WorldWideScience

Sample records for central computing facility

  1. The Fermilab central computing facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-01-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front-end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS cluster interactive front-end, an Amdahl VM Computing engine, ACP farms, and (primarily) VMS workstations. This paper will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. (orig.)

  2. The Fermilab Central Computing Facility architectural model

    International Nuclear Information System (INIS)

    Nicholls, J.

    1989-05-01

    The goal of the current Central Computing Upgrade at Fermilab is to create a computing environment that maximizes total productivity, particularly for high energy physics analysis. The Computing Department and the Next Computer Acquisition Committee decided upon a model which includes five components: an interactive front end, a Large-Scale Scientific Computer (LSSC, a mainframe computing engine), a microprocessor farm system, a file server, and workstations. With the exception of the file server, all segments of this model are currently in production: a VAX/VMS Cluster interactive front end, an Amdahl VM computing engine, ACP farms, and (primarily) VMS workstations. This presentation will discuss the implementation of the Fermilab Central Computing Facility Architectural Model. Implications for Code Management in such a heterogeneous environment, including issues such as modularity and centrality, will be considered. Special emphasis will be placed on connectivity and communications between the front-end, LSSC, and workstations, as practiced at Fermilab. 2 figs

  3. Modern computer hardware and the role of central computing facilities in particle physics

    International Nuclear Information System (INIS)

    Zacharov, V.

    1981-01-01

    Important recent changes in the hardware technology of computer system components are reviewed, and the impact of these changes assessed on the present and future pattern of computing in particle physics. The place of central computing facilities is particularly examined, to answer the important question as to what, if anything, should be their future role. Parallelism in computing system components is considered to be an important property that can be exploited with advantage. The paper includes a short discussion of the position of communications and network technology in modern computer systems. (orig.)

  4. On-line satellite/central computer facility of the Multiparticle Argo Spectrometer System

    International Nuclear Information System (INIS)

    Anderson, E.W.; Fisher, G.P.; Hien, N.C.; Larson, G.P.; Thorndike, A.M.; Turkot, F.; von Lindern, L.; Clifford, T.S.; Ficenec, J.R.; Trower, W.P.

    1974-09-01

    An on-line satellite/central computer facility has been developed at Brookhaven National Laboratory as part of the Multiparticle Argo Spectrometer System (MASS). This facility consisting of a PDP-9 and a CDC-6600, has been successfully used in study of proton-proton interactions at 28.5 GeV/c. (U.S.)

  5. Centralized computer-based controls of the Nova Laser Facility

    International Nuclear Information System (INIS)

    Krammen, J.

    1985-01-01

    This article introduces the overall architecture of the computer-based Nova Laser Control System and describes its basic components. Use of standard hardware and software components ensures that the system, while specialized and distributed throughout the facility, is adaptable. 9 references, 6 figures

  6. Requirements for SSC central computing staffing (conceptual)

    International Nuclear Information System (INIS)

    Pfister, J.

    1985-01-01

    Given a computation center with --10,000 MIPS supporting --1,000 users, what are the staffing requirements? The attempt in this paper is to list the functions and staff size required in a central computing or centrally supported computing complex. The organization assumes that although considerable computing power would exist (mostly for online) in the four interaction regions (IR) that there are functions/capabilities better performed outside the IR and in this model at a ''central computing facility.'' What follows is one staffing approach, not necessarily optimal, with certain assumptions about numbers of computer systems, media, networks and system controls, that is, one would get the best technology available. Thus, it is speculation about what the technology may bring and what it takes to operate it. From an end user support standpoint it is less clear, given the geography of an SSC, where and what the consulting support should look like and its location

  7. Introduction to the LaRC central scientific computing complex

    Science.gov (United States)

    Shoosmith, John N.

    1993-01-01

    The computers and associated equipment that make up the Central Scientific Computing Complex of the Langley Research Center are briefly described. The electronic networks that provide access to the various components of the complex and a number of areas that can be used by Langley and contractors staff for special applications (scientific visualization, image processing, software engineering, and grid generation) are also described. Flight simulation facilities that use the central computers are described. Management of the complex, procedures for its use, and available services and resources are discussed. This document is intended for new users of the complex, for current users who wish to keep appraised of changes, and for visitors who need to understand the role of central scientific computers at Langley.

  8. Science and Engineering Research Council Central Laser Facility

    International Nuclear Information System (INIS)

    1981-03-01

    This report covers the work done at, or in association with, the Central Laser Facility during the year April 1980 to March 1981. In the first chapter the major reconstruction and upgrade of the glass laser, which has been undertaken in order to increase the versatility of the facility, is described. The work of the six groups of the Glass Laser Scientific Progamme and Scheduling Committee is described in further chapters entitled; glass laser development, laser plasma interactions, transport and particle emission studies, ablative acceleration and compression studies, spectroscopy and XUV lasers, and theory and computation. Publications based on the work of the facility which have either appeared or been accepted for publication during the year are listed. (U.K.)

  9. Joint Computing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Raised Floor Computer Space for High Performance ComputingThe ERDC Information Technology Laboratory (ITL) provides a robust system of IT facilities to develop and...

  10. 12 CFR 741.210 - Central liquidity facility.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Central liquidity facility. 741.210 Section 741... Unions That Also Apply to Federally Insured State-Chartered Credit Unions § 741.210 Central liquidity... Liquidity Facility, shall adhere to the requirements stated in part 725 of this chapter. ...

  11. Computer-Aided Facilities Management Systems (CAFM).

    Science.gov (United States)

    Cyros, Kreon L.

    Computer-aided facilities management (CAFM) refers to a collection of software used with increasing frequency by facilities managers. The six major CAFM components are discussed with respect to their usefulness and popularity in facilities management applications: (1) computer-aided design; (2) computer-aided engineering; (3) decision support…

  12. Monitoring System with Two Central Facilities Protocol

    Directory of Open Access Journals (Sweden)

    Caesar Firdaus

    2017-03-01

    Full Text Available The security of data and information on government’s information system required proper way of defending against threat. Security aspect can be achieved by using cryptography algorithm, applying information hiding concept, and implementing security protocol. In this research, two central facilities protocol was implemented on Research and Development Center of Mineral and Coal Technology’s Cooperation Contract Monitoring System by utilizing AES and whitespace manipulation algorithm. Adjustment on the protocol by creating several rule of validation ID’s generation and checking processes could fulfill two of four cryptography objectives, consist of authentication and non-repudiation. The solid collaboration between central legitimization agency (CLA, central tabulating facility (CTF, and client is the main idea in two central facilities protocol. The utilization of AES algorithm could defend the data on transmission from man in the middle attack scenario. On the other hand, whitespace manipulation algorithm provided data integrity aspect of the document that is uploaded to the system itself. Both of the algorithm fulfill confidentiality, data integrity, and authentication.

  13. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    1984-01-01

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  14. Computational Science at the Argonne Leadership Computing Facility

    Science.gov (United States)

    Romero, Nichols

    2014-03-01

    The goal of the Argonne Leadership Computing Facility (ALCF) is to extend the frontiers of science by solving problems that require innovative approaches and the largest-scale computing systems. ALCF's most powerful computer - Mira, an IBM Blue Gene/Q system - has nearly one million cores. How does one program such systems? What software tools are available? Which scientific and engineering applications are able to utilize such levels of parallelism? This talk will address these questions and describe a sampling of projects that are using ALCF systems in their research, including ones in nanoscience, materials science, and chemistry. Finally, the ways to gain access to ALCF resources will be presented. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

  15. A comprehensive centralized control system for radiation waste treatment facility

    International Nuclear Information System (INIS)

    Kong Jinsong

    2014-01-01

    A comprehensive centralized control system is designed for the radiation waste treatment facility that lacking of coordinated operational mechanism for the radiation waste treatment. The centralized control and alarm linkage of various systems is implemented to ensure effectively the safety of nuclear facility and materials, improve the integral control ability through advanced informatization ways. (author)

  16. Conducting Computer Security Assessments at Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-06-01

    Computer security is increasingly recognized as a key component in nuclear security. As technology advances, it is anticipated that computer and computing systems will be used to an even greater degree in all aspects of plant operations including safety and security systems. A rigorous and comprehensive assessment process can assist in strengthening the effectiveness of the computer security programme. This publication outlines a methodology for conducting computer security assessments at nuclear facilities. The methodology can likewise be easily adapted to provide assessments at facilities with other radioactive materials

  17. Central Facilities Area Sewage Lagoon Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Giesbrecht, Alan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose of this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.

  18. Computer software design description for the Treated Effluent Disposal Facility (TEDF), Project L-045H, Operator Training Station (OTS)

    International Nuclear Information System (INIS)

    Carter, R.L. Jr.

    1994-01-01

    The Treated Effluent Disposal Facility (TEDF) Operator Training Station (OTS) is a computer-based training tool designed to aid plant operations and engineering staff in familiarizing themselves with the TEDF Central Control System (CCS)

  19. FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION

    International Nuclear Information System (INIS)

    SZALEWSKI, B.

    2005-01-01

    The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering

  20. Computing facility at SSC for detectors

    International Nuclear Information System (INIS)

    Leibold, P.; Scipiono, B.

    1990-01-01

    A description of the RISC-based distributed computing facility for detector simulaiton being developed at the SSC Laboratory is discussed. The first phase of this facility is scheduled for completion in early 1991. Included is the status of the project, overview of the concepts used to model and define system architecture, networking capabilities for user access, plans for support of physics codes and related topics concerning the implementation of this facility

  1. A large-scale computer facility for computational aerodynamics

    International Nuclear Information System (INIS)

    Bailey, F.R.; Balhaus, W.F.

    1985-01-01

    The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans

  2. Security central processing unit applications in the protection of nuclear facilities

    International Nuclear Information System (INIS)

    Goetzke, R.E.

    1987-01-01

    New or upgraded electronic security systems protecting nuclear facilities or complexes will be heavily computer dependent. Proper planning for new systems and the employment of new state-of-the-art 32 bit processors in the processing of subsystem reports are key elements in effective security systems. The processing of subsystem reports represents only a small segment of system overhead. In selecting a security system to meet the current and future needs for nuclear security applications the central processing unit (CPU) applied in the system architecture is the critical element in system performance. New 32 bit technology eliminates the need for program overlays while providing system programmers with well documented program tools to develop effective systems to operate in all phases of nuclear security applications

  3. The CT Scanner Facility at Stellenbosch University: An open access X-ray computed tomography laboratory

    Science.gov (United States)

    du Plessis, Anton; le Roux, Stephan Gerhard; Guelpa, Anina

    2016-10-01

    The Stellenbosch University CT Scanner Facility is an open access laboratory providing non-destructive X-ray computed tomography (CT) and a high performance image analysis services as part of the Central Analytical Facilities (CAF) of the university. Based in Stellenbosch, South Africa, this facility offers open access to the general user community, including local researchers, companies and also remote users (both local and international, via sample shipment and data transfer). The laboratory hosts two CT instruments, i.e. a micro-CT system, as well as a nano-CT system. A workstation-based Image Analysis Centre is equipped with numerous computers with data analysis software packages, which are to the disposal of the facility users, along with expert supervision, if required. All research disciplines are accommodated at the X-ray CT laboratory, provided that non-destructive analysis will be beneficial. During its first four years, the facility has accommodated more than 400 unique users (33 in 2012; 86 in 2013; 154 in 2014; 140 in 2015; 75 in first half of 2016), with diverse industrial and research applications using X-ray CT as means. This paper summarises the existence of the laboratory's first four years by way of selected examples, both from published and unpublished projects. In the process a detailed description of the capabilities and facilities available to users is presented.

  4. The CT Scanner Facility at Stellenbosch University: An open access X-ray computed tomography laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Plessis, Anton du, E-mail: anton2@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Physics Department, Stellenbosch University, Stellenbosch (South Africa); Roux, Stephan Gerhard le, E-mail: lerouxsg@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa); Guelpa, Anina, E-mail: aninag@sun.ac.za [CT Scanner Facility, Central Analytical Facilities, Stellenbosch University, Stellenbosch (South Africa)

    2016-10-01

    The Stellenbosch University CT Scanner Facility is an open access laboratory providing non-destructive X-ray computed tomography (CT) and a high performance image analysis services as part of the Central Analytical Facilities (CAF) of the university. Based in Stellenbosch, South Africa, this facility offers open access to the general user community, including local researchers, companies and also remote users (both local and international, via sample shipment and data transfer). The laboratory hosts two CT instruments, i.e. a micro-CT system, as well as a nano-CT system. A workstation-based Image Analysis Centre is equipped with numerous computers with data analysis software packages, which are to the disposal of the facility users, along with expert supervision, if required. All research disciplines are accommodated at the X-ray CT laboratory, provided that non-destructive analysis will be beneficial. During its first four years, the facility has accommodated more than 400 unique users (33 in 2012; 86 in 2013; 154 in 2014; 140 in 2015; 75 in first half of 2016), with diverse industrial and research applications using X-ray CT as means. This paper summarises the existence of the laboratory’s first four years by way of selected examples, both from published and unpublished projects. In the process a detailed description of the capabilities and facilities available to users is presented.

  5. Centralized digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Crawford, K.C.

    1987-01-01

    A hardware and software design for the centralized control of a research nuclear reactor by a digital computer are presented, as well as an investigation of automatic-feedback control. Current reactor-control philosophies including redundancy, inherent safety in failure, and conservative-yet-operational scram initiation were used as the bases of the design. The control philosophies were applied to the power-monitoring system, the fuel-temperature monitoring system, the area-radiation monitoring system, and the overall system interaction. Unlike the single-function analog computers currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control-rod movements to conform with operator requests, automatically log the required physical parameters during reactor operation, perform the required system tests, and monitor facility safety and security. Reactor power control is based on signals received from ion chambers located near the reactor core. Absorber-rod movements are made to control the rate of power increase or decrease during power changes and to control the power level during steady-state operation. Additionally, the system incorporates a rudimentary level of artificial intelligence

  6. SERC Central Laser Facility annual report 1992

    International Nuclear Information System (INIS)

    1992-01-01

    In this 1992 Annual Report to the Laser Facility Committee of the Science and Engineering Research Council, the Central Laser Facility at Rutherford Appleton Laboratory, technical progress is described and mid-term organizational goals outlined. Outstanding among recent achievements is the work on plasma heating being undertaken on the Sprite facility using the ultra-bright KrF laser pumped Raman beams. Two-beam operation at power levels approaching 2 TW in 10 ps are hoped for. On a four year timescale the Titania system will provide four Raman beams of exceptional brightness and power up to 20TW in 10ps. The other high power laser facility, Vulcan is also producing exciting work. Progress in nanosecond studies using Raman spectroscopy have produced the first Raman spectrum of solvated Buckmister fullerene and direct observation of the separation of germinate ion pairs, as well as information on the behaviour of a single base in an oligonuclide chain. Phase boundaries for the solidification of a two dimensional electron fluid have been determined in a Gallium Arsenide heterojunction. Despite staff number attrition, operation and development of the facilities have continued successfully. (UK)

  7. A new conception for the central control facility of MEA

    International Nuclear Information System (INIS)

    Schimmel, F.

    1986-01-01

    To control the AFBU from the Central Control Facility some change will be necessary. This has led to a complete revision of the facilities of both consoles. Some proposals are made to improve the response time of the control systems. These improvements are feasible at short notice. (G.J.P.)

  8. Computing betweenness centrality in external memory

    DEFF Research Database (Denmark)

    Arge, Lars; Goodrich, Michael T.; Walderveen, Freek van

    2013-01-01

    Betweenness centrality is one of the most well-known measures of the importance of nodes in a social-network graph. In this paper we describe the first known external-memory and cache-oblivious algorithms for computing betweenness centrality. We present four different external-memory algorithms...

  9. Concordance-based Kendall's Correlation for Computationally-Light vs. Computationally-Heavy Centrality Metrics: Lower Bound for Correlation

    Directory of Open Access Journals (Sweden)

    Natarajan Meghanathan

    2017-01-01

    Full Text Available We identify three different levels of correlation (pair-wise relative ordering, network-wide ranking and linear regression that could be assessed between a computationally-light centrality metric and a computationally-heavy centrality metric for real-world networks. The Kendall's concordance-based correlation measure could be used to quantitatively assess how well we could consider the relative ordering of two vertices vi and vj with respect to a computationally-light centrality metric as the relative ordering of the same two vertices with respect to a computationally-heavy centrality metric. We hypothesize that the pair-wise relative ordering (concordance-based assessment of the correlation between centrality metrics is the most strictest of all the three levels of correlation and claim that the Kendall's concordance-based correlation coefficient will be lower than the correlation coefficient observed with the more relaxed levels of correlation measures (linear regression-based Pearson's product-moment correlation coefficient and the network wide ranking-based Spearman's correlation coefficient. We validate our hypothesis by evaluating the three correlation coefficients between two sets of centrality metrics: the computationally-light degree and local clustering coefficient complement-based degree centrality metrics and the computationally-heavy eigenvector centrality, betweenness centrality and closeness centrality metrics for a diverse collection of 50 real-world networks.

  10. Oak Ridge Leadership Computing Facility (OLCF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Oak Ridge Leadership Computing Facility (OLCF) was established at Oak Ridge National Laboratory in 2004 with the mission of standing up a supercomputer 100 times...

  11. Centralized treatment facility for L/ILW produced in Iran

    International Nuclear Information System (INIS)

    Ettehadian, M.; Momenzadeh, S.; Ansar, M.; Burcl, R.

    2001-01-01

    Full text: Normal operation of 5 MW research reactor, and radioisotope application in medicine, industry and research institutes generate a significant amount of low level radioactive waste. The volume is expected to increase with the expansion of nuclear application. This paper describes the establishing of centralized waste treatment facility developed by Atomic Energy Organization of Iran (AEOI) using IAEA technical assistance and recommendation. The new treatment facility will enable the currently produced RW to be treated conditioned and stored until a national repository becomes available. The centralized facility consists of a waste processing and storage buildings, which will be used to store conditioned waste drums. The treatment methods used for liquid wastes are precipitation, ion exchange and ultra filtration followed by In-drum cementation of residues. An In-drum compactor will be used for compaction of solid wastes. Safe management of low and intermediate radioactive waste, better protection of environment and population and applying suitable and economical processes for treatment of L/ILW are the other objectives of this activity. (author)

  12. Thermal analysis of the unloading cell of the Spanish centralized interim storage facility (CISF)

    International Nuclear Information System (INIS)

    Perez Dominguez, J. R.; Perez Vara, R.; Huelamo Martinez, E.

    2016-01-01

    This article deals with the thermal analysis performed for the Untoading Cell of Spain Centralized Interim Storage Facility, CISF (ATC, in Spanish). The analyses are done using computational fluid dynamics (CFD) simulation, with the aim of obtaining the air flow required to remove the residual heat of the elements stored in the cell. Compliance with the admissible heat limits is checked with the results obtained in the various operation and accident modes. The calculation model is flexible enough to allow carrying out a number of sensitivity analyses with the different parameters involved in the process. (Author)

  13. Computer facilities for ISABELLE data handling

    International Nuclear Information System (INIS)

    Kramer, M.A.; Love, W.A.; Miller, R.J.; Zeller, M.

    1977-01-01

    The analysis of data produced by ISABELLE experiments will need a large system of computers. An official group of prospective users and operators of that system should begin planning now. Included in the array will be a substantial computer system at each ISABELLE intersection in use. These systems must include enough computer power to keep experimenters aware of the health of the experiment. This will require at least one very fast sophisticated processor in the system, the size depending on the experiment. Other features of the intersection systems must be a good, high speed graphic display, ability to record data on magnetic tape at 500 to 1000 KB, and a high speed link to a central computer. The operating system software must support multiple interactive users. A substantially larger capacity computer system, shared by the six intersection region experiments, must be available with good turnaround for experimenters while ISABELLE is running. A computer support group will be required to maintain the computer system and to provide and maintain software common to all experiments. Special superfast computing hardware or special function processors constructed with microprocessor circuitry may be necessary both in the data gathering and data processing work. Thus both the local and central processors should be chosen with the possibility of interfacing such devices in mind

  14. Recommended practice for the design of a computer driven Alarm Display Facility for central control rooms of nuclear power generating stations

    International Nuclear Information System (INIS)

    Ben-Yaacov, G.

    1984-01-01

    This paper's objective is to explain the process by which design can prevent human errors in nuclear plant operation. Human factor engineering principles, data, and methods used in the design of computer driven alarm display facilities are discussed. A ''generic'', advanced Alarm Display Facility is described. It considers operator capabilities and limitations in decision-making processes, response dynamics, and human memory limitations. Highlighted are considerations of human factor criteria in the designing and layout of alarm displays. Alarm data sources are described, and their use within the Alarm Display Facility are illustrated

  15. Economic analysis of a centralized LLRW storage facility in New York State

    International Nuclear Information System (INIS)

    Spath, J.P.; Voelk, H.; Brodie, H.

    1994-01-01

    In response to the possibility of no longer having access to out-of-State disposal facilities, the New York State Energy Research and Development Authority (Energy Authority) was directed by the New York State Legislature (1990-91 State Operation Budget Appropriations) to conduct a low-level radioactive waste (LLRW) storage study. One of the objectives of this study was to investigate the economic viability of establishing a separate Centralized Storage Facility for Class A LLRW from medical and academic institutions. This resulted in the conceptual design of a nominal Centralized Storage Facility capable of storing 100,000 cubic feet of dry-solid and liquid wastes and freezer storage capacity of 20,000 cubic feet for biological wastes. The facility itself includes office and laboratory space as well as receipt, inspection, and health physics monitoring stations. The Conceptual Design was initially developed to define the scope and detail of the cost parameters to be evaluated. It established a basis for conducting comparisons of the cost of four alternative project approaches and the sensitivity of unit storage costs to siting-related costs. In estimating costs of a Centralized Storage Facility, four cases were used varying assumptions with respect to parameters such as volume projections and freezer capacity; siting costs; and site acquisition costs

  16. Hanford Central Waste Complex: Waste Receiving and Processing Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Central Waste Complex is an existing and planned series of treatment, and/or disposal (TSD) unites that will centralize the management of solid waste operations at a single location on the Hanford Facility. The Complex includes two units: the WRAP Facility and the Radioactive Mixed Wastes Storage Facility (RMW Storage Facility). This Part B permit application addresses the WRAP Facility. The Facility will be a treatment and storage unit that will provide the capability to examine, sample, characterize, treat, repackage, store, and certify radioactive and/or mixed waste. Waste treated and stored will include both radioactive and/or mixed waste received from onsite and offsite sources. Certification will be designed to ensure and demonstrate compliance with waste acceptance criteria set forth by onsite disposal units and/or offsite facilities that subsequently are to receive waste from the WRAP Facility. This permit application discusses the following: facility description and general provisions; waste characterization; process information; groundwater monitoring; procedures to prevent hazards; contingency plant; personnel training; exposure information report; waste minimization plan; closure and postclosure requirements; reporting and recordkeeping; other relevant laws; certification

  17. 2016 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Jim [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The Argonne Leadership Computing Facility (ALCF) helps researchers solve some of the world’s largest and most complex problems, while also advancing the nation’s efforts to develop future exascale computing systems. This report presents some of the ALCF’s notable achievements in key strategic areas over the past year.

