex and a belief that their sexual characteristics do not reflect their true gender, they constitute an invaluable model to understand the biological underpinnings of gender identity. We analyzed MRI data of 24 male-to-female (MTF) transsexuals not yet treated with cross-sex hormones in order to determine whether gray matter volumes in MTF transsexuals more closely resemble people who share their biological sex (30 control men), or people who share their gender identity (30 control women). Results revealed that regional gray matter variation in MTF transsexuals is more similar to the pattern found in men than in women. However, MTF transsexuals show a significantly larger volume of regional gray matter in the right putamen compared to men. These findings provide new evidence that transsexualism is associated with distinct cerebral pattern, which supports the assumption that brain anatomy plays a role in gender identity.

  2. Linking white matter and deep gray matter alterations in premanifest Huntington disease.

    Science.gov (United States)

    Faria, Andreia V; Ratnanather, J Tilak; Tward, Daniel J; Lee, David Soobin; van den Noort, Frieda; Wu, Dan; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Younes, Laurent; Miller, Michael I

    2016-01-01

    Huntington disease (HD) is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i) regions of interest surrounding these structures, using (ii) tractography-based analysis, and using (iii) whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores), and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be targeted to delay

  3. Linking white matter and deep gray matter alterations in premanifest Huntington disease

    Directory of Open Access Journals (Sweden)

    Andreia V. Faria

    2016-01-01

    Full Text Available Huntington disease (HD is a fatal progressive neurodegenerative disorder for which only symptomatic treatment is available. A better understanding of the pathology, and identification of biomarkers will facilitate the development of disease-modifying treatments. HD is potentially a good model of a neurodegenerative disease for development of biomarkers because it is an autosomal-dominant disease with complete penetrance, caused by a single gene mutation, in which the neurodegenerative process can be assessed many years before onset of signs and symptoms of manifest disease. Previous MRI studies have detected abnormalities in gray and white matter starting in premanifest stages. However, the understanding of how these abnormalities are related, both in time and space, is still incomplete. In this study, we combined deep gray matter shape diffeomorphometry and white matter DTI analysis in order to provide a better mapping of pathology in the deep gray matter and subcortical white matter in premanifest HD. We used 296 MRI scans from the PREDICT-HD database. Atrophy in the deep gray matter, thalamus, hippocampus, and nucleus accumbens was analyzed by surface based morphometry, and while white matter abnormalities were analyzed in (i regions of interest surrounding these structures, using (ii tractography-based analysis, and using (iii whole brain atlas-based analysis. We detected atrophy in the deep gray matter, particularly in putamen, from early premanifest stages. The atrophy was greater both in extent and effect size in cases with longer exposure to the effects of the CAG expansion mutation (as assessed by greater CAP-scores, and preceded detectible abnormalities in the white matter. Near the predicted onset of manifest HD, the MD increase was widespread, with highest indices in the deep and posterior white matter. This type of in-vivo macroscopic mapping of HD brain abnormalities can potentially indicate when and where therapeutics could be

  4. Widespread reductions in gray matter volume in depression.

    Science.gov (United States)

    Grieve, Stuart M; Korgaonkar, Mayuresh S; Koslow, Stephen H; Gordon, Evian; Williams, Leanne M

    2013-01-01

    Abnormalities in functional limbic-anterior cingulate-prefrontal circuits associated with emotional reactivity, evaluation and regulation have been implicated in the pathophysiology of major depressive disorder (MDD). However, existing knowledge about structural alterations in depression is equivocal and based on cohorts of limited sample size. This study used voxel-based morphometry (VBM) and surface-based cortical thickness to investigate the structure of these circuits in a large and well-characterized patient cohort with MDD. Non-geriatric MDD outpatients (n = 102) and age- and gender-matched healthy control participants (n = 34) provided T1-weighted magnetic resonance imaging data during their baseline visit as part of the International Study to Predict Optimized Treatment for Depression. Whole-brain VBM volumetric and surface-based cortical thickness assessments were performed voxel-wise and compared (at p gray matter volume in the anterior cingulate cortex, regions of the prefrontal circuits, including dorsolateral and dorsomedial prefrontal cortices, and lateral and medial orbitofrontal cortices, but not in limbic regions. Additional reductions were observed cortically in the posterior temporal and parieto-occipital cortices and, subcortically in the basal ganglia and cerebellum. Focal cortical thinning in the medial orbitofrontal cortex was also observed for the MDD group. These alterations in volume and cortical thickness were not associated with severity of depressive symptoms. The findings demonstrate that widespread gray matter structural abnormalities are present in a well-powered study of patients with depression. The patterns of gray matter loss correspond to the same brain functional network regions that were previously established to be abnormal in MDD, which may support an underlying structural abnormality for these circuits.

  5. An allometric scaling law between gray matter and white matter of cerebral cortex

    International Nuclear Information System (INIS)

    He Jihuan

    2006-01-01

    An allometric scaling relationship between cortical white and gray volumes is derived from a general model that describes brain's remarkable efficiency and prodigious communications between brain areas. The model assumes that (1) a cell's metabolic rate depends upon cell's surface; (2) the overall basal metabolic rates of brain areas depend upon their fractal structures; (3) differential brain areas have same basal metabolic rate at slow wave sleep. The obtained allometric exponent scaling white matter to gray matter is 1.2, which is very much close to Zhang and Sejnowski's observation data

  6. Gray- and White-Matter Anatomy of Absolute Pitch Possessors

    DEFF Research Database (Denmark)

    Dohn, Anders; Garza-Villarreal, Eduardo A.; Chakravarty, Mallar

    2015-01-01

    structural differences in brains of musicians with and without AP, by means of whole brain vertex- wise cortical thickness analysis and tract-based spatial statistics (TBSS) analysis. AP possessors (APs) displayed increased cortical thickness in a number of areas including the left superior temporal gyrus...... studies indicating an increased left lateralized posterior superior temporal gyrus in APs, yet they differ from previous findings of thinner cortex for a number of areas in APs. Finally, we found a correlation between the white matter cluster and the right parahippocampal gyrus. This is a novel finding......, the left inferior frontal gyrus, and the right supramarginal gyrus. Furthermore, we found increased fractional anisotropy in APs within the path of the inferior fronto-occipital fasciculus, the uncinate fasciculus and the inferior longitudinal fasciculus. The findings in gray matter support previous...

  7. Abnormalities in cortical gray matter density in borderline personality disorder

    Science.gov (United States)

    Rossi, Roberta; Lanfredi, Mariangela; Pievani, Michela; Boccardi, Marina; Rasser, Paul E; Thompson, Paul M; Cavedo, Enrica; Cotelli, Maria; Rosini, Sandra; Beneduce, Rossella; Bignotti, Stefano; Magni, Laura R; Rillosi, Luciana; Magnaldi, Silvia; Cobelli, Milena; Rossi, Giuseppe; Frisoni, Giovanni B

    2015-01-01

    Background Borderline personality disorder (BPD) is a chronic condition with a strong impact on patients‘ affective,cognitive and social functioning. Neuroimaging techniques offer invaluable tools to understand the biological substrate of the disease. We aimed to investigate gray matter alterations over the whole cortex in a group of Borderline Personality Disorder (BPD) patients compared to healthy controls (HC). Methods Magnetic resonance-based cortical pattern matching was used to assess cortical gray matter density (GMD) in 26 BPD patients and in their age- and sex-matched HC (age: 38±11; females: 16, 61%). Results BPD patients showed widespread lower cortical GMD compared to HC (4% difference) with peaks of lower density located in the dorsal frontal cortex, in the orbitofrontal cortex, the anterior and posterior cingulate, the right parietal lobe, the temporal lobe (medial temporal cortex and fusiform gyrus) and in the visual cortex (p<0.005). Our BPD subjects displayed a symmetric distribution of anomalies in the dorsal aspect of the cortical mantle, but a wider involvement of the left hemisphere in the mesial aspect in terms of lower density. A few restricted regions of higher density were detected in the right hemisphere. All regions remained significant after correction for multiple comparisons via permutation testing. Conclusions BPD patients feature specific morphology of the cerebral structures involved in cognitive and emotional processing and social cognition/mentalization, consistent with clinical and functional data. PMID:25561291

  8. Increased cerebellar gray matter volume in head chefs.

    Directory of Open Access Journals (Sweden)

    Antonio Cerasa

    Full Text Available Chefs exert expert motor and cognitive performances on a daily basis. Neuroimaging has clearly shown that that long-term skill learning (i.e., athletes, musicians, chess player or sommeliers induces plastic changes in the brain thus enabling tasks to be performed faster and more accurately. How a chef's expertise is embodied in a specific neural network has never been investigated.Eleven Italian head chefs with long-term brigade management expertise and 11 demographically-/ psychologically- matched non-experts underwent morphological evaluations.Voxel-based analysis performed with SUIT, as well as, automated volumetric measurement assessed with Freesurfer, revealed increased gray matter volume in the cerebellum in chefs compared to non-experts. The most significant changes were detected in the anterior vermis and the posterior cerebellar lobule. The magnitude of the brigade staff and the higher performance in the Tower of London test correlated with these specific gray matter increases, respectively.We found that chefs are characterized by an anatomical variability involving the cerebellum. This confirms the role of this region in the development of similar expert brains characterized by learning dexterous skills, such as pianists, rock climbers and basketball players. However, the nature of the cellular events underlying the detected morphological differences remains an open question.

  9. Increased cerebellar gray matter volume in head chefs

    Science.gov (United States)

    Sarica, Alessia; Martino, Iolanda; Fabbricatore, Carmelo; Tomaiuolo, Francesco; Rocca, Federico; Caracciolo, Manuela; Quattrone, Aldo

    2017-01-01

    Objective Chefs exert expert motor and cognitive performances on a daily basis. Neuroimaging has clearly shown that that long-term skill learning (i.e., athletes, musicians, chess player or sommeliers) induces plastic changes in the brain thus enabling tasks to be performed faster and more accurately. How a chef's expertise is embodied in a specific neural network has never been investigated. Methods Eleven Italian head chefs with long-term brigade management expertise and 11 demographically-/ psychologically- matched non-experts underwent morphological evaluations. Results Voxel-based analysis performed with SUIT, as well as, automated volumetric measurement assessed with Freesurfer, revealed increased gray matter volume in the cerebellum in chefs compared to non-experts. The most significant changes were detected in the anterior vermis and the posterior cerebellar lobule. The magnitude of the brigade staff and the higher performance in the Tower of London test correlated with these specific gray matter increases, respectively. Conclusions We found that chefs are characterized by an anatomical variability involving the cerebellum. This confirms the role of this region in the development of similar expert brains characterized by learning dexterous skills, such as pianists, rock climbers and basketball players. However, the nature of the cellular events underlying the detected morphological differences remains an open question. PMID:28182712

  10. Gray fox (Urocyon cinereoargenteus parasite diversity in central Mexico

    Directory of Open Access Journals (Sweden)

    Norma Hernández-Camacho

    2016-08-01

    Full Text Available Mexico has a long history of parasitological studies in communities of vertebrates. However, the mega diversity of the country makes fauna inventories an ongoing priority. Presently, there is little published on the parasite fauna of gray foxes (Urocyon cinereoargenteus Schereber, 1775 and this study provides new records of parasites for gray foxes in central Mexico. It is a continuation of a series of previous parasitological studies conducted with this carnivore in Mexico from 2003 to the present. A total of 24 foxes in the Parque Nacional El Cimatario (PANEC were trapped, anaesthetized, and parasites recovered. The species found were Dirofilaria immitis, Ctenocephalides canis, C. felis, Euhoplopsillus glacialis affinis (first report for gray foxes in Mexico Pulex simulants, and Ixodes sp. Three additional gray fox carcasses were necropsied and the parasites collected were adult nematodes Physaloptera praeputialis and Toxocara canis. The intensive study of the gray fox population selected for the 2013–2015 recent period allowed for a two-fold increase in the number of parasite species recorded for this carnivore since 2003 (nine to 18 parasite species, mainly recording parasitic arthropods, Dirofilaria immitis filariae and adult nematodes. The parasite species recorded are generalists that can survive in anthropic environments; which is characteristic of the present ecological scenario in central Mexico. The close proximity of the PANEC to the city of Santiago de Queretaro suggests possible parasite transmission between the foxes and domestic and feral dogs. Furthermore, packs of feral dogs in the PANEC might have altered habitat use by foxes, with possible impacts on transmission.

  11. Gray fox (Urocyon cinereoargenteus) parasite diversity in central Mexico.

    Science.gov (United States)

    Hernández-Camacho, Norma; Pineda-López, Raúl Francisco; de Jesús Guerrero-Carrillo, María; Cantó-Alarcón, Germinal Jorge; Jones, Robert Wallace; Moreno-Pérez, Marco Antonio; Mosqueda-Gualito, Juan Joel; Zamora-Ledesma, Salvador; Camacho-Macías, Brenda

    2016-08-01

    Mexico has a long history of parasitological studies in communities of vertebrates. However, the mega diversity of the country makes fauna inventories an ongoing priority. Presently, there is little published on the parasite fauna of gray foxes (Urocyon cinereoargenteus Schereber, 1775) and this study provides new records of parasites for gray foxes in central Mexico. It is a continuation of a series of previous parasitological studies conducted with this carnivore in Mexico from 2003 to the present. A total of 24 foxes in the Parque Nacional El Cimatario (PANEC) were trapped, anaesthetized, and parasites recovered. The species found were Dirofilaria immitis, Ctenocephalides canis, C. felis, Euhoplopsillus glacialis affinis (first report for gray foxes in Mexico) Pulex simulants, and Ixodes sp. Three additional gray fox carcasses were necropsied and the parasites collected were adult nematodes Physaloptera praeputialis and Toxocara canis. The intensive study of the gray fox population selected for the 2013-2015 recent period allowed for a two-fold increase in the number of parasite species recorded for this carnivore since 2003 (nine to 18 parasite species), mainly recording parasitic arthropods, Dirofilaria immitis filariae and adult nematodes. The parasite species recorded are generalists that can survive in anthropic environments; which is characteristic of the present ecological scenario in central Mexico. The close proximity of the PANEC to the city of Santiago de Queretaro suggests possible parasite transmission between the foxes and domestic and feral dogs. Furthermore, packs of feral dogs in the PANEC might have altered habitat use by foxes, with possible impacts on transmission.

  12. Gray matter network measures are associated with cognitive decline in mild cognitive impairment.

    Science.gov (United States)

    Dicks, Ellen; Tijms, Betty M; Ten Kate, Mara; Gouw, Alida A; Benedictus, Marije R; Teunissen, Charlotte E; Barkhof, Frederik; Scheltens, Philip; van der Flier, Wiesje M

    2018-01-01

    Gray matter networks are disrupted in Alzheimer's disease and related to cognitive impairment. However, it is still unclear whether these disruptions are associated with cognitive decline over time. Here, we studied this question in a large sample of patients with mild cognitive impairment with extensive longitudinal neuropsychological assessments. Gray matter networks were extracted from baseline structural magnetic resonance imaging, and we tested associations of network measures and cognitive decline in Mini-Mental State Examination and 5 cognitive domains (i.e., memory, attention, executive function, visuospatial, and language). Disrupted network properties were cross-sectionally related to worse cognitive impairment. Longitudinally, lower small-world coefficient values were associated with a steeper decline in almost all domains. Lower betweenness centrality values correlated with a faster decline in Mini-Mental State Examination and memory, and at a regional level, these associations were specific for the precuneus, medial frontal, and temporal cortex. Furthermore, network measures showed additive value over established biomarkers in predicting cognitive decline. Our results suggest that gray matter network measures might have use in identifying patients who will show fast disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Abnormal gray matter volume and impulsivity in young adults with Internet gaming disorder.

    Science.gov (United States)

    Lee, Deokjong; Namkoong, Kee; Lee, Junghan; Jung, Young-Chul

    2017-09-08

    Reduced executive control is one of the central components of model on the development and maintenance of Internet gaming disorder (IGD). Among the various executive control problems, high impulsivity has consistently been associated with IGD. We performed voxel-based morphometric analysis with diffeomorphic anatomical registration by using an exponentiated Lie algebra algorithm (DARTEL) to investigate the relationship of gray matter abnormalities to impulsivity in IGD. Thirty-one young male adults whose excessive Internet gaming began in early adolescence, and 30 age-matched male healthy controls were examined. IGD subjects showed smaller gray matter volume (GMV) in brain regions implicated in executive control, such as the anterior cingulate cortex and the supplementary motor area. The GMVs in the anterior cingulate cortex and the supplementary motor area were negatively correlated with self-reporting scales of impulsiveness. IGD subjects also exhibited smaller GMV in lateral prefrontal and parietal cortices comprising the left ventrolateral prefrontal cortex and the left inferior parietal lobule when compared with healthy controls. The GMVs in the left ventrolateral prefrontal cortex were negatively correlated with lifetime usage of Internet gaming. These findings suggest that gray matter abnormalities in areas related to executive control may contribute to high impulsivity of young adults with IGD. Furthermore, alterations in the prefrontal cortex were related with long-term excessive Internet gaming during adolescence. © 2017 Society for the Study of Addiction.

  14. Brain Gray Matter MRI Morphometry for Neuroprognostication After Cardiac Arrest.

    Science.gov (United States)

    Silva, Stein; Peran, Patrice; Kerhuel, Lionel; Malagurski, Briguita; Chauveau, Nicolas; Bataille, Benoit; Lotterie, Jean Albert; Celsis, Pierre; Aubry, Florent; Citerio, Giuseppe; Jean, Betty; Chabanne, Russel; Perlbarg, Vincent; Velly, Lionel; Galanaud, Damien; Vanhaudenhuyse, Audrey; Fourcade, Olivier; Laureys, Steven; Puybasset, Louis

    2017-08-01

    We hypothesize that the combined use of MRI cortical thickness measurement and subcortical gray matter volumetry could provide an early and accurate in vivo assessment of the structural impact of cardiac arrest and therefore could be used for long-term neuroprognostication in this setting. Prospective cohort study. Five Intensive Critical Care Units affiliated to the University in Toulouse (France), Paris (France), Clermont-Ferrand (France), Liège (Belgium), and Monza (Italy). High-resolution anatomical T1-weighted images were acquired in 126 anoxic coma patients ("learning" sample) 16 ± 8 days after cardiac arrest and 70 matched controls. An additional sample of 18 anoxic coma patients, recruited in Toulouse, was used to test predictive model generalization ("test" sample). All patients were followed up 1 year after cardiac arrest. None. Cortical thickness was computed on the whole cortical ribbon, and deep gray matter volumetry was performed after automatic segmentation. Brain morphometric data were employed to create multivariate predictive models using learning machine techniques. Patients displayed significantly extensive cortical and subcortical brain volumes atrophy compared with controls. The accuracy of a predictive classifier, encompassing cortical and subcortical components, has a significant discriminative power (learning area under the curve = 0.87; test area under the curve = 0.96). The anatomical regions which volume changes were significantly related to patient's outcome were frontal cortex, posterior cingulate cortex, thalamus, putamen, pallidum, caudate, hippocampus, and brain stem. These findings are consistent with the hypothesis of pathologic disruption of a striatopallidal-thalamo-cortical mesocircuit induced by cardiac arrest and pave the way for the use of combined brain quantitative morphometry in this setting.

  15. Correlation among body height, intelligence, and brain gray matter volume in healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kotozaki, Yuka; Nouchi, Rui; Wu, Kai; Fukuda, Hiroshi; Kawashima, Ryuta

    2012-01-16

    A significant positive correlation between height and intelligence has been demonstrated in children. Additionally, intelligence has been associated with the volume of gray matter in the brains of children. Based on these correlations, we analyzed the correlation among height, full-scale intelligence quotient (IQ) and gray matter volume applying voxel-based morphometry using data from the brain magnetic resonance images of 160 healthy children aged 5-18 years of age. As a result, body height was significantly positively correlated with brain gray matter volume. Additionally, the regional gray matter volume of several regions such as the bilateral prefrontal cortices, temporoparietal region, and cerebellum was significantly positively correlated with body height and that the gray matter volume of several of these regions was also significantly positively correlated with full-scale intelligence quotient (IQ) scores after adjusting for age, sex, and socioeconomic status. Our results demonstrate that gray and white matter volume may mediate the correlation between body height and intelligence in healthy children. Additionally, the correlations among gray and white matter volume, height, and intelligence may be at least partially explained by the effect of insulin-like growth factor-1 and growth hormones. Given the importance of the effect of environmental factors, especially nutrition, on height, IQ, and gray matter volume, the present results stress the importance of nutrition during childhood for the healthy maturation of body and brain. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Regional Gray Matter Volume Deficits in Adolescents with First-Episode Psychosis

    Science.gov (United States)

    Janssen, Joost; Parellada, Mara; Moreno, Dolores; Graell, Montserrat; Fraguas, David; Zabala, Arantzazu; Vazquez, Veronica Garcia; Desco, Manuel; Arango, Celso

    2008-01-01

    The regional gray matter volumes of adolescents with first-episode psychosis are compared with those of a control group. Magnetic resonance imaging was conducted on 70 patients with early onset FEP and on 51 individuals without FEP. Findings revealed that volume deficits in the left medial frontal gray matter were common in individuals with…

  17. Mechanical properties of gray and white matter brain tissue by indentation.

    Science.gov (United States)

    Budday, Silvia; Nay, Richard; de Rooij, Rijk; Steinmann, Paul; Wyrobek, Thomas; Ovaert, Timothy C; Kuhl, Ellen

    2015-06-01

    The mammalian brain is composed of an outer layer of gray matter, consisting of cell bodies, dendrites, and unmyelinated axons, and an inner core of white matter, consisting primarily of myelinated axons. Recent evidence suggests that microstructural differences between gray and white matter play an important role during neurodevelopment. While brain tissue as a whole is rheologically well characterized, the individual features of gray and white matter remain poorly understood. Here we quantify the mechanical properties of gray and white matter using a robust, reliable, and repeatable method, flat-punch indentation. To systematically characterize gray and white matter moduli for varying indenter diameters, loading rates, holding times, post-mortem times, and locations we performed a series of n=192 indentation tests. We found that indenting thick, intact coronal slices eliminates the common challenges associated with small specimens: it naturally minimizes boundary effects, dehydration, swelling, and structural degradation. When kept intact and hydrated, brain slices maintained their mechanical characteristics with standard deviations as low as 5% throughout the entire testing period of five days post mortem. White matter, with an average modulus of 1.89 5kPa ± 0.592 kPa, was on average 39% stiffer than gray matter, pmatter and responded less rapidly to mechanical loading. Understanding the rheological differences between gray and white matter may have direct implications on diagnosing and understanding the mechanical environment in neurodevelopment and neurological disorders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Exercise Effects on the Course of Gray Matter Changes Over 70 Days of Bed Rest

    Science.gov (United States)

    Koppelmans, V.; Ploutz-Snyder, L.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight affects posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes through direct effects on peripheral changes that result from reduced vestibular stimulation and body unloading. Effects of microgravity on sensorimotor function have been investigated on earth using bed rest studies. Long duration bed rest serves as a space-flight analogue because it mimics microgravity in body unloading and bodily fluid shifts. It has been hypothesized that the cephalad fluid shift that has been observed in microgravity could potentially affect central nervous system function and structure, and thereby indirectly affect sensorimotor or cognitive functioning. Preliminary results of one of our ongoing studies indeed showed that 70 days of long duration head down-tilt bed rest results in focal changes in gray matter volume from pre-bed rest to various time points during bed rest. These gray matter changes that could reflect fluid shifts as well as neuroplasticity were related to decrements in motor skills such as maintenance of equilibrium. In consideration of the health and performance of crewmembers both inand post-flight we are currently conducting a study that investigates the potential preventive effects of exercise on gray matter and motor performance changes that we observed over the course of bed rest. Numerous studies have shown beneficial effects of aerobic exercise on brain structure and cognitive performance in healthy and demented subjects over a large age range. We therefore hypothesized that an exercise intervention in bed rest could potentially mitigate or prevent the effects of bed rest on the central nervous system. Here we present preliminary outcomes of our study.

  19. Gray/White Matter Contrast in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Carme Uribe

    2018-03-01

    Full Text Available Gray/white matter contrast (GWC decreases with aging and has been found to be a useful MRI biomarker in Alzheimer’s disease (AD, but its utility in Parkinson’s disease (PD patients has not been investigated. The aims of the study were to test whether GWC is sensitive to aging changes in PD patients, if PD patients differ from healthy controls (HCs in GWC, and whether the use of GWC data would improve the sensitivity of cortical thickness analyses to differentiate PD patients from controls. Using T1-weighted structural images, we obtained individual cortical thickness and GWC values from a sample of 90 PD patients and 27 controls. Images were processed with the automated FreeSurfer stream. GWC was computed by dividing the white matter (WM by the gray matter (GM values and projecting the ratios onto a common surface. The sample characteristics were: 52 patients and 14 controls were males; mean age of 64.4 ± 10.6 years in PD and 64.7 ± 8.6 years in controls; 8.0 ± 5.6 years of disease evolution; 15.6 ± 9.8 UPDRS; and a range of 1.5–3 in Hoehn and Yahr (H&Y stage. In both PD and controls we observed significant correlations between GWC and age involving almost the entire cortex. When applying a stringent cluster-forming threshold of p < 0.0001, the correlation between GWC and age also involved the entire cortex in the PD group; in the control group, the correlation was found in the parahippocampal gyrus and widespread frontal and parietal areas. The GWC of PD patients did not differ from controls’, whereas cortical thickness analyses showed thinning in temporal and parietal cortices in the PD group. Cortical thinning remained unchanged after adjusting for GWC. GWC is a very sensitive measure for detecting aging effects, but did not provide additional information over other parameters of atrophy in PD.

  20. Segmentation of brain parenchymal regions into gray matter and white matter with Alzheimer's disease

    International Nuclear Information System (INIS)

    Tokunaga, Chiaki; Yoshiura, Takashi; Yamashita, Yasuo; Magome, Taiki; Honda, Hiroshi; Arimura, Hidetaka; Toyofuku, Fukai; Ohki, Masafumi

    2010-01-01

    It is very difficult and time consuming for neuroradiologists to estimate the degree of cerebral atrophy based on the volume of cortical regions etc. Our purpose of this study was to develop an automated segmentation of the brain parenchyma into gray and white matter regions with Alzheimer's disease (AD) in three-dimensional (3D) T1-weighted MR images. Our proposed method consisted of extraction of a brain parenchymal region based on a brain model matching and segmentation of the brain parenchyma into gray and white matter regions based on a fuzzy c-means (FCM) algorithm. We applied our proposed method to MR images of the whole brains obtained from 9 cases, including 4 clinically AD cases and 5 control cases. The mean volume percentage of a cortical region (41.7%) to a brain parenchymal region in AD patients was smaller than that (45.2%) in the control subjects (p=0.000462). (author)

  1. Attention and Regional Gray Matter Development in Very Preterm Children at Age 12 Years.

    Science.gov (United States)

    Lean, Rachel E; Melzer, Tracy R; Bora, Samudragupta; Watts, Richard; Woodward, Lianne J

    2017-08-01

    This study examines the selective, sustained, and executive attention abilities of very preterm (VPT) born children in relation to concurrent structural magnetic resonance imaging (MRI) measures of regional gray matter development at age 12 years. A regional cohort of 110 VPT (≤32 weeks gestation) and 113 full term (FT) born children were assessed at corrected age 12 years on the Test of Everyday Attention-Children. They also had a structural MRI scan that was subsequently analyzed using voxel-based morphometry to quantify regional between-group differences in cerebral gray matter development, which were then related to attention measures using multivariate methods. VPT children obtained similar selective (p=.85), but poorer sustained (p=.02) and executive attention (p=.01) scores than FT children. VPT children were also characterized by reduced gray matter in the bilateral parietal, temporal, prefrontal and posterior cingulate cortices, bilateral thalami, and left hippocampus; and increased gray matter in the occipital and anterior cingulate cortices (family-wise error-corrected pattention was associated with increased gray matter in the anterior cingulate cortex (p=.04). Poor executive shifting attention was associated with reduced gray matter in the right superior temporal cortex (p=.04) and bilateral thalami (p=.05). Poorer executive divided attention was associated with reduced gray matter in the occipital (p=.001), posterior cingulate (p=.02), and left temporal (p=.01) cortices; and increased gray matter in the anterior cingulate cortex (p=.001). Disturbances in regional gray matter development appear to contribute, at least in part, to the poorer attentional performance of VPT children at school age. (JINS, 2017, 23, 539-550).

  2. 1H MR spectroscopy of gray and white matter in carbon monoxide poisoning

    DEFF Research Database (Denmark)

    Kondziella, D.; Danielsen, E.R.; Hansen, K.

    2009-01-01

    limited information is available to date on the use of this protocol in determining the neurological effects of CO poisoning. To further examine the short-term and long-term effects of CO on the central nervous system, we have studied seven patients with CO poisoning assessed by gray and white matter MRS......-acetyl aspartate (NAA) ratios to creatine (Cr), predominantly in the white matter. Lactate peaks were detected in two patients during the early phase of high-dose CO poisoning. Two patients with chronic low-dose CO exposure and without loss of consciousness had normal MRI and MRS scans. On follow-up. five of our......Carbon monoxide (CO) intoxication leads to acute and chronic neurological deficits, but little is known about the specific noxious mechanisms. (1)H magnetic resonance spectroscopy (MRS) may allow insight into the pathophysiology of CO poisoning by monitoring neurochemical disturbances, yet only...

  3. Reduced gray to white matter tissue intensity contrast in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Li Kong

    Full Text Available BACKGROUND: While numerous structural magnetic resonance imaging (MRI studies revealed changes of brain volume or density, cortical thickness and fibre integrity in schizophrenia, the effect of tissue alterations on the contrast properties of neural structures has so far remained mostly unexplored. METHODS: Whole brain high-resolution MRI at 3 Tesla was used to investigate tissue contrast and cortical thickness in patients with schizophrenia and healthy controls. RESULTS: Patients showed significantly decreased gray to white matter contrast in large portions throughout the cortical mantle with preponderance in inferior, middle, superior and medial temporal areas as well as in lateral and medial frontal regions. The extent of these intensity contrast changes exceeded the extent of cortical thinning. Further, contrast changes remained significant after controlling for cortical thickness measurements. CONCLUSIONS: Our findings clearly emphasize the presence of schizophrenia related brain tissue changes that alter the imaging properties of brain structures. Intensity contrast measurements might not only serve as a highly sensitive metric but also as a potential indicator of a distinct pathological process that might be independent from volume or thickness alterations.

  4. Prenatal Stress, Mood, and Gray Matter Volume in Young Adulthood.

    Science.gov (United States)

    Marecková, Klára; Klasnja, Anja; Bencurova, Petra; Andrýsková, Lenka; Brázdil, Milan; Paus, Tomáš

    2018-02-07

    This study aimed to determine whether prenatal stress, measured by the number of stressful life events during the first 20 weeks of pregnancy, might relate to mood dysregulation and altered brain structure in young adulthood. Participants included 93 young adults from a community-based birth cohort from the Czech Republic. Information on prenatal stress exposure was collected from their mothers in 1990-1992. Magnetic resonance imaging (MRI) and mood-related data were collected from the young adults in 2015. MRI analyses focused on overall gray matter (GM) volume and GM volume of cortical regions previously associated with major depression. Higher prenatal stress predicted more mood dysregulation, lower overall GM volume, and lower GM volume in mid-dorsolateral frontal cortex, anterior cingulate cortex, and precuneus in young adulthood. We observed no prenatal stress by sex interactions for any of the relations. We conclude that prenatal stress is an important risk factor that relates to worse mood states and altered brain structure in young adulthood irrespective of sex. Our results point to the importance and long-lasting effects of prenatal programming and suggest that offspring of mothers who went through substantial stress during pregnancy might benefit from early intervention that would reduce the odds of mental illness in later life. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. White and gray matter damage in primary progressive MS

    Science.gov (United States)

    Chard, Declan; Altmann, Daniel R.; Tozer, Daniel; Miller, David H.; Thompson, Alan J.; Wheeler-Kingshott, Claudia; Ciccarelli, Olga

    2016-01-01

    Objective: The temporal relationship between white matter (WM) and gray matter (GM) damage in vivo in early primary progressive multiple sclerosis (PPMS) was investigated testing 2 hypotheses: (1) WM tract abnormalities predict subsequent changes in the connected cortex (“primary WM damage model”); and (2) cortical abnormalities predict later changes in connected WM tracts (“primary GM damage model”). Methods: Forty-seven patients with early PPMS and 18 healthy controls had conventional and magnetization transfer imaging at baseline; a subgroup of 35 patients repeated the protocol after 2 years. Masks of the corticospinal tracts, genu of the corpus callosum and optic radiations, and of connected cortical regions, were used for extracting the mean magnetization transfer ratio (MTR). Multiple regressions within each of 5 tract-cortex pairs were performed, adjusting for the dependent variable's baseline MTR; tract lesion load and MTR, spinal cord area, age, and sex were examined for potential confounding. Results: The baseline MTR of most regions was lower in patients than in healthy controls. The tract-cortex pair relationships in the primary WM damage model were significant for the bilateral motor pair and right visual pair, while those in the primary GM damage model were only significant for the right motor pair. Lower lesion MTR at baseline was associated with lower MTR in the same tract normal-appearing WM at 2 years in 3 tracts. Conclusion: These results are consistent with the hypothesis that in early PPMS, cortical damage is for the most part a sequela of normal-appearing WM pathology, which, in turn, is predicted by abnormalities within WM lesions. PMID:26674332

  6. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers.

    Science.gov (United States)

    Han, Doug Hyun; Lyoo, In Kyoon; Renshaw, Perry F

    2012-04-01

    Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Guihu Zhao

    Full Text Available A failure of adaptive inference-misinterpreting available sensory information for appropriate perception and action-is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci in subcortical gray matter (GM in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD, a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales of subcortical GM in this disorder. Probabilistic (entropy-based information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR images in chronic patients with schizophrenia (n = 19 and age-matched healthy controls (n = 19 (age ranges: patients, 22.7-54.3 and healthy controls, 24.9-51.6 years old. We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07-2.18 vs. median: 2.1730, range: 2.15-2.23, p<0.001; Cohen's effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0, the right hippocampus (median: 2.1430, range: 2.05-2.19 vs. median: 2.1760, range: 2.12-2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1, as well as left thalamus (median: 2.4230, range: 2.40-2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473 in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in

  8. Gray matter density reduction in the insula in fire survivors with posttraumatic stress disorder: a voxel-based morphometric study.

    Science.gov (United States)

    Chen, Shulin; Xia, Weiwei; Li, Lingjiang; Liu, Jun; He, Zhong; Zhang, Zishu; Yan, Lirong; Zhang, Jinli; Hu, Dewen

    2006-01-30

    Voxel-based morphometry (VBM) is an objective whole-brain technique for characterizing regional cerebral volume and tissue concentration differences in structural magnetic resonance images. In the current study, we used VBM to examine possible cerebral gray matter abnormalities in patients with posttraumatic stress disorder (PTSD) due to fire. The subjects included 12 victims of a fire disaster with PTSD and 12 matched victims of the same fire without PTSD. Magnetic resonance images were obtained on a 1.5-Tesla General Electric scanner at Central South University, and an entire brain volume of 248 contiguous slices was obtained for each subject. Then, gray matter density in patients with PTSD and control groups was compared by using a VBM approach in SPM2. Group analysis was thresholded at Pfire.

  9. Anatomical abnormalities in gray and white matter of the cortical surface in persons with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Tiziano Colibazzi

    Full Text Available Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM and white matter (WM disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia.We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness.We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities.Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness.

  10. Behavioral correlates of changes in hippocampal gray matter structure during acquisition of foreign vocabulary.

    Science.gov (United States)

    Bellander, Martin; Berggren, Rasmus; Mårtensson, Johan; Brehmer, Yvonne; Wenger, Elisabeth; Li, Tie-Qiang; Bodammer, Nils C; Shing, Yee-Lee; Werkle-Bergner, Markus; Lövdén, Martin

    2016-05-01

    Experience can affect human gray matter volume. The behavioral correlates of individual differences in such brain changes are not well understood. In a group of Swedish individuals studying Italian as a foreign language, we investigated associations among time spent studying, acquired vocabulary, baseline performance on memory tasks, and gray matter changes. As a way of studying episodic memory training, the language learning focused on acquiring foreign vocabulary and lasted for 10weeks. T1-weighted structural magnetic resonance imaging and cognitive testing were performed before and after the studies. Learning behavior was monitored via participants' use of a smartphone application dedicated to the study of vocabulary. A whole-brain analysis showed larger changes in gray matter structure of the right hippocampus in the experimental group (N=33) compared to an active control group (N=23). A first path analyses revealed that time spent studying rather than acquired knowledge significantly predicted change in gray matter structure. However, this association was not significant when adding performance on baseline memory measures into the model, instead only the participants' performance on a short-term memory task with highly similar distractors predicted the change. This measure may tap similar individual difference factors as those involved in gray matter plasticity of the hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [Impairments of gray matter in MRI-negative epileptic patients with different seizure types].

    Science.gov (United States)

    Quan, W; Xu, Q; Yang, F; Chen, G H; Lin, Z X; Zhang, Q R; Xiao, J H; Lu, G M; Zhang, Z Q

    2017-12-05

    Objective: To investigate the damage of gray matter structure in MRI-negative epilepsy patients with different symptoms by voxel-based morphometry (VBM). Methods: From June, 2009 to October, 2016, ninety MRI-negative epilepsy patients and thirty-five healthy volunteers underwent the 3T magnetic resonance imaging scan in Nanjing General Hospital. The patients were divided into three groups, including idiopathic generalized tonic-clonic seizure (I-GTCS), secondarily generalized tonic-clonic seizure (S-GTCS), and partial seizure (PS) according to different symptoms. The three-dimensional high-resolution T1 structural MRI data was obtained for the voxel-based morphometry. Data of gray matter structure from four groups were compared using one-way analysis of variance (ANOVA). An independent-sample t test was performed in order to compare gray matter volume of the three patient groups with controls respectively. According the results of ANOVA, impaired brain regions were selected as regions of interest in order to carry out correlation analysis between gray matter volume and disease duration. Results: ANOVA showed significant differences in gray matter structure of bilateral thalamus and frontal lobe between four groups (alphasim correction, P structure, especially in thalamus and frontal lobe. The impairments of thalamus and frontal lobe in patients with different seizure types are different with the progression of disease, which suggests that influences of different epilepsy seizures on the thalamo-cortical network are different.

  12. [A voxel-based morphometric analysis of brain gray matter in online game addicts].

    Science.gov (United States)

    Weng, Chuan-bo; Qian, Ruo-bing; Fu, Xian-ming; Lin, Bin; Ji, Xue-bing; Niu, Chao-shi; Wang, Ye-han

    2012-12-04

    To explore the possible brain mechanism of online game addiction (OGA) in terms of brain morphology through voxel-based morphometric (VBM) analysis. Seventeen subjects with OGA and 17 age- and gender-matched healthy controls (HC group) were recruited from Department of Psychology at our hospital during February-December 2011. The internet addiction scale (IAS) was used to measure the degree of OGA tendency. Magnetic resonance imaging (MRI) scans were performed to acquire 3-dimensional T1-weighted images. And FSL 4.1 software was employed to confirm regional gray matter volume changes. For the regions where OGA subjects showed significantly different gray matter volumes from the controls, the gray matter volumes of these areas were extracted, averaged and regressed against the scores of IAS. The OGA group had lower gray matter volume in left orbitofrontal cortex (OFC), left medial prefrontal cortex (mPFC), bilateral insula (INS), left posterior cingulate cortex (PCC) and left supplementary motor area (SMA). Gray matter volumes of left OFC and bilateral INS showed a negative correlation with the scores of IAS (r = -0.65, r = -0.78, P online game addicts and they may be correlated with the occurrence and maintenance of OGA.

  13. Regional gray matter abnormalities in patients with schizophrenia determined with optimized voxel-based morphometry

    Science.gov (United States)

    Guo, XiaoJuan; Yao, Li; Jin, Zhen; Chen, Kewei

    2006-03-01

    This study examined regional gray matter abnormalities across the whole brain in 19 patients with schizophrenia (12 males and 7 females), comparing with 11 normal volunteers (7 males and 4 females). The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of magnetic resonance imaging (MRI) data was conducted using optimized voxel-based morphometry (VBM). The statistical voxel based analysis was implemented in terms of two-sample t-test model. Compared with normal controls, regional gray matter concentration in patients with schizophrenia was significantly reduced in the bilateral superior temporal gyrus, bilateral middle frontal and inferior frontal gyrus, right insula, precentral and parahippocampal areas, left thalamus and hypothalamus as well as, however, significant increases in gray matter concentration were not observed across the whole brain in the patients. This study confirms and extends some earlier findings on gray matter abnormalities in schizophrenic patients. Previous behavior and fMRI researches on schizophrenia have suggested that cognitive capacity decreased and self-conscious weakened in schizophrenic patients. These regional gray matter abnormalities determined through structural MRI with optimized VBM may be potential anatomic underpinnings of schizophrenia.

  14. Regional Neocortical Gray Matter Structure and Sleep Fragmentation in Older Adults.

    Science.gov (United States)

    Lim, Andrew S P; Fleischman, Debra A; Dawe, Robert J; Yu, Lei; Arfanakis, Konstantinos; Buchman, Aron S; Bennett, David A

    2016-01-01

    To test the hypothesis that greater sleep fragmentation is associated with regionally decreased cortical gray matter volume in older community-dwelling adults without cognitive impairment. We studied 141 community-dwelling older adults (median age 82.9; 73% female) without cognitive impairment or stroke, and not using sedative/ hypnotic medications, participating in the Rush Memory and Aging Project. We quantified sleep fragmentation from 7 d of actigraphy using the metric kRA and related this to total cortical gray matter volume, and regional gray matter volume in 34 cortical regions quantified by automated segmentation of magnetic resonance imaging data. We determined statistical significance and accounted for multiple comparisons by empirically estimating the false discovery rate by permutation. Lower total cortical gray matter volume was associated with higher sleep fragmentation (coefficient +0.23, standard error [SE] 0.11, P = 0.037). Lower gray matter volumes in four cortical regions were accompanied by higher sleep fragmentation with a false discovery rate sleep fragmentation in older community-dwelling adults. Further work is needed to clarify whether this is a consequence of or contributor to sleep fragmentation. A commentary on this article appears in this issue on page 15. © 2016 Associated Professional Sleep Societies, LLC.

  15. Reduced brain gray matter concentration in patients with obstructive sleep apnea syndrome.

    Science.gov (United States)

    Joo, Eun Yeon; Tae, Woo Suk; Lee, Min Joo; Kang, Jung Woo; Park, Hwan Seok; Lee, Jun Young; Suh, Minah; Hong, Seung Bong

    2010-02-01

    To investigate differences in brain gray matter concentrations or volumes in patients with obstructive sleep apnea syndrome (OSA) and healthy volunteers. Optimized voxel-based morphometry, an automated processing technique for MRI, was used to characterize structural differences in gray matter in newly diagnosed male patients. University hospital. The study consisted of 36 male OSA and 31 non-apneic male healthy volunteers matched for age (mean age, 44.8 years). Using the t-test, gray matter differences were identified. The statistical significance level was set to a false discovery rate P 200 voxels. The mean apnea-hypopnea index (AHI) of patients was 52.5/h. On visual inspection of MRI, no structural abnormalities were observed. Compared to healthy volunteers, the gray matter concentrations of OSA patients were significantly decreased in the left gyrus rectus, bilateral superior frontal gyri, left precentral gyrus, bilateral frontomarginal gyri, bilateral anterior cingulate gyri, right insular gyrus, bilateral caudate nuclei, bilateral thalami, bilateral amygdalo-hippocampi, bilateral inferior temporal gyri, and bilateral quadrangular and biventer lobules in the cerebellum (false discovery rate P memory impairment, affective and cardiovascular disturbances, executive dysfunctions, and dysregulation of autonomic and respiratory control frequently found in OSA patients might be related to morphological differences in the brain gray matter areas.

  16. Reduced anterior and posterior cingulate gray matter in borderline personality disorder.

    Science.gov (United States)

    Hazlett, Erin A; New, Antonia S; Newmark, Randall; Haznedar, M Mehmet; Lo, Jennifer N; Speiser, Lisa J; Chen, Amy D; Mitropoulou, Vivian; Minzenberg, Michael; Siever, Larry J; Buchsbaum, Monte S

    2005-10-15

    Structural abnormalities in prefrontal and cingulate gyrus regions-important in affective processing, impulse control and cognition may contribute to the psychopathology of borderline personality disorder (BPD). Previous MRI studies examining volume have reported that compared with healthy controls, BPD patients have decreases in right anterior cingulate, no differences in dorsolateral prefrontal cortex, and mixed findings for prefrontal cortex. We extended this investigation by examining gray and white matter volume of frontal and cingulate gyrus Brodmann areas (BAs) in a large group of patients and healthy controls. MRI scans were acquired in 50 BPD patients (n = 13 with comorbid diagnosis of BPD and Schizotypal Personality Disorder (SPD) and n = 37 without SPD) and 50 healthy controls, and gray/white matter volume in cingulate gyrus and frontal lobe BAs were assessed. Normal BPD and BPD subgroup comparisons were conducted. Compared with controls, BPD patients showed reduced gray matter volume in BA 24 and 31 of the cingulate. BPD patients without comorbid SPD had isolated gray matter volume loss in BA 24, but were spared for BA 31 in contrast to BPD patients with SPD. There were no group differences in whole cingulate or frontal lobe volume. The finding of more pervasive cingulate shrinkage in the patients with BPD and SPD comorbidity resembles recent observations with the same methods in patients with schizophrenia. The pattern of reduced anterior and posterior cingulate gray matter volume in BPD patients, particularly those comorbid for SPD is consistent with the affective and attentional deficits observed in these personality disorders.

  17. Gray matter atrophy in narcolepsy: An activation likelihood estimation meta-analysis.

    Science.gov (United States)

    Weng, Hsu-Huei; Chen, Chih-Feng; Tsai, Yuan-Hsiung; Wu, Chih-Ying; Lee, Meng; Lin, Yu-Ching; Yang, Cheng-Ta; Tsai, Ying-Huang; Yang, Chun-Yuh

    2015-12-01

    The authors reviewed the literature on the use of voxel-based morphometry (VBM) in narcolepsy magnetic resonance imaging (MRI) studies via the use of a meta-analysis of neuroimaging to identify concordant and specific structural deficits in patients with narcolepsy as compared with healthy subjects. We used PubMed to retrieve articles published between January 2000 and March 2014. The authors included all VBM research on narcolepsy and compared the findings of the studies by using gray matter volume (GMV) or gray matter concentration (GMC) to index differences in gray matter. Stereotactic data were extracted from 8 VBM studies of 149 narcoleptic patients and 162 control subjects. We applied activation likelihood estimation (ALE) technique and found significant regional gray matter reduction in the bilateral hypothalamus, thalamus, globus pallidus, extending to nucleus accumbens (NAcc) and anterior cingulate cortex (ACC), left mid orbital and rectal gyri (BAs 10 and 11), right inferior frontal gyrus (BA 47), and the right superior temporal gyrus (BA 41) in patients with narcolepsy. The significant gray matter deficits in narcoleptic patients occurred in the bilateral hypothalamus and frontotemporal regions, which may be related to the emotional processing abnormalities and orexin/hypocretin pathway common among populations of patients with narcolepsy. Copyright © 2015. Published by Elsevier Ltd.

  18. Cortical gray and white matter volume in unmedicated schizotypal and schizophrenia patients.

    Science.gov (United States)

    Hazlett, Erin A; Buchsbaum, Monte S; Haznedar, M Mehmet; Newmark, Randall; Goldstein, Kim E; Zelmanova, Yuliya; Glanton, Cathryn F; Torosjan, Yuliya; New, Antonia S; Lo, Jennifer N; Mitropoulou, Vivian; Siever, Larry J

    2008-04-01

    Magnetic resonance imaging (MRI) studies have revealed fronto-temporal cortical gray matter volume reductions in schizophrenia. However, to date studies have not examined whether age- and sex-matched unmedicated schizotypal personality disorder (SPD) patients share some or all of the structural brain-imaging characteristics of schizophrenia patients. We examined cortical gray/white matter volumes in a large sample of unmedicated schizophrenia-spectrum patients (n=79 SPD, n=57 schizophrenia) and 148 healthy controls. MRI images were reoriented to standard position parallel to the anterior-posterior commissure line, segmented into gray and white matter tissue types, and assigned to Brodmann areas (BAs) using a postmortem-histological atlas. Group differences in regional volume of gray and white matter in the BAs were examined with MANOVA. Schizophrenia patients had significantly reduced gray matter volume widely across the cortex but more marked in frontal and temporal lobes. SPD patients had reductions in the same regions but only about half that observed in schizophrenia and sparing in key regions including BA10. In schizophrenia, greater fronto-temporal volume loss was associated with greater negative symptom severity and in SPD, greater interpersonal and cognitive impairment. Overall, our findings suggest that increased prefrontal volume in BA10 and sparing of volume loss in temporal cortex (BAs 22 and 20) may be a protective factor in SPD which reduces vulnerability to psychosis.

  19. Captures of Crawford's gray shrews (Notiosorex crawfordi) along the Rio Grande in central New Mexico

    Science.gov (United States)

    Alice Chung-MacCoubrey; Heather L. Bateman; Deborah M. Finch

    2009-01-01

    We captured >2000 Crawford's gray shrews (Notiosorex crawfordi) in a riparian forest mainly consisting of cottonwoods (Populus deltoides) along the Rio Grande in central New Mexico. Little has been published about abundance and habitat of Crawford's gray shrew throughout its distributional range. During 7 summers, we...

  20. Different regional gray matter loss in recent onset PTSD and non PTSD after a single prolonged trauma exposure.

    Directory of Open Access Journals (Sweden)

    Yunchun Chen

    Full Text Available OBJECTIVE: Gray matter loss in the limbic structures was found in recent onset post traumatic stress disorder (PTSD patients. In the present study, we measured regional gray matter volume in trauma survivors to verify the hypothesis that stress may cause different regional gray matter loss in trauma survivors with and without recent onset PTSD. METHOD: High resolution T1-weighted magnetic resonance imaging (MRI were obtained from coal mine flood disaster survivors with (n = 10 and without (n = 10 recent onset PTSD and 20 no trauma exposed normal controls. The voxel-based morphometry (VBM method was used to measure the regional gray matter volume in three groups, the correlations of PTSD symptom severities with the gray matter volume in trauma survivors were also analyzed by multiple regression. RESULTS: Compared with normal controls, recent onset PTSD patients had smaller gray matter volume in left dorsal anterior cingulate cortex (ACC, and non PTSD subjects had smaller gray matter volume in the right pulvinar and left pallidum. The gray matter volume of the trauma survivors correlated negatively with CAPS scores in the right frontal lobe, left anterior and middle cingulate cortex, bilateral cuneus cortex, right middle occipital lobe, while in the recent onset PTSD, the gray matter volume correlated negatively with CAPS scores in bilateral superior medial frontal lobe and right ACC. CONCLUSION: The present study identified gray matter loss in different regions in recent onset PTSD and non PTSD after a single prolonged trauma exposure. The gray matter volume of left dorsal ACC associated with the development of PTSD, while the gray matter volume of right pulvinar and left pallidum associated with the response to the severe stress. The atrophy of the frontal and limbic cortices predicts the symptom severities of the PTSD.

  1. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry.

    Directory of Open Access Journals (Sweden)

    Marjorie Dole

    Full Text Available In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG and the superior temporal Sulcus (STS in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution

  2. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry.

    Science.gov (United States)

    Dole, Marjorie; Meunier, Fanny; Hoen, Michel

    2013-01-01

    In the present study, we investigated brain morphological signatures of dyslexia by using a voxel-based asymmetry analysis. Dyslexia is a developmental disorder that affects the acquisition of reading and spelling abilities and is associated with a phonological deficit. Speech perception disabilities have been associated with this deficit, particularly when listening conditions are challenging, such as in noisy environments. These deficits are associated with known neurophysiological correlates, such as a reduction in the functional activation or a modification of functional asymmetry in the cortical regions involved in speech processing, such as the bilateral superior temporal areas. These functional deficits have been associated with macroscopic morphological abnormalities, which potentially include a reduction in gray and white matter volumes, combined with modifications of the leftward asymmetry along the perisylvian areas. The purpose of this study was to investigate gray/white matter distribution asymmetries in dyslexic adults using automated image processing derived from the voxel-based morphometry technique. Correlations with speech-in-noise perception abilities were also investigated. The results confirmed the presence of gray matter distribution abnormalities in the superior temporal gyrus (STG) and the superior temporal Sulcus (STS) in individuals with dyslexia. Specifically, the gray matter of adults with dyslexia was symmetrically distributed over one particular region of the STS, the temporal voice area, whereas normal readers showed a clear rightward gray matter asymmetry in this area. We also identified a region in the left posterior STG in which the white matter distribution asymmetry was correlated to speech-in-noise comprehension abilities in dyslexic adults. These results provide further information concerning the morphological alterations observed in dyslexia, revealing the presence of both gray and white matter distribution anomalies and the

  3. Deep gray matter demyelination detected by magnetization transfer ratio in the cuprizone model.

    Directory of Open Access Journals (Sweden)

    Sveinung Fjær

    Full Text Available In multiple sclerosis (MS, the correlation between lesion load on conventional magnetic resonance imaging (MRI and clinical disability is weak. This clinico-radiological paradox might partly be due to the low sensitivity of conventional MRI to detect gray matter demyelination. Magnetization transfer ratio (MTR has previously been shown to detect white matter demyelination in mice. In this study, we investigated whether MTR can detect gray matter demyelination in cuprizone exposed mice. A total of 54 female C57BL/6 mice were split into one control group ( and eight cuprizone exposed groups ([Formula: see text]. The mice were exposed to [Formula: see text] (w/w cuprizone for up to six weeks. MTR images were obtained at a 7 Tesla Bruker MR-scanner before cuprizone exposure, weekly for six weeks during cuprizone exposure, and once two weeks after termination of cuprizone exposure. Immunohistochemistry staining for myelin (anti-Proteolopid Protein and oligodendrocytes (anti-Neurite Outgrowth Inhibitor Protein A was obtained after each weekly scanning. Rates of MTR change and correlations between MTR values and histological findings were calculated in five brain regions. In the corpus callosum and the deep gray matter a significant rate of MTR value decrease was found, [Formula: see text] per week ([Formula: see text] and [Formula: see text] per week ([Formula: see text] respectively. The MTR values correlated to myelin loss as evaluated by immunohistochemistry (Corpus callosum: [Formula: see text]. Deep gray matter: [Formula: see text], but did not correlate to oligodendrocyte density. Significant results were not found in the cerebellum, the olfactory bulb or the cerebral cortex. This study shows that MTR can be used to detect demyelination in the deep gray matter, which is of particular interest for imaging of patients with MS, as deep gray matter demyelination is common in MS, and is not easily detected on conventional clinical MRI.

  4. Working memory training using mental calculation impacts regional gray matter of the frontal and parietal regions.

    Directory of Open Access Journals (Sweden)

    Hikaru Takeuchi

    Full Text Available Training working memory (WM improves performance on untrained cognitive tasks and alters functional activity. However, WM training's effects on gray matter morphology and a wide range of cognitive tasks are still unknown. We investigated this issue using voxel-based morphometry (VBM, various psychological measures, such as non-trained WM tasks and a creativity task, and intensive adaptive training of WM using mental calculations (IATWMMC, all of which are typical WM tasks. IATWMMC was associated with reduced regional gray matter volume in the bilateral fronto-parietal regions and the left superior temporal gyrus. It improved verbal letter span and complex arithmetic ability, but deteriorated creativity. These results confirm the training-induced plasticity in psychological mechanisms and the plasticity of gray matter structures in regions that have been assumed to be under strong genetic control.

  5. Auditory Short-Term Memory Capacity Correlates with Gray Matter Density in the Left Posterior STS in Cognitively Normal and Dyslexic Adults

    Science.gov (United States)

    Richardson, Fiona M.; Ramsden, Sue; Ellis, Caroline; Burnett, Stephanie; Megnin, Odette; Catmur, Caroline; Schofield, Tom M.; Leff, Alex P.; Price, Cathy J.

    2011-01-01

    A central feature of auditory STM is its item-limited processing capacity. We investigated whether auditory STM capacity correlated with regional gray and white matter in the structural MRI images from 74 healthy adults, 40 of whom had a prior diagnosis of developmental dyslexia whereas 34 had no history of any cognitive impairment. Using…

  6. Voxel-based analyses of gray/white matter volume and diffusion tensor data in major depression. Presidential award proceedings

    International Nuclear Information System (INIS)

    Abe, Osamu; Yamasue, Hidenori; Kasai, Kiyoto

    2008-01-01

    Previous neuroimaging studies have revealed that frontolimbic dysfunction may contribute to the pathophysiology of major depressive disorder. We used voxel-based analysis to simultaneously elucidate regional changes in gray/white matter volume, mean diffusivity (MD), and fractional anisotropy (FA) in the central nervous system of patients with unipolar major depression. We studied 21 right-handed patients and 42 age- and gender-matched right-handed normal subjects without central nervous system disorders. All image processing and statistical analyses were performed using SPM5 software. Local areas showing significant gray matter volume reduction in depressive patients compared with normal controls were observed in the right parahippocampal gyrus, hippocampus, bilateral middle frontal gyri, bilateral anterior cingulate cortices, left parietal and occipital lobes, and right superior temporal gyrus. Local areas showing increased mean diffusivity in depressive patients were observed in the bilateral parahippocampal gyri, hippocampus, pons, cerebellum, left frontal and temporal lobes, and right frontal lobe. There was no significant difference between the 2 groups for fractional anisotropy and white matter volume in the entire brain. Although there was no local area in which FA and MD were significantly correlated with disease severity, FA tended to correlate negatively with depression days (total accumulated days in depressive state) in the right anterior cingulate and the left frontal white matter (FDR-corrected P=0.055 for both areas). These results suggest that the frontolimbic neural circuit may play an important role in the neuropathology of patients with major depression. (author)

  7. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-12-08

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  8. Fusion of white and gray matter geometry: a framework for investigating brain development

    Science.gov (United States)

    Savadjiev, Peter; Rathi, Yogesh; Bouix, Sylvain; Smith, Alex R.; Schultz, Robert T.; Verma, Ragini; Westin, Carl-Fredrik

    2014-01-01

    Current neuroimaging investigation of the white matter typically focuses on measurements derived from diffusion tensor imaging, such as fractional anisotropy (FA). In contrast, imaging studies of the gray matter oftentimes focus on morphological features such as cortical thickness, folding and surface curvature. As a result, it is not clear how to combine findings from these two types of approaches in order to obtain a consistent picture of morphological changes in both gray and white matter. In this paper, we propose a joint investigation of gray and white matter morphology by combining geometrical information from white and the gray matter. To achieve this, we first introduce a novel method for computing multi-scale white matter tract geometry. Its formulation is based on the differential geometry of curve sets and is easily incorporated into a continuous scale-space framework. We then incorporate this method into a novel framework for “fusing” white and gray matter geometrical information. Given a set of fiber tracts originating in a particular cortical region, the key idea is to compute two scalar fields that represent geometrical characteristics of the white matter and of the surface of the cortical region. A quantitative marker is created by combining the distributions of these scalar values using Mutual Information. This marker can be then used in the study of normal and pathological brain structure and development. We apply this framework to a study on autism spectrum disorder in children. Our preliminary results support the view that autism may be characterized by early brain overgrowth, followed by reduced or arrested growth [7]. PMID:25066750

  9. Relationships between IQ and regional cortical gray matter thickness in healthy adults.

    Science.gov (United States)

    Narr, Katherine L; Woods, Roger P; Thompson, Paul M; Szeszko, Philip; Robinson, Delbert; Dimtcheva, Teodora; Gurbani, Mala; Toga, Arthur W; Bilder, Robert M

    2007-09-01

    Prior studies show positive correlations between full-scale intelligence quotient (FSIQ) and cerebral gray matter measures. Few imaging studies have addressed whether general intelligence is related to regional variations in brain tissue and the associated influences of sex. Cortical thickness may more closely reflect cytoarchitectural characteristics than gray matter density or volume estimates. To identify possible localized relationships, we examined FSIQ associations with cortical thickness at high spatial resolution across the cortex in healthy young adult (age 17-44 years) men (n = 30) and women (n = 35). Positive relationships were found between FSIQ and intracranial gray and white matter but not cerebrospinal fluid volumes. Significant associations with cortical thickness were evident bilaterally in prefrontal (Brodmann's areas [BAs] 10/11, 47) and posterior temporal cortices (BA 36/37) and proximal regions. Sex influenced regional relationships; women showed correlations in prefrontal and temporal association cortices, whereas men exhibited correlations primarily in temporal-occipital association cortices. In healthy adults, greater intelligence is associated with larger intracranial gray matter and to a lesser extent with white matter. Variations in prefrontal and posterior temporal cortical thickness are particularly linked with intellectual ability. Sex moderates regional relationships that may index dimorphisms in cognitive abilities, overall processing strategies, or differences in structural organization.

  10. Effect of Simulated Microgravity on Human Brain Gray Matter and White Matter--Evidence from MRI.

    Directory of Open Access Journals (Sweden)

    Ke Li

    Full Text Available There is limited and inconclusive evidence that space environment, especially microgravity condition, may affect microstructure of human brain. This experiment hypothesized that there would be modifications in gray matter (GM and white matter (WM of the brain due to microgravity.Eighteen male volunteers were recruited and fourteen volunteers underwent -6° head-down bed rest (HDBR for 30 days simulated microgravity. High-resolution brain anatomical imaging data and diffusion tensor imaging images were collected on a 3T MR system before and after HDBR. We applied voxel-based morphometry and tract-based spatial statistics analysis to investigate the structural changes in GM and WM of brain.We observed significant decreases of GM volume in the bilateral frontal lobes, temporal poles, parahippocampal gyrus, insula and right hippocampus, and increases of GM volume in the vermis, bilateral paracentral lobule, right precuneus gyrus, left precentral gyrus and left postcentral gyrus after HDBR. Fractional anisotropy (FA changes were also observed in multiple WM tracts.These regions showing GM changes are closely associated with the functional domains of performance, locomotion, learning, memory and coordination. Regional WM alterations may be related to brain function decline and adaption. Our findings provide the neuroanatomical evidence of brain dysfunction or plasticity in microgravity condition and a deeper insight into the cerebral mechanisms in microgravity condition.

  11. Gray Matter-White Matter De-Differentiation on Brain Computed Tomography Predicts Brain Death Occurrence.

    Science.gov (United States)

    Vigneron, C; Labeye, V; Cour, M; Hannoun, S; Grember, A; Rampon, F; Cotton, F

    2016-01-01

    Previous studies have shown that a loss of distinction between gray matter (GM) and white matter (WM) on unenhanced CT scans was predictive of poor outcome after cardiac arrest. The aim of this study was to identify a marker/predictor of imminent brain death. In this retrospective study, 15 brain-dead patients after anoxia and cardiac arrest were included. Patients were paired (1:1) with normal control subjects. Only patients' unenhanced CT scans performed before brain death and during the 24 hours after initial signs were analyzed. WM and GM densities were measured in predefined regions of interest (basal ganglia level, centrum semi-ovale level, high convexity level, brainstem level). At each level, GM and WM density and GM/WM ratio for brain-dead patients and normal control subjects were compared using the Wilcoxon signed-rank test. At each level, a lower GM/WM ratio and decreased GM and WM densities were observed in brain-dead patients' CT scans when compared with normal control subject CT scans. A cut-off value of 1.21 at the basal ganglia level was identified, below which brain death systematically occurred. GM/WM dedifferentiation on unenhanced CT scan is measurable before the occurrence of brain death, highlighting its importance in brain death prediction. The mechanism of GM/WM differentiation loss could be explained by the lack of oxygen caused by ischemia initially affecting the mitochondrial system. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Association of regional gray matter volumes in the brain with disruptive behavior disorders in male and female children

    Directory of Open Access Journals (Sweden)

    Kalina J. Michalska

    2015-01-01

    The present findings did not replicate previous findings of reduced gray matter volumes in the anterior insula, amygdala, and frontal cortex in youth with CD, but are consistent with previous findings of reduced gray matter volumes in temporal regions, particularly in girls.

  13. Accelerometer Physical Activity is Associated with Greater Gray Matter Volumes in Older Adults without Dementia or Mild Cognitive Impairment.

    Science.gov (United States)

    Halloway, Shannon; Arfanakis, Konstantinos; Wilbur, JoEllen; Schoeny, Michael E; Pressler, Susan J

    2018-02-08

    Physical activity (PA) is a modifiable health behavior that can protect against age-related gray matter atrophy and cognitive dysfunction. Current studies of PA and gray matter failed to utilize device measures of PA and do not focus on adults >80 years. Thus, the purpose of this secondary analysis was to examine cross-sectional associations between accelerometer lifestyle PA and (a) gray matter volumes and (b) cognitive function, controlling for demographics and health status. Participants were 262 older adults without dementia or mild cognitive impairment from Rush Memory and Aging Project, an epidemiological cohort study. Participants wore an accelerometer to assess total daily lifestyle PA, and completed anatomical magnetic resonance imaging to assess gray matter volumes and a neurocognitive test battery to assess cognitive function. Multivariate linear regression indicated that higher levels of total daily lifestyle PA was significantly related to larger gray matter volumes, F(2, 215) = 3.61, p = .027, including subcortical gray matter (β = .17, p = .007) and total gray matter (β = .11, p = .049), with no significant associations between lifestyle PA and cognitive function. These findings may inform future lifestyle PA interventions in order to attenuate age-related gray matter atrophy.

  14. Altered gray matter volume and white matter integrity in college students with mobile phone dependence

    Directory of Open Access Journals (Sweden)

    Yongming eWang

    2016-05-01

    Full Text Available Mobile phone dependence (MPD is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI. Gray matter volume (GMV and white matter (WM integrity (four indexes: fractional anisotropy, FA; mean diffusivity, MD; axial diffusivity, AD; and radial diffusivity, RD were calculated via voxel-based morphometry (VBM and tract-based spatial statistics (TBSS analysis, respectively. Sixty-eight college students (42 female were enrolled and separated into two groups (MPD group, N=34; control group, N=34 based on Mobile Phone Addiction Index (MPAI scale score. Trait impulsivity was also measured using the Barrett Impulsivity Scale (BIS-11. In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG, right inferior frontal gyrus (iFG, and bilateral thalamus (Thal. In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of white matter integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH. Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with phone-overuse, and may help to better understand the neural mechanisms of MPD in relation with other behavioral and substance addiction disorders.

  15. Multimodal MEMPRAGE, FLAIR, and R2* Segmentation to Resolve Dura and Vessels from Cortical Gray Matter

    Directory of Open Access Journals (Sweden)

    Roberto Viviani

    2017-05-01

    Full Text Available While widely in use in automated segmentation approaches for the detection of group differences or of changes associated with continuous predictors in gray matter volume, T1-weighted images are known to represent dura and cortical vessels with signal intensities similar to those of gray matter. By considering multiple signal sources at once, multimodal segmentation approaches may be able to resolve these different tissue classes and address this potential confound. We explored here the simultaneous use of FLAIR and apparent transverse relaxation rates (a signal related to T2* relaxation maps and having similar contrast with T1-weighted images. Relative to T1-weighted images alone, multimodal segmentation had marked positive effects on 1. the separation of gray matter from dura, 2. the exclusion of vessels from the gray matter compartment, and 3. the contrast with extracerebral connective tissue. While obtainable together with the T1-weighted images without increasing scanning times, apparent transverse relaxation rates were less effective than added FLAIR images in providing the above mentioned advantages. FLAIR images also improved the detection of cortical matter in areas prone to susceptibility artifacts in standard MPRAGE T1-weighted images, while the addition of transverse relaxation maps exacerbated the effect of these artifacts on segmentation. Our results confirm that standard MPRAGE segmentation may overestimate gray matter volume by wrongly assigning vessels and dura to this compartment and show that multimodal approaches may greatly improve the specificity of cortical segmentation. Since multimodal segmentation is easily implemented, these benefits are immediately available to studies focusing on translational applications of structural imaging.

  16. Elderly Patients with Ongoing Migraine Show Reduced Gray Matter Volume in Second Somatosensory Cortex.

    Science.gov (United States)

    Celle, Sébastien; Créac'h, Christelle; Boutet, Claire; Roche, Frédéric; Chouchou, Florian; Barthélémy, Jean-Claude; Peyron, Roland

    To identify structural changes in gray matter in suspected migraine generators (the hypothalamus and/or brainstem nuclei) and pain pathways and to evaluate whether structural changes in migraine are definitive or resolve with age. Voxel-based morphometry (VBM) was used to assess differences in gray matter between 39 healthy controls (HC), 25 episodic migraine (EM) subjects, and 37 subjects with a history of migraine (HM). In addition, morphometric changes were specifically investigated in suspected migraine generators and/or pain pathways. For statistical analyses, t tests between the groups were performed, and a correction for multiple comparisons was used. Whole-brain analysis did not reveal any gray or white matter changes. However, when the analysis was limited to the pain matrix, a lower gray matter volume was observed in the left second somatosensory (SII) cortex in EM subjects compared to HC subjects. This volume was significantly reduced in the EM group compared to the HC group and to the HM group, but not in the HM group compared to the HC group. Morphometric abnormalities in the SII in subjects with ongoing migraine but not in subjects with a resolved migrainous disease are likely to characterize a migrainous state rather than be a marker of brain susceptibility to migraine.