  18. Computer Security at Nuclear Facilities

    International Nuclear Information System (INIS)

    Cavina, A.

    2013-01-01

    This series of slides presents the IAEA policy concerning the development of recommendations and guidelines for computer security at nuclear facilities. A document of the Nuclear Security Series dedicated to this issue is on the final stage prior to publication. This document is the the first existing IAEA document specifically addressing computer security. This document was necessary for 3 mains reasons: first not all national infrastructures have recognized and standardized computer security, secondly existing international guidance is not industry specific and fails to capture some of the key issues, and thirdly the presence of more or less connected digital systems is increasing in the design of nuclear power plants. The security of computer system must be based on a graded approach: the assignment of computer system to different levels and zones should be based on their relevance to safety and security and the risk assessment process should be allowed to feed back into and influence the graded approach

  19. Academic Computing Facilities and Services in Higher Education--A Survey.

    Science.gov (United States)

    Warlick, Charles H.

    1986-01-01

    Presents statistics about academic computing facilities based on data collected over the past six years from 1,753 institutions in the United States, Canada, Mexico, and Puerto Rico for the "Directory of Computing Facilities in Higher Education." Organizational, functional, and financial characteristics are examined as well as types of…

  20. 2015 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  1. 2014 Annual Report - Argonne Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James R. [Argonne National Lab. (ANL), Argonne, IL (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Cerny, Beth A. [Argonne National Lab. (ANL), Argonne, IL (United States); Coffey, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-01-01

    The Argonne Leadership Computing Facility provides supercomputing capabilities to the scientific and engineering community to advance fundamental discovery and understanding in a broad range of disciplines.

  2. High Performance Computing Facility Operational Assessment 2015: Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Ashley D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Bland, Arthur S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Gary, Jeff D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Hack, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; McNally, Stephen T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Rogers, James H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Smith, Brian E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Straatsma, T. P. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Sukumar, Sreenivas Rangan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Thach, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Tichenor, Suzy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Vazhkudai, Sudharshan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility; Wells, Jack C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility

    2016-03-01

    Oak Ridge National Laboratory’s (ORNL’s) Leadership Computing Facility (OLCF) continues to surpass its operational target goals: supporting users; delivering fast, reliable systems; creating innovative solutions for high-performance computing (HPC) needs; and managing risks, safety, and security aspects associated with operating one of the most powerful computers in the world. The results can be seen in the cutting-edge science delivered by users and the praise from the research community. Calendar year (CY) 2015 was filled with outstanding operational results and accomplishments: a very high rating from users on overall satisfaction that ties the highest-ever mark set in CY 2014; the greatest number of core-hours delivered to research projects; the largest percentage of capability usage since the OLCF began tracking the metric in 2009; and success in delivering on the allocation of 60, 30, and 10% of core hours offered for the INCITE (Innovative and Novel Computational Impact on Theory and Experiment), ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and Director’s Discretionary programs, respectively. These accomplishments, coupled with the extremely high utilization rate, represent the fulfillment of the promise of Titan: maximum use by maximum-size simulations. The impact of all of these successes and more is reflected in the accomplishments of OLCF users, with publications this year in notable journals Nature, Nature Materials, Nature Chemistry, Nature Physics, Nature Climate Change, ACS Nano, Journal of the American Chemical Society, and Physical Review Letters, as well as many others. The achievements included in the 2015 OLCF Operational Assessment Report reflect first-ever or largest simulations in their communities; for example Titan enabled engineers in Los Angeles and the surrounding region to design and begin building improved critical infrastructure by enabling the highest-resolution Cybershake map for Southern

  3. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    International Nuclear Information System (INIS)

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes

  4. Radiological risks of transports to central waste management facilities

    International Nuclear Information System (INIS)

    Lange, F.

    1997-01-01

    Transports of radioactive waste from nuclear facilities have been a matter of frequent public concern in the recent past. News reports, protests and questions concerning the radiological risk tended to concentrate on transports to and from central waste management facilities, e.g. transports of spent fuel elements to reprocessing plants abroad (France, England), transports to intermediate storage sites (Ahaus, Gorleben), transports to operative (Morsleben) and projected (Konrad) final storage sites, and transports of vitrified high-activity waste from reprocessing plants to the intermediate storage site (Gorleben). (orig.) [de

  5. Operational Circular nr 5 - October 2000 USE OF CERN COMPUTING FACILITIES

    CERN Multimedia

    Division HR

    2000-01-01

    New rules covering the use of CERN Computing facilities have been drawn up. All users of CERN’s computing facilites are subject to these rules, as well as to the subsidiary rules of use. The Computing Rules explicitly address your responsibility for taking reasonable precautions to protect computing equipment and accounts. In particular, passwords must not be easily guessed or obtained by others. Given the difficulty to completely separate work and personal use of computing facilities, the rules define under which conditions limited personal use is tolerated. For example, limited personal use of e-mail, news groups or web browsing is tolerated in your private time, provided CERN resources and your official duties are not adversely affected. The full conditions governing use of CERN’s computing facilities are contained in Operational Circular N° 5, which you are requested to read. Full details are available at : http://www.cern.ch/ComputingRules Copies of the circular are also available in the Divis...

  6. Hanford Central Waste Complex: Radioactive mixed waste storage facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Site is owned by the US Government and operated by the US Department of Energy Field Office, Richland. The Hanford Site manages and produces dangerous waste and mixed waste (containing both radioactive and dangerous components). The dangerous waste is regulated in accordance with the Resource Conversation and Recovery Act of 1976 and the State of Washington Hazardous Waste Management Act of 1976. The radioactive component of mixed waste is interpreted by the US Department of Energy to be regulated under the Atomic Energy Act of 1954; the nonradioactive dangerous component of mixed waste is interpreted to be regulated under the Resource Conservation and Recovery Act of 1976 and Washington Administrative Code 173--303. Westinghouse Hanford Company is a major contractor to the US Department of Energy Field Office, Richland and serves as co-operator of the Hanford Central Waste Complex. The Hanford Central Waste Complex is an existing and planned series of treatment, storage, and/or disposal units that will centralize the management of solid waste operations at a single location on the Hanford facility. The Hanford Central Waste Complex units include the Radioactive Mixed Waste Storage Facility, the unit addressed by this permit application, and the Waste Receiving and Processing Facility. The Waste Receiving and Processing Facility is covered in a separate permit application submittal

  7. Mineral facilities of Northern and Central Eurasia

    Science.gov (United States)

    Baker, Michael S.; Elias, Nurudeen; Guzman, Eric; Soto-Viruet, Yadira

    2010-01-01

    This map displays almost 900 records of mineral facilities within the countries that formerly constituted the Union of Soviet Socialist Republics (USSR). Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recent published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2

  8. COMPUTER ORIENTED FACILITIES OF TEACHING AND INFORMATIVE COMPETENCE

    Directory of Open Access Journals (Sweden)

    Olga M. Naumenko

    2010-09-01

    Full Text Available In the article it is considered the history of views to the tasks of education, estimations of its effectiveness from the point of view of forming of basic vitally important competences. Opinions to the problem in different countries, international organizations, corresponding experience of the Ukrainian system of education are described. The necessity of forming of informative competence of future teacher is reasonable in the conditions of application of the computer oriented facilities of teaching at the study of naturally scientific cycle subjects in pedagogical colleges. Prognosis estimations concerning the development of methods of application of computer oriented facilities of teaching are presented.

  9. Sporadic manipulation in money markets with central bank standing facilities

    OpenAIRE

    Ewerhart, Christian; Cassola, Nuno; Ejerskov, Steen; Valla, Natacha

    2004-01-01

    In certain market environments, a large investor may benefit from building up a futures position first and trading subsequently in the spot market (Kumar and Seppi, 1992). The present paper identifies a variation of this type of manipulation that might occur in money markets with an interest rate corridor. We show that manipulation involving the use of central bank facilities would be observable only sporadically. The probability of manipulation decreases when the central bank uses an active ...

  10. Treatment of wastes from a central spent-fuel rod consolidation facility

    International Nuclear Information System (INIS)

    Ross, W.A.

    1986-01-01

    The consolidation of commercial spent-fuel rods at a central treatment facility (such as the proposed Monitored Retrievable Storage Facility) will generate several types of waste, which may require treatment and disposal. Eight alternatives for the treatment of the wastes have been evaluated as part of DOE's Nuclear Waste Treatment Program at the Pacific Northwest Laboratory. The evaluation considered the system costs, potential waste form requirements, and processing characteristics

  11. Centralization and Decentralization of Schools' Physical Facilities Management in Nigeria

    Science.gov (United States)

    Ikoya, Peter O.

    2008-01-01

    Purpose: This research aims to examine the difference in the availability, adequacy and functionality of physical facilities in centralized and decentralized schools districts, with a view to making appropriate recommendations to stakeholders on the reform programmes in the Nigerian education sector. Design/methodology/approach: Principals,…

  12. High Performance Computing Facility Operational Assessment, CY 2011 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Bland, Arthur S Buddy [ORNL; Boudwin, Kathlyn J. [ORNL; Hack, James J [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL; Hudson, Douglas L [ORNL

    2012-02-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.4 billion core hours in calendar year (CY) 2011 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Users reported more than 670 publications this year arising from their use of OLCF resources. Of these we report the 300 in this review that are consistent with guidance provided. Scientific achievements by OLCF users cut across all range scales from atomic to molecular to large-scale structures. At the atomic scale, researchers discovered that the anomalously long half-life of Carbon-14 can be explained by calculating, for the first time, the very complex three-body interactions between all the neutrons and protons in the nucleus. At the molecular scale, researchers combined experimental results from LBL's light source and simulations on Jaguar to discover how DNA replication continues past a damaged site so a mutation can be repaired later. Other researchers combined experimental results from ORNL's Spallation Neutron Source and simulations on Jaguar to reveal the molecular structure of ligno-cellulosic material used in bioethanol production. This year, Jaguar has been used to do billion-cell CFD calculations to develop shock wave compression turbo machinery as a means to meet DOE goals for reducing carbon sequestration costs. General Electric used Jaguar to calculate the unsteady flow through turbo machinery to learn what efficiencies the traditional steady flow assumption is hiding from designers. Even a 1% improvement in turbine design can save the nation

  13. Economic comparison of centralizing or decentralizing processing facilities for defense transuranic waste

    International Nuclear Information System (INIS)

    Brown, C.M.

    1980-07-01

    This study is part of a set of analyses under direction of the Transuranic Waste Management Program designed to provide comprehensive, systematic methodology and support necessary to better understand options for national long-term management of transuranic (TRU) waste. The report summarizes activities to evaluate the economics of possible alternatives in locating facilities to process DOE-managed transuranic waste. The options considered are: (1) Facilities located at all major DOE TRU waste generating sites. (2) Two or three regional facilities. (3) Central processing facility at only one DOE site. The study concludes that processing at only one facility is the lowest cost option, followed, in order of cost, by regional then individual site processing

  14. Computer security at ukrainian nuclear facilities: interface between nuclear safety and security

    International Nuclear Information System (INIS)

    Chumak, D.; Klevtsov, O.

    2015-01-01

    Active introduction of information technology, computer instrumentation and control systems (I and C systems) in the nuclear field leads to a greater efficiency and management of technological processes at nuclear facilities. However, this trend brings a number of challenges related to cyber-attacks on the above elements, which violates computer security as well as nuclear safety and security of a nuclear facility. This paper considers regulatory support to computer security at the nuclear facilities in Ukraine. The issue of computer and information security considered in the context of physical protection, because it is an integral component. The paper focuses on the computer security of I and C systems important to nuclear safety. These systems are potentially vulnerable to cyber threats and, in case of cyber-attacks, the potential negative impact on the normal operational processes can lead to a breach of the nuclear facility security. While ensuring nuclear security of I and C systems, it interacts with nuclear safety, therefore, the paper considers an example of an integrated approach to the requirements of nuclear safety and security

  15. Survey of computer codes applicable to waste facility performance evaluations

    International Nuclear Information System (INIS)

    Alsharif, M.; Pung, D.L.; Rivera, A.L.; Dole, L.R.

    1988-01-01

    This study is an effort to review existing information that is useful to develop an integrated model for predicting the performance of a radioactive waste facility. A summary description of 162 computer codes is given. The identified computer programs address the performance of waste packages, waste transport and equilibrium geochemistry, hydrological processes in unsaturated and saturated zones, and general waste facility performance assessment. Some programs also deal with thermal analysis, structural analysis, and special purposes. A number of these computer programs are being used by the US Department of Energy, the US Nuclear Regulatory Commission, and their contractors to analyze various aspects of waste package performance. Fifty-five of these codes were identified as being potentially useful on the analysis of low-level radioactive waste facilities located above the water table. The code summaries include authors, identification data, model types, and pertinent references. 14 refs., 5 tabs

  16. National facility for advanced computational science: A sustainable path to scientific discovery

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  17. CAD/CAM transtibial prosthetic sockets from central fabrication facilities: How accurate are they?

    Science.gov (United States)

    Sanders, Joan E.; Rogers, Ellen L.; Sorenson, Elizabeth A.; Lee, Gregory S.; Abrahamson, Daniel C.

    2014-01-01

    This research compares transtibial prosthetic sockets made by central fabrication facilities with their corresponding American Academy of Orthotists and Prosthetists (AAOP) electronic shape files and assesses the central fabrication process. We ordered three different socket shapes from each of 10 manufacturers. Then we digitized the sockets using a very accurate custom mechanical digitizer. Results showed that quality varied considerably among the different manufacturers. Four of the companies consistently made sockets within +/−1.1% volume (approximately 1 sock ply) of the AAOP electronic shape file, while six other companies did not. Six of the companies showed consistent undersizing or oversizing in their sockets, which suggests a consistent calibration or manufacturing error. Other companies showed inconsistent sizing or shape distortion, a difficult problem that represents a most challenging limitation for central fabrication facilities. PMID:18247236

  18. Molecular Science Computing Facility Scientific Challenges: Linking Across Scales

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Windus, Theresa L.

    2005-07-01

    The purpose of this document is to define the evolving science drivers for performing environmental molecular research at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and to provide guidance associated with the next-generation high-performance computing center that must be developed at EMSL's Molecular Science Computing Facility (MSCF) in order to address this critical research. The MSCF is the pre-eminent computing facility?supported by the U.S. Department of Energy's (DOE's) Office of Biological and Environmental Research (BER)?tailored to provide the fastest time-to-solution for current computational challenges in chemistry and biology, as well as providing the means for broad research in the molecular and environmental sciences. The MSCF provides integral resources and expertise to emerging EMSL Scientific Grand Challenges and Collaborative Access Teams that are designed to leverage the multiple integrated research capabilities of EMSL, thereby creating a synergy between computation and experiment to address environmental molecular science challenges critical to DOE and the nation.

  19. Integration of small computers in the low budget facility

    International Nuclear Information System (INIS)

    Miller, G.E.; Crofoot, T.A.

    1988-01-01

    Inexpensive computers (PC's) are well within the reach of low budget reactor facilities. It is possible to envisage many uses that will both improve capabilities of existing instrumentation and also assist operators and staff with certain routine tasks. Both of these opportunities are important for survival at facilities with severe budget and staffing limitations. (author)

  20. Operations aspects of the Fermilab Central Helium Liquefier facility

    International Nuclear Information System (INIS)

    Geynisman, M.G.; Makara, J.N.

    1996-09-01

    The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6 K and LN 2 for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed

  1. Operations aspects of the Fermilab Central Helium Liquefier Facility

    International Nuclear Information System (INIS)

    Geynisman, M.G.; Makara, J.N.

    1995-03-01

    The Fermilab Central Helium Liquefier (CHL) facility consists of helium and nitrogen reliquefier plants operated 24 hours-a-day to supply LHe at 4.6 degrees K and LN 2 for the Fermilab Tevatron superconducting proton-antiproton collider ring and to recover warm return gases. Operating aspects of CHL, including different equipment and systems reliability, availability, maintenance experience, safety concerns, and economics aspects are discussed

  2. Safety report for Central Interim Storage facility for radioactive waste from small producers

    International Nuclear Information System (INIS)

    Zeleznik, N.; Mele, I.

    2004-01-01

    In 1999 the Agency for Radwaste Management took over the management of the Central Interim Storage (CIS) in Brinje, intended only for radioactive waste from industrial, medical and research applications. With the transfer of the responsibilities for the storage operation, ARAO, the new operator of the facility, received also the request from the Slovenian Nuclear Safety Administration for refurbishment and reconstruction of the storage and for preparation of the safety report for the storage with the operational conditions and limitations. In order to fulfill these requirements ARAO first thoroughly reviewed the existing documentation on the facility, the facility itself and the stored inventory. Based on the findings of this review ARAO prepared several basic documents for improvement of the current conditions in the storage facility. In October 2000 the Plan for refurbishment and modernization of the CIS was prepared, providing an integral approach towards remediation and refurbishment of the facility, optimization of the inventory arrangement and modernization of the storage and storing utilization. In October 2001 project documentation for renewal of electric installations, water supply and sewage system, ventilation system, the improvements of the fire protection and remediation of minor defects discovered in building were completed according to the Act on Construction. In July 2003 the safety report was prepared, based on the facility status after the completion of the reconstruction works. It takes into account all improvements and changes introduced by the refurbishment and reconstruction of the facility according to project documentation. Besides the basic characteristics of the location and its surrounding, it also gives the technical description of the facility together with proposed solutions for the renewal of electric installations, renovation of water supply and sewage system, refurbishment of the ventilation system, the improvement of fire

  3. A computer control system for a research reactor

    International Nuclear Information System (INIS)

    Crawford, K.C.; Sandquist, G.M.

    1987-01-01

    Most reactor applications until now, have not required computer control of core output. Commercial reactors are generally operated at a constant power output to provide baseline power. However, if commercial reactor cores are to become load following over a wide range, then centralized digital computer control is required to make the entire facility respond as a single unit to continual changes in power demand. Navy and research reactors are much smaller and simpler and are operated at constant power levels as required, without concern for the number of operators required to operate the facility. For navy reactors, centralized digital computer control may provide space savings and reduced personnel requirements. Computer control offers research reactors versatility to efficiently change a system to develop new ideas. The operation of any reactor facility would be enhanced by a controller that does not panic and is continually monitoring all facility parameters. Eventually very sophisticated computer control systems may be developed which will sense operational problems, diagnose the problem, and depending on the severity of the problem, immediately activate safety systems or consult with operators before taking action

  4. High Performance Computing Facility Operational Assessment, FY 2010 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Baker, Ann E [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; White, Julia C [ORNL

    2010-08-01

    Oak Ridge National Laboratory's (ORNL's) Cray XT5 supercomputer, Jaguar, kicked off the era of petascale scientific computing in 2008 with applications that sustained more than a thousand trillion floating point calculations per second - or 1 petaflop. Jaguar continues to grow even more powerful as it helps researchers broaden the boundaries of knowledge in virtually every domain of computational science, including weather and climate, nuclear energy, geosciences, combustion, bioenergy, fusion, and materials science. Their insights promise to broaden our knowledge in areas that are vitally important to the Department of Energy (DOE) and the nation as a whole, particularly energy assurance and climate change. The science of the 21st century, however, will demand further revolutions in computing, supercomputers capable of a million trillion calculations a second - 1 exaflop - and beyond. These systems will allow investigators to continue attacking global challenges through modeling and simulation and to unravel longstanding scientific questions. Creating such systems will also require new approaches to daunting challenges. High-performance systems of the future will need to be codesigned for scientific and engineering applications with best-in-class communications networks and data-management infrastructures and teams of skilled researchers able to take full advantage of these new resources. The Oak Ridge Leadership Computing Facility (OLCF) provides the nation's most powerful open resource for capability computing, with a sustainable path that will maintain and extend national leadership for DOE's Office of Science (SC). The OLCF has engaged a world-class team to support petascale science and to take a dramatic step forward, fielding new capabilities for high-end science. This report highlights the successful delivery and operation of a petascale system and shows how the OLCF fosters application development teams, developing cutting-edge tools

  5. The OSG Open Facility: an on-ramp for opportunistic scientific computing

    Science.gov (United States)

    Jayatilaka, B.; Levshina, T.; Sehgal, C.; Gardner, R.; Rynge, M.; Würthwein, F.

    2017-10-01

    The Open Science Grid (OSG) is a large, robust computing grid that started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero, but has evolved in recent years to a much larger user and resource platform. In addition to meeting the US LHC community’s computational needs, the OSG continues to be one of the largest providers of distributed high-throughput computing (DHTC) to researchers from a wide variety of disciplines via the OSG Open Facility. The Open Facility consists of OSG resources that are available opportunistically to users other than resource owners and their collaborators. In the past two years, the Open Facility has doubled its annual throughput to over 200 million wall hours. More than half of these resources are used by over 100 individual researchers from over 60 institutions in fields such as biology, medicine, math, economics, and many others. Over 10% of these individual users utilized in excess of 1 million computational hours each in the past year. The largest source of these cycles is temporary unused capacity at institutions affiliated with US LHC computational sites. An increasing fraction, however, comes from university HPC clusters and large national infrastructure supercomputers offering unused capacity. Such expansions have allowed the OSG to provide ample computational resources to both individual researchers and small groups as well as sizable international science collaborations such as LIGO, AMS, IceCube, and sPHENIX. Opening up access to the Fermilab FabrIc for Frontier Experiments (FIFE) project has also allowed experiments such as mu2e and NOvA to make substantial use of Open Facility resources, the former with over 40 million wall hours in a year. We present how this expansion was accomplished as well as future plans for keeping the OSG Open Facility at the forefront of enabling scientific research by way of DHTC.

  6. The OSG Open Facility: An On-Ramp for Opportunistic Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Jayatilaka, B. [Fermilab; Levshina, T. [Fermilab; Sehgal, C. [Fermilab; Gardner, R. [Chicago U.; Rynge, M. [USC - ISI, Marina del Rey; Würthwein, F. [UC, San Diego

    2017-11-22

    The Open Science Grid (OSG) is a large, robust computing grid that started primarily as a collection of sites associated with large HEP experiments such as ATLAS, CDF, CMS, and DZero, but has evolved in recent years to a much larger user and resource platform. In addition to meeting the US LHC community’s computational needs, the OSG continues to be one of the largest providers of distributed high-throughput computing (DHTC) to researchers from a wide variety of disciplines via the OSG Open Facility. The Open Facility consists of OSG resources that are available opportunistically to users other than resource owners and their collaborators. In the past two years, the Open Facility has doubled its annual throughput to over 200 million wall hours. More than half of these resources are used by over 100 individual researchers from over 60 institutions in fields such as biology, medicine, math, economics, and many others. Over 10% of these individual users utilized in excess of 1 million computational hours each in the past year. The largest source of these cycles is temporary unused capacity at institutions affiliated with US LHC computational sites. An increasing fraction, however, comes from university HPC clusters and large national infrastructure supercomputers offering unused capacity. Such expansions have allowed the OSG to provide ample computational resources to both individual researchers and small groups as well as sizable international science collaborations such as LIGO, AMS, IceCube, and sPHENIX. Opening up access to the Fermilab FabrIc for Frontier Experiments (FIFE) project has also allowed experiments such as mu2e and NOvA to make substantial use of Open Facility resources, the former with over 40 million wall hours in a year. We present how this expansion was accomplished as well as future plans for keeping the OSG Open Facility at the forefront of enabling scientific research by way of DHTC.

  7. Computer-Assisted School Facility Planning with ONPASS.

    Science.gov (United States)

    Urban Decision Systems, Inc., Los Angeles, CA.

    The analytical capabilities of ONPASS, an on-line computer-aided school facility planning system, are described by its developers. This report describes how, using the Canoga Park-Winnetka-Woodland Hills Planning Area as a test case, the Department of City Planning of the city of Los Angeles employed ONPASS to demonstrate how an on-line system can…

  8. Neutronic computational modeling of the ASTRA critical facility using MCNPX

    International Nuclear Information System (INIS)

    Rodriguez, L. P.; Garcia, C. R.; Milian, D.; Milian, E. E.; Brayner, C.

    2015-01-01

    The Pebble Bed Very High Temperature Reactor is considered as a prominent candidate among Generation IV nuclear energy systems. Nevertheless the Pebble Bed Very High Temperature Reactor faces an important challenge due to the insufficient validation of computer codes currently available for use in its design and safety analysis. In this paper a detailed IAEA computational benchmark announced by IAEA-TECDOC-1694 in the framework of the Coordinated Research Project 'Evaluation of High Temperature Gas Cooled Reactor (HTGR) Performance' was solved in support of the Generation IV computer codes validation effort using MCNPX ver. 2.6e computational code. In the IAEA-TECDOC-1694 were summarized a set of four calculational benchmark problems performed at the ASTRA critical facility. Benchmark problems include criticality experiments, control rod worth measurements and reactivity measurements. The ASTRA Critical Facility at the Kurchatov Institute in Moscow was used to simulate the neutronic behavior of nuclear pebble bed reactors. (Author)

  9. Development of computer model for radionuclide released from shallow-land disposal facility

    International Nuclear Information System (INIS)

    Suganda, D.; Sucipta; Sastrowardoyo, P.B.; Eriendi

    1998-01-01

    Development of 1-dimensional computer model for radionuclide release from shallow land disposal facility (SLDF) has been done. This computer model is used for the SLDF facility at PPTA Serpong. The SLDF facility is above 1.8 metres from groundwater and 150 metres from Cisalak river. Numerical method by implicit method of finite difference solution is chosen to predict the migration of radionuclide with any concentration.The migration starts vertically from the bottom of SLDF until the groundwater layer, then horizontally in the groundwater until the critical population group. Radionuclide Cs-137 is chosen as a sample to know its migration. The result of the assessment shows that the SLDF facility at PPTA Serpong has the high safety criteria. (author)

  10. Access to facility delivery and caesarean section in north-central Liberia: a cross-sectional community-based study

    Science.gov (United States)

    Gartland, Matthew G; Taryor, Victor D; Norman, Andy M; Vermund, Sten H

    2012-01-01

    Objective Rural north-central Liberia has one of the world's highest maternal mortality ratios. We studied health facility birthing service utilisation and the motives of women seeking or not seeking facility-based care in north-central Liberia. Design Cross-sectional community-based structured interviews and health facility medical record review. Setting A regional hospital and the surrounding communities in rural north-central Liberia. Participants A convenience sample of 307 women between 15 and 49 years participated in structured interviews. 1031 deliveries performed in the regional hospital were included in the record review. Primary outcomes Delivery within a health facility and caesarean delivery rates were used as indicators of direct utilisation of care and as markers of availability of maternal health services. Results Of 280 interview respondents with a prior childbirth, only 47 (16.8%) delivered their last child in a health facility. Women who did not use formal services cited cost, sudden labour and family tradition or religion as their principal reasons for home delivery. At the regional hospital, the caesarean delivery rate was 35.5%. Conclusions There is an enormous unmet need for maternal health services in north-central Liberia. Greater outreach and referral services as well as community-based education among women, family members and traditional midwives are vital to improve the timely utilisation of care. PMID:23117566

  11. Shieldings for X-ray radiotherapy facilities calculated by computer

    International Nuclear Information System (INIS)

    Pedrosa, Paulo S.; Farias, Marcos S.; Gavazza, Sergio

    2005-01-01

    This work presents a methodology for calculation of X-ray shielding in facilities of radiotherapy with help of computer. Even today, in Brazil, the calculation of shielding for X-ray radiotherapy is done based on NCRP-49 recommendation establishing a methodology for calculating required to the elaboration of a project of shielding. With regard to high energies, where is necessary the construction of a labyrinth, the NCRP-49 is not very clear, so that in this field, studies were made resulting in an article that proposes a solution to the problem. It was developed a friendly program in Delphi programming language that, through the manual data entry of a basic design of architecture and some parameters, interprets the geometry and calculates the shields of the walls, ceiling and floor of on X-ray radiation therapy facility. As the final product, this program provides a graphical screen on the computer with all the input data and the calculation of shieldings and the calculation memory. The program can be applied in practical implementation of shielding projects for radiotherapy facilities and can be used in a didactic way compared to NCRP-49.

  12. Computer codes for ventilation in nuclear facilities

    International Nuclear Information System (INIS)

    Mulcey, P.

    1987-01-01

    In this paper the authors present some computer codes, developed in the last years, for ventilation and radioprotection. These codes are used for safety analysis in the conception, exploitation and dismantlement of nuclear facilities. The authors present particularly: DACC1 code used for aerosol deposit in sampling circuit of radiation monitors; PIAF code used for modelization of complex ventilation system; CLIMAT 6 code used for optimization of air conditioning system [fr

  13. Integrating Micro-computers with a Centralized DBMS: ORACLE, SEED AND INGRES

    Science.gov (United States)

    Hoerger, J.

    1984-01-01

    Users of ADABAS, a relational-like data base management system (ADABAS) with its data base programming language (NATURAL) are acquiring microcomputers with hopes of solving their individual word processing, office automation, decision support, and simple data processing problems. As processor speeds, memory sizes, and disk storage capacities increase, individual departments begin to maintain "their own" data base on "their own" micro-computer. This situation can adversely affect several of the primary goals set for implementing a centralized DBMS. In order to avoid this potential problem, these micro-computers must be integrated with the centralized DBMS. An easy to use and flexible means for transferring logic data base files between the central data base machine and micro-computers must be provided. Some of the problems encounted in an effort to accomplish this integration and possible solutions are discussed.

  14. Computer control and data acquisition system for the R.F. Test Facility

    International Nuclear Information System (INIS)

    Stewart, K.A.; Burris, R.D.; Mankin, J.B.; Thompson, D.H.

    1986-01-01

    The Radio Frequency Test Facility (RFTF) at Oak Ridge National Laboratory, used to test and evaluate high-power ion cyclotron resonance heating (ICRH) systems and components, is monitored and controlled by a multicomponent computer system. This data acquisition and control system consists of three major hardware elements: (1) an Allen-Bradley PLC-3 programmable controller; (2) a VAX 11/780 computer; and (3) a CAMAC serial highway interface. Operating in LOCAL as well as REMOTE mode, the programmable logic controller (PLC) performs all the control functions of the test facility. The VAX computer acts as the operator's interface to the test facility by providing color mimic panel displays and allowing input via a trackball device. The VAX also provides archiving of trend data acquired by the PLC. Communications between the PLC and the VAX are via the CAMAC serial highway. Details of the hardware, software, and the operation of the system are presented in this paper

  15. Annual report to the Laser Facility Committee, 1982

    International Nuclear Information System (INIS)

    1982-03-01

    The report covers the work done at, or in association with, the Central Laser Facility during the year April 1981 to March 1982 under the headings; glass laser facility development, gas laser development, laser plasma interactions, transport and particle emission studies, ablative acceleration and compression studies, spectroscopy and XUV lasers, and, theory and computation. Publications based on the work of the facility which have either appeared or been accepted for publication during the year are listed. (U.K.)

  16. Computed tomography of the central nervous system in small animals

    International Nuclear Information System (INIS)

    Tipold, A.; Tipold, E.

    1991-01-01

    With computed tomography in 44 small animals some well defined anatomical structures and pathological processes of the central nervous system are described. Computed tomography is not only necessary for the diagnosis of tumors; malformations, inflammatory, degenerative and vascular diseases and traumas are also visible

  17. Safety assessments for centralized waste treatment and disposal facility in Puspokszilagy Hungary

    International Nuclear Information System (INIS)

    Berci, K.; Hauszmann, Z.; Ormai, P.

    2002-01-01

    The centralized waste treatment and disposal facility Puspokszilagy is a shallow land, near surface engineered type disposal unit. The site, together with its geographic, geological and hydrogeological characteristics, is described. Data are given on the radioactive inventory. The operational safety assessment and the post-closure safety assessment is outlined. (author)

  18. Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Norm Stanley

    2011-02-01

    This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

  19. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  20. Brookhaven Reactor Experiment Control Facility, a distributed function computer network

    International Nuclear Information System (INIS)

    Dimmler, D.G.; Greenlaw, N.; Kelley, M.A.; Potter, D.W.; Rankowitz, S.; Stubblefield, F.W.

    1975-11-01

    A computer network for real-time data acquisition, monitoring and control of a series of experiments at the Brookhaven High Flux Beam Reactor has been developed and has been set into routine operation. This reactor experiment control facility presently services nine neutron spectrometers and one x-ray diffractometer. Several additional experiment connections are in progress. The architecture of the facility is based on a distributed function network concept. A statement of implementation and results is presented

  1. Public Computer Assisted Learning Facilities for Children with Visual Impairment: Universal Design for Inclusive Learning

    Science.gov (United States)

    Siu, Kin Wai Michael; Lam, Mei Seung

    2012-01-01

    Although computer assisted learning (CAL) is becoming increasingly popular, people with visual impairment face greater difficulty in accessing computer-assisted learning facilities. This is primarily because most of the current CAL facilities are not visually impaired friendly. People with visual impairment also do not normally have access to…

  2. User guide to the SRS data logging facility

    International Nuclear Information System (INIS)

    Tyson, B.E.

    1979-02-01

    The state of the SRS is recorded every two minutes, thus providing a detailed History of its parameters. Recording of History is done via the SRS Computer Network. This consists of a Master Computer, an Interdata 7/32, and three Minicomputers, Interdata 7/16s. Each of the Minicomputers controls one of the accelerators, Linac, Booster and Storage Ring. The Master Computer is connected to the Central Computer, an IBM 370/165, for jobs where greater computing power and storage are required. The Master Computer has a total of 20 Megabytes of fixed and movable disc space but only about 5 Megabytes are available for History storage. The Minicomputers have no storage facilities. The user guide is set out as follows: History filing system, History storage on the Master Computer, transfer of the History to the Central Computer, transferring History to tapes, job integrity, the SRS tape catalogue system. (author)

  3. Integrated computer network high-speed parallel interface

    International Nuclear Information System (INIS)

    Frank, R.B.

    1979-03-01

    As the number and variety of computers within Los Alamos Scientific Laboratory's Central Computer Facility grows, the need for a standard, high-speed intercomputer interface has become more apparent. This report details the development of a High-Speed Parallel Interface from conceptual through implementation stages to meet current and future needs for large-scle network computing within the Integrated Computer Network. 4 figures

  4. Computational content analysis of European Central Bank statements

    NARCIS (Netherlands)

    Milea, D.V.; Almeida, R.J.; Sharef, N.M.; Kaymak, U.; Frasincar, F.

    2012-01-01

    In this paper we present a framework for the computational content analysis of European Central Bank (ECB) statements. Based on this framework, we provide two approaches that can be used in a practical context. Both approaches use the content of ECB statements to predict upward and downward movement

  5. The Cost of Supplying Segmented Consumers From a Central Facility

    DEFF Research Database (Denmark)

    Turkensteen, Marcel; Klose, Andreas

    consider three measures of dispersion of demand points: the average distance between demand points, the maximum distance and the surface size.In our distribution model, all demand points are restocked from a central facility. The observed logistics costs are determined using the tour length estimations...... described in Daganzo (2004). Normal, continuous travel distance estimates require that demand locations are uniformly distributed across the plane, but we also consider scenarios with non-uniformly distributed demand locations. The resulting travel distances are highly correlated with our surface size...

  6. ATLAS Distributed Computing: Its Central Services core

    CERN Document Server

    Lee, Christopher Jon; The ATLAS collaboration

    2018-01-01

    The ATLAS Distributed Computing (ADC) Project is responsible for the off-line processing of data produced by the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. It facilitates data and workload management for ATLAS computing on the Worldwide LHC Computing Grid (WLCG). ADC Central Services operations (CSops)is a vital part of ADC, responsible for the deployment and configuration of services needed by ATLAS computing and operation of those services on CERN IT infrastructure, providing knowledge of CERN IT services to ATLAS service managers and developers, and supporting them in case of issues. Currently this entails the management of thirty seven different OpenStack projects, with more than five thousand cores allocated for these virtual machines, as well as overseeing the distribution of twenty nine petabytes of storage space in EOS for ATLAS. As the LHC begins to get ready for the next long shut-down, which will bring in many new upgrades to allow for more data to be captured by the on-line syste...

  7. Oak Ridge Leadership Computing Facility Position Paper

    Energy Technology Data Exchange (ETDEWEB)

    Oral, H Sarp [ORNL; Hill, Jason J [ORNL; Thach, Kevin G [ORNL; Podhorszki, Norbert [ORNL; Klasky, Scott A [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL

    2011-01-01

    This paper discusses the business, administration, reliability, and usability aspects of storage systems at the Oak Ridge Leadership Computing Facility (OLCF). The OLCF has developed key competencies in architecting and administration of large-scale Lustre deployments as well as HPSS archival systems. Additionally as these systems are architected, deployed, and expanded over time reliability and availability factors are a primary driver. This paper focuses on the implementation of the Spider parallel Lustre file system as well as the implementation of the HPSS archive at the OLCF.

  8. Parking Navigation for Alleviating Congestion in Multilevel Parking Facility

    OpenAIRE

    Kenmotsu, Masahiro; Sun, Weihua; Shibata, Naoki; Yasumoto, Keiichi; Ito, Minoru

    2012-01-01

    Finding a vacant parking space in a large crowded parking facility takes long time. In this paper, we propose a navigation method that minimizes the parking time based on collected real-time positional information of cars. In the proposed method, a central server in the parking facility collects the information and estimates the occupancy of each parking zone. Then, the server broadcasts the occupancy data to the cars in the parking facility. Each car then computes a parking route with the sh...

  9. Guide to computing at ANL

    Energy Technology Data Exchange (ETDEWEB)

    Peavler, J. (ed.)

    1979-06-01

    This publication gives details about hardware, software, procedures, and services of the Central Computing Facility, as well as information about how to become an authorized user. Languages, compilers' libraries, and applications packages available are described. 17 tables. (RWR)

  10. High Performance Computing Facility Operational Assessment, FY 2011 Oak Ridge Leadership Computing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Ann E [ORNL; Bland, Arthur S Buddy [ORNL; Hack, James J [ORNL; Barker, Ashley D [ORNL; Boudwin, Kathlyn J. [ORNL; Kendall, Ricky A [ORNL; Messer, Bronson [ORNL; Rogers, James H [ORNL; Shipman, Galen M [ORNL; Wells, Jack C [ORNL; White, Julia C [ORNL

    2011-08-01

    Oak Ridge National Laboratory's Leadership Computing Facility (OLCF) continues to deliver the most powerful resources in the U.S. for open science. At 2.33 petaflops peak performance, the Cray XT Jaguar delivered more than 1.5 billion core hours in calendar year (CY) 2010 to researchers around the world for computational simulations relevant to national and energy security; advancing the frontiers of knowledge in physical sciences and areas of biological, medical, environmental, and computer sciences; and providing world-class research facilities for the nation's science enterprise. Scientific achievements by OLCF users range from collaboration with university experimentalists to produce a working supercapacitor that uses atom-thick sheets of carbon materials to finely determining the resolution requirements for simulations of coal gasifiers and their components, thus laying the foundation for development of commercial-scale gasifiers. OLCF users are pushing the boundaries with software applications sustaining more than one petaflop of performance in the quest to illuminate the fundamental nature of electronic devices. Other teams of researchers are working to resolve predictive capabilities of climate models, to refine and validate genome sequencing, and to explore the most fundamental materials in nature - quarks and gluons - and their unique properties. Details of these scientific endeavors - not possible without access to leadership-class computing resources - are detailed in Section 4 of this report and in the INCITE in Review. Effective operations of the OLCF play a key role in the scientific missions and accomplishments of its users. This Operational Assessment Report (OAR) will delineate the policies, procedures, and innovations implemented by the OLCF to continue delivering a petaflop-scale resource for cutting-edge research. The 2010 operational assessment of the OLCF yielded recommendations that have been addressed (Reference Section 1) and

  11. Computer modeling of commercial refrigerated warehouse facilities

    International Nuclear Information System (INIS)

    Nicoulin, C.V.; Jacobs, P.C.; Tory, S.

    1997-01-01

    The use of computer models to simulate the energy performance of large commercial refrigeration systems typically found in food processing facilities is an area of engineering practice that has seen little development to date. Current techniques employed in predicting energy consumption by such systems have focused on temperature bin methods of analysis. Existing simulation tools such as DOE2 are designed to model commercial buildings and grocery store refrigeration systems. The HVAC and Refrigeration system performance models in these simulations tools model equipment common to commercial buildings and groceries, and respond to energy-efficiency measures likely to be applied to these building types. The applicability of traditional building energy simulation tools to model refrigerated warehouse performance and analyze energy-saving options is limited. The paper will present the results of modeling work undertaken to evaluate energy savings resulting from incentives offered by a California utility to its Refrigerated Warehouse Program participants. The TRNSYS general-purpose transient simulation model was used to predict facility performance and estimate program savings. Custom TRNSYS components were developed to address modeling issues specific to refrigerated warehouse systems, including warehouse loading door infiltration calculations, an evaporator model, single-state and multi-stage compressor models, evaporative condenser models, and defrost energy requirements. The main focus of the paper will be on the modeling approach. The results from the computer simulations, along with overall program impact evaluation results, will also be presented

  12. ATLAS experience with HEP software at the Argonne leadership computing facility

    International Nuclear Information System (INIS)

    Uram, Thomas D; LeCompte, Thomas J; Benjamin, D

    2014-01-01

    A number of HEP software packages used by the ATLAS experiment, including GEANT4, ROOT and ALPGEN, have been adapted to run on the IBM Blue Gene supercomputers at the Argonne Leadership Computing Facility. These computers use a non-x86 architecture and have a considerably less rich operating environment than in common use in HEP, but also represent a computing capacity an order of magnitude beyond what ATLAS is presently using via the LCG. The status and potential for making use of leadership-class computing, including the status of integration with the ATLAS production system, is discussed.

  13. ATLAS Experience with HEP Software at the Argonne Leadership Computing Facility

    CERN Document Server

    LeCompte, T; The ATLAS collaboration; Benjamin, D

    2014-01-01

    A number of HEP software packages used by the ATLAS experiment, including GEANT4, ROOT and ALPGEN, have been adapted to run on the IBM Blue Gene supercomputers at the Argonne Leadership Computing Facility. These computers use a non-x86 architecture and have a considerably less rich operating environment than in common use in HEP, but also represent a computing capacity an order of magnitude beyond what ATLAS is presently using via the LCG. The status and potential for making use of leadership-class computing, including the status of integration with the ATLAS production system, is discussed.

  14. Fluid Centrality: A Social Network Analysis of Social-Technical Relations in Computer-Mediated Communication

    Science.gov (United States)

    Enriquez, Judith Guevarra

    2010-01-01

    In this article, centrality is explored as a measure of computer-mediated communication (CMC) in networked learning. Centrality measure is quite common in performing social network analysis (SNA) and in analysing social cohesion, strength of ties and influence in CMC, and computer-supported collaborative learning research. It argues that measuring…

  15. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  16. An analytical model for computation of reliability of waste management facilities with intermediate storages

    International Nuclear Information System (INIS)

    Kallweit, A.; Schumacher, F.

    1977-01-01

    A high reliability is called for waste management facilities within the fuel cycle of nuclear power stations which can be fulfilled by providing intermediate storage facilities and reserve capacities. In this report a model based on the theory of Markov processes is described which allows computation of reliability characteristics of waste management facilities containing intermediate storage facilities. The application of the model is demonstrated by an example. (orig.) [de

  17. COMPUTER ORIENTED FACILITIES OF TEACHING AND INFORMATIVE COMPETENCE

    OpenAIRE

    Olga M. Naumenko

    2010-01-01

    In the article it is considered the history of views to the tasks of education, estimations of its effectiveness from the point of view of forming of basic vitally important competences. Opinions to the problem in different countries, international organizations, corresponding experience of the Ukrainian system of education are described. The necessity of forming of informative competence of future teacher is reasonable in the conditions of application of the computer oriented facilities of t...

  18. Maintenance of reactor safety and control computers at a large government facility

    International Nuclear Information System (INIS)

    Brady, H.G.