  17. Normalization of Cortical Gray Matter Deficits in Nonpsychotic Siblings of Patients with Childhood-Onset Schizophrenia

    Science.gov (United States)

    Mattai, Anand A.; Weisinger, Brian; Greenstein, Deanna; Stidd, Reva; Clasen, Liv; Miller, Rachel; Tossell, Julia W.; Rapoport, Judith L.; Gogtay, Nitin

    2011-01-01

    Objective: Cortical gray matter (GM) abnormalities in patients with childhood-onset schizophrenia (COS) progress during adolescence ultimately localizing to prefrontal and temporal cortices by early adult age. A previous study of 52 nonpsychotic siblings of COS probands had significant prefrontal and temporal GM deficits that appeared to…

  18. Gray matter correlates of cognitive ability tests used for vocational guidance

    Directory of Open Access Journals (Sweden)

    Tang Cheuk

    2010-07-01

    Full Text Available Abstract Background Individual differences in cognitive abilities provide information that is valuable for vocational guidance, but there is an ongoing debate about the role of ability factors, including general intelligence (g, compared to individual tests. Neuroimaging can help identify brain parameters that may account for individual differences in both factors and tests. Here we investigate how eight tests used in vocational guidance correlate to regional gray matter. We compare brain networks identified by using scores for ability factors (general and specific to those identified by using individual tests to determine whether these relatively broad and narrow approaches yield similar results. Findings Using MRI and voxel-based morphometry (VBM, we correlated gray matter with independent ability factors (general intelligence, speed of reasoning, numerical, spatial, memory and individual test scores from a battery of cognitive tests completed by 40 individuals seeking vocational guidance. Patterns of gray matter correlations differed between group ability factors and individual tests. Moreover, tests within the same factor showed qualitatively different brain correlates to some degree. Conclusions The psychometric factor structure of cognitive tests can help identify brain networks related to cognitive abilities beyond a general intelligence factor (g. Correlates of individual ability tests with gray matter, however, appear to have some differences from the correlates for group factors.

  19. Gray matter in the brain : Differences associated with tinnitus and hearing loss

    NARCIS (Netherlands)

    Boyen, Kris; Langers, Dave R. M.; de Kleine, Emile; van Dijk, Pim

    Tinnitus, usually associated with hearing loss, is characterized by the perception of sound without an external sound source. The pathophysiology of tinnitus is poorly understood. In the present study, voxel-based morphometiy (VBM) was employed to identify gray matter differences related to hearing

  20. Higher homocysteine associated with thinner cortical gray matter in 803 ADNI subjects

    Science.gov (United States)

    Madsen, Sarah K.; Rajagopalan, Priya; Joshi, Shantanu H.; Toga, Arthur W.; Thompson, Paul M.

    2014-01-01

    A significant portion of our risk for dementia in old age is associated with lifestyle factors (diet, exercise, and cardiovascular health) that are modifiable, at least in principle. One such risk factor – high homocysteine levels in the blood – is known to increase risk for Alzheimer’s disease and vascular disorders. Here we set out to understand how homocysteine levels relate to 3D surface-based maps of cortical gray matter distribution (thickness, volume, surface area) computed from brain MRI in 803 elderly subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. Individuals with higher plasma levels of homocysteine had lower gray matter thickness in bilateral frontal, parietal, occipital and right temporal regions; and lower gray matter volumes in left frontal, parietal, temporal, and occipital regions, after controlling for diagnosis, age, and sex, and after correcting for multiple comparisons. No significant within-group associations were found in cognitively healthy people, mild cognitive impairment, or Alzheimer’s disease. These regional differences in gray matter structure may be useful biomarkers to assess the effectiveness of interventions, such as vitamin B supplements, that aim to prevent homocysteine-related brain atrophy by normalizing homocysteine levels. PMID:25444607

  1. Delayed cortical gray matter development in neonates with severe congenital heart disease

    NARCIS (Netherlands)

    Claessens, Nathalie H P; Moeskops, Pim; Buchmann, Andreas; Latal, Beatrice; Knirsch, Walter; Scheer, Ianina; Išgum, Ivana; De Vries, Linda S.; Benders, Manon J N L; Von Rhein, Michael

    2016-01-01

    Background: This study aimed to assess cortical gray matter growth and maturation in neonates with congenital heart disease (CHD). Methods: Thirty-one (near) term neonates with severe CHD (8 univentricular heart malformation (UVH), 21 d-transposition of great arteries (d-TGA) and 2 aortic

  2. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents.

    Directory of Open Access Journals (Sweden)

    Izumi Matsudaira

    Full Text Available A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old. We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM following magnetic resonance imaging (MRI. In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between

  3. Fetal Testosterone Influences Sexually Dimorphic Gray Matter in the Human Brain

    Science.gov (United States)

    Lombardo, Michael V.; Ashwin, Emma; Auyeung, Bonnie; Chakrabarti, Bhismadev; Taylor, Kevin; Hackett, Gerald; Bullmore, Edward T.; Baron-Cohen, Simon

    2012-01-01

    In non-human species, testosterone is known to have permanent ‘organizing’ effects early in life that predict later expression of sex differences in brain and behavior. However, in humans it is still unknown if such mechanisms have organizing effects on neural sexual dimorphism. In human males, we show that variation in fetal testosterone (FT) predicts later local gray matter volume of specific brain regions in a direction that is congruent with sexual dimorphism observed in a large independent sample of age-matched males and females from the NIH Pediatric MRI Data Repository. Right temporo-parietal junction/posterior superior temporal sulcus (RTPJ/pSTS), planum temporale/parietal operculum (PT/PO), and posterior lateral orbitofrontal cortex (plOFC) had local gray matter volume that was both sexually dimorphic and predicted in a congruent direction by FT. That is, gray matter volume in RTPJ/pSTS was greater for males compared to females and was positively predicted by FT. Conversely, gray matter volume in PT/PO and plOFC was greater in females compared to males and was negatively predicted by FT. Subregions of both amygdala and hypothalamus were also sexually dimorphic in the direction of Male>Female, but were not predicted by FT. However, FT positively predicted gray matter volume of a non-sexually dimorphic subregion of the amygdala. These results bridge a longstanding gap between human and non-human species in showing that FT acts as an organizing mechanism for the development of regional sexual dimorphism in the human brain. PMID:22238103

  4. Parental Praise Correlates with Posterior Insular Cortex Gray Matter Volume in Children and Adolescents.

    Science.gov (United States)

    Matsudaira, Izumi; Yokota, Susumu; Hashimoto, Teruo; Takeuchi, Hikaru; Asano, Kohei; Asano, Michiko; Sassa, Yuko; Taki, Yasuyuki; Kawashima, Ryuta

    2016-01-01

    A positive parenting style affects psychological and cognitive development in children. Neuroimaging studies revealed that a positive parenting style influenced brain structure in children. Parental praise is a concrete behavior observed in positive parenting. Although previous psychological studies revealed a positive effect of parental praise on children, little is known about the relationship between parental praise and brain structure in children. Thus, the purpose of the present study was to determine whether there was a correlation between the parental attitude towards praising their child and gray matter volume in the children (116 boys and 109 girls; mean age, 10.6 years old). We examined the correlation between regional gray matter volume and parental praise using voxel-based morphometry (VBM) following magnetic resonance imaging (MRI). In addition, to confirm the positive effects of parental praise, we analyzed the correlation between the frequency of parental praise and personality traits in children. We showed that the parental attitude towards praising their child was significantly and positively correlated with the gray matter volume of the left posterior insular cortex in children. Moreover, we found a significant positive correlation between parental attitude towards praising their child and the personality traits of conscientiousness and openness to experience in the children. Prior studies said that gray matter volume in the posterior insula was correlated with empathy, and the functional connectivity between this area and the amygdala was associated with emotional regulation. Furthermore, the posterior insula relates to auditory function, and therefore, was likely involved in the processing of parental praise. Considering the possibility of experience-dependent plasticity, frequent parental praise would lead to increased posterior insular gray matter volume in children. Our study is the first to elucidate the relationship between a specific

  5. Physical activity and inflammation: effects on gray-matter volume and cognitive decline in aging.

    Science.gov (United States)

    Papenberg, Goran; Ferencz, Beata; Mangialasche, Francesca; Mecocci, Patrizia; Cecchetti, Roberta; Kalpouzos, Grégoria; Fratiglioni, Laura; Bäckman, Lars

    2016-10-01

    Physical activity has been positively associated with gray-matter integrity. In contrast, pro-inflammatory cytokines seem to have negative effects on the aging brain and have been related to dementia. It was investigated whether an inactive lifestyle and high levels of inflammation resulted in smaller gray-matter volumes and predicted cognitive decline across 6 years in a population-based study of older adults (n = 414). Self-reported physical activity (fitness-enhancing, health-enhancing, inadequate) was linked to gray-matter volume, such that individuals with inadequate physical activity had the least gray matter. There were no overall associations between different pro-and anti-inflammatory markers (IL-1β, IL-6, IL-10, IL-12p40, IL-12p70, G-CSF, and TNF-α) and gray-matter integrity. However, persons with inadequate activity and high levels of the pro-inflammatory marker IL-12p40 had smaller volumes of lateral prefrontal cortex and hippocampus and declined more on the Mini-Mental State Examination test over 6 years compared with physically inactive individuals with low levels of IL-12p40 and to more physically active persons, irrespective of their levels of IL-12p40. These patterns of data suggested that inflammation was particularly detrimental in inactive older adults and may exacerbate the negative effects of physical inactivity on brain and cognition in old age. Hum Brain Mapp 37:3462-3473, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Diffuse Decreased Gray Matter in Patients with Idiopathic Craniocervical Dystonia: a Voxel-Based Morphometry Study

    Directory of Open Access Journals (Sweden)

    Camila Callegari Piccinin

    2015-01-01

    Full Text Available Background: Recent studies have addressed the role of structures other than the basal ganglia in the pathophysiology of craniocervical dystonia. Neuroimaging studies have attempted to identify structural abnormalities in craniocervical dystonia but a clear pattern of alteration has not been established. We performed whole brain evaluation using voxel-based morphometry to identify patterns of gray matter changes in craniocervical dystonia.Methods: We compared 27 patients with craniocervical dystonia matched in age and gender to 54 healthy controls. Voxel-based morphometry was used to compare gray matter volumes. We created a two-sample t-test corrected for subjects’ age and we tested with a level of significance of p<0.001 and false discovery rate correction (p<0.05. Results: Voxel-based morphometry demonstrated significant reductions of gray matter using p<0.001 in the cerebellar vermis IV/V, bilaterally in the superior frontal gyrus, precuneus, anterior cingulate and paracingulate, insular cortex, lingual gyrus and calcarine fissure; in the left hemisphere in the supplemementary motor area (SMA, inferior frontal gyrus, inferior parietal gyrus, temporal pole, supramarginal gyrus, rolandic operculum , hippocampus, middle occipital gyrus, cerebellar lobules IV/V, superior and middle temporal gyri; in the right hemisphere, the middle cingulate and precentral gyrus. Our study did not report any significant result using the false discovery rate correction. We also detected correlations between gray matter volume and age, disease duration, duration of botulinum toxin treatment and the Marsden-Fahn dystonia scale scores.Conclusions: We detected large clusters of gray matter changes chiefly in structures primarily involved in sensorimotor integration, motor planning, visuospatial function and emotional processing.

  7. Gray matter volume and dual-task gait performance in mild cognitive impairment.

    Science.gov (United States)

    Doi, Takehiko; Blumen, Helena M; Verghese, Joe; Shimada, Hiroyuki; Makizako, Hyuma; Tsutsumimoto, Kota; Hotta, Ryo; Nakakubo, Sho; Suzuki, Takao

    2017-06-01

    Dual-task gait performance is impaired in older adults with mild cognitive impairment, but the brain substrates associated with dual-task gait performance are not well-established. The relationship between gray matter and gait speed under single-task and dual-task conditions (walking while counting backward) was examined in 560 seniors with mild cognitive impairment (non-amnestic mild cognitive impairment: n = 270; mean age = 72.4 yrs., 63.6 % women; amnestic mild cognitive impairment: n = 290; mean age = 73.4 yrs., 45.4 % women). Multivariate covariance-based analyses of magnetic resonance imaging data, adjusted for potential confounders including single-task gait speed, were performed to identify gray matter patterns associated with dual-task gait speed. There were no differences in gait speed or cognitive performance during dual-task gait between individuals with non-amnestic mild cognitive impairment and amnestic mild cognitive impairment. Overall, increased dual-task gait speed was associated with a gray matter pattern of increased volume in medial frontal gyrus, superior frontal gyrus, anterior cingulate, cingulate, precuneus, fusiform gyrus, middle occipital gyrus, inferior temporal gyrus and middle temporal gyrus. The relationship between dual-task gait speed and brain substrates also differed by mild cognitive impairment subtype. Our study revealed a pattern of gray matter regions associated with dual-task performance. Although dual-task gait performance was similar in amnestic and non-amnestic mild cognitive impairment, the gray matter patterns associated with dual-task gait performance differed by mild cognitive impairment subtype. These findings suggest that the brain substrates supporting dual-task gait performance in amnestic and non-amnestic subtypes are different, and consequently may respond differently to interventions, or require different interventions.

  8. Breastfeeding and Childhood IQ: The Mediating Role of Gray Matter Volume

    Science.gov (United States)

    Luby, Joan L.; Belden, Andy C.; Whalen, Diana; Harms, Michael P.; Barch, Deanna M.

    2016-01-01

    Objective A substantial body of literature has established the positive effect of breastfeeding on child developmental outcomes. There is increasing consensus that breastfed children have higher IQs after accounting for key variables, including maternal education, IQ, and socioeconomic status. Cross-sectional investigations of the effects of breastfeeding on structural brain development suggest that breastfed infants have larger whole brain, cortical, and white matter volumes. To date, few studies have related these measures of brain structure to IQ in breastfed versus nonbreastfed children in a longitudinal sample. Method Data were derived from the Preschool Depression Study (PDS), a prospective longitudinal study in which children and caregivers were assessed annually for 8 waves over 11 years. A subset completed neuroimaging between the ages of 9.5 and 14.11 years. A total of 148 individuals had breastfeeding data at baseline and complete data on all variables of interest, including IQ and structural neuroimaging. General linear models and process mediation models were used. Results Breastfed children had significantly higher IQ scores and larger whole brain, total gray matter, total cortical gray matter, and subcortical gray matter volumes compared with the nonbreastfed group in models that covaried for key variables. Subcortical gray matter volume significantly mediated the association between breast-feeding and children's IQ scores. Conclusion The study findings suggest that the effects of breastfeeding on child IQ are mediated through subcortical gray volume. This effect and putative mechanism is of public health significance and further supports the importance of breastfeeding in mental health promotion. PMID:27126850

  9. Breastfeeding and Childhood IQ: The Mediating Role of Gray Matter Volume.

    Science.gov (United States)

    Luby, Joan L; Belden, Andy C; Whalen, Diana; Harms, Michael P; Barch, Deanna M

    2016-05-01

    A substantial body of literature has established the positive effect of breastfeeding on child developmental outcomes. There is increasing consensus that breastfed children have higher IQs after accounting for key variables, including maternal education, IQ, and socioeconomic status. Cross-sectional investigations of the effects of breastfeeding on structural brain development suggest that breastfed infants have larger whole brain, cortical, and white matter volumes. To date, few studies have related these measures of brain structure to IQ in breastfed versus nonbreastfed children in a longitudinal sample. Data were derived from the Preschool Depression Study (PDS), a prospective longitudinal study in which children and caregivers were assessed annually for 8 waves over 11 years. A subset completed neuroimaging between the ages of 9.5 and 14.11 years. A total of 148 individuals had breastfeeding data at baseline and complete data on all variables of interest, including IQ and structural neuroimaging. General linear models and process mediation models were used. Breastfed children had significantly higher IQ scores and larger whole brain, total gray matter, total cortical gray matter, and subcortical gray matter volumes compared with the nonbreastfed group in models that covaried for key variables. Subcortical gray matter volume significantly mediated the association between breastfeeding and children's IQ scores. The study findings suggest that the effects of breastfeeding on child IQ are mediated through subcortical gray volume. This effect and putative mechanism is of public health significance and further supports the importance of breastfeeding in mental health promotion. Copyright © 2016 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  10. Surface-based reconstruction and diffusion MRI in the assessment of gray and white matter damage in multiple sclerosis

    Science.gov (United States)

    Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe

    2014-03-01

    Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.

  11. MRI markers for mild cognitive impairment: comparisons between white matter integrity and gray matter volume measurements.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available The aim of the study was to evaluate the value of assessing white matter integrity using diffusion tensor imaging (DTI for classification of mild cognitive impairment (MCI and prediction of cognitive impairments in comparison to brain atrophy measurements using structural MRI. Fifty-one patients with MCI and 66 cognitive normal controls (CN underwent DTI and T1-weighted structural MRI. DTI measures included fractional anisotropy (FA and radial diffusivity (DR from 20 predetermined regions-of-interest (ROIs in the commissural, limbic and association tracts, which are thought to be involved in Alzheimer's disease; measures of regional gray matter (GM volume included 21 ROIs in medial temporal lobe, parietal cortex, and subcortical regions. Significant group differences between MCI and CN were detected by each MRI modality: In particular, reduced FA was found in splenium, left isthmus cingulum and fornix; increased DR was found in splenium, left isthmus cingulum and bilateral uncinate fasciculi; reduced GM volume was found in bilateral hippocampi, left entorhinal cortex, right amygdala and bilateral thalamus; and thinner cortex was found in the left entorhinal cortex. Group classifications based on FA or DR was significant and better than classifications based on GM volume. Using either DR or FA together with GM volume improved classification accuracy. Furthermore, all three measures, FA, DR and GM volume were similarly accurate in predicting cognitive performance in MCI patients. Taken together, the results imply that DTI measures are as accurate as measures of GM volume in detecting brain alterations that are associated with cognitive impairment. Furthermore, a combination of DTI and structural MRI measurements improves classification accuracy.

  12. Altered Gray Matter Volume and White Matter Integrity in College Students with Mobile Phone Dependence.

    Science.gov (United States)

    Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d'Oleire Uquillas, Federico; Huang, Xiting

    2016-01-01

    Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders.

  13. Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia.

    Science.gov (United States)

    Horga, Guillermo; Bernacer, Javier; Dusi, Nicola; Entis, Jonathan; Chu, Kingwai; Hazlett, Erin A; Haznedar, M Mehmet; Kemether, Eileen; Byne, William; Buchsbaum, Monte S

    2011-10-01

    Ventricular enlargement is one of the most consistent abnormal structural brain findings in schizophrenia and has been used to infer brain shrinkage. However, whether ventricular enlargement is related to local overlying cortex and/or adjacent subcortical structures or whether it is related to brain volume change globally has not been assessed. We systematically assessed interrelations of ventricular volumes with gray and white matter volumes of 40 Brodmann areas (BAs), the thalamus and its medial dorsal nucleus and pulvinar, the internal capsule, caudate and putamen. We acquired structural MRI ( patients with schizophrenia (n = 64) and healthy controls (n = 56)) and diffusion tensor fractional anisotropy (FA) (untreated schizophrenia n = 19, controls n = 32). Volumes were assessed by manual tracing of central structures and a semi-automated parcellation of BAs. Patients with schizophrenia had increased ventricular size associated with decreased cortical gray matter volumes widely across the brain; a similar but less pronounced pattern was seen in normal controls; local correlations (e.g. temporal horn with temporal lobe volume) were not appreciably higher than non-local correlations (e.g. temporal horn with prefrontal volume). White matter regions adjacent to the ventricles similarly did not reveal strong regional relationships. FA and center of mass of the anterior limb of the internal capsule also appeared differentially influenced by ventricular volume but findings were similarly not regional. Taken together, these findings indicate that ventricular enlargement is globally interrelated with gray matter volume diminution but not directly correlated with volume loss in the immediately adjacent caudate, putamen, or internal capsule.

  14. Gray and white matter correlates of the Big Five personality traits.

    Science.gov (United States)

    Privado, Jesús; Román, Francisco J; Saénz-Urturi, Carlota; Burgaleta, Miguel; Colom, Roberto

    2017-05-04

    Personality neuroscience defines the scientific study of the neurobiological basis of personality. This field assumes that individual differences in personality traits are related with structural and functional variations of the human brain. Gray and white matters are structural properties considered separately in previous research. Available findings in this regard are largely disparate. Here we analyze the relationships between gray matter (cortical thickness (CT), cortical surface area (CSA), and cortical volume) and integrity scores obtained after several white matter tracts connecting different brain regions, with individual differences in the personality traits comprised by the Five-Factor Model (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience). These psychological and biological data were obtained from young healthy women. The main findings showed statistically significant associations between occipital CSA variations and extraversion, as well as between parietal CT variations and neuroticism. Regarding white matter integrity, openness showed positive correlations with tracts connecting posterior and anterior brain regions. Therefore, variations in discrete gray matter clusters were associated with temperamental traits (extraversion and neuroticism), whereas long-distance structural connections were related with the dimension of personality that has been associated with high-level cognitive processes (openness). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder

    Science.gov (United States)

    Ecker, Christine; Ronan, Lisa; Feng, Yue; Daly, Eileen; Murphy, Clodagh; Ginestet, Cedric E.; Brammer, Michael; Fletcher, Paul C.; Bullmore, Edward T.; Suckling, John; Baron-Cohen, Simon; Williams, Steve; Loth, Eva; Murphy, Declan G. M.; Bailey, A. J.; Baron-Cohen, S.; Bolton, P. F.; Bullmore, E. T.; Carrington, S.; Chakrabarti, B.; Daly, E. M.; Deoni, S. C.; Ecker, C.; Happe, F.; Henty, J.; Jezzard, P.; Johnston, P.; Jones, D. K.; Lai, M. C.; Lombardo, M. V.; Madden, A.; Mullins, D.; Murphy, C. M.; Murphy, D. G.; Pasco, G.; Sadek, S.; Spain, D.; Steward, R.; Suckling, J.; Wheelwright, S.; Williams, S. C.

    2013-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental conditions that are accompanied by atypical brain connectivity. So far, in vivo evidence for atypical structural brain connectivity in ASD has mainly been based on neuroimaging studies of cortical white matter. However, genetic studies suggest that abnormal connectivity in ASD may also affect neural connections within the cortical gray matter. Such intrinsic gray-matter connections are inherently more difficult to describe in vivo but may be inferred from a variety of surface-based geometric features that can be measured using magnetic resonance imaging. Here, we present a neuroimaging study that examines the intrinsic cortico-cortical connectivity of the brain in ASD using measures of “cortical separation distances” to assess the global and local intrinsic “wiring costs” of the cortex (i.e., estimated length of horizontal connections required to wire the cortex within the cortical sheet). In a sample of 68 adults with ASD and matched controls, we observed significantly reduced intrinsic wiring costs of cortex in ASD, both globally and locally. Differences in global and local wiring cost were predominantly observed in fronto-temporal regions and also significantly predicted the severity of social and repetitive symptoms (respectively). Our study confirms that atypical cortico-cortical “connectivity” in ASD is not restricted to the development of white-matter connections but may also affect the intrinsic gray-matter architecture (and connectivity) within the cortical sheet. Thus, the atypical connectivity of the brain in ASD is complex, affecting both gray and white matter, and forms part of the core neural substrates underlying autistic symptoms. PMID:23878213

  16. The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis.

    Science.gov (United States)

    Mallucci, Giulia; Peruzzotti-Jametti, Luca; Bernstock, Joshua D; Pluchino, Stefano

    2015-04-01

    Multiple sclerosis is one of the most common causes of chronic neurological disability beginning in early to middle adult life. Multiple sclerosis is idiopathic in nature, yet increasing correlative evidence supports a strong association between one's genetic predisposition, the environment and the immune system. Symptoms of multiple sclerosis have primarily been shown to result from a disruption in the integrity of myelinated tracts within the white matter of the central nervous system. However, recent research has also highlighted the hitherto underappreciated involvement of gray matter in multiple sclerosis disease pathophysiology, which may be especially relevant when considering the accumulation of irreversible damage and progressive disability. This review aims at providing a comprehensive overview of the interplay between inflammation, glial/neuronal damage and regeneration throughout the course of multiple sclerosis via the analysis of both white and gray matter lesional pathology. Further, we describe the common pathological mechanisms underlying both relapsing and progressive forms of multiple sclerosis, and analyze how current (as well as future) treatments may interact and/or interfere with its pathology. Understanding the putative mechanisms that drive disease pathogenesis will be key in helping to develop effective therapeutic strategies to prevent, mitigate, and treat the diverse morbidities associated with multiple sclerosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The role of immune cells, glia and neurons in white and gray matter pathology in multiple sclerosis

    Science.gov (United States)

    Bernstock, Joshua D.; Pluchino, Stefano

    2015-01-01

    Multiple sclerosis is one of the most common causes of chronic neurological disability beginning in early to middle adult life. Multiple sclerosis is idiopathic in nature, yet increasing correlative evidence supports a strong association between one’s genetic predisposition, the environment and the immune system. Symptoms of multiple sclerosis have primarily been shown to result from a disruption in the integrity of myelinated tracts within the white matter of the central nervous system. However, recent research has also highlighted the hitherto underappreciated involvement of gray matter in multiple sclerosis disease pathophysiology, which may be especially relevant when considering the accumulation of irreversible damage and progressive disability. This review aims at providing a comprehensive overview of the interplay between inflammation, glial/neuronal damage and regeneration throughout the course of multiple sclerosis via the analysis of both white and gray matter lesional pathology. Further, we describe the common pathological mechanisms underlying both relapsing and progressive forms of multiple sclerosis, and analyze how current (as well as future) treatments may interact and/or interfere with its pathology. Understanding the putative mechanisms that drive disease pathogenesis will be key in helping to develop effective therapeutic strategies to prevent, mitigate, and treat the diverse morbidities associated with multiple sclerosis. PMID:25802011

  18. In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder.

    Science.gov (United States)

    Andrews, Derek Sayre; Avino, Thomas A; Gudbrandsen, Maria; Daly, Eileen; Marquand, Andre; Murphy, Clodagh M; Lai, Meng-Chuan; Lombardo, Michael V; Ruigrok, Amber N V; Williams, Steven C; Bullmore, Edward T; The Mrc Aims Consortium; Suckling, John; Baron-Cohen, Simon; Craig, Michael C; Murphy, Declan G M; Ecker, Christine

    2017-02-01

    Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P < 0.05). As expected, these reductions were greatest when tissue intensities were sampled close to gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies. © The Author 2017. Published by Oxford University Press.

  19. Gray, White Matter Concentration Changes and Their Correlation with Heterotopic Neurons in Temporal Lobe Epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Tae, Woo Suk; Joo, Eun Yun; Kim, Sung Tae; Hong, Seung Bong [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2010-02-15

    To identify changes in gray and white matter concentrations (GMC, WMC), and their relation to heterotopic neuron numbers in mesial temporal lobe epilepsy (mTLE). The gray matter or white matter concentrations of 16 left and 15 right mTLE patients who achieved an excellent surgical outcome were compared with those of 24 healthy volunteers for the left group and with 23 healthy volunteers for the right group, by optimized voxel-based morphometry using unmodulated and modulated images. A histologic count of heterotopic neurons was obtained in the white matter of the anterior temporal lobe originating from the patients' surgical specimens. In addition, the number of heterotopic neurons were tested to determine if there was a correlation with the GMC or WMC. The GMCs of the left and right mTLE groups were reduced in the ipsilateral hippocampi, bilateral thalami, precentral gyri, and in the cerebellum. The WMCs were reduced in the ipsilateral white matter of the anterior temporal lobe, bilateral parahippocampal gyri, and internal capsules, but increased in the pons and bilateral precentral gyri. The heterotopic neuron counts in the left mTLE group showed a positive correlation (r = 0.819, p < 0.0001) with GMCs and a negative correlation (r = - 0.839, p < 0.0001) with WMCs in the white matter of the anterior temporal lobe. The present study shows the abnormalities of the cortico-thalamo- hippocampal network including a gray matter volume reduction in the anterior frontal lobes and an abnormality of brain tissue concentration in the pontine area. Furthermore, heterotopic neuron numbers were significantly correlated with GMC or WMC in the left white matter of anterior temporal lobe.

  20. Obesity Associated Cerebral Gray and White Matter Alterations Are Interrelated in the Female Brain.

    Directory of Open Access Journals (Sweden)

    Karsten Mueller

    Full Text Available Obesity is known to affect the brain's gray matter (GM and white matter (WM structure but the interrelationship of such changes remains unclear. Here we used T1-weighted magnetic resonance imaging (MRI in combination with voxel-based morphometry (VBM and diffusion-tensor imaging (DTI with tract-based spatial statistics (TBSS to assess the relationship between obesity-associated alterations of gray matter density (GMD and anisotropic water diffusion in WM, respectively. In a small cohort of lean to obese women, we confirmed previous reports of obesity-associated alterations of GMD in brain regions involved in executive control (i.e., dorsolateral prefrontal cortex, DLPFC and habit learning (i.e., dorsal striatum. Gray matter density alterations of the DLPFC were negatively correlated with radial diffusivity in the entire corpus callosum. Within the genu of the corpus callosum we found a positive correlation with axial diffusivity. In posterior region and inferior areas of the body of the corpus callosum, axial diffusivity correlated negatively with altered GMD in the dorsal striatum. These findings suggest that, in women, obesity-related alterations of GMD in brain regions involved in executive control and habit learning might relate to alterations of associated WM fiber bundles within the corpus callosum.

  1. Anatomical and diffusion MRI of deep gray matter in pediatric spina bifida

    Directory of Open Access Journals (Sweden)

    Ashley L. Ware

    2014-01-01

    Full Text Available Individuals with spina bifida myelomeningocele (SBM exhibit brain abnormalities in cortical thickness, white matter integrity, and cerebellar structure. Little is known about deep gray matter macro- and microstructure in this population. The current study utilized volumetric and diffusion-weighted MRI techniques to examine gray matter volume and microstructure in several subcortical structures: basal ganglia nuclei, thalamus, hippocampus, and amygdala. Sixty-six children and adolescents (ages 8–18; M = 12.0, SD = 2.73 with SBM and typically developing (TD controls underwent T1- and diffusion-weighted neuroimaging. Microstructural results indicated that hippocampal volume was disproportionately reduced, whereas the putamen volume was enlarged in the group with SBM. Microstructural analyses indicated increased mean diffusivity (MD and fractional anisotropy (FA in the gray matter of most examined structures (i.e., thalamus, caudate, hippocampus, with the putamen exhibiting a unique pattern of decreased MD and increased FA. These results provide further support that SBM differentially disrupts brain regions whereby some structures are volumetrically normal whereas others are reduced or enlarged. In the hippocampus, volumetric reduction coupled with increased MD may imply reduced cellular density and aberrant organization. Alternatively, the enlarged volume and significantly reduced MD in the putamen suggest increased density.

  2. A New Approach for Deep Gray Matter Analysis Using Partial-Volume Estimation.

    Directory of Open Access Journals (Sweden)

    Guillaume Bonnier

    Full Text Available The existence of partial volume effects in brain MR images makes it challenging to understand physio-pathological alterations underlying signal changes due to pathology across groups of healthy subjects and patients. In this study, we implement a new approach to disentangle gray and white matter alterations in the thalamus and the basal ganglia. The proposed method was applied to a cohort of early multiple sclerosis (MS patients and healthy subjects to evaluate tissue-specific alterations related to diffuse inflammatory or neurodegenerative processes.Forty-three relapsing-remitting MS patients and nineteen healthy controls underwent 3T MRI including: (i fluid-attenuated inversion recovery, double inversion recovery, magnetization-prepared gradient echo for lesion count, and (ii T1 relaxometry. We applied a partial volume estimation algorithm to T1 relaxometry maps to gray and white matter local concentrations as well as T1 values characteristic of gray and white matter in the thalamus and the basal ganglia. Statistical tests were performed to compare groups in terms of both global T1 values, tissue characteristic T1 values, and tissue concentrations.Significant increases in global T1 values were observed in the thalamus (p = 0.038 and the putamen (p = 0.026 in RRMS patients compared to HC. In the Thalamus, the T1 increase was associated with a significant increase in gray matter characteristic T1 (p = 0.0016 with no significant effect in white matter.The presented methodology provides additional information to standard MR signal averaging approaches that holds promise to identify the presence and nature of diffuse pathology in neuro-inflammatory and neurodegenerative diseases.

  3. Structural gray matter abnormalities in migraine relate to headache lateralization, but not aura

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal M; Hoffmann, Michael B

    2015-01-01

    BACKGROUND: The hallmark of migraine aura (MA) is transient cortical dysfunction but it is not known if MA is associated with structural cortical or subcortical changes. To determine the relation between MA and structural gray matter abnormalities, we studied a unique sample of 20 patients...... with frequent side-locked MA, i.e. visual aura consistently occurring in the same hemifield. METHODS: We applied a highly sensitive within-patient design to assess anatomical differences with both voxel-based morphometry and surface-based morphometry on a whole-hemisphere level and for specific anatomical...... regions of interest. Within-subject comparisons were made with regard to aura symptoms (N = 20 vs 20) and with regard to headache (N = 13 vs 13). RESULTS: We found no differences in gray matter structure with regard to aura symptoms in MA patients. Comparing the typical migraine headache side...

  4. Normal gray and white matter volume after weight restoration in adolescents with anorexia nervosa.

    Science.gov (United States)

    Lázaro, Luisa; Andrés, Susana; Calvo, Anna; Cullell, Clàudia; Moreno, Elena; Plana, M Teresa; Falcón, Carles; Bargalló, Núria; Castro-Fornieles, Josefina

    2013-12-01

    The aim of this study was to determine whether treated, weight-stabilized adolescents with anorexia nervosa (AN) present brain volume differences in comparison with healthy controls. Thirty-five adolescents with weight-recovered AN and 17 healthy controls were assessed by means of psychopathology scales and magnetic resonance imaging. Axial three-dimensional T1-weighted images were obtained in a 1.5 Tesla scanner and analyzed using optimized voxel-based morphometry (VBM). There were no significant differences between controls and weight-stabilized AN patients with regard to global volumes of either gray or white brain matter, or in the regional VBM study. Differences were not significant between patients with psychopharmacological treatment and without, between those with amenorrhea and without, as well as between patients with restrictive versus purgative AN. The present findings reveal no global or regional gray or white matter abnormalities in this sample of adolescents following weight restoration. Copyright © 2013 Wiley Periodicals, Inc.

  5. Facebook usage on smartphones and gray matter volume of the nucleus accumbens.

    Science.gov (United States)

    Montag, Christian; Markowetz, Alexander; Blaszkiewicz, Konrad; Andone, Ionut; Lachmann, Bernd; Sariyska, Rayna; Trendafilov, Boris; Eibes, Mark; Kolb, Julia; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2017-06-30

    A recent study has implicated the nucleus accumbens of the ventral striatum in explaining why online-users spend time on the social network platform Facebook. Here, higher activity of the nucleus accumbens was associated with gaining reputation on social media. In the present study, we touched a related research field. We recorded the actual Facebook usage of N=62 participants on their smartphones over the course of five weeks and correlated summary measures of Facebook use with gray matter volume of the nucleus accumbens. It appeared, that in particular higher daily frequency of checking Facebook on the smartphone was robustly linked with smaller gray matter volumes of the nucleus accumbens. The present study gives additional support for the rewarding aspects of Facebook usage. Moreover, it shows the feasibility to include real life behavior variables in human neuroscientific research. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Patterns of Co-occurring Gray Matter Concentration Loss Across the Huntington Disease Prodrome

    Directory of Open Access Journals (Sweden)

    Jennifer Ashley Ciarochi

    2016-09-01

    Full Text Available Huntington disease is caused by an abnormally expanded CAG trinucleotide repeat in the HTT gene. Age and CAG-expansion number are related to age at diagnosis, and can be used to index disease progression. However, observed onset-age variability suggests that other factors also modulate progression. Indexing prodromal (pre-diagnosis progression may highlight therapeutic targets by isolating the earliest-affected factors.We present the largest prodromal Huntington disease application of the univariate method Voxel-based Morphometry, and the first application of the multivariate method Source-based Morphometry, to respectively compare gray matter concentration and capture co-occurring gray matter concentration patterns in control and prodromal participants. Using structural MRI data from 1050 (831 prodromal, 219 control participants, we characterize control-prodromal, whole-brain gray matter concentration differences at various prodromal stages. Our results provide evidence for: (1 Regional co-occurrence and differential patterns of decline across the prodrome, with parietal and occipital differences commonly co-occurring, and frontal and temporal differences being relatively independent from one another, (2 Fronto-striatal circuits being among the earliest and most consistently affected in the prodrome (3 Delayed degradation in some movement-related regions, with increasing subcortical and occipital differences with later progression, (4 An overall superior-to-inferior gradient of gray matter concentration reduction in frontal, parietal, and temporal lobes, (5 The appropriateness of Source-based Morphometry for studying the prodromal Huntington disease population, and its enhanced sensitivity to early prodromal and regionally-concurrent differences.

  7. Patterns of gray matter atrophy in dementia with Lewy bodies: a voxel-based morphometry study.

    Science.gov (United States)

    Watson, Rosie; O'Brien, John T; Barber, Robert; Blamire, Andrew M

    2012-04-01

    Dementia with Lewy bodies (DLB) is a common form of dementia characterized by visual hallucinations, cognitive fluctuation and parkinsonism. We aimed to compare the patterns of gray matter atrophy in DLB with those in Alzheimer's disease (AD) and normal aging, and to investigate the relationship between atrophy and cognitive measures. We used voxel-based morphometry (VBM) to investigate gray matter (GM) loss in DLB (n = 35; mean age = 78.4; MMSE = 20.3), AD (n = 36; mean age = 78.3; MMSE = 19.5) and similar aged controls (n = 35; mean age = 76.7; MMSE = 29.1). T1 weighted MRI scans were acquired at 3 Tesla from all subjects and analyzed using VBM-DARTEL in SPM8. Cognitive function was assessed using the Cambridge Cognitive Examination (CAMCOG). We found reduced gray matter in temporal, parietal, occipital, and subcortical structures in DLB when compared to normal controls. The degree of atrophy was less than that observed in AD. There was significantly more medial temporal lobe atrophy in the AD group when compared with DLB. We did not find a correlation between total CAMCOG score and atrophy, but the CAMCOG memory subscale score correlated with temporal lobe atrophy in both the DLB and combined DLB/AD group. DLB is associated with less gray matter atrophy and relative preservation of the medial temporal lobe when compared to AD. Degree of medial temporal atrophy may be a useful imaging biomarker and our results provide support for its inclusion in the revised consensus criteria for DLB.

  8. Deployment and Post-Deployment Experiences in OEF/OIF Veterans: Relationship to Gray Matter Volume

    Science.gov (United States)

    2013-09-18

    35]), Semi-Structured Assess- ment for the Genetics of Alcoholism (SSAGA-II [36]), Patient Health Questionnaire (PHQ[37], Alcohol Use Disorders Identi...specific phobia . A J Psychiatry 164: 1476–1488. 18. Chen S, Xia W, Li L, Liu J, He Z, et al. (2006) Gray matter density reduction in the insula in fire...Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, et al. (1994) A new, semi-structured psychiatric interview for use in genetic linkage

  9. Higher homocysteine associated with thinner cortical gray matter in 803 ADNI subjects

    OpenAIRE

    Madsen, Sarah K.; Rajagopalan, Priya; Joshi, Shantanu H.; Toga, Arthur W.; Thompson, Paul M.

    2014-01-01

    A significant portion of our risk for dementia in old age is associated with lifestyle factors (diet, exercise, and cardiovascular health) that are modifiable, at least in principle. One such risk factor – high homocysteine levels in the blood – is known to increase risk for Alzheimer’s disease and vascular disorders. Here we set out to understand how homocysteine levels relate to 3D surface-based maps of cortical gray matter distribution (thickness, volume, surface area) computed from brain ...

  10. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population

    OpenAIRE

    Porat, Shai; Goukasian, Naira; Hwang, Kristy S.; Zanto, Theodore; Do, Triet; Pierce, Jonathan; Joshi, Shantanu; Woo, Ellen; Apostolova, Liana G.

    2016-01-01

    Introduction: We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI). Methods: 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clin...

  11. Gene by Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction

    Energy Technology Data Exchange (ETDEWEB)

    Alia-Klein, N.; Alia-Klein, N.; Parvaz, M.A.; Woicik, P.A.; Konova, A.; Maloney, T.; Shumay, E.; Wang, R.; Telang, F.; Biegon, A.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Volkow, N.D.; Goldstein, R.Z.

    2010-12-05

    Chronic cocaine use has been associated with structural deficits in brain regions having dopamine receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. We therefore examined variations in gray matter volume (GMV) as a function of lifetime drug use and the monoamine oxidase A (MAOA) genotype in cocaine use disorders (CUD) and healthy controls.

  12. Progressive gray matter reduction of the superior temporal gyrus during transition to psychosis.

    Science.gov (United States)

    Takahashi, Tsutomu; Wood, Stephen J; Yung, Alison R; Soulsby, Bridget; McGorry, Patrick D; Suzuki, Michio; Kawasaki, Yasuhiro; Phillips, Lisa J; Velakoulis, Dennis; Pantelis, Christos

    2009-04-01

    Longitudinal magnetic resonance imaging studies have shown progressive gray matter reduction in the superior temporal gyrus during the earliest phases of schizophrenia. It is unknown whether these progressive processes predate the onset of psychosis. To examine gray matter reduction of the superior temporal gyrus over time in individuals at risk for psychosis and in patients with first-episode psychosis. Cross-sectional and longitudinal comparisons. Personal Assessment and Crisis Evaluation Clinic and Early Psychosis Preventions and Intervention Centre. Thirty-five ultrahigh-risk individuals (of whom 12 later developed psychosis [UHRP] and 23 did not [UHRNP]), 23 patients with first-episode psychosis (FEP), and 22 control subjects recruited from the community. Volumes of superior temporal subregions (planum polare, Heschl gyrus, planum temporale, and rostral and caudal regions) were measured at baseline and follow-up (mean, 1.8 years) and were compared across groups. In cross-sectional comparisons, only the FEP group had significantly smaller planum temporale and caudal superior temporal gyrus than other groups at baseline, whereas male UHRP subjects also had a smaller planum temporale than controls at follow-up. In longitudinal comparison, UHRP and FEP patients showed significant gray matter reduction (approximately 2%-6% per year) in the planum polare, planum temporale, and caudal region compared with controls and/or UHRNP subjects. The FEP patients also exhibited progressive gray matter loss in the left Heschl gyrus (3.0% per year) and rostral region (3.8% per year), which were correlated with the severity of delusions at follow-up. A progressive process in the superior temporal gyrus precedes the first expression of florid psychosis. These findings have important implications for underlying neurobiologic features of emerging psychotic disorders and emphasize the importance of early intervention during or before the first episode of psychosis.

  13. The Relation between Gray Matter Morphology and Divergent Thinking in Adolescents and Young Adults

    OpenAIRE

    Cousijn, Janna; Koolschijn, P. Cédric M. P; Zanolie, Kiki; Kleibeuker, Sietske W.; Crone, Eveline A.

    2014-01-01

    Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-sp...

  14. Gray matter anomalies in pedophiles with and without a history of child sexual offending

    OpenAIRE

    Schiffer, B; Amelung, T; Pohl, A; Kaergel, C; Tenbergen, G; Gerwinn, H; Mohnke, S; Massau, C; Matthias, W; Wei?, S; Marr, V; Beier, K M; Walter, M; Ponseti, J; Kr?ger, T H C

    2017-01-01

    Pedophilia is a psychiatric disorder that is inter-related with but distinct from child sexual offending (CSO). Neural alterations reportedly contribute to both pedophilia and CSO, but until now, no study has distinguished the brain structural anomalies associated with pedophilia from those specifically associated with CSO in pedophilic men. Using high-resolution T1-weighted brain images and voxel-based morphometry, we analyzed the gray matter (GM) volume of the following 219 men recruited at...

  15. Deep gray matter hyperperfusion with occipital hypoperfusion in dementia with Lewy bodies.

    Science.gov (United States)

    Sato, T; Hanyu, H; Hirao, K; Shimizu, S; Kanetaka, H; Iwamoto, T

    2007-11-01

    Although decreased occipital perfusion is a characteristic feature of dementia with Lewy bodies (DLB), not all patients with DLB show a significant decreased perfusion in the occipital lobe. We explored characteristics of perfusion changes to improve the identification of DLB, in addition to occipital hypoperfusion. Statistical image analysis of single photon emission computed tomography data was performed on 22 patients with DLB and 25 patients with Alzheimer's disease (AD). A significant decreased perfusion in the occipital lobe was found in 16 patients with DLB (72%) and three patients with AD (12%), while a significant increased perfusion in the deep gray matter (striatum and/or thalamus) was found in 18 patients with DLB (81%) and eight patients with AD (31%), respectively. Either occipital hypoperfusion or deep gray matter hyperperfusion was found in 21 patients with DLB (95%), while in nine patients with AD (35%), indicating a sensitivity of 95% and a specificity of 65% in discriminating DLB from AD. Our results suggest that the addition of deep gray matter hyperperfusion to occipital hypoperfusion may be useful in the clinical differentiation of DLB and AD.

  16. Association between exercise habits and subcortical gray matter volumes in healthy elderly people: A population-based study in Japan

    Directory of Open Access Journals (Sweden)

    Mikie Yamamoto

    2017-06-01

    Conclusion: Subjects with exercise habits show larger subcortical gray matter volumes than subjects without exercise habits in community-dwelling elderly subjects in Japan. Specifically, the volume of the nucleus accumbens correlates with both exercise habits and cognitive preservation.

  17. Voxel-based comparison of whole brain gray matter of patients with mild Alzheimer's disease with normal aging volunteers

    International Nuclear Information System (INIS)

    Xie Sheng; Wu Hongkun; Xiao Jiangxi; Wang Yinhua; Jiang Xuexiang

    2006-01-01

    Objective: To detect gray matter abnormalities of whole brain in patients with mild Alzheimer's disease (AD) by voxel-based morphometry (VBM). Methods: Thirteen patients with mild Alzheimer's disease and sixteen normal aging volunteers underwent 3D SPGR scanning. For every subject, data was transferred to PC to be normalized, segmented and smoothed using SPM99. Non-dependent samples T-tests were conducted to compare gray matter' density voxel to voxel between the two groups. Results Significant reductions in gray matter density were found in the bilateral hippocampi and nucleus amygdalae, bilateral insulae, bilateral medial thalami, bilateral rectus gyri, right superior temporal gyms, right caudate nucleus, fight prefrontal lobe, right basal forebrain and portions of right occipital lobe. Conclusion: VBM reveals significant gray matter' reductions of numeral cortices in mild Alzheimer's disease. It can be a useful method to evaluate the anatomical changes in the progress of the disease. (authors)

  18. Changes in the white-gray matter density difference in computed tomography associated with maturation

    International Nuclear Information System (INIS)

    Tsuchiya, Setsuko; Maruyama, Hiroshi; Maruyama, Kazuko

    1980-01-01

    The attenuation of the x-ray beam in infantile brain tissue is markedly lower than in adults, so the CT image in infants, particularly in the newborn, seems to indicate demyelinating diseases. Therefore, the evaluation of nonpathological scans of infants and adults was performed in order to establish baseline numerical data on white and gray matter differentiation associated with maturation. One hundred and nine normal cases with no motion artifacts were selected. The age distribution was from 39 weeks to 40 years, as shown in Fig. 1. The Hitachi CT-H 250 tomograph was used for all the patient scans. The x-ray tube was operated at 120 kV and 30 mA. The thickness of each slice was 10 mm. The patients were scanned parallel with the canthomeatal line. The CT numbers are displayed on the EMI scale, in which water is zero and bone is +500. The mean CT numbers and the standard deviation were calculated by means of a computer on a horizontal plane through the pineal body; the following regions were selected for computation: White matter: preventricular frontal area. 44 mm 2 (36 pixels). Gray matter: head of the caudate nucleus and the thalamus. 24 mm 2 (20 pixels). The mean CT number for white matter was 13.5 +- 0.5 in the newborn and 16.8 +- 0.4 in adults. These numbers increased very rapidly during the 2nd month after birth and reached the adult value by 13 years. On the other hand, the mean CT number for gray matter was 15.6 +- 0.6 in the newborn and 19.7 +- 0.4 in adults. These numbers increased only gradually after birth and reached maximum value at 20 years, These results are probably due to a decrease in the water content per unit of volume and an increase in brain solids (protein, RNA and myelin) rather than to a decrease in the extracellular space associated with maturation. The difference between the average white and gray value was also studied. The white-gray difference was lowest (1.6 units) at 2 months and highest (2.9 units) in adults. (author)

  19. Topology of genetic associations between regional gray matter volume and intellectual ability: Evidence for a high capacity network.

    Science.gov (United States)

    Bohlken, Marc M; Brouwer, Rachel M; Mandl, René C W; Hedman, Anna M; van den Heuvel, Martijn P; van Haren, Neeltje E M; Kahn, René S; Hulshoff Pol, Hilleke E

    2016-01-01

    Intelligence is associated with a network of distributed gray matter areas including the frontal and parietal higher association cortices and primary processing areas of the temporal and occipital lobes. Efficient information transfer between gray matter regions implicated in intelligence is thought to be critical for this trait to emerge. Genetic factors implicated in intelligence and gray matter may promote a high capacity for information transfer. Whether these genetic factors act globally or on local gray matter areas separately is not known. Brain maps of phenotypic and genetic associations between gray matter volume and intelligence were made using structural equation modeling of 3T MRI T1-weighted scans acquired in 167 adult twins of the newly acquired U-TWIN cohort. Subsequently, structural connectivity analyses (DTI) were performed to test the hypothesis that gray matter regions associated with intellectual ability form a densely connected core. Gray matter regions associated with intellectual ability were situated in the right prefrontal, bilateral temporal, bilateral parietal, right occipital and subcortical regions. Regions implicated in intelligence had high structural connectivity density compared to 10,000 reference networks (p=0.031). The genetic association with intelligence was for 39% explained by a genetic source unique to these regions (independent of total brain volume), this source specifically implicated the right supramarginal gyrus. Using a twin design, we show that intelligence is genetically represented in a spatially distributed and densely connected network of gray matter regions providing a high capacity infrastructure. Although genes for intelligence have overlap with those for total brain volume, we present evidence that there are genes for intelligence that act specifically on the subset of brain areas that form an efficient brain network. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Global and regional associations of smaller cerebral gray and white matter volumes with gait in older people.

    Directory of Open Access Journals (Sweden)

    Michele L Callisaya

    Full Text Available BACKGROUND: Gait impairments increase with advancing age and can lead to falls and loss of independence. Brain atrophy also occurs in older age and may contribute to gait decline. We aimed to investigate global and regional relationships of cerebral gray and white matter volumes with gait speed, and its determinants step length and cadence, in older people. METHODS: In a population-based study, participants aged >60 years without Parkinson's disease or brain infarcts underwent magnetic resonance imaging and gait measurements using a computerized walkway. Linear regression was used to study associations of total gray and white matter volumes with gait, adjusting for each other, age, sex, height and white matter hyperintensity volume. Other covariates considered in analyses included weight and vascular disease history. Voxel-based morphometry was used to study regional relationships of gray and white matter with gait. RESULTS: There were 305 participants, mean age 71.4 (6.9 years, 54% male, mean gait speed 1.16 (0.22 m/s. Smaller total gray matter volume was independently associated with poorer gait speed (p = 0.001 and step length (p<0.001, but not cadence. Smaller volumes of cortical and subcortical gray matter in bilateral regions important for motor control, vision, perception and memory were independently associated with slower gait speed and shorter steps. No global or regional associations were observed between white matter volume and gait independent of gray matter volume, white matter hyperintensity volume and other covariates. CONCLUSION: Smaller gray matter volume in bilaterally distributed brain networks serving motor control was associated with slower gait speed and step length, but not cadence.

  1. Sex-specific Gray Matter Volume Differences in Females with Developmental Dyslexia

    Science.gov (United States)

    Evans, Tanya M.; Flowers, D. Lynn; Napoliello, Eileen M.; Eden, Guinevere F.

    2013-01-01

    Developmental dyslexia, characterized by unexpected reading difficulty, is associated with anomalous brain anatomy and function. Previous structural neuroimaging studies have converged in reports of less gray matter volume (GMV) in dyslexics within left hemisphere regions known to subserve language. Due to the higher prevalence of dyslexia in males, these studies are heavily weighted towards males, raising the question whether studies of dyslexia in females only and using the same techniques, would generate the same findings. In a replication study of men we obtained the same findings of less GMV in dyslexics in left middle/inferior temporal gyri and right postcentral/supramarginal gyri as reported in the literature. However, comparisons in women with and without dyslexia did not yield left hemisphere differences and instead we found less GMV in right precuneus and paracentral lobule/medial frontal gyrus. In boys, we found less GMV in left inferior parietal cortex (supramarginal/angular gyri), again consistent with previous work, while in girls differences were within right central sulcus, spanning adjacent gyri, and left primary visual cortex. Our investigation into anatomical variants in dyslexia replicates existing studies in males, but at the same time shows that dyslexia in females is not characterized by involvement of left hemisphere language regions but rather early sensory and motor cortices (i.e. motor and premotor cortex, primary visual cortex). Our findings suggest that models on the brain basis of dyslexia, primarily developed through the study of males, may not be appropriate for females and suggest a need for more sex-specific investigations into dyslexia. PMID:23625146

  2. Changes in gray matter volume after microsurgical lumbar discectomy: A longitudinal analysis

    Directory of Open Access Journals (Sweden)

    Michael eLuchtmann

    2015-02-01

    Full Text Available People around the world suffer chronic lower back pain. Because spine imaging often does not explain the degree of perceived pain reported by patients, the role of the processing of nociceptor signals in the brain as the basis of pain perception is gaining increased attention. Modern neuroimaging techniques (including functional and morphometric methods have produced results that suggest which brain areas may play a crucial role in the perception of acute and chronic pain. In this study, we examined twelve patients with chronic low back pain and sciatica, both resulting from lumbar disc herniation. Structural magnetic resonance imaging (MRI of the brain was performed one day prior to and about four weeks after microsurgical lumbar discectomy. The subsequent MRI revealed an increase in gray matter volume in the basal ganglia but a decrease in volume in the hippocampus, which suggests the complexity of the network that involves movement, pain processing, and aspects of memory. Interestingly, volume changes in the hippocampus were significantly correlated to preoperative pain intensity but not to the duration of chronic pain. Mapping structural changes of the brain that result from lumbar disc herniation has the potential to enhance our understanding of the neuropathology of chronic low back pain and sciatica and therefore may help to optimize the decisions we make about conservative and surgical treatments in the future. The possibility of illuminating more of the details of central pain processing in lumbar disc herniation, as well as the accompanying personal and economic impact of pain relief worldwide, calls for future large-scale clinical studies.

  3. Reduced Orbitofrontal Gray Matter Concentration as a Marker of Premorbid Childhood Trauma in Cocaine Use Disorder

    Directory of Open Access Journals (Sweden)

    Keren Bachi

    2018-02-01

    Full Text Available Background: Childhood trauma affects neurodevelopment and promotes vulnerability to impaired constraint, depression, and addiction. Reduced gray matter concentration (GMC in the mesocorticolimbic regions implicated in reward processing and cognitive control may be an underlying substrate, as documented separately in addiction and for childhood trauma. The purpose of this study was to understand the contribution of childhood maltreatment to GMC effects in individuals with cocaine use disorder.Methods: Individuals with cocaine use disorder were partitioned into groups of low vs. high childhood trauma based on median split of the total score of the Childhood Trauma Questionnaire (CTQ; CUD-L, N = 23; CUD-H, N = 24 and compared with age, race, and gender matched healthy controls with low trauma (N = 29. GMC was obtained using voxel-based morphometry applied to T1-weighted MRI scans. Drug use, depression and constraint were assessed with standardized instruments.Results: Whole-brain group comparisons showed reduced GMC in the right lateral orbitofrontal cortex (OFC in CUD-H as compared with controls (cluster-level pFWE-corr < 0.001 and CUD-L (cluster-level pFWE-corr = 0.035; there were no significant differences between CUD-L and controls. A hierarchical regression analysis across both CUD groups revealed that childhood trauma, but not demographics and drug use, and beyond constraint and depression, accounted for 37.7% of the variance in the GMC in the right lateral OFC (p < 0.001.Conclusions: Beyond other contributing factors, childhood trauma predicted GMC reductions in the OFC in individuals with cocaine use disorder. These findings underscore a link between premorbid environmental stress and morphological integrity of a brain region central for behaviors underlying drug addiction. These results further highlight the importance of accounting for childhood trauma, potentially as a factor predisposing to addiction, when examining and interpreting

  4. Reduced Orbitofrontal Gray Matter Concentration as a Marker of Premorbid Childhood Trauma in Cocaine Use Disorder

    Science.gov (United States)

    Bachi, Keren; Parvaz, Muhammad A.; Moeller, Scott J.; Gan, Gabriela; Zilverstand, Anna; Goldstein, Rita Z.; Alia-Klein, Nelly

    2018-01-01

    Background: Childhood trauma affects neurodevelopment and promotes vulnerability to impaired constraint, depression, and addiction. Reduced gray matter concentration (GMC) in the mesocorticolimbic regions implicated in reward processing and cognitive control may be an underlying substrate, as documented separately in addiction and for childhood trauma. The purpose of this study was to understand the contribution of childhood maltreatment to GMC effects in individuals with cocaine use disorder. Methods: Individuals with cocaine use disorder were partitioned into groups of low vs. high childhood trauma based on median split of the total score of the Childhood Trauma Questionnaire (CTQ; CUD-L, N = 23; CUD-H, N = 24) and compared with age, race, and gender matched healthy controls with low trauma (N = 29). GMC was obtained using voxel-based morphometry applied to T1-weighted MRI scans. Drug use, depression and constraint were assessed with standardized instruments. Results: Whole-brain group comparisons showed reduced GMC in the right lateral orbitofrontal cortex (OFC) in CUD-H as compared with controls (cluster-level pFWE-corr childhood trauma, but not demographics and drug use, and beyond constraint and depression, accounted for 37.7% of the variance in the GMC in the right lateral OFC (p childhood trauma predicted GMC reductions in the OFC in individuals with cocaine use disorder. These findings underscore a link between premorbid environmental stress and morphological integrity of a brain region central for behaviors underlying drug addiction. These results further highlight the importance of accounting for childhood trauma, potentially as a factor predisposing to addiction, when examining and interpreting neural alterations in cocaine addicted individuals. PMID:29497369

  5. Investigation of the alteration of gray matter volume in children with mental retardation with the optimal voxel-based morphometry

    International Nuclear Information System (INIS)

    Yuan Xinyu; Xie Sheng; Xiao Jiangxi; Zhang Yuanzhe; Jiang Xuexiang; Jin Chunhua; Bai Zhenhua; Yi Xiaoli

    2011-01-01

    Objective: To detect brain structural difference between children with unexplained mental retardation and children with typically normal development. Methods: The high-resolution magnetic MR imaging were obtained from 21 children with unexplained mental retardation and 30 age-matched control children without intellectual disabilities. Voxel-based morphometry analysis with an optimization of spatial segmentation and normalization procedures were applied to compare differences of gray matter volume between the two groups. The total and regional gray matter volume were compared between the two groups with independent t test. Meanwhile, correlation was conducted to analyze the relationship between the total gray matter volume and intelligence quotient (IQ) with partial correlation test. Results: The total gray matter volume was significantly increased in the mental retardation children (1.012±0.079) × 10 6 mm 3 ] in relative to the controls [(0.956±0.059)×10 6 mm 3 , t=-2.80, P 0.05). Conclusions: VBM would detect the gray matter abnormalities that were not founded in routine MR scanning. The increase of gray matter volume in the frontal-thalamus network might indicate the delayed maturation of the brain development. This might be one of the causations of' mental retardation in children. (authors)

  6. Association of regional gray matter volumes in the brain with disruptive behavior disorders in male and female children.

    Science.gov (United States)

    Michalska, Kalina J; Decety, Jean; Zeffiro, Thomas A; Lahey, Benjamin B

    2015-01-01

    Because the disruptive behavior disorders are highly impairing conditions, it is important to determine if structural variations in brain are associated early in life with these problems among children. Structural MRI data were acquired from 111 9-11 year olds (58 girls and 53 boys), 43 who met diagnostic criteria for oppositional defiant disorder and/or conduct disorder and 68 healthy controls. Voxel-based morphometry was used to examine associations of behavioral measures with gray matter volumes in whole-brain analyses. Unlike previous studies, variation in gray matter volume was not found to be associated with a disruptive behavior disorder diagnosis in any brain region at p < .05 with FWE correction. Nonetheless, an inverse nonlinear association of the number of conduct disorder (CD) symptoms with gray matter volume along the left superior temporal sulcus was significant in the full sample (p < .05 with FWE correction), with a trend in the right hemisphere (p < 0.001 uncorrected). There also was a trend toward a stronger association of the number of CD symptoms with gray matter volume along the left superior temporal sulcus in girls than boys. The present findings did not replicate previous findings of reduced gray matter volumes in the anterior insula, amygdala, and frontal cortex in youth with CD, but are consistent with previous findings of reduced gray matter volumes in temporal regions, particularly in girls.

  7. Resting-state functional connectivity bias of middle temporal gyrus and caudate with altered gray matter volume in major depression.

    Directory of Open Access Journals (Sweden)

    Chaoqiong Ma

    Full Text Available Magnetic resonance imaging (MRI studies have indicated that the structure deficits and resting-state functional connectivity (FC imbalances in cortico-limbic circuitry might underline the pathophysiology of MDD. Using structure and functional MRI, our aim is to investigate gray matter abnormalities in patients with treatment-resistant depression (TRD and treatment-responsive depression (TSD, and test whether the altered gray matter is associated with altered FC. Voxel-based morphometry was used to investigate the regions with gray matter abnormality and FC analysis was further conducted between each gray matter abnormal region and the remaining voxels in the brain. Using one-way analysis of variance, we found significant gray matter abnormalities in the right middle temporal cortex (MTG and bilateral caudate among the TRD, TSD and healthy controls. For the FC of the right MTG, we found that both the patients with TRD and TSD showed altered connectivity mainly in the default-mode network (DMN. For the FC of the right caudate, both patient groups showed altered connectivity in the frontal regions. Our results revealed the gray matter reduction of right MTG and bilateral caudate, and disrupted functional connection to widely distributed circuitry in DMN and frontal regions, respectively. These results suggest that the abnormal DMN and reward circuit activity might be biomarkers of depression trait.

  8. Increased gray matter density in patients with schizophrenia and cannabis use: a voxel-based morphometric study using DARTEL.

    Science.gov (United States)

    Schnell, Thomas; Kleiman, Alexandra; Gouzoulis-Mayfrank, Euphrosyne; Daumann, Jörg; Becker, Benjamin

    2012-07-01

    Alterations in gray matter density as well as cognitive impairments are commonly described in patients with schizophrenia (SCH patients). Both gray matter deficits and cognitive impairments have recently been discussed to represent vulnerability markers of schizophrenia. The counterintuitive finding of better cognitive performance in patients with schizophrenia and cannabis use (SCH+CAN patients) compared to cannabis naïve patients is discussed as a reflection of lower vulnerability for schizophrenia in at least one subgroup of SCH+CAN patients. We hypothesized that SCH+CAN patients would display fewer gray matter deficits compared to SCH patients reflecting their presumed lower vulnerability. We therefore compared gray matter density in 30 first episode SCH+CAN and 24 first episode SCH patients using a fast diffeomorphic registration algorithm (DARTEL) and voxel-based morphometry (VBM). We found less severe cognitive impairments and middle frontal gray matter deficits in the SCH+CAN patients. In the pooled sample gray matter density was positively associated with cognitive functioning. Results may support the hypothesis of a lower biological vulnerability in at least one subgroup of SCH+CAN patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Morphometric analysis of gray matter integrity in individuals with early-treated phenylketonuria.

    Science.gov (United States)

    Christ, Shawn E; Price, Mason H; Bodner, Kimberly E; Saville, Christopher; Moffitt, Amanda J; Peck, Dawn

    2016-05-01

    The most widely-reported neurologic finding in individuals with early-treated phenylketonuria (PKU) is abnormality in the white matter of the brain. In contrast, much less is known regarding the impact of PKU on cortical gray matter (GM) structures. Presently, we applied advanced morphometric methods to the analysis of high-resolution structural MRI images from a sample of 19 individuals with early-treated PKU and an age- and gender-matched comparison group of 22 healthy individuals without PKU. Data analysis revealed decreased GM volume in parietal cortex for the PKU group compared with the non-PKU group. A similar trend was observed for occipital GM volume. There was no evidence of group-related differences in frontal or temporal GM volume. Within the PKU group, we also found a significant relationship between blood phenylalanine levels and GM volume for select posterior cortical sub-regions. Taken together with previous research on white matter and gray matter abnormalities in PKU, the present findings point to the posterior cortices as the primary site of neurostructural changes related to early-treated PKU. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Segmentation of gray matter, white matter, and CSF with fluid and white matter suppression using MP2RAGE.

    Science.gov (United States)

    Wang, Yishi; Wang, Yajie; Zhang, Zhe; Xiong, Yuhui; Zhang, Qiang; Yuan, Chun; Guo, Hua

    2018-03-22

    MP2RAGE can generate uniform T 1 -weighted images, which have been used for brain segmentation. However, there remain concerns about carrying out fast brain segmentation. To propose an acquisition-based method for fast segmentation of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) of healthy human brains with fluid and white matter suppression (FLAWS) using MP2RAGE. Prospective. 12 volunteers (23-28 years, seven subjects; 51-62 years, five subjects). 3T/3D MPRAGE and FLAWS. The proposed method was evaluated by calculating tissue volumes and the spatial overlap with the segmentation results from FSL and SPM12. The processing time was recorded. A paired t-test was used to compare the tissue volumes of the proposed method with those from other segmentation methods RESULTS: For the 12 subjects, the tissue volume difference between the proposed and SPM12 were 3.2 ± 2.8%, 4.2 ± 2.5%, 18.2 ± 13.1% for GM, WM, and CSF, respectively. The relative difference between the proposed and FSL was over 14% for all tissue classes. The spatial overlap between the proposed and other methods were 87-94% for GM and WM and less than 80% for CSF. The GM and WM volumes of the proposed method were not significantly different from those of SPM12 using MPRAGE as the input (P = 0.5540 and P = 0.3115, respectively). The rest of the comparisons all showed significant differences between the proposed and other methods. Statistical analysis of the two subgroups yielded similar results. The mean processing time of one subject was 6.5, 185, and 165 seconds for the proposed method, FSL, and SPM12, respectively. Our method may be accurate for the segmentation of most brain structures using FLAWS. In addition, the proposed method is fast and applicable to the two distinct age ranges. 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  11. A structural MRI study: gray matter changes in mesial temporal lobe epilepsy patients with different seizure types

    Directory of Open Access Journals (Sweden)

    Jun-hao XIAO

    2018-04-01

    Full Text Available Objective To observe gray matter volume changes and evaluate the relation between gray matter changes and duration of mesial temporal lobe epilepsy (mTLE patients with different seizure types. Methods A total of 40 patients with mTLE, including 20 with partial seizures (mTLE-PS group and 20 with secondarily generalized seizures (mTLE-sGS group, and 20 sex- and age-matched healthy volunteers (control group were recruited. T1-three-dimensional magnetization-prepared rapid gradient echo (T1-3D-MPRAGE was scanned for voxel.based morphometry (VBM. Bilateral frontal lobes and thalami were selected as regions of interest (ROIs to compare gray matter volume of brain regions among 3 groups. Spearman rank correlation analysis was used to evaluate the correlation between gray matter volume of brain regions and duration. Results There were significant differences in gray matter volumes in bilateral superior frontal gyri, right middle frontal gyrus, right medial frontal gyrus, right angular gyrus, right middle temproral gyrus, right hippocampus, bilateral thalami and bilateral cerebellar hemispheres among 3 groups (P < 0.01, for all; FWE correction. Compared with control group, gray matter volumes in bilateral superior frontal gyri, bilateral cerebellar hemispheres, right middle temproral gyrus, right hippocampus and right thalamus in mTLE-PS group were significantly decreased (P < 0.01, for all; FWE correction. Compared with control group, gray matter volumes in bilateral superior frontal gyri, bilateral thalami, bilateral cerebellar hemispheres, right angular gyrus, right middle temporal gyrus and right hippocampus in mTLE-sGS group were significantly decreased (P < 0.01, for all; FWE correction. Compared with mTLE-PS group, gray matter volumes in bilateral superior frontal gyri, bilateral thalami, right medial frontal gyrus and right gyrus rectus in mTLE-sGS group were significantly reduced (P < 0.01, for all; FWE correction. Gray matter volumes in left

  12. Optimized VBM in patients with Alzheimer's disease: gray matter loss and its correlation with cognitive function

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seon Hyeong; Moon, Won Jin; Chung, Eun Chul; Lee, Min Hee; Roh, Hong Gee; Park, Kwang Bo; Na, Duck Ryul [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2005-11-15

    To investigate the regional changes in gray matter volume by using optimized voxel based morphometry in the whole brain of patients with Alzheimer's disease (AD) and to determine its correlation with cognitive function. Nineteen patients with AD (mean mini mental state examination (MMSE) score = 20.4) and 19 age-matched control subjects (mean MMSE score 29) participated in this prospective study. T1-weighted 3D-SPGR scans were obtained for each subject. These T1-weighted images were spatially normalized into study-specific T1 template and segmented into gray matter, white matter and CSF. After the images were modulated and smoothed, all of the gray matter images were compared with control images by using voxel-wise statistical parametric test (two-sample-test). In patients with AD, total gray matter volume was significantly smaller than normal control (552 {+-} 39 mL vs. 632 {+-} 51 mL, {rho} 0.001). Significant gray matter loss was seen in both the hippocampus and amygdala complexs, and the parahippocampi and frontoparietal cortices ({rho} < 0.01, family wise error corrected). Left cerebral atrophy was more prominent than the right. Loss of gray matter volume in both the superior frontal gyri and left inferior temporal gyrus had a strong correlation with lower MMSE score. Optimized VBM was able to visualize pathologic changes of AD in vivo. In AD there was widespread gray matter volume loss in the frontoparietal lobes as well as the medial temporal lobes and had a strong correlation between volume loss of specific cortical areas and MMSE score.

  13. Gene x Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction

    Energy Technology Data Exchange (ETDEWEB)

    Alia-Klein, N.; Alia-Klein, N.; Parvaz, M.A.; Woicik, P.A.; Konova, A.B.; Maloney, T.; Shumay, E.; Wang, R.; Telang, F.; Biegon, A.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Volkow, N.D.; Goldstein, R.Z.

    2011-03-07

    Long-term cocaine use has been associated with structural deficits in brain regions having dopamine-receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. The objective is to examine variations in gray matter volume (GMV) as a function of lifetime drug use and the genotype of the monoamine oxidase A gene, MAOA, in men with cocaine use disorders (CUD) and healthy male controls. Forty individuals with CUD and 42 controls who underwent magnetic resonance imaging to assess GMV and were genotyped for the MAOA polymorphism (categorized as high- and low-repeat alleles). The impact of cocaine addiction on GMV, tested by (1) comparing the CUD group with controls, (2) testing diagnosis x MAOA interactions, and (3) correlating GMV with lifetime cocaine, alcohol, and cigarette smoking, and testing their unique contribution to GMV beyond other factors. The results are: (1) Individuals with CUD had reductions in GMV in the orbitofrontal, dorsolateral prefrontal, and temporal cortex and the hippocampus compared with controls; (2) The orbitofrontal cortex reductions were uniquely driven by CUD with low- MAOA genotype and by lifetime cocaine use; and (3) The GMV in the dorsolateral prefrontal cortex and hippocampus was driven by lifetime alcohol use beyond the genotype and other pertinent variables. Long-term cocaine users with the low-repeat MAOA allele have enhanced sensitivity to gray matter loss, specifically in the orbitofrontal cortex, indicating that this genotype may exacerbate the deleterious effects of cocaine in the brain. In addition, long-term alcohol use is a major contributor to gray matter loss in the dorsolateral prefrontal cortex and hippocampus, and is likely to further impair executive function and learning in cocaine addiction.

  14. Regional gray matter density associated with emotional intelligence: evidence from voxel-based morphometry.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

    2011-09-01

    Emotional Intelligence (EI) is the ability to monitor one's own and others' emotions and the ability to use the gathered information to guide one's thinking and action. EI is thought to be important for social life making it a popular subject of research. However, despite the existence of previous functional imaging studies on EI, the relationship between regional gray matter morphology and EI has never been investigated. We used voxel-based morphometry (VBM) and a questionnaire (Emotional Intelligence Scale) to measure EI to identify the gray matter correlates of each factor of individual EI (Intrapersonal factor, Interpersonal factor, Situation Management factor). We found significant negative relationships between the Intrapersonal factor and regional gray matter density (rGMD) (1-a) in an anatomical cluster that included the right anterior insula, (1-b) in the right cerebellum, (1-c) in an anatomical cluster that extends from the cuneus to the precuneus, (1-d) and in an anatomical cluster that extends from the medial prefrontal cortex to the left lateral fronto-polar cortex. We also found significant positive correlations between the Interpersonal factor and rGMD in the right superior temporal sulcus, and significant negative correlations between the Situation Management factor and rGMD in the ventromedial prefrontal cortex. These findings suggest that each factor of EI in healthy young people is related to the specific brain regions known to be involved in the networks of social cognition and self-related recognition, and in the somatic marker circuitry. Copyright © 2010 Wiley-Liss, Inc.

  15. The Relation between Gray Matter Morphology and Divergent Thinking in Adolescents and Young Adults

    Science.gov (United States)

    Zanolie, Kiki; Kleibeuker, Sietske W.; Crone, Eveline A.

    2014-01-01

    Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-spatial (CAT; creative ability test) domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15–17 and 20 young adults aged 25–30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency) was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted. PMID:25514366

  16. The relation between gray matter morphology and divergent thinking in adolescents and young adults.

    Directory of Open Access Journals (Sweden)

    Janna Cousijn

    Full Text Available Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task and visuo-spatial (CAT; creative ability test domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15-17 and 20 young adults aged 25-30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted.

  17. Preliminary Evidence for the Impact of Combat Experiences on Gray Matter Volume of the Posterior Insula

    Directory of Open Access Journals (Sweden)

    Ashley N. Clausen

    2017-12-01

    Full Text Available Background: Combat-exposed veteran populations are at an increased risk for developing cardiovascular disease. The anterior cingulate cortex (ACC and insula have been implicated in both autonomic arousal to emotional stressors and homeostatic processes, which may contribute to cardiovascular dysfunction in combat veteran populations. The aim of the present study was to explore the intersecting relationships of combat experiences, rostral ACC and posterior insula volume, and cardiovascular health in a sample of combat veterans.Method: Twenty-four male combat veterans completed clinical assessment of combat experiences and posttraumatic stress symptoms. Subjects completed a magnetic resonance imaging scan and autosegmentation using FreeSurfer was used to estimate regional gray matter volume (controlling for total gray matter volume of the rostral ACC and posterior insula. Flow-mediated dilation (FMD was conducted to assess cardiovascular health. Theil-sen robust regressions and Welch's analysis of variance were used to examine relationships of combat experiences and PTSD symptomology with (1 FMD and (2 regional gray matter volume.Results: Increased combat experiences, deployment duration, and multiple deployments were related to smaller posterior insula volume. Combat experiences were marginally associated with poorer cardiovascular health. However, cardiovascular health was not related to rostral ACC or posterior insula volume.Conclusion: The present study provides initial evidence for the relationships of combat experiences, deployment duration, and multiple deployments with smaller posterior insula volume. Results may suggest that veterans with increased combat experiences may exhibit more dysfunction regulating the autonomic nervous system, a key function of the posterior insula. However, the relationship between combat and cardiovascular health was not mediated by regional brain volume. Future research is warranted to further clarify the

  18. Multimodal evidence of regional midcingulate gray matter volume underlying conflict monitoring

    Directory of Open Access Journals (Sweden)

    Muhammad A. Parvaz

    2014-01-01

    Full Text Available Functional neuroimaging studies have long implicated the mid-cingulate cortex (MCC in conflict monitoring, but it is not clear whether its structural integrity (i.e., the gray matter volume influences its conflict monitoring function. In this multimodal study, we used T1-weighted MRI scans as well as event-related potentials (ERPs to test whether the MCC gray matter volume is associated with the electrocortical marker (i.e., No-go N200 ERP component of conflict monitoring in healthy individuals. The specificity of such a relationship in health was determined in two ways: by (A acquiring the same data from individuals with cocaine use disorder (CUD, known to have deficits in executive function including behavioral monitoring; and (B acquiring the P300 ERP component that is linked with attention allocation and not specifically with conflict monitoring. Twenty-five (39.1 ± 8.4 years; 8 females healthy individuals and 25 (42.7 ± 5.9 years; 6 females individuals with CUD underwent a rewarded Go/No-go task during which the ERP data was collected, and they also underwent a structural MRI scan. The whole brain regression analysis showed a significant correlation between MCC structural integrity and the well-known ERP measure of conflict monitoring (N200, but not the P300 in healthy individuals, which was absent in CUD who were characterized by reduced MCC gray matter volume, N200 abnormalities as well as reduced task accuracy. In individuals with CUD instead, the N200 amplitude was associated with drug addiction symptomatology. These results show that the integrity of MCC volume is directly associated with the electrocortical correlates of conflict monitoring in healthy individuals, and such an association breaks down in psychopathologies that impact these brain processes. Taken together, this MCC–N200 association may serve as a biomarker of improved behavioral monitoring processes in diseased populations.

  19. Poor balance and lower gray matter volume predict falls in older adults with mild cognitive impairment.

    Science.gov (United States)

    Makizako, Hyuma; Shimada, Hiroyuki; Doi, Takehiko; Park, Hyuntae; Yoshida, Daisuke; Uemura, Kazuki; Tsutsumimoto, Kota; Liu-Ambrose, Teresa; Suzuki, Takao

    2013-08-05

    The risk of falling is associated with cognitive dysfunction. Older adults with mild cognitive impairment (MCI) exhibit an accelerated reduction of brain volume, and face an increased risk of falling. The current study examined the relationship between baseline physical performance, baseline gray matter volume and falls during a 12-month follow-up period among community-dwelling older adults with MCI. Forty-two older adults with MCI (75.6 years, 43% women) underwent structural magnetic resonance imaging and baseline physical performance assessment, including knee-extension strength, one-legged standing time, and walking speed with normal pace. 'Fallers' were defined as people who had one or more falls during the 12-month follow-up period. Of the 42 participants, 26.2% (n = 11) experienced at least one fall during the 12-month follow-up period. Fallers exhibited slower walking speed and shorter one-legged standing time compared with non-fallers (both p falls during the 12-month follow-up after adjusting for age, sex, body mass index, and history of falling in the past year at baseline. Voxel-based morphometry was used to examine differences in baseline gray matter volume between fallers and non-fallers, revealing that fallers exhibited a significantly greater reduction in the bilateral middle frontal gyrus and superior frontal gyrus. Poor balance predicts falls over 12 months, and baseline lower gray matter densities in the middle frontal gyrus and superior frontal gyrus were associated with falls in older adults with MCI. Maintaining physical function, especially balance, and brain structural changes through many sorts of prevention strategies in the early stage of cognitive decline may contribute to decreasing the risk of falls in older adults with MCI.

  20. Gene x Disease Interaction on Orbitofrontal Gray Matter in Cocaine Addiction

    International Nuclear Information System (INIS)

    Alia-Klein, N.; Parvaz, M.A.; Woicik, P.A.; Konova, A.B.; Maloney, T.; Shumay, E.; Wang, R.; Telang, F.; Biegon, A.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Volkow, N.D.; Goldstein, R.Z.

    2011-01-01

    Long-term cocaine use has been associated with structural deficits in brain regions having dopamine-receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. The objective is to examine variations in gray matter volume (GMV) as a function of lifetime drug use and the genotype of the monoamine oxidase A gene, MAOA, in men with cocaine use disorders (CUD) and healthy male controls. Forty individuals with CUD and 42 controls who underwent magnetic resonance imaging to assess GMV and were genotyped for the MAOA polymorphism (categorized as high- and low-repeat alleles). The impact of cocaine addiction on GMV, tested by (1) comparing the CUD group with controls, (2) testing diagnosis x MAOA interactions, and (3) correlating GMV with lifetime cocaine, alcohol, and cigarette smoking, and testing their unique contribution to GMV beyond other factors. The results are: (1) Individuals with CUD had reductions in GMV in the orbitofrontal, dorsolateral prefrontal, and temporal cortex and the hippocampus compared with controls; (2) The orbitofrontal cortex reductions were uniquely driven by CUD with low- MAOA genotype and by lifetime cocaine use; and (3) The GMV in the dorsolateral prefrontal cortex and hippocampus was driven by lifetime alcohol use beyond the genotype and other pertinent variables. Long-term cocaine users with the low-repeat MAOA allele have enhanced sensitivity to gray matter loss, specifically in the orbitofrontal cortex, indicating that this genotype may exacerbate the deleterious effects of cocaine in the brain. In addition, long-term alcohol use is a major contributor to gray matter loss in the dorsolateral prefrontal cortex and hippocampus, and is likely to further impair executive function and learning in cocaine addiction.

  1. The relation between gray matter morphology and divergent thinking in adolescents and young adults.

    Science.gov (United States)

    Cousijn, Janna; Koolschijn, P Cédric M P; Zanolie, Kiki; Kleibeuker, Sietske W; Crone, Eveline A

    2014-01-01

    Adolescence and early adulthood are developmental time periods during which creative cognition is highly important for adapting to environmental changes. Divergent thinking, which refers to generating novel and useful solutions to open-ended problems, has often been used as a measure of creative cognition. The first goal of this structural neuroimaging study was to elucidate the relationship between gray matter morphology and performance in the verbal (AUT; alternative uses task) and visuo-spatial (CAT; creative ability test) domain of divergent thinking in adolescents and young adults. The second goal was to test if gray matter morphology is related to brain activity during AUT performance. Neural and behavioral data were combined from a cross-sectional study including 25 adolescents aged 15-17 and 20 young adults aged 25-30. Brain-behavior relationships were assessed without a priori location assumptions and within areas that were activated during an AUT-scanner task. Gray matter volume and cortical thickness were not significantly associated with verbal divergent thinking. However, visuo-spatial divergent thinking (CAT originality and fluency) was positively associated with cortical thickness of the right middle temporal gyrus and left brain areas including the superior frontal gyrus and various occipital, parietal, and temporal areas, independently of age. AUT brain activity was not associated with cortical thickness. The results support an important role of a widespread brain network involved in flexible visuo-spatial divergent thinking, providing evidence for a relation between cortical thickness and visuo-spatial divergent thinking in adolescents and young adults. However, studies including visuo-spatial divergent thinking tasks in the scanner are warranted.

  2. Prefrontal Gray Matter and Motivation for Treatment in Cocaine-Dependent Individuals with and without Personality Disorders

    Science.gov (United States)

    Moreno-López, Laura; Albein-Urios, Natalia; Martinez-Gonzalez, José Miguel; Soriano-Mas, Carles; Verdejo-García, Antonio

    2014-01-01

    Addiction treatment is a long-term goal and therefore prefrontal–striatal regions regulating goal-directed behavior are to be associated with individual differences on treatment motivation. We aimed at examining the association between gray matter volumes in prefrontal cortices and striatum and readiness to change at treatment onset in cocaine users with and without personality disorders. Participants included 17 cocaine users without psychiatric comorbidities, 17 cocaine users with Cluster B disorders, and 12 cocaine users with Cluster C disorders. They completed the University of Rhode Island Change Assessment Scale, which measures four stages of treatment change (precontemplation, contemplation, action, and maintenance) and overall readiness to change, and were scanned in a 3 T MRI scanner. We defined three regions of interest (ROIs): the ventromedial prefrontal cortex (including medial orbitofrontal cortex and subgenual and rostral anterior cingulate cortex), the dorsomedial prefrontal cortex (i.e., superior medial frontal cortex), and the neostriatum (caudate and putamen). We found that readiness to change correlated with different aspects of ventromedial prefrontal gray matter as a function of diagnosis. In cocaine users with Cluster C comorbidities, readiness to change positively correlated with gyrus rectus gray matter, whereas in cocaine users without comorbidities it negatively correlated with rostral anterior cingulate cortex gray matter. Moreover, maintenance scores positively correlated with dorsomedial prefrontal gray matter in cocaine users with Cluster C comorbidities, but negatively correlated with this region in cocaine users with Cluster B and cocaine users without comorbidities. Maintenance scores also negatively correlated with dorsal striatum gray matter in cocaine users with Cluster C comorbidities. We conclude that the link between prefrontal–striatal gray matter and treatment motivation is modulated by co-existence of personality

  3. Long-term meditation is associated with increased gray matter density in the brain stem

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, Peter; Beek, Martijn van; Skewes, Joshua

    2009-01-01

    density in lower brain stem regions of experienced meditators compared with age-matched nonmeditators. Our findings show that long-term practitioners of meditation have structural differences in brainstem regions concerned with cardiorespiratory control. This could account for some......Extensive practice involving sustained attention can lead to changes in brain structure. Here, we report evidence of structural differences in the lower brainstem of participants engaged in the long-term practice of meditation. Using magnetic resonance imaging, we observed higher gray matter...

  4. Learning new color names produces rapid increase in gray matter in the intact adult human cortex

    OpenAIRE

    Kay, P; Niu, Z; Mo, L; Zhou, K; So, KF; Tan, LH; Kwok, V; Jin, Z

    2011-01-01

    The human brain has been shown to exhibit changes in the volume and density of gray matter as a result of training over periods of several weeks or longer. We show that these changes can be induced much faster by using a training method that is claimed to simulate the rapid learning of word meanings by children. Using whole-brain magnetic resonance imaging (MRI) we show that learning newly defined and named subcategories of the universal categories green and blue in a period of 2 h increases ...

  5. DCDC2 polymorphism is associated with left temporoparietal gray and white matter structures during development.

    Science.gov (United States)

    Darki, Fahimeh; Peyrard-Janvid, Myriam; Matsson, Hans; Kere, Juha; Klingberg, Torkel

    2014-10-22

    Three genes, DYX1C1, DCDC2, and KIAA0319, have been previously associated with dyslexia, neuronal migration, and ciliary function. Three polymorphisms within these genes, rs3743204 (DYX1C1), rs793842 (DCDC2), and rs6935076 (KIAA0319) have also been linked to normal variability of left temporoparietal white matter volume connecting the middle temporal cortex to the angular and supramarginal gyri. Here, we assessed whether these polymorphisms are also related to the cortical thickness of the associated regions during childhood development using a longitudinal dataset of 76 randomly selected children and young adults who were scanned up to three times each, 2 years apart. rs793842 in DCDC2 was significantly associated with the thickness of left angular and supramarginal gyri as well as the left lateral occipital cortex. The cortex was significantly thicker for T-allele carriers, who also had lower white matter volume and lower reading comprehension scores. There was a negative correlation between white matter volume and cortical thickness, but only white matter volume predicted reading comprehension 2 years after scanning. These results show how normal variability in reading comprehension is related to gene, white matter volume, and cortical thickness in the inferior parietal lobe. Possibly, the variability of gray and white matter structures could both be related to the role of DCDC2 in ciliary function, which affects both neuronal migration and axonal outgrowth. Copyright © 2014 the authors 0270-6474/14/3414455-08$15.00/0.

  6. Dyslexia and voxel-based morphometry: correlations between five behavioural measures of dyslexia and gray and white matter volumes

    NARCIS (Netherlands)

    Tamboer, P.; Scholte, H.S.; Vorst, H.C.M.

    2015-01-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in

  7. Brain Swelling and Loss of Gray and White Matter Differentiation in Human Postmortem Cases by Computed Tomography.

    Science.gov (United States)

    Shirota, Go; Gonoi, Wataru; Ishida, Masanori; Okuma, Hidemi; Shintani, Yukako; Abe, Hiroyuki; Takazawa, Yutaka; Ikemura, Masako; Fukayama, Masashi; Ohtomo, Kuni

    2015-01-01

    The purpose of this study was to evaluate the brain by postmortem computed tomography (PMCT) versus antemortem computed tomography (AMCT) using brains from the same patients. We studied 36 nontraumatic subjects who underwent AMCT, PMCT, and pathological autopsy in our hospital between April 2009 and December 2013. PMCT was performed within 20 h after death, followed by pathological autopsy including the brain. Autopsy confirmed the absence of intracranial disorders that might be related to the cause of death or might affect measurements in our study. Width of the third ventricle, width of the central sulcus, and attenuation in gray matter (GM) and white matter (WM) from the same area of the basal ganglia, centrum semiovale, and high convexity were statistically compared between AMCT and PMCT. Both the width of the third ventricle and the central sulcus were significantly shorter in PMCT than in AMCT (P computed tomography scanners. WM attenuation significantly increased after death at all levels (Pbrain swelling, evidenced by a decrease in the size of ventricles and sulci.

  8. Focal Gray Matter Plasticity as a Function of Long Duration Bedrest: Preliminary Results

    Science.gov (United States)

    Koppelmans, V.; Erdeniz, B.; De Dios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. It is unknown whether and how spaceflight impacts sensorimotor brain structure and function, and whether such changes may potentially underlie behavioral effects. Long duration head down tilt bed rest has been used repeatedly as an exclusionary analog to study microgravity effects on the sensorimotor system [1]. Bed rest mimics microgravity in body unloading and bodily fluid shifts. We are currently testing sensorimotor function, brain structure, and brain function pre and post a 70-day bed rest period. We will acquire the same measures on NASA crewmembers starting in 2014. Here we present the results of the first eight bed rest subjects. Subjects were assessed at 12 and 7 days before-, at 7, 30, and 70 days in-, and at 8 and 12 days post 70 days of bed rest at the NASA bed rest facility, UTMB, Galveston, TX, USA. At each time point structural MRI scans (i.e., high resolution T1-weighted imaging and Diffusion Tensor Imaging (DTI)) were obtained using a 3T Siemens scanner. Focal changes over time in gray matter density were assessed using the voxel based morphometry 8 (VBM8) toolbox under SPM. Focal changes in white matter microstructural integrity were assessed using tract based spatial statistics (TBSS) as part of the FMRIB software library (FSL). TBSS registers all DTI scans to standard space. It subsequently creates a study specific white matter skeleton of the major white matter tracts. Non-parametric permutation based t-tests and ANOVA's were used for voxel-wise comparison of the skeletons. For both VBM and TBSS, comparison of the two pre bed rest measurements did not show significant differences. VBM analysis revealed decreased gray matter density in bilateral areas including the frontal medial cortex, the insular cortex and the caudate nucleus

  9. Regional Gray Matter Density Associated with Cognitive Reflectivity–Impulsivity: Evidence from Voxel-Based Morphometry

    Science.gov (United States)

    Yokoyama, Ryoichi; Nozawa, Takayuki; Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Kunitoki, Keiko; Hanihara, Mayu; Sassa, Yuko; Kawashima, Ryuta

    2015-01-01

    When faced with a problem or choice, humans can use two different strategies: “cognitive reflectivity,” which involves slow responses and fewer mistakes, or “cognitive impulsivity,” which comprises of quick responses and more mistakes. Different individuals use these two strategies differently. To our knowledge, no study has directly investigated the brain regions involved in reflectivity–impulsivity; therefore, this study focused on associations between these cognitive strategies and the gray matter structure of several brain regions. In order to accomplish this, we enrolled 776 healthy, right-handed individuals (432 men and 344 women; 20.7 ± 1.8 years) and used voxel-based morphometry with administration of a cognitive reflectivity–impulsivity questionnaire. We found that high cognitive reflectivity was associated with greater regional gray matter density in the ventral medial prefrontal cortex. Our finding suggests that this area plays an important role in defining an individual’s trait associated with reflectivity and impulsivity. PMID:25803809

  10. Community violence exposure correlates with smaller gray matter volume and lower IQ in urban adolescents.

    Science.gov (United States)

    Butler, Oisin; Yang, Xiao-Fei; Laube, Corinna; Kühn, Simone; Immordino-Yang, Mary Helen

    2018-02-15

    Adolescents' exposure to community violence is a significant public health issue in urban settings and has been associated with poorer cognitive performance and increased risk for psychiatric illnesses, including PTSD. However, no study to date has investigated the neural correlates of community violence exposure in adolescents. Sixty-five healthy adolescents (age = 14-18 years; 36 females, 29 males) from moderate- to high-crime neighborhoods in Los Angeles reported their violence exposure, parents' education level, and free/reduced school lunch status (socio-economic status, SES), and underwent structural neuroimaging and intelligence testing. Violence exposure negatively correlated with measures of SES, IQ, and gray matter volume. Above and beyond the effect of SES, violence exposure negatively correlated with IQ and with gray matter volume in the left inferior frontal gyrus and anterior cingulate cortex, regions involved in high-level cognitive functions and autonomic modulation, and previously shown to be reduced in PTSD and combat-exposed military populations. The current results provide first evidence that frontal brain regions involved in cognition and affect appear to be selectively affected by exposure to community violence, even in healthy nondelinquent adolescents who are not the direct victims or perpetrators of violence. © 2018 Wiley Periodicals, Inc.

  11. Reduced anterior cingulate gray matter volume in treatment-naïve clinically depressed adolescents☆

    Science.gov (United States)

    Pannekoek, Justine Nienke; van der Werff, Steven J.A.; van den Bulk, Bianca G.; van Lang, Natasja D.J.; Rombouts, Serge A.R.B.; van Buchem, Mark A.; Vermeiren, Robert R.J.M.; van der Wee, Nic J.A.

    2014-01-01

    Adolescent depression is associated with increased risk for suicidality, social and educational impairment, smoking, substance use, obesity, and depression in adulthood. It is of relevance to further our insight in the neurobiological mechanisms underlying this disorder in the developing brain, as this may be essential to optimize treatment and prevention of adolescent depression and its negative clinical trajectories. The equivocal findings of the limited number of studies on neural abnormalities in depressed youth stress the need for further neurobiological investigation of adolescent depression. We therefore performed a voxel-based morphometry study of the hippocampus, amygdala, superior temporal gyrus, and anterior cingulate cortex (ACC) in 26 treatment-naïve, clinically depressed adolescents and 26 pair-wise matched healthy controls. Additionally, an exploratory whole-brain analysis was performed. Clinically depressed adolescents showed a volume reduction of the bilateral dorsal ACC compared to healthy controls. However, no association was found between gray matter volume of the ACC and clinical severity scores for depression or anxiety. Our finding of a smaller ACC in clinically depressed adolescents is consistent with literature on depressed adults. Future research is needed to investigate if gray matter abnormalities precede or follow clinical depression in adolescents. PMID:24501702

  12. Anomalous gray matter patterns in specific reading comprehension deficit are independent of dyslexia.

    Science.gov (United States)

    Bailey, Stephen; Hoeft, Fumiko; Aboud, Katherine; Cutting, Laurie

    2016-10-01

    Specific reading comprehension deficit (SRCD) affects up to 10 % of all children. SRCD is distinct from dyslexia (DYS) in that individuals with SRCD show poor comprehension despite adequate decoding skills. Despite its prevalence and considerable behavioral research, there is not yet a unified cognitive profile of SRCD. While its neuroanatomical basis is unknown, SRCD could be anomalous in regions subserving their commonly reported cognitive weaknesses in semantic processing or executive function. Here we investigated, for the first time, patterns of gray matter volume difference in SRCD as compared to DYS and typical developing (TD) adolescent readers (N = 41). A linear support vector machine algorithm was applied to whole brain gray matter volumes generated through voxel-based morphometry. As expected, DYS differed significantly from TD in a pattern that included features from left fusiform and supramarginal gyri (DYS vs. TD: 80.0 %, p analysis. These areas are thought to subserve executive processes relevant for reading, such as monitoring and manipulating mental representations. Thus, preliminary analyses suggest that SRCD readers possess a distinct neural profile compared to both TD and DYS readers and that these differences might be linked to domain-general abilities. This work provides a foundation for further investigation into variants of reading disability beyond DYS.

  13. Learning new color names produces rapid increase in gray matter in the intact adult human cortex.

    Science.gov (United States)

    Kwok, Veronica; Niu, Zhendong; Kay, Paul; Zhou, Ke; Mo, Lei; Jin, Zhen; So, Kwok-Fai; Tan, Li Hai

    2011-04-19

    The human brain has been shown to exhibit changes in the volume and density of gray matter as a result of training over periods of several weeks or longer. We show that these changes can be induced much faster by using a training method that is claimed to simulate the rapid learning of word meanings by children. Using whole-brain magnetic resonance imaging (MRI) we show that learning newly defined and named subcategories of the universal categories green and blue in a period of 2 h increases the volume of gray matter in V2/3 of the left visual cortex, a region known to mediate color vision. This pattern of findings demonstrates that the anatomical structure of the adult human brain can change very quickly, specifically during the acquisition of new, named categories. Also, prior behavioral and neuroimaging research has shown that differences between languages in the boundaries of named color categories influence the categorical perception of color, as assessed by judgments of relative similarity, by response time in alternative forced-choice tasks, and by visual search. Moreover, further behavioral studies (visual search) and brain imaging studies have suggested strongly that the categorical effect of language on color processing is left-lateralized, i.e., mediated by activity in the left cerebral hemisphere in adults (hence "lateralized Whorfian" effects). The present results appear to provide a structural basis in the brain for the behavioral and neurophysiologically observed indices of these Whorfian effects on color processing.

  14. Reduced anterior cingulate gray matter volume in treatment-naïve clinically depressed adolescents

    Directory of Open Access Journals (Sweden)

    Justine Nienke Pannekoek

    2014-01-01

    Full Text Available Adolescent depression is associated with increased risk for suicidality, social and educational impairment, smoking, substance use, obesity, and depression in adulthood. It is of relevance to further our insight in the neurobiological mechanisms underlying this disorder in the developing brain, as this may be essential to optimize treatment and prevention of adolescent depression and its negative clinical trajectories. The equivocal findings of the limited number of studies on neural abnormalities in depressed youth stress the need for further neurobiological investigation of adolescent depression. We therefore performed a voxel-based morphometry study of the hippocampus, amygdala, superior temporal gyrus, and anterior cingulate cortex (ACC in 26 treatment-naïve, clinically depressed adolescents and 26 pair-wise matched healthy controls. Additionally, an exploratory whole-brain analysis was performed. Clinically depressed adolescents showed a volume reduction of the bilateral dorsal ACC compared to healthy controls. However, no association was found between gray matter volume of the ACC and clinical severity scores for depression or anxiety. Our finding of a smaller ACC in clinically depressed adolescents is consistent with literature on depressed adults. Future research is needed to investigate if gray matter abnormalities precede or follow clinical depression in adolescents.

  15. Delayed cortical gray matter development in neonates with severe congenital heart disease.

    Science.gov (United States)

    Claessens, Nathalie H P; Moeskops, Pim; Buchmann, Andreas; Latal, Beatrice; Knirsch, Walter; Scheer, Ianina; Išgum, Ivana; de Vries, Linda S; Benders, Manon J N L; von Rhein, Michael

    2016-11-01

    This study aimed to assess cortical gray matter growth and maturation in neonates with congenital heart disease (CHD). Thirty-one (near) term neonates with severe CHD (8 univentricular heart malformation (UVH), 21 d-transposition of great arteries (d-TGA) and 2 aortic coarctation) underwent cerebral MRI before (postnatal-day 7) and after (postnatal-day 24) surgery. Eighteen controls with similar gestational age had one MRI (postnatal-day 23). Cortical gray matter volume (CGM), inner cortical surface (iCS), and median cortical thickness were extracted as measures of volumetric growth, and gyrification index (GI) as measure of maturation. Over a median of 18 d, CGM increased by 21%, iCS by 17%, thickness and GI both by 9%. Decreased postoperative CGM and iCS were seen for CHD compared to controls (P values BAS, 61%) had reduced postoperative CGM, iCS, and GI (P values BAS show higher risk of impaired cortical volume and gyrification.

  16. Corpus callosum atrophy correlates with gray matter atrophy in patients with multiple sclerosis.

    Science.gov (United States)

    Klawiter, Eric C; Ceccarelli, Antonia; Arora, Ashish; Jackson, Jonathan; Bakshi, Sonya; Kim, Gloria; Miller, Jennifer; Tauhid, Shahamat; von Gizycki, Christian; Bakshi, Rohit; Neema, Mohit

    2015-01-01

    Atrophy of the corpus callosum is a recognized characteristic of multiple sclerosis (MS). We describe a new reliable method for measuring corpus callosum atrophy and correlate this with global cerebral atrophy measures. Whole brain 3T MRI was performed in 38 relapsing-remitting MS subjects and 21 healthy controls (HC). Brain global gray and white matter volumes were segmented with SPM8. The contour of the corpus callosum was outlined on the midline of 3-D T1-weighted images by a semiautomated edge-detection technique to determine the corpus callosum area (CCA). Normalized CCA was correlated with other brain atrophy measures in MS subjects. CCA was disproportionately lower in MS subjects vs. HC (20.1% mean decrease; P corpus callosum can have sensitivity as a useful imaging biomarker in patients with MS, even in patients with low disability levels. Both gray and white matter involvement in MS contribute to corpus callosum atrophy. Copyright © 2014 by the American Society of Neuroimaging.

  17. Early Gray-Matter and White-Matter Concentration in Infancy Predict Later Language Skills: A Whole Brain Voxel-Based Morphometry Study

    Science.gov (United States)

    Can, Dilara Deniz; Richards, Todd; Kuhl, Patricia K.

    2013-01-01

    Magnetic Resonance Imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months.…

  18. Unraveling the Relationship Between Regional Gray Matter Atrophy and Pathology in Connected White Matter Tracts in Long-Standing Multiple Sclerosis

    NARCIS (Netherlands)

    Steenwijk, M.D.; Daams, M.; Pouwels, P.J.W.; Balk, L.J.; Tewarie, P.K.; Geurts, J.J.G.; Barkhof, F.; Vrenken, H.

    2015-01-01

    Introduction: Gray matter (GM) atrophy is common in multiple sclerosis (MS), but the relationship with white matter (WM) pathology is largely unknown. Some studies found a co-occurrence in specific systems, but a regional analysis across the brain in different clinical phenotypes is necessary to

  19. Dark matter in central galaxies

    Science.gov (United States)

    Salinas, R.; Richtler, T.; Romanowsky, A. J.; Schuberth, Y.; Gomez, M.; Hilker, M.

    The study of the dynamics of globular clusters systems (GCSs) is a powerful tool to test the dark matter (DM) content at galactic scales, especially in early type galaxies which present a lack of suitable DM probes (Romanowsky 2006). So far, this method has been only applied to a handful of nearby ellipticals, mainly due to the observational difficulties (Cote et al. 2001; Richtler et al. 2004; Schuberth et al. 2006; Woodley et al. 2007). In this talk I will present the first results of our VLT-VIMOS study of the dynamics of the GCS of NGC 3311, the nearest cD galaxy, which hosts an enormous GC population (McLaughlin et al. 1995). These results include the spectroscopic confirmation of the first ultra compact dwarf in Hydra I, from the candidate list of Wehner & Harris (2007).

  20. Increased brain gray matter in the primary somatosensory cortex is associated with increased pain and mood disturbance in patients with interstitial cystitis/painful bladder syndrome.

    Science.gov (United States)

    Kairys, Anson E; Schmidt-Wilcke, Tobias; Puiu, Tudor; Ichesco, Eric; Labus, Jennifer S; Martucci, Katherine; Farmer, Melissa A; Ness, Timothy J; Deutsch, Georg; Mayer, Emeran A; Mackey, Sean; Apkarian, A Vania; Maravilla, Kenneth; Clauw, Daniel J; Harris, Richard E

    2015-01-01

    Interstitial cystitis is a highly prevalent pain condition estimated to affect 3% to 6% of women in the United States. Emerging data suggest there are central neurobiological components to the etiology of this disease. We report the first brain structural imaging findings from the MAPP network with data on more than 300 participants. We used voxel based morphometry to determine whether human patients with chronic interstitial cystitis display changes in brain morphology compared to healthy controls. A total of 33 female patients with interstitial cystitis without comorbidities and 33 age and gender matched controls taken from the larger sample underwent structural magnetic resonance imaging at 5 MAPP sites across the United States. Compared to controls, females with interstitial cystitis displayed significant increased gray matter volume in several regions of the brain including the right primary somatosensory cortex, the superior parietal lobule bilaterally and the right supplementary motor area. Gray matter volume in the right primary somatosensory cortex was associated with greater pain, mood (anxiety) and urological symptoms. We explored these correlations in a linear regression model, and found independent effects of these 3 measures on primary somatosensory cortex gray matter volume, namely clinical pain (McGill pain sensory total), a measure of urgency and anxiety (HADS). These data support the notion that changes in somatosensory gray matter may have an important role in pain sensitivity as well as affective and sensory aspects of interstitial cystitis. Further studies are needed to confirm the generalizability of these findings to other pain conditions. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  1. Structural differences in gray matter between glider pilots and non-pilots. A voxel based morphometry study.

    Directory of Open Access Journals (Sweden)

    Tosif eAhamed

    2014-11-01

    Full Text Available Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full body rotations. In the present study we investigated the neural correlates of flying a glider using voxel-based morphometry (VBM. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying such as joystick control, visuo-vestibular interaction and oculomotor control.

  2. Optimal voxel size for measuring global gray and white matter proton metabolite concentrations using chemical shift imaging

    DEFF Research Database (Denmark)

    Hanson, Lars Peter Grüner; Adalsteinsson, E; Pfefferbaum, A

    2000-01-01

    compared to single voxel methods. In the present study, the optimal voxel size is calculated from segmented human brain data and accompanying field maps. The optimal voxel size is found to be approximately 8 cc, but a wide range of values, 4-64 cc, can be chosen with little increase in estimated......Quantification of gray and white matter levels of spectroscopically visible metabolites can provide important insights into brain development and pathological conditions. Chemical shift imaging offers a gain in efficiency for estimation of global gray and white matter metabolite concentrations...

  3. Volume changes of whole brain gray matter in pediatric patients with Tourette syndrome: evidence from voxel-based morphometry

    International Nuclear Information System (INIS)

    Liu Yue; Peng Yun; Gao Peiyi; Nie Binbin; Lu Chuankai; Zhang Liping; Ji Zhiying; Yin Guangheng; Yu Tong; Shan Baoci

    2012-01-01

    Objectives: To identify the related abnormalities of gray matter in pediatric patients with Tourette syndrome (TS) by using the optimized voxel-based morphometry (VBM). Methods: Three dimensional T 1 WI was acquired in 31 TS children (28 boys, 3 girts, mean age 8 years, range 4-15 years) and 50 age- and sex-matched controls on a 1.5 Tesla Philips scanner. Images were pre-processed and analyzed using a version of VBM 2 in SPM 2. The whole brain gray matter volume was compared between the study and control group by using t-test. Multivariate linear regression analysis was used for analyzing the correlation between the change of grey matter volume within each brain region (mm 3 ) and YGTSS score and course of disease of TS patients. Statistical analyses were performed by using SPSS 13.0. Results: Using VBM, significant increases in gray matter volumes in left superior parietal lobule, right cerebellar hemisphere and left parahippocampal gyrus were detected in TS patients, and the volume changes were 4059, 2126 and 84 mm 3 (t=3.93, 3.71, 3.58, P<0.05) respectively. Compared to the control group, decreased grey matter volumes were found in medulla and left pons, and the volume changes were 213 and 117 mm 3 (t=3.53, 3.48, P<0.05)respectively. Tic severity was not correlated with any volume changes of gray matter in brain (P>0.05, a small volume correction, KE ≥ 10 voxel). Tic course was negatively correlated with the gray matter volume of left parahippocampal gyrus (Beta =-0.391, P=0.039). Conclusions: Using VBM technique, the gray matter abnormalities can be revealed in TS patients without obvious lesions on conventional MR imaging. The increasing volume of temporal and parietal lobes and cerebellar may be an adaptive anatomical change in response to experiential demand. The gray matter volume of the parahippocampal gyrus may be used as one potential objective index for evaluating the prognosis of TS. (authors)

  4. Gray-white matter and cerebrospinal fluid volume differences in children with Specific Language Impairment and/or Reading Disability.

    Science.gov (United States)

    Girbau-Massana, Dolors; Garcia-Marti, Gracian; Marti-Bonmati, Luis; Schwartz, Richard G

    2014-04-01

    We studied gray-white matter and cerebrospinal fluid (CSF) alterations that may be critical for language, through an optimized voxel-based morphometry evaluation in children with Specific Language Impairment (SLI), compared to Typical Language Development (TLD). Ten children with SLI (8;5-10;9) and 14 children with TLD (8;2-11;8) participated. They received a comprehensive language and reading test battery. We also analyzed a subgroup of six children with SLI+RD (Reading Disability). Brain images from 3-Tesla MRIs were analyzed with intelligence, age, gender, and total intracranial volume as covariates. Children with SLI or SLI+RD exhibited a significant lower overall gray matter volume than children with TLD. Particularly, children with SLI showed a significantly lower volume of gray matter compared to children with TLD in the right postcentral parietal gyrus (BA4), and left and right medial occipital gyri (BA19). The group with SLI also exhibited a significantly greater volume of gray matter in the right superior occipital gyrus (BA19), which may reflect a brain reorganization to compensate for their lower volumes at medial occipital gyri. Children with SLI+RD, compared to children with TLD, showed a significantly lower volume of: (a) gray matter in the right postcentral parietal gyrus; and (b) white matter in the right inferior longitudinal fasciculus (RILF), which interconnects the temporal and occipital lobes. Children with TLD exhibited a significantly lower CSF volume than children with SLI and children with SLI+RD respectively, who had somewhat smaller volumes of gray matter allowing for more CSF volume. The significant lower gray matter volume at the right postcentral parietal gyrus and greater cerebrospinal fluid volume may prove to be unique markers for SLI. We discuss the association of poor knowledge/visual representations and language input to brain development. Our comorbid study showed that a significant lower volume of white matter in the right

  5. Gray matter textural heterogeneity as a potential in-vivo biomarker of fine structural abnormalities in Asperger syndrome.

    Science.gov (United States)

    Radulescu, E; Ganeshan, B; Minati, L; Beacher, F D C C; Gray, M A; Chatwin, C; Young, R C D; Harrison, N A; Critchley, H D

    2013-02-01

    Brain imaging studies contribute to the neurobiological understanding of Autism Spectrum Conditions (ASC). Herein, we tested the prediction that distributed neurodevelopmental abnormalities in brain development impact on the homogeneity of brain tissue measured using texture analysis (TA; a morphological method for surface pattern characterization). TA was applied to structural magnetic resonance brain scans of 54 adult participants (24 with Asperger syndrome (AS) and 30 controls). Measures of mean gray-level intensity, entropy and uniformity were extracted from gray matter images at fine, medium and coarse textures. Comparisons between AS and controls identified higher entropy and lower uniformity across textures in the AS group. Data reduction of texture parameters revealed three orthogonal principal components. These were used as regressors-of-interest in a voxel-based morphometry analysis that explored the relationship between surface texture variations and regional gray matter volume. Across the AS but not control group, measures of entropy and uniformity were related to the volume of the caudate nuclei, whereas mean gray-level was related to the size of the cerebellar vermis. Similar to neuropathological studies, our study provides evidence for distributed abnormalities in the structural integrity of gray matter in adults with ASC, in particular within corticostriatal and corticocerebellar networks. Additionally, this in-vivo technique may be more sensitive to fine microstructural organization than other more traditional magnetic resonance approaches and serves as a future testable biomarker in AS and other neurodevelopmental disorders.

  6. Cognitive impairment in MS Impact of white matter integrity, gray matter volume, and lesions

    NARCIS (Netherlands)

    Hulst, H.E.; Steenwijk, M.D.; Versteeg, A.; Pouwels, P.J.W.; Vrenken, H.; Uitdehaag, B.M.J.; Polman, C.H.; Geurts, J.J.G.; Barkhof, F.

    2013-01-01

    Objective: To investigate whether extent and severity of white matter (WM) damage, as measured with diffusion tensor imaging (DTI), can distinguish cognitively preserved (CP) from cognitively impaired (CI) multiple sclerosis (MS) patients. Methods: Conventional MRI and DTI data were acquired from 55

  7. Gray Matter Volume of the Lingual Gyrus Mediates the Relationship between Inhibition Function and Divergent Thinking

    Directory of Open Access Journals (Sweden)

    Lijie Zhang

    2016-10-01

    Full Text Available Abstract: Although previous research provides converging evidence for the role of posterior regions of the brain (including temporal, occipital, and parietal regions involved in inhibition on creative thinking, it remains unclear as to how these regions influence individual differences in creative thinking. Thus, we explored the relationship between posterior regions (i.e., hippocampal, parahippocampal, lingual gyrus, precuneus, and cuneus , inhibition function, and divergent thinking in 128 healthy college students. The results revealed that lower inhibition was associated with larger gray matter volume (GMV in the lingual gyrus, which in turn was associated with higher divergent thinking. In addition, GMV in the lingual gyrus mediated the association between inhibition and divergent thinking. These results provide new evidence for the role of inhibition in creative thinking. Inhibition may affect the amount of information stored in long-term memory, which, in turn influences divergent thinking.

  8. Gray matter volumes of early sensory regions are associated with individual differences in sensory processing.

    Science.gov (United States)

    Yoshimura, Sayaka; Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Sawada, Reiko; Kubota, Yasutaka; Toichi, Motomi

    2017-12-01

    Sensory processing (i.e., the manner in which the nervous system receives, modulates, integrates, and organizes sensory stimuli) is critical when humans are deciding how to react to environmental demands. Although behavioral studies have shown that there are stable individual differences in sensory processing, the neural substrates that implement such differences remain unknown. To investigate this issue, structural magnetic resonance imaging scans were acquired from 51 healthy adults and individual differences in sensory processing were assessed using the Sensory Profile questionnaire (Brown et al.: Am J Occup Ther 55 (2001) 75-82). There were positive relationships between the Sensory Profile modality-specific subscales and gray matter volumes in the primary or secondary sensory areas for the visual, auditory, touch, and taste/smell modalities. Thus, the present results suggest that individual differences in sensory processing are implemented by the early sensory regions. Hum Brain Mapp 38:6206-6217, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    Science.gov (United States)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  10. Microstructural changes in ischemic cortical gray matter predicted by a model of diffusion-weighted MRI

    DEFF Research Database (Denmark)

    Vestergaard-Poulsen, Peter; Hansen, Brian; Østergaard, Leif

    2007-01-01

    PURPOSE: To understand the diffusion attenuated MR signal from normal and ischemic brain tissue in order to extract structural and physiological information using mathematical modeling, taking into account the transverse relaxation rates in gray matter. MATERIALS AND METHODS: We fit our diffusion...... compartment. A global optimum was found from a wide range of parameter permutations using cluster computing. We also present simulations of cell swelling and changes of exchange rate and intracellular diffusion as possible cellular mechanisms in ischemia. RESULTS: Our model estimates an extracellular volume...... fraction of 0.19 in accordance with the accepted value from histology. The absolute apparent diffusion coefficient obtained from the model was similar to that of experiments. The model and the experimental results indicate significant differences in diffusion and transverse relaxation between the tissue...

  11. Gray matter abnormalities in Internet addiction: A voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Yan, E-mail: clare1475@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Lin Fuchun, E-mail: fclin@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Du Yasong, E-mail: yasongdu@yahoo.com.cn [Department of Child and Adolescent Psychiatry Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai 200030 (China); Qin Lingdi, E-mail: flyingfool838@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Zhao Zhimin, E-mail: zmzsky@163.com [Department of Child and Adolescent Psychiatry Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai 200030 (China); Xu Jianrong, E-mail: xujianr@hotmail.com [Department of Radiology, RenJi Hospital, Jiao Tong University Medical School, Shanghai 200127 (China); Lei Hao, E-mail: leihao@wipm.ac.cn [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China)

    2011-07-15

    Background: This study aims to investigate brain gray matter density (GMD) changes in adolescents with Internet addiction (IA) using voxel-based morphometry (VBM) analysis on high-resolution T1-weighted structural magnetic resonance images. Methods: Eighteen IA adolescents and 15 age- and gender-matched healthy controls took part in this study. High-resolution T1-weighted magnetic resonance imaging scans were performed on the two groups. VBM analysis was used to compare the GMD between the two groups. Results: Compared with healthy controls, IA adolescents had lower GMD in the left anterior cingulate cortex, left posterior cingulate cortex, left insula, and left lingual gyrus. Conclusions: Our findings suggested that brain structural changes were present in IA adolescents, and this finding may provide a new insight into the pathogenesis of IA.

  12. A large-scale study on the effects of sex on gray matter asymmetry.

    Science.gov (United States)

    Núñez, Christian; Theofanopoulou, Constantina; Senior, Carl; Cambra, Maria Rosa; Usall, Judith; Stephan-Otto, Christian; Brébion, Gildas

    2018-01-01

    Research on sex-related brain asymmetries has not yielded consistent results. Despite its importance to further understanding of normal brain development and mental disorders, the field remains relatively unexplored. Here we employ a recently developed asymmetry measure, based on the Dice coefficient, to detect sex-related gray matter asymmetries in a sample of 457 healthy participants (266 men and 191 women) obtained from 5 independent databases. Results show that women's brains are more globally symmetric than men's (p < 0.001). Although the new measure accounts for asymmetries distributed all over the brain, several specific structures were identified as systematically more symmetric in women, such as the thalamus and the cerebellum, among other structures, some of which are typically involved in language production. These sex-related asymmetry differences may be defined at the neurodevelopmental stage and could be associated with functional and cognitive sex differences, as well as with proneness to develop a mental disorder.

  13. Gray matter abnormalities in Internet addiction: A voxel-based morphometry study

    International Nuclear Information System (INIS)

    Zhou Yan; Lin Fuchun; Du Yasong; Qin Lingdi; Zhao Zhimin; Xu Jianrong; Lei Hao

    2011-01-01

    Background: This study aims to investigate brain gray matter density (GMD) changes in adolescents with Internet addiction (IA) using voxel-based morphometry (VBM) analysis on high-resolution T1-weighted structural magnetic resonance images. Methods: Eighteen IA adolescents and 15 age- and gender-matched healthy controls took part in this study. High-resolution T1-weighted magnetic resonance imaging scans were performed on the two groups. VBM analysis was used to compare the GMD between the two groups. Results: Compared with healthy controls, IA adolescents had lower GMD in the left anterior cingulate cortex, left posterior cingulate cortex, left insula, and left lingual gyrus. Conclusions: Our findings suggested that brain structural changes were present in IA adolescents, and this finding may provide a new insight into the pathogenesis of IA.

  14. Gray Matter Alterations in Adults with Attention-Deficit/Hyperactivity Disorder Identified by Voxel Based Morphometry

    Science.gov (United States)

    Seidman, Larry J.; Biederman, Joseph; Liang, Lichen; Valera, Eve M.; Monuteaux, Michael C.; Brown, Ariel; Kaiser, Jonathan; Spencer, Thomas; Faraone, Stephen V.; Makris, Nikos

    2014-01-01

    Background Gray and white matter volume deficits have been reported in many structural magnetic resonance imaging (MRI) studies of children with attention-deficit/hyperactivity disorder (ADHD); however, there is a paucity of structural MRI studies of adults with ADHD. This study used voxel based morphometry and applied an a priori region of interest approach based on our previous work, as well as from well-developed neuroanatomical theories of ADHD. Methods Seventy-four adults with DSM-IV ADHD and 54 healthy control subjects comparable on age, sex, race, handedness, IQ, reading achievement, frequency of learning disabilities, and whole brain volume had an MRI on a 1.5T Siemens scanner. A priori region of interest hypotheses focused on reduced volumes in ADHD in dorsolateral prefrontal cortex, anterior cingulate cortex, caudate, putamen, inferior parietal lobule, and cerebellum. Analyses were carried out by FSL-VBM 1.1. Results Relative to control subjects, ADHD adults had significantly smaller gray matter volumes in parts of six of these regions at p ≤ .01, whereas parts of the dorsolateral prefrontal cortex and inferior parietal lobule were significantly larger in ADHD at this threshold. However, a number of other regions were smaller and larger in ADHD (especially fronto-orbital cortex) at this threshold. Only the caudate remained significantly smaller at the family-wise error rate. Conclusions Adults with ADHD have subtle volume reductions in the caudate and possibly other brain regions involved in attention and executive control supporting frontostriatal models of ADHD. Modest group brain volume differences are discussed in the context of the nature of the samples studied and voxel based morphometry methodology. PMID:21183160

  15. A tensor based morphometry study of longitudinal gray matter contraction in FTD

    Science.gov (United States)

    Brambati, Simona M.; Renda, Natasha C.; Rankin, Katherine P.; Rosen, Howard J.; Seeley, William W.; Ashburner, John; Weiner, Michael W.; Miller, Bruce L.; Gorno-Tempini, Maria Luisa

    2008-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease characterized by progressive behavioural abnormalities and frontotemporal atrophy. Here we used tensor based morphometry (TBM) to identify regions of longitudinal progression of gray matter atrophy in FTD compared to controls. T1-weighted MRI images were acquired at presentation and 1-year follow-up from 12 patients with mild to moderate FTD and 12 healthy controls. Using TBM as implemented in SPM2, a voxel-wise estimation of regional tissue volume change was derived from the deformation field required to warp a subject’s late to early anatomical images. A whole brain analysis was performed, in which a level of significance of pBased on prior studies, a region of interest (ROI) analysis was also performed, including in the search area bilateral medial and orbital frontal regions, anterior cingulate gyrus, insula, amygdala and hippocampus. Within this ROI a level of significance of p<0.001 uncorrected was accepted. In the whole brain analysis, the anterior cingulate/paracingulate gyri were the only regions that showed significant atrophy change over 1 year. In the ROI analysis, the left ventro-medial frontal cortex, right medial superior frontal gyrus, anterior insulae and left amygdala/hippocampus showed significant longitudinal changes. In conclusion, limbic and paralimbic regions showed detectable gray matter contraction over 1 year in FTD, confirming the susceptibility of these regions to the disease and the consistency with their putative role in causing typical presenting behaviours. These results suggest that TBM might be useful in tracking progression of regional atrophy in FTD. PMID:17350290

  16. Gray matter loss in young relatives at risk for schizophrenia: relation with prodromal psychopathology

    Science.gov (United States)

    Bhojraj, Tejas S.; Sweeney, J A; Prasad, Konasale M.; Eack, Shaun M.; Francis, Alan N.; Miewald, Jean M.; Montrose, Debra M.; Keshavan, Matcheri S.

    2010-01-01

    The maturation of neocortical regions mediating social cognition during adolescence and young adulthood in relatives of schizophrenia patients may be vulnerable to heritable alterations of neurodevelopment. Prodromal psychotic symptoms, commonly emerging during this period in relatives, have been hypothesized to result from alterations in brain regions mediating social cognition. We hypothesized these regions to show longitudinal alterations and these alterations to predict prodromal symptoms in adolescent and young adult relatives of schizophrenia patients. 27 Healthy controls and 23 relatives were assessed at baseline and one year follow-up using scale of prodromal symptoms and gray matter volumes of hypothesized regions from T1-MRI images. Regional volumes showing deficits on ANCOVA and repeated-measures-ANCOVAs (controlling intra cranial volume, age and gender) were correlated with prodromal symptoms. At baseline, bilateral amygdalae, bilateral pars triangulares, left lateral orbitofrontal, right frontal pole, angular and supramarginal gyrii were smaller in relatives compared to controls. Relatives declined but controls increased or remained stable on bilateral lateral orbitofrontal, left rostral anterior cingulate, left medial prefrontal, right inferior frontal gyrus and left temporal pole volumes at follow-up relative to baseline. Smaller volumes predicted greater severity of prodromal symptoms at both cross-sectional assessments. Longitudinally, smaller baseline volumes predicted greater prodromal symptoms at follow-up; greater longitudinal decreases in volumes predicted worsening (increase) of prodromal symptoms over time. These preliminary findings suggest that abnormal longitudinal gray matter loss may occur in regions mediating social cognition and may convey risk for prodromal symptoms during adolescence and early adulthood in individuals with a familial diathesis for schizophrenia. PMID:20441795

  17. Gray matter maturation and cognition in children with different APOE ε genotypes.

    Science.gov (United States)

    Chang, Linda; Douet, Vanessa; Bloss, Cinnamon; Lee, Kristin; Pritchett, Alexandra; Jernigan, Terry L; Akshoomoff, Natacha; Murray, Sarah S; Frazier, Jean; Kennedy, David N; Amaral, David G; Gruen, Jeffrey; Kaufmann, Walter E; Casey, B J; Sowell, Elizabeth; Ernst, Thomas

    2016-08-09

    The aims of the current study were to determine whether children with the 6 different APOE ε genotypes show differences in gray matter maturation, particularly for those with ε4 and ε2 alleles, which are associated with poorer outcomes in many neurologic disorders. A total of 1,187 healthy children (aged 3-20 years, 52.1% boys, 47.9% girls) with acceptable data from the cross-sectional Pediatric Imaging Neurocognition and Genetics Study were evaluated for the effects of 6 APOE ε genotypes on macroscopic and microscopic cortical and subcortical gray matter structures (measured with 3-tesla MRI and FreeSurfer for automated morphometry) and on cognition (NIH Toolbox). Among APOE ε4 carriers, age-related changes in brain structures and cognition varied depending on genotype, with the smallest hippocampi in ε2ε4 children, the lowest hippocampal fractional anisotropy in younger ε4ε4 children, the largest medial orbitofrontal cortical areas in ε3ε4 children, and age-dependent thinning of the entorhinal cortex in ε4ε4 children. Younger ε4ε4 children had the lowest scores on executive function and working memory, while younger ε2ε4 children performed worse on attention tasks. Larger parietal gyri in the younger ε2ε4 children, and thinner temporal and cingulate isthmus cortices or smaller hippocampi in the younger ε4ε4 children, predicted poorer performance on attention or working memory. Our findings validated and extended prior smaller studies that showed altered brain development in APOE ε4-carrier children. The ε4ε4 and ε2ε4 genotypes may negatively influence brain development and brain aging at the extremes of age. Studying APOE ε polymorphisms in young children may provide the earliest indicators for individuals who might benefit from early interventions or preventive measures for future brain injuries and dementia. © 2016 American Academy of Neurology.

  18. Uniformity and Deviation of Intra-axonal Cross-sectional Area Coverage of the Gray-to-White Matter Interface

    Directory of Open Access Journals (Sweden)

    Stefan Sommer

    2017-12-01

    Full Text Available Diffusion magnetic resonance imaging (dMRI is a compelling tool for investigating the structure and geometry of brain tissue based on indirect measurement of the diffusion anisotropy of water. Recent developments in global top-down tractogram optimizations enable the estimation of streamline weights, which characterize the connection between gray matter areas. In this work, the intra-axonal cross-sectional area coverage of the gray-to-white matter interface was examined by intersecting tractography streamlines with cortical regions of interest. The area coverage is the ratio of streamline weights divided by the surface area at the gray-to-white matter interface and assesses the estimated percentage which is covered by intra-axonal space. A high correlation (r = 0.935 between streamline weights and the cortical surface area was found across all regions of interest in all subjects. The variance across different cortical regions exhibits similarities to myelin maps. Additionally, we examined the effect of different diffusion gradient subsets at a lower, clinically feasible spatial resolution. Subsampling of the initial high-resolution diffusion dataset did not alter the tendency of the area coverage at the gray-to-white matter interface across cortical areas and subjects. However, single-shell acquisition schemes with lower b-values lead to a steady increase in area coverage in comparison to the full acquisition scheme at high resolution.

  19. Gray Matter Density Negatively Correlates with Duration of Heroin Use in Young Lifetime Heroin-Dependent Individuals

    Science.gov (United States)

    Yuan, Yi; Zhu, Zude; Shi, Jinfu; Zou, Zhiling; Yuan, Fei; Liu, Yijun; Lee, Tatia M. C.; Weng, Xuchu

    2009-01-01

    Numerous studies have documented cognitive impairments and hypoactivity in the prefrontal and anterior cingulate cortices in drug users. However, the relationships between opiate dependence and brain structure changes in heroin users are largely unknown. In the present study, we measured the density of gray matter (DGM) with voxel-based…

  20. Set-Shifting Ability Is Associated with Gray Matter Volume in Older People with Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Kota Tsutsumimoto

    2015-10-01

    Full Text Available Background/Aims: An understanding of the association between gray matter volume and executive functioning could provide strategies to reduce dementia risk in older people with mild cognitive impairment (MCI. Methods: In a cross-sectional analysis, we assessed executive functioning in 83 older people with MCI using three standard neuropsychological tests: set shifting (difference between Trail Making Test Parts B and A, working memory (difference between Digit Span forward and backward from the Wechsler Adult Intelligence Scale-IV, and selective attention/response inhibition (difference between the second and third conditions of the color- and picture-word Stroop test. Gray matter volume was computed from brain MRIs and SIENAX from FSL software. Results: Gray matter volume was significantly associated with set-shifting performance after accounting for age, gender, body mass index, education, and global cognition (standardized β = -0.376, p = 0.001, but not with working memory or selective attention/response inhibition. Conclusion: The executive function of set-shifting ability was correlated with gray matter volume in older people with MCI.

  1. INDUCTION OF CORTICOSPINAL TARGET FINDING BY RELEASE OF A DIFFUSIBLE, CHEMOTROPIC FACTOR IN CERVICAL SPINAL GRAY-MATTER

    NARCIS (Netherlands)

    JOOSTEN, EAJ; VANDERVEN, PFM; Hooiveld, Michiel; TENDONKELAAR, HJ

    1991-01-01

    The outgrowth of corticospinal tract axons in rat spinal cord primarily occurs during the first postnatal week. Axons originating from a group of layer V pyramidal cell bodies situated in the anterior part of the cerebral sensorimotor cortex project mainly to the cervical gray matter (Joosten et

  2. Gray matter deficits and altered resting-state connectivity in the superior temporal gyrus among individuals with problematic hypersexual behavior.

    Science.gov (United States)

    Seok, Ji-Woo; Sohn, Jin-Hun

    2018-04-01

    Neuroimaging studies on the characteristics of hypersexual disorder have been accumulating, yet alternations in brain structures and functional connectivity in individuals with problematic hypersexual behavior (PHB) has only recently been studied. This study aimed to investigate gray matter deficits and resting-state abnormalities in individuals with PHB using voxel-based morphometry and resting-state connectivity analysis. Seventeen individuals with PHB and 19 age-matched healthy controls participated in this study. Gray matter volume of the brain and resting-state connectivity were measured using 3T magnetic resonance imaging. Compared to healthy subjects, individuals with PHB had significant reductions in gray matter volume in the left superior temporal gyrus (STG) and right middle temporal gyrus. Individuals with PHB also exhibited a decrease in resting-state functional connectivity between the left STG and left precuneus and between the left STG and right caudate. The gray matter volume of the left STG and its resting-state functional connectivity with the right caudate both showed significant negative correlations with the severity of PHB. The findings suggest that structural deficits and resting-state functional impairments in the left STG might be linked to PHB and provide new insights into the underlying neural mechanisms of PHB. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The Association of Type 2 Diabetes Mellitus with Cerebral Gray Matter Volume Is Independent of Retinal Vascular Architecture and Retinopathy.

    Science.gov (United States)

    Moran, C; Tapp, R J; Hughes, A D; Magnussen, C G; Blizzard, L; Phan, T G; Beare, R; Witt, N; Venn, A; Münch, G; Amaratunge, B C; Srikanth, V

    2016-01-01

    It is uncertain whether small vessel disease underlies the relationship between Type 2 Diabetes Mellitus (T2DM) and brain atrophy. We aimed to study whether retinal vascular architecture, as a proxy for cerebral small vessel disease, may modify or mediate the associations of T2DM with brain volumes. In this cross-sectional study using Magnetic Resonance Imaging (MRI) scans and retinal photographs in 451 people with and without T2DM, we measured brain volumes, geometric measures of retinal vascular architecture, clinical retinopathy, and MRI cerebrovascular lesions. There were 270 people with (mean age 67.3 years) and 181 without T2DM (mean age 72.9 years). T2DM was associated with lower gray matter volume (p = 0.008). T2DM was associated with greater arteriolar diameter (p = 0.03) and optimality ratio (p = 0.04), but these associations were attenuated by adjustments for age and sex. Only optimality ratio was associated with lower gray matter volume (p = 0.03). The inclusion of retinal measures in regression models did not attenuate the association of T2DM with gray matter volume. The association of T2DM with lower gray matter volume was independent of retinal vascular architecture and clinical retinopathy. Retinal vascular measures or retinopathy may not be sufficiently sensitive to confirm a microvascular basis for T2DM-related brain atrophy.

  4. Higher homocysteine associated with thinner cortical gray matter in 803 participants from the Alzheimer's Disease Neuroimaging Initiative.

    Science.gov (United States)

    Madsen, Sarah K; Rajagopalan, Priya; Joshi, Shantanu H; Toga, Arthur W; Thompson, Paul M

    2015-01-01

    A significant portion of our risk for dementia in old age is associated with lifestyle factors (diet, exercise, and cardiovascular health) that are modifiable, at least in principle. One such risk factor, high-homocysteine levels in the blood, is known to increase risk for Alzheimer's disease and vascular disorders. Here, we set out to understand how homocysteine levels relate to 3D surface-based maps of cortical gray matter distribution (thickness, volume, and surface area) computed from brain magnetic resonance imaging in 803 elderly subjects from the Alzheimer's Disease Neuroimaging Initiative data set. Individuals with higher plasma levels of homocysteine had lower gray matter thickness in bilateral frontal, parietal, occipital, and right temporal regions and lower gray matter volumes in left frontal, parietal, temporal, and occipital regions, after controlling for diagnosis, age, and sex and after correcting for multiple comparisons. No significant within-group associations were found in cognitively healthy people, patients with mild cognitive impairment, or patients with Alzheimer's disease. These regional differences in gray matter structure may be useful biomarkers to assess the effectiveness of interventions, such as vitamin B supplements, that aim to prevent homocysteine-related brain atrophy by normalizing homocysteine levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Development of cerebral gray and white matter injury and cerebral inflammation over time after inflammatory perinatal asphyxia

    NARCIS (Netherlands)

    Bonestroo, Hilde J C; Heijnen, Cobi J.; Groenendaal, Floris|info:eu-repo/dai/nl/073282596; Van Bel, Frank|info:eu-repo/dai/nl/072811455; Nijboer, Cora H.|info:eu-repo/dai/nl/311481000

    2015-01-01

    Antenatal inflammation is associated with increased severity of hypoxic-ischemic (HI) encephalopathy and adverse outcome in human neonates and experimental rodents. We investigated the effect of lipopolysaccharide (LPS) on the timing of HI-induced cerebral tissue loss and gray matter injury, white

  6. Ascl1 controls the number and distribution of astrocytes and oligodendrocytes in the gray matter and white matter of the spinal cord

    Science.gov (United States)

    Vue, Tou Yia; Kim, Euiseok J.; Parras, Carlos M.; Guillemot, Francois; Johnson, Jane E.

    2014-01-01

    Glia constitute the majority of cells in the mammalian central nervous system and are crucial for neurological function. However, there is an incomplete understanding of the molecular control of glial cell development. We find that the transcription factor Ascl1 (Mash1), which is best known for its role in neurogenesis, also functions in both astrocyte and oligodendrocyte lineages arising in the mouse spinal cord at late embryonic stages. Clonal fate mapping in vivo reveals heterogeneity in Ascl1-expressing glial progenitors and shows that Ascl1 defines cells that are restricted to either gray matter (GM) or white matter (WM) as astrocytes or oligodendrocytes. Conditional deletion of Ascl1 post-neurogenesis shows that Ascl1 is required during oligodendrogenesis for generating the correct numbers of WM but not GM oligodendrocyte precursor cells, whereas during astrocytogenesis Ascl1 functions in balancing the number of dorsal GM protoplasmic astrocytes with dorsal WM fibrous astrocytes. Thus, in addition to its function in neurogenesis, Ascl1 marks glial progenitors and controls the number and distribution of astrocytes and oligodendrocytes in the GM and WM of the spinal cord. PMID:25249462

  7. Early Childhood Depression and Alterations in the Trajectory of Gray Matter Maturation in Middle Childhood and Early Adolescence.

    Science.gov (United States)

    Luby, Joan L; Belden, Andy C; Jackson, Joshua J; Lessov-Schlaggar, Christina N; Harms, Michael P; Tillman, Rebecca; Botteron, Kelly; Whalen, Diana; Barch, Deanna M

    2016-01-01

    The trajectory of cortical gray matter development in childhood has been characterized by early neurogenesis and volume increase, peaking at puberty followed by selective elimination and myelination, resulting in volume loss and thinning. This inverted U-shaped trajectory, as well as cortical thickness, has been associated with cognitive and emotional function. Synaptic pruning-based volume decline has been related to experience-dependent plasticity in animals. To date, there have been no data to inform whether and how childhood depression might be associated with this trajectory. To examine the effects of early childhood depression, from the preschool age to the school age period, on cortical gray matter development measured across 3 waves of neuroimaging from late school age to early adolescence. Data were collected in an academic research setting from September 22, 2003, to December 13, 2014, on 193 children aged 3 to 6 years from the St Louis, Missouri, metropolitan area who were observed for up to 11 years in a longitudinal behavioral and neuroimaging study of childhood depression. Multilevel modeling was applied to explore the association between the number of childhood depression symptoms and prior diagnosis of major depressive disorder and the trajectory of gray matter change across 3 scan waves. Data analysis was conducted from October 29, 2014, to September 28, 2015. Volume, thickness, and surface area of cortical gray matter measured using structural magnetic resonance imaging at 3 scan waves. Of the 193 children, 90 had a diagnosis of major depressive disorder; 116 children had 3 full waves of neuroimaging scans. Findings demonstrated marked alterations in cortical gray matter volume loss (slope estimate, -0.93 cm³; 95% CI, -1.75 to -0.10 cm³ per scan wave) and thinning (slope estimate, -0.0044 mm; 95% CI, -0.0077 to -0.0012 mm per scan wave) associated with experiencing an episode of major depressive disorder before the first magnetic resonance

  8. Spectral Exploration of Calcium Accumulation in Organic Matter in Gray Desert Soil from Northwest China.

    Science.gov (United States)

    Wang, Ping; Ma, Yucui; Wang, Xihe; Jiang, Hong; Liu, Hua; Ran, Wei; Shen, Qirong

    2016-01-01

    Little attention has been paid to the accumulation of soil organic matter (SOM) in the fringes of the mid-latitude desert. In this paper, soil samples from a long-term field experiment conducted from 1990 to 2013 at a research station in Urumqi, China by different fertilizer treatments, were used to determine soil properties and soil dissolved organic matter (DOM) by chemical analysis, fluorescence excitation emission matrix (EEM) spectroscopy, and high resolution-transmission electron microscopy (HR-TEM). The binding features of DOM under the addition of Ca(2+) were analyzed using a two-dimensional (2D) Fourier transform infrared (FTIR) spectrometer further to explore the response of the DOM to increasing concentrations of Ca(2+). Long-term application of chemical fertilizers and goat manure increased soil organic carbon (SOC) by 1.34- and 1.86-fold, respectively, relative to the non-fertilized control (8.95 g.kg(-1)). Compared with the control, application of chemical fertilizers and manure significantly increased the concentrations of Ca, Mg, Si, humic and fulvic acid-like substances in DOM but decreased the amounts of trivalent metals (Al and Fe) and protein-like substances. Although crystalline Al/Fe nanoparticles and amorphous or short-range-order Si/Al nanoparticles existed in all DOM samples, crystalline Ca/Si nanoparticles were predominant in the samples treated with goat manure. Although organic matter and Si-O-containing nanoparticles were involved in the binding of Ca(2+) to DOM, application of chemical fertilizers weakened Ca(2+) association with components of the amide II group (1510 cm(-1)) and Si-O linkage (1080 cm(-1)), whereas application of goat manure enhanced the affinity of Ca(2+) for Si-O linkage. Our results suggested that the enrichment of Ca in gray desert soil possibly helps accumulate SOM by forming crystalline Ca/Si nanoparticles in addition to Ca(2+) and organic matter complexes.