    1985-01-01

    In 1950 the US Government contracted the Du Pont Company to design, build, and operate the Savannah River Plant (SRP). At the time, it was the largest construction project ever undertaken by man. It is still the largest of the Department of Energy facilities. In the nearly 35 years that have elapsed, Du Pont has met its commitments to the US Government and set world safety records in the construction and operation of nuclear facilities. Contributing factors in achieving production goals and setting the safety records are a staff of highly qualified personnel, a well maintained plant, and sound maintenance programs. There have been many ''first ever'' achievements at SRP. These ''firsts'' include: (1) computer control of a nuclear rector, and (2) use of computer systems as safety circuits. This presentation discusses the maintenance program provided for these computer systems and all digital systems at SRP. An in-house computer maintenance program that was started in 1966 with five persons has grown to a staff of 40 with investments in computer hardware increasing from $4 million in 1970 to more than $60 million in this decade. 4 figs

  19. The Argonne Leadership Computing Facility 2010 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Drugan, C. (LCF)

    2011-05-09

    Researchers found more ways than ever to conduct transformative science at the Argonne Leadership Computing Facility (ALCF) in 2010. Both familiar initiatives and innovative new programs at the ALCF are now serving a growing, global user community with a wide range of computing needs. The Department of Energy's (DOE) INCITE Program remained vital in providing scientists with major allocations of leadership-class computing resources at the ALCF. For calendar year 2011, 35 projects were awarded 732 million supercomputer processor-hours for computationally intensive, large-scale research projects with the potential to significantly advance key areas in science and engineering. Argonne also continued to provide Director's Discretionary allocations - 'start up' awards - for potential future INCITE projects. And DOE's new ASCR Leadership Computing (ALCC) Program allocated resources to 10 ALCF projects, with an emphasis on high-risk, high-payoff simulations directly related to the Department's energy mission, national emergencies, or for broadening the research community capable of using leadership computing resources. While delivering more science today, we've also been laying a solid foundation for high performance computing in the future. After a successful DOE Lehman review, a contract was signed to deliver Mira, the next-generation Blue Gene/Q system, to the ALCF in 2012. The ALCF is working with the 16 projects that were selected for the Early Science Program (ESP) to enable them to be productive as soon as Mira is operational. Preproduction access to Mira will enable ESP projects to adapt their codes to its architecture and collaborate with ALCF staff in shaking down the new system. We expect the 10-petaflops system to stoke economic growth and improve U.S. competitiveness in key areas such as advancing clean energy and addressing global climate change. Ultimately, we envision Mira as a stepping-stone to exascale-class computers

  20. Development tendencies of energy facilities in Central and Eastern European countries in transition

    International Nuclear Information System (INIS)

    Riesner, W.; Stuits, I.; Zeltins, N.

    1999-01-01

    The present work considers development problems of energy facilities in Central and Eastern European countries being in transition in the period from 1990 to 1997. It outlines the changes in economical situation during this period. The paper also shows the development dynamics for economic indicators in 11 countries and analyses them for each country taken separately. (author)

  1. 2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

  2. Mapping the Characteristics of Critical Care Facilities: Assessment, Distribution, and Level of Critical Care Facilities from Central India.

    Science.gov (United States)

    Saigal, Saurabh; Sharma, Jai Prakash; Pakhare, Abhijit; Bhaskar, Santosh; Dhanuka, Sanjay; Kumar, Sanjay; Sabde, Yogesh; Bhattacharya, Pradip; Joshi, Rajnish

    2017-10-01

    In low- and middle-income countries such as India, where health systems are weak, the number of available Critical Care Unit (Intensive Care Unit [ICU]) beds is expected to be low. There is no study from the Indian subcontinent that has reported the characteristics and distribution of existing ICUs. We performed this study to understand the characteristics and distribution of ICUs in Madhya Pradesh (MP) state of Central India. We also aimed to develop a consensus scoring system and internally validate it to define levels of care and to improve health system planning and to strengthen referral networks in the state. We obtained a list of potential ICU facilities from various sources and then performed a cross-sectional survey by visiting each facility and determining characteristics for each facility. We collected variables with respect to infrastructure, human resources, equipment, support services, procedures performed, training courses conducted, and in-place policies or standard operating procedure documents. We identified a total of 123 ICUs in MP. Of 123 ICUs, 35 were level 1 facilities, 74 were level 2 facilities, and only 14 were level 3 facilities. Overall, there were 0.17 facilities per 100,000 population (95* confidence interval [CI] 0.14-0.20 per 100,000 populations). There were a total of 1816 ICU beds in the state, with an average of 2.5 beds per 100,000 population (95* CI 2.4-2.6 per 100,000 population). Of the total number of ICU beds, 250 are in level 1, 1141 are in level 2, and 425 are in level 3 facilities. This amounts to 0.34, 1.57, and 0.59 ICU beds per 100,000 population for levels 1, 2, and 3, respectively. This study could just be an eye opener for our healthcare authorities at both state and national levels to estimate the proportion of ICU beds per lac population. Similar mapping of intensive care services from other States will generate national data that is hitherto unknown.

  3. Distributed Computing with Centralized Support Works at Brigham Young.

    Science.gov (United States)

    McDonald, Kelly; Stone, Brad

    1992-01-01

    Brigham Young University (Utah) has addressed the need for maintenance and support of distributed computing systems on campus by implementing a program patterned after a national business franchise, providing the support and training of a centralized administration but allowing each unit to operate much as an independent small business.…

  4. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Graf, F.A. Jr.

    1995-02-27

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System`s pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System.

  5. Computer software configuration management plan for 200 East/West Liquid Effluent Facilities

    International Nuclear Information System (INIS)

    Graf, F.A. Jr.

    1995-01-01

    This computer software management configuration plan covers the control of the software for the monitor and control system that operates the Effluent Treatment Facility and its associated truck load in station and some key aspects of the Liquid Effluent Retention Facility that stores condensate to be processed. Also controlled is the Treated Effluent Disposal System's pumping stations and monitors waste generator flows in this system as well as the Phase Two Effluent Collection System

  6. Refurbishment and Automation of Thermal Vacuum Facilities at NASA/GSFC

    Science.gov (United States)

    Dunn, Jamie; Gomez, Carlos; Donohue, John; Johnson, Chris; Palmer, John; Sushon, Janet

    1999-01-01

    The thermal vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the eleven facilities, currently ten of the systems are scheduled for refurbishment or replacement as part of a five-year implementation. Expected return on investment includes the reduction in test schedules, improvements in safety of facility operations, and reduction in the personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering, and for the automation of thermal vacuum facilities and tests. Automation of the thermal vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs), the use of Supervisory Control and Data Acquisition (SCADA) systems, and the development of a centralized Test Data Management System. These components allow the computer control and automation of mechanical components such as valves and pumps. The project of refurbishment and automation began in 1996 and has resulted in complete computer control of one facility (Facility 281), and the integration of electronically controlled devices and PLCs in multiple others.

  7. CAMAC based computer--computer communications via microprocessor data links

    International Nuclear Information System (INIS)

    Potter, J.M.; Machen, D.R.; Naivar, F.J.; Elkins, E.P.; Simmonds, D.D.

    1976-01-01

    Communications between the central control computer and remote, satellite data acquisition/control stations at The Clinton P. Anderson Meson Physics Facility (LAMPF) is presently accomplished through the use of CAMAC based Data Link Modules. With the advent of the microprocessor, a new philosophy for digital data communications has evolved. Data Link modules containing microprocessor controllers provide link management and communication network protocol through algorithms executed in the Data Link microprocessor

  8. Reference equilibrium core with central flux irradiation facility for Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Israr, M.; Shami, Qamar-ud-din; Pervez, S.

    1997-11-01

    In order to assess various core parameters a reference equilibrium core with Low Enriched Uranium (LEU) fuel for Pakistan Research Reactor (PARR-1) was assembled. Due to increased volume of reference core, the average neutron flux reduced as compared to the first higher power operation. To get a higher neutron flux an irradiation facility was created in centre of the reference equilibrium core where the advantage of the neutron flux peaking was taken. Various low power experiments were performed in order to evaluate control rods worth and neutron flux mapping inside the core. The neutron flux inside the central irradiation facility almost doubled. With this arrangement reactor operation time was cut down from 72 hours to 48 hours for the production of the required specific radioactivity. (author)

  9. Computer usage among nurses in rural health-care facilities in South Africa: obstacles and challenges.

    Science.gov (United States)

    Asah, Flora

    2013-04-01

    This study discusses factors inhibiting computer usage for work-related tasks among computer-literate professional nurses within rural healthcare facilities in South Africa. In the past two decades computer literacy courses have not been part of the nursing curricula. Computer courses are offered by the State Information Technology Agency. Despite this, there seems to be limited use of computers by professional nurses in the rural context. Focus group interviews held with 40 professional nurses from three government hospitals in northern KwaZulu-Natal. Contributing factors were found to be lack of information technology infrastructure, restricted access to computers and deficits in regard to the technical and nursing management support. The physical location of computers within the health-care facilities and lack of relevant software emerged as specific obstacles to usage. Provision of continuous and active support from nursing management could positively influence computer usage among professional nurses. A closer integration of information technology and computer literacy skills into existing nursing curricula would foster a positive attitude towards computer usage through early exposure. Responses indicated that change of mindset may be needed on the part of nursing management so that they begin to actively promote ready access to computers as a means of creating greater professionalism and collegiality. © 2011 Blackwell Publishing Ltd.

  10. Shielding Calculations for Positron Emission Tomography - Computed Tomography Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Baasandorj, Khashbayar [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yang, Jeongseon [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    Integrated PET-CT has been shown to be more accurate for lesion localization and characterization than PET or CT alone, and the results obtained from PET and CT separately and interpreted side by side or following software based fusion of the PET and CT datasets. At the same time, PET-CT scans can result in high patient and staff doses; therefore, careful site planning and shielding of this imaging modality have become challenging issues in the field. In Mongolia, the introduction of PET-CT facilities is currently being considered in many hospitals. Thus, additional regulatory legislation for nuclear and radiation applications is necessary, for example, in regulating licensee processes and ensuring radiation safety during the operations. This paper aims to determine appropriate PET-CT shielding designs using numerical formulas and computer code. Since presently there are no PET-CT facilities in Mongolia, contact was made with radiological staff at the Nuclear Medicine Center of the National Cancer Center of Mongolia (NCCM) to get information about facilities where the introduction of PET-CT is being considered. Well-designed facilities do not require additional shielding, which should help cut down overall costs related to PET-CT installation. According to the results of this study, building barrier thicknesses of the NCCM building is not sufficient to keep radiation dose within the limits.

  11. Evolution of facility layout requirements and CAD [computer-aided design] system development

    International Nuclear Information System (INIS)

    Jones, M.

    1990-06-01

    The overall configuration of the Superconducting Super Collider (SSC) including the infrastructure and land boundary requirements were developed using a computer-aided design (CAD) system. The evolution of the facility layout requirements and the use of the CAD system are discussed. The emphasis has been on minimizing the amount of input required and maximizing the speed by which the output may be obtained. The computer system used to store the data is also described

  12. Computer mapping and visualization of facilities for planning of D and D operations

    International Nuclear Information System (INIS)

    Wuller, C.E.; Gelb, G.H.; Cramond, R.; Cracraft, J.S.

    1995-01-01

    The lack of as-built drawings for many old nuclear facilities impedes planning for decontamination and decommissioning. Traditional manual walkdowns subject workers to lengthy exposure to radiological and other hazards. The authors have applied close-range photogrammetry, 3D solid modeling, computer graphics, database management, and virtual reality technologies to create geometrically accurate 3D computer models of the interiors of facilities. The required input to the process is a set of photographs that can be acquired in a brief time. They fit 3D primitive shapes to objects of interest in the photos and, at the same time, record attributes such as material type and link patches of texture from the source photos to facets of modeled objects. When they render the model as either static images or at video rates for a walk-through simulation, the phototextures are warped onto the objects, giving a photo-realistic impression. The authors have exported the data to commercial CAD, cost estimating, robotic simulation, and plant design applications. Results from several projects at old nuclear facilities are discussed

  13. Central implementation strategies outperform local ones in improving HIV testing in Veterans Healthcare Administration facilities.

    Science.gov (United States)

    Goetz, Matthew Bidwell; Hoang, Tuyen; Knapp, Herschel; Burgess, Jane; Fletcher, Michael D; Gifford, Allen L; Asch, Steven M

    2013-10-01

    Pilot data suggest that a multifaceted approach may increase HIV testing rates, but the scalability of this approach and the level of support needed for successful implementation remain unknown. To evaluate the effectiveness of a scaled-up multi-component intervention in increasing the rate of risk-based and routine HIV diagnostic testing in primary care clinics and the impact of differing levels of program support. Three arm, quasi-experimental implementation research study. Veterans Health Administration (VHA) facilities. Persons receiving primary care between June 2009 and September 2011 INTERVENTION: A multimodal program, including a real-time electronic clinical reminder to facilitate HIV testing, provider feedback reports and provider education, was implemented in Central and Local Arm Sites; sites in the Central Arm also received ongoing programmatic support. Control Arm sites had no intervention Frequency of performing HIV testing during the 6 months before and after implementation of a risk-based clinical reminder (phase I) or routine clinical reminder (phase II). The adjusted rate of risk-based testing increased by 0.4 %, 5.6 % and 10.1 % in the Control, Local and Central Arms, respectively (all comparisons, p education and social marketing significantly increased the frequency at which HIV testing is offered and performed in VHA facilities. These findings support a multimodal approach toward achieving the goal of having every American know their HIV status as a matter of routine clinical practice.

  14. On the possiblity of using vertically pointing Central Laser Facilities to calibrate the Cherenkov Telescope Array

    International Nuclear Information System (INIS)

    Gaug, Markus

    2014-01-01

    A Central Laser Facility is a system composed of a laser placed at a certain distance from a light-detector array, emitting fast light pulses, typically in the vertical direction, with the aim to calibrate that array. During calibration runs, all detectors are pointed towards the same portion of the laser beam at a given altitude. Central Laser Facilities are used for various currently operating ultra-high-energy cosmic ray and imaging atmospheric Cherenkov telescope arrays. In view of the future Cherenkov Telescope Array, a similar device could provide a fast calibration of the whole installation at different wavelengths. The relative precision (i.e. each individual telescope with respect to the rest of the array is expected) to be better than 5%, while an absolute calibration should reach a precisions of 6–11%, if certain design requirements are met. Additionally, a preciser monitoring of the sensitivity of each telescope can be made on time-scales of days to years

  15. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities

  16. Hyperpolarized 3-helium MR imaging of the lungs: testing the concept of a central production facility

    International Nuclear Information System (INIS)

    Beek, E.J.R. van; Schmiedeskamp, J.; Filbir, F.; Heil, W.; Wolf, M.; Otten, E.; Wild, J.M.; Paley, M.N.J.; Fichele, S.; Woodhouse, N.; Swift, A.; Knitz, F.; Mills, G.H.

    2003-01-01

    The aim of this study was to test the feasibility of a central production facility with distribution network for implementation of hyperpolarized 3-helium MRI. The 3-helium was hyperpolarized to 50-65% using a large-scale production facility based at a university in Germany. Using a specially designed transport box, containing a permanent low-field shielded magnet and dedicated iron-free glass cells, the hyperpolarized 3-helium gas was transported via airfreight to a university in the UK. At this location, the gas was used to perform in vivo MR experiments in normal volunteers and patients with chronic obstructive lung diseases. Following initial tests, the transport (road-air-road cargo) was successfully arranged on six occasions (approximately once per month). The duration of transport to imaging averaged 18 h (range 16-20 h), which was due mainly to organizational issues such as working times and flight connections. During the course of the project, polarization at imaging increased from 20% to more than 30%. A total of 4 healthy volunteers and 8 patients with chronic obstructive pulmonary disease were imaged. The feasibility of a central production facility for hyperpolarized 3-helium was demonstrated. This should enable a wider distribution of gas for this novel technology without the need for local start-up costs. (orig.)

  17. Scientific Computing Strategic Plan for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Whiting, Eric Todd

    2015-01-01

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory's (INL's) challenge and charge, and is central to INL's ongoing success. Computing is an essential part of INL's future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing number of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.

  18. Automation of a cryogenic facility by commercial process-control computer

    International Nuclear Information System (INIS)

    Sondericker, J.H.; Campbell, D.; Zantopp, D.

    1983-01-01

    To insure that Brookhaven's superconducting magnets are reliable and their field quality meets accelerator requirements, each magnet is pre-tested at operating conditions after construction. MAGCOOL, the production magnet test facility, was designed to perform these tests, having the capacity to test ten magnets per five day week. This paper describes the control aspects of MAGCOOL and the advantages afforded the designers by the implementation of a commercial process control computer system

  19. Magnetic-fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  20. Magnetic fusion energy and computers

    International Nuclear Information System (INIS)

    Killeen, J.

    1982-01-01

    The application of computers to magnetic fusion energy research is essential. In the last several years the use of computers in the numerical modeling of fusion systems has increased substantially. There are several categories of computer models used to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are also in use. To meet the needs of the fusion program, the National Magnetic Fusion Energy Computer Center has been established at the Lawrence Livermore National Laboratory. A large central computing facility is linked to smaller computer centers at each of the major MFE laboratories by a communication network. In addition to providing cost effective computing services, the NMFECC environment stimulates collaboration and the sharing of computer codes among the various fusion research groups

  1. Development of the computer code to monitor gamma radiation in the nuclear facility environment

    International Nuclear Information System (INIS)

    Akhmad, Y. R.; Pudjiyanto, M.S.

    1998-01-01

    Computer codes for gamma radiation monitoring in the vicinity of nuclear facility which have been developed could be introduced to the commercial potable gamma analyzer. The crucial stage of the first year activity was succeeded ; that is the codes have been tested to transfer data file (pulse high distribution) from Micro NOMAD gamma spectrometer (ORTEC product) and the convert them into dosimetry and physics quantities. Those computer codes are called as GABATAN (Gamma Analyzer of Batan) and NAGABAT (Natural Gamma Analyzer of Batan). GABATAN code can isable to used at various nuclear facilities for analyzing gamma field up to 9 MeV, while NAGABAT could be used for analyzing the contribution of natural gamma rays to the exposure rate in the certain location

  2. Vertebrobasilar system computed tomographic angiography in central vertigo.

    Science.gov (United States)

    Paşaoğlu, Lale

    2017-03-01

    The incidence of vertigo in the population is 20% to 30% and one-fourth of the cases are related to central causes. The aim of this study was to evaluate computed tomography angiography (CTA) findings of the vertebrobasilar system in central vertigo without stroke.CTA and magnetic resonance images of patients with vertigo were retrospectively evaluated. One hundred twenty-nine patients suspected of having central vertigo according to history, physical examination, and otological and neurological tests without signs of infarction on diffusion-weighted magnetic resonance imaging were included in the study. The control group included 120 patients with similar vascular disease risk factors but without vertigo. Vertebral and basilar artery diameters, hypoplasias, exit-site variations of vertebral artery, vertebrobasilar tortuosity, and stenosis of ≥50% detected on CTA were recorded for all patients. Independent-samples t test was used in variables with normal distribution, and Mann-Whitney U test in non-normal distribution. The difference of categorical variable distribution according to groups was analyzed with χ and/or Fisher exact test.Vertebral artery hypoplasia and ≥50% stenosis were seen more often in the vertigo group (P = 0.000, vertigo patients had ≥50% stenosis, 54 (69.2%) had stenosis at V1 segment, 9 (11.5%) at V2 segment, 2 (2.5%) at V3 segment, and 13 (16.6%) at V4 segment. Both vertigo and control groups had similar basilar artery hypoplasia and ≥50% stenosis rates (P = 0.800, >0.05).CTA may be helpful to clarify the association between abnormal CTA findings of vertebral arteries and central vertigo.This article reveals the opportunity to diagnose posterior circulation abnormalities causing central vertigo with a feasible method such as CTA.

  3. CRYSNET manual. Informal report. [Hardware and software of crystallographic computing network

    Energy Technology Data Exchange (ETDEWEB)

    None,

    1976-07-01

    This manual describes the hardware and software which together make up the crystallographic computing network (CRYSNET). The manual is intended as a users' guide and also provides general information for persons without any experience with the system. CRYSNET is a network of intelligent remote graphics terminals that are used to communicate with the CDC Cyber 70/76 computing system at the Brookhaven National Laboratory (BNL) Central Scientific Computing Facility. Terminals are in active use by four research groups in the field of crystallography. A protein data bank has been established at BNL to store in machine-readable form atomic coordinates and other crystallographic data for macromolecules. The bank currently includes data for more than 20 proteins. This structural information can be accessed at BNL directly by the CRYSNET graphics terminals. More than two years of experience has been accumulated with CRYSNET. During this period, it has been demonstrated that the terminals, which provide access to a large, fast third-generation computer, plus stand-alone interactive graphics capability, are useful for computations in crystallography, and in a variety of other applications as well. The terminal hardware, the actual operations of the terminals, and the operations of the BNL Central Facility are described in some detail, and documentation of the terminal and central-site software is given. (RWR)

  4. Centralized treatment facility for low level radioactive waste produced in Belgium. The CILVA project

    International Nuclear Information System (INIS)

    Renard, Cl.; Detilleux, M.; Debieve, P.

    1993-01-01

    Due to rather limited amount of waste produced and the small size of the Belgian territory (30 x 10 3 km 2 ), ONDRAF/NIRAS strategy aims at centralizing treatment conditioning and storage of radioactive waste. ONDRAF/NTRAS has decided to set up a new infrastructure: the CILVA unit. The CILVA facility is focused on the supercompaction and the incineration treatment, so that ONDRAF/NIRAS can safely manage all radioactive wastes produced in Belgium. (2 figs.)

  5. Radiation analysis for a generic centralized interim storage facility

    International Nuclear Information System (INIS)

    Gillespie, S.G.; Lopez, P.; Eble, R.G.

    1997-01-01

    This paper documents the radiation analysis performed for the storage area of a generic Centralized Interim Storage Facility (CISF) for commercial spent nuclear fuel (SNF). The purpose of the analysis is to establish the CISF Protected Area and Restricted Area boundaries by modeling a representative SNF storage array, calculating the radiation dose at selected locations outside the storage area, and comparing the results with regulatory radiation dose limits. The particular challenge for this analysis is to adequately model a large (6000 cask) storage array with a reasonable amount of analysis time and effort. Previous analyses of SNF storage systems for Independent Spent Fuel Storage Installations at nuclear plant sites (for example in References 5.1 and 5.2) had only considered small arrays of storage casks. For such analyses, the dose contribution from each storage cask can be modeled individually. Since the large number of casks in the CISF storage array make such an approach unrealistic, a simplified model is required

  6. Computer-aided power systems analysis

    CERN Document Server

    Kusic, George

    2008-01-01

    Computer applications yield more insight into system behavior than is possible by using hand calculations on system elements. Computer-Aided Power Systems Analysis: Second Edition is a state-of-the-art presentation of basic principles and software for power systems in steady-state operation. Originally published in 1985, this revised edition explores power systems from the point of view of the central control facility. It covers the elements of transmission networks, bus reference frame, network fault and contingency calculations, power flow on transmission networks, generator base power setti

  7. Development of a Computer Program for the Analysis Logistics of PWR Spent Fuels

    International Nuclear Information System (INIS)

    Choi, Heui Joo; Choi, Jong Won; Cha, Jeong Hun

    2008-01-01

    It is expected that the temporary storage facilities at the nuclear power plants will be full of the spent fuels within 10 years. Provided that a centralized interim storage facility is constructed along the coast of the Korean peninsula to solve this problem, a substantial amount of spent fuels should be transported by sea or by land every year. In this paper we developed a computer program for the analysis of transportation logistics of the spent fuels from 4 different nuclear power plant sites to the hypothetical centralized interim storage facility and the final repository. Mass balance equations were used to analyze the logistics between the nuclear power plants and the interim storage facility. To this end a computer program, CASK, was developed by using the VISUAL BASIC language. The annual transportation rates of spent fuels from the four nuclear power plant sites were determined by using the CASK program. The parameter study with the program illustrated the easiness of logistics analysis. The program could be used for the cost analysis of the spent fuel transportation as well.

  8. Integration of distributed plant process computer systems to nuclear power generation facilities

    International Nuclear Information System (INIS)

    Bogard, T.; Finlay, K.

    1996-01-01

    Many operating nuclear power generation facilities are replacing their plant process computer. Such replacement projects are driven by equipment obsolescence issues and associated objectives to improve plant operability, increase plant information access, improve man machine interface characteristics, and reduce operation and maintenance costs. This paper describes a few recently completed and on-going replacement projects with emphasis upon the application integrated distributed plant process computer systems. By presenting a few recent projects, the variations of distributed systems design show how various configurations can address needs for flexibility, open architecture, and integration of technological advancements in instrumentation and control technology. Architectural considerations for optimal integration of the plant process computer and plant process instrumentation ampersand control are evident from variations of design features

  9. Annual report to the Laser Facility Committee 1979

    International Nuclear Information System (INIS)

    1979-03-01

    The report covers the work done at the Central Laser Facility, Rutherford Laboratory during the year preceding 31 March 1979. Preliminary work already undertaken on the upgrade of the glass laser and target areas consisting of the relocation of the two beam target chamber and tests on phosphate glass and also the completion of the electron beam generator for use by researchers on high power gas laser systems, are described. Work of the groups using the glass laser facility are considered under the headings; glass laser development, gas laser development, laser plasma interactions, transport and particle emission, ablative compression studies, atomic and radiation physics, XUV lasers, theory and computation. (U.K.)

  10. Printing in heterogeneous computer environment at DESY

    International Nuclear Information System (INIS)

    Jakubowski, Z.

    1996-01-01

    The number of registered hosts DESY reaches 3500 while the number of print queues approaches 150. The spectrum of used computing environment is very wide: from MAC's and PC's, through SUN, DEC and SGI machines to the IBM mainframe. In 1994 we used 18 tons of paper. We present a solution for providing print services in such an environment for more than 3500 registered users. The availability of the print service is a serious issue. Using centralized printing has a lot of advantages for software administration but creates single point of failure. We solved this problem partially without using expensive software and hardware. The talk provides information about the DESY central central print spooler concept. None of the systems available on the market provides ready to use reliable solution for all platforms used for DESY. We discuss concepts for installation, administration and monitoring large number of printers. We found a solution for printing both on central computing facilities likewise for support of stand-alone workstations. (author)

  11. Computer-based data acquisition system in the Large Coil Test Facility

    International Nuclear Information System (INIS)

    Gould, S.S.; Layman, L.R.; Million, D.L.

    1983-01-01

    The utilization of computers for data acquisition and control is of paramount importance on large-scale fusion experiments because they feature the ability to acquire data from a large number of sensors at various sample rates and provide for flexible data interpretation, presentation, reduction, and analysis. In the Large Coil Test Facility (LCTF) a Digital Equipment Corporation (DEC) PDP-11/60 host computer with the DEC RSX-11M operating system coordinates the activities of five DEC LSI-11/23 front-end processors (FEPs) via direct memory access (DMA) communication links. This provides host control of scheduled data acquisition and FEP event-triggered data collection tasks. Four of the five FEPs have no operating system

  12. Money for Research, Not for Energy Bills: Finding Energy and Cost Savings in High Performance Computer Facility Designs

    Energy Technology Data Exchange (ETDEWEB)

    Drewmark Communications; Sartor, Dale; Wilson, Mark

    2010-07-01

    High-performance computing facilities in the United States consume an enormous amount of electricity, cutting into research budgets and challenging public- and private-sector efforts to reduce energy consumption and meet environmental goals. However, these facilities can greatly reduce their energy demand through energy-efficient design of the facility itself. Using a case study of a facility under design, this article discusses strategies and technologies that can be used to help achieve energy reductions.

  13. En Garde: Fencing at Kansas City's Central Computers Unlimited/Classical Greek Magnet High School, 1991-1995

    Science.gov (United States)

    Poos, Bradley W.

    2015-01-01

    Central High School in Kansas City, Missouri is one of the oldest schools west of the Mississippi and the first public high school built in Kansas City. Kansas City's magnet plan resulted in Central High School being rebuilt as the Central Computers Unlimited/Classical Greek Magnet High School, a school that was designed to offer students an…

  14. 2015 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael George [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2014, through October 31, 2015.

  15. Centralized supercomputer support for magnetic fusion energy research

    International Nuclear Information System (INIS)

    Fuss, D.; Tull, G.G.

    1984-01-01

    High-speed computers with large memories are vital to magnetic fusion energy research. Magnetohydrodynamic (MHD), transport, equilibrium, Vlasov, particle, and Fokker-Planck codes that model plasma behavior play an important role in designing experimental hardware and interpreting the resulting data, as well as in advancing plasma theory itself. The size, architecture, and software of supercomputers to run these codes are often the crucial constraints on the benefits such computational modeling can provide. Hence, vector computers such as the CRAY-1 offer a valuable research resource. To meet the computational needs of the fusion program, the National Magnetic Fusion Energy Computer Center (NMFECC) was established in 1974 at the Lawrence Livermore National Laboratory. Supercomputers at the central computing facility are linked to smaller computer centers at each of the major fusion laboratories by a satellite communication network. In addition to providing large-scale computing, the NMFECC environment stimulates collaboration and the sharing of computer codes and data among the many fusion researchers in a cost-effective manner

  16. Physics detector simulation facility system software description

    International Nuclear Information System (INIS)

    Allen, J.; Chang, C.; Estep, P.; Huang, J.; Liu, J.; Marquez, M.; Mestad, S.; Pan, J.; Traversat, B.

    1991-12-01

    Large and costly detectors will be constructed during the next few years to study the interactions produced by the SSC. Efficient, cost-effective designs for these detectors will require careful thought and planning. Because it is not possible to test fully a proposed design in a scaled-down version, the adequacy of a proposed design will be determined by a detailed computer model of the detectors. Physics and detector simulations will be performed on the computer model using high-powered computing system at the Physics Detector Simulation Facility (PDSF). The SSCL has particular computing requirements for high-energy physics (HEP) Monte Carlo calculations for the simulation of SSCL physics and detectors. The numerical calculations to be performed in each simulation are lengthy and detailed; they could require many more months per run on a VAX 11/780 computer and may produce several gigabytes of data per run. Consequently, a distributed computing environment of several networked high-speed computing engines is envisioned to meet these needs. These networked computers will form the basis of a centralized facility for SSCL physics and detector simulation work. Our computer planning groups have determined that the most efficient, cost-effective way to provide these high-performance computing resources at this time is with RISC-based UNIX workstations. The modeling and simulation application software that will run on the computing system is usually written by physicists in FORTRAN language and may need thousands of hours of supercomputing time. The system software is the ''glue'' which integrates the distributed workstations and allows them to be managed as a single entity. This report will address the computing strategy for the SSC

  17. COMPUTING

    CERN Multimedia

    I. Fisk

    2010-01-01

    Introduction It has been a very active quarter in Computing with interesting progress in all areas. The activity level at the computing facilities, driven by both organised processing from data operations and user analysis, has been steadily increasing. The large-scale production of simulated events that has been progressing throughout the fall is wrapping-up and reprocessing with pile-up will continue. A large reprocessing of all the proton-proton data has just been released and another will follow shortly. The number of analysis jobs by users each day, that was already hitting the computing model expectations at the time of ICHEP, is now 33% higher. We are expecting a busy holiday break to ensure samples are ready in time for the winter conferences. Heavy Ion An activity that is still in progress is computing for the heavy-ion program. The heavy-ion events are collected without zero suppression, so the event size is much large at roughly 11 MB per event of RAW. The central collisions are more complex and...

  18. The HEPCloud Facility: elastic computing for High Energy Physics - The NOvA Use Case

    Science.gov (United States)

    Fuess, S.; Garzoglio, G.; Holzman, B.; Kennedy, R.; Norman, A.; Timm, S.; Tiradani, A.

    2017-10-01

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a common interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 38 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper

  19. Automatic Estimation of the Radiological Inventory for the Dismantling of Nuclear Facilities

    International Nuclear Information System (INIS)

    Garcia-Bermejo, R.; Felipe, A.; Gutierrez, S.; Salas, E.; Martin, N.

    2008-01-01

    The estimation of the radiological inventory of Nuclear Facilities to be dismantled is a process that included information related with the physical inventory of all the plant and radiological survey. Estimation of the radiological inventory for all the components and civil structure of the plant could be obtained with mathematical models with statistical approach. A computer application has been developed in order to obtain the radiological inventory in an automatic way. Results: A computer application that is able to estimate the radiological inventory from the radiological measurements or the characterization program has been developed. In this computer applications has been included the statistical functions needed for the estimation of the central tendency and variability, e.g. mean, median, variance, confidence intervals, variance coefficients, etc. This computer application is a necessary tool in order to be able to estimate the radiological inventory of a nuclear facility and it is a powerful tool for decision taken in future sampling surveys

  20. Feasibility of a medium-size central cogenerated energy facility, energy management memorandum

    Science.gov (United States)

    Porter, R. W.

    1982-09-01

    The thermal-economic feasibility was studied of a medium-size central cogenerated energy facility designed to serve five varied industries. Generation options included one dual-fuel diesel and one gas turbine, both with waste heat boilers, and five fired boilers. Fuels included natural gas, and for the fired-boiler cases, also low-sulphur coal and municipal refuse. The fired-boiler cogeneration systems employed back-pressure steam turbines. For coal and refuse, the option of steam only without cogeneration was also assessed. The refuse-fired cases utilized modular incinerators. The options provided for a wide range of steam and electrical capacities. Deficient steam was assumed generated independently in existing equipment. Excess electrical power over that which could be displaced was assumed sold to Commonwealth Edison Company under PURPA (Public Utility Regulator Policies Act). The facility was assumed operated by a mutually owned corporation formed by the cogenerated power users. The economic analysis was predicted on currently applicable energy-investment tax credits and accelerated depreciation for a January 1985 startup date. Based on 100% equity financing, the results indicated that the best alternative was the modular-incinerator cogeneration system.

  1. Specialized computer architectures for computational aerodynamics

    Science.gov (United States)

    Stevenson, D. K.

    1978-01-01

    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  2. Procedures for economic distribution of radionuclides in research facilities

    International Nuclear Information System (INIS)

    Perry, N.A.

    1979-01-01

    A radionuclide accountability system for use in a research facility is described. It can be operated manually or adapted for computer use. All radionuclides are ordered, received, distributed and paid for by the Radiological Control Office who keep complete records of date of order, receipt, calibration use, transfer and/or disposal. Wipe leak tests, specific activity and lot number are also recorded. The procedure provides centralized total accountability records, including financial records, of all radionuclide orders, and the economic advantages of combined purchasing. The use of this system in two medical facilities has resulted in considerable financial savings in the first year of operation. (author)

  3. Computer program for storage of historical and routine safety data related to radiologically controlled facilities

    International Nuclear Information System (INIS)

    Marsh, D.A.; Hall, C.J.

    1984-01-01

    A method for tracking and quick retrieval of radiological status of radiation and industrial safety systems in an active or inactive facility has been developed. The system uses a mini computer, a graphics plotter, and mass storage devices. Software has been developed which allows input and storage of architectural details, radiological conditions such as exposure rates, current location of safety systems, and routine and historical information on exposure and contamination levels. A blue print size digitizer is used for input. The computer program retains facility floor plans in three dimensional arrays. The software accesses an eight pen color plotter for output. The plotter generates color plots of the floor plans and safety systems on 8 1/2 x 11 or 20 x 30 paper or on overhead transparencies for reports and presentations

  4. Advantages for the introduction of computer techniques in centralized supervision of radiation levels in nuclear facilities

    International Nuclear Information System (INIS)

    Vialettes, H.; Leblanc, P.

    1980-01-01

    A new computerized information system at the Saclay Center comprising 120 measuring channels is described. The advantages offered by this system with respect to the systems in use up to now are presented. Experimental results are given which support the argument that the system can effectively supervise the radioisotope facility at the Center. (B.G.)

  5. High-speed packet switching network to link computers

    CERN Document Server

    Gerard, F M

    1980-01-01

    Virtually all of the experiments conducted at CERN use minicomputers today; some simply acquire data and store results on magnetic tape while others actually control experiments and help to process the resulting data. Currently there are more than two hundred minicomputers being used in the laboratory. In order to provide the minicomputer users with access to facilities available on mainframes and also to provide intercommunication between various experimental minicomputers, CERN opted for a packet switching network back in 1975. It was decided to use Modcomp II computers as switching nodes. The only software to be taken was a communications-oriented operating system called Maxcom. Today eight Modcomp II 16-bit computers plus six newer Classic minicomputers from Modular Computer Services have been purchased for the CERNET data communications networks. The current configuration comprises 11 nodes connecting more than 40 user machines to one another and to the laboratory's central computing facility. (0 refs).

  6. Atmospheric dispersion calculation for posturated accident of nuclear facilities and the computer code: PANDA

    International Nuclear Information System (INIS)

    Kitahara, Yoshihisa; Kishimoto, Yoichiro; Narita, Osamu; Shinohara, Kunihiko

    1979-01-01

    Several Calculation methods for relative concentration (X/Q) and relative cloud-gamma dose (D/Q) of the radioactive materials released from nuclear facilities by posturated accident are presented. The procedure has been formulated as a Computer program PANDA and the usage is explained. (author)

  7. Spatial Distribution Characteristics of Healthcare Facilities in Nanjing: Network Point Pattern Analysis and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Jianhua Ni

    2016-08-01

    Full Text Available The spatial distribution of urban service facilities is largely constrained by the road network. In this study, network point pattern analysis and correlation analysis were used to analyze the relationship between road network and healthcare facility distribution. The weighted network kernel density estimation method proposed in this study identifies significant differences between the outside and inside areas of the Ming city wall. The results of network K-function analysis show that private hospitals are more evenly distributed than public hospitals, and pharmacy stores tend to cluster around hospitals along the road network. After computing the correlation analysis between different categorized hospitals and street centrality, we find that the distribution of these hospitals correlates highly with the street centralities, and that the correlations are higher with private and small hospitals than with public and large hospitals. The comprehensive analysis results could help examine the reasonability of existing urban healthcare facility distribution and optimize the location of new healthcare facilities.

  8. Micooprecessor controlled facility for I.N.A.A. using short half life nuclides

    International Nuclear Information System (INIS)

    Bode, P.; Korthoven, P.J.M.; Bruin, M. de

    1986-01-01

    At IRI a new, fully atomated facility for short half life INAA is being developed and installed at the Institute 2 MW reactor. The fast rabbit transfer system is constructed only of plastic and carbonfiber parts, so that rabbit contamination is minimized. This system is automated in such a way that it can operate safely without direct supervision; the sequence of irradiations and measurements is optimized by a computer-program for a given set of samples and analysis procedures. The rabbit system is controlled by an Apple IIe-computer connected to the central PDP 11/44 system of the Radiochemistry department. For a given set of samples and required analysis procedures (irradiation-,decay-, and measurement times) the central computer calculates an optimal sequence of individual actions (transfer from and to the reactor, sample storage of detector) to be carried out by the system. This sequence is loaded into the Apple-computer as a series of commands together with timing information. Actual control of the procedure occurs through the peripheral computer, which makes the system independent of delays or break-downs of the central multi-user computer system. Hardware, software and operating characteristics of the fast rabbit system will be discussed. (author)

  9. Taking the classical large audience university lecture online using tablet computer and webconferencing facilities

    DEFF Research Database (Denmark)

    Brockhoff, Per B.

    2011-01-01

    During four offerings (September 2008 – May 2011) of the course 02402 Introduction to Statistics for Engineering students at DTU, with an average of 256 students, the lecturing was carried out 100% through a tablet computer combined with the web conferencing facility Adobe Connect (version 7...

  10. 2015 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    International Nuclear Information System (INIS)

    Lewis, Michael George

    2016-01-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2014, through October 31, 2015.

  11. The MSG Central Facility - A Mission Control System for Windows NT

    Science.gov (United States)

    Thompson, R.

    The MSG Central Facility, being developed by Science Systems for EUMETSAT1, represents the first of a new generation of satellite mission control systems, based on the Windows NT operating system. The system makes use of a range of new technologies to provide an integrated environment for the planning, scheduling, control and monitoring of the entire Meteosat Second Generation mission. It supports packetised TM/TC and uses Science System's Space UNiT product to provide automated operations support at both Schedule (Timeline) and Procedure levels. Flexible access to historical data is provided through an operations archive based on ORACLE Enterprise Server, hosted on a large RAID array and off-line tape jukebox. Event driven real-time data distribution is based on the CORBA standard. Operations preparation and configuration control tools form a fully integrated element of the system.

  12. Animal facilities

    International Nuclear Information System (INIS)

    Fritz, T.E.; Angerman, J.M.; Keenan, W.G.; Linsley, J.G.; Poole, C.M.; Sallese, A.; Simkins, R.C.; Tolle, D.

    1981-01-01

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60 Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60 Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  13. Teaching ergonomics to nursing facility managers using computer-based instruction.

    Science.gov (United States)

    Harrington, Susan S; Walker, Bonnie L

    2006-01-01

    This study offers evidence that computer-based training is an effective tool for teaching nursing facility managers about ergonomics and increasing their awareness of potential problems. Study participants (N = 45) were randomly assigned into a treatment or control group. The treatment group completed the ergonomics training and a pre- and posttest. The control group completed the pre- and posttests without training. Treatment group participants improved significantly from 67% on the pretest to 91% on the posttest, a gain of 24%. Differences between mean scores for the control group were not significant for the total score or for any of the subtests.

  14. Large-coil-test-facility fault-tree analysis

    International Nuclear Information System (INIS)

    1982-01-01

    An operating-safety study is being conducted for the Large Coil Test Facility (LCTF). The purpose of this study is to provide the facility operators and users with added insight into potential problem areas that could affect the safety of personnel or the availability of equipment. This is a preliminary report, on Phase I of that study. A central feature of the study is the incorporation of engineering judgements (by LCTF personnel) into an outside, overall view of the facility. The LCTF was analyzed in terms of 32 subsystems, each of which are subject to failure from any of 15 generic failure initiators. The study identified approximately 40 primary areas of concern which were subjected to a computer analysis as an aid in understanding the complex subsystem interactions that can occur within the facility. The study did not analyze in detail the internal structure of the subsystems at the individual component level. A companion study using traditional fault tree techniques did analyze approximately 20% of the LCTF at the component level. A comparison between these two analysis techniques is included in Section 7

  15. Computational Science Facility (CSF)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL Institutional Computing (PIC) is focused on meeting DOE's mission needs and is part of PNNL's overarching research computing strategy. PIC supports large-scale...

  16. Centralized digital control of accelerators

    International Nuclear Information System (INIS)

    Melen, R.E.

    1984-01-01

    Upon careful examination of the architecture of SLAC's computer control systems, it becomes evident that the distribution of the systems' intelligence generally falls into tree-like layers. The first layer typically consists of a central computer complex incorporating one or more relatively large and powerful processors. The more modern systems use state-of-the-art 32-bit processors with several megabytes of RAM and several hundreds of megabytes of disk memory. Further, they support extensive user-friendly operating systems and program development facilities. The second layer typically consists of several smaller processors which are downloaded from the central complex and whose primary task is to provide data acquisition and distribution. The more modern systems are 16-bit processors with several hundred kilobytes of RAM and no disk memory. The third layer typically consists of several tens or hundreds of micro-processors, each dedicated to a single device. The micro-processors for these ''dedicated intelligent controllers'' are small and inexpensive and typically require less than 32 kilobytes of RAM or EPROM memory. Their hardware may be general purpose in nature or may be built into the architecture of the device itself. Figure 5 illustrates several of the relevant features of each of these layers. This paper serves to illustrate that SLAC is commited to the centralized digital control of its accelerators

  17. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation

    Directory of Open Access Journals (Sweden)

    Vincenzo G. Fiore

    2017-08-01

    Full Text Available The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed

  18. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation.

    Science.gov (United States)

    Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features

  19. Investigation of Storage Options for Scientific Computing on Grid and Cloud Facilities

    International Nuclear Information System (INIS)

    Garzoglio, Gabriele

    2012-01-01

    In recent years, several new storage technologies, such as Lustre, Hadoop, OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to characterize them under a variety of configurations, more work is needed to evaluate these technologies for the use cases of scientific computing on Grid clusters and Cloud facilities. This paper discusses our evaluation of the technologies as deployed on a test bed at FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients, some running on the storage server nodes themselves. With this configuration, the evaluation compares the performance of some of these technologies when deployed on virtual machines and on “bare metal” nodes. In addition to running standard benchmarks such as IOZone to check the sanity of our installation, we have run I/O intensive tests using physics-analysis applications. This paper presents how the storage solutions perform in a variety of realistic use cases of scientific computing. One interesting difference among the storage systems tested is found in a decrease in total read throughput with increasing number of client processes, which occurs in some implementations but not others.