  9. Voxel-based morphometry (VBM) based assessment of gray matter loss in medial temporal lobe epilepsy; comparison with FDG PET

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hye Jin; Lee, Ho Young; Lee, Jae Sung; Kang, Eun Joo; Lee, Sang Gun; Chang, Kee Hyun; Lee, Dong Soo [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2004-02-01

    The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron emission tomography (FDG PET). MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was performed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones.

  10. Voxel-based morphometry (VBM) based assessment of gray matter loss in medial temporal lobe epilepsy; comparison with FDG PET

    International Nuclear Information System (INIS)

    Kang, Hye Jin; Lee, Ho Young; Lee, Jae Sung; Kang, Eun Joo; Lee, Sang Gun; Chang, Kee Hyun; Lee, Dong Soo

    2004-01-01

    The aims of this study were to find brain regions in which gray matter volume was reduced and to show the capability of voxel-based morphometry (VBM) analysis for lateralizing epileptogenic zones in medial temporal lobe epilepsy (mTLE). The findings were compared with fluorodeoxyglucose positron emission tomography (FDG PET). MR T1-weighted images of 12 left mTLE and 11 right mTLE patients were compared with those of 37 normal controls. Images were transformed to standard MNI space and averaged in order to create study-specific brain template. Each image was normalized to this local template and brain tissues were segmented. Modulation VBM analysis was performed in order to observe gray matter volume change. Gray matter was smoothed with a Gaussian kernel. After these preprocessing, statistical analysis was performed using statistical parametric mapping software (SPM99). FDG PET images were compared with those of 22 normal controls using SPM. Gray matter volume was significantly reduced in the left amygdala and hippocampus in left mTLE. In addition, volume of cerebellum, anterior cingulate, and fusiform gyrus in both sides and left insula was reduced. In right mTLE, volume was reduced significantly in right hippocampus. In contrast, FDG uptake was decreased in broad areas of left or right temporal lobes in left TLE and right TLE, respectively. Gray matter loss was found in the ipsilateral hippocampus by modulation VBM analysis in medial temporal lobe epilepsy. This VBM analysis might be useful in lateralizing the epileptogenic zones in medial temporal lobe epilepsy, while SPM analysis of FDG PET disclosed hypometabolic epileptogenic zones

  11. Multilevel Thresholding Method Based on Electromagnetism for Accurate Brain MRI Segmentation to Detect White Matter, Gray Matter, and CSF

    Directory of Open Access Journals (Sweden)

    G. Sandhya

    2017-01-01

    Full Text Available This work explains an advanced and accurate brain MRI segmentation method. MR brain image segmentation is to know the anatomical structure, to identify the abnormalities, and to detect various tissues which help in treatment planning prior to radiation therapy. This proposed technique is a Multilevel Thresholding (MT method based on the phenomenon of Electromagnetism and it segments the image into three tissues such as White Matter (WM, Gray Matter (GM, and CSF. The approach incorporates skull stripping and filtering using anisotropic diffusion filter in the preprocessing stage. This thresholding method uses the force of attraction-repulsion between the charged particles to increase the population. It is the combination of Electromagnetism-Like optimization algorithm with the Otsu and Kapur objective functions. The results obtained by using the proposed method are compared with the ground-truth images and have given best values for the measures sensitivity, specificity, and segmentation accuracy. The results using 10 MR brain images proved that the proposed method has accurately segmented the three brain tissues compared to the existing segmentation methods such as K-means, fuzzy C-means, OTSU MT, Particle Swarm Optimization (PSO, Bacterial Foraging Algorithm (BFA, Genetic Algorithm (GA, and Fuzzy Local Gaussian Mixture Model (FLGMM.

  12. Chronic pelvic pain syndrome in men is associated with reduction of relative gray matter volume in the anterior cingulate cortex compared to healthy controls.

    Science.gov (United States)

    Mordasini, Livio; Weisstanner, Christian; Rummel, Christian; Thalmann, George N; Verma, Rajeev K; Wiest, Roland; Kessler, Thomas M

    2012-12-01

    Although chronic pelvic pain syndrome impairs the life of millions of people worldwide, the exact pathomechanisms involved remain to be elucidated. As with other chronic pain syndromes, the central nervous system may have an important role in chronic pelvic pain syndrome. Thus, we assessed brain alterations associated with abnormal pain processing in patients with chronic pelvic pain syndrome. Using brain morphology assessment applying structural magnetic resonance imaging, we prospectively investigated a consecutive series of 20 men with refractory chronic pelvic pain syndrome, and compared these patients to 20 gender and age matched healthy controls. Between group differences in relative gray matter volume and the association with bother of chronic pelvic pain syndrome were assessed using whole brain covariate analysis. Patients with chronic pelvic pain syndrome had a mean (± SD) age of 40 (± 14) years, a mean NIH-CPSI (National Institutes of Health Chronic Prostatitis Symptom Index) total score of 28 (± 6) and a mean pain subscale of 14 (± 3). In patients with chronic pelvic pain syndrome compared to healthy controls there was a significant reduction in relative gray matter volume in the anterior cingulate cortex of the dominant hemisphere. This finding correlated with the NIH-CPSI total score (r = 0.57) and pain subscale (r = 0.51). Reduction in relative gray matter volume in the anterior cingulate cortex and correlation with bother of chronic pelvic pain syndrome suggest an essential role for the anterior cingulate cortex in chronic pelvic pain syndrome. Since this area is a core structure of emotional pain processing, central pathomechanisms of chronic pelvic pain syndrome may be considered a promising therapeutic target and may explain the often unsatisfactory results of treatments focusing on peripheral dysfunction. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  13. Gray matter structural networks are associated with cardiovascular risk factors in healthy older adults.

    Science.gov (United States)

    Kharabian Masouleh, Shahrzad; Beyer, Frauke; Lampe, Leonie; Loeffler, Markus; Luck, Tobias; Riedel-Heller, Steffi G; Schroeter, Matthias L; Stumvoll, Michael; Villringer, Arno; Witte, A Veronica

    2018-02-01

    While recent 'big data' analyses discovered structural brain networks that alter with age and relate to cognitive decline, identifying modifiable factors that prevent these changes remains a major challenge. We therefore aimed to determine the effects of common cardiovascular risk factors on vulnerable gray matter (GM) networks in a large and well-characterized population-based cohort. In 616 healthy elderly (258 women, 60-80 years) of the LIFE-Adult-Study, we assessed the effects of obesity, smoking, blood pressure, markers of glucose and lipid metabolism as well as physical activity on major GM-networks derived using linked independent component analysis. Age, sex, hypertension, diabetes, white matter hyperintensities, education and depression were considered as confounders. Results showed that smoking, higher blood pressure, and higher glycated hemoglobin (HbA1c) were independently associated with lower GM volume and thickness in GM-networks that covered most areas of the neocortex. Higher waist-to-hip ratio was independently associated with lower GM volume in a network of multimodal regions that correlated negatively with age and memory performance. In this large cross-sectional study, we found selective negative associations of smoking, higher blood pressure, higher glucose, and visceral obesity with structural covariance networks, suggesting that reducing these factors could help to delay late-life trajectories of GM aging.

  14. Contribution of Gray and White Matter Abnormalities to Cognitive Impairment in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Xiaofei Zhang

    2016-12-01

    Full Text Available Patients with multiple sclerosis (MS commonly exhibit cognitive impairments (CI. However, the neural mechanisms underlying CI remain unclear. The current study applied diffusion tensor imaging (DTI and voxel-based morphometric (VBM magnetic resonance imaging (MRI techniques to evaluate differences in white matter (WM integrity and gray matter (GM volume between MS patients with CI and MS patients with cognitive preservation (CP. Neuropsychological assessment and MRI were obtained from 39 relapsing-remitting MS (RRMS patients and 29 healthy controls (HCs. Patients were classified as CI or CP according to cognitive ability, and demographic characteristics and MRI images were compared. Compared with HCs, MS patients exhibited widespread damage in WM integrity, and GM loss in several regions. Compared with CP patients, CI patients exhibited more extensive WM impairments, particularly in the corpus callosum, cerebellar peduncle, corona radiata, optic radiation, superior longitudinal fasciculus, anterior limb of the internal capsule, and cingulate, as well as decreased GM volume in the bilateral caudate, left insula and right temporal lobe. MS patients with CI exhibited more significant structural abnormalities than those with CP. Widespread impairments of WM integrity and selective GM atrophy both appear to be associated with impaired cognition in RRMS.

  15. A reliable spatially normalized template of the human spinal cord--Applications to automated white matter/gray matter segmentation and tensor-based morphometry (TBM) mapping of gray matter alterations occurring with age.

    Science.gov (United States)

    Taso, Manuel; Le Troter, Arnaud; Sdika, Michaël; Cohen-Adad, Julien; Arnoux, Pierre-Jean; Guye, Maxime; Ranjeva, Jean-Philippe; Callot, Virginie

    2015-08-15

    Recently, a T2*-weighted template and probabilistic atlas of the white and gray matter (WM, GM) of the spinal cord (SC) have been reported. Such template can be used as tissue-priors for automated WM/GM segmentation but can also provide a common reference and normalized space for group studies. Here, a new template has been created (AMU40), and accuracy of automatic template-based WM/GM segmentation was quantified. The feasibility of tensor-based morphometry (TBM) for studying voxel-wise morphological differences of SC between young and elderly healthy volunteers was also investigated. Sixty-five healthy subjects were divided into young (n=40, age50years old, mean age 57±5years old) groups and scanned at 3T using an axial high-resolution T2*-weighted sequence. Inhomogeneity correction and affine intensity normalization of the SC and cerebrospinal fluid (CSF) signal intensities across slices were performed prior to both construction of the AMU40 template and WM/GM template-based segmentation. The segmentation was achieved using non-linear spatial normalization of T2*-w MR images to the AMU40 template. Validation of WM/GM segmentations was performed with a leave-one-out procedure by calculating DICE similarity coefficients between manual and automated WM/GM masks. SC morphological differences between young and elderly healthy volunteers were assessed using the same non-linear spatial normalization of the subjects' MRI to a common template, derivation of the Jacobian determinant maps from the warping fields, and a TBM analysis. Results demonstrated robust WM/GM automated segmentation, with mean DICE values greater than 0.8. Concerning the TBM analysis, an anterior GM atrophy was highlighted in elderly volunteers, demonstrating thereby, for the first time, the feasibility of studying local structural alterations in the SC using tensor-based morphometry. This holds great promise for studies of morphological impairment occurring in several central nervous system

  16. The Plasticity of Brain Gray Matter and White Matter following Lower Limb Amputation

    Directory of Open Access Journals (Sweden)

    Guangyao Jiang

    2015-01-01

    Full Text Available Accumulating evidence has indicated that amputation induces functional reorganization in the sensory and motor cortices. However, the extent of structural changes after lower limb amputation in patients without phantom pain remains uncertain. We studied 17 adult patients with right lower limb amputation and 18 healthy control subjects using T1-weighted magnetic resonance imaging and diffusion tensor imaging. Cortical thickness and fractional anisotropy (FA of white matter (WM were investigated. In amputees, a thinning trend was seen in the left premotor cortex (PMC. Smaller clusters were also noted in the visual-to-motor regions. In addition, the amputees also exhibited a decreased FA in the right superior corona radiata and WM regions underlying the right temporal lobe and left PMC. Fiber tractography from these WM regions showed microstructural changes in the commissural fibers connecting the bilateral premotor cortices, compatible with the hypothesis that amputation can lead to a change in interhemispheric interactions. Finally, the lower limb amputees also displayed significant FA reduction in the right inferior frontooccipital fasciculus, which is negatively correlated with the time since amputation. In conclusion, our findings indicate that the amputation of lower limb could induce changes in the cortical representation of the missing limb and the underlying WM connections.

  17. Use of Anisotropy, 3D Segmented Atlas, and Computational Analysis to Identify Gray Matter Subcortical Lesions Common to Concussive Injury from Different Sites on the Cortex.

    Directory of Open Access Journals (Sweden)

    Praveen Kulkarni

    Full Text Available Traumatic brain injury (TBI can occur anywhere along the cortical mantel. While the cortical contusions may be random and disparate in their locations, the clinical outcomes are often similar and difficult to explain. Thus a question that arises is, do concussions at different sites on the cortex affect similar subcortical brain regions? To address this question we used a fluid percussion model to concuss the right caudal or rostral cortices in rats. Five days later, diffusion tensor MRI data were acquired for indices of anisotropy (IA for use in a novel method of analysis to detect changes in gray matter microarchitecture. IA values from over 20,000 voxels were registered into a 3D segmented, annotated rat atlas covering 150 brain areas. Comparisons between left and right hemispheres revealed a small population of subcortical sites with altered IA values. Rostral and caudal concussions were of striking similarity in the impacted subcortical locations, particularly the central nucleus of the amygdala, laterodorsal thalamus, and hippocampal complex. Subsequent immunohistochemical analysis of these sites showed significant neuroinflammation. This study presents three significant findings that advance our understanding and evaluation of TBI: 1 the introduction of a new method to identify highly localized disturbances in discrete gray matter, subcortical brain nuclei without postmortem histology, 2 the use of this method to demonstrate that separate injuries to the rostral and caudal cortex produce the same subcortical, disturbances, and 3 the central nucleus of the amygdala, critical in the regulation of emotion, is vulnerable to concussion.

  18. A comparison of gray and white matter density in patients with Parkinson's disease dementia and dementia with Lewy bodies using voxel-based morphometry.

    Science.gov (United States)

    Lee, Ji E; Park, Bosuk; Song, Sook K; Sohn, Young H; Park, Hae-Jeong; Lee, Phil Hyu

    2010-01-15

    Despite clinical and neuropsychological similarities between Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB), recent studies have demonstrated that structural and pathological changes are more severe in DLB than in PDD. We used voxel-based morphometry using a 3-T MRI scanner to compare gray and white matter densities in 20 patients with probable PDD and 18 patients with probable DLB, who had similar overall severity of dementia and similar demographic characteristics. The gray matter density was significantly decreased in the left occipital, parietal, and striatal areas in patients with DLB compared with patients with PDD. The white matter density was significantly decreased in bilateral occipital and left occipito-parietal areas in patients with DLB compared with those with PDD. The degree of white and gray matter atrophy was similar in patients with DLB; in contrast, there was markedly less atrophy in the white matter than in the gray matter in patients with PDD. On analyzing the change of WM density relative to that of GM density in patients with DLB compared to those with PDD, the area of WM atrophy in the occipital areas was more extensive than that of GM atrophy. Our data demonstrate that atrophy of both gray and white matter was more severe in patients with DLB and that white matter atrophy relative to gray matter atrophy was less severe in patients with PDD. These data may reflect a difference in the underlying nature of PDD and DLB.

  19. Reduced Prefrontal Cortical Gray Matter Volume in Young Adults Exposed to Harsh Corporal Punishment

    Science.gov (United States)

    Tomoda, Akemi; Suzuki, Hanako; Rabi, Keren; Sheu, Yi-Shin; Polcari, Ann; Teicher, Martin H.

    2010-01-01

    Objective Harsh corporal punishment (HCP) during childhood is a chronic, developmental stressor associated with depression, aggression and addictive behaviors. Exposure to traumatic stressors, such as sexual abuse, is associated with alteration in brain structure, but nothing is known about the potential neurobiological consequences of HCP. The aim of this study was to investigate whether HCP was associated with discernible alterations in gray matter volume (GMV) using voxel-based morphometry (VBM). Methods 1,455 young adults (18–25 years) were screened to identify 23 with exposure to HCP (minimum 3 years duration, 12 episodes per year, frequently involving objects) and 22 healthy controls. High-resolution T1-weighted MRI datasets were obtained using Siemens 3T trio scanner. Results GMV was reduced by 19.1% in the right medial frontal gyrus (medial prefrontal cortex; MPFC, BA10) (P = 0.037, corrected cluster level), by 14.5% in the left medial frontal gyrus (dorsolateral prefrontal cortex; DLPFC, BA 9) (P = 0.015, uncorrected cluster level) and by 16.9% in the right anterior cingulate gyrus (BA 24) (P < 0.001, uncorrected cluster level) of HCP subjects. There were significant correlations between GMV in these identified regions and performance IQ on the WAIS-III. Conclusions Exposing children to harsh HCP may have detrimental effects on trajectories of brain development. However, it is also conceivable that differences in prefrontal cortical development may increase risk of exposure to HCP. PMID:19285558

  20. Effects of SYN1Q555X mutation on cortical gray matter microstructure.

    Science.gov (United States)

    Cabana, Jean-François; Gilbert, Guillaume; Létourneau-Guillon, Laurent; Safi, Dima; Rouleau, Isabelle; Cossette, Patrick; Nguyen, Dang Khoa

    2018-04-19

    A new Q555X mutation on the SYN1 gene was recently found in several members of a family segregating dyslexia, epilepsy, and autism spectrum disorder. To describe the effects of this mutation on cortical gray matter microstructure, we performed a surface-based group study using novel diffusion and quantitative multiparametric imaging on 13 SYN1 Q555X mutation carriers and 13 age- and sex-matched controls. Specifically, diffusion kurtosis imaging (DKI) and neurite orientation and dispersion and density imaging (NODDI) were used to analyze multi-shell diffusion data and obtain parametric maps sensitive to tissue structure, while quantitative metrics sensitive to tissue composition (T1, T2* and relative proton density [PD]) were obtained from a multi-echo variable flip angle FLASH acquisition. Results showed significant microstructural alterations in several regions usually involved in oral and written language as well as dyslexia. The most significant changes in these regions were lowered mean diffusivity and increased fractional anisotropy. This study is, to our knowledge, the first to successfully use diffusion imaging and multiparametric mapping to detect cortical anomalies in a group of subjects with a well-defined genotype linked to language impairments, epilepsy and autism spectrum disorder (ASD). © 2018 Wiley Periodicals, Inc.

  1. Relationship between Brain Age-Related Reduction in Gray Matter and Educational Attainment.

    Science.gov (United States)

    Rzezak, Patricia; Squarzoni, Paula; Duran, Fabio L; de Toledo Ferraz Alves, Tania; Tamashiro-Duran, Jaqueline; Bottino, Cassio M; Ribeiz, Salma; Lotufo, Paulo A; Menezes, Paulo R; Scazufca, Marcia; Busatto, Geraldo F

    2015-01-01

    Inter-subject variability in age-related brain changes may relate to educational attainment, as suggested by cognitive reserve theories. This voxel-based morphometry study investigated the impact of very low educational level on the relationship between regional gray matter (rGM) volumes and age in healthy elders. Magnetic resonance imaging data were acquired in elders with low educational attainment (less than 4 years) (n = 122) and high educational level (n = 66), pulling together individuals examined using either of three MRI scanners/acquisition protocols. Voxelwise group comparisons showed no rGM differences (peducation groups, there was one cluster of greater rGM loss with aging in low versus high education elders in the left anterior cingulate cortex (peducation might exert subtle protective effects against age-related brain changes in healthy subjects. The anterior cingulate cortex, critical to inhibitory control processes, may be particularly sensitive to such effects, possibly given its involvement in cognitive stimulating activities at school or later throughout life.

  2. Gray matter volume changes in chronic subcortical stroke: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Qingqing Diao

    2017-01-01

    Full Text Available This study aimed to investigate the effects of lesion side and degree of motor recovery on gray matter volume (GMV difference relative to healthy controls in right-handed subcortical stroke. Structural MRI data were collected in 97 patients with chronic subcortical ischemic stroke and 79 healthy controls. Voxel-wise GMV analysis was used to investigate the effects of lesion side and degree of motor recovery on GMV difference in right-handed chronic subcortical stroke patients. Compared with healthy controls, right-lesion patients demonstrated GMV increase (P < 0.05, voxel-wise false discovery rate correction in the bilateral paracentral lobule (PCL and supplementary motor area (SMA and the right middle occipital gyrus (MOG; while left-lesion patients did not exhibit GMV difference under the same threshold. Patients with complete and partial motor recovery showed similar degree of GMV increase in right-lesion patients. However, the motor recovery was correlated with the GMV increase in the bilateral SMA in right-lesion patients. These findings suggest that there exists a lesion-side effect on GMV difference relative to healthy controls in right-handed patients with chronic subcortical stroke. The GMV increase in the SMA may facilitate motor recovery in subcortical stroke patients.

  3. Subjectivity of the Anomalous Sense of Self Is Represented in Gray Matter Volume in the Brain

    Directory of Open Access Journals (Sweden)

    Noriaki Kanayama

    2017-05-01

    Full Text Available The self includes complicated and heterogeneous functions. Researchers have divided the self into three distinct functions called “agency,” “ownership,” and “narrative self”. These correspond to psychiatric symptoms, behavioral characteristics and neural responses, but their relationship with brain structure is unclear. This study examined the relationship between the subjectivity of self-related malfunctions and brain structure in terms of gray matter (GM volume in 96 healthy people. They completed a recently developed self-reported questionnaire called the Embodied Sense of Self Scale (ESSS that measures self-related malfunctions. The ESSS has three subscales reflecting the three distinct functions of the self. We also determined the participants’ brain structures using magnetic resonance imaging (MRI and voxel-based morphometry (VBM. Multiple regression analysis revealed a significant negative correlation between ownership malfunction and the insular cortex GM volume. A relationship with brain structure could thus only be confirmed for the ESSS “ownership” subscale. This finding suggests that distinct brain structures feel ownership and that the ESSS could partly screen for distinct brain structures.

  4. Executive dysfunction and gray matter atrophy in amnestic mild cognitive impairment.

    Science.gov (United States)

    Zheng, Dongming; Sun, Hongzan; Dong, Xiaoyu; Liu, Baiwei; Xu, Yongchuan; Chen, Sipan; Song, Lichun; Zhang, Hong; Wang, Xiaoming

    2014-03-01

    Recent studies have shown that impairment in executive function (EF) is common in patients with amnestic mild cognitive impairment (aMCI). However, the neuroanatomic basis of executive impairment in patients with aMCI remains unclear. In this study, multiple regression voxel-based morphometry analyses were used to examine the relationship between regional gray matter volumes and EF performance in 50 patients with aMCI and 48 healthy age-matched controls. The core EF components (response inhibition, working memory and task switching, based on the EF model of Miyake et al) were accessed with computerized tasks. Atrophic brain areas related to decreases in the three EF components in patients with aMCI were located in the frontal and temporal cortices. Within the frontal cortex, the brain region related to response inhibition was identified in the right inferior frontal gyrus. Brain regions related to working memory were located in the left anterior cingulate gyrus, left premotor cortex, and right inferior frontal gyrus, and brain regions related to task shifting were distributed in the bilateral frontal cortex. Atrophy in the right inferior frontal gyrus was most closely associated with a decrease in all three EF components in patients with aMCI. Our data, from the perspective of brain morphology, contribute to a better understanding of the role of these brain areas in the neural network of EF. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Sex differences in the association between gray matter volume and verbal creativity.

    Science.gov (United States)

    Shi, Baoguo; Xu, Li; Chen, Qunlin; Qiu, Jiang

    2017-08-02

    The explanation for why significant sex differences are found in creativity has become an increasingly important topic. The current study applied a cognitive neuroscience perspective and voxel-based morphometry to investigate the sex differences for the association between verbal creativity and gray matter volume (GMV) in a large sample of healthy adults from the Chinese Mainland (163 men and 193 women). Furthermore, we sought to determine which brain regions are responsible for these differences. Our behavioral results showed a significant sex difference. Specifically, women scored higher than men on originality. The voxel-based morphometry results indicated that the relationship between originality and GMV differed between men and women in the left temporo-occipital junction. Higher originality scores in women were associated with more GMV. In contrast, higher originality scores in men were related to less GMV. These findings suggest the left temporo-occipital junction GMV plays a unique role in the sex differences in verbal creativity because women usually surpass men in semantic processing, which is the major function of the left temporal region.

  6. Cognitive reserve moderates the impact of subcortical gray matter atrophy on neuropsychological status in multiple sclerosis.

    Science.gov (United States)

    Modica, Claire M; Bergsland, Niels; Dwyer, Michael G; Ramasamy, Deepa P; Carl, Ellen; Zivadinov, Robert; Benedict, Ralph Hb

    2016-01-01

    Cognitive decline is characterized in multiple sclerosis (MS), but the rate and severity vary. The reserve hypothesis proposes that baseline neurological differences impact cognitive outcome in neurodegenerative disease. To elucidate how brain reserve and cognitive reserve influence subcortical gray matter (SCGM) atrophy and cognitive decline in MS over 3 years. Seventy-one MS patients and 23 normal controls underwent magnetic resonance imaging and cognitive assessment at baseline and 3-year follow-up. The influence of reserve on cognitive processing speed (CPS) and memory was examined. SCGM volume and cognitive scores were lower in MS than normal controls (P⩽0.001). Accounting for baseline, comparison of follow-up means yielded a difference between groups in SCGM volume (Pcognition (NS). Cognitive reserve (P=0.005), but not brain reserve, contributed to CPS, with only low cognitive reserve MS subjects showing decline in CPS (P=0.029). SCGM change predicted CPS outcome in MS with low cognitive reserve (P=0.002) but not high cognitive reserve. There were no effects in the domain of memory. SCGM atrophy occurs in normal controls, but significantly more so in MS. While CPS did not change in normal controls, low cognitive reserve was associated with CPS decline in MS. High cognitive reserve protect MS patients from cognitive decline related to SCGM atrophy. © The Author(s), 2015.

  7. Relationship between Brain Age-Related Reduction in Gray Matter and Educational Attainment.

    Directory of Open Access Journals (Sweden)

    Patricia Rzezak

    Full Text Available Inter-subject variability in age-related brain changes may relate to educational attainment, as suggested by cognitive reserve theories. This voxel-based morphometry study investigated the impact of very low educational level on the relationship between regional gray matter (rGM volumes and age in healthy elders. Magnetic resonance imaging data were acquired in elders with low educational attainment (less than 4 years (n = 122 and high educational level (n = 66, pulling together individuals examined using either of three MRI scanners/acquisition protocols. Voxelwise group comparisons showed no rGM differences (p<0.05, family-wise error corrected for multiple comparisons. When within-group voxelwise patterns of linear correlation were compared between high and low education groups, there was one cluster of greater rGM loss with aging in low versus high education elders in the left anterior cingulate cortex (p<0.05, FWE-corrected, as well as a trend in the left dorsomedial prefrontal cortex (p<0.10. These results provide preliminary indication that education might exert subtle protective effects against age-related brain changes in healthy subjects. The anterior cingulate cortex, critical to inhibitory control processes, may be particularly sensitive to such effects, possibly given its involvement in cognitive stimulating activities at school or later throughout life.

  8. Reduced prefrontal cortical gray matter volume in young adults exposed to harsh corporal punishment.

    Science.gov (United States)

    Tomoda, Akemi; Suzuki, Hanako; Rabi, Keren; Sheu, Yi-Shin; Polcari, Ann; Teicher, Martin H

    2009-08-01

    Harsh corporal punishment (HCP) during childhood is a chronic, developmental stressor associated with depression, aggression and addictive behaviors. Exposure to traumatic stressors, such as sexual abuse, is associated with alteration in brain structure, but nothing is known about the potential neurobiological consequences of HCP. The aim of this study was to investigate whether HCP was associated with discernible alterations in gray matter volume (GMV) using voxel-based morphometry (VBM). 1455 young adults (18-25 years) were screened to identify 23 with exposure to HCP (minimum 3 years duration, 12 episodes per year, frequently involving objects) and 22 healthy controls. High-resolution T1-weighted MRI datasets were obtained using Siemens 3 T trio scanner. GMV was reduced by 19.1% in the right medial frontal gyrus (medial prefrontal cortex; MPFC, BA10) (P=0.037, corrected cluster level), by 14.5% in the left medial frontal gyrus (dorsolateral prefrontal cortex; DLPFC, BA9) (P=0.015, uncorrected cluster level) and by 16.9% in the right anterior cingulate gyrus (BA24) (P<0.001, uncorrected cluster level) of HCP subjects. There were significant correlations between GMV in these identified regions and performance IQ on the WAIS-III. Exposing children to harsh HCP may have detrimental effects on trajectories of brain development. However, it is also conceivable that differences in prefrontal cortical development may increase risk of exposure to HCP.

  9. Voxelwise meta-analysis of gray matter abnormalities in dementia with Lewy bodies.

    Science.gov (United States)

    Zhong, JianGuo; Pan, PingLei; Dai, ZhenYu; Shi, HaiCun

    2014-10-01

    Increasing neuroimaging studies have revealed brain gray matter (GM) atrophy by voxel-based morphometry (VBM) studies in patients with dementia with Lewy bodies (DLB) relative to healthy controls. However, the spatial localization of GM abnormalities reported in the existing studies is heterogeneous. Here, we aimed to investigate concurrence across VBM studies to help clarify the structural abnormalities underpinning this condition. A systematic search for VBM studies of DLB patients and healthy controls published in PubMed database from January 2000 to March 2014 was conducted. A quantitative meta-analysis of whole-brain VBM studies in DLB patients and healthy controls was performed by means of Anisotropic Effect Size version of Signed Differential Mapping (AES-SDM) software package. Seven studies comprising 218 DLB patients and 219 healthy controls were included in the present study. Compared to healthy subjects, the patients group showed consistent decreased GM in right lateral temporal/insular cortex and left lenticular nucleus/insular cortex. The results remained largely unchanged in the following jackknife sensitivity analyses. Meta-regression analysis indicated an increased probability of finding brain atrophy in left superior temporal gyrus in patients with lower MMSE scores. The present meta-analysis quantitatively demonstrates a characteristic pattern of GM alternations that contributed to the understanding of pathophysiology underlying DLB. Future studies will benefit from employing meta-analytical comparisons to other dementia subtypes with solid evidence to extend these findings. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Anorexia Nervosa during Adolescence Is Associated with Decreased Gray Matter Volume in the Inferior Frontal Gyrus.

    Directory of Open Access Journals (Sweden)

    Takashi X Fujisawa

    Full Text Available Anorexia nervosa (AN is an eating disorder characterized by the relentless pursuit to lose weight, mostly through self-starvation, and a distorted body image. AN tends to begin during adolescence among women. However, the underlying neural mechanisms related to AN remain unclear. Using voxel-based morphometry based on magnetic resonance imaging scans, we investigated whether the presence of AN was associated with discernible changes in brain morphology. Participants were 20 un-medicated, right-handed patients with early-onset AN and 14 healthy control subjects. Group differences in gray matter volume (GMV were assessed using high-resolution, T1-weighted, volumetric magnetic resonance imaging datasets (3T Trio scanner; Siemens AG and analyzed after controlling for age and total GMV, which was decreased in the bilateral inferior frontal gyrus (IFG (left IFG: FWE corrected, p < 0.05; right IFG: uncorrected, p < 0.05 of patients with AN. The GMV in the bilateral IFG correlated significantly with current age (left IFG: r = -.481, p < .05; right IFG: r = -.601, p < .01 and was limited to the AN group. We speculate that decreased IFG volume might lead to deficits in executive functioning or inhibitory control within neural reward systems. Precocious or unbalanced neurological trimming within this particular region might be an important factor for the pathogenesis of AN onset.

  11. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population

    Directory of Open Access Journals (Sweden)

    Shai Porat

    2016-10-01

    Full Text Available Introduction: We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI. Methods: 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clinical and neuropsychological evaluations. An advanced 3D cortical mapping technique was then applied to calculate cortical thickness. Results: Despite having a trend-level significantly thinner cortex, dancers performed better in cognitive tasks involving learning and memory, such as the California Verbal Learning Test-II (CVLT-II short delay free recall (p = 0.004, the CVLT-II long delay free recall (p = 0.003, and the CVLT-II learning over trials 1-5 (p = 0.001. Discussion: Together, these results suggest that dance may result in an enhancement of cognitive reserve in aging, which may help avert or delay MCI.

  12. Dance Experience and Associations with Cortical Gray Matter Thickness in the Aging Population.

    Science.gov (United States)

    Porat, Shai; Goukasian, Naira; Hwang, Kristy S; Zanto, Theodore; Do, Triet; Pierce, Jonathan; Joshi, Shantanu; Woo, Ellen; Apostolova, Liana G

    2016-01-01

    We investigated the effect dance experience may have on cortical gray matter thickness and cognitive performance in elderly participants with and without mild cognitive impairment (MCI). 39 cognitively normal and 48 MCI elderly participants completed a questionnaire regarding their lifetime experience with music, dance, and song. Participants identified themselves as either dancers or nondancers. All participants received structural 1.5-tesla MRI scans and detailed clinical and neuropsychological evaluations. An advanced 3D cortical mapping technique was then applied to calculate cortical thickness. Despite having a trend-level significantly thinner cortex, dancers performed better in cognitive tasks involving learning and memory, such as the California Verbal Learning Test-II (CVLT-II) short delay free recall (p = 0.004), the CVLT-II long delay free recall (p = 0.003), and the CVLT-II learning over trials 1-5 (p = 0.001). Together, these results suggest that dance may result in an enhancement of cognitive reserve in aging, which may help avert or delay MCI.

  13. Effects of cognitive training on gray matter volumes in memory clinic patients with subjective memory impairment.

    Science.gov (United States)

    Engvig, Andreas; Fjell, Anders M; Westlye, Lars T; Skaane, Nina V; Dale, Anders M; Holland, Dominic; Due-Tønnessen, Paulina; Sundseth, Oyvind; Walhovd, Kristine B

    2014-01-01

    Subjective memory impairment (SMI) is a common risk factor for Alzheimer's disease, with few established options for treatment. Here we investigate the effects of two months episodic memory training on regional brain atrophy in 19 memory clinic patients with SMI. We used a sensitive longitudinal magnetic resonance imaging protocol and compared the patients with 42 matched healthy volunteers randomly assigned to a group performing the same training, or a no-training control group. Following intervention, the SMI sample exhibited structural gray matter volume increases in brain regions encompassing the episodic memory network, with cortical volume expansion of comparable extent as healthy training participants. Further, we found significant hippocampal volume increases in the healthy training group but not in the SMI group. Still, individual differences in left hippocampal volume change in the patient group were related to verbal recall improvement following training. The present results reinforce earlier studies indicating intact brain plasticity in aging, and further suggest that training-related brain changes can be evident also in the earliest form of cognitive impairment.

  14. Default-mode network and deep gray-matter analysis in neuromyelitis optica patients.

    Science.gov (United States)

    Rueda-Lopes, Fernanda C; Pessôa, Fernanda M C; Tukamoto, Gustavo; Malfetano, Fabíola Rachid; Scherpenhuijzen, Simone Batista; Alves-Leon, Soniza; Gasparetto, Emerson L

    2018-02-20

    The aim of our study was to detect functional changes in default-mode network of neuromyelitis optica (NMO) patients using resting-state functional magnetic resonance images and the evaluation of subcortical gray-matter structures volumes. NMO patients (n=28) and controls patients (n=19) were enrolled. We used the integrated registration and segmentation tool, part of FMRIB's Software Library (FSL) to segment subcortical structures including the thalamus, caudate nucleus, putamen, hippocampus and amygdalae. Resting-state functional magnetic resonance images were post-processed using the Multivariate Exploratory Linear Optimized Decomposition into Independent Components, also part of FSL. Average Z-values extracted from the default-mode network were compared between patients and controls using t-tests (P values default-mode network of patients compared to controls, notably in the precuneus and right hippocampus (corrected Pdefault-mode network. The hyperactivity of certain default-mode network areas may reflect cortical compensation for subtle structural damage in NMO patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Deep Gray Matter Structures in HIV Infection: A Proton MR Spectroscopic Study

    Science.gov (United States)

    Meyerhoff, Dieter J.; Weiner, Michael W.; Fein, George

    2009-01-01

    PURPOSE To evaluate the effects of human immunodeficiency virus (HIV) infection on proton metabolites in brain regions carrying the heaviest HIV load. METHODS We used two-dimensional proton MR spectroscopy with a preselected volume at the level of the third ventricle to measure N-acetyl-aspartate (NAA) and metabolites containing choline (Cho), and creatine (Cr) in the basal ganglia of eight cognitively impaired subjects who were seropositive for HIV and eight control subjects who were seronegative for HIV. Results are expressed as metabolite ratios. RESULTS In the thalamus and lenticular nuclei, NAA/Cr was not different between the two groups. NAA/Cho was decreased in both the thalamus and lenticular nuclei of the HIV-positive group compared with the HIV-negative group. Cho/Cr tended to be increased in both the thalamus and lenticular nuclei of the HIV-positive group. CONCLUSIONS The findings suggest no NAA differences between groups, consistent with negligible neuron loss in the region of the brain that carries the heaviest HIV load. The trends toward increased Cho/Cr are consistent with histopathologic findings of infiltration of subcortical gray matter structures with foamy macrophages, microglia, and lymphocytes, or possibly with gliosis. PMID:8733976

  16. The alteration of gray matter volume and cognitive control in adolescents with internet gaming disorder

    Directory of Open Access Journals (Sweden)

    Hongmei eWang

    2015-03-01

    Full Text Available Objective: Internet gaming disorder (IGD has been investigated by many behavioral and neuroimaging studies, for it has became one of the main behavior disorders among adolescents. However, few studies focused on the relationship between alteration of gray matter volume (GMV and cognitive control feature in IGD adolescents. Methods: Twenty-eight participants with IAD and twenty-eight healthy age and gender matched controls participated in the study. Brain morphology of adolescents with IGD and healthy controls was investigated using an optimized voxel-based morphometry (VBM technique. Cognitive control performances were measured by Stroop task, and correlation analysis was performed between brain structural change and behavioral performance in IGD group. Results: The results showed that GMV of the bilateral anterior cingulate cortex (ACC, precuneus, supplementary motor area (SMA, superior parietal cortex, left dorsal lateral prefrontal cortex (DLPFC, left insula, and bilateral cerebellum decreased in the IGD participants compared with healthy controls. Moreover, GMV of the ACC was negatively correlated with the incongruent response errors of Stroop task in IGD group. Conclusion: Our results suggest that the alteration of GMV is associated with the performance change of cognitive control in adolescents with IGD, which indicating substantial brain image effects induced by IGD.

  17. Altered gray matter organization in children and adolescents with ADHD: a structural covariance connectome study.

    Science.gov (United States)

    Griffiths, K R; Grieve, S M; Kohn, M R; Clarke, S; Williams, L M; Korgaonkar, M S

    2016-11-08

    Although multiple studies have reported structural deficits in multiple brain regions in attention-deficit hyperactivity disorder (ADHD), we do not yet know if these deficits reflect a more systematic disruption to the anatomical organization of large-scale brain networks. Here we used a graph theoretical approach to quantify anatomical organization in children and adolescents with ADHD. We generated anatomical networks based on covariance of gray matter volumes from 92 regions across the brain in children and adolescents with ADHD (n=34) and age- and sex-matched healthy controls (n=28). Using graph theory, we computed metrics that characterize both the global organization of anatomical networks (interconnectivity (clustering), integration (path length) and balance of global integration and localized segregation (small-worldness)) and their local nodal measures (participation (degree) and interaction (betweenness) within a network). Relative to Controls, ADHD participants exhibited altered global organization reflected in more clustering or network segregation. Locally, nodal degree and betweenness were increased in the subcortical amygdalae in ADHD, but reduced in cortical nodes in the anterior cingulate, posterior cingulate, mid temporal pole and rolandic operculum. In ADHD, anatomical networks were disrupted and reflected an emphasis on subcortical local connections centered around the amygdala, at the expense of cortical organization. Brains of children and adolescents with ADHD may be anatomically configured to respond impulsively to the automatic significance of stimulus input without having the neural organization to regulate and inhibit these responses. These findings provide a novel addition to our current understanding of the ADHD connectome.

  18. Regional gray matter volume mediates the relationship between maternal emotional warmth and gratitude.

    Science.gov (United States)

    Yang, Junyi; Wei, Dongtao; Wang, Kangcheng; Yi, Zili; Qiu, Jiang

    2018-01-31

    Researchers have examined how parenting behavior influences individuals' brain structure and behavioral development, primarily among people who have experienced maltreatment. However, information relating to the anatomical structure associated with the parenting behavior in young healthy individuals who have not experienced maltreatment is scant. Gratitude is an important aspect of human sociality. Both the extent to which parenting behavior influences gratitude and the neural basis of the relationship between parenting behavior and gratitude are unclear. Thus, in the present study, the primary aim was to use voxel-based morphometry (VBM) to investigate the neuroanatomical basis of parenting behavior in young healthy participants. The results showed a significant negative correlation between the maternal emotional warmth and both the dorsal medial prefrontal cortex (dmPFC) and the lateral rostral prefrontal cortex. Then, we used mediation analysis to investigate the neural basis of the relationship between parenting behavior and gratitude. The results revealed that the volume of the lateral rostral prefrontal cortex mediates the relationship between the maternal emotional warmth and gratitude. Together, these findings suggest that the family environment, specifically parenting behavior, might be associated with the gray matter volume of brain structure. Further, the lateral rostral prefrontal cortex might have an important role in the relationship between the maternal emotional warmth and gratitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The correlation between emotional intelligence and gray matter volume in university students.

    Science.gov (United States)

    Tan, Yafei; Zhang, Qinglin; Li, Wenfu; Wei, Dongtao; Qiao, Lei; Qiu, Jiang; Hitchman, Glenn; Liu, Yijun

    2014-11-01

    A number of recent studies have investigated the neurological substrates of emotional intelligence (EI), but none of them have considered the neural correlates of EI that are measured using the Schutte Self-Report Emotional Intelligence Scale (SSREIS). This scale was developed based on the EI model of Salovey and Mayer (1990). In the present study, SSREIS was adopted to estimate EI. Meanwhile, magnetic resonance imaging (MRI) and voxel-based morphometry (VBM) were used to evaluate the gray matter volume (GMV) of 328 university students. Results found positive correlations between Monitor of Emotions and VBM measurements in the insula and orbitofrontal cortex. In addition, Utilization of Emotions was positively correlated with the GMV in the parahippocampal gyrus, but was negatively correlated with the VBM measurements in the fusiform gyrus and middle temporal gyrus. Furthermore, Social Ability had volume correlates in the vermis. These findings indicate that the neural correlates of the EI model, which primarily focuses on the abilities of individuals to appraise and express emotions, can also regulate and utilize emotions to solve problems. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest

    Science.gov (United States)

    Wottschel, Viktor; Cortese, Rosa; Calabrese, Massimiliano; Sahraian, Mohammad Ali; Thompson, Alan J.; Alexander, Daniel C.; Ciccarelli, Olga

    2016-01-01

    Objective: We tested whether brain gray matter (GM) imaging measures can differentiate between multiple sclerosis (MS) and neuromyelitis optica (NMO) using random-forest classification. Methods: Ninety participants (25 patients with MS, 30 patients with NMO, and 35 healthy controls [HCs]) were studied in Tehran, Iran, and 54 (24 patients with MS, 20 patients with NMO, and 10 HCs) in Padua, Italy. Participants underwent brain T1 and T2/fluid-attenuated inversion recovery MRI. Volume, thickness, and surface of 50 cortical GM regions and volumes of the deep GM nuclei were calculated and used to construct 3 random-forest models to classify patients as either NMO or MS, and separate each patient group from HCs. Clinical diagnosis was the gold standard against which the accuracy was calculated. Results: The classifier distinguished patients with MS, who showed greater atrophy especially in deep GM, from those with NMO with an average accuracy of 74% (sensitivity/specificity: 77/72; p < 0.01). When we used thalamic volume (the most discriminating GM measure) together with the white matter lesion volume, the accuracy of the classification of MS vs NMO was 80%. The classifications of MS vs HCs and NMO vs HCs achieved higher accuracies (92% and 88%). Conclusions: GM imaging biomarkers, automatically obtained from clinical scans, can be used to distinguish NMO from MS, even in a 2-center setting, and may facilitate the differential diagnosis in clinical practice. Classification of evidence: This study provides Class II evidence that GM imaging biomarkers can distinguish patients with NMO from those with MS. PMID:27807185

  1. White and Gray Matter Abnormalities After Cranial Radiation in Children and Mice

    Energy Technology Data Exchange (ETDEWEB)

    Nieman, Brian J., E-mail: brian.nieman@utoronto.ca [Department of Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Ontario Institute for Cancer Research, Toronto, Ontario (Canada); Guzman, A. Elizabeth de [Department of Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Gazdzinski, Lisa M. [Department of Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, Ontario (Canada); Lerch, Jason P. [Department of Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario (Canada); Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Chakravarty, M. Mallar [Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal, Quebec (Canada); Departments of Psychiatry and Biomedical Engineering, McGill University, Montreal, Quebec (Canada); Pipitone, Jon [Kimel Family Translational Imaging Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario (Canada); Strother, Douglas [Alberta Children' s Hospital, Calgary, Alberta (Canada); Departments of Oncology and Pediatrics, University of Calgary, Calgary, Alberta (Canada); Fryer, Chris [Division of Oncology/Hematology/BMT British Columbia Children' s Hospital and British Columbia Women' s Hospital and Health Centre, Vancouver, British Columbia (Canada); Department of Pediatrics, University of British Columbia, Vancouver, British Columbia (Canada); Bouffet, Eric [Department of Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, Ontario (Canada); Department of Paediatrics, University of Toronto, Toronto, Ontario (Canada); and others

    2015-11-15

    Purpose: Pediatric patients treated with cranial radiation are at high risk of developing lasting cognitive impairments. We sought to identify anatomical changes in both gray matter (GM) and white matter (WM) in radiation-treated patients and in mice, in which the effect of radiation can be isolated from other factors, the time course of anatomical change can be established, and the effect of treatment age can be more fully characterized. Anatomical results were compared between species. Methods and Materials: Patients were imaged with T{sub 1}-weighted magnetic resonance imaging (MRI) after radiation treatment. Nineteen radiation-treated patients were divided into groups of 7 years of age and younger (7−) and 8 years and older (8+) and were compared to 41 controls. C57BL6 mice were treated with radiation (n=52) or sham treated (n=52) between postnatal days 16 and 36 and then assessed with in vivo and/or ex vivo MRI. In both cases, measurements of WM and GM volume, cortical thickness, area and volume, and hippocampal volume were compared between groups. Results: WM volume was significantly decreased following treatment in 7− and 8+ treatment groups. GM volume was unchanged overall, but cortical thickness was slightly increased in the 7− group. Results in mice mostly mirrored these changes and provided a time course of change, showing early volume loss and normal growth. Hippocampal volume showed a decreasing trend with age in patients, an effect not observed in the mouse hippocampus but present in the olfactory bulb. Conclusions: Changes in mice treated with cranial radiation are similar to those in humans, including significant WM and GM alterations. Because mice did not receive any other treatment, the similarity across species supports the expectation that radiation is causative and suggests mice provide a representative model for studying impaired brain development after cranial radiation and testing novel treatments.

  2. Deep gray matter atrophy in multiple sclerosis: a tensor based morphometry.

    Science.gov (United States)

    Tao, Guozhi; Datta, Sushmita; He, Renjie; Nelson, Flavia; Wolinsky, Jerry S; Narayana, Ponnada A

    2009-07-15

    Tensor based morphometry (TBM) was applied to determine the atrophy of deep gray matter (DGM) structures in 88 relapsing multiple sclerosis (MS) patients. For group analysis of atrophy, an unbiased atlas was constructed from 20 normal brains. The MS brain images were co-registered with the unbiased atlas using a symmetric inverse consistent nonlinear registration. These studies demonstrate significant atrophy of thalamus, caudate nucleus, and putamen even at a modest clinical disability, as assessed by the expanded disability status score (EDSS). A significant correlation between atrophy and EDSS was observed for different DGM structures: (thalamus: r=-0.51, p=3.85 x 10(-7); caudate nucleus: r=-0.43, p=2.35 x 10(-5); putamen: r=-0.36, p=6.12 x 10(-6)). Atrophy of these structures also correlated with 1) T2 hyperintense lesion volumes (thalamus: r=-0.56, p=9.96 x 10(-9); caudate nucleus: r=-0.31, p=3.10 x 10(-3); putamen: r=-0.50, p=6.06 x 10(-7)), 2) T1 hypointense lesion volumes (thalamus: r=-0.61, p=2.29 x 10(-10); caudate nucleus: r=-0.35, p=9.51 x 10(-4); putamen: r=-0.43, p=3.51 x 10(-5)), and 3) normalized CSF volume (thalamus: r=-0.66, p=3.55 x 10(-12); caudate nucleus: r=-0.52, p=2.31 x 10(-7), and putamen: r=-0.66, r=2.13 x 10(-12)). More severe atrophy was observed mainly in thalamus at higher EDSS. These studies appear to suggest a link between the white matter damage and DGM atrophy in MS.

  3. White and Gray Matter Abnormalities After Cranial Radiation in Children and Mice

    International Nuclear Information System (INIS)

    Nieman, Brian J.; Guzman, A. Elizabeth de; Gazdzinski, Lisa M.; Lerch, Jason P.; Chakravarty, M. Mallar; Pipitone, Jon; Strother, Douglas; Fryer, Chris; Bouffet, Eric

    2015-01-01

    Purpose: Pediatric patients treated with cranial radiation are at high risk of developing lasting cognitive impairments. We sought to identify anatomical changes in both gray matter (GM) and white matter (WM) in radiation-treated patients and in mice, in which the effect of radiation can be isolated from other factors, the time course of anatomical change can be established, and the effect of treatment age can be more fully characterized. Anatomical results were compared between species. Methods and Materials: Patients were imaged with T 1 -weighted magnetic resonance imaging (MRI) after radiation treatment. Nineteen radiation-treated patients were divided into groups of 7 years of age and younger (7−) and 8 years and older (8+) and were compared to 41 controls. C57BL6 mice were treated with radiation (n=52) or sham treated (n=52) between postnatal days 16 and 36 and then assessed with in vivo and/or ex vivo MRI. In both cases, measurements of WM and GM volume, cortical thickness, area and volume, and hippocampal volume were compared between groups. Results: WM volume was significantly decreased following treatment in 7− and 8+ treatment groups. GM volume was unchanged overall, but cortical thickness was slightly increased in the 7− group. Results in mice mostly mirrored these changes and provided a time course of change, showing early volume loss and normal growth. Hippocampal volume showed a decreasing trend with age in patients, an effect not observed in the mouse hippocampus but present in the olfactory bulb. Conclusions: Changes in mice treated with cranial radiation are similar to those in humans, including significant WM and GM alterations. Because mice did not receive any other treatment, the similarity across species supports the expectation that radiation is causative and suggests mice provide a representative model for studying impaired brain development after cranial radiation and testing novel treatments.

  4. Metabolic gray matter changes of adolescents with anorexia nervosa in combined MR proton and phosphorus spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Blasel, Stella; Pilatus, Ulrich; Magerkurth, Joerg; Vronski, Dmitri; Mueller, Manuel; Hattingen, Elke [University of Frankfurt, Institute of Neuroradiology, Frankfurt (Germany); Stauffenberg, Maya von [Clementine Children Hospital Frankfurt, Department of Psychosomatic Medicine, Frankfurt (Germany); Woeckel, Lars [Clienia Littenheid AG, Clinic for Psychiatry and Psychotherapy, Littenheid (Switzerland)

    2012-07-15

    There are hints for changes in phospholipid membrane metabolism and structure in the brain of adolescents with anorexia nervosa (AN) using either proton ({sup 1}H) or phosphorus ({sup 31}P) magnetic resonance spectroscopic imaging (MRSI). We aimed to specify these pathological metabolite changes by combining both methods with additional focus on the neuronal metabolites glutamate (Glu) and N-acetyl-l-aspartate (NAA). Twenty-one female patients (mean 14.4 {+-} 1.9 years) and 29 female controls (mean 16 {+-} 1.6 years) underwent {sup 1}H and {sup 31}P MRSI at 3 T applied to the centrum semiovale including the anterior cingulate cortex. We assessed gray matter (GM) and white matter (WM) metabolite concentration changes of the frontal and parietal brain measuring choline(Cho)- and ethanolamine(Eth)-containing compounds, Glutamate (Glu) and glutamine (Gln) and their sum (Glx), myoinositol, NAA, and high-energy phosphates. For {sup 1}H MRSI, a clear discrimination between GM and WM concentrations was possible, showing an increase of Glx (p < 0.001), NAA (frontal p < 0.05), pooled creatine (tCr) (p < 0.001), and choline (tCho) (p < 0.05) in the GM of AN patients. The lipid catabolites glycerophosphocholine (p < 0.07) and glycerophosphoethanolamine (p < 0.03) were increased in the parietal region. Significant changes in GM metabolite concentrations were observed in AN possibly triggered by elevated excitotoxin Glu. Increased tCho may indicate modifications of membrane phospholipids due to increased catabolism in the parietal region. Since no significant changes in phosphorylated choline compounds were found for the frontal region, the tCho increase in this region may hint to fluidity changes. (orig.)

  5. Metabolic gray matter changes of adolescents with anorexia nervosa in combined MR proton and phosphorus spectroscopy

    International Nuclear Information System (INIS)

    Blasel, Stella; Pilatus, Ulrich; Magerkurth, Joerg; Vronski, Dmitri; Mueller, Manuel; Hattingen, Elke; Stauffenberg, Maya von; Woeckel, Lars

    2012-01-01

    There are hints for changes in phospholipid membrane metabolism and structure in the brain of adolescents with anorexia nervosa (AN) using either proton ( 1 H) or phosphorus ( 31 P) magnetic resonance spectroscopic imaging (MRSI). We aimed to specify these pathological metabolite changes by combining both methods with additional focus on the neuronal metabolites glutamate (Glu) and N-acetyl-l-aspartate (NAA). Twenty-one female patients (mean 14.4 ± 1.9 years) and 29 female controls (mean 16 ± 1.6 years) underwent 1 H and 31 P MRSI at 3 T applied to the centrum semiovale including the anterior cingulate cortex. We assessed gray matter (GM) and white matter (WM) metabolite concentration changes of the frontal and parietal brain measuring choline(Cho)- and ethanolamine(Eth)-containing compounds, Glutamate (Glu) and glutamine (Gln) and their sum (Glx), myoinositol, NAA, and high-energy phosphates. For 1 H MRSI, a clear discrimination between GM and WM concentrations was possible, showing an increase of Glx (p < 0.001), NAA (frontal p < 0.05), pooled creatine (tCr) (p < 0.001), and choline (tCho) (p < 0.05) in the GM of AN patients. The lipid catabolites glycerophosphocholine (p < 0.07) and glycerophosphoethanolamine (p < 0.03) were increased in the parietal region. Significant changes in GM metabolite concentrations were observed in AN possibly triggered by elevated excitotoxin Glu. Increased tCho may indicate modifications of membrane phospholipids due to increased catabolism in the parietal region. Since no significant changes in phosphorylated choline compounds were found for the frontal region, the tCho increase in this region may hint to fluidity changes. (orig.)

  6. Gray Matter Atrophy within the Default Mode Network of Fibromyalgia: A Meta-Analysis of Voxel-Based Morphometry Studies

    Directory of Open Access Journals (Sweden)

    Chemin Lin

    2016-01-01

    Full Text Available Over the years, studies have demonstrated morphological changes in the brain of fibromyalgia (FMS. We aimed to conduct a coordinate-based meta-analytic research through systemic review on voxel-based morphometry (VBM imaging results to identify consistent gray matter (GM difference between FMS patients and healthy subjects. We performed a comprehensive literature search in PubMed (January 2000–December 2015 and included six VBM publication on FMS. Stereotactic data were extracted from 180 patients of FMS and 123 healthy controls. By means of activation likelihood estimation (ALE technique, regional GM reduction in left medial prefrontal cortex and right dorsal posterior cingulate cortex was identified. Both regions are within the default mode network. In conclusion, the gray matter deficit is related to the both affective and nonaffective components of pain processing. This result also provided the neuroanatomical correlates for emotional and cognitive symptoms in FMS.

  7. Permutation and parametric tests for effect sizes in voxel-based morphometry of gray matter volume in brain structural MRI.

    Science.gov (United States)

    Dickie, David A; Mikhael, Shadia; Job, Dominic E; Wardlaw, Joanna M; Laidlaw, David H; Bastin, Mark E

    2015-12-01

    Permutation testing has been widely implemented in voxel-based morphometry (VBM) tools. However, this type of non-parametric inference has yet to be thoroughly compared with traditional parametric inference in VBM studies of brain structure. Here we compare both types of inference and investigate what influence the number of permutations in permutation testing has on results in an exemplar study of how gray matter proportion changes with age in a group of working age adults. High resolution T1-weighted volume scans were acquired from 80 healthy adults aged 25-64years. Using a validated VBM procedure and voxel-based permutation testing for Pearson product-moment coefficient, the effect sizes of changes in gray matter proportion with age were assessed using traditional parametric and permutation testing inference with 100, 500, 1000, 5000, 10000 and 20000 permutations. The statistical significance was set at Pparametric inference (N=3221voxels). Permutation testing with 10000 (N=6251voxels) and 20000 (N=6233voxels) permutations produced clusters that were generally consistent with each other. However, with 1000 permutations there were approximately 20% more statistically significant voxels (N=7117voxels) than with ≥10000 permutations. Permutation testing inference may provide a more sensitive method than traditional parametric inference for identifying age-related differences in gray matter proportion. Based on the results reported here, at least 10000 permutations should be used in future univariate VBM studies investigating age related changes in gray matter to avoid potential false findings. Additional studies using permutation testing in large imaging databanks are required to address the impact of model complexity, multivariate analysis, number of observations, sampling bias and data quality on the accuracy with which subtle differences in brain structure associated with normal aging can be identified. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Gray-Matter Volume Estimate Score: A Novel Semi-Automatic Method Measuring Early Ischemic Change on CT

    OpenAIRE

    Song, Dongbeom; Lee, Kijeong; Kim, Eun Hye; Kim, Young Dae; Lee, Hye Sun; Kim, Jinkwon; Song, Tae-Jin; Ahn, Sung Soo; Nam, Hyo Suk; Heo, Ji Hoe

    2015-01-01

    Background and Purpose We developed a novel method named Gray-matter Volume Estimate Score (GRAVES), measuring early ischemic changes on Computed Tomography (CT) semi-automatically by computer software. This study aimed to compare GRAVES and Alberta Stroke Program Early CT Score (ASPECTS) with regards to outcome prediction and inter-rater agreement. Methods This was a retrospective cohort study. Among consecutive patients with ischemic stroke in the anterior circulation who received intra-art...

  9. Larger mid-dorsolateral prefrontal gray matter volume in young binge drinkers revealed by voxel-based morphometry.

    Directory of Open Access Journals (Sweden)

    Sonia Doallo

    Full Text Available Binge drinking or heavy episodic drinking is a high prevalent pattern of alcohol consumption among young people in several countries. Despite increasing evidence that binge drinking is associated with impairments in executive aspects of working memory (i.e. self-ordered working memory, processes known to depend on the mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9, less is known about the impact of binge drinking on prefrontal gray matter integrity. Here, we investigated the effects of binge drinking on gray matter volume of mid- dorsolateral prefrontal cortex in youths. We used voxel-based morphometry on the structural magnetic resonance images of subjects reporting a persistent (at least three years binge drinking pattern of alcohol use (n = 11; age 22.43 ± 1.03 and control subjects (n = 21; age 22.18 ± 1.08 to measure differences in gray matter volume between both groups. In a region of interest analysis of the mid-dorsolateral prefrontal cortex, after co-varying for age and gender, we observed significantly larger gray matter volume in the left mid-dorsolateral prefrontal cortex (Brodmann areas 46 and 9 in binge drinkers in comparison with control subjects. Furthermore, there was a significant positive correlation between left mid-dorsolateral prefrontal cortex volume and Self-Ordered Pointing Test (SOPT total errors score in binge drinkers. The left mid-dorsolateral prefrontal cortex volume also correlated with the quantity and speed of alcohol intake. These findings indicate that a repeated exposure to alcohol -that does not meet criteria for alcohol dependence- throughout post-adolescent years and young adulthood is linked with structural anomalies in mid-dorsolateral prefrontal regions critically involved in executive aspects of working memory.

  10. Middle and Inferior Temporal Gyrus Gray Matter Volume Abnormalities in First-Episode Schizophrenia: An MRI Study

    OpenAIRE

    Kuroki, Noriomi; Shenton, Martha Elizabeth; Salisbury, Dean; Hirayasu, Yoshio; Onitsuka, Toshiaki; Ersner-Hershfield, Hal; Yurgelun-Todd, Deborah; Kikinis, Ron; Jolesz, Ferenc A.; McCarley, Robert William

    2006-01-01

    Objective: Magnetic resonance imaging (MRI) studies of schizophrenia reveal temporal lobe structural brain abnormalities in the superior temporal gyrus and the amygdala-hippocampal complex. However, the middle and inferior temporal gyri have received little investigation, especially in first-episode schizophrenia. Method: High-spatial-resolution MRI was used to measure gray matter volume in the inferior, middle, and superior temporal gyri in 20 patients with first-episode schizophrenia, 20 pa...

  11. Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians.

    Science.gov (United States)

    Sluming, Vanessa; Barrick, Thomas; Howard, Matthew; Cezayirli, Enis; Mayes, Andrew; Roberts, Neil

    2002-11-01

    Broca's area is a major neuroanatomical substrate for spoken language and various musically relevant abilities, including visuospatial and audiospatial localization. Sight reading is a musician-specific visuospatial analysis task, and spatial ability is known to be amenable to training effects. Musicians have been reported to perform significantly better than nonmusicians on spatial ability tests, which is supported by our findings with the Benton judgement of line orientation (JOL) test (P musicians. Voxel-based morphometry (VBM) and stereological analyses were applied to high-resolution 3D MR images in male orchestral musicians (n = 26) and sex, handedness, and IQ-matched nonmusicians (n = 26). The wide age range (26 to 66 years) of volunteers permitted a secondary analysis of age-related effects. VBM with small volume correction (SVC) revealed a significant (P = 0.002) region of increased gray matter in Broca's area in the left inferior frontal gyrus in musicians. We observed significant age-related volume reductions in cerebral hemispheres, dorsolateral prefrontal cortex subfields bilaterally and gray matter density in the left inferior frontal gyrus in controls but not musicians; a positive correlation between JOL test score and age in musicians but not controls; a positive correlation between years of playing and the volume of gray matter in a significant region identified by VBM in under-50-year-old musicians. We suggest that orchestral musical performance promotes use-dependent retention, and possibly expansion, of gray matter involving Broca's area and that this provides further support for shared neural substrates underpinning expressive output in music and language.

  12. Being in a romantic relationship is associated with reduced gray matter density in striatum and increased subjective happiness

    Directory of Open Access Journals (Sweden)

    Hiroaki Kawamichi

    2016-11-01

    Full Text Available Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that romantic relationship is associated with structural differences in the striatum related to the positive subjective experience of being in a romantic relationship. Because intimate romantic relationships contribute to perceived subjective happiness, this subjective enhancement of happiness might be accompanied by the experience of positive events related to being in a romantic relationship. To test this hypothesis and elucidate the structure involved, we compared subjective happiness, an indirect measure of the existence of positive experiences caused by being in a romantic relationship, of participants with or without romantic partners (N = 68. Furthermore, we also conducted a voxel-based morphometry (VBM study of the effects of being in a romantic relationship (N = 113. Being in a romantic relationship was associated with greater subjective happiness and reduced gray matter density within the right dorsal striatum. These results suggest that being in a romantic relationship enhances perceived subjective happiness via positive experiences. Furthermore, the observed reduction in gray matter density in the right dorsal striatum may reflect an increase in saliency of social reward within a romantic relationship. Thus, being in a romantic relationship is associated with positive experiences and a reduction of gray matter density in the right dorsal striatum, representing a modulation of social reward.

  13. Being in a Romantic Relationship Is Associated with Reduced Gray Matter Density in Striatum and Increased Subjective Happiness

    Science.gov (United States)

    Kawamichi, Hiroaki; Sugawara, Sho K.; Hamano, Yuki H.; Makita, Kai; Matsunaga, Masahiro; Tanabe, Hiroki C.; Ogino, Yuichi; Saito, Shigeru; Sadato, Norihiro

    2016-01-01

    Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that romantic relationship is associated with structural differences in the striatum related to the positive subjective experience of being in a romantic relationship. Because intimate romantic relationships contribute to perceived subjective happiness, this subjective enhancement of happiness might be accompanied by the experience of positive events related to being in a romantic relationship. To test this hypothesis and elucidate the structure involved, we compared subjective happiness, an indirect measure of the existence of positive experiences caused by being in a romantic relationship, of participants with or without romantic partners (N = 68). Furthermore, we also conducted a voxel-based morphometry study of the effects of being in a romantic relationship (N = 113). Being in a romantic relationship was associated with greater subjective happiness and reduced gray matter density within the right dorsal striatum. These results suggest that being in a romantic relationship enhances perceived subjective happiness via positive experiences. Furthermore, the observed reduction in gray matter density in the right dorsal striatum may reflect an increase in saliency of social reward within a romantic relationship. Thus, being in a romantic relationship is associated with positive experiences and a reduction of gray matter density in the right dorsal striatum, representing a modulation of social reward. PMID:27895606

  14. Being in a romantic relationship is associated with reduced gray matter density in striatum and increased subjective happiness

    OpenAIRE

    Hiroaki Kawamichi; Hiroaki Kawamichi; Hiroaki Kawamichi; Sho K Sugawara; Yuki H Hamano; Yuki H Hamano; Kai Makita; Masahiro Matsunaga; Hiroki C Tanabe; Yuichi Ogino; Shigeru Saito; Norihiro Sadato; Norihiro Sadato

    2016-01-01

    Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that ro...

  15. Being in a Romantic Relationship Is Associated with Reduced Gray Matter Density in Striatum and Increased Subjective Happiness

    OpenAIRE

    Kawamichi, Hiroaki; Sugawara, Sho K.; Hamano, Yuki H.; Makita, Kai; Matsunaga, Masahiro; Tanabe, Hiroki C.; Ogino, Yuichi; Saito, Shigeru; Sadato, Norihiro

    2016-01-01

    Romantic relationship, a widespread feature of human society, is one of the most influential factors in daily life. Although stimuli related to romantic love or being in a romantic relationship commonly result in enhancement of activation or functional connectivity of the reward system, including the striatum, the structure underlying romantic relationship-related regions remain unclear. Because individual experiences can alter gray matter within the adult human brain, we hypothesized that ro...

  16. Gray matter density of auditory association cortex relates to knowledge of sound concepts in primary progressive aphasia.

    Science.gov (United States)

    Bonner, Michael F; Grossman, Murray

    2012-06-06

    Long-term memory integrates the multimodal information acquired through perception into unified concepts, supporting object recognition, thought, and language. While some theories of human cognition have considered concepts to be abstract symbols, recent functional neuroimaging evidence has supported an alternative theory: that concepts are multimodal representations associated with the sensory and motor systems through which they are acquired. However, few studies have examined the effects of cortical lesions on the sensory and motor associations of concepts. We tested the hypothesis that individuals with disease in auditory association cortex would have difficulty processing concepts with strong sound associations (e.g., thunder). Human participants with the logopenic variant of primary progressive aphasia (lvPPA) performed a recognition task on words with strong associations in three modalities: Sound, Sight, and Manipulation. LvPPA participants had selective difficulty on Sound words relative to other modalities. Structural MRI analysis in lvPPA revealed gray matter atrophy in auditory association cortex, as defined functionally in a separate BOLD fMRI study of healthy adults. Moreover, lvPPA showed reduced gray matter density in the region of auditory association cortex that healthy participants activated when processing the same Sound words in a separate BOLD fMRI experiment. Finally, reduced gray matter density in this region in lvPPA directly correlated with impaired performance on Sound words. These findings support the hypothesis that conceptual memories are represented in the sensory and motor association cortices through which they are acquired.

  17. Genes encoding heterotrimeric G-proteins are associated with gray matter volume variations in the medial frontal cortex.

    Science.gov (United States)

    Chavarría-Siles, Iván; Rijpkema, Mark; Lips, Esther; Arias-Vasquez, Alejandro; Verhage, Matthijs; Franke, Barbara; Fernández, Guillén; Posthuma, Danielle

    2013-05-01

    G-protein-coupled signal transduction mediates most cellular responses to hormones and neurotransmitters; this signaling system transduces a large variety of extracellular stimuli into neurons and is the most widely used mechanism for cell communication at the synaptic level. The heterotrimeric G-proteins have been well established as key regulators of neuronal growth, differentiation, and function. More recently, the heterotrimeric G-protein genes group was associated with general cognitive ability. Although heterotrimeric G-proteins are linked to both cognitive ability and neuron signaling, it is unknown whether heterotrimeric G-proteins are also important for brain structure. We tested for association between local cerebral gray matter volume and the heterotrimeric G-protein genes group in 294 subjects; a replication analysis was performed in an independent sample of 238 subjects. Voxel-based morphometry revealed a strong replicated association between 2 genes encoding heterotrimeric G-proteins with specific local increase in medial frontal cortex volume, an area known to be involved in cognitive control and negative affect. This finding suggests that heterotrimeric G-proteins might modulate medial frontal cortex gray matter volume. The differences in gray matter volume due to variations in genes encoding G-proteins may be explained by the role of G-proteins in prenatal and postnatal neocortex development.