  20. The HEPCloud Facility: elastic computing for High Energy Physics – The NOvA Use Case

    Energy Technology Data Exchange (ETDEWEB)

    Fuess, S. [Fermilab; Garzoglio, G. [Fermilab; Holzman, B. [Fermilab; Kennedy, R. [Fermilab; Norman, A. [Fermilab; Timm, S. [Fermilab; Tiradani, A. [Fermilab

    2017-03-15

    The need for computing in the HEP community follows cycles of peaks and valleys mainly driven by conference dates, accelerator shutdown, holiday schedules, and other factors. Because of this, the classical method of provisioning these resources at providing facilities has drawbacks such as potential overprovisioning. As the appetite for computing increases, however, so does the need to maximize cost efficiency by developing a model for dynamically provisioning resources only when needed. To address this issue, the HEPCloud project was launched by the Fermilab Scientific Computing Division in June 2015. Its goal is to develop a facility that provides a common interface to a variety of resources, including local clusters, grids, high performance computers, and community and commercial Clouds. Initially targeted experiments include CMS and NOvA, as well as other Fermilab stakeholders. In its first phase, the project has demonstrated the use of the “elastic” provisioning model offered by commercial clouds, such as Amazon Web Services. In this model, resources are rented and provisioned automatically over the Internet upon request. In January 2016, the project demonstrated the ability to increase the total amount of global CMS resources by 58,000 cores from 150,000 cores - a 25 percent increase - in preparation for the Recontres de Moriond. In March 2016, the NOvA experiment has also demonstrated resource burst capabilities with an additional 7,300 cores, achieving a scale almost four times as large as the local allocated resources and utilizing the local AWS s3 storage to optimize data handling operations and costs. NOvA was using the same familiar services used for local computations, such as data handling and job submission, in preparation for the Neutrino 2016 conference. In both cases, the cost was contained by the use of the Amazon Spot Instance Market and the Decision Engine, a HEPCloud component that aims at minimizing cost and job interruption. This paper

  1. Experimental facilities for PEC reactor design central channel test loop: CPC-1 - thermal shocks loop: CEDI

    International Nuclear Information System (INIS)

    Calvaresi, C.; Moreschi, L.F.

    1983-01-01

    PEC (Prova Elementi di Combustibile: Fuel Elements Test) is an experimental fast sodium-cooled reactor with a power of 120 MWt. This reactor aims at studying the behaviour of fuel elements under thermal and neutron conditions comparable with those existing in fast power nuclear facilities. Given the particular structure of the core, the complex operations to be performed in the transfer cell and the strict operating conditions of the central channel, two experimental facilities, CPC-1 and CEDI, have been designed as a support to the construction of the reactor. CPC-1 is a 1:1 scale model of the channel, transfer-cell and loop unit of the channel, whereas CEDI is a sodium-cooled loop which enables to carry out tests of isothermal endurance and thermal shocks on the group of seven forced elements, by simulating the thermo-hydraulic and mechanical conditions existing in the reactor. In this paper some experimental test are briefy discussed and some facilities are listed, both for the CPC-1 and for the CEDI. (Auth.)

  2. Characterization and reclamation assessment for the Central Shops Diesel Storage Facility, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.

    1993-10-01

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.

  3. Directory of computer users in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, J.J.; Gurney, J.; McClain, W.J. (eds.)

    1979-09-01

    The Directory of Computer Users in Nuclear Medicine consists primarily of detailed descriptions and indexes to these descriptions. A typical Installation Description contains the name, address, type, and size of the institution and the names of persons within the institution who can be contacted for further information. If the department has access to a central computer facility for data analysis or timesharing, the type of equipment available and the method of access to that central computer is included. The dedicated data processing equipment used by the department in its nuclear medicine studies is described, including the peripherals, languages used, modes of data collection, and other pertinent information. Following the hardware descriptions are listed the types of studies for which the data processing equipment is used, including the language(s) used, the method of output, and an estimate of the frequency of the particular study. An Installation Index and an Organ Studies Index are also included. (PCS)

  4. Directory of computer users in nuclear medicine

    International Nuclear Information System (INIS)

    Erickson, J.J.; Gurney, J.; McClain, W.J.

    1979-09-01

    The Directory of Computer Users in Nuclear Medicine consists primarily of detailed descriptions and indexes to these descriptions. A typical Installation Description contains the name, address, type, and size of the institution and the names of persons within the institution who can be contacted for further information. If the department has access to a central computer facility for data analysis or timesharing, the type of equipment available and the method of access to that central computer is included. The dedicated data processing equipment used by the department in its nuclear medicine studies is described, including the peripherals, languages used, modes of data collection, and other pertinent information. Following the hardware descriptions are listed the types of studies for which the data processing equipment is used, including the language(s) used, the method of output, and an estimate of the frequency of the particular study. An Installation Index and an Organ Studies Index are also included

  5. Specialized, multi-user computer facility for the high-speed, interactive processing of experimental data

    International Nuclear Information System (INIS)

    Maples, C.C.

    1979-05-01

    A proposal has been made at LBL to develop a specialized computer facility specifically designed to deal with the problems associated with the reduction and analysis of experimental data. Such a facility would provide a highly interactive, graphics-oriented, multi-user environment capable of handling relatively large data bases for each user. By conceptually separating the general problem of data analysis into two parts, cyclic batch calculations and real-time interaction, a multilevel, parallel processing framework may be used to achieve high-speed data processing. In principle such a system should be able to process a mag tape equivalent of data through typical transformations and correlations in under 30 s. The throughput for such a facility, for five users simultaneously reducing data, is estimated to be 2 to 3 times greater than is possible, for example, on a CDC7600. 3 figures

  6. Specialized, multi-user computer facility for the high-speed, interactive processing of experimental data

    International Nuclear Information System (INIS)

    Maples, C.C.

    1979-01-01

    A proposal has been made to develop a specialized computer facility specifically designed to deal with the problems associated with the reduction and analysis of experimental data. Such a facility would provide a highly interactive, graphics-oriented, multi-user environment capable of handling relatively large data bases for each user. By conceptually separating the general problem of data analysis into two parts, cyclic batch calculations and real-time interaction, a multi-level, parallel processing framework may be used to achieve high-speed data processing. In principle such a system should be able to process a mag tape equivalent of data, through typical transformations and correlations, in under 30 sec. The throughput for such a facility, assuming five users simultaneously reducing data, is estimated to be 2 to 3 times greater than is possible, for example, on a CDC7600

  7. Application of personal computer to development of entrance management system for radiating facilities

    International Nuclear Information System (INIS)

    Suzuki, Shogo; Hirai, Shouji

    1989-01-01

    The report describes a system for managing the entrance and exit of personnel to radiating facilities. A personal computer is applied to its development. Major features of the system is outlined first. The computer is connected to the gate and two magnetic card readers provided at the gate. The gate, which is installed at the entrance to a room under control, opens only for those who have a valid card. The entrance-exit management program developed is described next. The following three files are used: ID master file (random file of the magnetic card number, name, qualification, etc., of each card carrier), entrance-exit management file (random file of time of entrance/exit, etc., updated everyday), and entrance-exit record file (sequential file of card number, name, date, etc.), which are stored on floppy disks. A display is provided to show various lists including a list of workers currently in the room and a list of workers who left the room at earlier times of the day. This system is useful for entrance management of a relatively small facility. Though small in required cost, it requires only a few operators to perform effective personnel management. (N.K.)

  8. Report on the Best Available Technology (BAT) for the treatment of the INEL Central Laundry and Respirator Facility (CFA-617)

    International Nuclear Information System (INIS)

    Miyasaki, D.H.; Heiser, D.L.

    1991-01-01

    The Central Laundry and Respirator Facility (CLRF) designated by the building number of CFA-617 has been addressed as a potential source of contamination to the Central Facilities Area (CFA) subsurface drainage field which also receives waste water from the current CFA Sewage Treatment Plant (STP). Currently, discharges from the CLRF have been below set guidelines, DCG. A new STP has been proposed for the CFA. Since the CLRF has been designated as a potential source of contamination, a Best Available Technology (BAT) assessment was requested to determine what action should be taken in respect to the aqueous discharges from the CLRF. The BAT assessment involved source definition, technology evaluation, BAT matrix development, BAT selection, and BAT documentation. The BAT for the Central laundry and Respirator Facility selected the treatment which would impact the CLRF and the new STP the least in all aspects considered and was the system of filtration and a lined pond for natural evaporation of the water. The system will provide an isolation of this waste stream from all other CFA waste water which will be treated at the new STP. Waste minimization possibilities exist within the laundry process and are considered. These minimization actions will reduce the amount of waste water being released, but will result in raising the contaminate's concentrations (the total mass will remain the same). The second option was the use of ion exchange to remove the contaminates and recycle the water back to the wash and rinse cycles in the laundry. 3 refs., 9 figs., 11 tabs

  9. Computer programs for capital cost estimation, lifetime economic performance simulation, and computation of cost indexes for laser fusion and other advanced technology facilities

    International Nuclear Information System (INIS)

    Pendergrass, J.H.

    1978-01-01

    Three FORTRAN programs, CAPITAL, VENTURE, and INDEXER, have been developed to automate computations used in assessing the economic viability of proposed or conceptual laser fusion and other advanced-technology facilities, as well as conventional projects. The types of calculations performed by these programs are, respectively, capital cost estimation, lifetime economic performance simulation, and computation of cost indexes. The codes permit these three topics to be addressed with considerable sophistication commensurate with user requirements and available data

  10. Value of computed tomography and magnetic resonance imaging in diagnosis of central nervous system

    International Nuclear Information System (INIS)

    Walecka, I.; Sicinska, J.; Szymanska, E.; Rudnicka, L.; Furmanek, M.; Walecki, J.; Olszewska, M.; Rudnicka, L.; Walecki, J.

    2006-01-01

    Systemic sclerosis is an autoimmune connective tissue disease characterized by vascular abnormalities and fibrotic changes in skin and internal organs. The aim of the study was to investigate involvement of the central nervous system in systemic sclerosis and the value of computed tomography (CT) and magnetic resonance imaging (MRI) in evaluation of central nervous system involvement in systemic sclerosis. 26 patients with neuropsychiatric symptoms in the course of systemic sclerosis were investigated for central nervous system abnormalities by computed tomography (CT) and magnetic resonance imaging (MRI). Among these 26 symptomatic patients lesions in brain MRI and CT examinations were present in 54% and in 50% patients respectively. Most common findings (in 46% of all patients), were symptoms of cortical and subcortical atrophy, seen in both, MRI and CT. Single and multiple focal lesions, predominantly in the white matter, were detected by MRI significantly more frequently as compared to CT (62% and 15% patients respectively). These data indicate that brain involvement is common in patients with severe systemic sclerosis. MRI shows significantly higher than CT sensitivity in detection focal brain lesions in these patients. (author)

  11. Computer Security at Nuclear Facilities (French Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  12. FIRAC - a computer code to predict fire accident effects in nuclear facilities

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Foster, R.D.; Gregory, W.S.

    1983-01-01

    FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire. A basic material transport capability that features the effects of convection, deposition, entrainment, and filtration of material is included. The interrelated effects of filter plugging, heat transfer, gas dynamics, and material transport are taken into account. In this paper the authors summarize the physical models used to describe the gas dynamics, material transport, and heat transfer processes. They also illustrate how a typical facility is modeled using the code

  13. Potential applications of artificial intelligence in computer-based management systems for mixed waste incinerator facility operation

    International Nuclear Information System (INIS)

    Rivera, A.L.; Singh, S.P.N.; Ferrada, J.J.

    1991-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site, designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conversion and Recovery Act (RCRA). Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. This presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. This paper describes mixed waste incinerator facility performance-oriented tasks that could be assisted by Artificial Intelligence (AI) and the requirements for AI tools that would implement these algorithms in a computer-based system. 4 figs., 1 tab

  14. Implementation study for the NRC Application and Development Facility

    International Nuclear Information System (INIS)

    Sherwood, R.J.; Ross, D.J.; Sasser, D.W.

    1979-01-01

    The Nuclear Regulatory Commission (NRC) has expressed the desire to establish an Application and Development Facility (ADF) for NRC Headquarters. The ADF is a computer system which will provide safeguards analysts access to safeguards analysis computer software. This report analyzes the issues, requirements and options available in the establishment of an ADF. The purpose and goals of the ADF are presented, along with some general issues to be considered in the implementation of such a system. A phased approach for ADF implementation, which will allow for the earliest possible access to existing codes and also allow for future expansion, is outlined. Several options for central computers are discussed, along with the characteristics and approximate costs for each. The report concludes with recommended actions proposed to start the development of the ADF

  15. Current situation with the centralized storage facilities for non-power radioactive wastes in Latin American countries

    International Nuclear Information System (INIS)

    Benitez, Juan C.; Salgado, Mercedes; Idoyaga Navarro, Maria L.; Escobar, Carolina; Mallaupoma, Mario; Sbriz, Luciano; Moreno, Sandra; Gozalez, Olga; Gomez, Patricia; Mora, Patricia; Miranda, Alberto; Aguilar, Lola; Zarate, Norma; Rodriguez, Carmen

    2008-01-01

    Full text: Several Latin American (LA) countries have been firmly committed to the peaceful applications of ionizing radiations in medicine, industry, agriculture and research in order to achieve socioeconomic development in diverse sectors. Consequently the use of radioactive materials and radiation sources as well as the production of radioisotopes and labeled compounds may always produce radioactive wastes which require adequate management and, in the end, disposal. However, there are countries in the Latin American region whose radioactive waste volumes do not easily justify a national repository. Moreover, such facilities are extremely expensive to develop. It is unlikely that such an option will become available in the foreseeable future for most of these countries, which do not have nuclear industries. Storage has long been incorporated as a step in the management of radioactive wastes. In the recent years, there have been developments that have led some countries to consider whether the roles of storage might be expanded to provide longer-term care of long-live radioactive wastes The aim of this paper is to discuss the current situation with the storage facilities/conditions for the radioactive wastes and disused sealed radioactive sources in Latin-American countries. In some cases a brief description of the existing facilities for certain countries are provided. In other cases, when no centralized facility exists, general information on the radioactive inventories and disused sealed sources is given. (author)

  16. Centralized Fabric Management Using Puppet, Git, and GLPI

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Managing the infrastructure of a large and complex data center can be extremely difficult without taking advantage of automated services. Puppet is a seasoned, open-source tool designed for enterprise-class centralized configuration management. At the RHIC/ATLAS Computing Facility at Brookhaven National Laboratory, we have adopted Puppet as part of a suite of tools, including Git, GLPI, and some custom scripts, that comprise our centralized configuration management system. In this paper, we discuss the use of these tools for centralized configuration management of our servers and services; change management, which requires authorized approval of production changes; a complete, version-controlled history of all changes made; separation of production, testing, and development systems using Puppet environments; semi-automated server inventory using GLPI; and configuration change monitoring and reporting via the Puppet dashboard. We will also discuss scalability and performance results from using these tools on a...

  17. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX

    International Nuclear Information System (INIS)

    Gohar, Y.; Zhong, Z.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is ∼375 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the

  18. High resolution muon computed tomography at neutrino beam facilities

    International Nuclear Information System (INIS)

    Suerfu, B.; Tully, C.G.

    2016-01-01

    X-ray computed tomography (CT) has an indispensable role in constructing 3D images of objects made from light materials. However, limited by absorption coefficients, X-rays cannot deeply penetrate materials such as copper and lead. Here we show via simulation that muon beams can provide high resolution tomographic images of dense objects and of structures within the interior of dense objects. The effects of resolution broadening from multiple scattering diminish with increasing muon momentum. As the momentum of the muon increases, the contrast of the image goes down and therefore requires higher resolution in the muon spectrometer to resolve the image. The variance of the measured muon momentum reaches a minimum and then increases with increasing muon momentum. The impact of the increase in variance is to require a higher integrated muon flux to reduce fluctuations. The flux requirements and level of contrast needed for high resolution muon computed tomography are well matched to the muons produced in the pion decay pipe at a neutrino beam facility and what can be achieved for momentum resolution in a muon spectrometer. Such an imaging system can be applied in archaeology, art history, engineering, material identification and whenever there is a need to image inside a transportable object constructed of dense materials

  19. Central nervous system leukemia and lymphoma: computed tomographic manifestations

    International Nuclear Information System (INIS)

    Pagani, J.J.; Libshitz, H.I.; Wallace, S.; Hayman, L.A.

    1981-01-01

    Computed tomographic (CT) abnormalities in the brain were identified in 31 of 405 patients with leukemia or lymphoma. Abnormalities included neoplastic masses (15), hemorrhage (nine), abscess (two), other brain tumors (four), and methotrexate leukoencephalopathy (one). CT was normal in 374 patients including 148 with meningeal disease diagnosed by cerebrospinal fluid cytologic examination. Prior to treatment, malignant masses were isodense or of greater density with varying amounts of edema. Increase in size or number of the masses indicated worsening. Response to radiation and chemotherapy was manifested by development of a central low density region with an enhancing rim. CT findings correlated with clinical and cerebrospinal fluid findings. The differential diagnosis of the various abnormalities is considered

  20. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  1. HUMPF [Heterogeneous Unix Montecarlo Production Facility] users guide

    International Nuclear Information System (INIS)

    Cahill, P.; Edgecock, R.; Fisher, S.M.; Gee, C.N.P.; Gordon, J.C.; Kidd, T.; Leake, J.; Rigby, D.J.; Roberts, J.H.C.

    1992-11-01

    The Heterogenous Unix Monte Carlo Production Facility (HUMPF) simplifies the running of particle physics simulation programs on Unix workstations. Monte Carlo is the largest consumer of IBM (CPU) capacity within the Atlas centre at Rutherford Appleton Laboratory (RAL). It is likely that the future computing requirements of the LEP and HERA experiments cannot be satisfied by the IBM 3090 system. HUMPF adds extra capacity, and can be expanded with minimal effort. Monte Carlo programs are CPU-bound, and make little use of the vector or the input/output capacity of the IBM 3090. Such programs are therefore excellent candidates to use the spare capacity of powerful workstations. The main data storage is still handled centrally by the IBM 3090 and its peripherals. The HUMPF facility is suitable for any program with a similar profile. (author)

  2. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1991-01-01

    In the process of review and evaluation of licensing issues related to nuclear power plants, it is essential to understand the behavior of seismic loading, foundation and structural properties and their impact on the overall structural response. In most cases, such knowledge could be obtained by using simplified engineering models which, when properly implemented, can capture the essential parameters describing the physics of the problem. Such models do not require execution on large computer systems and could be implemented through a personal computer (PC) based capability. Recognizing the need for a PC software package that can perform structural response computations required for typical licensing reviews, the US Nuclear Regulatory Commission sponsored the development of a PC operated computer software package CARES (Computer Analysis for Rapid Evaluation of Structures) system. This development was undertaken by Brookhaven National Laboratory (BNL) during FY's 1988 and 1989. A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to operate on a PC, have user friendly input/output interface, and have quick turnaround. This paper describes the various features which have been implemented into the seismic module of CARES version 1.0

  3. A personal computer code for seismic evaluations of nuclear power plant facilities

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.

    1990-01-01

    A wide range of computer programs and modeling approaches are often used to justify the safety of nuclear power plants. It is often difficult to assess the validity and accuracy of the results submitted by various utilities without developing comparable computer solutions. Taken this into consideration, CARES is designed as an integrated computational system which can perform rapid evaluations of structural behavior and examine capability of nuclear power plant facilities, thus CARES may be used by the NRC to determine the validity and accuracy of analysis methodologies employed for structural safety evaluations of nuclear power plants. CARES has been designed to: operate on a PC, have user friendly input/output interface, and have quick turnaround. The CARES program is structured in a modular format. Each module performs a specific type of analysis. The basic modules of the system are associated with capabilities for static, seismic and nonlinear analyses. This paper describes the various features which have been implemented into the Seismic Module of CARES version 1.0. In Section 2 a description of the Seismic Module is provided. The methodologies and computational procedures thus far implemented into the Seismic Module are described in Section 3. Finally, a complete demonstration of the computational capability of CARES in a typical soil-structure interaction analysis is given in Section 4 and conclusions are presented in Section 5. 5 refs., 4 figs

  4. Distributed computing for macromolecular crystallography.

    Science.gov (United States)

    Krissinel, Evgeny; Uski, Ville; Lebedev, Andrey; Winn, Martyn; Ballard, Charles

    2018-02-01

    Modern crystallographic computing is characterized by the growing role of automated structure-solution pipelines, which represent complex expert systems utilizing a number of program components, decision makers and databases. They also require considerable computational resources and regular database maintenance, which is increasingly more difficult to provide at the level of individual desktop-based CCP4 setups. On the other hand, there is a significant growth in data processed in the field, which brings up the issue of centralized facilities for keeping both the data collected and structure-solution projects. The paradigm of distributed computing and data management offers a convenient approach to tackling these problems, which has become more attractive in recent years owing to the popularity of mobile devices such as tablets and ultra-portable laptops. In this article, an overview is given of developments by CCP4 aimed at bringing distributed crystallographic computations to a wide crystallographic community.

  5. Survey of solar thermal test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masterson, K.

    1979-08-01

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

  6. Research Facilities | Wind | NREL

    Science.gov (United States)

    Research Facilities Research Facilities NREL's state-of-the-art wind research facilities at the Research Facilities Photo of five men in hard hards observing the end of a turbine blade while it's being tested. Structural Research Facilities A photo of two people silhouetted against a computer simulation of

  7. Complete reconstruction of all annunciator panels and their auxiliary facilities at central regulation office in KURRI

    International Nuclear Information System (INIS)

    Ishihara, Shinji; Kimura, Yasuhiro; Nakamura, Hiroshi; Nishino, Kunihiko; Higashiyama, Yukihiro; Okamoto, Ken-ichi; Maki, Hirotoshi; Kimura, Itsuro.

    1988-08-01

    At the Research Reactor Institute of Kyoto University (KURRI) which is a joint research center with Kyoto University Reactor KUR and so forth for nation-wide universities, most of important alarm signals from KUR, KUCA and other radiation facilities are concentrated at the central regulation office. Although the function of this office had been kept normal for more than 20 years, it became necessary to reconstruct all of its annunciator panels in order to add new alarm systems, for example a newly built spent fuel storage building and a newly installed cold neutron source in KUR, and to improve the functions of old alarm systems. Thereupon, all of the annunciator panels of this office together with their auxiliary facilities were completely reconstructed in the fiscal year of 1985. Furthermore the room of this office was enlarged and reconstructed thoroughly, since it was rather narrow and inconvenient before. This report describes the reconstruction work in detail: (1) Function of the central regulation office, (2) Outline of this work, (3) Design concept, (4) Method and special cares, (5) Reconstruction of the room, (6) New utility tunnels for cables, (7) Configulation and structure of new annunciator panels, (8) Cables and their reconnection, (9) Annunciator circuits, (10) Function of each panel, (11) Test and performance, and (12) concluding remarks and future plans. This experience may be useful for the case of reconstruction of the control desk and instrumentation panels of KUR in future. (author)

  8. Computer applications in controlled fusion research

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-01-01

    The application of computers to controlled thermonuclear research (CTR) is essential. In the near future the use of computers in the numerical modeling of fusion systems should increase substantially. A recent panel has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies is called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. To meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR Laboratories by a communication network. The crucial element needed for success is trained personnel. The number of people with knowledge of plasma science and engineering trained in numerical methods and computer science must be increased substantially in the next few years. Nuclear engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing

  9. COMPUTING

    CERN Multimedia

    I. Fisk

    2011-01-01

    Introduction CMS distributed computing system performed well during the 2011 start-up. The events in 2011 have more pile-up and are more complex than last year; this results in longer reconstruction times and harder events to simulate. Significant increases in computing capacity were delivered in April for all computing tiers, and the utilisation and load is close to the planning predictions. All computing centre tiers performed their expected functionalities. Heavy-Ion Programme The CMS Heavy-Ion Programme had a very strong showing at the Quark Matter conference. A large number of analyses were shown. The dedicated heavy-ion reconstruction facility at the Vanderbilt Tier-2 is still involved in some commissioning activities, but is available for processing and analysis. Facilities and Infrastructure Operations Facility and Infrastructure operations have been active with operations and several important deployment tasks. Facilities participated in the testing and deployment of WMAgent and WorkQueue+Request...