  18. The Importance of Aging in Gray Matter Changes Within Tinnitus Patients Shown in Cortical Thickness, Surface Area and Volume.

    Science.gov (United States)

    Yoo, Hye Bin; De Ridder, Dirk; Vanneste, Sven

    2016-11-01

    Aging and sensorineural hearing loss are known to be involved in the development of chronic tinnitus. This study explores the structural changes of gray matter using surface base methods and focuses more specifically on changes in cortical thickness in 127 tinnitus patients. The linear relationships between cortical thickness and behavioral measures including aging, tinnitus loudness, tinnitus duration, tinnitus distress, and hearing loss were analyzed. Three dimensional T1-weighted MR images were acquired and cortical gray matter volumes were segmented using FreeSurfer on Talairach space. The results showed that cortical thickness and volume are negatively correlated to age in widespread regions of frontal cortices, and positively to bilateral entorhinal cortex and left rostral anterior cingulate cortex. The cortical thickness changes related to hearing loss overlap with those related to normal aging. The gray matter volumes of bilateral amygdalae, hippocampi, nuclei accumbens, and thalami are all significantly negatively correlated to age. Tinnitus-related distress level and subjective loudness were negatively correlated only to the thalamic volume. The results suggest that the primary factor of long-term structural changes in chronic tinnitus patients is age and age related hearing loss, rather than hearing loss per se. Tinnitus related factors such as subjective tinnitus loudness, tinnitus duration, and the level of chronic tinnitus related distress were not correlated to important morphometric changes in this study.

  19. Disrupted subject-specific gray matter network properties and cognitive dysfunction in type 1 diabetes patients with and without proliferative retinopathy

    NARCIS (Netherlands)

    van Duinkerken, Eelco; Ijzerman, Richard G.; Klein, Martin; Moll, Annette C.; Snoek, Frank J.; Scheltens, Philip; Pouwels, Petra J. W.; Barkhof, Frederik; Diamant, Michaela; Tijms, Betty M.

    2016-01-01

    Type 1 diabetes mellitus (T1DM) patients, especially with concomitant microvascular disease, such as proliferative retinopathy, have an increased risk of cognitive deficits. Local cortical gray matter volume reductions only partially explain these cognitive dysfunctions, possibly because volume

  20. Study of cerebral blood flow and oxygen utilization in the edematous area and ipsilateral hemispheric gray matter using positron emission tomography in brain tumors

    International Nuclear Information System (INIS)

    Ikeda, Yusuke

    1990-01-01

    We measured the cerebral blood flow and oxygen utilization of the peritumoral white matter and ipsilateral hemispheric gray matter in 50 patients with brain tumors using Positron Emission Tomography (PET). The intraaxial tumors consisted of 34 cases (25 of gliomas, 6 of metastatic tumors, and 3 others), white the extraaxial tumors (all of meningiomas) were 16 cases. The cases were divided into 2 groups on the basis of the Xray CT scan findings. The cases of Edema (+) group showed moderate or large peritumoral edema in the white matter on the Xray CT scan, while Edema (-) group showed no or small edema. The method of PET study was the 15 O steady state inhalation technique by Frackoviak's method. ROIs (region of interest) were set on the peritumoral white matter and the ipsilateral hemispheric gray matter, and the mean CBF, OEF and CMRO2 values of the white and gray matter were calculated. In the Edema (+) group, the mean values of blood flow and oxygen utilization were low in the peritumoral white matter, and there were no obvious differences of values between intra and extraaxial tumors. But, the values in the ipsilateral hemispheric gray matter of intraaxial tumors were lower than those of extraaxial tumor. In the Edema (-) group, the mean values were almost normal in the white and gray matter, and there were no differences between intra and extraaxial tumors. The consideration about significance of the above stated results was discussed added with literature. (author)

  1. Cerebral gray matter volume in patients with chronic migraine: correlations with clinical features.

    Science.gov (United States)

    Coppola, Gianluca; Petolicchio, Barbara; Di Renzo, Antonio; Tinelli, Emanuele; Di Lorenzo, Cherubino; Parisi, Vincenzo; Serrao, Mariano; Calistri, Valentina; Tardioli, Stefano; Cartocci, Gaia; Ambrosini, Anna; Caramia, Francesca; Di Piero, Vittorio; Pierelli, Francesco

    2017-12-08

    To date, few MRI studies have been performed in patients affected by chronic migraine (CM), especially in those without medication overuse. Here, we performed magnetic resonance imaging (MRI) voxel-based morphometry (VBM) analyses to investigate the gray matter (GM) volume of the whole brain in patients affected by CM. Our aim was to investigate whether fluctuations in the GM volumes were related to the clinical features of CM. Twenty untreated patients with CM without a past medical history of medication overuse underwent 3-Tesla MRI scans and were compared to a group of 20 healthy controls (HCs). We used SPM12 and the CAT12 toolbox to process the MRI data and to perform VBM analyses of the structural T1-weighted MRI scans. The GM volume of patients was compared to that of HCs with various corrected and uncorrected thresholds. To check for possible correlations, patients' clinical features and GM maps were regressed. Initially, we did not find significant differences in the GM volume between patients with CM and HCs (p < 0.05 corrected for multiple comparisons). However, using more-liberal uncorrected statistical thresholds, we noted that compared to HCs, patients with CM exhibited clusters of regions with lower GM volumes including the cerebellum, left middle temporal gyrus, left temporal pole/amygdala/hippocampus/pallidum/orbitofrontal cortex, and left occipital areas (Brodmann areas 17/18). The GM volume of the cerebellar hemispheres was negatively correlated with the disease duration and positively correlated with the number of tablets taken per month. No gross morphometric changes were observed in patients with CM when compared with HCs. However, using more-liberal uncorrected statistical thresholds, we observed that CM is associated with subtle GM volume changes in several brain areas known to be involved in nociception/antinociception, multisensory integration, and analgesic dependence. We speculate that these slight morphometric impairments could lead

  2. Genetics Modulate Gray Matter Variation Beyond Disease Burden in Prodromal Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Jingyu Liu

    2018-03-01

    Full Text Available Huntington’s disease (HD is a neurodegenerative disorder caused by an expansion mutation of the cytosine–adenine–guanine (CAG trinucleotide in the HTT gene. Decline in cognitive and motor functioning during the prodromal phase has been reported, and understanding genetic influences on prodromal disease progression beyond CAG will benefit intervention therapies. From a prodromal HD cohort (N = 715, we extracted gray matter (GM components through independent component analysis and tested them for associations with cognitive and motor functioning that cannot be accounted for by CAG-induced disease burden (cumulative effects of CAG expansion and age. Furthermore, we examined genetic associations (at the genomic, HD pathway, and candidate region levels with the GM components that were related to functional decline. After accounting for disease burden, GM in a component containing cuneus, lingual, and middle occipital regions was positively associated with attention and working memory performance, and the effect size was about a tenth of that of disease burden. Prodromal participants with at least one dystonia sign also had significantly lower GM volume in a bilateral inferior parietal component than participants without dystonia, after controlling for the disease burden. Two single-nucleotide polymorphisms (SNPs: rs71358386 in NCOR1 and rs71358386 in ADORA2B in the HD pathway were significantly associated with GM volume in the cuneus component, with minor alleles being linked to reduced GM volume. Additionally, homozygous minor allele carriers of SNPs in a candidate region of ch15q13.3 had significantly higher GM volume in the inferior parietal component, and one minor allele copy was associated with a total motor score decrease of 0.14 U. Our findings depict an early genetical GM reduction in prodromal HD that occurs irrespective of disease burden and affects regions important for cognitive and motor functioning.

  3. Gray matter trophism, cognitive impairment, and depression in patients with multiple sclerosis.

    Science.gov (United States)

    Pravatà, Emanuele; Rocca, Maria A; Valsasina, Paola; Riccitelli, Gianna C; Gobbi, Claudio; Comi, Giancarlo; Falini, Andrea; Filippi, Massimo

    2017-12-01

    Cognitive impairment and depression frequently affects patients with multiple sclerosis (MS). However, the relationship between the occurrence of depression and cognitive impairment and the development of cortical atrophy has not been fully elucidated yet. To investigate the association of cortical and deep gray matter (GM) volume with depression and cognitive impairment in MS. Three-dimensional (3D) T1-weighted scans were obtained from 126 MS patients and 59 matched healthy controls. Cognitive impairment was assessed using the Brief Repeatable Battery of Neuropsychological Tests and depression with the Montgomery-Asberg Depression Rating Scale (MADRS). Using FreeSurfer and FIRST software, we assessed cortical thickness (CTh) and deep GM volumetry. Magnetic resonance imaging (MRI) variables explaining depression and cognitive impairment were investigated using factorial and classification analysis. Multivariate regression models correlated GM abnormalities with symptoms severity. Compared with controls, MS patients exhibited widespread bilateral cortical thinning involving all brain lobes. Depressed MS showed selective CTh decrease in fronto-temporal regions, whereas cognitive impairment MS exhibited widespread fronto-parietal cortical and subcortical GM atrophy. Frontal cortical thinning was the best predictor of depression ( C-statistic = 0.7), whereas thinning of the right precuneus and high T2 lesion volume best predicted cognitive impairment ( C-statistic = 0.8). MADRS severity correlated with right entorhinal cortex thinning, whereas cognitive impairment severity correlated with left entorhinal and thalamus atrophy. MS-related depression is linked to circumscribed CTh changes in areas deputed to emotional behavior, whereas cognitive impairment is correlated with cortical and subcortical GM atrophy of circuits involved in cognition.

  4. Voxelwise meta-analysis of gray matter abnormalities in dementia with Lewy bodies

    International Nuclear Information System (INIS)

    Zhong, JianGuo; Pan, PingLei; Dai, ZhenYu; Shi, HaiCun

    2014-01-01

    Highlights: • We first report the meta-analyses of GM anomalies by VBM studies in DLB. • Lateral temporal/insular and lenticular nucleus/insular cortex atrophy were detected. • A characteristic pattern of GM changes underpinned DLB. - Abstract: Background: Increasing neuroimaging studies have revealed brain gray matter (GM) atrophy by voxel-based morphometry (VBM) studies in patients with dementia with Lewy bodies (DLB) relative to healthy controls. However, the spatial localization of GM abnormalities reported in the existing studies is heterogeneous. Here, we aimed to investigate concurrence across VBM studies to help clarify the structural abnormalities underpinning this condition. Methods: A systematic search for VBM studies of DLB patients and healthy controls published in PubMed database from January 2000 to March 2014 was conducted. A quantitative meta-analysis of whole-brain VBM studies in DLB patients and healthy controls was performed by means of Anisotropic Effect Size version of Signed Differential Mapping (AES-SDM) software package. Results: Seven studies comprising 218 DLB patients and 219 healthy controls were included in the present study. Compared to healthy subjects, the patients group showed consistent decreased GM in right lateral temporal/insular cortex and left lenticular nucleus/insular cortex. The results remained largely unchanged in the following jackknife sensitivity analyses. Meta-regression analysis indicated an increased probability of finding brain atrophy in left superior temporal gyrus in patients with lower MMSE scores. Conclusions: The present meta-analysis quantitatively demonstrates a characteristic pattern of GM alternations that contributed to the understanding of pathophysiology underlying DLB. Future studies will benefit from employing meta-analytical comparisons to other dementia subtypes with solid evidence to extend these findings.

  5. Regional Gray Matter Atrophy in Relapsing Remitting Multiple Sclerosis: Baseline Analysis of Multi-Center Data

    Science.gov (United States)

    Datta, Sushmita; Staewen, Terrell D.; Cofield, Stacy S.; Cutter, Gary R.; Lublin, Fred D.; Wolinsky, Jerry S.; Narayana, Ponnada A.

    2015-01-01

    Regional gray matter (GM) atrophy in multiple sclerosis (MS) at disease onset and its temporal variation can provide objective information regarding disease evolution. An automated pipeline for estimating atrophy of various GM structures was developed using tensor based morphometry (TBM) and implemented on a multi-center sub-cohort of 1008 relapsing remitting MS (RRMS) patients enrolled in a Phase 3 clinical trial. Four hundred age and gender matched healthy controls were used for comparison. Using the analysis of covariance, atrophy differences between MS patients and healthy controls were assessed on a voxel-by-voxel analysis. Regional GM atrophy was observed in a number of deep GM structures that included thalamus, caudate nucleus, putamen, and cortical GM regions. General linear regression analysis was performed to analyze the effects of age, gender, and scanner field strength, and imaging sequence on the regional atrophy. Correlations between regional GM volumes and expanded disability status scale (EDSS) scores, disease duration (DD), T2 lesion load (T2 LL), T1 lesion load (T1 LL), and normalized cerebrospinal fluid (nCSF) were analyzed using Pearson’s correlation coefficient. Thalamic atrophy observed in MS patients compared to healthy controls remained consistent within subgroups based on gender and scanner field strength. Weak correlations between thalamic volume and EDSS (r = −0.133; p < 0.001) and DD (r = −0.098; p = 0.003) were observed. Of all the structures, thalamic volume moderately correlated with T2 LL (r = −0.492; p-value < 0.001), T1 LL (r = −0.473; p-value < 0.001) and nCSF (r = −0.367; p-value < 0.001). PMID:25787188

  6. Distinct effects of late adulthood cognitive and physical activities on gray matter volume.

    Science.gov (United States)

    Arenaza-Urquijo, Eider M; de Flores, Robin; Gonneaud, Julie; Wirth, Miranka; Ourry, Valentin; Callewaert, William; Landeau, Brigitte; Egret, Stéphanie; Mézenge, Florence; Desgranges, Béatrice; Chételat, Gaël

    2017-04-01

    Engagement in cognitive activity (CA) and physical activity (PA) during the lifespan may counteract brain atrophy later in life. Here, we investigated engagement in CA and PA during late adulthood in association with gray matter volume (GM) in normal older adults, with special focus on the hippocampus. Forty-five cognitively normal older individuals (mean age: 72) underwent T1-weighted MRI and self-reported CA and PA assessment. Whole brain voxel-wise multiple regression models were carried out to assess the relationships between CA, PA and GM volume adjusted by age and sex. Further adjustment for years of education and risk factors were performed. Voxel-wise analyses were projected on 3D hippocampal surface views. Cognitive activity and PA demonstrated independent regional associations with GM after adjustment for confounders. Cognitive activity was related to greater GM in extended brain areas including frontal, temporal and parietal cortices, while PA was associated with increased GM in the prefrontal, insular and motor cortices. Regression maps projected on the hippocampal surface showed a common association of PA and CA within the anterior part of the hippocampus, although the effect of CA was more subtle and also extended to the posterior part. Engagement in PA and CA in late adulthood were independently related to regional GM volume, notably in aging and AD vulnerable areas. These results support the idea that both PA and CA- based interventions may be suitable to promote brain health in late adulthood. The potential synergistic effects of PA and CA need to be addressed in future studies including larger samples.

  7. Subcortical gray matter changes in transgender subjects after long-term cross-sex hormone administration.

    Science.gov (United States)

    Seiger, Rene; Hahn, Andreas; Hummer, Allan; Kranz, Georg S; Ganger, Sebastian; Woletz, Michael; Kraus, Christoph; Sladky, Ronald; Kautzky, Alexander; Kasper, Siegfried; Windischberger, Christian; Lanzenberger, Rupert

    2016-12-01

    Sex-steroid hormones are primarily involved in sexual differentiation and development and are thought to underlie processes related to cognition and emotion. However, divergent results have been reported concerning the effects of hormone administration on brain structure including side effects like brain atrophy and dementia. Cross-sex hormone therapy in transgender subjects offers a unique model for studying the effects of sex hormones on the living human brain. In this study, 25 Female-to-Male (FtM) and 14 Male-to-Female (MtF) subjects underwent MRI examinations at baseline and after a period of at least 4-months of continuous cross-sex hormone administration. While MtFs received estradiol and anti-androgens, FtM subjects underwent high-dose testosterone treatment. The longitudinal processing stream of the FreeSurfer software suite was used for the automated assessment and delineation of brain volumes to assess the structural changes over the treatment period of cross-sex hormone administration. Most prominent results were found for MtFs receiving estradiol and anti-androgens in the form of significant decreases in the hippocampal region. Further analysis revealed that these decreases were reflected by increases in the ventricles. Additionally, changes in progesterone levels correlated with changes in gray matter structures in MtF subjects. In line with prior studies, our results indicate hormonal influences on subcortical structures related to memory and emotional processing. Additionally, this study adds valuable knowledge that progesterone may play an important role in this process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Voxelwise meta-analysis of gray matter abnormalities in dementia with Lewy bodies

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, JianGuo; Pan, PingLei [Department of Neurology, Affiliated Yancheng Hospital of Southeast University, Yancheng (China); Dai, ZhenYu [Department of Radiology, Affiliated Yancheng Hospital of Southeast University, Yancheng (China); Shi, HaiCun, E-mail: yc3yhcshi@gmail.com [Department of Neurology, Affiliated Yancheng Hospital of Southeast University, Yancheng (China)

    2014-10-15

    Highlights: • We first report the meta-analyses of GM anomalies by VBM studies in DLB. • Lateral temporal/insular and lenticular nucleus/insular cortex atrophy were detected. • A characteristic pattern of GM changes underpinned DLB. - Abstract: Background: Increasing neuroimaging studies have revealed brain gray matter (GM) atrophy by voxel-based morphometry (VBM) studies in patients with dementia with Lewy bodies (DLB) relative to healthy controls. However, the spatial localization of GM abnormalities reported in the existing studies is heterogeneous. Here, we aimed to investigate concurrence across VBM studies to help clarify the structural abnormalities underpinning this condition. Methods: A systematic search for VBM studies of DLB patients and healthy controls published in PubMed database from January 2000 to March 2014 was conducted. A quantitative meta-analysis of whole-brain VBM studies in DLB patients and healthy controls was performed by means of Anisotropic Effect Size version of Signed Differential Mapping (AES-SDM) software package. Results: Seven studies comprising 218 DLB patients and 219 healthy controls were included in the present study. Compared to healthy subjects, the patients group showed consistent decreased GM in right lateral temporal/insular cortex and left lenticular nucleus/insular cortex. The results remained largely unchanged in the following jackknife sensitivity analyses. Meta-regression analysis indicated an increased probability of finding brain atrophy in left superior temporal gyrus in patients with lower MMSE scores. Conclusions: The present meta-analysis quantitatively demonstrates a characteristic pattern of GM alternations that contributed to the understanding of pathophysiology underlying DLB. Future studies will benefit from employing meta-analytical comparisons to other dementia subtypes with solid evidence to extend these findings.

  9. A study on cognitive impairment and gray matter volume abnormalities in silent cerebral infarction patients

    International Nuclear Information System (INIS)

    Luo, Wei; Wei, Xiaofeng; Li, Mengxiong; Jiang, Xun; Li, Shanshan

    2015-01-01

    The relationship between silent cerebral infarction (SCI) and the integrity of cognitive function is unknown. We intended to investigate whether cognitive impairment is associated with gray matter volume (GMV) in the SCI patients. Sixty-two patients with SCI and 62 age- and gender-matched healthy controls (HC) were evaluated with P300 test, Montreal Cognitive Assessment (MoCA) test, Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HDRS). Whole brain high-resolution T1-weighted images were processed with SPM12b software and analyzed by voxel-based morphometry (VBM). Correlation analysis was performed between the GMV and the scores of MoCA Scale, P300 latency, P300 amplitude, HAMA, HDRS, age, and educational level. The brains of the SCI patients have a significant reduction in GMV in the left superior and inferior frontal gyrus, left superior temporal gyrus, right middle temporal gyrus, and bilateral hippocampus gyrus (p < 0.01, FDR correction). No significant increase of GMV was detected. The GMV of their frontal and temporal lobes is positively correlated with the score of MoCA scale and P300 amplitude (r ≥ 0.62, p < 0.01). The GMV of frontal, temporal, and hippocampus is negatively correlated with P300 latency (r ≤ -0.71, p < 0.05). No significant correlation between the GMV of abnormal brain regions and another two clinical characteristics was found. SCI patients have impaired cognitive function and reduced GMV compared to the HC subjects. The neuropathological basis of such cognitive deficits in SCI patients might be a reduced GMV. (orig.)

  10. A study on cognitive impairment and gray matter volume abnormalities in silent cerebral infarction patients

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Wei, Xiaofeng; Li, Mengxiong [The First Affiliated Hospital of Yangtze University, Biomedical Engineering Laboratory, Jingzhou, Hubei (China); Jiang, Xun [Renmin Hospital of Wuhan University, Biomedical Engineering Laboratory, Wuhan, Hubei (China); Li, Shanshan [JingZhou City Central Blood Bank, Jingzhou, Hubei (China)

    2015-08-15

    The relationship between silent cerebral infarction (SCI) and the integrity of cognitive function is unknown. We intended to investigate whether cognitive impairment is associated with gray matter volume (GMV) in the SCI patients. Sixty-two patients with SCI and 62 age- and gender-matched healthy controls (HC) were evaluated with P300 test, Montreal Cognitive Assessment (MoCA) test, Hamilton Anxiety Scale (HAMA), and Hamilton Depression Scale (HDRS). Whole brain high-resolution T1-weighted images were processed with SPM12b software and analyzed by voxel-based morphometry (VBM). Correlation analysis was performed between the GMV and the scores of MoCA Scale, P300 latency, P300 amplitude, HAMA, HDRS, age, and educational level. The brains of the SCI patients have a significant reduction in GMV in the left superior and inferior frontal gyrus, left superior temporal gyrus, right middle temporal gyrus, and bilateral hippocampus gyrus (p < 0.01, FDR correction). No significant increase of GMV was detected. The GMV of their frontal and temporal lobes is positively correlated with the score of MoCA scale and P300 amplitude (r ≥ 0.62, p < 0.01). The GMV of frontal, temporal, and hippocampus is negatively correlated with P300 latency (r ≤ -0.71, p < 0.05). No significant correlation between the GMV of abnormal brain regions and another two clinical characteristics was found. SCI patients have impaired cognitive function and reduced GMV compared to the HC subjects. The neuropathological basis of such cognitive deficits in SCI patients might be a reduced GMV. (orig.)

  11. Assessment of in vivo microstructure alterations in gray matter using DKI in Internet gaming addiction.

    Science.gov (United States)

    Sun, Yawen; Sun, Jinhua; Zhou, Yan; Ding, Weina; Chen, Xue; Zhuang, Zhiguo; Xu, Jianrong; Du, Yasong

    2014-10-24

    The aim of the current study was to investigate the utility of diffusional kurtosis imaging (DKI) in the detection of gray matter (GM) alterations in people suffering from Internet Gaming Addiction (IGA). DKI was applied to 18 subjects with IGA and to 21 healthy controls (HC). Whole-brain voxel-based analyses were performed with the following derived parameters: mean kurtosis metrics (MK), radial kurtosis (K⊥), and axial kurtosis (K//). A significance threshold was set at P Addiction Scale (CIAS) and the DKI-derived metrics of regions that differed between groups. Additionally, we used voxel-based morphometry (VBM) to detect GM-volume differences between the two groups. Compared with the HC group, the IGA group demonstrated diffusional kurtosis parameters that were significantly less in GM of the right anterolateral cerebellum, right inferior and superior temporal gyri, right supplementary motor area, middle occipital gyrus, right precuneus, postcentral gyrus, right inferior frontal gyrus, left lateral lingual gyrus, left paracentral lobule, left anterior cingulate cortex, and median cingulate cortex. The bilateral fusiform gyrus, insula, posterior cingulate cortex (PCC), and thalamus also exhibited less diffusional kurtosis in the IGA group. MK in the left PCC and K⊥ in the right PCC were positively correlated with CIAS scores. VBM showed that IGA subjects had higher GM volume in the right inferior and middle temporal gyri, and right parahippocampal gyrus, and lower GM volume in the left precentral gyrus. The lower diffusional kurtosis parameters in IGA suggest multiple differences in brain microstructure, which may contribute to the underlying pathophysiology of IGA. DKI may provide sensitive imaging biomarkers for assessing IGA severity.

  12. Association of frontal gray matter volume and cerebral perfusion in heroin addiction: A multimodal neuroimaging study

    Directory of Open Access Journals (Sweden)

    Niklaus eDenier

    2013-10-01

    Full Text Available Structure and function in the human healthy brain are closely related. In patients with chronic heroin exposure, brain imaging studies have identified long-lasting changes in gray matter (GM volume. More recently, we showed that acute application of heroin in dependent pa-tients results in hypoperfusion of fronto-temporal areas compared with the placebo condition. However, the relationship between structural and cerebral blood flow (CBF changes in heroin addiction has not yet been investigated. Moreover, it is not known whether there is any interaction between the chronic structural changes and the short and long term effects on per-fusion caused by heroin. Using a double-blind, within-subject design, heroin or placebo (saline was administrated to 15 heroin-dependent patients from a stable heroin-assisted treat-ment program, in order to observe acute short-term effects. Arterial spin labeling (ASL was used to calculate perfusion quantification maps in both treatment conditions, while Voxel Based Morphometry (VBM was conducted to calculate regional GM density. VBM and ASL data were used to calculate homologous correlation fields by Biological Parametric Mapping (BPM. We correlated each perfusion condition (heroin and placebo separately with a VBM sample that was identical for the two treatment conditions. It was assumed that heroin-associated perfusion is manifested in short term effects, while placebo-associated perfusion is more related to long term effects. Correlation analyses revealed a significant positive correlation in frontal and temporal areas between GM and both perfusion conditions (heroin and placebo. The heroin-associated perfusion was also negatively correlated with GM in the left thalamus and right cuneus. These findings indicate that, in heroin-dependent patients, low GM volume is positively associated with low perfusion within fronto-temporal regions.

  13. Regional volumes and spatial volumetric distribution of gray matter in the gender dysphoric brain.

    Science.gov (United States)

    Hoekzema, Elseline; Schagen, Sebastian E E; Kreukels, Baudewijntje P C; Veltman, Dick J; Cohen-Kettenis, Peggy T; Delemarre-van de Waal, Henriette; Bakker, Julie

    2015-05-01

    The sexual differentiation of the brain is primarily driven by gonadal hormones during fetal development. Leading theories on the etiology of gender dysphoria (GD) involve deviations herein. To examine whether there are signs of a sex-atypical brain development in GD, we quantified regional neural gray matter (GM) volumes in 55 female-to-male and 38 male-to-female adolescents, 44 boys and 52 girls without GD and applied both univariate and multivariate analyses. In girls, more GM volume was observed in the left superior medial frontal cortex, while boys had more volume in the bilateral superior posterior hemispheres of the cerebellum and the hypothalamus. Regarding the GD groups, at whole-brain level they differed only from individuals sharing their gender identity but not from their natal sex. Accordingly, using multivariate pattern recognition analyses, the GD groups could more accurately be automatically discriminated from individuals sharing their gender identity than those sharing their natal sex based on spatially distributed GM patterns. However, region of interest analyses indicated less GM volume in the right cerebellum and more volume in the medial frontal cortex in female-to-males in comparison to girls without GD, while male-to-females had less volume in the bilateral cerebellum and hypothalamus than natal boys. Deviations from the natal sex within sexually dimorphic structures were also observed in the untreated subsamples. Our findings thus indicate that GM distribution and regional volumes in GD adolescents are largely in accordance with their respective natal sex. However, there are subtle deviations from the natal sex in sexually dimorphic structures, which can represent signs of a partial sex-atypical differentiation of the brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Recommendations for the Use of Automated Gray Matter Segmentation Tools: Evidence from Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Eileanoir B. Johnson

    2017-10-01

    Full Text Available The selection of an appropriate segmentation tool is a challenge facing any researcher aiming to measure gray matter (GM volume. Many tools have been compared, yet there is currently no method that can be recommended above all others; in particular, there is a lack of validation in disease cohorts. This work utilizes a clinical dataset to conduct an extensive comparison of segmentation tools. Our results confirm that all tools have advantages and disadvantages, and we present a series of considerations that may be of use when selecting a GM segmentation method, rather than a ranking of these tools. Seven segmentation tools were compared using 3 T MRI data from 20 controls, 40 premanifest Huntington’s disease (HD, and 40 early HD participants. Segmented volumes underwent detailed visual quality control. Reliability and repeatability of total, cortical, and lobular GM were investigated in repeated baseline scans. The relationship between each tool was also examined. Longitudinal within-group change over 3 years was assessed via generalized least squares regression to determine sensitivity of each tool to disease effects. Visual quality control and raw volumes highlighted large variability between tools, especially in occipital and temporal regions. Most tools showed reliable performance and the volumes were generally correlated. Results for longitudinal within-group change varied between tools, especially within lobular regions. These differences highlight the need for careful selection of segmentation methods in clinical neuroimaging studies. This guide acts as a primer aimed at the novice or non-technical imaging scientist providing recommendations for the selection of cohort-appropriate GM segmentation software.

  15. Gray matter anomalies in pedophiles with and without a history of child sexual offending.

    Science.gov (United States)

    Schiffer, B; Amelung, T; Pohl, A; Kaergel, C; Tenbergen, G; Gerwinn, H; Mohnke, S; Massau, C; Matthias, W; Weiß, S; Marr, V; Beier, K M; Walter, M; Ponseti, J; Krüger, T H C; Schiltz, K; Walter, H

    2017-05-16

    Pedophilia is a psychiatric disorder that is inter-related with but distinct from child sexual offending (CSO). Neural alterations reportedly contribute to both pedophilia and CSO, but until now, no study has distinguished the brain structural anomalies associated with pedophilia from those specifically associated with CSO in pedophilic men. Using high-resolution T1-weighted brain images and voxel-based morphometry, we analyzed the gray matter (GM) volume of the following 219 men recruited at four acquisition sites in Germany: 58 pedophiles with a history of CSO, 60 pedophiles without any history of CSO and 101 non-pedophilic, non-offending controls to control for the effects of age, education level, verbal IQ, sexual orientation and the acquisition site. Although there were no differences in the relative GM volume of the brain specifically associated with pedophilia, statistical parametric maps revealed a highly significant and CSO-related pattern of above vs below the 'normal' GM volume in the right temporal pole, with non-offending pedophiles exhibiting larger volumes than offending pedophiles. Moreover, regression analysis revealed that the lower GM volume of the dorsomedial prefrontal or anterior cingulate cortex was associated with a higher risk of re-offending in pedophilic child molesters. We believe our data provide the first evidence that CSO in pedophilia rather than pedophilia alone is associated with GM anomalies and thus shed new light on the results of previous studies on this topic. These results indicate the need for new neurobehavioral theories on pedophilia and CSO and may be potentially useful for treatment or prevention approaches that aim to reduce the risk of (re)offending in pedophilia.

  16. Deep gray matter volume loss drives disability worsening in multiple sclerosis.

    Science.gov (United States)

    Eshaghi, Arman; Prados, Ferran; Brownlee, Wallace J; Altmann, Daniel R; Tur, Carmen; Cardoso, M Jorge; De Angelis, Floriana; van de Pavert, Steven H; Cawley, Niamh; De Stefano, Nicola; Stromillo, M Laura; Battaglini, Marco; Ruggieri, Serena; Gasperini, Claudio; Filippi, Massimo; Rocca, Maria A; Rovira, Alex; Sastre-Garriga, Jaume; Vrenken, Hugo; Leurs, Cyra E; Killestein, Joep; Pirpamer, Lukas; Enzinger, Christian; Ourselin, Sebastien; Wheeler-Kingshott, Claudia A M Gandini; Chard, Declan; Thompson, Alan J; Alexander, Daniel C; Barkhof, Frederik; Ciccarelli, Olga

    2018-02-01

    Gray matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with faster disability accumulation in MS. We analyzed 3,604 brain high-resolution T1-weighted magnetic resonance imaging scans from 1,417 participants: 1,214 MS patients (253 clinically isolated syndrome [CIS], 708 relapsing-remitting [RRMS], 128 secondary-progressive [SPMS], and 125 primary-progressive [PPMS]), over an average follow-up of 2.41 years (standard deviation [SD] = 1.97), and 203 healthy controls (HCs; average follow-up = 1.83 year; SD = 1.77), attending seven European centers. Disability was assessed with the Expanded Disability Status Scale (EDSS). We obtained volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, brainstem, and cerebral white matter. Hierarchical mixed models assessed annual percentage rate of regional tissue loss and identified regional volumes associated with time-to-EDSS progression. SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all baseline regional volumes, only that of the DGM predicted time-to-EDSS progression (hazard ratio = 0.73; 95% confidence interval, 0.65, 0.82; p < 0.001): for every standard deviation decrease in baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual rate of atrophy, which was faster in SPMS (-1.45%), PPMS (-1.66%), and RRMS (-1.34%) than CIS (-0.88%) and HCs (-0.94%; p < 0.01). The rate of temporal GM atrophy in SPMS (-1.21%) was significantly faster than RRMS (-0.76%), CIS (-0.75%), and HCs (-0.51%). Similarly, the rate of parietal GM atrophy in SPMS (-1.24-%) was faster than CIS (-0.63%) and HCs (-0.23%; all p values <0.05). Only the atrophy rate in DGM in patients was significantly associated with disability accumulation (beta = 0.04; p < 0.001). This large

  17. Detection and quantification of regional cortical gray matter damage in multiple sclerosis utilizing gradient echo MRI

    Directory of Open Access Journals (Sweden)

    Jie Wen

    2015-01-01

    Full Text Available Cortical gray matter (GM damage is now widely recognized in multiple sclerosis (MS. The standard MRI does not reliably detect cortical GM lesions, although cortical volume loss can be measured. In this study, we demonstrate that the gradient echo MRI can reliably and quantitatively assess cortical GM damage in MS patients using standard clinical scanners. High resolution multi-gradient echo MRI was used for regional mapping of tissue-specific MRI signal transverse relaxation rate values (R2* in 10 each relapsing–remitting, primary-progressive and secondary-progressive MS subjects. A voxel spread function method was used to correct artifacts induced by background field gradients. R2* values from healthy controls (HCs of varying ages were obtained to establish baseline data and calculate ΔR2* values – age-adjusted differences between MS patients and HC. Thickness of cortical regions was also measured in all subjects. In cortical regions, ΔR2* values of MS patients were also adjusted for changes in cortical thickness. Symbol digit modalities (SDMT and paced auditory serial addition (PASAT neurocognitive tests, as well as Expanded Disability Status Score, 25-foot timed walk and nine-hole peg test results were also obtained on all MS subjects. We found that ΔR2* values were lower in multiple cortical GM and normal appearing white matter (NAWM regions in MS compared with HC. ΔR2* values of global cortical GM and several specific cortical regions showed significant (p < 0.05 correlations with SDMT and PASAT scores, and showed better correlations than volumetric measures of the same regions. Neurological tests not focused on cognition (Expanded Disability Status Score, 25-foot timed walk and nine-hole peg tests showed no correlation with cortical GM ΔR2* values. The technique presented here is robust and reproducible. It requires less than 10 min and can be implemented on any MRI scanner. Our results show that quantitative tissue-specific R2

  18. Gray Matter Hypoxia in the Brain of the Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis

    Science.gov (United States)

    Johnson, Thomas W.; Wu, Ying; Nathoo, Nabeela; Rogers, James A.; Wee Yong, V.; Dunn, Jeff F.

    2016-01-01

    Background Multiple sclerosis (MS) has a significant inflammatory component and may have significant gray matter (GM) pathophysiology. Brain oxygenation is a sensitive measurement of the balance between metabolic need and oxygen delivery. There is evidence that inflammation and hypoxia are interdependent. In this paper, we applied novel, implanted PO2 sensors to measure hypoxia in cortical and cerebellar GM, in an inflammation-induced mouse model of MS. Objective Quantify oxygenation in cortical and cerebellar GM in the awake, unrestrained experimental autoimmune encephalomyelitis (EAE) mouse model and to relate the results to symptom level and disease time-course. Methods C57BL/6 mice were implanted with a fiber-optic sensor in the cerebellum (n = 13) and cortex (n = 24). Animals were induced with stimulation of the immune response and sensitization to myelin oligodendrocyte glycoprotein (MOG). Controls did not have MOG. We measured PO2 in awake, unrestrained animals from pre-induction (baseline) up to 36 days post-induction for EAE and controls. Results There were more days with hypoxia than hyperoxia (cerebellum: 34/67 vs. 18/67 days; cortex: 85/112 vs. 22/112) compared to time-matched controls. The average decline in PO2 on days that were significantly lower than time-matched controls was -8.8±6.0 mmHg (mean ± SD) for the cerebellum and -8.0±4.6 for the cortex. Conversely, the average increase in PO2 on days that were significantly hyperoxic was +3.2±2.8 mmHg (mean ± SD) for the cerebellum and +0.8±2.1 for the cortex. Cortical hypoxia related to increased behavioral deficits. Evidence for hypoxia occurred before measurable behavioral deficits. Conclusions A highly inflammatory condition primed to a white matter (WM) autoimmune response correlates with significant hypoxia and increased variation in oxygenation in GM of both cerebellum and cortex in the mouse EAE model of MS. PMID:27907119

  19. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.

  20. Evaluation of deep gray matter volume, cortical thickness and white matter integrity in patients with typical absence epilepsy: a study using voxelwise-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Correa, D.G.; Ventura, N.; Tukamoto, G.; Gasparetto, E.L. [Federal University of Rio de Janeiro, Department of Radiology, Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil); Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro (Brazil); Zimmermann, N. [Federal University of Rio de Janeiro, Department of Radiology, Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil); Pontifical Catholic University of Rio Grande do Sul, Department of Psychology, Porto Alegre (Brazil); Doring, T.M. [Clinica de Diagnostico por Imagem (CDPI), Rio de Janeiro (Brazil); Leme, J.; Pereira, M. [Federal University of Rio de Janeiro, Department of Radiology, Hospital Universitario Clementino Fraga Filho, Rio de Janeiro, RJ (Brazil); Andrea, I. d' ; Rego, C.; Alves-Leon, S.V. [Federal University of Rio de Janeiro, Department of Neurology, Epilepsy Center, Hospital Universitario Clementino Fraga Filho, Rio de Janeiro (Brazil)

    2017-03-15

    The objective of this study was to evaluate the cortical thickness and the volume of deep gray matter structures, measured from 3D T1-weighted gradient echo imaging, and white matter integrity, by diffusion tensor imaging (DTI) in patients with typical absence epilepsy (AE). Patients (n = 19) with typical childhood AE and juvenile AE, currently taking antiepileptic medication, were compared with control subjects (n = 19), matched for gender and age. 3D T1 magnetization-prepared rapid gradient echo-weighted imaging and DTI along 30 noncolinear directions were performed using a 1.5-T MR scanner. FreeSurfer was used to perform cortical volumetric reconstruction and segmentation of deep gray matter structures. For tract-based spatial statistics analysis of DTI, a white matter skeleton was created, along with a permutation-based inference with 5000 permutations. A threshold of p < 0.05 was used to identify abnormalities in fractional anisotropy (FA). The mean, radial, and axial diffusivities were also projected onto the mean FA skeleton. Patients with AE presented decreased FA and increased mean diffusivity and radial diffusivity values in the genu and the body of the corpus callosum and right anterior corona radiata, as well as decreased axial diffusivity in the left posterior thalamic radiation, inferior cerebellar peduncle, right cerebral peduncle, and right corticospinal tract. However, there were no significant differences in cortical thickness or deep gray matter structure volumes between patients with AE and controls. Abnormalities found in white matter integrity may help to better understand the pathophysiology of AE and optimize diagnosis and treatment strategies. (orig.)

  1. Mineralization of organic matter in gray forest soil and typical chernozem with degraded structure due to physical impacts

    Science.gov (United States)

    Semenov, V. M.; Zhuravlev, N. S.; Tulina, A. S.

    2015-10-01

    The dynamics of the organic matter mineralization in the gray forest soil and typical chernozem with structure disturbed by physical impacts (grinding and extraction of water-soluble substances) were studied in two long-term experiments at the constant temperature and moisture. The grinding of soil to particles of 0.1, day-1) and difficultly mineralizable (0.01 > k 3 > 0.001, day-1) fractions in the active pool of soil organic matter. The results of the studies show that the destruction of the structural-aggregate status is one of the reasons for the active soil organic matter depletion and, as a consequence, for the degradation of the properties inherent to the undisturbed soils.

  2. Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia

    DEFF Research Database (Denmark)

    Hilshoff, Hilleke E.; Brans, Rachel G. H.; van Haren, Neeltje E. M.

    2004-01-01

    BACKGROUND: Whole brain tissue volume decreases in schizophrenia have been related to both genetic risk factors and disease-related (possibly nongenetic) factors; however, whether genetic and environmental risk factors in the brains of patients with schizophrenia are differentially reflected...... matter volume are related to environmental risk factors. Study of genes involved in the (maintenance) of white matter structures may be particularly fruitful in schizophrenia...... in gray or white matter volume change is not known. METHODS: Magnetic resonance imaging (1.5 T) brain scans of 11 monozygotic and 11 same-gender dizygotic twin pairs discordant for schizophrenia were acquired and compared with 11 monozygotic and 11 same-gender dizygotic healthy control twin pairs. RESULTS...

  3. Frontal gray matter abnormalities predict seizure outcome in refractory temporal lobe epilepsy patients.

    Science.gov (United States)

    Doucet, Gaelle E; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I

    2015-01-01

    Developing more reliable predictors of seizure outcome following temporal lobe surgery for intractable epilepsy is an important clinical goal. In this context, we investigated patients with refractory temporal lobe epilepsy (TLE) before and after temporal resection. In detail, we explored gray matter (GM) volume change in relation with seizure outcome, using a voxel-based morphometry (VBM) approach. To do so, this study was divided into two parts. The first one involved group analysis of differences in regional GM volume between the groups (good outcome (GO), e.g., no seizures after surgery; poor outcome (PO), e.g., persistent postoperative seizures; and controls, N = 24 in each group), pre- and post-surgery. The second part of the study focused on pre-surgical data only (N = 61), determining whether the degree of GM abnormalities can predict surgical outcomes. For this second step, GM abnormalities were identified, within each lobe, in each patient when compared with an ad hoc sample of age-matched controls. For the first analysis, the results showed larger GM atrophy, mostly in the frontal lobe, in PO patients, relative to both GO patients and controls, pre-surgery. When comparing pre-to-post changes, we found relative GM gains in the GO but not in the PO patients, mostly in the non-resected hemisphere. For the second analysis, only the frontal lobe displayed reliable prediction of seizure outcome. 81% of the patients showing pre-surgical increased GM volume in the frontal lobe became seizure free, post-surgery; while 77% of the patients with pre-surgical reduced frontal GM volume had refractory seizures, post-surgery. A regression analysis revealed that the proportion of voxels with reduced frontal GM volume was a significant predictor of seizure outcome (p = 0.014). Importantly, having less than 1% of the frontal voxels with GM atrophy increased the likelihood of being seizure-free, post-surgery, by seven times. Overall, our results suggest that using pre

  4. Relationship between aging and T1relaxation time in deep gray matter: A voxel-based analysis.

    Science.gov (United States)

    Okubo, Gosuke; Okada, Tomohisa; Yamamoto, Akira; Fushimi, Yasutaka; Okada, Tsutomu; Murata, Katsutoshi; Togashi, Kaori

    2017-09-01

    To investigate age-related changes in T 1 relaxation time in deep gray matter structures in healthy volunteers using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE). In all, 70 healthy volunteers (aged 20-76, mean age 42.6 years) were scanned at 3T magnetic resonance imaging (MRI). A MP2RAGE sequence was employed to quantify T 1 relaxation times. After the spatial normalization of T 1 maps with the diffeomorphic anatomical registration using the exponentiated Lie algebra algorithm, voxel-based regression analysis was conducted. In addition, linear and quadratic regression analyses of regions of interest (ROIs) were also performed. With aging, voxel-based analysis (VBA) revealed significant T 1 value decreases in the ventral-inferior putamen, nucleus accumbens, and amygdala, whereas T 1 values significantly increased in the thalamus and white matter as well (P VBA result. T 1 values in the thalamus (P < 0.0001), substantia nigra (P = 0.0003), and globus pallidus (P < 0.0001) had a best fit to quadratic curves, with the minimum T 1 values observed between 30 and 50 years of age. Age-related changes in T 1 relaxation time vary by location in deep gray matter. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:724-731. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Decrease in temporal gyrus gray matter volume in first-episode, early onset schizophrenia: an MRI study.

    Directory of Open Access Journals (Sweden)

    Jinsong Tang

    Full Text Available BACKGROUND: Loss of gray matter has been previously found in early-onset schizophrenic patients. However, there are no consistent findings between studies due to different methods used to measure grey matter volume/density and influences of confounding factors. METHODS: The volume of gray matter (GM was measured in 29 first episode early-onset schizophrenia (EOS and 34 well-matched healthy controls by using voxel-based morphometry (VBM. Psychotic symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS. The correlations between the GM volume and PANSS scores, age of psychosis onset, duration of psychosis, and chlorpromazine (CPZ equivalent value were investigated. RESULTS: Relative to healthy subjects, the patients with first episode EOS showed significantly lower GM volume in the left middle and superior temporal gyrus. The loss of GM volume negatively correlated with PANSS-positive symptoms (p = 0.002, but not with PANSS-negative symptoms, PANSS-general psychopathology, and PANSS-total score. No significant correlation was found between GM volume and age of psychosis onset, duration of psychosis, and CPZ equivalent value. CONCLUSION: Patients with first episode EOS have evidence of reduced GM in the left middle and superior temporal gyrus. Structural abnormalities in the left middle and superior temporal gyrus may contribute to the pathophysiology of schizophrenia.

  6. A voxel-based morphometry study of regional gray and white matter correlate of self-disclosure.

    Science.gov (United States)

    Wang, ShanShan; Wei, DongTao; Li, WenFu; Li, HaiJiang; Wang, KangCheng; Xue, Song; Zhang, Qinglin; Qiu, Jiang

    2014-01-01

    Self-disclosure is an important performance in human social communication. Generally, an individual is likely to have a good physical and mental health if he is prone to self-disclosure under stressful life events. However, as for now, little is known about the neural structure associated with self-disclosure. Therefore, in this study, we used voxel-based morphometry to explore regional gray matter volume (rGMV) and white matter volume (rWMV) associated with self-disclosure measured by the Jourard Self-disclosure Questionnaire in a large sample of college students. Results showed that individual self-disclosure was significantly and positively associated with rGMV of the left postcentral gyrus, which might be related to strengthen individual's ability of body feeling; while self-disclosure was significantly and negatively associated with rGMV of the right orbitofrontal cortex (OFC), which might be involved in increased positive emotion experience seeking (intrinsically rewarding). In addition, individual self-disclosure was also associated with smaller rWMV in the right inferior parietal lobule (IPL). These findings suggested a biological basis for individual self-disclosure, distributed across different gray and white matter areas of the brain.

  7. The trajectory of gray matter development in Broca’s area is abnormal in people who stutter.

    Directory of Open Access Journals (Sweden)

    Deryk Scott Beal

    2015-03-01

    Full Text Available The acquisition and mastery of speech-motor control requires years of practice spanning the course of development. People who stutter often perform poorly on speech-motor tasks thereby calling into question their ability to establish the stable neural motor programs required for masterful speech-motor control. There is evidence to support the assertion that these neural motor programs are represented in the posterior part of Broca’s area, specifically the left pars opercularis. Consequently, various theories of stuttering causation posit that the disorder is related to a breakdown in the formation of the neural motor programs for speech early in development and that this breakdown is maintained throughout life. To date, no study has examined the potential neurodevelopmental signatures of the disorder across pediatric and adult populations. The current study aimed to fill this gap in our knowledge. We hypothesized that the developmental trajectory of cortical thickness in people who stutter would differ across the lifespan in the left pars opercularis relative to a group of control participants. We collected structural magnetic resonance images from 116 males (55 people who stutter ranging in age from 6 to 48 years old. Differences in cortical thickness across ages and between patients and controls were investigated in 30 brain regions previously implicated in speech-motor control. An interaction between age and group was found for the left pars opercularis only. In people who stutter, the pars opercularis did not demonstrate the typical maturational pattern of gradual gray matter thinning with age across the lifespan that we observed in control participants. In contrast, the developmental trajectory of gray matter thickness in other regions of interest within the neural network for speech-motor control was similar for both groups. Our findings indicate that the developmental trajectory of gray matter in left pars opercularis is abnormal in

  8. [Relative abundance of the gray fox Urocyon cinereoargenteus (Carnívora: Canidae) in Veracruz central area, Mexico].

    Science.gov (United States)

    Gallina, Sonia; López Colunga, Paloma; Valdespino, Carolina; Farías, Verónica

    2016-03-01

    The gray fox, Urocyon cinereoargenteus, is a medium-size canid widely distributed in México. Most studies on this species focus on habitat use, home range, diet, intraguild competence, and lanscape distribution between urban and rural sites. In central Veracruz, gray foxes are present in fragments of cloud forest and in shaded coffee plantations; nevertheless, its abundance has not yet been compared among other vegetation types found in the area, such as sugarcane plantations. In this study we described gray foxes abundance variations using 500 m transects, among sugarcane plantations, shaded coffee plantations, and cloud forest fragments throughout eight months, by scat counting in three sites of each cover type. We reported the relative abundance index for each cover type and each month, and evaluated its relationship with four landscape features: (a) shade percent, (b) trail density, (c) human population density, and (d) habitat juxtaposition, in influence areas of 450 ha around sampling sites. Abundance comparison among cover types showed lower abundances in cloud forest fragments and higher abundances in coffee and sugarcane plantations. No significant differences were found throughout months (p = 0.476). We proposed that higher abundances in plantations may be related to the presence of rodent plagues and fruit trees which offer food resources to gray foxes. The evaluation of landscape features showed that only medium-impact trail density and human population density were positively correlated with gray fox abundance; fact that demonstrates that this canid can coexist with humans in rural sites. We highlight the gray fox capacity to take advantage of heterogeneous landscapes.

  9. Gray Matter Abnormalities in Non-comorbid Medication-naive Patients with Major Depressive Disorder or Social Anxiety Disorder

    Directory of Open Access Journals (Sweden)

    Youjin Zhao

    2017-07-01

    Interpretation: Our results indicate that MDD and SAD share common patterns of gray matter abnormalities in the orbitofrontal-striatal-thalamic circuit, salience network and dorsal attention network. These consistent structural differences in the two patient groups may contribute to the broad spectrum of emotional, cognitive and behavioral disturbances observed in MDD patients and SAD patients. In addition, we found disorder-specific involvement of the visual processing regions in MDD and the precentral cortex in SAD. These findings provide new evidence regarding the shared and specific neuropathological mechanisms that underlie MDD and SAD.

  10. The Reduction of Ventrolateral Prefrontal Cortex Gray Matter Volume Correlates with Loss of Economic Rationality in Aging.

    Science.gov (United States)

    Chung, Hui-Kuan; Tymula, Agnieszka; Glimcher, Paul

    2017-12-06

    The population of people above 65 years old continues to grow, and there is mounting evidence that as humans age they are more likely to make errors. However, the specific effect of neuroanatomical aging on the efficiency of economic decision-making is poorly understood. We used whole-brain voxel-based morphometry analysis to determine where reduction of gray matter volume in healthy female and male adults over the age of 65 years correlates with a classic measure of economic irrationality: violations of the Generalized Axiom of Revealed Preference. All participants were functionally normal with Mini-Mental State Examination scores ranging between 26 and 30. While our elders showed the previously reported decline in rationality compared with younger subjects, chronological age per se did not correlate with rationality measures within our population of elders. Instead, reduction of gray matter density in ventrolateral prefrontal cortex correlates tightly with irrational behavior. Interestingly, using a large fMRI sample and meta-analytic tool with Neurosynth, we found that this brain area shows strong coactivation patterns with nearly all of the value-associated regions identified in previous studies. These findings point toward a neuroanatomic locus for economic rationality in the aging brain and highlight the importance of understanding both anatomy and function in the study of aging, cognition, and decision-making. SIGNIFICANCE STATEMENT Age is a crucial factor in decision-making, with older individuals making more errors in choices. Using whole-brain voxel-based morphometry analysis, we found that reduction of gray matter density in ventrolateral prefrontal cortex correlates with economic irrationality: reduced gray matter volume in this area correlates with the frequency and severity of violations of the Generalized Axiom of Revealed Preference. Furthermore, this brain area strongly coactivates with other reward-associated regions identified with Neurosynth

  11. Gray matter structure and morphosyntax within a spoken narrative in typically developing children and children with high functioning autism.

    Science.gov (United States)

    Mills, Brian D; Lai, Janie; Brown, Timothy T; Erhart, Matthew; Halgren, Eric; Reilly, Judy; Appelbaum, Mark; Moses, Pamela

    2013-01-01

    This study examined the relationship between magnetic resonance imaging (MRI)-based measures of gray matter structure and morphosyntax production in a spoken narrative in 17 typical children (TD) and 11 children with high functioning autism (HFA) between 6 and 13 years of age. In the TD group, cortical structure was related to narrative performance in the left inferior frontal gyrus (Broca's area), the right middle frontal sulcus, and the right inferior temporal sulcus. No associations were found in children with HFA. These findings suggest a systematic coupling between brain structure and spontaneous language in TD children and a disruption of these relationships in children with HFA.

  12. Protective Effect of Human Leukocyte Antigen (HLA Allele DRB1*13:02 on Age-Related Brain Gray Matter Volume Reduction in Healthy Women

    Directory of Open Access Journals (Sweden)

    Lisa M. James

    2018-03-01

    Full Text Available Background: Reduction of brain volume (brain atrophy during healthy brain aging is well documented and dependent on genetic, lifestyle and environmental factors. Here we investigated the possible dependence of brain gray matter volume reduction in the absence of the Human Leukocyte Antigen (HLA allele DRB1*13:02 which prevents brain atrophy in Gulf War Illness (James et al., 2017. Methods: Seventy-one cognitively healthy women (32–69 years old underwent a structural Magnetic Resonance Imaging (sMRI scan to measure the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter. Participants were assigned to two groups, depending on whether they lacked the DRB1*13:02 allele (No DRB1*13:02 group, N = 60 or carried the DRB1*13:02 allele (N = 11. We assessed the change of brain gray matter volume with age in each group by performing a linear regression where the brain volume (adjusted for total intracranial volume was the dependent variable and age was the independent variable. Findings: In the No DRB1*13:02 group, the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter were reduced highly significantly. In contrast, none of these volumes showed a statistically significant reduction with age in the DRB1*13:02 group. Interpretation: These findings document the protective effect of DRB1*13:02 on age-dependent reduction of brain gray matter in healthy individuals. Since the role of this allele is to connect to matching epitopes of external antigens for the subsequent production of antibodies and elimination of the offending antigen, we hypothesize that its protective effect may be due to the successful elimination of such antigens to which we are exposed during the lifespan, antigens that otherwise would persist causing gradual brain atrophy. In addition, we consider a possible beneficial role of DRB1*13:02 attributed to its binding to cathepsin S, a known harmful substance in brain

  13. Age-dependent decreases of high energy phosphates in cerebral gray matter of patients with bipolar I disorder: a preliminary phosphorus-31 magnetic resonance spectroscopic imaging study.

    Science.gov (United States)

    Dudley, Jonathan A; Lee, Jing-Huei; Durling, Michelle; Strakowski, Stephen M; Eliassen, James C

    2015-04-01

    To identify abnormalities in high energy phosphate cerebral metabolism in euthymic bipolar disorder. Phosphorus-31 magnetic resonance spectroscopic imaging ((31)P MRSI) data were acquired from the entire brain of 9 euthymic adults with bipolar disorder and 13 healthy adults. Estimates of phosphocreatine (PCr) and adenosine triphosphate (ATP) in homogeneous gray and white matter were obtained by tissue regression analysis. Analyses of covariance revealed the effect of age to be significantly different between bipolar and healthy groups for concentrations of PCr (p=0.0018) and ATP (p=0.013) in gray matter. These metabolites were negatively correlated with age in gray matter in bipolar subjects while PCr was positively correlated with age in gray matter of healthy subjects. Additionally, age-corrected concentrations of PCr in gray matter were significantly elevated in bipolar subjects (p=0.0048). Given that this cross-sectional study possessed a small sample and potentially confounding effects of medication status, we recommend a larger, longitudinal study to more robustly study relationships between bioenergetic impairment and duration of disease. Our results suggest bioenergetic impairment related to mitochondrial function may be progressive in multi-episode bipolar subjects as they age. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Correlations between gray matter reductions and cognitive deficits in dementia with Lewy Bodies and Parkinson's disease with dementia.

    Science.gov (United States)

    Sanchez-Castaneda, Cristina; Rene, Ramon; Ramirez-Ruiz, Blanca; Campdelacreu, Jaume; Gascon, Jordi; Falcon, Carles; Calopa, Matilde; Jauma, Serge; Juncadella, Montserrat; Junque, Carme

    2009-09-15

    There is controversy regarding whether Dementia with Lewy Bodies (DLB) and Parkinson's disease with dementia (PDD) may or not be different manifestations of the same disorder. The purpose of the present study was to investigate possible correlations between brain structure and neuropsychological functions in clinically diagnosed patients with DLB and PDD. The study sample consisted of 12 consecutively referred DLB patients, 16 PDD patients, and 16 healthy control subjects recruited from an outpatient setting, who underwent MRI and neuropsychological assessment. Voxel-based morphometry results showed that DLB patients had greater gray matter atrophy in the right superior frontal gyrus, the right premotor area and the right inferior frontal lobe compared to PDD. Furthermore, the anterior cingulate and prefrontal volume correlated with performance on the Continuous Performance Test while the right hippocampus and amygdala volume correlated with Visual Memory Test in the DLB group. In conclusion, DLB patients had more fronto-temporal gray matter atrophy than PDD patients and these reductions correlated with neuropsychological impairment.

  15. Sexual dimorphism of Broca's region: More gray matter in female brains in Brodmann areas 44 and 45.

    Science.gov (United States)

    Kurth, Florian; Jancke, Lutz; Luders, Eileen

    2017-01-02

    Although a sexual dimorphism in brain structure is generally well established, evidence for sex differences in Brodmann areas (BA) 44 and 45 is inconclusive. This may be due to the difficulty of accurately defining BA 44 and BA 45 in magnetic resonance images, given that these regions are variable in their location and extent and that they do not match well with macroanatomic landmarks. Here we set out to test for possible sex differences in the local gray matter of BA 44/45 by integrating imaging-based signal intensities with cytoarchitectonically defined tissue probabilities in a sample of 50 male and 50 female subjects. In addition to testing for sex differences with respect to left- and right-hemispheric measures of BA 44/45, we also assessed possible sex differences in BA 44/45 asymmetry. Our analyses revealed significantly larger gray matter volumes in females compared with males for BA 44 and BA 45 bilaterally. However, there was a lack of significant sex differences in BA 44/45 asymmetry. These results corroborate reports of a language-related female superiority, particularly with respect to verbal fluency and verbal memory tasks. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Gray matter changes in right superior temporal gyrus in criminal psychopaths. Evidence from voxel-based morphometry.

    Science.gov (United States)

    Müller, Jürgen L; Gänssbauer, Susanne; Sommer, Monika; Döhnel, Katrin; Weber, Tatjana; Schmidt-Wilcke, Tobias; Hajak, Göran

    2008-08-30

    "Psychopathy" according to the PCL-R describes a specific subgroup of antisocial personality disorder with a high risk for criminal relapses. Lesion and imaging studies point towards frontal or temporal brain regions connected with disturbed social behavior, antisocial personality disorder (APD) and psychopathy. Morphologically, some studies described a reduced prefrontal brain volume, whereas others reported on temporal lobe atrophy. To further investigate whether participants with psychopathy according to the Psychopathy Checklist-Revised Version (PCL-R) show abnormalities in brain structure, we used voxel-based morphometry (VBM) to investigate region-specific changes in gray matter in 17 forensic male inpatients with high PCL-R scores (PCL-R>28) and 17 male control subjects with low PCL-R scores (PCLright superior temporal gyrus. This is the first study to show that psychopathy is associated with a decrease in gray matter in both frontal and temporal brain regions, in particular in the right superior temporal gyrus, supporting the hypothesis that a disturbed frontotemporal network is critically involved in the pathogenesis of psychopathy.

  17. Focal Gray Matter Plasticity as a Function of Long Duration Head Down Tilted Bed Rest: Preliminary Results

    Science.gov (United States)

    Koppelmans, V.; Erdeniz, B.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.

    2014-01-01

    Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes are solely related to peripheral changes from reduced vestibular stimulation, body unloading, body fluid shifts or that they may be related to structural and functional brain changes is yet unknown. However, a recent study reported associations between microgravity and flattening of the posterior eye globe and protrusion of the optic nerve [1] possibly as the result of increased intracranial pressure due to microgravity induced bodily fluid shifts [3]. Moreover, elevated intracranial pressure has been related to white matter microstructural damage [2]. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning. Long duration head down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system [4]. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on brain structure [5]. Here we present results of the first six subjects. Six subjects were assessed at 12 and 7 days before-, at 7, 30, and 70 days in-, and at 8 and 12 days post 70 days of bed rest at the NASA bed rest facility in UTMB, Galveston, TX, USA. At each time point structural MRI scans (i.e., high resolution T1-weighted imaging and Diffusion Tensor Imaging (DTI)) were obtained using a 3T Siemens scanner. Focal changes over time in gray matter density were assessed using the voxel based morphometry 8 (VBM8) toolbox under SPM

  18. Organic matter in central California radiation fogs.

    Science.gov (United States)

    Herckes, Pierre; Lee, Taehyoung; Trenary, Laurie; Kang, Gongunn; Chang, Hui; Collett, Jeffrey L

    2002-11-15

    Organic matter was studied in radiation fogs in the San Joaquin Valley of California during the California Regional Particulate Air Quality Study (CRPAQS). Total organic carbon (TOC) concentrations ranged from 2 to 40 ppm of C. While most organic carbon was found in solution as dissolved organic carbon (DOC), 23% on average was not dissolved inside the fog drops. We observe a clear variation of organic matter concentration with droplet size. TOC concentrations in small fog drops (fogwater, consistent with the enrichment of the organic matter in smaller fog drops with lower terminal settling velocities.

  19. Gray matter-specific changes in brain bioenergetics after acute sleep deprivation: a 31P magnetic resonance spectroscopy study at 4 Tesla.

    Science.gov (United States)

    Plante, David T; Trksak, George H; Jensen, J Eric; Penetar, David M; Ravichandran, Caitlin; Riedner, Brady A; Tartarini, Wendy L; Dorsey, Cynthia M; Renshaw, Perry F; Lukas, Scott E; Harper, David G

    2014-12-01

    A principal function of sleep may be restoration of brain energy metabolism caused by the energetic demands of wakefulness. Because energetic demands in the brain are greater in gray than white matter, this study used linear mixed-effects models to examine tissue-type specific changes in high-energy phosphates derived using 31P magnetic resonance spectroscopy (MRS) after sleep deprivation and recovery sleep. Experimental laboratory study. Outpatient neuroimaging center at a private psychiatric hospital. A total of 32 MRS scans performed in eight healthy individuals (mean age 35 y; range 23-51 y). Phosphocreatine (PCr) and β-nucleoside triphosphate (NTP) were measured using 31P MRS three dimensional-chemical shift imaging at high field (4 Tesla) after a baseline night of sleep, acute sleep deprivation (SD), and 2 nights of recovery sleep. Novel linear mixed-effects models were constructed using spectral and tissue segmentation data to examine changes in bioenergetics in gray and white matter. PCr increased in gray matter after 2 nights of recovery sleep relative to SD with no significant changes in white matter. Exploratory analyses also demonstrated that increases in PCr were associated with increases in electroencephalographic slow wave activity during recovery sleep. No significant changes in β-NTP were observed. These results demonstrate that sleep deprivation and subsequent recovery-induced changes in high-energy phosphates primarily occur in gray matter, and increases in PCr after recovery sleep may be related to sleep homeostasis. © 2014 Associated Professional Sleep Societies, LLC.

  20. The alteration of gray matter volume in children with mental retardation: the differences between the patients presented with operation deficit predominantly and those presented with language deficit mainly

    International Nuclear Information System (INIS)

    Yuan Xinyu; Jiang Xuexiang; Jin Chunhua; Zhang Yuanchao; Bai Zhenhua; Yi Xiaoli; Xiao Jiangxi

    2012-01-01

    Objective: To detect the differences of grey matter volume between the patients with mental retardation (MR) presented clinically as operation deficit (OD) or as language deficit (LD) and the children with typical normal development using optimal VBM. The developmental connections between brain gray matter and language or operation skills were examined. Methods: Magnetic resonance imaging was obtained from 9 children with mental retardation presented as OD predominantly and 11 children with mental retardation presented as LD mainly, as well as the age-matched control group (11 and 14 normal children,respectively) on a 1.5 T scanner. Voxel-based morphometry analysis with an optimization of spatial segmentation and normalization procedures was applied to compare the volume of grey matter between the two groups (OD VS.control; LD VS.control). Statistically, the total and local gray matter volumes were compared between the two groups with t test. Results: The total gray matter volume of OD group was [(1.030 ± 0.078) × 10 6 mm 3 ]. Compared to that of controls [(0.984 ± 0.058) × 10 6 mm 3 ], it was increased significantly (t=-2.6, P<0.05). And the gray matter volume in the posterior cingulated gyrus, left superior prefrontal gyrus, left cuneus, left middle prefrontal gyrus and the body of left caudate nucleus showed significantly increased. Meanwhile, the total gray matter volume of the MR children presented as LD [(1.002 ± 0.068) × 10 6 mm 3 ] showed significantly increased(t=-3.0, P<0.05) compared with that of control group [(0.957 ±0.057) × 10 6 mm 3 ]. The gray matter volume in bilateral thalami, the left inferior temporal gyrus,the left inferior frontal gyrus, and the left cerebellum of the LD group was more than that of normal children. Conclusion: As revealed by VBM, there are differences in alterations of gray matter volume between MR children presented with OD and with LD relative to control. (authors)

  1. Value of analyzing deep gray matter and occipital lobe perfusion to differentiate dementia with Lewy bodies from Alzheimer's disease.

    Science.gov (United States)

    Shimizu, Soichiro; Hanyu, Haruo; Hirao, Kentaro; Sato, Tomohiko; Iwamoto, Toshihiko; Koizumi, Kiyoshi

    2008-12-01

    Dementia with Lewy bodies (DLB) is generally characterized by a decrease in regional cerebral blood flow (rCBF) in the occipital lobe. However, not all patients with DLB have this feature. We explored characteristics of rCBF pattern changes to improve the identification of DLB, in addition to occipital hypoperfusion. The study population comprised 30 patients with probable DLB and 49 patients with probable Alzheimer's disease (AD) who underwent single-photon emission computed tomography. The data were analyzed using Neurological Statistical Image Analysis Software (NEUROSTAT). We established a template of the region of interest (ROI) presenting the parietal lobe, posterior cingulate, striatum, thalamus, and occipital lobe on the standard brain atlas. We then compared the mean Z scores in each ROI between DLB and AD. Moreover, we investigated the value of analyzing relative rCBF changes in both the deep gray matter and occipital lobe in differentiating DLB from AD. The DLB group showed a significant relative rCBF increase in the bilateral striatum and thalamus, and a significant relative rCBF decrease in the bilateral occipital lobe when compared with the AD group. Receiver-operating characteristic analysis revealed that determining the hyperperfusion in the thalamus together with the hypoperfusion in the occipital lobe enabled a more accurate differentiation between DLB and AD than studying individual areas. Studying the relative increase of rCBF in the deep gray matter, and the relative decrease of that in the occipital lobe achieved a high differentiation between DLB and AD. This suggests that determining both an increase and a decrease in rCBF pattern may be important in differentiating between the two diseases.

  2. An optimized voxel-based morphometry study of gray matter abnormalities in patients with obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Li Fei; Lu Su; Huang Xiaoqi; Wu Qizhu; Qiu Lihua; Li Bin; Yang Yanchun; Gong Qiyong

    2011-01-01

    Objective: To explore changes of gray matter volume in patients with obsessive- compulsive disorder (OCD) in Chinese Han population using optimized voxel-based morphometry (VBM), and investigate its relationship with clinical symptoms. Methods: Twenty patients with OCD and 20 age, sex and handedness matched healthy controls were scanned using 3D-T 1 images on a 3.0 T MR system. The high resolution T 1 WI was preprocessed according to the optimized VBM protocol in Statistical Parametric Mapping (SPM5). Two-sample t test was performed to characterize the differences of the gray matter volume (GMV) between the OCD patients and healthy controls, and the correlations between the GMV and symptom severity and cumulative illness duration were examined using Pearson correlation in SPSS 16.0, respectively. Results: Compared to controls, OCD patients demonstrated increased GMV in left thalamus, right thalamus and left cerebellum after false discovery rate (FDR) correction. No areas of significantly decreased GMV was observed in OCD patients in relative to healthy controls. The mean eigenvalue ranged from 0.5782 to 0.889 representing the left thalamus volume of OCD patients was 0.6813±0.0718, and that ranged from 0.5546 to 0.9062 was 0.6869±0.0808 for right thalamus. The mean eigenvalues were positively correlated in bilateral thalamus (r=0.94, P<0.01). Conclusion: Using optimized VBM, the current research indicates that the pathophysiology of OCD is associated with GMV abnormalities not only in cortico-striato-thalamo-cortical (CSTC) circuit, but also in the cerebellum. (authors)

  3. Gray and white matter asymmetries in healthy individuals aged 21-29 years: a voxel-based morphometry and diffusion tensor imaging study.

    Science.gov (United States)

    Takao, Hidemasa; Abe, Osamu; Yamasue, Hidenori; Aoki, Shigeki; Sasaki, Hiroki; Kasai, Kiyoto; Yoshioka, Naoki; Ohtomo, Kuni

    2011-10-01

    The hemispheres of the human brain are functionally and structurally asymmetric. The study of structural asymmetries provides important clues to the neuroanatomical basis of lateralized brain functions. Previous studies have demonstrated age-related changes in morphology and diffusion properties of brain tissue. In this study, we simultaneously explored gray and white matter asymmetry using voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) in 109 young healthy individuals (58 females and 51 males). To eliminate the potential confounding effects of aging and handedness, we restricted the study to right-handed subjects aged 21-29 years. VBM and voxel-based analysis of fractional anisotropy (FA) maps derived from DTI revealed a number of gray matter volume asymmetries (including the right frontal and left occipital petalias and leftward asymmetry of the planum temporale) and white matter FA asymmetries (including leftward asymmetry of the arcuate fasciculus, cingulum, and corticospinal tract). There was no significant effect of sex on gray and white matter asymmetry. Leftward volume asymmetry of the planum temporale and leftward FA asymmetry of the arcuate fasciculus were simultaneously demonstrated. Post hoc analysis showed that the gray matter volume of the planum temporale and FA of the arcuate fasciculus were positively related (Pearson correlation coefficient, 0.43; P < 0.0001). The results of our study demonstrate gray and white matter asymmetry in right-handed healthy young adults and suggest that leftward volume asymmetry of the planum temporale and leftward FA asymmetry of the arcuate fasciculus may be related. Copyright © 2010 Wiley-Liss, Inc.

  4. Gray Matter Volume in Adolescent Anxiety: An Impact of the Brain-Derived Neurotrophic Factor Val[superscript 66]Met Polymorphism?

    Science.gov (United States)

    Mueller, Sven C.; Aouidad, Aveline; Gorodetsky, Elena; Goldman, David; Pine, Daniel S.; Ernst, Monique

    2013-01-01

    Objective: Minimal research links anxiety disorders in adolescents to regional gray matter volume (GMV) abnormalities and their modulation by genetic factors. Prior research suggests that a brain-derived neurotrophic factor (BNDF) Val[superscript 66]Met polymorphism may modulate such brain morphometry profiles. Method: Using voxel-based…

  5. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: Converging results from multimodal magnetic resonance imaging

    NARCIS (Netherlands)

    de Ruiter, Michiel B.; Reneman, Liesbeth; Boogerd, Willem; Veltman, Dick J.; Caan, Matthan; Douaud, Gwenaëlle; Lavini, Cristina; Linn, Sabine C.; Boven, Epie; van Dam, Frits S. A. M.; Schagen, Sanne B.

    2012-01-01

    The neural substrate underlying cognitive impairments after chemotherapy is largely unknown. Here, we investigated very late (>9 years) effects of adjuvant high-dose chemotherapy on brain white and gray matter in primary breast cancer survivors (n = 17) with multimodal magnetic resonance imaging

  7. Disrupted subject-specific gray matter network properties and cognitive dysfunction in type 1 diabetes patients with and without proliferative retinopathy.

    Science.gov (United States)

    van Duinkerken, Eelco; Ijzerman, Richard G; Klein, Martin; Moll, Annette C; Snoek, Frank J; Scheltens, Philip; Pouwels, Petra J W; Barkhof, Frederik; Diamant, Michaela; Tijms, Betty M

    2016-03-01

    Type 1 diabetes mellitus (T1DM) patients, especially with concomitant microvascular disease, such as proliferative retinopathy, have an increased risk of cognitive deficits. Local cortical gray matter volume reductions only partially explain these cognitive dysfunctions, possibly because volume reductions do not take into account the complex connectivity structure of the brain. This study aimed to identify gray matter network alterations in relation to cognition in T1DM. We investigated if subject-specific structural gray matter network properties, constructed from T1-weighted MRI scans, were different between T1DM patients with (n = 51) and without (n = 53) proliferative retinopathy versus controls (n = 49), and were associated to cognitive decrements and fractional anisotropy, as measured by voxel-based TBSS. Global normalized and local (45 bilateral anatomical regions) clustering coefficient and path length were assessed. These network properties measure how the organization of connections in a network differs from that of randomly connected networks. Global gray matter network topology was more randomly organized in both T1DM patient groups versus controls, with the largest effects seen in patients with proliferative retinopathy. Lower local path length values were widely distributed throughout the brain. Lower local clustering was observed in the middle frontal, postcentral, and occipital areas. Complex network topology explained up to 20% of the variance of cognitive decrements, beyond other predictors. Exploratory analyses showed that lower fractional anisotropy was associated with a more random gray matter network organization. T1DM and proliferative retinopathy affect cortical network organization that may consequently contribute to clinically relevant changes in cognitive functioning in these patients. © 2015 Wiley Periodicals, Inc.

  8. Increased gray matter volume of left pars opercularis in male orchestral musicians correlate positively with years of musical performance.

    Science.gov (United States)

    Abdul-Kareem, Ihssan A; Stancak, Andrej; Parkes, Laura M; Sluming, Vanessa

    2011-01-01

    To compare manual volumetry of gray matter (GM) / white matter (WM) of Broca's area subparts: pars opercularis (POP) and pars triangularis (PTR) in both hemispheres between musicians and nonmusician, as it has been shown that these regions are crucial for musical abilities. A previous voxel-based morphometric (VBM) study conducted in our laboratory reported increased GM density in Broca's area of left hemisphere in male orchestral musicians. Functional segregation of POP/PTR justified separate volumetric analysis of these parts. We used the same cohort for the VBM study. Manual morphometry (stereology) was used to compare volumes between 26/26 right-handed orchestral musicians/nonmusicians. As expected, musicians showed significantly increased GM volume in the Broca's area, specifically in the left POP. No significant results were detected in right POP, left/right PTR GM volumes, and WM volumes for all regions. Results were positively correlated with years of musical performance (r = 0.7, P = 0.0001). This result corroborates the VBM study and is in line with the hypothesis of critical involvement of POP in hearing-action integration being an integral component of frontoparietotemporal mirror neuron network. We hypothesize that increased size of musicians' left POP represent use-dependent structural adaptation in response to intensive audiomotor skill acquisition. Copyright © 2010 Wiley-Liss, Inc.

  9. Dyslexia and voxel-based morphometry: correlations between five behavioural measures of dyslexia and gray and white matter volumes.

    Science.gov (United States)

    Tamboer, Peter; Scholte, H Steven; Vorst, Harrie C M

    2015-10-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics and 57 non-dyslexics) with two analyses: group differences in local GM and total GM and WM volume and correlations between GM and WM volumes and five behavioural measures. We found no significant group differences after corrections for multiple comparisons although total WM volume was lower in the group of dyslexics when age was partialled out. We presented an overview of uncorrected clusters of voxels (p  200) with reduced or increased GM volume. We found four significant correlations between factors of dyslexia representing various behavioural measures and the clusters found in the first analysis. In the whole sample, a factor related to performances in spelling correlated negatively with GM volume in the left posterior cerebellum. Within the group of dyslexics, a factor related to performances in Dutch-English rhyme words correlated positively with GM volume in the left and right caudate nucleus and negatively with increased total WM volume. Most of our findings were in accordance with previous reports. A relatively new finding was the involvement of the caudate nucleus. We confirmed the multiple cognitive nature of dyslexia and suggested that experience greatly influences anatomical alterations depending on various subtypes of dyslexia, especially in a student sample.

  10. Glutamatergic and Neuronal Dysfunction in Gray and White Matter: A Spectroscopic Imaging Study in a Large Schizophrenia Sample.

    Science.gov (United States)

    Bustillo, Juan R; Jones, Thomas; Chen, Hongji; Lemke, Nicholas; Abbott, Christopher; Qualls, Clifford; Stromberg, Shannon; Canive, Jose; Gasparovic, Charles

    2017-05-01

    Glutamine plus glutamate (Glx), as well as N-acetylaspartate compounds (NAAc, N-acetylaspartate plus N-acetyl-aspartyl-glutamate), a marker of neuronal viability, can be quantified with proton magnetic resonance spectroscopy (1H-MRS). We used 1H-MRS imaging to assess Glx and NAAc, as well as total-choline (glycerophospho-choline plus phospho-choline), myo-inositol and total-creatine (creatine plus phosphocreatine) from an axial supraventricular slab of gray matter (GM, medial-frontal and medial-parietal) and white matter (WM, bilateral-frontal and bilateral-parietal) voxels. Schizophrenia subjects (N = 104) and healthy controls (N = 97) with a broad age range (16 to 65) were studied. In schizophrenia, Glx was increased in GM (P schizophrenia. In patients, total creatine decreased with age in WM (P schizophrenia group (NAAc, P schizophrenia. Later in the illness, disease progression is suggested by increased cortical compaction without neuronal loss (elevated NAAc) and reduced axonal integrity (lower NAAc). Furthermore, this process is associated with fundamentally altered relationships between neurometabolite concentrations and cognitive function in schizophrenia. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Age of second language acquisition in multilinguals has an impact on gray matter volume in language-associated brain areas.

    Science.gov (United States)

    Kaiser, Anelis; Eppenberger, Leila S; Smieskova, Renata; Borgwardt, Stefan; Kuenzli, Esther; Radue, Ernst-Wilhelm; Nitsch, Cordula; Bendfeldt, Kerstin

    2015-01-01

    Numerous structural studies have established that experience shapes and reshapes the brain throughout a lifetime. The impact of early development, however, is still a matter of debate. Further clues may come from studying multilinguals who acquired their second language at different ages. We investigated adult multilinguals who spoke three languages fluently, where the third language was learned in classroom settings, not before the age of 9 years. Multilinguals exposed to two languages simultaneously from birth (SiM) were contrasted with multinguals who acquired their first two languages successively (SuM). Whole brain voxel based morphometry revealed that, relative to SuM, SiM have significantly lower gray matter volume in several language-associated cortical areas in both hemispheres: bilaterally in medial and inferior frontal gyrus, in the right medial temporal gyrus and inferior posterior parietal gyrus, as well as in the left inferior temporal gyrus. Thus, as shown by others, successive language learning increases the volume of language-associated cortical areas. In brains exposed early on and simultaneously to more than one language, however, learning of additional languages seems to have less impact. We conclude that - at least with respect to language acquisition - early developmental influences are maintained and have an effect on experience-dependent plasticity well into adulthood.

  12. Reduced gray matter volume and increased white matter fractional anisotropy in women with hypoactive sexual desire disorder

    NARCIS (Netherlands)

    Bloemers, J.; Scholte, H.S.; van Rooij, K.; Goldstein, I.; Gerritsen, J.; Olivier, B.; Tuiten, A.

    2014-01-01

    Introduction: Models of hypoactive sexual desire disorder (HSDD) imply altered central processing of sexual stimuli. Imaging studies have identified areas which show altered processing as compared with controls, but to date, structural neuroanatomical differences have not been described. Aim: The

  13. Expression of Osteogenic Molecules in the Caudate Nucleus and Gray Matter and Their Potential Relevance for Basal Ganglia Calcification in Hypoparathyroidism

    Science.gov (United States)

    Millo, Tabin; Mishra, Shruti; Das, Madhuchhanda; Kapoor, Mansi; Tomar, Neeraj; Saha, Soma; Roy, Tara Shankar; Sreenivas, Vishnubhatla

    2014-01-01

    Background: Basal ganglia calcification (BGC) is an interesting example of ectopic calcification in patients with hypoparathyroidism. Its pathogenesis and reasons for predilection of calcification at basal ganglia are not clear. Objective: To assess the expression of osteogenesis-related molecules in the caudate nucleus and surface gray matter (an area spared from calcification) and discuss potential relevance of the results in context of BGC in idiopathic hypoparathyroidism. Methods: Caudate nucleus and gray matter were obtained from 14 autopsies performed in accidental deaths. The mRNA expression of bone transcription factors (RUNX2/osterix), bone morphogenetic proteins (BMPs) 2 and 4, osteonectin, osteopontin, osteocalcin, vitamin D receptor, calcium sensing-receptor, Na phosphate transporters (PiTs) 1 and 2, N-methyl-D-aspartate receptor 2B (NMDAR2B), carbonic anhydrase II (CA-II), PTH1 receptor (PTH1R), PTH2R, and PTHrP were assessed by RT-PCR. Western blot, spot densitometry, and immunohistochemistry were performed to assess protein expression of molecules showing differences in mRNA expression between caudate and gray tissues. Results: The mean mRNA expression of PiT1 (11.0 ± 10.39 vs 32.9 ± 20.98, P = .003) and PTH2R (1.6 ± 1.47 vs 13.7 ± 6.11, P = .001) were significantly lower in the caudate nucleus than the gray matter. The expression of osteonectin, osteopontin, and CA-II were significantly higher in the caudate nucleus than the gray matter (P = .01, .001, and .04, respectively). The mRNA expression of other molecules was comparable in the 2 tissues. The protein expression of both CA-II and osteonectin was 24% higher and PiT1 17% lower in caudate than the gray matter. The differences in the PTH2R and osteopontin protein expression were not appreciable. Conclusions: The presence of several osteogenic molecules in caudate nucleus indicates that BGC would probably be the outcome of an active process. The differences in expression of these molecules in

  14. Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry

    DEFF Research Database (Denmark)

    Hulshoff Pol, HE; Schnack, HG; Mandl, RC

    2006-01-01

    best reflect the genetic and environmental risk factors in the brains of patients with schizophrenia remains unresolved. 1.5-T MRI brain scans of 11 monozygotic and 11 same-sex dizygotic twin-pairs discordant for schizophrenia were compared to 11 monozygotic and 11 same-sex dizygotic healthy control......Global gray matter brain tissue volume decreases in schizophrenia have been associated to disease-related (possibly nongenetic) factors. Global white matter brain tissue volume decreases were related to genetic risk factors for the disease. However, which focal gray and white matter brain regions...... gyrus in twin-pairs discordant for schizophrenia as compared to healthy twin-pairs. Focal changes in left medial (orbito)frontal and left sensory motor gyri may reflect the increased genetic risk to develop schizophrenia. Focal changes in the left anterior hemisphere may therefore be particularly...

  15. Early brain loss in circuits affected by Alzheimer’s disease is predicted by fornix microstructure but may be independent of gray matter

    Directory of Open Access Journals (Sweden)

    Evan eFletcher

    2014-05-01

    Full Text Available In a cohort of community-recruited elderly subjects with normal cognition at initial evaluation, we found that baseline fornix white matter microstructure was significantly correlated with early volumetric longitudinal tissue change across a region of interest (called fSROI, which overlaps circuits known to be selectively vulnerable to AD pathology. Other white matter and gray matter regions had much weaker or non-existent associations with longitudinal tissue change. Tissue loss in fSROI was in turn a significant factor in a survival model of cognitive decline, as was baseline fornix microstructure. These findings suggest that WM deterioration in the fornix and tissue loss in fSROI may be the early beginnings of posterior limbic circuit and default mode network degeneration. We also found that gray matter baseline volumes in the entorhinal cortex and hippocampus predicted cognitive decline in survival models. But since GM regions did not also significantly predict brain tissue loss, our results may imply a view in which early, prodromal deterioration appears as two quasi independent processes in white and gray matter regions of the limbic circuit crucial to memory.

  16. Higher Adolescent Body Mass Index is Associated with Lower Regional Gray and White Matter Volumes and Lower Levels of Positive Emotionality

    Directory of Open Access Journals (Sweden)

    James T Kennedy

    2016-09-01

    Full Text Available Adolescent obesity is associated with an increased chance of developing serious health risks later in life. Identifying the neurobiological and personality factors related to increases in adiposity is important to understanding what drives maladaptive consummatory and exercise behaviors that result in obesity. Previous research has largely focused on adults with few findings published on interactions among adiposity, brain structure, and personality. In this study, Voxel Based Morphometry (VBM was used to identify associations between gray and white matter volumes and increasing adiposity, as measured by Body Mass Index percentile (BMI%, in 137 adolescents (age range: 9-20 years, Body Mass Index percentile range: 5.16-99.56. Variations in gray and white matter volume and BMI% were then linked to individual differences in personality measures from the Multidimensional Personality Questionnaire (MPQ. After controlling for age and other covariates, BMI% correlated negatively with gray matter volume in the bilateral caudate (right: partial r = -0.338, left: r -0.404, medial prefrontal cortex (partial r = -0.339, anterior cingulate (partial r = -0.312, bilateral frontal pole (right: partial r = -0.368, left: r= -0.316, and uncus (partial r = -0.475 as well as white matter volume bilaterally in the anterior limb of the internal capsule (right: partial r = -0.34, left: r = -0.386, extending to the left middle frontal subgyral white matter. Agentic Positive Emotionality (PEM-AG was correlated negatively with BMI% (partial r = -0.384. PEM-AG was correlated positively with gray matter volume in the right uncus (partial r = 0.329. These results suggest that higher levels of adiposity in adolescents are associated with lower trait levels in reward-related personality domains, as well as structural variations in brain regions associated with reward processing, control, and sensory integration.

  17. Magnetic Resonance Image Texture Analysis of the Periaqueductal Gray Matter in Episodic Migraine Patients without T2-Visible Lesions

    Science.gov (United States)

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Liu, Shuangfeng; Yu, Shengyuan

    2018-01-01

    Objective The periaqueductal gray matter (PAG), a small midbrain structure, presents dysfunction in migraine. However, the precise neurological mechanism is still not well understood. Herein, the aim of this study was to investigate the texture characteristics of altered PAG in episodic migraine (EM) patients based on high resolution brain structural magnetic resonance (MR) images. Materials and Methods The brain structural MR images were obtained from 18 normal controls (NC), 18 EM patients and 16 chronic migraine (CM) patients using a 3T MR system. A PAG template was created using the International Consortium Brain Mapping 152 gray matter model, and the individual PAG segment was developed by applying the deformation field from the structural image segment to the PAG template. A grey level co-occurrence matrix was used to calculate the texture parameters including the angular second moment (ASM), contrast, correlation, inverse difference moment (IDM) and entropy. Results There was a significant difference for ASM, IDM and entropy in the EM group (998.629 ± 0.162 × 10−3, 999.311 ± 0.073 × 10−3, 916.354 ± 0.947 × 10−5) compared to that found in the NC group (998.760 ± 0.110 × 10−3, 999.358 ± 0.037 × 10−3 and 841.198 ± 0.575 × 10−5) (p < 0.05). The entropy was significantly lower among the patients with CM (864.116 ± 0.571 × 10−5) than that found among patients with EM (p < 0.05). The area under the receiver operating characteristic curve was 0.776 and 0.750 for ASM and entropy in the distinction of the EM from NC groups, respectively. ASM was negatively related to disease duration (DD) and the Migraine Disability Assessment Scale (MIDAS) scores in the EM group, and entropy was positively related to DD and MIDAS in the EM group (p < 0.05). Conclusion The present study identified altered MR image texture characteristics of the PAG in EM. The identified texture characteristics could be considered as imaging biomarkers for EM. PMID:29354004

  18. Heavy Drinking in College Students Is Associated with Accelerated Gray Matter Volumetric Decline over a 2 Year Period

    Directory of Open Access Journals (Sweden)

    Shashwath A. Meda

    2017-09-01

    Full Text Available Background: Heavy and/or harmful alcohol use while in college is a perennial and significant public health issue. Despite the plethora of cross-sectional research suggesting deleterious effects of alcohol on the brain, there is a lack of literature investigating the longitudinal effects of alcohol consumption on the adolescent brain. We aim to probe the longitudinal effects of college drinking on gray matter change in students during this crucial neurodevelopmental period.Methods: Data were derived from the longitudinal Brain and Alcohol Research in College Students (BARCS study of whom a subset underwent brain MRI scans at two time points 24 months apart. Students were young adults with a mean age at baseline of about 18.5 years. Based on drinking metrics assessed at both baseline and followup, subjects were classified as sustained abstainers/light drinkers (N = 45 or sustained heavy drinkers (N = 84 based on criteria established in prior literature. Gray matter volumetric change (GMV-c maps were derived using the longitudinal DARTEL pipeline as implemented in SPM12. GMV-c maps were then subjected to a 1-sample and 2-sample t-test in SPM12 to determine within- and between-group GMV-c differences in drinking groups. Supplementary between-group differences were also computed at baseline only.Results: Within-group analysis revealed significant decline in GMV in both groups across the 2 year followup period. However, tissue loss in the sustained heavy drinking group was more significant, larger per region, and more widespread across regions compared to abstainers/light drinkers. Between-group analysis confirmed the above and showed a greater rate of GMV-c in the heavy drinking group in several brain regions encompassing inferior/medial frontal gyrus, parahippocampus, and anterior cingulate. Supplementary analyses suggest that some of the frontal differences existed at baseline and progressively worsened.Conclusion: Sustained heavy drinking while in

  19. Mammal-like organization of the avian midbrain central gray and a reappraisal of the intercollicular nucleus.

    Directory of Open Access Journals (Sweden)

    Marcy A Kingsbury

    Full Text Available In mammals, rostrocaudal columns of the midbrain periaqueductal gray (PAG regulate diverse behavioral and physiological functions, including sexual and fight-or-flight behavior, but homologous columns have not been identified in non-mammalian species. In contrast to mammals, in which the PAG lies ventral to the superior colliculus and surrounds the cerebral aqueduct, birds exhibit a hypertrophied tectum that is displaced laterally, and thus the midbrain central gray (CG extends mediolaterally rather than dorsoventrally as in mammals. We therefore hypothesized that the avian CG is organized much like a folded open PAG. To address this hypothesis, we conducted immunohistochemical comparisons of the midbrains of mice and finches, as well as Fos studies of aggressive dominance, subordinance, non-social defense and sexual behavior in territorial and gregarious finch species. We obtained excellent support for our predictions based on the folded open model of the PAG and further showed that birds possess functional and anatomical zones that form longitudinal columns similar to those in mammals. However, distinguishing characteristics of the dorsal/dorsolateral PAG, such as a dense peptidergic innervation, a longitudinal column of neuronal nitric oxide synthase neurons, and aggression-induced Fos responses, do not lie within the classical avian CG, but in the laterally adjacent intercollicular nucleus (ICo, suggesting that much of the ICo is homologous to the dorsal PAG.

  20. Linked alterations in gray and white matter morphology in adults with high-functioning autism spectrum disorder: A multimodal brain imaging study

    Directory of Open Access Journals (Sweden)

    Takashi Itahashi

    2015-01-01

    Full Text Available Growing evidence suggests that a broad range of behavioral anomalies in people with autism spectrum disorder (ASD can be linked with morphological and functional alterations in the brain. However, the neuroanatomical underpinnings of ASD have been investigated using either structural magnetic resonance imaging (MRI or diffusion tensor imaging (DTI, and the relationships between abnormalities revealed by these two modalities remain unclear. This study applied a multimodal data-fusion method, known as linked independent component analysis (ICA, to a set of structural MRI and DTI data acquired from 46 adult males with ASD and 46 matched controls in order to elucidate associations between different aspects of atypical neuroanatomy of ASD. Linked ICA identified two composite components that showed significant between-group differences, one of which was significantly correlated with age. In the other component, participants with ASD showed decreased gray matter (GM volumes in multiple regions, including the bilateral fusiform gyri, bilateral orbitofrontal cortices, and bilateral pre- and post-central gyri. These GM changes were linked with a pattern of decreased fractional anisotropy (FA in several white matter tracts, such as the bilateral inferior longitudinal fasciculi, bilateral inferior fronto-occipital fasciculi, and bilateral corticospinal tracts. Furthermore, unimodal analysis for DTI data revealed significant reductions of FA along with increased mean diffusivity in those tracts for ASD, providing further evidence of disrupted anatomical connectivity. Taken together, our findings suggest that, in ASD, alterations in different aspects of brain morphology may co-occur in specific brain networks, providing a comprehensive view for understanding the neuroanatomy of this disorder.

  1. Early Brain Loss in Circuits Affected by Alzheimer’s Disease is Predicted by Fornix Microstructure but may be Independent of Gray Matter

    Science.gov (United States)

    Fletcher, Evan; Carmichael, Owen; Pasternak, Ofer; Maier-Hein, Klaus H.; DeCarli, Charles

    2014-01-01

    In a cohort of community-recruited elderly subjects with normal cognition at initial evaluation, we found that baseline fornix white matter (WM) microstructure was significantly correlated with early volumetric longitudinal tissue change across a region of interest (called fornix significant ROI, fSROI), which overlaps circuits known to be selectively vulnerable to Alzheimer’s dementia pathology. Other WM and gray matter regions had much weaker or non-existent associations with longitudinal tissue change. Tissue loss in fSROI was in turn a significant factor in a survival model of cognitive decline, as was baseline fornix microstructure. These findings suggest that WM deterioration in the fornix and tissue loss in fSROI may be the early beginnings of posterior limbic circuit and default mode network degeneration. We also found that gray matter baseline volumes in the entorhinal cortex and hippocampus predicted cognitive decline in survival models. But since GM regions did not also significantly predict brain-tissue loss, our results may imply a view in which early, prodromal deterioration appears as two quasi independent processes in white and gray matter regions of the limbic circuit crucial to memory. PMID:24904414

  2. Early Brain Loss in Circuits Affected by Alzheimer's Disease is Predicted by Fornix Microstructure but may be Independent of Gray Matter.

    Science.gov (United States)

    Fletcher, Evan; Carmichael, Owen; Pasternak, Ofer; Maier-Hein, Klaus H; DeCarli, Charles

    2014-01-01

    In a cohort of community-recruited elderly subjects with normal cognition at initial evaluation, we found that baseline fornix white matter (WM) microstructure was significantly correlated with early volumetric longitudinal tissue change across a region of interest (called fornix significant ROI, fSROI), which overlaps circuits known to be selectively vulnerable to Alzheimer's dementia pathology. Other WM and gray matter regions had much weaker or non-existent associations with longitudinal tissue change. Tissue loss in fSROI was in turn a significant factor in a survival model of cognitive decline, as was baseline fornix microstructure. These findings suggest that WM deterioration in the fornix and tissue loss in fSROI may be the early beginnings of posterior limbic circuit and default mode network degeneration. We also found that gray matter baseline volumes in the entorhinal cortex and hippocampus predicted cognitive decline in survival models. But since GM regions did not also significantly predict brain-tissue loss, our results may imply a view in which early, prodromal deterioration appears as two quasi independent processes in white and gray matter regions of the limbic circuit crucial to memory.

  3. Organohalogen contaminants and metabolites in cerebrospinal fluid and cerebellum gray matter in short-beaked common dolphins and Atlantic white-sided dolphins from the western North Atlantic

    International Nuclear Information System (INIS)

    Montie, Eric W.; Reddy, Christopher M.; Gebbink, Wouter A.; Touhey, Katie E.; Hahn, Mark E.; Letcher, Robert J.

    2009-01-01

    Concentrations of several congeners and classes of organohalogen contaminants (OHCs) and/or their metabolites, namely organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), hydroxylated-PCBs (OH-PCBs), methylsulfonyl-PCBs (MeSO 2 -PCBs), polybrominated diphenyl ether (PBDE) flame retardants, and OH-PBDEs, were measured in cerebrospinal fluid (CSF) of short-beaked common dolphins (n = 2), Atlantic white-sided dolphins (n = 8), and gray seal (n = 1) from the western North Atlantic. In three Atlantic white-sided dolphins, cerebellum gray matter (GM) was also analyzed. The levels of OCs, PCBs, MeSO 2 -PCBs, PBDEs, and OH-PBDEs in cerebellum GM were higher than the concentrations in CSF. 4-OH-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) was the only detectable OH-PCB congener present in CSF. The sum (Σ) OH-PCBs/Σ PCB concentration ratio in CSF was approximately two to three orders of magnitude greater than the ratio in cerebellum GM for dolphins. - Organohalogens and/or metabolites in cerebrospinal fluid and cerebellum gray matter in short-beaked common dolphins, Atlantic white-sided dolphins, and gray seal.

  4. Organohalogen contaminants and metabolites in cerebrospinal fluid and cerebellum gray matter in short-beaked common dolphins and Atlantic white-sided dolphins from the western North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Montie, Eric W., E-mail: emontie@marine.usf.ed [Departments of Biology (EWM and MEH) and Marine Chemistry and Geochemistry (CMR), Woods Hole Oceanographic Institution - WHOI, Woods Hole, MA 02543 (United States); Reddy, Christopher M. [Departments of Biology (EWM and MEH) and Marine Chemistry and Geochemistry (CMR), Woods Hole Oceanographic Institution - WHOI, Woods Hole, MA 02543 (United States); Gebbink, Wouter A. [Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A OH3 (Canada); Touhey, Katie E. [Cape Cod Stranding Network, Buzzards Bay, MA 02542 (United States); Hahn, Mark E. [Departments of Biology (EWM and MEH) and Marine Chemistry and Geochemistry (CMR), Woods Hole Oceanographic Institution - WHOI, Woods Hole, MA 02543 (United States); Letcher, Robert J. [Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A OH3 (Canada)

    2009-08-15

    Concentrations of several congeners and classes of organohalogen contaminants (OHCs) and/or their metabolites, namely organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), hydroxylated-PCBs (OH-PCBs), methylsulfonyl-PCBs (MeSO{sub 2}-PCBs), polybrominated diphenyl ether (PBDE) flame retardants, and OH-PBDEs, were measured in cerebrospinal fluid (CSF) of short-beaked common dolphins (n = 2), Atlantic white-sided dolphins (n = 8), and gray seal (n = 1) from the western North Atlantic. In three Atlantic white-sided dolphins, cerebellum gray matter (GM) was also analyzed. The levels of OCs, PCBs, MeSO{sub 2}-PCBs, PBDEs, and OH-PBDEs in cerebellum GM were higher than the concentrations in CSF. 4-OH-2,3,3',4',5-pentachlorobiphenyl (4-OH-CB107) was the only detectable OH-PCB congener present in CSF. The sum (SIGMA) OH-PCBs/SIGMA PCB concentration ratio in CSF was approximately two to three orders of magnitude greater than the ratio in cerebellum GM for dolphins. - Organohalogens and/or metabolites in cerebrospinal fluid and cerebellum gray matter in short-beaked common dolphins, Atlantic white-sided dolphins, and gray seal.

  5. Neurobiological correlates of impulsivity in healthy adults: Lower prefrontal gray matter volume and spontaneous eye-blink rate but greater resting-state functional connectivity in basal ganglia-thalamo-cortical circuitry.

    Science.gov (United States)

    Korponay, Cole; Dentico, Daniela; Kral, Tammi; Ly, Martina; Kruis, Ayla; Goldman, Robin; Lutz, Antoine; Davidson, Richard J

    2017-08-15

    Studies consistently implicate aberrance of the brain's reward-processing and decision-making networks in disorders featuring high levels of impulsivity, such as attention-deficit hyperactivity disorder, substance use disorder, and psychopathy. However, less is known about the neurobiological determinants of individual differences in impulsivity in the general population. In this study of 105 healthy adults, we examined relationships between impulsivity and three neurobiological metrics - gray matter volume, resting-state functional connectivity, and spontaneous eye-blink rate, a physiological indicator of central dopaminergic activity. Impulsivity was measured both by performance on a task of behavioral inhibition (go/no-go task) and by self-ratings of attentional, motor, and non-planning impulsivity using the Barratt Impulsiveness Scale (BIS-11). Overall, we found that less gray matter in medial orbitofrontal cortex and paracingulate gyrus, greater resting-state functional connectivity between nodes of the basal ganglia-thalamo-cortical network, and lower spontaneous eye-blink rate were associated with greater impulsivity. Specifically, less prefrontal gray matter was associated with higher BIS-11 motor and non-planning impulsivity scores, but was not related to task performance; greater correlated resting-state functional connectivity between the basal ganglia and thalamus, motor cortices, and prefrontal cortex was associated with worse no-go trial accuracy on the task and with higher BIS-11 motor impulsivity scores; lower spontaneous eye-blink rate was associated with worse no-go trial accuracy and with higher BIS-11 motor impulsivity scores. These data provide evidence that individual differences in impulsivity in the general population are related to variability in multiple neurobiological metrics in the brain's reward-processing and decision-making networks. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Examining gray matter structures associated with individual differences in global life satisfaction in a large sample of young adults

    Science.gov (United States)

    Kong, Feng; Ding, Ke; Yang, Zetian; Dang, Xiaobin; Hu, Siyuan; Song, Yiying

    2015-01-01

    Although much attention has been directed towards life satisfaction that refers to an individual’s general cognitive evaluations of his or her life as a whole, little is known about the neural basis underlying global life satisfaction. In this study, we used voxel-based morphometry to investigate the structural neural correlates of life satisfaction in a large sample of young healthy adults (n = 299). We showed that individuals’ life satisfaction was positively correlated with the regional gray matter volume (rGMV) in the right parahippocampal gyrus (PHG), and negatively correlated with the rGMV in the left precuneus and left ventromedial prefrontal cortex. This pattern of results remained significant even after controlling for the effect of general positive and negative affect, suggesting a unique structural correlates of life satisfaction. Furthermore, we found that self-esteem partially mediated the association between the PHG volume and life satisfaction as well as that between the precuneus volume and global life satisfaction. Taken together, we provide the first evidence for the structural neural basis of life satisfaction, and highlight that self-esteem might play a crucial role in cultivating an individual’s life satisfaction. PMID:25406366

  7. Relative activity of cerebral subcortical gray matter in varying states of attention and awareness in normal subjects and patient studies

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.; Chen, C.T.; Levy, J.; Wagner, N.; Spire, J.P.; Jacobsen, J.; Meltzer, H.; Metz, J.; Beck, R.N.

    1985-05-01

    An important aspect of the study of brain function involves measurement of the relationships; between activities in the subcortical gray matter of the caudate and of the thalamus; and between these structures and functional cortical areas. The authors have studied these relationships in 22 subjects under different conditions of activation, sleep and sensory deprivation using a PET VI system and F-18-2DG to determine regional cerebral metabolism. Subject activating conditions were maintained throughout the period of equilibration of F-18-2DG and E.E.G.'s were monitored. Multiple tomographic slices of 1-2 million counts were obtained simultaneously with slice separation of 14mm and each plane parallel to the cantho-meatal line. In activated and non-activated awake conditions for normal subjects, left and right thalmus-to-caudate ratios were similar and greater than unity. This relationship was maintained in non-REM sleep, but was reversed and divergent in REM sleep and sensory deprivation; this was also evident in 3/4 narcoleptics awake and asleep in non-REM and REM and 2/3 schizophrenics and affective disorder, subjects. This approach appears to have potential for characterizating normal and disordered regional cerebral function.

  8. Examining gray matter structure associated with academic performance in a large sample of Chinese high school students.

    Science.gov (United States)

    Wang, Song; Zhou, Ming; Chen, Taolin; Yang, Xun; Chen, Guangxiang; Wang, Meiyun; Gong, Qiyong

    2017-04-18

    Achievement in school is crucial for students to be able to pursue successful careers and lead happy lives in the future. Although many psychological attributes have been found to be associated with academic performance, the neural substrates of academic performance remain largely unknown. Here, we investigated the relationship between brain structure and academic performance in a large sample of high school students via structural magnetic resonance imaging (S-MRI) using voxel-based morphometry (VBM) approach. The whole-brain regression analyses showed that higher academic performance was related to greater regional gray matter density (rGMD) of the left dorsolateral prefrontal cortex (DLPFC), which is considered a neural center at the intersection of cognitive and non-cognitive functions. Furthermore, mediation analyses suggested that general intelligence partially mediated the impact of the left DLPFC density on academic performance. These results persisted even after adjusting for the effect of family socioeconomic status (SES). In short, our findings reveal a potential neuroanatomical marker for academic performance and highlight the role of general intelligence in explaining the relationship between brain structure and academic performance.

  9. Juvenile Myoclonic Epilepsy with Frontal Executive Dysfunction is Associated with Reduced Gray Matter Volume by Voxel-based Morphometry.

    Science.gov (United States)

    Pillai, Sreeja H; Raghavan, Sheelakumari; Mathew, Mrudula; Gopalan, Geetha M; Kesavadas, Chandrasekharan; Sarma, Sankara; Thomas, Sanjeev V

    2017-01-01

    Frontal executive dysfunction (FED) and abnormalities in volumetric magnetic resonance imaging (MRI) have been described in juvenile myoclonic epilepsy (JME). We aimed to compare JME patients with and without FED by group analysis of voxel-based morphometric (VBM) estimates of brain volume in MRI. We studied frontal executive functions in patients with JME and analyzed the possible association of FED with their demographic, clinical, and electrographic characteristics. We aimed to do group analysis of the VBM MRI brain data to compare the gray matter (GM) volumes of JME patients with and without FED. We recruited 34 patients (20 women) with JME (mean age 23.7 ± 4.58 years) from the epilepsy outpatient services. FED was detected in twenty patients (58.8%). Group analysis of VBM MRI brain showed significant ( P < 0.001) reduction in GM volume in dorsolateral prefrontal cortex (left Brodmann area [BA] 10, 46, 9, Z-score 3.36, 2.91, 2.03, respectively, and right BA 10 and BA 45, Z-score 2.98 and 3.36, respectively), left insula (BA 13, Z-score 2.14), temporal lobe (BA 38, Z-score 2.76), in the subgroup of JME with FED. JME with FED has an anatomical correlate in the form of reduced GM volume in dorsolateral prefrontal cortex.

  10. The role of education and verbal abilities in altering the effect of age-related gray matter differences on cognition.

    Science.gov (United States)

    Steffener, Jason; Barulli, Daniel; Habeck, Christian; O'Shea, Deirdre; Razlighi, Qolamreza; Stern, Yaakov

    2014-01-01

    Evidence suggests that individual variability in lifetime exposures influences how cognitive performance changes with advancing age. Brain maintenance and cognitive reserve are theories meant to account for preserved performance despite advancing age. These theories differ in their causal mechanisms. Brain maintenance predicts more advantageous lifetime exposures will reduce age-related neural differences. Cognitive reserve predicts that lifetime exposures will not directly reduce these differences but minimize their impact on cognitive performance. The present work used moderated-mediation modeling to investigate the contributions of these mechanisms at explaining variability in cognitive performance among a group of 39 healthy younger (mean age (standard deviation) 25.9 (2.92) and 45 healthy older adults (65.2 (2.79)). Cognitive scores were computed using composite measures from three separate domains (speed of processing, fluid reasoning, and memory), while their lifetime exposures were estimated using education and verbal IQ measures. T1-weighted MR images were used to measure cortical thickness and subcortical volumes. Results suggest a stronger role for cognitive reserve mechanisms in explaining age-related cognitive variability: even with age-related reduced gray matter, individuals with greater lifetime exposures could perform better given their quantity of brain measures.

  11. Playing Super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game.

    Science.gov (United States)

    Kühn, S; Gleich, T; Lorenz, R C; Lindenberger, U; Gallinat, J

    2014-02-01

    Video gaming is a highly pervasive activity, providing a multitude of complex cognitive and motor demands. Gaming can be seen as an intense training of several skills. Associated cerebral structural plasticity induced has not been investigated so far. Comparing a control with a video gaming training group that was trained for 2 months for at least 30 min per day with a platformer game, we found significant gray matter (GM) increase in right hippocampal formation (HC), right dorsolateral prefrontal cortex (DLPFC) and bilateral cerebellum in the training group. The HC increase correlated with changes from egocentric to allocentric navigation strategy. GM increases in HC and DLPFC correlated with participants' desire for video gaming, evidence suggesting a predictive role of desire in volume change. Video game training augments GM in brain areas crucial for spatial navigation, strategic planning, working memory and motor performance going along with evidence for behavioral changes of navigation strategy. The presented video game training could therefore be used to counteract known risk factors for mental disease such as smaller hippocampus and prefrontal cortex volume in, for example, post-traumatic stress disorder, schizophrenia and neurodegenerative disease.

  12. Relationship between personality and gray matter volume in healthy young adults: a voxel-based morphometric study.

    Science.gov (United States)

    Lu, Fengmei; Huo, Yajun; Li, Meiling; Chen, Heng; Liu, Feng; Wang, Yifeng; Long, Zhiliang; Duan, Xujun; Zhang, Jiang; Zeng, Ling; Chen, Huafu

    2014-01-01

    This study aims to investigate the neurostructural foundations of the human personality in young adults. High-resolution structural T1-weighted MR images of 71 healthy young individuals were processed using voxel-based morphometric (VBM) approach. Multiple regression analyses were performed to identify the associations between personality traits and gray matter volume (GMV). The Eysenck Personality Questionnaire-Revised, Short Scale for Chinese was chosen to assess the personality traits. This scale includes four dimensions, namely, extraversion, neuroticism, psychoticism, and lie. Particularly, we studied on two dimensions (extraversion and neuroticism) of Eysenck's personality. Our results showed that extraversion was negatively correlated with GMV of the bilateral amygdala, the bilateral parahippocampal gyrus, the right middle temporal gyrus, and the left superior frontal gyrus, all of which are involved in emotional and social cognitive processes. These results might suggest an association between extraversion and affective processing. In addition, a positive correlation was detected between neuroticism and GMV of the right cerebellum, a key brain region for negative affect coordination. Meanwhile, a negative association was revealed between GMV of the left superior frontal gyrus and neuroticism. These results may prove that neuroticism is related to several brain regions involved in regulating negative emotions. Based on those findings, we concluded that brain regions involved in social cognition and affective process accounted for modulation and shaping of personality traits among young individuals. Results of this study may serve as a basis for elucidating the anatomical factors of personality.

  13. Optimism and the brain: trait optimism mediates the protective role of the orbitofrontal cortex gray matter volume against anxiety.

    Science.gov (United States)

    Dolcos, Sanda; Hu, Yifan; Iordan, Alexandru D; Moore, Matthew; Dolcos, Florin

    2016-02-01

    Converging evidence identifies trait optimism and the orbitofrontal cortex (OFC) as personality and brain factors influencing anxiety, but the nature of their relationships remains unclear. Here, the mechanisms underlying the protective role of trait optimism and of increased OFC volume against symptoms of anxiety were investigated in 61 healthy subjects, who completed measures of trait optimism and anxiety, and underwent structural scanning using magnetic resonance imaging. First, the OFC gray matter volume (GMV) was associated with increased optimism, which in turn was associated with reduced anxiety. Second, trait optimism mediated the relation between the left OFC volume and anxiety, thus demonstrating that increased GMV in this brain region protects against symptoms of anxiety through increased optimism. These results provide novel evidence about the brain-personality mechanisms protecting against anxiety symptoms in healthy functioning, and identify potential targets for preventive and therapeutic interventions aimed at reducing susceptibility and increasing resilience against emotional disturbances. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. Effects of parental emotional warmth on the relationship between regional gray matter volume and depression-related personality traits.

    Science.gov (United States)

    Yang, Junyi; Yin, Ping; Wei, Dongtao; Wang, Kangcheng; Li, Yongmei; Qiu, Jiang

    2017-06-01

    The depression-related personality trait is associated with the severity of patients' current depressive symptoms and with the vulnerability to depression within the nonclinical groups. However, little is known about the anatomical structure associated with the depression-related personality traits within the nonclinical sample. Parenting behavior is associated with the depression symptoms; however, whether or not parenting behavior influence the neural basis of the depression-related personality traits is unclear. Thus in current study, first, we used voxel-based morphometry to identify the brain regions underlying individual differences in depression-related personality traits, as measured by the revised Neuroticism-Extraversion-Openness Personality Inventory, in a large sample of young healthy adults. Second, we use mediation analysis to investigate the relationship between parenting behavior and neural basis of depression-related personality traits. The results revealed that depression-related personality traits were positively correlated with gray matter volume mainly in medial frontal gyrus (MFG) that is implicated in the self-referential processing and emotional regulation. Furthermore, parental emotional warmth acted as a mediational mechanism underlying the association between the MFG volume and the depression-related personality trait. Together, our findings suggested that the family environment might play an important role in the acquisition and process of the depression-related personality traits.

  15. The relationship of serum macrophage inhibitory cytokine-1 levels with gray matter volumes in community-dwelling older individuals.

    Directory of Open Access Journals (Sweden)

    Jiyang Jiang

    Full Text Available Using circulating inflammatory markers and magnetic resonance imaging (MRI, recent studies have associated inflammation with brain volumetric measures. Macrophage Inhibitory Cytokine-1 (MIC-1/GDF15 is a divergent transforming growth factor - beta (TGF-β superfamily cytokine. To uncover the underlying mechanisms of the previous finding of a negative association between MIC-1/GDF15 serum levels and cognition, the present study aimed to examine the relationship of circulating MIC-1/GDF15 levels with human brain gray matter (GM volumes, in a community-dwelling sample aged 70-90 years over two years (Wave 1: n = 506, Wave 2: n = 327, of which the age-related brain atrophy had been previously well defined. T1-weighted MRI scans were obtained at both waves and analyzed using the FMRIB Software Library and FreeSurfer. The results showed significantly negative associations between MIC-1/GDF15 serum levels and both subcortical and cortical GM volumes. GM volumes of the whole brain, cortex, temporal lobe, thalamus and accumbens showed significant mediating effects on the associations between MIC-1/GDF15 serum levels and global cognition scores. Increases in MIC-1/GDF15 serum levels were associated with decreases in cortical and subcortical GM volume over two years. In conclusion, MIC-1/GDF15 serum levels were inversely associated with GM volumes both cross-sectionally and longitudinally.

  16. Motor learning in healthy humans is associated to gray matter changes: a tensor-based morphometry study.

    Science.gov (United States)

    Filippi, Massimo; Ceccarelli, Antonia; Pagani, Elisabetta; Gatti, Roberto; Rossi, Alice; Stefanelli, Laura; Falini, Andrea; Comi, Giancarlo; Rocca, Maria Assunta

    2010-04-15

    We used tensor-based morphometry (TBM) to: 1) map gray matter (GM) volume changes associated with motor learning in young healthy individuals; 2) evaluate if GM changes persist three months after cessation of motor training; and 3) assess whether the use of different schemes of motor training during the learning phase could lead to volume modifications of specific GM structures. From 31 healthy subjects, motor functional assessment and brain 3D T1-weighted sequence were obtained: before motor training (time 0), at the end of training (two weeks) (time 2), and three months later (time 3). Fifteen subjects (group A) were trained with goal-directed motor sequences, and 16 (group B) with non purposeful motor actions of the right hand. At time 1 vs. time 0, the whole sample of subjects had GM volume increase in regions of the temporo-occipital lobes, inferior parietal lobule (IPL) and middle frontal gyrus, while at time 2 vs. time 1, an increased GM volume in the middle temporal gyrus was seen. At time 1 vs. time 0, compared to group B, group A had a GM volume increase of the hippocampi, while the opposite comparison showed greater GM volume increase in the IPL and insula in group B vs. group A. Motor learning results in structural GM changes of different brain areas which are part of specific neuronal networks and tend to persist after training is stopped. The scheme applied during the learning phase influences the pattern of such structural changes.

  17. Cognitive learning is associated with gray matter changes in healthy human individuals: a tensor-based morphometry study.

    Science.gov (United States)

    Ceccarelli, Antonia; Rocca, Maria Assunta; Pagani, Elisabetta; Falini, Andrea; Comi, Giancarlo; Filippi, Massimo

    2009-11-15

    Longitudinal voxel-based morphometry studies have demonstrated morphological changes in cortical structures following motor and cognitive learning. In this study, we applied, for the first time, tensor-based morphometry (TBM) to assess the short-term structural brain gray matter (GM) changes associated with cognitive learning in healthy subjects. Using a 3 T scanner, a 3D T1-weighted sequence was acquired from 32 students at baseline and after two weeks. Students were separated into two groups: 13 defined as "students in cognitive training", who underwent a two-week cognitive learning period, and 19 "students not in cognitive training", who were not involved in any teaching activity. GM changes were assessed using TBM and statistical parametric mapping. Baseline regional GM volume did not differ between the two groups. At follow up, compared to "students not in cognitive training", the "students in cognitive training" had a significant GM volume increase in the dorsomedial frontal cortex, the orbitofrontal cortex, and the precuneus (p<0.001). These results suggest that cognitive learning results in short-term structural GM changes of neuronal networks of the human brain, which are known to be involved in cognition. This may have important implications for the development of rehabilitation strategies in patients with neurological diseases.

  18. Motor learning in healthy humans is associated to gray matter changes: a tensor-based morphometry study.

    Directory of Open Access Journals (Sweden)

    Massimo Filippi

    Full Text Available We used tensor-based morphometry (TBM to: 1 map gray matter (GM volume changes associated with motor learning in young healthy individuals; 2 evaluate if GM changes persist three months after cessation of motor training; and 3 assess whether the use of different schemes of motor training during the learning phase could lead to volume modifications of specific GM structures. From 31 healthy subjects, motor functional assessment and brain 3D T1-weighted sequence were obtained: before motor training (time 0, at the end of training (two weeks (time 2, and three months later (time 3. Fifteen subjects (group A were trained with goal-directed motor sequences, and 16 (group B with non purposeful motor actions of the right hand. At time 1 vs. time 0, the whole sample of subjects had GM volume increase in regions of the temporo-occipital lobes, inferior parietal lobule (IPL and middle frontal gyrus, while at time 2 vs. time 1, an increased GM volume in the middle temporal gyrus was seen. At time 1 vs. time 0, compared to group B, group A had a GM volume increase of the hippocampi, while the opposite comparison showed greater GM volume increase in the IPL and insula in group B vs. group A. Motor learning results in structural GM changes of different brain areas which are part of specific neuronal networks and tend to persist after training is stopped. The scheme applied during the learning phase influences the pattern of such structural changes.

  19. Relative activity of cerebral subcortical gray matter in varying states of attention and awareness in normal subjects and patient studies

    International Nuclear Information System (INIS)

    Cooper, M.; Chen, C.T.; Levy, J.; Wagner, N.; Spire, J.P.; Jacobsen, J.; Meltzer, H.; Metz, J.; Beck, R.N.

    1985-01-01

    An important aspect of the study of brain function involves measurement of the relationships; between activities in the subcortical gray matter of the caudate and of the thalamus; and between these structures and functional cortical areas. The authors have studied these relationships in 22 subjects under different conditions of activation, sleep and sensory deprivation using a PET VI system and F-18-2DG to determine regional cerebral metabolism. Subject activating conditions were maintained throughout the period of equilibration of F-18-2DG and E.E.G.'s were monitored. Multiple tomographic slices of 1-2 million counts were obtained simultaneously with slice separation of 14mm and each plane parallel to the cantho-meatal line. In activated and non-activated awake conditions for normal subjects, left and right thalmus-to-caudate ratios were similar and greater than unity. This relationship was maintained in non-REM sleep, but was reversed and divergent in REM sleep and sensory deprivation; this was also evident in 3/4 narcoleptics awake and asleep in non-REM and REM and 2/3 schizophrenics and affective disorder, subjects. This approach appears to have potential for characterizating normal and disordered regional cerebral function

  20. ZNF804A risk allele is associated with relatively intact gray matter volume in patients with schizophrenia.

    LENUS (Irish Health Repository)

    Donohoe, Gary

    2011-02-01

    ZNF804A rs1344706 is the first genetic risk variant to achieve genome wide significance for psychosis. Following earlier evidence that patients carrying the ZNF804A risk allele had relatively spared memory function compared to patient non-carriers, we investigated whether ZNF804A was also associated with variation in brain volume. In a sample of 70 patients and 38 healthy participants we used voxel based morphometry to compare homozygous (AA) carriers of the ZNF804A risk allele to heterozygous and homozygous (AC\\/CC) non-carriers for both whole brain volume and specific regions implicated in earlier ZNF804A studies-the dorsolateral pre-frontal cortex, the hippocampus, and the amygdala. For patients, but not for controls, we found that homozygous \\'AA\\' risk carriers had relatively larger gray matter volumes than heterozygous\\/homozygous non-carriers (AC\\/CC), particularly for hippocampal volumes. These data are consistent with our earlier behavioral data and suggest that ZNF804A is delineating a schizophrenia subtype characterized by relatively intact brain volume. Establishing if this represents a discrete molecular pathogenesis with consequences for nosology and treatment will be an important next step in understanding ZNF084A\\'s role in illness risk.

  1. Gray matter concentration and effective connectivity changes in Alzheimer's disease: a longitudinal structural MRI study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingfeng; Coyle, Damien; Maguire, Liam; Watson, David R.; McGinnity, Thomas M. [University of Ulster, Intelligent Systems Research Centre, Magee Campus, Derry, Northern Ireland (United Kingdom)

    2011-10-15

    Understanding disease progression in Alzheimer's disease (AD) awaits the resolution of three fundamental questions: first, can we identify the location of ''seed'' regions where neuropathology is first present? Some studies have suggested the medial temporal lobe while others have suggested the hippocampus. Second, are there similar atrophy rates within affected regions in AD? Third, is there evidence of causality relationships between different affected regions in AD progression ?To address these questions, we conducted a longitudinal MRI study to investigate the gray matter (GM) changes in AD progression. Abnormal brain regions were localized by a standard voxel-based morphometry method, and the absolute atrophy rate in these regions was calculated using a robust regression method. Primary foci of atrophy were identified in the hippocampus and middle temporal gyrus (MTG). A model based upon the Granger causality approach was developed to investigate the cause-effect relationship over time between these regions based on GM concentration. Results show that in the earlier stages of AD, primary pathological foci are in the hippocampus and entorhinal cortex. Subsequently, atrophy appears to subsume the MTG. The causality results show that there is in fact little difference between AD and age-matched healthy control in terms of hippocampus atrophy, but there are larger differences in MTG, suggesting that local pathology in MTG is the predominant progressive abnormality during intermediate stages of AD development. (orig.)

  2. Relationship between personality and gray matter volume in healthy young adults: a voxel-based morphometric study.

    Directory of Open Access Journals (Sweden)

    Fengmei Lu

    Full Text Available This study aims to investigate the neurostructural foundations of the human personality in young adults. High-resolution structural T1-weighted MR images of 71 healthy young individuals were processed using voxel-based morphometric (VBM approach. Multiple regression analyses were performed to identify the associations between personality traits and gray matter volume (GMV. The Eysenck Personality Questionnaire-Revised, Short Scale for Chinese was chosen to assess the personality traits. This scale includes four dimensions, namely, extraversion, neuroticism, psychoticism, and lie. Particularly, we studied on two dimensions (extraversion and neuroticism of Eysenck's personality. Our results showed that extraversion was negatively correlated with GMV of the bilateral amygdala, the bilateral parahippocampal gyrus, the right middle temporal gyrus, and the left superior frontal gyrus, all of which are involved in emotional and social cognitive processes. These results might suggest an association between extraversion and affective processing. In addition, a positive correlation was detected between neuroticism and GMV of the right cerebellum, a key brain region for negative affect coordination. Meanwhile, a negative association was revealed between GMV of the left superior frontal gyrus and neuroticism. These results may prove that neuroticism is related to several brain regions involved in regulating negative emotions. Based on those findings, we concluded that brain regions involved in social cognition and affective process accounted for modulation and shaping of personality traits among young individuals. Results of this study may serve as a basis for elucidating the anatomical factors of personality.

  3. The role of education and verbal abilities in altering the effect of age-related gray matter differences on cognition.

    Directory of Open Access Journals (Sweden)

    Jason Steffener

    Full Text Available Evidence suggests that individual variability in lifetime exposures influences how cognitive performance changes with advancing age. Brain maintenance and cognitive reserve are theories meant to account for preserved performance despite advancing age. These theories differ in their causal mechanisms. Brain maintenance predicts more advantageous lifetime exposures will reduce age-related neural differences. Cognitive reserve predicts that lifetime exposures will not directly reduce these differences but minimize their impact on cognitive performance. The present work used moderated-mediation modeling to investigate the contributions of these mechanisms at explaining variability in cognitive performance among a group of 39 healthy younger (mean age (standard deviation 25.9 (2.92 and 45 healthy older adults (65.2 (2.79. Cognitive scores were computed using composite measures from three separate domains (speed of processing, fluid reasoning, and memory, while their lifetime exposures were estimated using education and verbal IQ measures. T1-weighted MR images were used to measure cortical thickness and subcortical volumes. Results suggest a stronger role for cognitive reserve mechanisms in explaining age-related cognitive variability: even with age-related reduced gray matter, individuals with greater lifetime exposures could perform better given their quantity of brain measures.

  4. Examining gray matter structures associated with individual differences in global life satisfaction in a large sample of young adults.

    Science.gov (United States)

    Kong, Feng; Ding, Ke; Yang, Zetian; Dang, Xiaobin; Hu, Siyuan; Song, Yiying; Liu, Jia

    2015-07-01

    Although much attention has been directed towards life satisfaction that refers to an individual's general cognitive evaluations of his or her life as a whole, little is known about the neural basis underlying global life satisfaction. In this study, we used voxel-based morphometry to investigate the structural neural correlates of life satisfaction in a large sample of young healthy adults (n = 299). We showed that individuals' life satisfaction was positively correlated with the regional gray matter volume (rGMV) in the right parahippocampal gyrus (PHG), and negatively correlated with the rGMV in the left precuneus and left ventromedial prefrontal cortex. This pattern of results remained significant even after controlling for the effect of general positive and negative affect, suggesting a unique structural correlates of life satisfaction. Furthermore, we found that self-esteem partially mediated the association between the PHG volume and life satisfaction as well as that between the precuneus volume and global life satisfaction. Taken together, we provide the first evidence for the structural neural basis of life satisfaction, and highlight that self-esteem might play a crucial role in cultivating an individual's life satisfaction. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Association between self-reported impulsiveness and gray matter volume in healthy adults. An exploratory MRI study.

    Science.gov (United States)

    Guerrero-Apolo, J David; Navarro-Pastor, J Blas; Bulbena-Vilarrasa, Antonio; Gabarre-Mir, Julián

    2018-03-19

    This exploratory study investigated the association between self-reported impulsiveness and cortical gray matter volume (GMV) of the entire cortex in healthy adults. As a secondary objective and based on preliminary findings concerning the positive association between self-reported impulsiveness and the slant of the forehead degrees (SFD), we analyzed associations between SFD, GMV and impulsiveness. We obtained 48 structural magnetic resonances. The participants also completed BIS 11 and profile pictures were obtained. SFD was measured by a photographic support and a protractor. The GMV of the whole cortex was obtained for each participant through Freesurfer. Firstly, we found negative and positive correlations between fronto-temporal and occipital areas respectively and BIS. Second, we found negative correlations between SFD and GMV in right postcentral gyrus, right caudal middle frontal gyrus, right transverse temporal cortex and positive correlation in left entorhinal cortex. Third, we observed a positive correlation between SFD and BIS in all impulsiveness scores. In conclusion, variations in fronto-temporal and posterior cerebral areas are crucial for BIS in healthy adults. Furthermore, SFD was associated with BIS and correlated with GMV areas involved in self-reported impulsiveness. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Higher media multi-tasking activity is associated with smaller gray-matter density in the anterior cingulate cortex.

    Directory of Open Access Journals (Sweden)

    Kep Kee Loh

    Full Text Available Media multitasking, or the concurrent consumption of multiple media forms, is increasingly prevalent in today's society and has been associated with negative psychosocial and cognitive impacts. Individuals who engage in heavier media-multitasking are found to perform worse on cognitive control tasks and exhibit more socio-emotional difficulties. However, the neural processes associated with media multi-tasking remain unexplored. The present study investigated relationships between media multitasking activity and brain structure. Research has demonstrated that brain structure can be altered upon prolonged exposure to novel environments and experience. Thus, we expected differential engagements in media multitasking to correlate with brain structure variability. This was confirmed via Voxel-Based Morphometry (VBM analyses: Individuals with higher Media Multitasking Index (MMI scores had smaller gray matter density in the anterior cingulate cortex (ACC. Functional connectivity between this ACC region and the precuneus was negatively associated with MMI. Our findings suggest a possible structural correlate for the observed decreased cognitive control performance and socio-emotional regulation in heavy media-multitaskers. While the cross-sectional nature of our study does not allow us to specify the direction of causality, our results brought to light novel associations between individual media multitasking behaviors and ACC structure differences.

  7. Emotional intelligence moderates the relationship between regional gray matter volume in the bilateral temporal pole and critical thinking disposition.

    Science.gov (United States)

    Yao, Xiaonan; Yuan, Shuge; Yang, Wenjing; Chen, Qunlin; Wei, Dongtao; Hou, Yuling; Zhang, Lijie; Qiu, Jiang; Yang, Dong

    2018-04-01

    Critical thinking enables people to form sound beliefs and provides a basis for emotional life. Research has indicated that individuals with better critical thinking disposition can better recognize and regulate their emotions, though the neuroanatomical mechanisms involved in this process remain to be elucidated. Further, the influence of emotional intelligence on the relationship between brain structure and critical thinking disposition has not been examined. The present study utilized voxel-based morphometry (VBM) to investigate the neural structures underlying critical thinking disposition in a large sample of college students (N = 296). Regional gray matter volume (rGMV) in the bilateral temporal pole, which reflects an individual's ability to process social and emotional information, was negatively correlated with critical thinking disposition. In addition, rGMV in bilateral para hippocampal regions -regions involved in contextual association/emotional regulation-exhibited negative correlation with critical thinking disposition. Further analysis revealed that emotional intelligence moderated the relationship between rGMV of the temporal pole and critical thinking disposition. Specifically, critical thinking disposition was associated with decreased GMV of the temporal pole for individuals who have relatively higher emotional intelligence rather than lower emotional intelligence. The results of the present study indicate that people who have higher emotional intelligence exhibit more effective and automatic processing of emotional information and tend to be strong critical thinkers.

  8. Abnormalities in gray and white matter volumes associated with explicit memory dysfunction in patients with generalized anxiety disorder.

    Science.gov (United States)

    Moon, Chung-Man; Jeong, Gwang-Woo

    2017-03-01

    Background The neuroanatomical abnormalities associated with behavioral dysfunction on explicit memory in patients generalized anxiety disorder (GAD) have not yet been clearly identified. Purpose To investigate the regional gray matter (GM) and white matter (WM) volume alterations over the whole brain in patients with GAD, as well as the correlation between the brain structural abnormality and explicit memory dysfunction. Material and Methods Twenty patients with GAD and 20 healthy controls matched for age, sex, and education level underwent high-resolution T1-weighted magnetic resonance imaging (MRI). The participants performed the explicit memory tasks with the neutral and anxiety-inducing words. Results Patients with GAD showed significantly reduced GM volumes in the midbrain (MB), thalamus, hippocampus (Hip), insula, and superior temporal gyrus (STG); and reduced WM volumes in the MB, anterior limb of the internal capsule (ALIC), dorsolateral prefrontal cortex (DLPFC), and precentral gyrus (PrG). It is important to note that the GM volume of the Hip and the WM volume of the DLPFC were positively correlated with the recognition accuracy (%) in the explicit memory tasks with neutral and anxiety-inducing words, respectively. On the other hand, the WM volume of the PrG was negatively correlated with the reaction time in the same memory tasks. Conclusion This study demonstrated the regional volume changes on whole-brain GM and WM and the correlation between the brain structural alteration and explicit memory dysfunction in GAD patients. These findings would be helpful to understand the association between the brain structure abnormality and the functional deficit in the explicit memory in GAD.

  9. Increased diffusivity in gray matter in recent onset schizophrenia is associated with clinical symptoms and social cognition.

    Science.gov (United States)

    Lee, Jung Sun; Kim, Chang-Yoon; Joo, Yeon Ho; Newell, Dominick; Bouix, Sylvain; Shenton, Martha E; Kubicki, Marek

    2016-10-01

    Diffusion weighted MRI (dMRI) is a method sensitive to pathological changes affecting tissue microstructure. Most dMRI studies in schizophrenia, however, have focused solely on white matter. There is a possibility, however, that subtle changes in diffusivity exist in gray matter (GM). Accordingly, we investigated diffusivity in GM in patients with recent onset schizophrenia. We enrolled 45 patients and 21 age and sex-matched healthy controls. All subjects were evaluated using the short form of the Wechsler Adult Intelligence Scale, the Positive and Negative Syndrome Scale (PANSS), and the video based social cognition scale. DMRI and T1W images were acquired on a 3 Tesla magnet, and mean Fractional Anisotropy (FA), Trace (TR) and volume were calculated for each of the 68 cortical GM Regions of Interest parcellated using FreeSurfer. There was no significant difference of FA and GM volume between groups after Bonferroni correction. For the dMRI measures, however, patients evinced increased TR in the left bank of the superior temporal sulcus, the right inferior parietal, the right inferior temporal, and the right middle temporal gyri. In addition, higher TR in the right middle temporal gyrus and the right inferior temporal gyrus, respectively, was associated with decreased social function and higher PANSS score in patients with schizophrenia. This study demonstrates high sensitivity of dMRI to subtle pathology in GM in recent onset schizophrenia, as well as an association between increased diffusivity in temporal GM regions and abnormalities in social cognition and exacerbation of psychiatric symptoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Regional Gray Matter Volumes Are Related to Concern About Falling in Older People: A Voxel-Based Morphometric Study.

    Science.gov (United States)

    Tuerk, Carola; Zhang, Haobo; Sachdev, Perminder; Lord, Stephen R; Brodaty, Henry; Wen, Wei; Delbaere, Kim

    2016-01-01

    Concern about falling is common in older people. Various related psychological constructs as well as poor balance and slow gait have been associated with decreased gray matter (GM) volume in old age. The current study investigates the association between concern about falling and voxel-wise GM volumes. A total of 281 community-dwelling older people aged 70-90 years underwent structural magnetic resonance imaging. Concern about falling was assessed using Falls Efficacy Scale-International (FES-I). For each participant, voxel-wise GM volumes were generated with voxel-based morphometry and regressed on raw FES-I scores (p brain volume (r = -.212; p ≤ .001), GM volume (r = -.210; p ≤ .001), and white matter volume (r = -.155; p ≤ .001). Voxel-based morphometry analysis revealed significant negative associations between FES-I and GM volumes of (i) left cerebellum and bilateral inferior occipital gyrus (voxels-in-cluster = 2,981; p fall risk did not alter these associations. After adjustment for anxiety, only left cerebellum and bilateral inferior occipital gyrus remained negatively associated with FES-I scores (voxels-in-cluster = 2,426; p falling is negatively associated with brain volumes in areas important for emotional control and for motor control, executive functions and visual processing in a large sample of older men and women. Regression analyses suggest that these relationships were primarily accounted for by psychological factors (generalized anxiety and neuroticism) and not by physical fall risk or vision. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Activations in gray and white matter are modulated by uni-manual responses during within and inter-hemispheric transfer: effects of response hand and right-handedness.

    Science.gov (United States)

    Diwadkar, Vaibhav A; Bellani, Marcella; Chowdury, Asadur; Savazzi, Silvia; Perlini, Cinzia; Marinelli, Veronica; Zoccatelli, Giada; Alessandrini, Franco; Ciceri, Elisa; Rambaldelli, Gianluca; Ruggieri, Mirella; Carlo Altamura, A; Marzi, Carlo A; Brambilla, Paolo

    2017-08-14

    Because the visual cortices are contra-laterally organized, inter-hemispheric transfer tasks have been used to behaviorally probe how information briefly presented to one hemisphere of the visual cortex is integrated with responses resulting from the ipsi- or contra-lateral motor cortex. By forcing rapid information exchange across diverse regions, these tasks robustly activate not only gray matter regions, but also white matter tracts. It is likely that the response hand itself (dominant or non-dominant) modulates gray and white matter activations during within and inter-hemispheric transfer. Yet the role of uni-manual responses and/or right hand dominance in modulating brain activations during such basic tasks is unclear. Here we investigated how uni-manual responses with either hand modulated activations during a basic visuo-motor task (the established Poffenberger paradigm) alternating between inter- and within-hemispheric transfer conditions. In a large sample of strongly right-handed adults (n = 49), we used a factorial combination of transfer condition [Inter vs. Within] and response hand [Dominant(Right) vs. Non-Dominant (Left)] to discover fMRI-based activations in gray matter, and in narrowly defined white matter tracts. These tracts were identified using a priori probabilistic white matter atlases. Uni-manual responses with the right hand strongly modulated activations in gray matter, and notably in white matter. Furthermore, when responding with the left hand, activations during inter-hemispheric transfer were strongly predicted by the degree of right-hand dominance, with increased right-handedness predicting decreased fMRI activation. Finally, increasing age within the middle-aged sample was associated with a decrease in activations. These results provide novel evidence of complex relationships between uni-manual responses in right-handed subjects, and activations during within- and inter-hemispheric transfer suggest that the organization of the

  12. Changes in the gray matter volume during compensation after vestibular neuritis: a longitudinal VBM study.

    Science.gov (United States)

    Hong, Sung-Kwang; Kim, Ja Hee; Kim, Hyung-Jong; Lee, Hyo-Jeong

    2014-01-01

    Peripheral vestibular dysfunction following vestibular neuritis (VN) often persists but functional recovery of balance can be variable. The authors compared structural changes in the brain before and after post-VN compensation and related it to the functional recovery. Nine patients diagnosed with unilateral VN were included. Brain MRI and clinical observation were performed within 2 days of acute VN diagnosis and were repeated 3 months after the first exam. Voxel-based morphometry (VBM) analysis for longitudinal data was performed using VBM8 toolbox running within SPM8. Changes in local grey matter volume (GMV) were examined using a paired t-test and clinical relevance was tested using correlation analyses with functional improvement. Significant increases in GMV were observed in the vestibular cortex, bilateral hippocampus, visual cortices and the cerebellum. GMV decreased in cerebellar regions, including the vermis, and in the prefrontal cortex. Increases in GMV in visual cortices and cerebellum were associated with the poorest recovery of balance, which might be explained by functional substitution. The structural layout of vestibular compensation suggests that memory and motor planning are closely related to this process. Vision seems to be a major source of functional substitution, as has been previously demonstrated. This study, however, is the first longitudinal analysis of brain structural changes associated with recovery of balance following unilateral VN.