  10. Interventions on central computing services during the weekend of 21 and 22 August

    CERN Multimedia

    2004-01-01

    As part of the planned upgrade of the computer centre infrastructure to meet the LHC computing needs, approximately 150 servers, hosting in particular the NICE home directories, Mail services and Web services, will need to be physically relocated to another part of the computing hall during the weekend of the 21 and 22 August. On Saturday 21 August, starting from 8:30a.m. interruptions of typically 60 minutes will take place on the following central computing services: NICE and the whole Windows infrastructure, Mail services, file services (including home directories and DFS workspaces), Web services, VPN access, Windows Terminal Services. During any interruption, incoming mail from outside CERN will be queued and delivered as soon as the service is operational again. All Services should be available again on Saturday 21 at 17:30 but a few additional interruptions will be possible after that time and on Sunday 22 August. IT Department

  11. TUNL computer facilities

    International Nuclear Information System (INIS)

    Boyd, M.; Edwards, S.E.; Gould, C.R.; Roberson, N.R.; Westerfeldt, C.R.

    1985-01-01

    The XSYS system has been relatively stable during the last year, and most of our efforts have involved routine software maintenance and enhancement of existing XSYS capabilities. Modifications were made in the MBD program GDAP to increase the execution speed in key GDAP routines. A package of routines has been developed to allow communication between the XSYS and the new Wien filter microprocessor. Recently the authors have upgraded their operating system from VSM V3.7 to V4.1. This required numerous modifications to XSYS, mostly in the command procedures. A new reorganized edition of the XSYS manual will be issued shortly. The TUNL High Resolution Laboratory's VAX 11/750 computer has been in operation for its first full year as a replacement for the PRIME 300 computer which was purchased in 1974 and retired nine months ago. The data acquisition system on the VAX has been in use for the past twelve months performing a number of experiments

  12. Establishing a central waste processing and storage facility in Ghana

    International Nuclear Information System (INIS)

    Glover, E.T.; Fletcher, J.J.; Darko, E.O.

    2001-01-01

    regulations. About 50 delegates from various ministries and establishment participated in the seminar. The final outcome of the draft regulation was sent to the Attorney General's office for the necessary legal review before been presented to Parliament through the Ministry of Environment, Science and Technology. A radiation sources and radioactive waste inventory have been established using the Regulatory Authority Information System (RAIS) and the Sealed Radiation Sources Registry System (SRS). A central waste processing and storage facility was constructed in the mid sixties to handle waste from a 2MW reactor that was never installed. The facility consists of a decontamination unit, two concrete vaults (about 5x15 m and 4m deep) intended for low and intermediate level waste storage and 60 wells (about 0.5m diameter x 4.6m) for storage of spent fuel. This Facility will require significant rehabilitation. Safety and performance assessment studies have been carried out with the help of three IAEA experts. The recommendations from the assessment indicate that the vaults are very old and deteriorated to be considered for any future waste storage. However the decontamination unit and the wells are still in good condition and were earmarked for refurbishment and use as waste processing and storage facilities respectively. The decontamination unit has a surface area of 60m 2 and a laboratory of surface area 10m 2 . The decontamination unit will have four technological areas. An area for cementation of non-compactible solid waste and spent sealed sources. An area for compaction of compactable solid waste and a controlled area for conditioned wastes in 200L drums. Provision has been made to condition liquid waste. There will be a section for receipt and segregation of the waste. The laboratory will be provided with the necessary equipment for quality control. Research to support technological processes will be carried out in the laboratory. A quality assurance and control systems

  13. Analysis of Various Computer System Monitoring and LCD Projector through the Network TCP/IP

    Directory of Open Access Journals (Sweden)

    Santoso Budijono

    2015-09-01

    Full Text Available Many electronic devices have a network connection facility. Projectors today have network facilities to bolster its customer satisfaction in everyday use. By using a device that can be controlled, the expected availability and reliability of the presentation system (computer and projector can be maintained to keep itscondition ready to use for presentation. Nevertheless, there is still a projector device that has no network facilities so that the necessary additional equipment with expensive price. Besides, control equipment in large quantities has problems in timing and the number of technicians in performing controls. This study began with study of literature, from searching for the projectors that has LAN and software to control and finding a number of computer control softwares where the focus is easy to use and affordable. Result of this research is creating asystem which contains suggestions of procurement of computer hardware, hardware and software projectors each of which can be controlled centrally from a distance.

  14. GASFLOW: A computational model to analyze accidents in nuclear containment and facility buildings

    International Nuclear Information System (INIS)

    Travis, J.R.; Nichols, B.D.; Wilson, T.L.; Lam, K.L.; Spore, J.W.; Niederauer, G.F.

    1993-01-01

    GASFLOW is a finite-volume computer code that solves the time-dependent, compressible Navier-Stokes equations for multiple gas species. The fluid-dynamics algorithm is coupled to the chemical kinetics of combusting liquids or gases to simulate diffusion or propagating flames in complex geometries of nuclear containment or confinement and facilities' buildings. Fluid turbulence is calculated to enhance the transport and mixing of gases in rooms and volumes that may be connected by a ventilation system. The ventilation system may consist of extensive ductwork, filters, dampers or valves, and fans. Condensation and heat transfer to walls, floors, ceilings, and internal structures are calculated to model the appropriate energy sinks. Solid and liquid aerosol behavior is simulated to give the time and space inventory of radionuclides. The solution procedure of the governing equations is a modified Los Alamos ICE'd-ALE methodology. Complex facilities can be represented by separate computational domains (multiblocks) that communicate through overlapping boundary conditions. The ventilation system is superimposed throughout the multiblock mesh. Gas mixtures and aerosols are transported through the free three-dimensional volumes and the restricted one-dimensional ventilation components as the accident and fluid flow fields evolve. Combustion may occur if sufficient fuel and reactant or oxidizer are present and have an ignition source. Pressure and thermal loads on the building, structural components, and safety-related equipment can be determined for specific accident scenarios. GASFLOW calculations have been compared with large oil-pool fire tests in the 1986 HDR containment test T52.14, which is a 3000-kW fire experiment. The computed results are in good agreement with the observed data

  15. Centralized Fabric Management Using Puppet, Git, and GLPI

    Science.gov (United States)

    Smith, Jason A.; De Stefano, John S., Jr.; Fetzko, John; Hollowell, Christopher; Ito, Hironori; Karasawa, Mizuki; Pryor, James; Rao, Tejas; Strecker-Kellogg, William

    2012-12-01

    Managing the infrastructure of a large and complex data center can be extremely difficult without taking advantage of recent technological advances in administrative automation. Puppet is a seasoned open-source tool that is designed for enterprise class centralized configuration management. At the RHIC and ATLAS Computing Facility (RACF) at Brookhaven National Laboratory, we use Puppet along with Git, GLPI, and some custom scripts as part of our centralized configuration management system. In this paper, we discuss how we use these tools for centralized configuration management of our servers and services, change management requiring authorized approval of production changes, a complete version controlled history of all changes made, separation of production, testing and development systems using puppet environments, semi-automated server inventory using GLPI, and configuration change monitoring and reporting using the Puppet dashboard. We will also discuss scalability and performance results from using these tools on a 2,000+ node cluster and 400+ infrastructure servers with an administrative staff of approximately 25 full-time employees (FTEs).

  16. Centralized Fabric Management Using Puppet, Git, and GLPI

    International Nuclear Information System (INIS)

    Smith, Jason A; De Stefano, John S Jr; Fetzko, John; Hollowell, Christopher; Ito, Hironori; Karasawa, Mizuki; Pryor, James; Rao, Tejas; Strecker-Kellogg, William

    2012-01-01

    Managing the infrastructure of a large and complex data center can be extremely difficult without taking advantage of recent technological advances in administrative automation. Puppet is a seasoned open-source tool that is designed for enterprise class centralized configuration management. At the RHIC and ATLAS Computing Facility (RACF) at Brookhaven National Laboratory, we use Puppet along with Git, GLPI, and some custom scripts as part of our centralized configuration management system. In this paper, we discuss how we use these tools for centralized configuration management of our servers and services, change management requiring authorized approval of production changes, a complete version controlled history of all changes made, separation of production, testing and development systems using puppet environments, semi-automated server inventory using GLPI, and configuration change monitoring and reporting using the Puppet dashboard. We will also discuss scalability and performance results from using these tools on a 2,000+ node cluster and 400+ infrastructure servers with an administrative staff of approximately 25 full-time employees (FTEs).

  17. A Computer Simulation to Assess the Nuclear Material Accountancy System of a MOX Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Portaix, C.G.; Binner, R.; John, H.

    2015-01-01

    SimMOX is a computer programme that simulates container histories as they pass through a MOX facility. It performs two parallel calculations: · the first quantifies the actual movements of material that might be expected to occur, given certain assumptions about, for instance, the accumulation of material and waste, and of their subsequent treatment; · the second quantifies the same movements on the basis of the operator's perception of the quantities involved; that is, they are based on assumptions about quantities contained in the containers. Separate skeletal Excel computer programmes are provided, which can be configured to generate further accountancy results based on these two parallel calculations. SimMOX is flexible in that it makes few assumptions about the order and operational performance of individual activities that might take place at each stage of the process. It is able to do this because its focus is on material flows, and not on the performance of individual processes. Similarly there are no pre-conceptions about the different types of containers that might be involved. At the macroscopic level, the simulation takes steady operation as its base case, i.e., the same quantity of material is deemed to enter and leave the simulated area, over any given period. Transient situations can then be superimposed onto this base scene, by simulating them as operational incidents. A general facility has been incorporated into SimMOX to enable the user to create an ''act of a play'' based on a number of operational incidents that have been built into the programme. By doing this a simulation can be constructed that predicts the way the facility would respond to any number of transient activities. This computer programme can help assess the nuclear material accountancy system of a MOX fuel fabrication facility; for instance the implications of applying NRTA (near real time accountancy). (author)

  18. Health workers' knowledge of and attitudes towards computer applications in rural African health facilities.

    Science.gov (United States)

    Sukums, Felix; Mensah, Nathan; Mpembeni, Rose; Kaltschmidt, Jens; Haefeli, Walter E; Blank, Antje

    2014-01-01

    The QUALMAT (Quality of Maternal and Prenatal Care: Bridging the Know-do Gap) project has introduced an electronic clinical decision support system (CDSS) for pre-natal and maternal care services in rural primary health facilities in Burkina Faso, Ghana, and Tanzania. To report an assessment of health providers' computer knowledge, experience, and attitudes prior to the implementation of the QUALMAT electronic CDSS. A cross-sectional study was conducted with providers in 24 QUALMAT project sites. Information was collected using structured questionnaires. Chi-squared tests and one-way ANOVA describe the association between computer knowledge, attitudes, and other factors. Semi-structured interviews and focus groups were conducted to gain further insights. A total of 108 providers responded, 63% were from Tanzania and 37% from Ghana. The mean age was 37.6 years, and 79% were female. Only 40% had ever used computers, and 29% had prior computer training. About 80% were computer illiterate or beginners. Educational level, age, and years of work experience were significantly associated with computer knowledge (pworkplace. Given the low levels of computer knowledge among rural health workers in Africa, it is important to provide adequate training and support to ensure the successful uptake of electronic CDSSs in these settings. The positive attitudes to computers found in this study underscore that also rural care providers are ready to use such technology.

  19. Computer network data communication controller for the Plutonium Protection System (PPS)

    International Nuclear Information System (INIS)

    Rogers, M.S.

    1978-10-01

    Systems which employ several computers for distributed processing must provide communication links between the computers to effectively utilize their capacity. The technique of using a central network controller to supervise and route messages on a multicomputer digital communications net has certain economic and performance advantages over alternative implementations. Conceptually, the number of stations (computers) which can be accommodated by such a controller is unlimited, but practical considerations dictate a maximum of about 12 to 15. A Data Network Controller (DNC) has been designed around a M6800 microprocessor for use in the Plutonium Protection System (PPS) demonstration facilities

  20. Conceptual design of an ALICE Tier-2 centre. Integrated into a multi-purpose computing facility

    Energy Technology Data Exchange (ETDEWEB)

    Zynovyev, Mykhaylo

    2012-06-29

    This thesis discusses the issues and challenges associated with the design and operation of a data analysis facility for a high-energy physics experiment at a multi-purpose computing centre. At the spotlight is a Tier-2 centre of the distributed computing model of the ALICE experiment at the Large Hadron Collider at CERN in Geneva, Switzerland. The design steps, examined in the thesis, include analysis and optimization of the I/O access patterns of the user workload, integration of the storage resources, and development of the techniques for effective system administration and operation of the facility in a shared computing environment. A number of I/O access performance issues on multiple levels of the I/O subsystem, introduced by utilization of hard disks for data storage, have been addressed by the means of exhaustive benchmarking and thorough analysis of the I/O of the user applications in the ALICE software framework. Defining the set of requirements to the storage system, describing the potential performance bottlenecks and single points of failure and examining possible ways to avoid them allows one to develop guidelines for selecting the way how to integrate the storage resources. The solution, how to preserve a specific software stack for the experiment in a shared environment, is presented along with its effects on the user workload performance. The proposal for a flexible model to deploy and operate the ALICE Tier-2 infrastructure and applications in a virtual environment through adoption of the cloud computing technology and the 'Infrastructure as Code' concept completes the thesis. Scientific software applications can be efficiently computed in a virtual environment, and there is an urgent need to adapt the infrastructure for effective usage of cloud resources.

  1. Conceptual design of an ALICE Tier-2 centre. Integrated into a multi-purpose computing facility

    International Nuclear Information System (INIS)

    Zynovyev, Mykhaylo

    2012-01-01

    This thesis discusses the issues and challenges associated with the design and operation of a data analysis facility for a high-energy physics experiment at a multi-purpose computing centre. At the spotlight is a Tier-2 centre of the distributed computing model of the ALICE experiment at the Large Hadron Collider at CERN in Geneva, Switzerland. The design steps, examined in the thesis, include analysis and optimization of the I/O access patterns of the user workload, integration of the storage resources, and development of the techniques for effective system administration and operation of the facility in a shared computing environment. A number of I/O access performance issues on multiple levels of the I/O subsystem, introduced by utilization of hard disks for data storage, have been addressed by the means of exhaustive benchmarking and thorough analysis of the I/O of the user applications in the ALICE software framework. Defining the set of requirements to the storage system, describing the potential performance bottlenecks and single points of failure and examining possible ways to avoid them allows one to develop guidelines for selecting the way how to integrate the storage resources. The solution, how to preserve a specific software stack for the experiment in a shared environment, is presented along with its effects on the user workload performance. The proposal for a flexible model to deploy and operate the ALICE Tier-2 infrastructure and applications in a virtual environment through adoption of the cloud computing technology and the 'Infrastructure as Code' concept completes the thesis. Scientific software applications can be efficiently computed in a virtual environment, and there is an urgent need to adapt the infrastructure for effective usage of cloud resources.

  2. Facility effluent monitoring plan determinations for the 200 Area facilities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-11-01

    The following facility effluent monitoring plan determinations document the evaluations conducted for the Westinghouse Hanford Company 200 Area facilities (chemical processing, waste management, 222-S Laboratory, and laundry) on the Hanford Site in south central Washington State. These evaluations determined the need for facility effluent monitoring plans for the 200 Area facilities. The facility effluent monitoring plan determinations have been prepared in accordance with A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438 (WHC 1991). The Plutonium/Uranium Extraction Plant and UO 3 facility effluent monitoring plan determinations were prepared by Los Alamos Technical Associates, Richland, Washington. The Plutonium Finishing Plant, Transuranic Waste Storage and Assay Facility, T Plant, Tank Farms, Low Level Burial Grounds, and 222-S Laboratory determinations were prepared by Science Applications International Corporation of Richland, Washington. The B Plant Facility Effluent Monitoring Plan Determination was prepared by ERCE Environmental Services of Richland, Washington

  3. Computer Profile of School Facilities Energy Consumption.

    Science.gov (United States)

    Oswalt, Felix E.

    This document outlines a computerized management tool designed to enable building managers to identify energy consumption as related to types and uses of school facilities for the purpose of evaluating and managing the operation, maintenance, modification, and planning of new facilities. Specifically, it is expected that the statistics generated…

  4. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  5. Future Computer Requirements for Computational Aerodynamics

    Science.gov (United States)

    1978-01-01

    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  6. Surface Water Modeling Using an EPA Computer Code for Tritiated Waste Water Discharge from the heavy Water Facility

    International Nuclear Information System (INIS)

    Chen, K.F.

    1998-06-01

    Tritium releases from the D-Area Heavy Water Facilities to the Savannah River have been analyzed. The U.S. EPA WASP5 computer code was used to simulate surface water transport for tritium releases from the D-Area Drum Wash, Rework, and DW facilities. The WASP5 model was qualified with the 1993 tritium measurements at U.S. Highway 301. At the maximum tritiated waste water concentrations, the calculated tritium concentration in the Savannah River at U.S. Highway 301 due to concurrent releases from D-Area Heavy Water Facilities varies from 5.9 to 18.0 pCi/ml as a function of the operation conditions of these facilities. The calculated concentration becomes the lowest when the batch releases method for the Drum Wash Waste Tanks is adopted

  7. Development of Parallel Computing Framework to Enhance Radiation Transport Code Capabilities for Rare Isotope Beam Facility Design

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Mikhail [Michigan State Univ., East Lansing, MI (United States); Mokhov, Nikolai [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Niita, Koji [Research Organization for Information Science and Technology, Ibaraki-ken (Japan)

    2013-09-25

    A parallel computing framework has been developed to use with general-purpose radiation transport codes. The framework was implemented as a C++ module that uses MPI for message passing. It is intended to be used with older radiation transport codes implemented in Fortran77, Fortran 90 or C. The module is significantly independent of radiation transport codes it can be used with, and is connected to the codes by means of a number of interface functions. The framework was developed and tested in conjunction with the MARS15 code. It is possible to use it with other codes such as PHITS, FLUKA and MCNP after certain adjustments. Besides the parallel computing functionality, the framework offers a checkpoint facility that allows restarting calculations with a saved checkpoint file. The checkpoint facility can be used in single process calculations as well as in the parallel regime. The framework corrects some of the known problems with the scheduling and load balancing found in the original implementations of the parallel computing functionality in MARS15 and PHITS. The framework can be used efficiently on homogeneous systems and networks of workstations, where the interference from the other users is possible.

  8. Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility

    Science.gov (United States)

    Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.

    2017-01-01

    The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.

  9. Research and development of power reactor technology supporting work, 3; Development of utility facility operation management technique

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    Demands on utility facilities for nuclear technology development are increasingly sophisticated and diversified. It is important to meet requirements of securing the reliability of utility supply and ensuring the safety of facility operation and maintenance by means of technical supporting, data supply and quick contingency responses. A New computer system to make practicable man-machine interface, real-time data acquisition and operation data centralization has been developed based on the knowledge. Obtained from data base information and operation experience for the purpose of operation efficiency and labor saving. (author).

  10. The NIRA computer program package (photonuclear data center). Final report

    International Nuclear Information System (INIS)

    Vander Molen, H.J.; Gerstenberg, H.M.

    1976-02-01

    The Photonuclear Data Center's NIRA library of programs, executable from mass storage on the National Bureau of Standard's central computer facility, is described. Detailed instructions are given (with examples) for the use of the library to analyze, evaluate, synthesize, and produce for publication camera-ready tabular and graphical presentations of digital photonuclear reaction cross-section data. NIRA is the acronym for Nuclear Information Research Associate

  11. The Overview of the National Ignition Facility Distributed Computer Control System

    International Nuclear Information System (INIS)

    Lagin, L.J.; Bettenhausen, R.C.; Carey, R.A.; Estes, C.M.; Fisher, J.M.; Krammen, J.E.; Reed, R.K.; VanArsdall, P.J.; Woodruff, J.P.

    2001-01-01

    The Integrated Computer Control System (ICCS) for the National Ignition Facility (NIF) is a layered architecture of 300 front-end processors (FEP) coordinated by supervisor subsystems including automatic beam alignment and wavefront control, laser and target diagnostics, pulse power, and shot control timed to 30 ps. FEP computers incorporate either VxWorks on PowerPC or Solaris on UltraSPARC processors that interface to over 45,000 control points attached to VME-bus or PCI-bus crates respectively. Typical devices are stepping motors, transient digitizers, calorimeters, and photodiodes. The front-end layer is divided into another segment comprised of an additional 14,000 control points for industrial controls including vacuum, argon, synthetic air, and safety interlocks implemented with Allen-Bradley programmable logic controllers (PLCs). The computer network is augmented asynchronous transfer mode (ATM) that delivers video streams from 500 sensor cameras monitoring the 192 laser beams to operator workstations. Software is based on an object-oriented framework using CORBA distribution that incorporates services for archiving, machine configuration, graphical user interface, monitoring, event logging, scripting, alert management, and access control. Software coding using a mixed language environment of Ada95 and Java is one-third complete at over 300 thousand source lines. Control system installation is currently under way for the first 8 beams, with project completion scheduled for 2008

  12. Computer based training simulator for Hunterston Nuclear Power Station

    International Nuclear Information System (INIS)

    Bowden, R.S.M.; Hacking, D.

    1978-01-01

    For reasons which are stated, the Hunterston-B nuclear power station automatic control system includes a manual over-ride facility. It is therefore essential for the station engineers to be trained to recognise and control all feasible modes of plant and logic malfunction. A training simulator has been built which consists of a replica of the shutdown monitoring panel in the Central Control Room and is controlled by a mini-computer. This paper highlights the computer aspects of the simulator and relevant derived experience, under the following headings: engineering background; shutdown sequence equipment; simulator equipment; features; software; testing; maintenance. (U.K.)

  13. FIRAC: a computer code to predict fire-accident effects in nuclear facilities

    International Nuclear Information System (INIS)

    Bolstad, J.W.; Krause, F.R.; Tang, P.K.; Andrae, R.W.; Martin, R.A.; Gregory, W.S.