  13. Brain-derived Neurotrophic Factor (BDNF) and gray matter volume in bipolar disorder.

    Science.gov (United States)

    Poletti, S; Aggio, V; Hoogenboezem, T A; Ambrée, O; de Wit, H; Wijkhuijs, A J M; Locatelli, C; Colombo, C; Arolt, V; Drexhage, H A; Benedetti, F

    2017-02-01

    Bipolar Disorder (BD) is a severe psychiatric condition characterized by grey matter (GM) volumes reduction. Neurotrophic factors have been suggested to play a role in the neuroprogressive changes during the illness course. In particular peripheral brain-derived neurotrophic factor (BDNF) has been proposed as a potential biomarker related to disease activity and neuroprogression in BD. The aim of our study was to investigate if serum levels of BDNF are associated with GM volumes in BD patients and healthy controls (HC). We studied 36 inpatients affected by a major depressive episode in course of BD type I and 17 HC. Analysis of variance was performed to investigate the effect of diagnosis on GM volumes in the whole brain. Threshold for significance was Pbrain areas, encompassing the caudate head, superior temporal gyrus, insula, fusiform gyrus, parahippocampal gyrus, and anterior cingulate cortex. The interaction analysis between BDNF levels and diagnosis showed a significant effect in the middle frontal gyrus. HC reported higher BDNF levels associated with higher GM volumes, whereas no association between BDNF and GM volumes was observed in BD. Our study seems to suggest that although the production of BDNF is increased in BD possibly to prevent and repair neural damage, its effects could be hampered by underlying neuroinflammatory processes interfering with the neurodevelopmental role of BDNF. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Numerical Transcoding Proficiency in 10-Year-Old Schoolchildren is Associated with Gray Matter Inter-Individual Differences: A Voxel-Based Morphometry Study.

    Science.gov (United States)

    Lubin, Amélie; Rossi, Sandrine; Simon, Grégory; Lanoë, Céline; Leroux, Gaëlle; Poirel, Nicolas; Pineau, Arlette; Houdé, Olivier

    2013-01-01

    Are individual differences in numerical performance sustained by variations in gray matter volume in schoolchildren? To our knowledge, this challenging question for neuroeducation has not yet been investigated in typical development. We used the Voxel-Based Morphometry method to search for possible structural brain differences between two groups of 10-year-old schoolchildren (N = 22) whose performance differed only in numerical transcoding between analog and symbolic systems. The results indicated that children with low numerical proficiency have less gray matter volume in the parietal (particularly in the left intraparietal sulcus and the bilateral angular gyri) and occipito-temporal areas. All the identified regions have previously been shown to be functionally involved in transcoding between analog and symbolic numerical systems. Our data contribute to a better understanding of the intertwined relationships between mathematics learning and brain structure in healthy schoolchildren.

  15. Cerebral and cerebellar gray matter reduction in first-episode patients with major depressive disorder: A voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Peng Jing, E-mail: ppengjjing@sina.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Liu Jiangtao, E-mail: Liujiangtao813@sina.com [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China); Nie Binbin, E-mail: niebb@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Li Yang, E-mail: Liyang2007428@hotmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Shan Baoci, E-mail: shanbc@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, PO Box 918, Yu-Quan St, Shijingshan District, Beijing 100049 (China); Wang Gang, E-mail: gangwang@gmail.com [Department of Psychiatry, Anding Hospital of Capital Medical University, No. 5, An Kang Hutong, Deshengmen wai, Xicheng District, Beijing 100088 (China); Li Kuncheng, E-mail: likuncheng1955@yahoo.com.cn [Department of Radiology, Xuanwu Hospital of Capital Medical University, No. 45, Chang-Chun St, Xuanwu District, Beijing 100053 (China)

    2011-11-15

    Purpose: To investigate cerebral and cerebellar gray matter abnormalities in patients with first-episode major depressive disorder (MDD). Materials and methods: We examined the structural difference in regional gray matter density (GMD) between 22 first-episode MDD patients and 30 age-, gender- and education-matched healthy controls by optimized voxel-based morphometry (VBM) based on magnetic resonance imaging. Results: Compared with healthy controls, MDD patients showed decreased GMD in the right medial and left lateral orbitofrontal cortex, right dorsolateral prefrontal cortex (DLPFC), bilateral temporal pole, right superior temporal gyrus, bilateral anterior insular cortex, left parahippocampal gyrus, and left cerebellum. In addition, in MDD patients, there was a negative correlation between GMD values of the right DLPFC and the score of the depression rating scale. Conclusions: Our findings provided additional support for the involvement of limbic-cortical circuits in the pathophysiology of MDD and preliminary evidence that a defect involving the cerebellum may also be implicated.

  16. The where, what and how of paediatric central venous access | Gray ...

    African Journals Online (AJOL)

    ) in paediatric patients to make informed decisions about the site, insertion technique, type of catheter to use, and care of the CVC. Keywords: central venous catheter, children, acute complications, infection, thrombosis, subclavian vein, ...

  17. The Relationship Between Extracellular Free-Water and Gray Matter Volume in Retired Professional Football Players With History of Mild Repetitive Head Injuries

    OpenAIRE

    Pezzuto, Justin J.

    2017-01-01

    The goal of this work was to investigate whether there was a relationship present between extracellular free water and gray matter volumes in the brains of retired professional football players. A study done by Maier-Hein et al. was able to establish the relationship in a population of participants that presented clinical symptoms of Alzheimer’s Disease. Due to the multiple similarities between Chronic Traumatic Encephalopathy (CTE) and Alzheimer’s Disease, the relationship mentioned above wa...

  18. Brain gray matter alterations and associated demographic profiles in adults with autism spectrum disorder: A meta-analysis of voxel-based morphometry studies.

    Science.gov (United States)

    Yang, Xun; Si, Tianjing; Gong, Qiyong; Qiu, Lihua; Jia, Zhiyun; Zhou, Mi; Zhao, Youjin; Hu, Xinyu; Wu, Min; Zhu, Hongyan

    2016-08-01

    There is increasing evidence that children with autism spectrum disorder are accompanied by specific anatomical alterations. However, the anatomical abnormalities in adults with autism spectrum disorder are poorly understood. This study was aimed to identify the neuroanatomical substrates underlying the pathophysiology of adults with autism spectrum disorder. We also investigated the relationship between neuroanatomical alterations and clinical and demographic characteristics. A total of 13 datasets were enrolled, of which 12 studies compared whole-brain differences of 382 adult patients with autism and 393 healthy control subjects. We conducted a meta-analysis to quantitatively estimate regional gray matter volume abnormalities in individuals with autism using the effect-size signed differential mapping. The voxel-wise meta-analysis revealed that relative to controls, adults with autism spectrum disorder had significantly increased gray matter volume in the middle temporal gyrus, superior temporal gyrus, postcentral gyrus and parahippocampal gyrus, and reduced gray matter volume in the anterior cingulate cortex and cerebellum. Variations in gray matter volume were significantly associated with the mean age and mean total IQ score of the patients, as well as with the percentage of male patients with autism. These findings confirmed that the neuroanatomical alterations in the fronto-temporal cortices, limbic system and cerebellum in adult individuals with autism were different from the children and young adolescent's autism. The effects of demographic characteristics on the brain morphological changes allow us to further clarify the neurobiological mechanisms and developmental trajectory in adult population with autism spectrum disorder. © The Royal Australian and New Zealand College of Psychiatrists 2016.

  19. Imaging of olfactory bulb and gray matter volumes in brain areas associated with olfactory function in patients with Parkinson's disease and multiple system atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shun, E-mail: shchen_2013@163.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China); Tan, Hong-yu, E-mail: honhyutan@21cn.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China); Wu, Zhuo-hua, E-mail: zhh88@126.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China); Sun, Chong-peng, E-mail: Suncp2002@gmail.com [Imaging Center, The First Affiliated Hospital of Guangzhou Medical College (China); He, Jian-xun, E-mail: xundog@163.com [Imaging Center, The First Affiliated Hospital of Guangzhou Medical College (China); Li, Xin-chun, E-mail: xinchunli@163.com [Imaging Center, The First Affiliated Hospital of Guangzhou Medical College (China); Shao, Ming, E-mail: yimshao@126.com [Department of Neurology, The First Affiliated Hospital of Guangzhou Medical College (China)

    2014-03-15

    We explored if magnetic resonance imaging sequences might aid in the clinical differential diagnosis of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). We measured the volumes of the olfactory bulb, the olfactory tract, and olfaction-associated cortical gray matter in 20 IPD patients, 14 MSA patients, and 12 normal subjects, using high-resolution magnetic resonance imaging sequences in combination with voxel-based statistical analysis. We found that, compared to normal subjects and MSA patients, the volumes of the olfactory bulb and tract were significantly reduced in IPD patients. The gray matter volume of IPD patients decreased in the following order: the olfactory area to the right of the piriform cortex, the right amygdala, the left entorhinal cortex, and the left occipital lobe. Further, the total olfactory bulb volume of IPD patients was associated with the duration of disease. The entorhinal cortical gray matter volume was negatively associated with the UPDRS III score. Conclusion: Structural volumes measured by high-resolution magnetic resonance imaging may potentially be used for differential diagnosis of IPD from MSA.

  20. Regional frontal gray matter volume associated with executive function capacity as a risk factor for vehicle crashes in normal aging adults.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Sakai

    Full Text Available Although low executive functioning is a risk factor for vehicle crashes among elderly drivers, the neural basis of individual differences in this cognitive ability remains largely unknown. Here we aimed to examine regional frontal gray matter volume associated with executive functioning in normal aging individuals, using voxel-based morphometry (VBM. To this end, 39 community-dwelling elderly volunteers who drove a car on a daily basis participated in structural magnetic resonance imaging, and completed two questionnaires concerning executive functioning and risky driving tendencies in daily living. Consequently, we found that participants with low executive function capacity were prone to risky driving. Furthermore, VBM analysis revealed that lower executive function capacity was associated with smaller gray matter volume in the supplementary motor area (SMA. Thus, the current data suggest that SMA volume is a reliable predictor of individual differences in executive function capacity as a risk factor for vehicle crashes among elderly persons. The implication of our results is that regional frontal gray matter volume might underlie the variation in driving tendencies among elderly drivers. Therefore, detailed driving behavior assessments might be able to detect early neurodegenerative changes in the frontal lobe in normal aging adults.

  1. Differential Cortical Gray Matter Deficits in Adolescent- and Adult-Onset First-Episode Treatment-Naïve Patients with Schizophrenia.

    Science.gov (United States)

    Zhang, Chengcheng; Wang, Qiang; Ni, Peiyan; Deng, Wei; Li, Yinfei; Zhao, Liansheng; Ma, Xiaohong; Wang, Yingcheng; Yu, Hua; Li, Xiaojing; Zhang, Pingping; Meng, Yajing; Liang, Sugai; Li, Mingli; Li, Tao

    2017-08-31

    The current study aimed to explore age-variant trait differences of cortical gray matter volume (GMV) in a unique sample of first-episode and treatment-naïve patients with schizophrenia. A total of 158 subjects, including 26 adolescent-onset patients and 49 adult-onset patients as well as 83 age- and gender-matched controls were scanned using a 3T MRI scanner. Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL) was used to explore group differences between patients and controls in regional GMV. We found that patients with schizophrenia had decreased GMV in the left parietal postcentral region that extended to the left frontal regions, the right middle temporal gyrus, the occipital lobe and the right cerebellum posterior pyramis. Further analysis showed a distinct pattern of gray matter alterations in adolescent-onset patients compared with both healthy controls and adult-onset patients. Relative to healthy controls, adolescent-onset patients showed GMV alterations in the left parietal postcentral gyrus, parahippocampal gyrus and right cerebellum posterior pyramis, while GMV deficits in adult-onset patients were focused on the cingulo-fronto-temporal module and right occipital regions. Our study identified differential cortical gray matter deficits between adolescent- and adulthood-onset patients with schizophrenia, which suggests that the cortical abnormalities in schizophrenia are likely adjusted by the developmental community structure of the human brain.

  2. Cerebral proton magnetic resonance spectroscopy demonstrates reversibility of N-acetylaspartate/creatine in gray matter after delayed encephalopathy due to carbon monoxide intoxication

    DEFF Research Database (Denmark)

    Hansen, Marco Bo; Kondziella, Daniel; Danielsen, Else Rubæk

    2014-01-01

    in a carbon monoxide-intoxicated victim. This may provide clinicians with important information when estimating patient outcome. CASE PRESENTATION: We report the case of a 40-year-old Caucasian woman with severe carbon monoxide poisoning who was treated with five repetitive sessions of hyperbaric oxygen...... in mid-occipital gray matter and partial reversal in white matter. CONCLUSIONS: The present case indicates that cerebral proton magnetic spectroscopy provides valuable information on brain metabolism in patients presenting with delayed encephalopathy after acute carbon monoxide intoxication. The full...

  3. Cognitive Deficits Post-Traumatic Brain Injury and Their Association with Injury Severity and Gray Matter Volumes.

    Science.gov (United States)

    Livny, Abigail; Biegon, Anat; Kushnir, Tammar; Harnof, Sagi; Hoffmann, Chen; Fruchter, Eyal; Weiser, Mark

    2017-04-01

    Traumatic brain injury (TBI) is known to have a substantial though highly variable impact on cognitive abilities. Due to the wide range of cognitive abilities among healthy individuals, an objective assessment of TBI-related cognitive loss requires an accurate measurement of pre-morbid cognitive performance. To address this problem, we recruited 50 adults who sustained a TBI and had performed a cognitive baseline assessment in adolescence as part of the aptitude tests mandated by the Israeli Defense Forces. This group was matched with non-injured controls (n = 35). Pre- and post-injury cognitive assessments consisted of three domains-namely, verbal abstraction, mathematical reasoning, and non-verbal abstract reasoning (from the Wechsler Adult Intelligence Scale-Third Edition). The difference between post- and pre-injury scores was calculated as a measure of domain-specific cognitive decline. Voxel-based regression was used to correlate cognitive decline with modulated gray matter probability maps controlling for age, Glasgow Coma Scale, and total intracranial volume. Using objectively assessed cognitive scores, we found that abstract reasoning declined in both moderate-severe and mild TBI patients, whereas verbal abstraction declined only in the moderate-severe group. Mathematical reasoning was not affected by TBI. In the TBI patients, non-verbal abstract reasoning post-pre-injury change scores were negatively correlated with the volume of the insula. We conclude that access to pre-morbid neuropsychological data may have facilitated the discovery of the effects of mild TBI on abstract reasoning, as well as a significant correlation between TBI-related decline in this cognitive domain and the volume of the bilateral insula, both of which had not been appreciated in the past.

  4. Cognitive Function and Serum Hormone Levels Are Associated with Gray Matter Volume Decline in Female Patients with Prolactinomas

    Directory of Open Access Journals (Sweden)

    Shun Yao

    2018-01-01

    Full Text Available Background and objectiveCognitive impairments have been reported in patients with hyperprolactinemia; however, there is a lack of knowledge of brain structure alterations relevant to hyperprolactinemia in prolactinomas. Thus, we aimed to identify changes in brain structure in prolactinomas and to determine whether these changes are related to cognitive performance and clinical characteristics.MethodsParticipants were 32 female patients with prolactinomas and 26 healthy controls (HC matched for age, sex, education, and handedness. All participants underwent magnetic resonance imaging brain scans, neuropsychological assessments, and clinical evaluations. Voxel-based morphometry analysis was used to identify changes in gray matter volume (GMV. Partial correlation analysis and multiple linear regression were performed to determine the relationship between GMV, cognition, and clinical characteristics.ResultsCompared to HC, patients with prolactinomas demonstrated a decrease in GMV in the left hippocampus, left orbitofrontal cortex, right middle frontal cortex (MFC, and right inferior frontal cortex (IFC. In addition, patients performed worse than controls on tests for verbal memory and executive function, and this was significantly related to the GMV of the left hippocampus and right MFC, respectively. Moreover, in the patients, we found a negative relationship between serum prolactin levels and the GMV of the left hippocampus and right IFC, whereas a positive relationship was found between the GMV of the left hippocampus and serum levels of estradiol and luteinizing hormone.ConclusionIn patients with prolactinomas, specific brain structure abnormalities have been identified and are associated with cognitive impairments and dysfunctional hormones. This study enhances our understanding of brain structure changes that may occur with prolactinomas and provides novel and fundamental evidence for previous behavioral findings relevant to hyperprolactinemia.

  5. Cerebral gray matter volume losses in essential tremor: A case-control study using high resolution tissue probability maps.

    Science.gov (United States)

    Cameron, Eric; Dyke, Jonathan P; Hernandez, Nora; Louis, Elan D; Dydak, Ulrike

    2018-03-10

    Essential tremor (ET) is increasingly recognized as a multi-dimensional disorder with both motor and non-motor features. For this reason, imaging studies are more broadly examining regions outside the cerebellar motor loop. Reliable detection of cerebral gray matter (GM) atrophy requires optimized processing, adapted to high-resolution magnetic resonance imaging (MRI). We investigated cerebral GM volume loss in ET cases using automated segmentation of MRI T1-weighted images. MRI was acquired on 47 ET cases and 36 controls. Automated segmentation and voxel-wise comparisons of volume were performed using Statistical Parametric Mapping (SPM) software. To improve upon standard protocols, the high-resolution International Consortium for Brain Mapping (ICBM) 2009a atlas and tissue probability maps were used to process each subject image. Group comparisons were performed: all ET vs. Controls, ET with head tremor (ETH) vs. Controls, and severe ET vs. An analysis of variance (ANOVA) was performed between ET with and without head tremor and controls. Age, sex, and Montreal Cognitive Assessment (MoCA) score were regressed out from each comparison. We were able to consistently identify regions of cerebral GM volume loss in ET and in ET subgroups in the posterior insula, superior temporal gyri, cingulate cortex, inferior frontal gyri and other occipital and parietal regions. There were no significant increases in GM volume in ET in any comparisons with controls. This study, which uses improved methodologies, provides evidence that GM volume loss in ET is present beyond the cerebellum, and in fact, is widespread throughout the cerebrum as well. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Similar cortical but not subcortical gray matter abnormalities in women with posttraumatic stress disorder with versus without dissociative identity disorder.

    Science.gov (United States)

    Chalavi, Sima; Vissia, Eline M; Giesen, Mechteld E; Nijenhuis, Ellert R S; Draijer, Nel; Barker, Gareth J; Veltman, Dick J; Reinders, Antje A T S

    2015-03-30

    Neuroanatomical evidence on the relationship between posttraumatic stress disorder (PTSD) and dissociative disorders is still lacking. We acquired brain structural magnetic resonance imaging (MRI) scans from 17 patients with dissociative identity disorder (DID) and co-morbid PTSD (DID-PTSD) and 16 patients with PTSD but without DID (PTSD-only), and 32 healthy controls (HC), and compared their whole-brain cortical and subcortical gray matter (GM) morphological measurements. Associations between GM measurements and severity of dissociative and depersonalization/derealization symptoms or lifetime traumatizing events were evaluated in the patient groups. DID-PTSD and PTSD-only patients, compared with HC, had similarly smaller cortical GM volumes of the whole brain and of frontal, temporal and insular cortices. DID-PTSD patients additionally showed smaller hippocampal and larger pallidum volumes relative to HC, and larger putamen and pallidum volumes relative to PTSD-only. Severity of lifetime traumatizing events and volume of the hippocampus were negatively correlated. Severity of dissociative and depersonalization/derealization symptoms correlated positively with volume of the putamen and pallidum, and negatively with volume of the inferior parietal cortex. Shared abnormal brain structures in DID-PTSD and PTSD-only, small hippocampal volume in DID-PTSD, more severe lifetime traumatizing events in DID-PTSD compared with PTSD-only, and negative correlations between lifetime traumatizing events and hippocampal volume suggest a trauma-related etiology for DID. Our results provide neurobiological evidence for the side-by-side nosological classification of PTSD and DID in the DSM-5. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Exploring the brains of Baduk (Go) experts: gray matter morphometry, resting-state functional connectivity, and graph theoretical analysis.

    Science.gov (United States)

    Jung, Wi Hoon; Kim, Sung Nyun; Lee, Tae Young; Jang, Joon Hwan; Choi, Chi-Hoon; Kang, Do-Hyung; Kwon, Jun Soo

    2013-01-01

    One major characteristic of experts is intuitive judgment, which is an automatic process whereby patterns stored in memory through long-term training are recognized. Indeed, long-term training may influence brain structure and function. A recent study revealed that chess experts at rest showed differences in structure and functional connectivity (FC) in the head of caudate, which is associated with rapid best next-move generation. However, less is known about the structure and function of the brains of Baduk experts (BEs) compared with those of experts in other strategy games. Therefore, we performed voxel-based morphometry (VBM) and FC analyses in BEs to investigate structural brain differences and to clarify the influence of these differences on functional interactions. We also conducted graph theoretical analysis (GTA) to explore the topological organization of whole-brain functional networks. Compared to novices, BEs exhibited decreased and increased gray matter volume (GMV) in the amygdala and nucleus accumbens (NA), respectively. We also found increased FC between the amygdala and medial orbitofrontal cortex (mOFC) and decreased FC between the NA and medial prefrontal cortex (mPFC). Further GTA revealed differences in measures of the integration of the network and in the regional nodal characteristics of various brain regions activated during Baduk. This study provides evidence for structural and functional differences as well as altered topological organization of the whole-brain functional networks in BEs. Our findings also offer novel suggestions about the cognitive mechanisms behind Baduk expertise, which involves intuitive decision-making mediated by somatic marker circuitry and visuospatial processing.

  8. Correlating anterior insula gray matter volume changes in young people with clinical and neurocognitive outcomes: an MRI study

    Directory of Open Access Journals (Sweden)

    Hatton Sean N

    2012-05-01

    Full Text Available Abstract Background The anterior insula cortex is considered to be both the structural and functional link between experience, affect, and behaviour. Magnetic resonance imaging (MRI studies have shown changes in anterior insula gray matter volume (GMV in psychosis, bipolar, depression and anxiety disorders in older patients, but few studies have investigated insula GMV changes in young people. This study examined the relationship between anterior insula GMV, clinical symptom severity and neuropsychological performance in a heterogeneous cohort of young people presenting for mental health care. Methods Participants with a primary diagnosis of depression (n = 43, bipolar disorder (n = 38, psychosis (n = 32, anxiety disorder (n = 12 or healthy controls (n = 39 underwent structural MRI scanning, and volumetric segmentation of the bilateral anterior insula cortex was performed using the FreeSurfer application. Statistical analysis examined the linear and quadratic correlations between anterior insula GMV and participants’ performance in a battery of clinical and neuropsychological assessments. Results Compared to healthy participants, patients had significantly reduced GMV in the left anterior insula (t = 2.05, p = .042 which correlated with reduced performance on a neuropsychological task of attentional set-shifting (ρ = .32, p = .016. Changes in right anterior insula GMV was correlated with increased symptom severity (r = .29, p = .006 and more positive symptoms (r = .32, p = .002. Conclusions By using the novel approach of examining a heterogeneous cohort of young depression, anxiety, bipolar and psychosis patients together, this study has demonstrated that insula GMV changes are associated with neurocognitive deficits and clinical symptoms in such young patients.

  9. Reduced visual cortex gray matter volume and thickness in young adults who witnessed domestic violence during childhood.

    Science.gov (United States)

    Tomoda, Akemi; Polcari, Ann; Anderson, Carl M; Teicher, Martin H

    2012-01-01

    Exposure to interparental violence is associated with negative outcomes, such as depression, post-traumatic stress disorder and reduced cognitive abilities. However, little is known about the potential effects of witnessing domestic violence during childhood on gray matter volume (GMV) or cortical thickness. High-resolution 3.0 T volumetric scans (Siemens Trio Scanner) were obtained on 52 subjects (18-25 years) including 22 (6 males/16 females) with a history of visually witnessing episodes of domestic violence, and 30 (8 males/22 females) unexposed control subjects, with neither a current nor past DSM-IV Axis I or II disorder. Potential confounding effects of age, gender, level of parental verbal aggression, parental education, financial stress, full scale IQ, and total GMV, or average thickness were modeled using voxel based morphometry and FreeSurfer. Witnessing domestic violence subjects had a 6.1% GMV reduction in the right lingual gyrus (BA18) (P = 0.029, False Discovery Rate corrected peak level). Thickness in this region was also reduced, as was thickness in V2 bilaterally and left occipital pole. Theses regions were maximally sensitive to exposure to witnessing domestic violence between 11-13 years of age. Regional reductions in GMV and thickness were observed in both susceptible and resilient witnessing domestic violence subjects. Results in subjects witnessing domestic violence were similar to previously reported results in subjects with childhood sexual abuse, as the primary region affected was visual cortex. Brain regions that process and convey the adverse sensory input of the abuse may be specifically modified by this experience, particularly in subjects exposed to a single type of maltreatment. Exposure to multiple types of maltreatment is more commonly associated with morphological alterations in corticolimbic regions. These findings fit with preclinical studies showing that visual cortex is a highly plastic structure.

  10. Reduced visual cortex gray matter volume and thickness in young adults who witnessed domestic violence during childhood.

    Directory of Open Access Journals (Sweden)

    Akemi Tomoda

    Full Text Available Exposure to interparental violence is associated with negative outcomes, such as depression, post-traumatic stress disorder and reduced cognitive abilities. However, little is known about the potential effects of witnessing domestic violence during childhood on gray matter volume (GMV or cortical thickness. High-resolution 3.0 T volumetric scans (Siemens Trio Scanner were obtained on 52 subjects (18-25 years including 22 (6 males/16 females with a history of visually witnessing episodes of domestic violence, and 30 (8 males/22 females unexposed control subjects, with neither a current nor past DSM-IV Axis I or II disorder. Potential confounding effects of age, gender, level of parental verbal aggression, parental education, financial stress, full scale IQ, and total GMV, or average thickness were modeled using voxel based morphometry and FreeSurfer. Witnessing domestic violence subjects had a 6.1% GMV reduction in the right lingual gyrus (BA18 (P = 0.029, False Discovery Rate corrected peak level. Thickness in this region was also reduced, as was thickness in V2 bilaterally and left occipital pole. Theses regions were maximally sensitive to exposure to witnessing domestic violence between 11-13 years of age. Regional reductions in GMV and thickness were observed in both susceptible and resilient witnessing domestic violence subjects. Results in subjects witnessing domestic violence were similar to previously reported results in subjects with childhood sexual abuse, as the primary region affected was visual cortex. Brain regions that process and convey the adverse sensory input of the abuse may be specifically modified by this experience, particularly in subjects exposed to a single type of maltreatment. Exposure to multiple types of maltreatment is more commonly associated with morphological alterations in corticolimbic regions. These findings fit with preclinical studies showing that visual cortex is a highly plastic structure.

  11. Patterns of Gray Matter Abnormalities in Idiopathic Generalized Epilepsy: A Meta-Analysis of Voxel-Based Morphology Studies.

    Directory of Open Access Journals (Sweden)

    Guo Bin

    Full Text Available We aimed to identify the consistent regions of gray matter volume (GMV abnormalities in idiopathic generalized epilepsy (IGE, and to study the difference of GMV abnormalities among IGE subsyndromes by applying activation likelihood estimation (ALE meta-analysis.A systematic review of VBM studies on GMV of patients with absence epilepsy (AE, juvenile myoclonic epilepsy (JME, IGE and controls indexed in PubMed and ScienceDirect from January 1999 to June 2016 was conducted. A total of 12 IGE studies, including 7 JME and 3 AE studies, were selected. Meta-analysis was performed on these studies by using the pooled and within-subtypes analysis (www.brainmap.org. Based on the above results, between-subtypes contrast analysis was carried out to detect the abnormal GMV regions common in and unique to each subtype as well.IGE demonstrated significant GMV increase in right ventral lateral nucleus (VL and right medial frontal gyrus, and significant GMV decrease in bilateral pulvinar. For JME, significant GMV increase was seen in right medial frontal gyrus, right anterior cingulate cortex (ACC, while significant GMV decrease was found in right pulvinar. In AE, the most significant GMV increase was found in right VL, and slight GMV reduction was seen in right medial dorsal nucleus, right subcallosal gyrus, left caudate and left precuneus. No overlapped and unique regions with significant GMV abnormalities were found between JME and AE.This meta-analysis demonstrated that thalamo-frontal network was a structure with significant GMV abnormality in IGE, and the IGE subsyndromes showed different GMV abnormal regions. These observations may provide instructions on the clinical diagnosis of IGE.

  12. Exploring the brains of Baduk (Go experts: gray matter morphometry, resting-state functional connectivity, and graph theoretical analysis

    Directory of Open Access Journals (Sweden)

    Wi Hoon eJung

    2013-10-01

    Full Text Available One major characteristic of experts is intuitive judgment, which is an automatic process whereby patterns stored in memory through long-term training are recognized. Indeed, long-term training may influence brain structure and function. A recent study revealed that chess experts at rest showed differences in structure and functional connectivity (FC in the head of caudate, which is associated with rapid best next-move generation. However, less is known about the structure and function of the brains of Baduk experts compared with those of experts in other strategy games. Therefore, we performed voxel-based morphometry and FC analyses in Baduk experts to investigate structural brain differences and to clarify the influence of these differences on functional interactions. We also conducted graph theoretical analysis to explore the topological organization of whole-brain functional networks. Compared to novices, Baduk experts exhibited decreased and increased gray matter volume in the amygdala and nucleus accumbens, respectively. We also found increased FC between the amygdala and medial orbitofrontal cortex and decreased FC between the nucleus accumbens and medial prefrontal cortex. Further graph theoretical analysis revealed differences in measures of the integration of the network and in the regional nodal characteristics of various brain regions activated during Baduk. This study provides evidence for structural and functional differences as well as altered topological organization of the whole-brain functional networks in Baduk experts. Our findings also offer novel suggestions about the cognitive mechanisms behind Baduk expertise, which involves intuitive decision-making mediated by somatic marker circuitry and visuospatial processing.

  13. The Associations between Regional Gray Matter Structural Changes and Changes of Cognitive Performance in Control Groups of Intervention Studies

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Sekiguchi, Atsushi; Nagase, Tomomi; Nouchi, Rui; Fukushima, Ai; Kawashima, Ryuta

    2015-01-01

    In intervention studies of cognitive training, the challenging cognitive tests, which were used as outcome measures, are generally completed in more than a few hours. Here, utilizing the control groups' data from three 1-week intervention studies in which young healthy adult subjects underwent a wide range of cognitive tests and T1-weighted magnetic resonance imaging (MRI) before and after the intervention period, we investigated how regional gray matter (GM) density (rGMD) of the subjects changed through voxel-based morphometry (VBM). Statistically significant increases in rGMD were observed in the anatomical cluster that mainly spread around the bilateral dorsal anterior cingulate cortex (dACC) and the right superior frontal gyrus (rSFG). Moreover, mean rGMD within this cluster changes were significantly and positively correlated with performance changes in the Stroop task, and tended to positively correlate with performance changes in a divergent thinking task. Affected regions are considered to be associated with performance monitoring (dACC) and manipulation of the maintained information including generating associations (rSFG), and both are relevant to the cognitive functions measured in the cognitive tests. Thus, the results suggest that even in the groups of the typical “control group” in intervention studies including those of the passive one, experimental or non-experimental factors can result in an increase in the regional GM structure and form the association between such neural changes and improvements related to these cognitive tests. These results suggest caution toward the experimental study designs without control groups. PMID:26733852

  14. Substance abuse risk in emerging adults associated with smaller frontal gray matter volumes and higher externalizing behaviors.

    Science.gov (United States)

    Weiland, Barbara J; Korycinski, Steven T; Soules, Mary; Zubieta, Jon-Kar; Zucker, Robert A; Heitzeg, Mary M

    2014-04-01

    During emerging adulthood, alcohol and substance use peak. Previous research has suggested that prefrontal and subcortical brain volumes may relate to risk for development of substance abuse. Epidemiological studies indicate that early initiation of alcohol or drug use significantly increases the likelihood of later substance use disorder diagnoses. We hypothesized that frontal regions would be smaller in young adults with early substance use and related problems (early-risk, ER), compared with a control group without early use/problems (C). We further hypothesized that these volumes would be associated with more externalizing behaviors, an additional robust predictor of substance abuse. One hundred and six subjects, ages 18-23, underwent high-resolution anatomical magnetic resonance image scanning. Individuals were categorized as C (n=64) or ER (n=42) using a composite-score of early alcohol/drug use and problems based on prospectively collected assessments; externalizing behaviors were also previously assessed during adolescence. Neuroanatomical volumes were compared between groups and correlated with behavioral measures. ER subjects exhibited more externalizing behaviors than their control counterparts. Total left frontal cortex and left superior frontal cortex volumes were significantly smaller in the ER group, controlling for family history of alcoholism and current substance use. Total gray matter volumes were negatively associated with substance risk score. Further, externalizing behavior score was negatively correlated with both left superior cortical and left total cortical volumes. These findings suggest that smaller frontal cortical volumes, specifically the left superior frontal cortex, represent an underlying risk factor for substance abuse in emerging adults. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Self-reported physical activity and objective aerobic fitness: Differential associations with gray matter density in healthy aging

    Directory of Open Access Journals (Sweden)

    Zvinka Zoe Zlatar

    2015-02-01

    Full Text Available Aerobic fitness (AF and self-reported physical activity (srPA do not represent the same construct. However, many exercise and brain aging studies interchangeably use AF and srPA measures, which may be problematic with regards to how these metrics are associated with brain outcomes, such as morphology. If AF and PA measures captured the same phenomena, regional brain volumes associated with these measures should directly overlap. This study employed the general linear model to examine the differential association between objectively-measured AF (treadmill assessment and srPA (questionnaire with gray matter density (GMd in 29 cognitively unimpaired community-dwelling older adults using voxel based morphometry. The results show significant regional variance in terms of GMd when comparing AF and srPA as predictors. Higher AF was associated with greater GMd in the cerebellum only, while srPA displayed positive associations with GMd in occipito-temporal, left perisylvian, and frontal regions after correcting for age. Importantly, only AF level, and not srPA, modified the relationship between age and GMd, such that higher levels of AF were associated with increased GMd in older age, while decreased GMd was seen in those with lower AF as a function of age. These results support existing literature suggesting that both AF and PA exert beneficial effects on GMd, but only AF served as a buffer against age-related GMd loss. Furthermore, these results highlight the need for use of objective PA measurement and comparability of tools across studies, since results vary dependent upon the measures used and whether these are objective or subjective in nature.

  16. IS INSTITUTIONAL EFFICIENCY IN INDEPENDENT CENTRAL BANKING A COMMUNICATIVE MATTER?

    Directory of Open Access Journals (Sweden)

    Carlo Tognato

    2005-06-01

    Full Text Available Political economists have traditionally been indifferent to the communicative construction of money and central banking in the public sphere. It does not matter to them whether monetary affairs become a rational game aimed at preserving the value of currency or take on the form of a medieval morality play. This paper suggests that the very political economy of central bank independence requires a departure from such practice. It is argued that communicative coordination of the monetary game is relevant to understanding how independent central banks can achieve institutional efficiency and why they face no trade-off between institutional efficiency and democratic legitimacy. It is particularly suggested that an institutionally efficient central bank cannot but act as an agent of communicative empowerment for the audience providing the local context for its operation.

  17. A whole-brain gray and white matter analysis in children with 45XO karyotype Turner syndrome: voxel-based morphometry

    International Nuclear Information System (INIS)

    Zhao Qiuling; Zhang Zhixin; Cheng Pangui; Xie Sheng; Liu Xiwei; Pan Hui; Li Kang; Zhang Jiaying; Gong Gaolang

    2013-01-01

    Objective: To detect the structural changes of cerebral gray and white matter in children of monosomy Turner syndrome (TS) by using voxel-based morphometry (VBM). Methods: Nine children 45XO karyotype TS and 20 age-matched control girls were recruited in this study. Wechsler intelligence scale for children was used to obtain their intelligence quotients (IQ). High-resolution magnetic MR imaging was performed in TS children and control girls to collect the whole brain structural data. The data were analyzed by VBM based on SPM 8 to compare the volume of gray and white matter between the TS children and normal controls by using covariance analysis. Results: The IQ of TS children was 81 ± 13, and the IQ of the controls was 109 ± 16. Statistical analysis revealed significant difference of IQ between the two groups (t = -4.70, P < 0.05). Compared with normal controls, TS children showed significantly decreased volume (numbers of voxel in clusters were 631, 525, 520, t = 3.95, 3.50, 3.36, P < 0.05, FWE-corrected) in the gray matter of the right superior parietal lobule, postcentral gyrus, precuneus lobule, calcarine, cuneus cortices, as well as the left middle and inferior occipital lobe. However, the volume of the bilateral supplemental motor area and the medial superior frontal lobes, the right middle cingulum, the left superior, middle, and inferior temporal gyri were increased in the TS children compared to the controls. The left fusiform, the left parahippocampus, the left hippocampus and the left cerebellum were also enlarged in TS children (numbers of voxel in clusters were 2082, 974, 1708, 588, 579, t = 5.45, 4.59, 4.40, 4.29, 3.55, P < 0.05, FWE-corrected). White matter regions in the left postcentral gyrus and inferior parietal lobule showed significantly reduced volume (voxel number 957, t = 5.85, P < 0.05, FWE-corrected). Conclusion: Children with monosomy TS show abnormal gray and white matter volumes in some brain regions, which may be involved in the

  18. Weak orientation and direction selectivity in lateral geniculate nucleus representing central vision in the gray squirrel Sciurus carolinensis

    Science.gov (United States)

    Zaltsman, Julia B.; Heimel, J. Alexander

    2015-01-01

    Classic studies of lateral geniculate nucleus (LGN) and visual cortex (V1) in carnivores and primates have found that a majority of neurons in LGN exhibit a center-surround organization, while V1 neurons exhibit strong orientation selectivity and, in many species, direction selectivity. Recent work in the mouse and the monkey has discovered previously unknown classes of orientation- and direction-selective neurons in LGN. Furthermore, some recent studies in the mouse report that many LGN cells exhibit pronounced orientation biases that are of comparable strength to the subthreshold inputs to V1 neurons. These results raise the possibility that, in rodents, orientation biases of individual LGN cells make a substantial contribution to cortical orientation selectivity. Alternatively, the size and contribution of orientation- or direction-selective channels from LGN to V1 may vary across mammals. To address this question, we examined orientation and direction selectivity in LGN and V1 neurons of a highly visual diurnal rodent: the gray squirrel. In the representation of central vision, only a few LGN neurons exhibited strong orientation or direction selectivity. Across the population, LGN neurons showed weak orientation biases and were much less selective for orientation compared with V1 neurons. Although direction selectivity was weak overall, LGN layers 3abc, which contain neurons that express calbindin, exhibited elevated direction selectivity index values compared with LGN layers 1 and 2. These results suggest that, for central visual fields, the contribution of orientation- and direction-selective channels from the LGN to V1 is small in the squirrel. As in other mammals, this small contribution is elevated in the calbindin-positive layers of the LGN PMID:25717157

  19. NMDA Receptor Agonism and Antagonism within the Amygdaloid Central Nucleus Suppresses Pain Affect: Differential Contribution of the Ventrolateral Periaqueductal Gray

    Science.gov (United States)

    Spuz, Catherine A.; Tomaszycki, Michelle L.; Borszcz, George S.

    2015-01-01

    The amygdala contributes to the generation of pain affect and the amygdaloid central nucleus (CeA) receives nociceptive input that is mediated by glutamatergic neurotransmission. The present study compared the contribution of N-methyl-D-aspartate (NMDA) receptor agonism and antagonism in CeA to generation of the affective response of rats to an acute noxious stimulus. Vocalizations that occur following a brief tail shock (vocalization afterdischarges) are a validated rodent model of pain affect, and were preferentially suppressed, in a dose dependent manner, by bilateral injection into CeA of NMDA (.1 µg, .25 µg, .5 µg, or 1 µg/side), or the NMDA receptor antagonist D-2-amino-5-phosphonovalerate (AP5, 1 µg, 2 µg, or 4 µg/side). Vocalizations that occur during tail shock were suppressed to a lesser degree, whereas, spinal motor reflexes (tail flick and hind limb movements) were unaffected by injection of NMDA or AP5 into CeA. Injection of NMDA, but not AP5, into CeA increased c-Fos immunoreactivity in the ventrolateral periaqueductal gray (vlPAG), and unilateral injection of the µ-opiate receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP, 0.25 µg) into vlPAG prevented the antinociception generated by injection of NMDA into CeA. These findings demonstrate that although NMDA receptor agonism and antagonism in CeA produce similar suppression of pain behaviors they do so via different neurobiological mechanisms. Perspective The amygdala contributes to production of the emotional dimension of pain. NMDA receptor agonism and antagonism within the central nucleus of the amygdala suppressed rats’ emotional response to acute painful stimulation. Understanding the neurobiology underlying emotional responses to pain will provide insights into new treatments for pain and its associated affective disorders. PMID:25261341

  20. Weak orientation and direction selectivity in lateral geniculate nucleus representing central vision in the gray squirrel Sciurus carolinensis.

    Science.gov (United States)

    Zaltsman, Julia B; Heimel, J Alexander; Van Hooser, Stephen D

    2015-04-01

    Classic studies of lateral geniculate nucleus (LGN) and visual cortex (V1) in carnivores and primates have found that a majority of neurons in LGN exhibit a center-surround organization, while V1 neurons exhibit strong orientation selectivity and, in many species, direction selectivity. Recent work in the mouse and the monkey has discovered previously unknown classes of orientation- and direction-selective neurons in LGN. Furthermore, some recent studies in the mouse report that many LGN cells exhibit pronounced orientation biases that are of comparable strength to the subthreshold inputs to V1 neurons. These results raise the possibility that, in rodents, orientation biases of individual LGN cells make a substantial contribution to cortical orientation selectivity. Alternatively, the size and contribution of orientation- or direction-selective channels from LGN to V1 may vary across mammals. To address this question, we examined orientation and direction selectivity in LGN and V1 neurons of a highly visual diurnal rodent: the gray squirrel. In the representation of central vision, only a few LGN neurons exhibited strong orientation or direction selectivity. Across the population, LGN neurons showed weak orientation biases and were much less selective for orientation compared with V1 neurons. Although direction selectivity was weak overall, LGN layers 3abc, which contain neurons that express calbindin, exhibited elevated direction selectivity index values compared with LGN layers 1 and 2. These results suggest that, for central visual fields, the contribution of orientation- and direction-selective channels from the LGN to V1 is small in the squirrel. As in other mammals, this small contribution is elevated in the calbindin-positive layers of the LGN. Copyright © 2015 the American Physiological Society.

  1. Multi-scale glycemic variability: a link to gray matter atrophy and cognitive decline in type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Xingran Cui

    Full Text Available Type 2 diabetes mellitus (DM accelerates brain aging and cognitive decline. Complex interactions between hyperglycemia, glycemic variability and brain aging remain unresolved. This study investigated the relationship between glycemic variability at multiple time scales, brain volumes and cognition in type 2 DM.Forty-three older adults with and 26 without type 2 DM completed 72-hour continuous glucose monitoring, cognitive tests and anatomical MRI. We described a new analysis of continuous glucose monitoring, termed Multi-Scale glycemic variability (Multi-Scale GV, to examine glycemic variability at multiple time scales. Specifically, Ensemble Empirical Mode Decomposition was used to identify five unique ultradian glycemic variability cycles (GVC1-5 that modulate serum glucose with periods ranging from 0.5-12 hrs.Type 2 DM subjects demonstrated greater variability in GVC3-5 (period 2.0-12 hrs than controls (P<0.0001, during the day as well as during the night. Multi-Scale GV was related to conventional markers of glycemic variability (e.g. standard deviation and mean glycemic excursions, but demonstrated greater sensitivity and specificity to conventional markers, and was associated with worse long-term glycemic control (e.g. fasting glucose and HbA1c. Across all subjects, those with greater glycemic variability within higher frequency cycles (GVC1-3; 0.5-2.0 hrs had less gray matter within the limbic system and temporo-parietal lobes (e.g. cingulum, insular, hippocampus, and exhibited worse cognitive performance. Specifically within those with type 2 DM, greater glycemic variability in GVC2-3 was associated with worse learning and memory scores. Greater variability in GVC5 was associated with longer DM duration and more depression. These relationships were independent of HbA1c and hypoglycemic episodes.Type 2 DM is associated with dysregulation of glycemic variability over multiple scales of time. These time-scale-dependent glycemic fluctuations

  2. Evidence that the periaqueductal gray matter mediates the facilitation of panic-like reactions in neonatally-isolated adult rats.

    Directory of Open Access Journals (Sweden)

    Jeyce Willig Quintino-dos-Santos

    Full Text Available Plenty of evidence suggests that childhood separation anxiety (CSA predisposes the subject to adult-onset panic disorder (PD. As well, panic is frequently comorbid with both anxiety and depression. The brain mechanisms whereby CSA predisposes to PD are but completely unknown in spite of the increasing evidence that panic attacks are mediated at midbrain's dorsal periaqueductal gray matter (DPAG. Accordingly, here we examined whether the neonatal social isolation (NSI, a model of CSA, facilitates panic-like behaviors produced by electrical stimulations of DPAG of rats as adults. Eventual changes in anxiety and depression were also assessed in the elevated plus-maze (EPM and forced-swimming test (FST respectively. Male pups were subjected to 3-h daily isolations from post-natal day 2 (PN2 until weaning (PN21 allotting half of litters in individual boxes inside a sound-attenuated chamber (NSI, n = 26 whilst siblings (sham-isolated rats, SHAM, n = 27 and dam were moved to another box in a separate room. Non-handled controls (CTRL, n = 18 remained undisturbed with dams until weaning. As adults, rats were implanted with electrodes into the DPAG (PN60 and subjected to sessions of intracranial stimulation (PN65, EPM (PN66 and FST (PN67-PN68. Groups were compared by Fisher's exact test (stimulation sites, likelihood ratio chi-square tests (stimulus-response threshold curves and Bonferroni's post hoc t-tests (EPM and FST, for P<0.05. Notably, DPAG-evoked panic-like responses of immobility, exophthalmus, trotting, galloping and jumping were markedly facilitated in NSI rats relative to both SHAM and CTRL groups. Conversely, anxiety and depression scores either did not change or were even reduced in neonatally-handled groups relative to CTRL, respectively. Data are the first behavioral evidence in animals that early-life separation stress produces the selective facilitation of panic-like behaviors in adulthood. Most importantly, results implicate

  3. Change in brainstem gray matter concentration following a mindfulness-based intervention is correlated with improvement in psychological well-being

    Directory of Open Access Journals (Sweden)

    Sara eLazar

    2014-02-01

    Full Text Available Individuals can improve their levels of psychological well-being through utilization of psychological interventions, including the practice of mindfulness meditation, which is defined as the non-judgmental awareness of experiences in the present moment. We recently reported that an 8-week Mindfulness-Based Stress Reduction (MBSR course lead to increases in gray matter concentration in several brain areas, as detected with voxel-based morphometry of MPRAGE MRI scans, including the pons/raphe/locus coeruleus area of the brainstem. Given the role of the pons and raphe in mood and arousal, we hypothesized that changes in this region might underlie changes in well-being.A subset of fourteen healthy individuals from a previously published data set completed anatomical MRI and filled out the Psychological Well-Being (PWB scale before and after MBSR participation. PWB change was used as the predictive regressor for changes in gray matter density within those brain regions that had previously shown pre- to post- MBSR changes. Results showed that scores on five PWB subscales as well as the PWB total score increased significantly over the MBSR course. The change was positively correlated with gray matter concentration increases in two symmetrically bilateral clusters in the brainstem. Those clusters appeared to contain the area of the pontine tegmentum, locus coeruleus, nucleus raphe pontis, and the sensory trigeminal nucleus. No clusters were negatively correlated with the change in PWB. This preliminary study suggests a neural correlate of enhanced psychological well-being. The identified brain areas include the sites of synthesis and release of the neurotransmitters norepinephrine and serotonin, which are involved in the modulation of arousal and mood, and have been related to a variety of affective functions as well as associated clinical dysfunctions.

  4. Orbitofrontal gray matter deficits as marker of Internet gaming disorder: converging evidence from a cross-sectional and prospective longitudinal design.

    Science.gov (United States)

    Zhou, Feng; Montag, Christian; Sariyska, Rayna; Lachmann, Bernd; Reuter, Martin; Weber, Bernd; Trautner, Peter; Kendrick, Keith M; Markett, Sebastian; Becker, Benjamin

    2017-10-23

    Internet gaming disorder represents a growing health issue. Core symptoms include unsuccessful attempts to control the addictive patterns of behavior and continued use despite negative consequences indicating a loss of regulatory control. Previous studies revealed brain structural deficits in prefrontal regions subserving regulatory control in individuals with excessive Internet use. However, because of the cross-sectional nature of these studies, it remains unknown whether the observed brain structural deficits preceded the onset of excessive Internet use. Against this background, the present study combined a cross-sectional and longitudinal design to determine the consequences of excessive online video gaming. Forty-one subjects with a history of excessive Internet gaming and 78 gaming-naive subjects were enrolled in the present study. To determine effects of Internet gaming on brain structure, gaming-naive subjects were randomly assigned to 6 weeks of daily Internet gaming (training group) or a non-gaming condition (training control group). At study inclusion, excessive Internet gamers demonstrated lower right orbitofrontal gray matter volume compared with Internet gaming-naive subjects. Within the Internet gamers, a lower gray matter volume in this region was associated with higher online video gaming addiction severity. Longitudinal analysis revealed initial evidence that left orbitofrontal gray matter volume decreased during the training period in the training group as well as in the group of excessive gamers. Together, the present findings suggest an important role of the orbitofrontal cortex in the development of Internet addiction with a direct association between excessive engagement in online gaming and structural deficits in this brain region. © 2017 Society for the Study of Addiction.

  5. White and gray matter abnormalities in idiopathic rapid eye movement sleep behavior disorder: a diffusion-tensor imaging and voxel-based morphometry study.

    Science.gov (United States)

    Scherfler, Christoph; Frauscher, Birgit; Schocke, Michael; Iranzo, Alex; Gschliesser, Viola; Seppi, Klaus; Santamaria, Joan; Tolosa, Eduardo; Högl, Birgit; Poewe, Werner

    2011-02-01

    We applied diffusion-tensor imaging (DTI) including measurements of mean diffusivity (MD), a parameter of brain tissue integrity, fractional anisotropy (FA), a parameter of neuronal fiber integrity, as well as voxel-based morphometry (VBM), a measure of gray and white matter volume, to detect brain tissue changes in patients with idiopathic rapid eye movement (REM) sleep behavior disorder (iRBD). Magnetic resonance imaging (MRI) was performed in 26 patients with iRBD (mean disease duration, 9.2 ± 6.4 years) and 14 age-matched healthy control subjects. Statistical parametric mapping (SPM) was applied to objectively identify focal changes of MRI parameters throughout the entire brain volume. SPM localized significant decreases of FA in the tegmentum of the midbrain and rostral pons and increases of MD within the pontine reticular formation overlapping with a cluster of decreased FA in the midbrain (p < 0.001). VBM revealed increases of gray matter densities in both hippocampi of iRBD patients (p < 0.001). The observed changes in the pontomesencephalic brainstem localized 2 areas harboring key neuronal circuits believed to be involved in the regulation of REM sleep and overlap with areas of structural brainstem damage causing symptomatic RBD in humans. Bilateral increases in gray matter density of the hippocampus suggest functional neuronal reorganization in this brain area in iRBD. This study indicates that DTI detects distinct structural brainstem tissue abnormalities in iRBD in the regions where REM is modulated. Further studies should explore the relationship between MRI pathology and the risk of patients with iRBD of developing alpha-synuclein-related neurodegenerative diseases like Parkinson disease. Copyright © 2010 American Neurological Association.

  6. Substantial and reversible brain gray matter reduction but no acute brain lesions in ultramarathon runners: experience from the TransEurope-FootRace Project.

    Science.gov (United States)

    Freund, Wolfgang; Faust, Sonja; Birklein, Frank; Gaser, Christian; Wunderlich, Arthur P; Müller, Marguerite; Billich, Christian; Juchems, Markus S; Schmitz, Bernd L; Grön, Georg; Schütz, Uwe H

    2012-12-21

    During the extremely challenging 4,487 km ultramarathon TransEurope-FootRace 2009, runners showed considerable reduction of body weight. The effects of this endurance run on brain volume changes but also possible formation of brain edema or new lesions were explored by repeated magnetic resonance imaging (MRI) studies. A total of 15 runners signed an informed consent to participate in this study of planned brain scans before, twice during, and about 8 months after the race. Because of dropouts, global gray matter volume analysis could only be performed in ten runners covering three timepoints, and in seven runners who also had a follow-up scan. Scanning was performed on three identical 1.5 T Siemens MAGNETOM Avanto scanners, two of them located at our university. The third MRI scanner with identical sequence parameters was a mobile MRI unit escorting the runners. Volumetric 3D datasets were acquired using a magnetization prepared rapid acquisition gradient echo (MPRAGE) sequence. Additionally, diffusion-weighted (DWI) and fluid attenuated inversion recovery (FLAIR) imaging was performed. Average global gray matter volume as well as body weight significantly decreased by 6% during the race. After 8 months, gray matter volume returned to baseline as well as body weight. No new brain lesions were detected by DWI or FLAIR imaging. Physiological brain volume reduction during aging is less than 0.2% per year. Therefore a volume reduction of about 6% during the 2 months of extreme running appears to be substantial. The reconstitution in global volume measures after 8 months shows the process to be reversible. As possible mechanisms we discuss loss of protein, hypercortisolism and hyponatremia to account for both substantiality and reversibility of gray matter volume reductions. Reversible brain volume reduction during an ultramarathon suggests that extreme running might serve as a model to investigate possible mechanisms of transient brain volume changes. However, despite

  7. Substantial and reversible brain gray matter reduction but no acute brain lesions in ultramarathon runners: experience from the TransEurope-FootRace Project

    Directory of Open Access Journals (Sweden)

    Freund Wolfgang

    2012-12-01

    Full Text Available Abstract Background During the extremely challenging 4,487 km ultramarathon TransEurope-FootRace 2009, runners showed considerable reduction of body weight. The effects of this endurance run on brain volume changes but also possible formation of brain edema or new lesions were explored by repeated magnetic resonance imaging (MRI studies. Methods A total of 15 runners signed an informed consent to participate in this study of planned brain scans before, twice during, and about 8 months after the race. Because of dropouts, global gray matter volume analysis could only be performed in ten runners covering three timepoints, and in seven runners who also had a follow-up scan. Scanning was performed on three identical 1.5 T Siemens MAGNETOM Avanto scanners, two of them located at our university. The third MRI scanner with identical sequence parameters was a mobile MRI unit escorting the runners. Volumetric 3D datasets were acquired using a magnetization prepared rapid acquisition gradient echo (MPRAGE sequence. Additionally, diffusion-weighted (DWI and fluid attenuated inversion recovery (FLAIR imaging was performed. Results Average global gray matter volume as well as body weight significantly decreased by 6% during the race. After 8 months, gray matter volume returned to baseline as well as body weight. No new brain lesions were detected by DWI or FLAIR imaging. Conclusions Physiological brain volume reduction during aging is less than 0.2% per year. Therefore a volume reduction of about 6% during the 2 months of extreme running appears to be substantial. The reconstitution in global volume measures after 8 months shows the process to be reversible. As possible mechanisms we discuss loss of protein, hypercortisolism and hyponatremia to account for both substantiality and reversibility of gray matter volume reductions. Reversible brain volume reduction during an ultramarathon suggests that extreme running might serve as a model to investigate

  8. Poor receptive joint attention skills are associated with atypical gray matter asymmetry in the posterior superior temporal gyrus of chimpanzees (Pan troglodytes)

    DEFF Research Database (Denmark)

    Hopkins, William D; Misiura, Maria; Reamer, Lisa A

    2014-01-01

    is an important and highly adaptive skill in primates, including humans. Here, we examined whether individual differences in responding to socio-communicative cues was associated with variation in either gray matter (GM) volume and asymmetry in a sample of chimpanzees. Magnetic resonance image scans......Clinical and experimental data have implicated the posterior superior temporal gyrus as an important cortical region in the processing of socially relevant stimuli such as gaze following, eye direction, and head orientation. Gaze following and responding to different socio-communicative signals...

  9. Differential Cortical Gray Matter Deficits in Adolescent- and Adult-Onset First-Episode Treatment-Na?ve Patients with Schizophrenia

    OpenAIRE

    Zhang, Chengcheng; Wang, Qiang; Ni, Peiyan; Deng, Wei; Li, Yinfei; Zhao, Liansheng; Ma, Xiaohong; Wang, Yingcheng; Yu, Hua; Li, Xiaojing; Zhang, Pingping; Meng, Yajing; Liang, Sugai; Li, Mingli; Li, Tao

    2017-01-01

    The current study aimed to explore age-variant trait differences of cortical gray matter volume (GMV) in a unique sample of first-episode and treatment-na?ve patients with schizophrenia. A total of 158 subjects, including 26 adolescent-onset patients and 49 adult-onset patients as well as 83 age- and gender-matched controls were scanned using a 3T MRI scanner. Voxel-based morphometry (VBM) following Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra (DARTEL) was used to e...

  10. AFSC/NMML: Shore-based counts of the Eastern North Pacific gray whale stock from central California, 1967 - 2007

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Marine Fisheries Service (NMFS) has conducted shore-based counts of the Eastern North Pacific stock of gray whales (Eschrichtius robustus) 26 years from...

  11. The human cerebral cortex is neither one nor many: neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding

    Science.gov (United States)

    Ribeiro, Pedro F. M.; Ventura-Antunes, Lissa; Gabi, Mariana; Mota, Bruno; Grinberg, Lea T.; Farfel, José M.; Ferretti-Rebustini, Renata E. L.; Leite, Renata E. P.; Filho, Wilson J.; Herculano-Houzel, Suzana

    2013-01-01

    The human prefrontal cortex has been considered different in several aspects and relatively enlarged compared to the rest of the cortical areas. Here we determine whether the white and gray matter of the prefrontal portion of the human cerebral cortex have similar or different cellular compositions relative to the rest of the cortical regions by applying the Isotropic Fractionator to analyze the distribution of neurons along the entire anteroposterior axis of the cortex, and its relationship with the degree of gyrification, number of neurons under the cortical surface, and other parameters. The prefrontal region shares with the remainder of the cerebral cortex (except for occipital cortex) the same relationship between cortical volume and number of neurons. In contrast, both occipital and prefrontal areas vary from other cortical areas in their connectivity through the white matter, with a systematic reduction of cortical connectivity through the white matter and an increase of the mean axon caliber along the anteroposterior axis. These two parameters explain local differences in the distribution of neurons underneath the cortical surface. We also show that local variations in cortical folding are neither a function of local numbers of neurons nor of cortical thickness, but correlate with properties of the white matter, and are best explained by the folding of the white matter surface. Our results suggest that the human cerebral cortex is divided in two zones (occipital and non-occipital) that differ in how neurons are distributed across their gray matter volume and in three zones (prefrontal, occipital, and non-occipital) that differ in how neurons are connected through the white matter. Thus, the human prefrontal cortex has the largest fraction of neuronal connectivity through the white matter and the smallest average axonal caliber in the white matter within the cortex, although its neuronal composition fits the pattern found for other, non-occipital areas. PMID

  12. Henry Gray, plagiarist.

    Science.gov (United States)

    Richardson, Ruth

    2016-03-01

    The first edition of Anatomy Descriptive and Surgical (1858) was greeted with accolades, but also provoked serious controversy concerning Henry Gray's failure to acknowledge the work of earlier anatomists. A review in the Medical Times (1859) accused Gray of intellectual theft. The journal took the unusual step of substantiating its indictment by publishing twenty parallel texts from Gray and from a pre-existing textbook, Quain's Anatomy. At the recent "Vesalius Continuum" conference in Zakynthos, Greece (2014) Professor Brion Benninger disputed the theft by announcing from the floor the results of a computer analysis of both texts, which he reported exonerated Gray by revealing no evidence of plagiarism. The analysis has not been forthcoming, however, despite requests. Here the historian of Gray's Anatomy supplements the argument set out in the Medical Times 150 years ago with data suggesting unwelcome personality traits in Henry Gray, and demonstrating the utility of others' work to his professional advancement. Fair dealing in the world of anatomy and indeed the genuineness of the lustre of medical fame are important matters, but whether quantitative evidence has anything to add to the discussion concerning Gray's probity can be assessed only if Benninger makes public his computer analysis. © 2015 Wiley Periodicals, Inc.

  13. Sleep spindles: a physiological marker of age-related changes in gray matter in brain regions supporting motor skill memory consolidation.

    Science.gov (United States)

    Fogel, Stuart; Vien, Catherine; Karni, Avi; Benali, Habib; Carrier, Julie; Doyon, Julien

    2017-01-01

    Sleep is necessary for the optimal consolidation of procedural learning, and in particular, for motor sequential skills. Motor sequence learning remains intact with age, but sleep-dependent consolidation is impaired, suggesting that memory deficits for procedural skills are specifically impacted by age-related changes in sleep. Age-related changes in spindles may be responsible for impaired motor sequence learning consolidation, but the morphological basis for this deficit is unknown. Here, we found that gray matter in the hippocampus and cerebellum was positively correlated with both sleep spindles and offline improvements in performance in young participants but not in older participants. These results suggest that age-related changes in gray matter in the hippocampus relate to spindles and may underlie age-related deficits in sleep-related motor sequence memory consolidation. In this way, spindles can serve as a biological marker for structural brain changes and the related memory deficits in older adults. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Barratt Impulsivity in Healthy Adults Is Associated with Higher Gray Matter Concentration in the Parietal Occipital Cortex that Represents Peripheral Visual Field

    Directory of Open Access Journals (Sweden)

    Jaime S. Ide

    2017-05-01

    Full Text Available Impulsivity is a personality trait of clinical importance. Extant research focuses on fronto-striatal mechanisms of impulsivity and how executive functions are compromised in impulsive individuals. Imaging studies employing voxel based morphometry highlighted impulsivity-related changes in gray matter concentrations in a wide array of cerebral structures. In particular, whereas prefrontal cortical areas appear to show structural alterations in individuals with a neuropsychiatric condition, the findings are less than consistent in the healthy population. Here, in a sample (n = 113 of young adults assessed for Barratt impulsivity, we controlled for age, gender and alcohol use, and showed that higher impulsivity score is associated with increased gray matter volume (GMV in bilateral medial parietal and occipital cortices known to represent the peripheral visual field. When impulsivity components were assessed, we observed that this increase in parieto-occipital cortical volume is correlated with inattention and non-planning but not motor subscore. In a separate behavioral experiment of 10 young adults, we demonstrated that impulsive individuals are more vulnerable to the influence of a distractor on target detection in an attention task. If replicated, these findings together suggest aberrant visual attention as a neural correlate of an impulsive personality trait in neurotypical individuals and need to be reconciled with the literature that focuses on frontal dysfunctions.

  15. CSF Biomarker and PIB-PET–Derived Beta-Amyloid Signature Predicts Metabolic, Gray Matter, and Cognitive Changes in Nondemented Subjects

    Science.gov (United States)

    Insel, Philip; Jagust, William J.; Shaw, Leslie; Trojanowski J, John Q.; Aisen, Paul; Petersen, Ronald C.; Schuff, Norbert; Weiner, Michael W.

    2012-01-01

    Beta-amyloid (Aβ) is a histopathological hallmark of Alzheimer’s disease dementia, but high levels of Aβ in the brain can also be found in a substantial proportion of nondemented subjects. Here we investigated which 2-year rate of brain and cognitive changes are present in nondemented subjects with high and low Aβ levels, as assessed with cerebrospinal fluid and molecular positron emission tomography (PET)–based biomarkers of Aβ. In subjects with mild cognitive impairment, increased brain Aβ levels were associated with significantly faster cognitive decline, progression of gray matter atrophy within temporal and parietal brain regions, and a trend for a faster decline in parietal Fludeoxyglucose (FDG)-PET metabolism. Changes in gray matter and FDG-PET mediated the association between Aβ and cognitive decline. In contrast, elderly cognitively healthy controls (HC) with high Aβ levels showed only a faster medial temporal lobe and precuneus volume decline compared with HC with low Aβ. In conclusion, the current results suggest not only that both functional and volumetric brain changes are associated with high Aβ years before the onset of dementia but also that HC with substantial Aβ levels show higher Aβ pathology resistance, lack other pathologies that condition neurotoxic effects of Aβ, or accumulated Aβ for a shorter time period. PMID:22038908

  16. SORL1 rs1699102 polymorphism modulates age-related cognitive decline and gray matter volume reduction in non-demented individuals.

    Science.gov (United States)

    Li, He; Lv, Chenlong; Yang, Caishui; Wei, Dongfeng; Chen, Kewei; Li, Shaowu; Zhang, Zhanjun

    2017-01-01

    SORL1 rs1699102 is associated with the risk of late-onset Alzheimer's disease. However, the effects of this single nucleotide polymorphism on cognition and brain structure during normal aging are unclear. This study aimed to examine the effects of the rs1699102 polymorphism on age-related cognitive decline and cortical gray matter reduction in the Chinese Han population. A total of 780 non-demented adults completed a battery of neuropsychological tests. High-resolution T1-weighted structural magnetic resonance imaging data from 89 of these subjects were also collected using a Siemens Trio 3.0 Tesla scanner. The T allele carriers displayed an accelerated age-related change in episodic memory and processing speed tests relative to the CC genotype. A similar pattern was observed in the age-related gray matter volume (GMV) reduction of the right middle temporal pole. The GMV in this region was significantly positively correlated with the episodic memory scores. The SORL1 gene rs1699102 polymorphism has been found to be associated with age-related cognitive decline and GMV reduction of the right middle temporal pole in older adults. These findings elucidate how the SORL1 variants shape the neural system to modulate age-related cognitive decline and support the hypothesis that SORL1 may represent a candidate gene for late-onset Alzheimer's disease. © 2016 EAN.

  17. Synchrotron Infrared Microspectroscopy Detecting the Evolution of Huntingtons Disease Neuropathology and Suggesting Unique Correlates of Dysfunction in White versus Gray Brain Matter

    Energy Technology Data Exchange (ETDEWEB)

    Bonda M.; Miller L.; Perrin V.; Vileno B.; Runne H.; Kretlow A.; Forro L.; Luthi-Carter R. and Jeney S.

    2011-09-02

    Huntington's disease (HD), caused by a mutation of the corresponding gene encoding the protein huntingtin (htt), is characterized by progressive deterioration of cognitive and motor functions, paralleled by extensive loss of striatal neurons. At the cellular level, pathogenesis involves an early and prolonged period of neuronal dysfunction followed by neuronal death. Understanding the molecular events driving these deleterious processes is critical to the successful development of therapies to slow down or halt the progression of the disease. Here, we examined biochemical processes in a HD ex vivo rat model, as well as in a HD model for cultured neurons using synchrotron-assisted Fourier transform infrared microspectroscopy (S-FTIRM). The model, based on lentiviral-mediated delivery of a fragment of the HD gene, expresses a mutant htt fragment in one brain hemisphere and a wild-type htt fragment in the control hemisphere. S-FTIRM allowed for high spatial resolution and distinction between spectral features occurring in gray and white matter. We measured a higher content of {beta}-sheet protein in the striatal gray matter exposed to mutant htt as early as 4 weeks following the initiation of mutant htt exposure. In contrast, white matter tracts did not exhibit any changes in protein structure but surprisingly showed reduced content of unsaturated lipids and a significant increase in spectral features associated with phosphorylation. The former is reminiscent of changes consistent with a myelination deficiency, while the latter is characteristic of early pro-apoptotic events. These findings point to the utility of the label-free FTIRM method to follow mutant htt's {beta}-sheet-rich transformation in striatal neurons ex vivo, provide further evidence for mutant htt amyloidogenesis in vivo, and demonstrate novel chemical features indicative of white matter changes in HD. Parallel studies in cultured neurons expressing the same htt fragments showed similar

  18. A voxel-based morphometric magnetic resonance imaging study of the brain detects age-related gray matter volume changes in healthy subjects of 21–45 years old

    Science.gov (United States)

    El-Beltagi, Ahmed; Cherian, Jigi; Gejo, Grace; Al-Jazzaf, Abrar; Ismail, Mohammad

    2015-01-01

    Previous and more recent work of analyzing structural changes in the brain suggest that certain brain regions such as the frontal lobe are among the brain regions profoundly affected by the aging process across males and females. Also, a unified model of structural changes in a normally aging brain is still lacking. The present study investigated age-related structural brain changes in gray matter from young to early middle-age adulthood for males and females. Magnetic resonance images of 215 normal and healthy participants between the ages of 21–45 years were acquired. Changes in gray matter were assessed using voxel-based morphometry and gray matter volumetric analysis. The results showed significant decrease in gray matter volume between the youngest and oldest groups in the following brain regions: frontal, temporal, and parietal lobes. Grey matter loss in the frontal lobe was among the most widespread of all brain regions across the comparison groups that showed significant age-related changes in grey matter for both males and females. This work provides a unique pattern of age-related decline of normal and healthy adult males and females that can aid in the future development of a unified model of normal brain aging. PMID:26306927

  19. A voxel-based morphometric magnetic resonance imaging study of the brain detects age-related gray matter volume changes in healthy subjects of 21-45 years old.

    Science.gov (United States)

    Bourisly, Ali K; El-Beltagi, Ahmed; Cherian, Jigi; Gejo, Grace; Al-Jazzaf, Abrar; Ismail, Mohammad

    2015-10-01

    Previous and more recent work of analyzing structural changes in the brain suggest that certain brain regions such as the frontal lobe are among the brain regions profoundly affected by the aging process across males and females. Also, a unified model of structural changes in a normally aging brain is still lacking. The present study investigated age-related structural brain changes in gray matter from young to early middle-age adulthood for males and females. Magnetic resonance images of 215 normal and healthy participants between the ages of 21-45 years were acquired. Changes in gray matter were assessed using voxel-based morphometry and gray matter volumetric analysis. The results showed significant decrease in gray matter volume between the youngest and oldest groups in the following brain regions: frontal, temporal, and parietal lobes. Grey matter loss in the frontal lobe was among the most widespread of all brain regions across the comparison groups that showed significant age-related changes in grey matter for both males and females. This work provides a unique pattern of age-related decline of normal and healthy adult males and females that can aid in the future development of a unified model of normal brain aging. © The Author(s) 2015.

  20. Cognitive-Behavioral Therapy for Obsessive–Compulsive Disorder with and without Autism Spectrum Disorder: Gray Matter Differences Associated with Poor Outcome

    Science.gov (United States)

    Tsuchiyagaito, Aki; Hirano, Yoshiyuki; Asano, Kenichi; Oshima, Fumiyo; Nagaoka, Sawako; Takebayashi, Yoshitake; Matsumoto, Koji; Masuda, Yoshitada; Iyo, Masaomi; Shimizu, Eiji; Nakagawa, Akiko

    2017-01-01

    Cognitive behavioral therapy (CBT) is an effective treatment for obsessive–compulsive disorder (OCD) and is also applicable to patients with both OCD and autism spectrum disorder (ASD). However, previous studies have reported that CBT for patients with both OCD and ASD might be less effective than for patients with OCD alone. In addition, there is no evidence as to why autistic traits might be risk factors. Therefore, we investigated whether comorbidity between ASD and OCD may significantly affect treatment outcome and discovered predictors of CBT outcomes using structural magnetic resonance imaging (MRI) data. A total of 39 patients, who were diagnosed with OCD, were enrolled in this study. Of these, except for 2 dropout cases, 15 patients were diagnosed with ASD, and 22 patients were diagnosed with OCD without ASD. Both groups took CBT for 11–20 sessions. First, to examine the effectiveness of CBT for OCD patients with and without ASD, we compared CBT outcomes between the two groups. Second, to investigate how the structural abnormality profile of the brain at pretreatment influenced CBT outcomes, we performed a structural MRI comparison focusing on the gray matter volume of the whole brain in both patients with only OCD, and those with both OCD and ASD. In order to discover neurostructural predictors of CBT outcomes besides autistic traits, we divided our samples again into two groups of those who did and those who did not remit after CBT, and repeated the analysis taking autistic traits into account. The results showed that OCD patients with ASD responded significantly less well to CBT. The OCD patients with ASD had much less gray matter volume in the left occipital lobe than OCD patients without ASD. The non-remission group had a significantly smaller volume of gray matter in the left dorsolateral prefrontal cortex (DLPFC) compared with the remission group, after having partialed out autistic traits. These results indicate that the abnormalities in DLPFC

  1. Gray and white matter alterations in early HIV-infected patients: Combined voxel-based morphometry and tract-based spatial statistics.

    Science.gov (United States)

    Wang, Bo; Liu, Zhenyu; Liu, Jiaojiao; Tang, Zhenchao; Li, Hongjun; Tian, Jie

    2016-06-01

    To investigate both the gray matter (GM) and whiter matter (WM) alterations in a homogeneous cohort of early HIV-infected patients by combining voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS). Twenty-six HIV and 26 control subjects enrolled in this study with 3D T1 and diffusion-tensor imaging acquired on a 3.0T Siemens scanner. Group differences in regional GM were assessed using VBM analysis, while differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and relative anisotropy (RD) of WM were evaluated using TBSS analysis. After that, interactions between GM changes and white matter alterations were investigated by using a correlation analysis. The HIV-infected patients displayed decreased GM volume, mainly located in the bilateral frontal cortices, bilateral anterior cingulate cortex, and left supplementary motor area (P 0.05). Our results indicate that structural brain alterations occurred early in HIV-infected patients. The current study may shed further light on the potential brain effects of HIV. J. Magn. Reson. Imaging 2016;43:1474-1483. © 2015 Wiley Periodicals, Inc.

  2. Focal cortical thinning in patients with stable relapsing-remitting multiple sclerosis. Cross-sectional-based novel estimation of gray matter kinetics

    International Nuclear Information System (INIS)

    Orbach, Lior; Menascu, Shay; Hoffmann, Chen; Achiron, Anat; Miron, Shmuel

    2018-01-01

    The aim of our study is to identify radiological patterns of cortical gray matter atrophy (CGMA) that correlate with disease duration in patients with relapsing-remitting multiple sclerosis (RRMS). RRMS patients were randomly selected from the Sheba Multiple Sclerosis (MS) center computerized data registry based on stratification of disease duration up to 10 years. Patients were scanned by 3.0 T (Signa, GE) MRI, using a T1 weighted 3D high resolution, FSPGR, MS protocol. Neurological disability was assessed by the Expanded Disability Status Scale (EDSS). FreeSurfer was used to obtain brain volumetric segmentation and to perform cortical thickness surface-based analysis. Clusters of change in cortical thickness with correlation to disease duration were produced. Two hundred seventy-one RRMS patients, mean ± SD age 33.0 ± 7.0 years, EDSS 1.6 ± 1.2, disease duration 5.0 ± 3.4 years. Cortical thickness analysis demonstrated focal areas of cerebral thinning that correlated with disease duration. Seven clusters accounting for 11.7% of the left hemisphere surface and eight clusters accounting for 10.6% of the right hemisphere surface were identified, with cluster-wise probability of p < 0.002 and p < 0.02, respectively.The clusters included bilateral involvement of areas within the cingulate, precentral, postcentral, paracentral, superior-parietal, superior-frontal gyri and insular cortex. Mean and cluster-wise cortical thickness negatively correlated with EDSS score, p < 0.001, with stronger Spearman rho for cluster-wise measurements. We identified CGMA patterns in sensitive brain regions which give insight and better understanding of the progression of cortical gray matter loss in relation to dissemination in space and time. These patterns may serve as markers to modulate therapeutic interventions to improve the management of MS patients. (orig.)

  3. Neural systems for social cognition: gray matter volume abnormalities in boys at high genetic risk of autism symptoms, and a comparison with idiopathic autism spectrum disorder.

    Science.gov (United States)

    Goddard, Marcia N; Swaab, Hanna; Rombouts, Serge A R B; van Rijn, Sophie

    2016-09-01

    Klinefelter syndrome (47, XXY) is associated with several physical, cognitive, and behavioral consequences. In terms of social development, there is an increased risk of autism symptomatology. However, it remains unclear how social deficits are related to abnormal brain development and to what degree underlying mechanisms of social dysfunction in 47, XXY are similar to, or different from, those in idiopathic autism (ASD). This study was aimed at investigating the neural architecture of brain structures related to social information processing in boys with 47, XXY, also in comparison with boys with idiopathic ASD. MRI scans of 16 boys with 47, XXY, 16 with ASD, and 16 nonclinical, male controls were analyzed using voxel-based morphometry (VBM). A region of interest mask containing the superior temporal cortex, amygdala, orbitofrontal cortex (OFC), insular cortex, and medial frontal cortex was used. The Social Responsiveness Scale (SRS) was used to assess degree of autism spectrum symptoms. The 47, XXY group could not be distinguished from the ASD group on mean SRS scores, and their scores were significantly higher than in controls. VBM showed that boys with 47, XXY have significant gray matter volume reductions in the left and right insula, and the left OFC, compared with controls and boys with ASD. Additionally, boys with 47, XXY had significantly less gray matter in the right superior temporal gyrus than controls. These results imply social challenges associated with 47, XXY may be rooted in neural anatomy, and autism symptoms in boys with 47, XXY and boys with ASD might have, at least partially, different underlying etiologies.

  4. Gray Matter and Functional Connectivity in Anterior Cingulate Cortex are Associated with the State of Mental Silence During Sahaja Yoga Meditation.

    Science.gov (United States)

    Hernández, Sergio Elías; Barros-Loscertales, Alfonso; Xiao, Yaqiong; González-Mora, José Luis; Rubia, Katya

    2018-02-10

    Some meditation techniques teach the practitioner to achieve the state of mental silence. The aim of this study was to investigate brain regions that are associated with their volume and functional connectivity (FC) with the depth of mental silence in long-term practitioners of Sahaja Yoga Meditation. Twenty-three long-term practitioners of this meditation were scanned using Magnetic Resonance Imaging. In order to identify the neural correlates of the depth of mental silence, we tested which gray matter volumes (GMV) were correlated with the depth of mental silence and which regions these areas were functionally connected to under a meditation condition. GMV in medial prefrontal cortex including rostral anterior cingulate cortex were positively correlated with the subjective perception of the depth of mental silence inside the scanner. Furthermore, there was significantly increased FC between this area and bilateral anterior insula/putamen during a meditation-state specifically, while decreased connectivity with the right thalamus/parahippocampal gyrus was present during the meditation-state and the resting-state. The capacity of long-term meditators to establish a durable state of mental silence inside an MRI scanner was associated with larger gray matter volume in a medial frontal region that is crucial for top-down cognitive, emotion and attention control. This is furthermore corroborated by increased FC of this region during the meditation-state with bilateral anterior insula/putamen, which are important for interoception, emotion, and attention regulation. The findings hence suggest that the depth of mental silence is associated with medial fronto-insular-striatal networks that are crucial for top-down attention and emotional control. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Regional gray matter correlates of memory for emotion-laden words in middle-aged and older adults: A voxel-based morphometry study.

    Science.gov (United States)

    Saarela, Carina; Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O; Karrasch, Mira

    2017-01-01

    Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions.

  6. Regional gray matter correlates of memory for emotion-laden words in middle-aged and older adults: A voxel-based morphometry study

    Science.gov (United States)

    Joutsa, Juho; Laine, Matti; Parkkola, Riitta; Rinne, Juha O.; Karrasch, Mira

    2017-01-01

    Emotional content is known to enhance memory in a content-dependent manner in healthy populations. In middle-aged and older adults, a reduced preference for negative material, or even an enhanced preference for positive material has been observed. This preference seems to be modulated by the emotional arousal that the material evokes. The neuroanatomical basis for emotional memory processes is, however, not well understood in middle-aged and older healthy people. Previous research on local gray matter correlates of emotional memory in older populations has mainly been conducted with patients suffering from various neurodegenerative diseases. To our knowledge, this is the first study to examine regional gray matter correlates of immediate free recall and recognition memory of intentionally encoded positive, negative, and emotionally neutral words using voxel-based morphometry (VBM) in a sample of 50-to-79-year-old cognitively intact normal adults. The behavioral analyses yielded a positivity bias in recognition memory, but not in immediate free recall. No associations with memory performance emerged from the region-of-interest (ROI) analyses using amygdalar and hippocampal volumes. Controlling for total intracranial volume, age, and gender, the whole-brain VBM analyses showed statistically significant associations between immediate free recall of negative words and volumes in various frontal regions, between immediate free recall of positive words and cerebellar volume, and between recognition memory of positive words and primary visual cortex volume. The findings indicate that the neural areas subserving memory for emotion-laden information encompass posterior brain areas, including the cerebellum, and that memory for emotion-laden information may be driven by cognitive control functions. PMID:28771634

  7. Multivariate imaging-genetics study of MRI gray matter volume and SNPs reveals biological pathways correlated with brain structural differences in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Sabin Khadka

    2016-07-01

    Full Text Available Background: Attention Deficit Hyperactivity Disorder (ADHD is a prevalent neurodevelopmental disorder affecting children, adolescents, and adults. Its etiology is not well-understood, but it is increasingly believed to result from diverse pathophysiologies that affect the structure and function of specific brain circuits. Although one of the best-studied neurobiological abnormalities in ADHD is reduced fronto-striatal-cerebellar gray matter volume, its specific genetic correlates are largely unknown. Methods: In this study, T1-weighted MR images of brain structure were collected from 198 adolescents (63 ADHD-diagnosed. A multivariate parallel independent component analysis technique (Para-ICA identified imaging-genetic relationships between regional gray matter volume and single nucleotide polymorphism data. Results: Para-ICA analyses extracted 14 components from genetic data and 9 from MR data. An iterative cross-validation using randomly-chosen sub-samples indicated acceptable stability of these ICA solutions. A series of partial correlation analyses controlling for age, sex, and ethnicity revealed two genotype-phenotype component pairs significantly differed between ADHD and non-ADHD groups, after a Bonferroni correction for multiple comparisons. The brain phenotype component not only included structures frequently found to have abnormally low volume in previous ADHD studies, but was also significantly associated with ADHD differences in symptom severity and performance on cognitive tests frequently found to be impaired in patients diagnosed with the disorder. Pathway analysis of the genotype component identified several different biological pathways linked to these structural abnormalities in ADHD. Conclusions: Some of these pathways implicate well-known dopaminergic neurotransmission and neurodevelopment hypothesized to be abnormal in ADHD. Other more recently implicated pathways included glutamatergic and GABA-eric physiological systems

  8. Follow-up study on histogenesis of microcephaly associated with ectopic gray matter induced by prenatal γ-irradiation in the mouse

    International Nuclear Information System (INIS)

    Sun, Xue-Zhi; Inouye, Monoru; Takagishi, Yoshiko

    1996-01-01

    Brain malformation with ectopic gray matter was visualized with magnetic resonance imaging in small-sized heads of prenatally exposed atomic bomb survivors. The identical brain malformation was reproduced in mice and its histogenesis was studied in the present experiment. Pregnant mice were exposed to 60 Co γ-irradiation at a single dose of 1.5 Gy on embryonic day 13 (E13), and then injected intraperitoneally with 30 mg/kg BrdU on E15. The extensive dead cells appeared throughout the brain mantle at 6 hours (h) after exposure. On E16 cell aggregations formed rosettes. On E18 a high proportion of BrdU-labeled cells reached the superficial layers of the cortical plate with the remaining cells located in the ectopic neuronal masses. The quantitative study showed that labeled cells in layers II to III were fewer and those in layers IV to VI more numerous in the prenatally irradiated adult mice than in controls. The anti-GFAP immunostaining revealed that the glial fibers in the irradiated mice were preserved, but disorganized. These findings suggested that the majority of migrating neurons were able to arrive at their normal layers, but some neurons remained due to the interrupted migratory pathway and eventually formed ectopic neuronal masses beneath the subcortical white matter. 60 refs., 5 figs., 1 tab

  9. Voxel-based gray and white matter morphometry correlates of hallucinations in schizophrenia: The superior temporal gyrus does not stand alone.

    Science.gov (United States)

    van Tol, Marie-José; van der Meer, Lisette; Bruggeman, Richard; Modinos, Gemma; Knegtering, Henderikus; Aleman, André

    2014-01-01

    Auditory verbal hallucinations (AVH) in schizophrenia (SZ) have been proposed to result from abnormal local, interregional and interhemispheric integration of brain signals in regions involved in language production and perception. This abnormal functional integration may find its base in morphological abnormalities. Structurally, AVHs have been frequently linked to abnormal morphology of the superior temporal gyrus (STG), but only a few studies investigated the relation of hallucination presence with both whole-brain gray matter (GM) and white matter (WM) morphometry. Using a unified voxel-based morphometry-DARTEL approach, we investigated correlates of AVH presence in 51 schizophrenia patients (20 non-hallucinating [SZ -], 31 hallucinating [SZ +]), and included 51 age and sex matched healthy participants. Effects are reported at p gyrus, and higher WM volume of the left postcentral and superior parietal lobule than controls. Finally, volume of the putamen was lower in SZ + compared to SZ -. No effects on corpus callosum morphometry were observed. Delusion severity, general positive and negative symptomatology illness duration, and medication status could not explain the results. Results suggest that STG GM abnormalities underlie the general susceptibility to experience psychotic symptoms and that additional abnormalities in a network of medial temporal, ventrolateral, putaminal, and parietal regions related to verbal memory and speech production may specifically increase the likelihood of experiencing AVH. Future studies should clarify the meaning of morphometry abnormalities for functional interregional communication.

  10. Individual differences in the Behavioral Inhibition System are associated with orbitofrontal cortex and precuneus gray matter volume.

    Science.gov (United States)

    Fuentes, Paola; Barrós-Loscertales, Alfonso; Bustamante, Juan Carlos; Rosell, Patricia; Costumero, Víctor; Ávila, César

    2012-09-01

    The Behavioral Inhibition System (BIS) is described in Gray's Reinforcement Sensitivity Theory as a hypothetical construct that mediates anxiety in animals and humans. The neuroanatomical correlates of this system are not fully clear, although they are known to involve the amygdala, the septohippocampal system, and the prefrontal cortex. Previous neuroimaging research has related individual differences in BIS with regional volume and functional variations in the prefrontal cortex, amygdala, and hippocampal formation. The aim of the present work was to study BIS-related individual differences and their relationship with brain regional volume. BIS sensitivity was assessed through the BIS/BAS questionnaire in a sample of male participants (N = 114), and the scores were correlated with brain regional volume in a voxel-based morphometry analysis. The results show a negative correlation between the BIS and the volume of the right and medial orbitofrontal cortices and the precuneus. Our results and previous findings suggest that individual differences in anxiety-related personality traits and their related psychopathology may be associated with reduced brain volume in certain structures relating to emotional control (i.e., the orbitofrontal cortex) and self-consciousness (i.e., the precuneus), as shown by our results.

  11. Structural changes of central white matter tracts in Kennedy's disease - a diffusion tensor imaging and voxel-based morphometry study.

    Science.gov (United States)

    Pieper, C C; Konrad, C; Sommer, J; Teismann, I; Schiffbauer, H

    2013-05-01

    Spinobulbar muscular atrophy [Kennedy's disease (KD)] is a rare X-linked neurodegenerative disorder of mainly spinal and bulbar motoneurons. Recent studies suggest a multisystem character of this disease. The aim of this study was to identify and characterize structural changes of gray (GM) and white matter (WM) in the central nervous system. Whole-brain-based voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analyses were applied to MRI data of eight genetically proven patients with KD and compared with 16 healthy age-matched controls. Diffusion tensor imaging analysis showed not only decreased fractional anisotropy (FA) values in the brainstem, but also widespread changes in central WM tracts, whereas VBM analysis of the WM showed alterations primarily in the brainstem and cerebellum. There were no changes in GM volume. The FA value decrease in the brainstem correlated with the disease duration. Diffusion tensor imaging analysis revealed subtle changes of central WM tract integrity, while GM and WM volume remained unaffected. In our patient sample, KD had more extended effects than previously reported. These changes could either be attributed primarily to neurodegeneration or reflect secondary plastic changes due to atrophy of lower motor neurons and reorganization of cortical structures. © 2012 John Wiley & Sons A/S.

  12. Premature graying of hair.

    Science.gov (United States)

    Pandhi, Deepika; Khanna, Deepshikha

    2013-01-01

    Premature graying is an important cause of low self-esteem, often interfering with socio-cultural adjustment. The onset and progression of graying or canities correlate very closely with chronological aging, and occur in varying degrees in all individuals eventually, regardless of gender or race. Premature canities may occur alone as an autosomal dominant condition or in association with various autoimmune or premature aging syndromes. It needs to be differentiated from various genetic hypomelanotic hair disorders. Reduction in melanogenically active melanocytes in the hair bulb of gray anagen hair follicles with resultant pigment loss is central to the pathogenesis of graying. Defective melanosomal transfers to cortical keratinocytes and melanin incontinence due to melanocyte degeneration are also believed to contribute to this. The white color of canities is an optical effect; the reflection of incident light masks the intrinsic pale yellow color of hair keratin. Full range of color from normal to white can be seen both along individual hair and from hair to hair, and admixture of pigmented and white hair is believed to give the appearance of gray. Graying of hair is usually progressive and permanent, but there are occasional reports of spontaneous repigmentation of gray hair. Studies evaluating the association of canities with osteopenia and cardiovascular disease have revealed mixed results. Despite the extensive molecular research being carried out to understand the pathogenesis of canities, there is paucity of effective evidence-based treatment options. Reports of repigmentation of previously white hair following certain inflammatory processes and use of drugs have suggested the possibility of cytokine-induced recruitment of outer sheath melanocytes to the hair bulb and rekindled the hope for finding an effective drug for treatment of premature canities. In the end, camouflage techniques using hair colorants are outlined.

  13. Premature graying of hair

    Directory of Open Access Journals (Sweden)

    Deepika Pandhi

    2013-01-01

    Full Text Available Premature graying is an important cause of low self-esteem, often interfering with socio-cultural adjustment. The onset and progression of graying or canities correlate very closely with chronological aging, and occur in varying degrees in all individuals eventually, regardless of gender or race. Premature canities may occur alone as an autosomal dominant condition or in association with various autoimmune or premature aging syndromes. It needs to be differentiated from various genetic hypomelanotic hair disorders. Reduction in melanogenically active melanocytes in the hair bulb of gray anagen hair follicles with resultant pigment loss is central to the pathogenesis of graying. Defective melanosomal transfers to cortical keratinocytes and melanin incontinence due to melanocyte degeneration are also believed to contribute to this. The white color of canities is an optical effect; the reflection of incident light masks the intrinsic pale yellow color of hair keratin. Full range of color from normal to white can be seen both along individual hair and from hair to hair, and admixture of pigmented and white hair is believed to give the appearance of gray. Graying of hair is usually progressive and permanent, but there are occasional reports of spontaneous repigmentation of gray hair. Studies evaluating the association of canities with osteopenia and cardiovascular disease have revealed mixed results. Despite the extensive molecular research being carried out to understand the pathogenesis of canities, there is paucity of effective evidence-based treatment options. Reports of repigmentation of previously white hair following certain inflammatory processes and use of drugs have suggested the possibility of cytokine-induced recruitment of outer sheath melanocytes to the hair bulb and rekindled the hope for finding an effective drug for treatment of premature canities. In the end, camouflage techniques using hair colorants are outlined.

  14. Motor and extra-motor gray matter integrity may underlie neurophysiologic parameters of motor function in amyotrophic lateral sclerosis: a combined voxel-based morphometry and transcranial stimulation study.

    Science.gov (United States)

    Christidi, Foteini; Karavasilis, Efstratios; Velonakis, Georgios; Rentzos, Michail; Zambelis, Thomas; Zouvelou, Vasiliki; Xirou, Sophia; Ferentinos, Panagiotis; Efstathopoulos, Efstathios; Kelekis, Nikolaos; Evdokimidis, Ioannis; Karandreas, Nikolaos

    2018-02-07

    The association between gray matter (GM) density and neurophysiologic changes is still unclear in amyotrophic lateral sclerosis (ALS). We evaluated the relationship between GM density and motor system integrity combining voxel-based morphometry (VBM) and transcranial magnetic stimulation (TMS) in ALS. We included 17 ALS patients and 22 healthy controls (HC) who underwent 3D-T1-weighted imaging. Among the ALS group, we applied left motor cortex single-pulse TMS. We used whole-brain VBM comparing ALS and HC in GM density. We also conducted regression analysis to examine correlations between GM density and the following TMS parameters: motor evoked potential (MEP)/M ratio and central motor conduction time (CMCT). We found significantly decreased GM density in ALS patients in several frontal, temporal, parietal/occipital and cerebellar regions (p motor area (negative association). CMCT was associated with GM density in (a) inferior frontal gyrus and middle cingulated gyrus (positive association) and (b) superior parietal lobule; cuneus and cerebellum (negative association). Our findings support a significant interaction between motor and extra-motor structural and functional changes and highlight that motor and extra-motor GM integrity may underlie TMS parameters of motor function in ALS patients.

  15. Astrocytosis measured by {sup 11}C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer's patients

    Energy Technology Data Exchange (ETDEWEB)

    Choo, IL Han [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Chosun University, Department of Neuropsychiatry, School of Medicine, Gwangju (Korea, Republic of); Carter, Stephen F. [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Manchester University, Wolfson Imaging Center, Manchester (United Kingdom); Schoell, Michael L. [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Gothenburg University, Med Tech West, Department of Neuroscience and Rehabilitation, Gothenburg (Sweden); Nordberg, Agneta [Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Stockholm (Sweden); Karolinska University Hospital Huddinge, Department of Geriatric Medicine, Stockholm (Sweden); Karolinska Institutet, Department NVS, Center for Alzheimer Research, Translational Alzheimer Neurobiology, Huddinge (Sweden)

    2014-11-15

    The Alzheimer's disease (AD) pathology is characterized by fibrillar amyloid deposits and neurofibrillary tangles, as well as the activation of astrocytosis, microglia activation, atrophy, dysfunctional synapse, and cognitive impairments. The aim of this study was to test the hypothesis that astrocytosis is correlated with reduced gray matter density in prodromal AD. Twenty patients with AD or mild cognitive impairment (MCI) underwent multi-tracer positron emission tomography (PET) studies with {sup 11}C-Pittsburgh compound B ({sup 11}C-PIB), {sup 18}F-Fluorodeoxyglucose ({sup 18}F-FDG), and {sup 11}C-deuterium-L-deprenyl ({sup 11}C-DED) PET imaging, as well as magnetic resonance imaging (MRI) scanning, cerebrospinal fluid (CSF) biomarker analysis, and neuropsychological assessments. The parahippocampus was selected as a region of interest, and each value was calculated for four different imaging modalities. Correlation analysis was applied between DED slope values and gray matter (GM) densities by MRI. To further explore possible relationships, correlation analyses were performed between the different variables, including the CSF biomarker. A significant negative correlation was obtained between DED slope values and GM density in the parahippocampus in PIB-positive (PIB + ve) MCI patients (p = 0.025) (prodromal AD). Furthermore, in exploratory analyses, a positive correlation was observed between PIB-PET retention and DED binding in AD patients (p = 0.014), and a negative correlation was observed between PIB retention and CSF Aβ42 levels in MCI patients (p = 0.021), while the GM density and CSF total tau levels were negatively correlated in both PIB + ve MCI (p = 0.002) and MCI patients (p = 0.001). No significant correlation was observed with FDG-PET and with any of the other PET, MRI, or CSF biomarkers. High astrocytosis levels in the parahippocampus of PIB + ve MCI (prodromal AD) patients suggest an early preclinical influence on cellular tissue loss. The

  16. Functional interaction between orexin-1 and CB1 receptors in the periaqueductal gray matter during antinociception induced by chemical stimulation of the lateral hypothalamus in rats.

    Science.gov (United States)

    Esmaeili, M H; Reisi, Z; Ezzatpanah, S; Haghparast, A

    2016-11-01

    Chemical stimulation of the lateral hypothalamus (LH) with carbachol induces antinociception which is antagonized by blockade of orexin receptors in some pain modulatory sites in the tail-flick test. In this study, we evaluated the role of orexin-1 and CB1 receptors in the periaqueductal gray matter (PAG), a critical pain modulatory site, in mediation of antinociceptive responses induced by LH stimulation in rats. One hundred thirty-two adult male albino Wistar rats weighing 180-250 g were unilaterally implanted with two separate cannulae into the LH and ventrolateral PAG (vlPAG). Intra-vlPAG administration of SB334867, as a selective orexin-1 receptor antagonist (0.5, 1.5, 5, 15 and 50 nM), or AM251, as a selective CB1 receptor antagonist (1, 3, 10, 30 and 100 nM), was performed just 5 min before carbachol (125 nM) microinjection into the LH. Our findings showed that SB334867 or AM251 administration dose dependently prevented the development of LH-induced antinociception in rats. Treatment with two antagonists at the same time could not intensify their effects in comparison with separate administration of antagonists. It seems that antinociceptive effect of intra-LH administration of carbachol is mediated, at least partially, through the activation of orexin-1 and CB1 receptors in the vlPAG. This work demonstrates a pain modulatory role of the orexinergic system via the PAG in hypothalamic-mediated analgesia suggesting that orexins can be advantageously targeted to achieve analgesia. WHAT DOES THIS STUDY ADD?: OX1 receptor antagonist (SB334867) administration into the ventrolateral periaqueductal gray matter (vlPAG) dose dependently blocked the carbachol-induced antinociception. CB1 receptor antagonist (AM251) microinjection in the vlPAG prevented carbachol-induced antinociception in a dose-dependent manner. Concurrent administration of SB334867 and AM251 into the vlPAG did not reinforce the antinociceptive responses. © 2016 European Pain Federation - EFIC®.

  17. Astrocytosis measured by 11C-deprenyl PET correlates with decrease in gray matter density in the parahippocampus of prodromal Alzheimer's patients

    International Nuclear Information System (INIS)

    Choo, IL Han; Carter, Stephen F.; Schoell, Michael L.; Nordberg, Agneta

    2014-01-01

    The Alzheimer's disease (AD) pathology is characterized by fibrillar amyloid deposits and neurofibrillary tangles, as well as the activation of astrocytosis, microglia activation, atrophy, dysfunctional synapse, and cognitive impairments. The aim of this study was to test the hypothesis that astrocytosis is correlated with reduced gray matter density in prodromal AD. Twenty patients with AD or mild cognitive impairment (MCI) underwent multi-tracer positron emission tomography (PET) studies with 11 C-Pittsburgh compound B ( 11 C-PIB), 18 F-Fluorodeoxyglucose ( 18 F-FDG), and 11 C-deuterium-L-deprenyl ( 11 C-DED) PET imaging, as well as magnetic resonance imaging (MRI) scanning, cerebrospinal fluid (CSF) biomarker analysis, and neuropsychological assessments. The parahippocampus was selected as a region of interest, and each value was calculated for four different imaging modalities. Correlation analysis was applied between DED slope values and gray matter (GM) densities by MRI. To further explore possible relationships, correlation analyses were performed between the different variables, including the CSF biomarker. A significant negative correlation was obtained between DED slope values and GM density in the parahippocampus in PIB-positive (PIB + ve) MCI patients (p = 0.025) (prodromal AD). Furthermore, in exploratory analyses, a positive correlation was observed between PIB-PET retention and DED binding in AD patients (p = 0.014), and a negative correlation was observed between PIB retention and CSF Aβ42 levels in MCI patients (p = 0.021), while the GM density and CSF total tau levels were negatively correlated in both PIB + ve MCI (p = 0.002) and MCI patients (p = 0.001). No significant correlation was observed with FDG-PET and with any of the other PET, MRI, or CSF biomarkers. High astrocytosis levels in the parahippocampus of PIB + ve MCI (prodromal AD) patients suggest an early preclinical influence on cellular tissue loss. The lack of correlation between

  18. Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: a VBM-DARTEL Study.

    Science.gov (United States)

    Riva, Daria; Annunziata, Silvia; Contarino, Valeria; Erbetta, Alessandra; Aquino, Domenico; Bulgheroni, Sara

    2013-10-01

    Voxel-based morphometry (VBM) studies have reported abnormalities in brain regions involved in functions that are commonly impaired in autism spectrum disorders (ASD). However, little is known about brain structure anomalies in low-functioning (LF) young children with ASD. A VBM analysis was carried out to assess brain regions involved in ASD LF children, and a multiple regression analysis was used to examine the relationship between regional volume changes and autism symptom measures. Twenty-six LF ASD children (2-10 years) were compared with 21 controls. A VBM-Diffeomorphic Anatomical Registration analysis using Exponentiated Lie algebra (DARTEL) was used to evaluate gray matter (GM) and white matter alterations, covaried with Intelligence Quotient, age, and total brain volume. The resulting altered regions were correlated with Autism Diagnostic Interview (ADI)-Revised and Autism Diagnostic Observation Schedule (ADOS)-Generic scores. GM bilateral reduction was noted in the cerebellum (Crus II and vermis) and in the hippocampi in ASD group. GM reduction was also detected in the inferior and superior frontal gyri, in the occipital medial and superior gyri, and in the inferior temporal gyrus of the left cerebral hemisphere. In the right hemisphere, GM reduction was found in the post-central cortex and in the occipital inferior gyrus. Multiple regression analysis showed a correlation between alterations in GM volume in the cerebellum (Crus II and vermis) and ADI-communication and ADOS-total (communication and interaction) scores. These findings seem to confirm that the cerebellum is involved in integrating and regulating emotional and cognitive functions which are impaired in ASD.

  19. Low episodic memory performance in cognitively normal elderly subjects is associated with increased posterior cingulate gray matter N-acetylaspartate: a 1H MRSI study at 7 Tesla.

    Science.gov (United States)

    Schreiner, Simon J; Kirchner, Thomas; Wyss, Michael; Van Bergen, Jiri M G; Quevenco, Frances C; Steininger, Stefanie C; Griffith, Erica Y; Meier, Irene; Michels, Lars; Gietl, Anton F; Leh, Sandra E; Brickman, Adam M; Hock, Christoph; Nitsch, Roger M; Pruessmann, Klaas P; Henning, Anke; Unschuld, Paul G

    2016-12-01

    Low episodic memory performance characterizes elderly subjects at increased risk for Alzheimer's disease (AD) and may reflect neuronal dysfunction within the posterior cingulate cortex and precuneus (PCP) region. To investigate a potential association between cerebral neurometabolism and low episodic memory in the absence of cognitive impairment, tissue-specific magnetic resonance spectroscopic imaging at ultrahigh field strength of 7 Tesla was used to investigate the PCP region in a healthy elderly study population (n = 30, age 70 ± 5.7 years, Mini-Mental State Examination 29.4 ± 4.1). The Verbal Learning and Memory Test (VLMT) was administered as part of a neuropsychological battery for assessment of episodic memory performance. Significant differences between PCP gray and white matter could be observed for glutamate-glutamine (p = 0.001), choline (p = 0.01), and myo-inositol (p = 0.02). Low Verbal Learning and Memory Test performance was associated with high N-acetylaspartate in PCP gray matter (p = 0.01) but not in PCP white matter. Our data suggest that subtle decreases in episodic memory performance in the elderly may be associated with increased levels of N-acetylaspartate as a reflection of increased mitochondrial energy capacity in PCP gray matter. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Assessment of regional gray matter loss in dementia with Lewy bodies: a surface-based MRI analysis.

    Science.gov (United States)

    Watson, Rosie; Colloby, Sean J; Blamire, Andrew M; O'Brien, John T

    2015-01-01

    To compare magnetic resonance imaging (MRI) patterns of cortical thinning in subjects with dementia with Lewy bodies (DLB), Alzheimer's disease (AD), and normal aging and investigate the relationship between cortical thickness and clinical measures. Study participants (31 DLB, 30 AD, and 33 healthy comparison subjects) underwent 3-Tesla T1-weighted MRI and completed clinical and cognitive assessments. We used the FreeSurfer analysis package to measure cortical thickness and investigated the patterns of cortical thinning across groups. Cortical thinning in AD was found predominantly in the temporal and parietal areas extending into the frontal lobes (N = 63, df = 59, t >3.3, p 3.6, p 2.8, p matter loss in DLB and highlights important structural imaging differences between the conditions. Copyright © 2015 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Comparison of gray matter and metabolic reduction in mild Alzheimer's disease using FDG-PET and voxel-based morphometric MR studies

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Kazunari; Sasaki, Hiroki; Kono, Atsushi K.; Miyamoto, Naokazu; Fukuda, Tetsuya [Hyogo Brain and Heart Center, Department of Radiology and Nuclear Medicine, Himeji, Hyogo (Japan); Mori, Etsuro [Hyogo Brain and Heart Center, Institute for Aging Brain and Cognitive Disorders, Himeji, Hyogo (Japan)

    2005-08-01

    The aim of this study was to investigate regional differences between morphologic and functional changes in the same patients with mild Alzheimer's disease (AD) using statistical parametric mapping (SPM) and voxel-based morphometry (VBM). Thirty patients with very mild AD (mean age 66.8 years, mean MMSE score 24.0) and 30 age- and sex-matched normal volunteers underwent both{sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and three-dimensional spoiled gradient echo (SPGR) magnetic resonance imaging (MRI). Statistical parametric mapping was used to conduct VBM analysis of the morphological data, which were compared voxel by voxel with the results of a similar analysis of the glucose metabolic data. In AD patients, VBM data indicated a significant gray matter volume density decrease in bilateral amygdala/hippocampus complex (p<0.05, corrected), while FDG-PET analysis showed significant glucose metabolic reductions in the posterior cingulate gyri and the right parietal lobule, compared with those in the normal control group. In very mild AD, morphological change occurs in the medial temporal lobes, while in contrast, metabolic changes occur in the posterior cingulate gyri and parietal lobule. (orig.)

  2. Large scale fusion of gray matter and resting-state functional MRI reveals common and shared biological markers across the psychosis spectrum in the B-SNIP cohort

    Directory of Open Access Journals (Sweden)

    Zheng eWang

    2015-12-01

    Full Text Available To investigate whether aberrant interactions between brain structure and function present similarly or differently across probands with psychotic illnesses (schizophrenia (SZ, schizoaffective disorder (SAD, and bipolar I disorder with psychosis (BP and whether these deficits are shared with their first-degree non-psychotic relatives. A total of 1199 subjects were assessed, including 220 SZ, 147 SAD, 180 psychotic BP, 150 first-degree relatives of SZ, 126 SAD relatives, 134 BP relatives and 242 healthy controls. All subjects underwent structural MRI (sMRI and resting-state functional MRI (rs-fMRI scanning. Joint independent analysis (jICA was used to fuse sMRI gray matter (GM and rs-fMRI amplitude of low frequency fluctuations (ALFF data to identify the relationship between the two modalities. Joint ICA revealed two significantly fused components. The association between functional brain alteration in a prefrontal-striatal-thalamic-cerebellar network and structural abnormalities in the default mode network (DMN was found to be common across psychotic diagnoses and correlated with cognitive function, social function and Schizo-Bipolar Scale (SBS scores. The fused alteration in the temporal lobe was unique to SZ and SAD. The above effects were not seen in any relative group (including those with cluster-A personality. Using a multivariate fused approach involving two widely used imaging markers we demonstrate both shared and distinct biological traits across the psychosis spectrum. Further, our results suggest that the above traits are psychosis biomarkers rather than endophenotypes.

  3. Poor receptive joint attention skills are associated with atypical gray matter asymmetry in the posterior superior temporal gyrus of chimpanzees (Pan troglodytes).

    Science.gov (United States)

    Hopkins, William D; Misiura, Maria; Reamer, Lisa A; Schaeffer, Jennifer A; Mareno, Mary C; Schapiro, Steven J

    2014-01-01

    Clinical and experimental data have implicated the posterior superior temporal gyrus as an important cortical region in the processing of socially relevant stimuli such as gaze following, eye direction, and head orientation. Gaze following and responding to different socio-communicative signals is an important and highly adaptive skill in primates, including humans. Here, we examined whether individual differences in responding to socio-communicative cues was associated with variation in either gray matter (GM) volume and asymmetry in a sample of chimpanzees. Magnetic resonance image scans and behavioral data on receptive joint attention (RJA) was obtained from a sample of 191 chimpanzees. We found that chimpanzees that performed poorly on the RJA task had less GM in the right compared to left hemisphere in the posterior but not anterior superior temporal gyrus. We further found that middle-aged and elderly chimpanzee performed more poorly on the RJA task and had significantly less GM than young-adult and sub-adult chimpanzees. The results are consistent with previous studies implicating the posterior temporal gyrus in the processing of socially relevant information.

  4. Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: a magnetic resonance imaging voxel-based morphometry study

    International Nuclear Information System (INIS)

    Lv, Xiao-Fei; Zheng, Xiao-Li; Zhang, Wei-Dong; Liu, Li-Zhi; Zhang, You-Ming; Chen, Ming-Yuan; Li, Li

    2014-01-01

    Evidence is accumulating that temporal lobe radiation necrosis in patients with nasopharyngeal carcinoma (NPC) after radiotherapy (RT) could involve gray matter (GM). The purpose of the study was to assess the radiation-induced GM volume differences between NPC patients who had and had not received RT and the effect of time after RT on GM volume differences in those patients who had received RT. We used magnetic resonance imaging voxel-based morphometry (VBM) to assess differences in GM volume between 30 NPC patients with normal-appearing whole-brain GM after RT and 15 control patients with newly diagnosed but not yet medically treated NPC. Correlation analyses were used to investigate the relationship between GM volume changes and time after RT. Patients who had received RT had GM volume decreases in the bilateral superior temporal gyrus, left middle temporal gyrus, right fusiform gyrus, right precentral gyrus, and right inferior parietal lobule (p 100 voxels). Moreover, the correlation analysis indicated that regional GM volume loss in the left superior temporal gyrus, left middle temporal gyrus, and right fusiform gyrus were negatively related to the mean dose to the ipsilateral temporal lobe, respectively. These results indicate that GM volume deficits in bilateral temporal lobes in patients who had received RT might be radiation-induced. Our findings might provide new insight into the pathogenesis of radiation-induced structural damage in normal-appearing brain tissue. Yet this is an exploratory study, whose findings should therefore be taken with caution. (orig.)

  5. A voxel-based morphometric magnetic resonance imaging study of the brain detects age-related gray matter volume changes in healthy subjects of 21–45 years old

    OpenAIRE

    Bourisly, Ali K; El-Beltagi, Ahmed; Cherian, Jigi; Gejo, Grace; Al-Jazzaf, Abrar; Ismail, Mohammad

    2015-01-01

    Previous and more recent work of analyzing structural changes in the brain suggest that certain brain regions such as the frontal lobe are among the brain regions profoundly affected by the aging process across males and females. Also, a unified model of structural changes in a normally aging brain is still lacking. The present study investigated age-related structural brain changes in gray matter from young to early middle-age adulthood for males and females. Magnetic resonance images of 215...

  6. Conceptual elaboration versus direct lexical access in WAIS-similarities: differential effects of white-matter lesions and gray matter volumes.

    Science.gov (United States)

    Fernaeus, Sven-Erik; Hellström, Åke

    2017-09-18

    Wechsler Adult Intelligence Scale (WAIS) subscale Similarities have been classified as a test of either verbal comprehension or of inductive reasoning. The reason may be that items divide into two categories. We tested the hypothesis of heterogeneity of items in WAIS-Similarities. Consecutive patients at a memory clinic and healthy controls participated in the study. White-matter hyperintensities (WMHs) and normalized temporal lobe volumes were measured based on Magnetic resonance Imaging (MRI), and tests of verbal memory and attention were used in addition to WAIS-Similarities to collect behavioural data. Factor analysis supported the hypothesis that two factors are involved in the performance of WAIS-similarities: (1) semiautomatic lexical access and (2) conceptual elaboration. These factors were highly correlated but provided discriminative diagnostic information: In logistic regression analyses, scores of the lexical access factor and of the conceptual elaboration factor discriminated patients with mild cognitive impairment from Alzheimer's disease patients and from healthy controls, respectively. High scores of WMH, indicating periventricular white-matter lesions, predicted factor scores of direct lexical access but not those of conceptual elaboration, which were predicted only by medial and lateral temporal lobe volumes.

  7. Marriage Matters But How Much? Marital Centrality Among Young Adults.

    Science.gov (United States)

    Willoughby, Brian J; Hall, Scott S; Goff, Saige

    2015-01-01

    Marriage, once a gateway to adulthood, is no longer as widely considered a requirement for achieving adult status. With declining marriage rates and delayed marital transitions, some have wondered whether current young adults have rejected the traditional notion of marriage. Utilizing a sample of 571 young adults, the present study explored how marital centrality (the expected importance to be placed on the marital role relative to other adult roles) functioned as a unique and previously unexplored marital belief among young adults. Results suggested that marriage remains an important role for many young adults. On average, young adults expected that marriage would be more important to their life than parenting, careers, or leisure activities. Marital centrality profiles were found to significantly differ based on both gender and religiosity. Marital centrality was also associated with various outcomes including binge-drinking and sexual activity. Specifically, the more central marriage was expected to be, the less young adults engaged in risk-taking or sexual behaviors.

  8. The Relationship between Regional Gray Matter Volume of Social Exclusion Regions and Personal Self-Esteem Is Moderated by Collective Self-Esteem.

    Science.gov (United States)

    Wu, Xin; Chen, Yujie; Chen, Bing; Guan, Lili; Zhao, Yufang

    2017-01-01

    According to sociometer theory, self-esteem is an internal monitor of positive social bonds to others. Social exclusion can break or threaten social bonds, which might be reflected by the brain structure of social exclusion regions. Thus, self-esteem might be influenced by structurally individual differences in these regions. It has been suggested that self-esteem can be divided into personal (PSE) and collective (CSE) self-esteem and CSE can bring individuals many benefits, such as acceptance, belonging, and social support, which could further maintain or increase their PSE. Based on this, we hypothesized that CSE might moderate the relationship between structurally individual differences in social exclusion regions and PSE. Therefore, in the present study, the moderating effect of CSE on the relationships between PSE and individual differences in regional gray matter volume (rGMV) of 10 social exclusion regions from previous meta-analysis of social exclusion were investigated using voxel-based morphometry. The results showed that CSE played a moderating role in the relationship between PSE and rGMV of the left posterior cingulate cortex (PCC). Specifically, PSE was positively associated with rGMV of left PCC in lower CSE, while there was no significant relationship between PSE and rGMV of left PCC in higher CSE. Therefore, we believe that compared with a higher CSE, because of lack of acceptance, belonging, and social support from valued groups, lower CSE individuals might be more prone to be influenced by social exclusion with decreased rGMV of the left PCC, which makes them more prone to develop lower PSE.

  9. An improved FSL-FIRST pipeline for subcortical gray matter segmentation to study abnormal brain anatomy using quantitative susceptibility mapping (QSM).

    Science.gov (United States)

    Feng, Xiang; Deistung, Andreas; Dwyer, Michael G; Hagemeier, Jesper; Polak, Paul; Lebenberg, Jessica; Frouin, Frédérique; Zivadinov, Robert; Reichenbach, Jürgen R; Schweser, Ferdinand

    2017-06-01

    Accurate and robust segmentation of subcortical gray matter (SGM) nuclei is required in many neuroimaging applications. FMRIB's Integrated Registration and Segmentation Tool (FIRST) is one of the most popular software tools for automated subcortical segmentation based on T 1 -weighted (T1w) images. In this work, we demonstrate that FIRST tends to produce inaccurate SGM segmentation results in the case of abnormal brain anatomy, such as present in atrophied brains, due to a poor spatial match of the subcortical structures with the training data in the MNI space as well as due to insufficient contrast of SGM structures on T1w images. Consequently, such deviations from the average brain anatomy may introduce analysis bias in clinical studies, which may not always be obvious and potentially remain unidentified. To improve the segmentation of subcortical nuclei, we propose to use FIRST in combination with a special Hybrid image Contrast (HC) and Non-Linear (nl) registration module (HC-nlFIRST), where the hybrid image contrast is derived from T1w images and magnetic susceptibility maps to create subcortical contrast that is similar to that in the Montreal Neurological Institute (MNI) template. In our approach, a nonlinear registration replaces FIRST's default linear registration, yielding a more accurate alignment of the input data to the MNI template. We evaluated our method on 82 subjects with particularly abnormal brain anatomy, selected from a database of >2000 clinical cases. Qualitative and quantitative analyses revealed that HC-nlFIRST provides improved segmentation compared to the default FIRST method. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Increased Gray Matter Volume and Resting-State Functional Connectivity in Somatosensory Cortex and their Relationship with Autistic Symptoms in Young Boys with Autism Spectrum Disorder.

    Science.gov (United States)

    Wang, Jia; Fu, Kuang; Chen, Lei; Duan, Xujun; Guo, Xiaonan; Chen, Heng; Wu, Qiong; Xia, Wei; Wu, Lijie; Chen, Huafu

    2017-01-01

    Autism spectrum disorder (ASD) has been widely recognized as a complex neurodevelopmental disorder. A large number of neuroimaging studies suggest abnormalities in brain structure and function of patients with ASD, but there is still no consistent conclusion. We sought to investigate both of the structural and functional brain changes in 3-7-year-old children with ASD compared with typically developing controls (TDs), and to assess whether these alterations are associated with autistic behavioral symptoms. Firstly, we applied an optimized method of voxel-based morphometry (VBM) analysis on structural magnetic resonance imaging (sMRI) data to assess the differences of gray matter volume (GMV) between 31 autistic boys aged 3-7 and 31 age- and handness-matched male TDs. Secondly, we used clusters with between-group differences as seed regions to generate intrinsic functional connectivity maps based on resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) in order to evaluate the functional impairments induced by structural alterations. Brain-behavior correlations were assessed among GMV, functional connectivity and symptom severity in children with ASD. VBM analyses revealed increased GMV in left superior temporal gyrus (STG) and left postcentral gyrus (PCG) in ASD children, comparing with TDs. Using left PCG as a seed region, ASD children displayed significantly higher positive connectivity with right angular gyrus (AG) and greater negative connectivity with right superior parietal gyrus (SPG) and right superior occipital gyrus (SOG), which were associated with the severity of symptoms in social interaction, communication and self-care ability. We suggest that stronger functional connectivity between left PCG and right AG, SPG, and SOG detected in young boys with ASD may serve as important indicators of disease severity. Our study provided preliminary functional evidence that may underlie impaired higher-order multisensory integration in ASD

  11. Increased Gray Matter Volume and Resting-State Functional Connectivity in Somatosensory Cortex and their Relationship with Autistic Symptoms in Young Boys with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jia Wang

    2017-08-01

    Full Text Available Autism spectrum disorder (ASD has been widely recognized as a complex neurodevelopmental disorder. A large number of neuroimaging studies suggest abnormalities in brain structure and function of patients with ASD, but there is still no consistent conclusion. We sought to investigate both of the structural and functional brain changes in 3–7-year-old children with ASD compared with typically developing controls (TDs, and to assess whether these alterations are associated with autistic behavioral symptoms. Firstly, we applied an optimized method of voxel-based morphometry (VBM analysis on structural magnetic resonance imaging (sMRI data to assess the differences of gray matter volume (GMV between 31 autistic boys aged 3–7 and 31 age- and handness-matched male TDs. Secondly, we used clusters with between-group differences as seed regions to generate intrinsic functional connectivity maps based on resting-state functional connectivity magnetic resonance imaging (rs-fcMRI in order to evaluate the functional impairments induced by structural alterations. Brain-behavior correlations were assessed among GMV, functional connectivity and symptom severity in children with ASD. VBM analyses revealed increased GMV in left superior temporal gyrus (STG and left postcentral gyrus (PCG in ASD children, comparing with TDs. Using left PCG as a seed region, ASD children displayed significantly higher positive connectivity with right angular gyrus (AG and greater negative connectivity with right superior parietal gyrus (SPG and right superior occipital gyrus (SOG, which were associated with the severity of symptoms in social interaction, communication and self-care ability. We suggest that stronger functional connectivity between left PCG and right AG, SPG, and SOG detected in young boys with ASD may serve as important indicators of disease severity. Our study provided preliminary functional evidence that may underlie impaired higher-order multisensory

  12. The yearly rate of Relative Thalamic Atrophy (yrRTA): a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis.

    Science.gov (United States)

    Menéndez-González, Manuel; Salas-Pacheco, José M; Arias-Carrión, Oscar

    2014-01-01

    Despite a strong correlation to outcome, the measurement of gray matter (GM) atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS). This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meanings of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the "yearly rate of Relative Thalamic Atrophy" (yrRTA). In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications.

  13. Gray matter changes and cognitive predictors of 2-year follow-up abnormalities in early-onset first-episode psychosis.

    Science.gov (United States)

    Castro-Fornieles, Josefina; Bargalló, Nuria; Calvo, Anna; Arango, Celso; Baeza, Immaculada; Gonzalez-Pinto, Ana; Parellada, Mara; Graell, Montserrat; Moreno, Carmen; Otero, Soraya; Janssen, Joost; Rapado-Castro, Marta; de la Serna, Elena

    2018-01-01

    This study aims to examine regional gray matter (GM) changes over a period of 2 years in patients diagnosed with early-onset first-episode psychosis (EO-FEP), and to identify baseline predictors of abnormalities at the follow-up. Fifty-nine patients with EO-FEP aged 11-17 years were assessed. Magnetic resonance imaging was carried out at admission and 2 years later. Changes over time were assessed with voxel-based morphometry. Fifty-nine patients (34 schizophrenia-SCZ, 15 bipolar disorder-BP, and 10 other psychotic disorders) and 70 healthy controls were assessed. At baseline no differences were found between the EO-FEP groups and control subjects. Over time, SCZ patients presented a larger GM decrease in the orbitofrontal cortex, anterior midline frontal cortex, cingulate, left caudate, and thalamus. BP patients also had a larger GM decrease in the right putamen, right orbitofrontal cortex, and anterior and midline region of the right superior frontal gyrus and left caudate, but with fewer areas showing significant differences than in the comparison between SCZ and controls. In the cross-sectional analysis, only SCZ patients showed differences with respect to controls in some GM areas. Significant baseline predictors of a 2-year reduction in GM were IQ and working memory. EO-FEP patients did not show differences in GM compared to controls at baseline. Both SCZ and BP patients showed a greater decrease in specific areas during the first 2 years. At follow-up, only SCZ patients differed significantly from controls in specific brain areas. The GM reduction was predicted by baseline cognitive variables.

  14. How reliable are gray matter disruptions in specific reading disability across multiple countries and languages? Insights from a large-scale voxel-based morphometry study.

    Science.gov (United States)

    Jednoróg, Katarzyna; Marchewka, Artur; Altarelli, Irene; Monzalvo Lopez, Ana Karla; van Ermingen-Marbach, Muna; Grande, Marion; Grabowska, Anna; Heim, Stefan; Ramus, Franck

    2015-05-01

    The neural basis of specific reading disability (SRD) remains only partly understood. A dozen studies have used voxel-based morphometry (VBM) to investigate gray matter volume (GMV) differences between SRD and control children, however, recent meta-analyses suggest that few regions are consistent across studies. We used data collected across three countries (France, Poland, and Germany) with the aim of both increasing sample size (236 SRD and controls) to obtain a clearer picture of group differences, and of further assessing the consistency of the findings across languages. VBM analysis reveals a significant group difference in a single cluster in the left thalamus. Furthermore, we observe correlations between reading accuracy and GMV in the left supramarginal gyrus and in the left cerebellum, in controls only. Most strikingly, we fail to replicate all the group differences in GMV reported in previous studies, despite the superior statistical power. The main limitation of this study is the heterogeneity of the sample drawn from different countries (i.e., speaking languages with varying orthographic transparencies) and selected based on different assessment batteries. Nevertheless, analyses within each country support the conclusions of the cross-linguistic analysis. Explanations for the discrepancy between the present and previous studies may include: (1) the limited suitability of VBM to reveal the subtle brain disruptions underlying SRD; (2) insufficient correction for multiple statistical tests and flexibility in data analysis, and (3) publication bias in favor of positive results. Thus the study echoes widespread concerns about the risk of false-positive results inherent to small-scale VBM studies. © 2015 Wiley Periodicals, Inc.

  15. Self-regulation therapy increases frontal gray matter in children with fetal alcohol spectrum disorder: evaluation by voxel-based morphometry

    Directory of Open Access Journals (Sweden)

    Debra W. Soh

    2015-03-01

    Full Text Available Children with fetal alcohol spectrum disorder show executive function (EF deficits, particularly in self-regulation skills, and abnormalities in brain regions critical for these skills. None of the validated EF interventions for these children has been evaluated with regards to impacts on brain structure. Twenty-nine children with FASD were assigned to either an immediate-treatment (TX or delayed-treatment control group (DTC. Nineteen typically developing children served as healthy controls (CT. All received a structural MRI scan and baseline neuropsychological testing, following which the TX group underwent 12 weekly 1.5-hour sessions of the Alert Program for Self-Regulation®. After treatment or a period of ~14 weeks, all received a repeat scan and post-intervention testing. Whole-brain and region-of-interest analyses using voxel-based morphometry evaluated group differences and changes over time in gray matter (GM. Exploratory analyses revealed significant group changes: (1 At baseline, combined TX and DTC groups demonstrated global GM reductions compared with the CT group. (2 Region-of-interest analysis using a frontal mask, comparing post-intervention to pre-intervention results, showed significantly increased GM in the left middle frontal gyrus (BA10, right frontal pole (BA11, and right anterior cingulate (BA32 in the TX group. Similar results were not found in the DTC or CT groups. (3 At post-intervention, both TX and CT groups showed larger GM volumes than the DTC group in the left superior frontal gyrus (BA9, which was smaller in the FASD group at baseline. These results suggested that Alert led to improvements in post-intervention testing of self-regulation skills and typical brain development in treated children.

  16. Voxelwise meta-ananlysis of gray matter anomalies in progressive supranuclear palsy and Parkinson’s disease using anatomic likelihood estimation

    Directory of Open Access Journals (Sweden)

    Huifang eShang

    2014-02-01

    Full Text Available Numerous voxel-based morphometry (VBM studies on gray matter (GM of patients with progressive supranuclear palsy (PSP and Parkinson’s disease (PD have been conducted separately. Identifying the different neuroanatomical changes in GM resulting from PSP and PD through meta-analysis will aid the differential diagnosis of PSP and PD. In this study, a systematic review of VBM studies of patients with PSP and PD relative to healthy controls (HC in the Embase and PubMed databases from January 1995 to April 2013 was conducted. The anatomical distribution of the coordinates of GM differences was meta-analyzed using anatomical likelihood estimation. Separate maps of GM changes were constructed and subtraction meta-analysis was performed to explore the differences in GM abnormalities between PSP and PD. Nine PSP studies and 24 PD studies were included. GM reductions were present in the bilateral thalamus, basal ganglia, midbrain, insular cortex and inferior frontal gyrus, and left precentral gyrus and anterior cingulate gyrus in PSP. Atrophy of GM was concentrated in the bilateral middle and inferior frontal gyrus, precuneus, left precentral gyrus, middle temporal gyrus, right superior parietal lobule, and right cuneus in PD. Subtraction meta-analysis indicated that GM volume was lesser in the bilateral midbrain, thalamus, and insula in PSP compared with that in PD. Our meta-analysis indicated that PSP and PD shared a similar distribution of neuroanatomical changes in the frontal lobe, including inferior frontal gyrus and precentral gyrus, and that atrophy of the midbrain, thalamus, and insula are neuroanatomical markers for differentiating PSP from PD.

  17. Radiation-induced changes in normal-appearing gray matter in patients with nasopharyngeal carcinoma: a magnetic resonance imaging voxel-based morphometry study

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xiao-Fei; Zheng, Xiao-Li; Zhang, Wei-Dong; Liu, Li-Zhi; Zhang, You-Ming [State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou (China); Sun Yat-sen University Cancer Center, Department of Medical Imaging and Interventional Radiology, Guangzhou (China); Chen, Ming-Yuan [Sun Yat-sen University Cancer Center, Department of Nasopharyngeal Carcinoma, Guangzhou (China); Li, Li [Sun Yat-sen University Cancer Center, Department of Medical Imaging and Interventional Radiology, Guangzhou (China)

    2014-05-15

    Evidence is accumulating that temporal lobe radiation necrosis in patients with nasopharyngeal carcinoma (NPC) after radiotherapy (RT) could involve gray matter (GM). The purpose of the study was to assess the radiation-induced GM volume differences between NPC patients who had and had not received RT and the effect of time after RT on GM volume differences in those patients who had received RT. We used magnetic resonance imaging voxel-based morphometry (VBM) to assess differences in GM volume between 30 NPC patients with normal-appearing whole-brain GM after RT and 15 control patients with newly diagnosed but not yet medically treated NPC. Correlation analyses were used to investigate the relationship between GM volume changes and time after RT. Patients who had received RT had GM volume decreases in the bilateral superior temporal gyrus, left middle temporal gyrus, right fusiform gyrus, right precentral gyrus, and right inferior parietal lobule (p < 0.001, uncorrected, cluster size >100 voxels). Moreover, the correlation analysis indicated that regional GM volume loss in the left superior temporal gyrus, left middle temporal gyrus, and right fusiform gyrus were negatively related to the mean dose to the ipsilateral temporal lobe, respectively. These results indicate that GM volume deficits in bilateral temporal lobes in patients who had received RT might be radiation-induced. Our findings might provide new insight into the pathogenesis of radiation-induced structural damage in normal-appearing brain tissue. Yet this is an exploratory study, whose findings should therefore be taken with caution. (orig.)

  18. Associations Between Daily Mood States and Brain Gray Matter Volume, Resting-State Functional Connectivity and Task-Based Activity in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Elmira Ismaylova

    2018-05-01

    Full Text Available Numerous studies have shown differences in the functioning in the areas of the frontal-limbic circuitry between depressed patients and controls. However, current knowledge on frontal-limbic neural substrates of individual differences in mood states in everyday life in healthy individuals is scarce. The present study investigates anatomical, resting-state, and functional neural correlates of daily mood states in healthy individuals. We expected to observe associations between mood and the frontal-limbic circuitry and the default-mode network (DMN. A total of 42 healthy adults (19 men, 23 women; 34 ± 1.2 years regularly followed for behavior and psychosocial functioning since age of 6, underwent a functional magnetic resonance imaging scan, and completed a daily diary of mood states and related cognitions for 5 consecutive days. Results showed that individuals with smaller left hippocampal gray matter volumes experienced more negative mood and rumination in their daily life. Greater resting-state functional connectivity (rsFC within the DMN, namely between posterior cingulate cortex (PCC and medial prefrontal cortex regions as well as between PCC and precuneus, was associated with both greater negative and positive mood states in daily life. These rsFC results could be indicative of the role of the DMN regional functioning in emotional arousal, irrespective of valence. Lastly, greater daily positive mood was associated with greater activation in response to negative emotional stimuli in the precentral gyri, previously linked to emotional interference on cognitive control. Altogether, present findings might reflect neural mechanisms underlying daily affect and cognition among healthy individuals.

  19. Role of orexin-2 and CB1 receptors within the periaqueductal gray matter in lateral hypothalamic-induced antinociception in rats.

    Science.gov (United States)

    Esmaeili, Mohammad-Hossein; Reisi, Zahra; Ezzatpanah, Somayeh; Haghparast, Abbas

    2017-02-01

    Orexin plays an important role in pain modulation. Orexin-1 and orexin-2 receptors (Ox1r and Ox2r) are found at high density in the ventrolateral periaqueductal gray matter (vlPAG). Our previous study showed that chemical stimulation of the lateral hypothalamus with carbachol induces antinociception in the tail-flick test, a model of acute pain, and Ox1r-mediated antinociception in the vlPAG is modulated by the activity of vlPAG CB1 receptors. In the current study, TCS OX2 29, an Ox2r antagonist (5, 15, 50, 150, and 500 nmol/l), was microinjected into the vlPAG 5 min before the administration of carbachol (125 nmol/l). TCS OX2 29 dose dependently reduced carbachol-induced antinociception. In a second set of experiments, animals were treated with carbachol 5 min after intra-vlPAG administration of 15 nmol/l TCS OX2 29 and 1 nmol/l AM251 (a selective CB1 receptor antagonist), or 150 nmol/l TCS OX2 29 and 10 nmol/l AM251. The findings showed that the antinociceptive effect of orexin is partially mediated by activation of vlPAG Ox2 receptors. Furthermore, the administration of ineffective doses of Ox2 and CB1 receptor antagonists reduced the lateral hypothalamus-induced antinociception. It seems that Ox2 and CB1 receptors act through different pathways and Ox2r-mediated antinociception is not dependent on CB1 receptor activity.

  20. The Relationship between Regional Gray Matter Volume of Social Exclusion Regions and Personal Self-Esteem Is Moderated by Collective Self-Esteem

    Directory of Open Access Journals (Sweden)

    Xin Wu

    2017-11-01

    Full Text Available According to sociometer theory, self-esteem is an internal monitor of positive social bonds to others. Social exclusion can break or threaten social bonds, which might be reflected by the brain structure of social exclusion regions. Thus, self-esteem might be influenced by structurally individual differences in these regions. It has been suggested that self-esteem can be divided into personal (PSE and collective (CSE self-esteem and CSE can bring individuals many benefits, such as acceptance, belonging, and social support, which could further maintain or increase their PSE. Based on this, we hypothesized that CSE might moderate the relationship between structurally individual differences in social exclusion regions and PSE. Therefore, in the present study, the moderating effect of CSE on the relationships between PSE and individual differences in regional gray matter volume (rGMV of 10 social exclusion regions from previous meta-analysis of social exclusion were investigated using voxel-based morphometry. The results showed that CSE played a moderating role in the relationship between PSE and rGMV of the left posterior cingulate cortex (PCC. Specifically, PSE was positively associated with rGMV of left PCC in lower CSE, while there was no significant relationship between PSE and rGMV of left PCC in higher CSE. Therefore, we believe that compared with a higher CSE, because of lack of acceptance, belonging, and social support from valued groups, lower CSE individuals might be more prone to be influenced by social exclusion with decreased rGMV of the left PCC, which makes them more prone to develop lower PSE.

  1. The yearly rate of Relative Thalamic Atrophy (yrRTA: a simple 2D/3D method for estimating deep gray matter atrophy in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Manuel eMenéndez-González

    2014-08-01

    Full Text Available Despite a strong correlation to outcome, the measurement of gray matter (GM atrophy is not being used in daily clinical practice as a prognostic factor and monitor the effect of treatments in Multiple Sclerosis (MS. This is mainly because the volumetric methods available to date are sophisticated and difficult to implement for routine use in most hospitals. In addition, the meaning of raw results from volumetric studies on regions of interest are not always easy to understand. Thus, there is a huge need of a methodology suitable to be applied in daily clinical practice in order to estimate GM atrophy in a convenient and comprehensive way. Given the thalamus is the brain structure found to be more consistently implied in MS both in terms of extent of atrophy and in terms of prognostic value, we propose a solution based in this structure. In particular, we propose to compare the extent of thalamus atrophy (TA with the extent of unspecific, global brain atrophy, represented by ventricular enlargement. We name this ratio the yearly rate of Relative Thalamic Atrophy (yrRTA. In this report we aim to describe the concept of yrRTA and the guidelines for computing it under 2D and 3D approaches and explain the rationale behind this method. We have also conducted a very short crossectional retrospective study to proof the concept of yrRTA. However, we do not seek to describe here the validity of this parameter since these researches are being conducted currently and results will be addressed in future publications.

  2. What sets the central structure of dark matter haloes?

    Science.gov (United States)

    Ogiya, Go; Hahn, Oliver

    2018-02-01

    Dark matter (DM) haloes forming near the thermal cut-off scale of the density perturbations are unique, since they are the smallest objects and form through monolithic gravitational collapse, while larger haloes contrastingly have experienced mergers. While standard cold dark matter (CDM) simulations readily produce haloes that follow the universal Navarro-Frenk-White (NFW) density profile with an inner slope, ρ ∝ r-α, with α = 1, recent simulations have found that when the free-streaming cut-off expected for the CDM model is resolved, the resulting haloes follow nearly power-law density profiles of α ∼ 1.5. In this paper, we study the formation of density cusps in haloes using idealized N-body simulations of the collapse of proto-haloes. When the proto-halo profile is initially cored due to particle free-streaming at high redshift, we universally find ∼r-1.5 profiles irrespective of the proto-halo profile slope outside the core and large-scale non-spherical perturbations. Quite in contrast, when the proto-halo has a power-law profile, then we obtain profiles compatible with the NFW shape when the density slope of the proto-halo patch is shallower than a critical value, αini ∼ 0.3, while the final slope can be steeper for αini ≳ 0.3. We further demonstrate that the r-1.5 profiles are sensitive to small-scale noise, which gradually drives them towards an inner slope of -1, where they become resilient to such perturbations. We demonstrate that the r-1.5 solutions are in hydrostatic equilibrium, largely consistent with a simple analytic model, and provide arguments that angular momentum appears to determine the inner slope.

  3. Diffusion tensor studies and voxel-based morphometry of the temporal lobe to determine the cognitive prognosis in cases of Alzheimer's disease and mild cognitive impairment: Do white matter changes precede gray matter changes?

    Science.gov (United States)

    Taoka, Toshiaki; Yasuno, Fumihiko; Morikawa, Masayuki; Inoue, Makoto; Kiuchi, Kuniaki; Kitamura, Soichiro; Matsuoka, Kiwamu; Kishimoto, Toshifumi; Kichikawa, Kimihiko; Naganawa, Shinji

    2016-01-01

    The purpose of the current study was to assess the feasibility of diffusion tensor imaging (DTI) parameters for determining the prognosis of Alzheimer's disease (AD). We also analyzed the correlation among DTI, voxel-based morphometry (VBM), and results of the mini-mental state examination (MMSE). The subjects of this prospective study were patients with AD and mild cognitive impairment. We performed annual follow-ups with DTI, VBM, and MMSE for 2 or 3 years. On DTI, the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of the uncinate fascicles were measured. VBM was performed to provide a z-score for the parahippocampal gyrus. The correlations among these factors were evaluated in the same period and the next period of the follow-up study. For evaluation of the same period, both DTI parameters and z-scores showed statistically significant correlations with the MMSE score. Also for evaluation of the next period, both DTI parameters and z-scores showed statistically significant correlations with the MMSE score of the next period. We observed a statistically significant correlation between the ADC value of the uncinate fascicles and the z-score of the next period. Diffusion tensor parameters (ADC and FA) of the uncinate fascicles correlated well with cognitive function in the next year and seemed to be feasible for use as biomarkers for predicting the progression of AD. In addition, the white matter changes observed in the ADC seemed to precede changes in the gray matter volume of the parahippocampal gyrus that were represented by z-scores of VBM.

  4. Gray matter and white matter changes in non-demented amyotrophic lateral sclerosis patients with or without cognitive impairment: A combined voxel-based morphometry and tract-based spatial statistics whole-brain analysis.