    1983-01-01

    FIRAC is a medium-sized computer code designed to predict fire-induced flows, temperatures, and material transport within the ventilating systems and other airflow pathways in nuclear-related facilities. The code is designed to analyze the behavior of interconnected networks of rooms and typical ventilation system components. This code is one in a family of computer codes that is designed to provide improved methods of safety analysis for the nuclear industry. The structure of this code closely follows that of the previously developed TVENT and EVENT codes. Because a lumped-parameter formulation is used, this code is particularly suitable for calculating the effects of fires in the far field (that is, in regions removed from the fire compartment), where the fire may be represented parametrically. However, a fire compartment model to simulate conditions in the enclosure is included. This model provides transport source terms to the ventilation system that can affect its operation and in turn affect the fire

  14. Computer-supported quality control in X-ray diagnosis

    International Nuclear Information System (INIS)

    Maier, W.; Klotz, E.

    1989-01-01

    Quality control of X-ray facilities in radiological departments of large hospitals is possible only if the instrumentation used for measurements is interfaced to a computer. The central computer helps to organize the measurements as well as analyse and record the results. It can also be connected to a densitometer and camera for evaluating radiographs of test devices. Other quality control tests are supported by a mobile station with equipment for non-invasive dosimetry measurements. Experience with a computer-supported system in quality control of film and film processing is described and the evaluation methods of ANSI and the German industrial standard DIN are compared. The disadvantage of these methods is the exclusion of film quality parameters, which can make processing control almost worthless. (author)

  15. FRS (Facility Registration System) Sites, Geographic NAD83, EPA (2007) [facility_registration_system_sites_LA_EPA_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — This dataset contains locations of Facility Registry System (FRS) sites which were pulled from a centrally managed database that identifies facilities, sites or...

  16. Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration, The Pierre Auger

    2013-04-01

    The Pierre Auger Observatory in Malargüe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18)eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.

  17. CSNI Integral Test Facility Matrices for Validation of Best-Estimate Thermal-Hydraulic Computer Codes

    International Nuclear Information System (INIS)

    Glaeser, H.

    2008-01-01

    Internationally agreed Integral Test Facility (ITF) matrices for validation of realistic thermal hydraulic system computer codes were established. ITF development is mainly for Pressurised Water Reactors (PWRs) and Boiling Water Reactors (BWRs). A separate activity was for Russian Pressurised Water-cooled and Water-moderated Energy Reactors (WWER). Firstly, the main physical phenomena that occur during considered accidents are identified, test types are specified, and test facilities suitable for reproducing these aspects are selected. Secondly, a list of selected experiments carried out in these facilities has been set down. The criteria to achieve the objectives are outlined. In this paper some specific examples from the ITF matrices will also be provided. The matrices will be a guide for code validation, will be a basis for comparisons of code predictions performed with different system codes, and will contribute to the quantification of the uncertainty range of code model predictions. In addition to this objective, the construction of such a matrix is an attempt to record information which has been generated around the world over the last years, so that it is more accessible to present and future workers in that field than would otherwise be the case.

  18. Centralized environmental radiation monitoring system in JAERI

    International Nuclear Information System (INIS)

    Katagiri, Hiroshi; Kobayashi, Hideo

    1993-03-01

    Japan Atomic Energy Research Institute (JAERI) has continued the radiation background survey and environmental radiation monitoring to ensure the safety of the residents around the Institute. For the monitoring of β and γ radiations and α and β radioactivities in air, the centralized automatic environmental radiation monitoring system (EMS) applying a computer with monitoring stations (MS) was established. The system has been renewed twice in 1973 and 1988. In 1962, a new concept emergency environmental γ-ray monitoring system (MP) was begun to construct and completed in 1965 independent of EMS. The first renewal of the EMS was carried out by focusing on the rapid and synthetic judgement and estimation of the environmental impacts caused by radiation and radioactive materials due to the operation of nuclear facilities by centralizing the data measured at MS, MP, a meteorological station, stack monitors and drainage monitoring stations under the control of computer. Present system renewed in 1988 was designed to prevent the interruption of monitoring due to computer troubles, communication troubles and power failures especially an instant voltage drop caused by thunder by reflecting the experiences through the operation and maintenance of the former system. Dual telemeters whose power is constantly supplied via batteries (capable of 10 min. monitoring after power failure) are equipped in the monitoring center to cope with telemeter troubles, which has operated successfully without any suspension being attributable to the power failures and telemeter troubles. (J.P.N.)

  19. The experimental sodium facility NAVA

    International Nuclear Information System (INIS)

    Langenbrunner, H.; Grunwald, G.; May, R.

    1976-01-01

    Within the framework of preparations for the introduction of sodium cooled fast breeder reactors an experimental sodium facility was installed at the Central Institute of Nuclear Research at Rossendorf. Design, engineering aspects and operation of this facility are described; operating experience is briefly discussed. (author)

  20. On a new method to compute photon skyshine doses around radiotherapy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Falcao, R.; Facure, A. [Comissao Nacional de Eenrgia Nuclear, Rio de Janeiro (Brazil); Xavier, A. [PEN/Coppe -UFRJ, Rio de Janeiro (Brazil)

    2006-07-01

    Full text of publication follows: Nowadays, in a great number of situations constructions are raised around radiotherapy facilities. In cases where the constructions would not be in the primary x-ray beam, 'skyshine' radiation is normally accounted for. The skyshine method is commonly used to to calculate the dose contribution from scattered radiation in such circumstances, when the roof shielding is projected considering there will be no occupancy upstairs. In these cases, there will be no need to have the usual 1,5-2,0 m thick ceiling, and the construction costs can be considerably reduced. The existing expression to compute these doses do not accomplish to explain mathematically the existence of a shadow area just around the outer room walls, and its growth, as we get away from these walls. In this paper we propose a new method to compute photon skyshine doses, using geometrical considerations to find the maximum dose point. An empirical equation is derived, and its validity is tested using M.C.N.P. 5 Monte Carlo calculation to simulate radiotherapy rooms configurations. (authors)

  1. Computer codes for beam dynamics analysis of cyclotronlike accelerators

    Science.gov (United States)

    Smirnov, V.

    2017-12-01

    Computer codes suitable for the study of beam dynamics in cyclotronlike (classical and isochronous cyclotrons, synchrocyclotrons, and fixed field alternating gradient) accelerators are reviewed. Computer modeling of cyclotron segments, such as the central zone, acceleration region, and extraction system is considered. The author does not claim to give a full and detailed description of the methods and algorithms used in the codes. Special attention is paid to the codes already proven and confirmed at the existing accelerating facilities. The description of the programs prepared in the worldwide known accelerator centers is provided. The basic features of the programs available to users and limitations of their applicability are described.

  2. Operating procedures: Fusion Experiments Analysis Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lerche, R.A.; Carey, R.W.

    1984-03-20

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility.

  3. Operating procedures: Fusion Experiments Analysis Facility

    International Nuclear Information System (INIS)

    Lerche, R.A.; Carey, R.W.

    1984-01-01

    The Fusion Experiments Analysis Facility (FEAF) is a computer facility based on a DEC VAX 11/780 computer. It became operational in late 1982. At that time two manuals were written to aid users and staff in their interactions with the facility. This manual is designed as a reference to assist the FEAF staff in carrying out their responsibilities. It is meant to supplement equipment and software manuals supplied by the vendors. Also this manual provides the FEAF staff with a set of consistent, written guidelines for the daily operation of the facility

  4. Automated entry control system for nuclear facilities

    International Nuclear Information System (INIS)

    Ream, W.K.; Espinoza, J.

    1985-01-01

    An entry control system to automatically control access to nuclear facilities is described. The design uses a centrally located console, integrated into the regular security system, to monitor the computer-controlled passage into and out of sensitive areas. Four types of entry control points are used: an unmanned enclosed portal with metal and SNM detectors for contraband detection with positive personnel identification, a bypass portal for contraband search after a contraband alarm in a regular portal also with positive personnel identification, a single door entry point with positive personnel identification, and a single door entry point with only a magnetic card-type identification. Security force action is required only as a response to an alarm. The integration of the entry control function into the security system computer is also described. The interface between the entry control system and the monitoring security personnel utilizing a color graphics display with touch screen input is emphasized. 2 refs., 7 figs

  5. The grand challenge of managing the petascale facility.

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, R. J.; Mathematics and Computer Science

    2007-02-28

    This report is the result of a study of networks and how they may need to evolve to support petascale leadership computing and science. As Dr. Ray Orbach, director of the Department of Energy's Office of Science, says in the spring 2006 issue of SciDAC Review, 'One remarkable example of growth in unexpected directions has been in high-end computation'. In the same article Dr. Michael Strayer states, 'Moore's law suggests that before the end of the next cycle of SciDAC, we shall see petaflop computers'. Given the Office of Science's strong leadership and support for petascale computing and facilities, we should expect to see petaflop computers in operation in support of science before the end of the decade, and DOE/SC Advanced Scientific Computing Research programs are focused on making this a reality. This study took its lead from this strong focus on petascale computing and the networks required to support such facilities, but it grew to include almost all aspects of the DOE/SC petascale computational and experimental science facilities, all of which will face daunting challenges in managing and analyzing the voluminous amounts of data expected. In addition, trends indicate the increased coupling of unique experimental facilities with computational facilities, along with the integration of multidisciplinary datasets and high-end computing with data-intensive computing; and we can expect these trends to continue at the petascale level and beyond. Coupled with recent technology trends, they clearly indicate the need for including capability petascale storage, networks, and experiments, as well as collaboration tools and programming environments, as integral components of the Office of Science's petascale capability metafacility. The objective of this report is to recommend a new cross-cutting program to support the management of petascale science and infrastructure. The appendices of the report document current and projected

  6. Trauma facilities in Denmark

    DEFF Research Database (Denmark)

    Weile, Jesper; Nielsen, Klaus; Primdahl, Stine C

    2018-01-01

    Background: Trauma is a leading cause of death among adults aged challenge. Evidence supports the centralization of trauma facilities and the use multidisciplinary trauma teams. Because knowledge is sparse on the existing distribution of trauma facilities...... and the organisation of trauma care in Denmark, the aim of this study was to identify all Danish facilities that care for traumatized patients and to investigate the diversity in organization of trauma management. Methods: We conducted a systematic observational cross-sectional study. First, all hospitals in Denmark...... were identified via online services and clarifying phone calls to each facility. Second, all trauma care manuals on all facilities that receive traumatized patients were gathered. Third, anesthesiologists and orthopedic surgeons on call at all trauma facilities were contacted via telephone...

  7. Computer surety: computer system inspection guidance. [Contains glossary

    Energy Technology Data Exchange (ETDEWEB)

    1981-07-01

    This document discusses computer surety in NRC-licensed nuclear facilities from the perspective of physical protection inspectors. It gives background information and a glossary of computer terms, along with threats and computer vulnerabilities, methods used to harden computer elements, and computer audit controls.

  8. Dynamic computing random access memory

    International Nuclear Information System (INIS)

    Traversa, F L; Bonani, F; Pershin, Y V; Di Ventra, M

    2014-01-01

    The present von Neumann computing paradigm involves a significant amount of information transfer between a central processing unit and memory, with concomitant limitations in the actual execution speed. However, it has been recently argued that a different form of computation, dubbed memcomputing (Di Ventra and Pershin 2013 Nat. Phys. 9 200–2) and inspired by the operation of our brain, can resolve the intrinsic limitations of present day architectures by allowing for computing and storing of information on the same physical platform. Here we show a simple and practical realization of memcomputing that utilizes easy-to-build memcapacitive systems. We name this architecture dynamic computing random access memory (DCRAM). We show that DCRAM provides massively-parallel and polymorphic digital logic, namely it allows for different logic operations with the same architecture, by varying only the control signals. In addition, by taking into account realistic parameters, its energy expenditures can be as low as a few fJ per operation. DCRAM is fully compatible with CMOS technology, can be realized with current fabrication facilities, and therefore can really serve as an alternative to the present computing technology. (paper)

  9. Computer applications in controlled fusion research

    International Nuclear Information System (INIS)

    Killeen, J.

    1975-02-01

    The role of Nuclear Engineering Education in the application of computers to controlled fusion research can be a very important one. In the near future the use of computers in the numerical modelling of fusion systems should increase substantially. A recent study group has identified five categories of computational models to study the physics of magnetically confined plasmas. A comparable number of types of models for engineering studies are called for. The development and application of computer codes to implement these models is a vital step in reaching the goal of fusion power. In order to meet the needs of the fusion program the National CTR Computer Center has been established at the Lawrence Livermore Laboratory. A large central computing facility is linked to smaller computing centers at each of the major CTR laboratories by a communications network. The crucial element that is needed for success is trained personnel. The number of people with knowledge of plasma science and engineering that are trained in numerical methods and computer science is quite small, and must be increased substantially in the next few years. Nuclear Engineering departments should encourage students to enter this field and provide the necessary courses and research programs in fusion computing. (U.S.)

  10. Designing Facilities for Collaborative Operations

    Science.gov (United States)

    Norris, Jeffrey; Powell, Mark; Backes, Paul; Steinke, Robert; Tso, Kam; Wales, Roxana

    2003-01-01

    A methodology for designing operational facilities for collaboration by multiple experts has begun to take shape as an outgrowth of a project to design such facilities for scientific operations of the planned 2003 Mars Exploration Rover (MER) mission. The methodology could also be applicable to the design of military "situation rooms" and other facilities for terrestrial missions. It was recognized in this project that modern mission operations depend heavily upon the collaborative use of computers. It was further recognized that tests have shown that layout of a facility exerts a dramatic effect on the efficiency and endurance of the operations staff. The facility designs (for example, see figure) and the methodology developed during the project reflect this recognition. One element of the methodology is a metric, called effective capacity, that was created for use in evaluating proposed MER operational facilities and may also be useful for evaluating other collaboration spaces, including meeting rooms and military situation rooms. The effective capacity of a facility is defined as the number of people in the facility who can be meaningfully engaged in its operations. A person is considered to be meaningfully engaged if the person can (1) see, hear, and communicate with everyone else present; (2) see the material under discussion (typically data on a piece of paper, computer monitor, or projection screen); and (3) provide input to the product under development by the group. The effective capacity of a facility is less than the number of people that can physically fit in the facility. For example, a typical office that contains a desktop computer has an effective capacity of .4, while a small conference room that contains a projection screen has an effective capacity of around 10. Little or no benefit would be derived from allowing the number of persons in an operational facility to exceed its effective capacity: At best, the operations staff would be underutilized

  11. Computer Security at Nuclear Facilities. Reference Manual (Arabic Edition)

    International Nuclear Information System (INIS)

    2011-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  12. Computer Security at Nuclear Facilities. Reference Manual (Russian Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  13. Computer Security at Nuclear Facilities. Reference Manual (Chinese Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    category of the IAEA Nuclear Security Series, and deals with computer security at nuclear facilities. It is based on national experience and practices as well as publications in the fields of computer security and nuclear security. The guidance is provided for consideration by States, competent authorities and operators. The preparation of this publication in the IAEA Nuclear Security Series has been made possible by the contributions of a large number of experts from Member States. An extensive consultation process with all Member States included consultants meetings and open-ended technical meetings. The draft was then circulated to all Member States for 120 days to solicit further comments and suggestions. The comments received from Member States were reviewed and considered in the final version of the publication.

  14. Central tarsal bone fractures in horses not used for racing: Computed tomographic configuration and long-term outcome of lag screw fixation

    OpenAIRE

    Gunst, S; Del Chicca, Francesca; Fürst, Anton; Kuemmerle, Jan M

    2016-01-01

    REASONS FOR PERFORMING STUDY: There are no reports on the configuration of equine central tarsal bone fractures based on cross-sectional imaging and clinical and radiographic long-term outcome after internal fixation. OBJECTIVES: To report clinical, radiographic and computed tomographic findings of equine central tarsal bone fractures and to evaluate the long-term outcome of internal fixation. STUDY DESIGN: Retrospective case series. METHODS: All horses diagnosed with a central tarsa...

  15. Computing, Environment and Life Sciences | Argonne National Laboratory

    Science.gov (United States)

    Computing, Environment and Life Sciences Research Divisions BIOBiosciences CPSComputational Science DSLData Argonne Leadership Computing Facility Biosciences Division Environmental Science Division Mathematics and Computer Science Division Facilities and Institutes Argonne Leadership Computing Facility News Events About

  16. Computing and information services at the Jet Propulsion Laboratory - A management approach to a diversity of needs

    Science.gov (United States)

    Felberg, F. H.

    1984-01-01

    The Jet Propulsion Laboratory, a research and development organization with about 5,000 employees, presents a complicated set of requirements for an institutional system of computing and informational services. The approach taken by JPL in meeting this challenge is one of controlled flexibility. A central communications network is provided, together with selected computing facilities for common use. At the same time, staff members are given considerable discretion in choosing the mini- and microcomputers that they believe will best serve their needs. Consultation services, computer education, and other support functions are also provided.

  17. Radiation interlocks - The choice between conventional hard-wired logic and computer-based systems

    International Nuclear Information System (INIS)

    Crook, K.F.

    1987-01-01

    During the past few years, the use of computers in radiation safety systems has become more widespread. This is not surprising given the ubiquitous nature of computers in the modern technological world. But is a computer a good choice for the central logic element of a personnel safety system? Recent accidents at computer controlled medical accelerators would indicate that extreme care must be exercised if malfunctions are to be avoided. The Department of Energy (DOE) has recently established a sub-committee to formulate recommendations on the use of computers in safety systems for accelerators. This paper reviews the status of the committee's recommendations, and describes radiation protection interlock systems as applied to both accelerators and to irradiation facilities. Comparisons are made between the conventional (relay) approach and designs using computers

  18. Radiation interlocks: The choice between conventional hard-wired logic and computer-based systems

    International Nuclear Information System (INIS)

    Crook, K.F.

    1986-11-01

    During the past few years, the use of computers in radiation safety systems has become more widespread. This is not surprising given the ubiquitous nature of computers in the modern technological world. But is a computer a good choice for the central logic element of a personnel safety system. Recent accidents at computer controlled medical accelerators would indicate that extreme care must be exercised if malfunctions are to be avoided. The Department of Energy has recently established a sub-committee to formulate recommendations on the use of computers in safety systems for accelerators. This paper will review the status of the committee's recommendations, and describe radiation protection interlock systems as applied to both accelerators and to irradiation facilities. Comparisons are made between the conventional relay approach and designs using computers. 6 refs., 6 figs

  19. Enhanced computational infrastructure for data analysis at the DIII-D National Fusion Facility

    International Nuclear Information System (INIS)

    Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; McHarg, B.B.; Meyer, W.H.; Parker, C.T.

    2000-01-01

    Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from nine national laboratories, 19 foreign laboratories, 16 universities, and five industrial partnerships. As a result of this work, DIII-D data is available on a 24x7 basis from a set of viewing and analysis tools that can be run on either the collaborators' or DIII-D's computer systems. Additionally, a web based data and code documentation system has been created to aid the novice and expert user alike

  20. Enhanced Computational Infrastructure for Data Analysis at the DIII-D National Fusion Facility

    International Nuclear Information System (INIS)

    Schissel, D.P.; Peng, Q.; Schachter, J.; Terpstra, T.B.; Casper, T.A.; Freeman, J.; Jong, R.; Keith, K.M.; Meyer, W.H.; Parker, C.T.; McCharg, B.B.

    1999-01-01

    Recently a number of enhancements to the computer hardware infrastructure have been implemented at the DIII-D National Fusion Facility. Utilizing these improvements to the hardware infrastructure, software enhancements are focusing on streamlined analysis, automation, and graphical user interface (GUI) systems to enlarge the user base. The adoption of the load balancing software package LSF Suite by Platform Computing has dramatically increased the availability of CPU cycles and the efficiency of their use. Streamlined analysis has been aided by the adoption of the MDSplus system to provide a unified interface to analyzed DIII-D data. The majority of MDSplus data is made available in between pulses giving the researcher critical information before setting up the next pulse. Work on data viewing and analysis tools focuses on efficient GUI design with object-oriented programming (OOP) for maximum code flexibility. Work to enhance the computational infrastructure at DIII-D has included a significant effort to aid the remote collaborator since the DIII-D National Team consists of scientists from 9 national laboratories, 19 foreign laboratories, 16 universities, and 5 industrial partnerships. As a result of this work, DIII-D data is available on a 24 x 7 basis from a set of viewing and analysis tools that can be run either on the collaborators' or DIII-Ds computer systems. Additionally, a Web based data and code documentation system has been created to aid the novice and expert user alike

  1. Analysis of removal of residual decay heat from interim storage facilities by means of the CFD program FLUENT

    International Nuclear Information System (INIS)

    Stratmann, W.; Hages, P.

    2004-01-01

    Within the scope of nuclear licensing procedures of on-site interim storage facilities for dual purpose casks it is necessary, among other things, to provide proof of sufficient removal of the residual decay heat emitted by the casks. The results of the analyses performed for this purpose define e.g. the boundary conditions for further thermal analyses regarding the permissible cask component temperatures or the maximum permissible temperatures of the fuel cladding tubes of the fuel elements stored in the casks. Up to now, for the centralized interim storage facilities in Germany such analyses were performed on the basis of experimental investigations using scaled-down storage geometries. In the engineering phase of the Lingen on-site interim storage facility, proof was furnished for the first time using the CFD (computational fluid dynamics) program FLUENT. The program FLUENT is an internationally recognized and comprehensively verified program for the calculation of flow and heat transport processes. Starting from a brief discussion of modeling and the different boundary conditions of the computation, this contribution presents various results regarding the temperatures of air, cask surfaces and storage facility components, the mass flows through the storage facility and the heat transfer at the cask surface. The interface point to the cask-specific analyses is defined to be the cask surface

  2. Advanced dust monitoring system applied to new TRU handling facility of JAERI

    International Nuclear Information System (INIS)

    Yabuta, H.; Shigeta, Y.; Sawahata, K.; Hasegawa, K.

    1993-01-01

    In JAERI, a large, scale multipurpose facility is under construction, which consists of a TRU waste management testing installation, a solution fuel treatment installation and critical assemblies with uranium and/or plutonium solution fuel. The facility is also equipped with a lot of gloveboxes for handling and treatment of solution fuel and hot cells for research on reprocessing process. As there may be a relatively high potential of air contamination, it is important to monitor air contamination effectively and efficiently. An advanced dust monitoring system was introduced for convenience of handling and automatical measurement of filter papers, by developing a filter-holder with an IC memory and a radioactivity measuring device with an automatic filter-holder changing mechanism as a part of a centralized monitoring system with a computer

  3. Centralized digital control of accelerators

    International Nuclear Information System (INIS)

    Melen, R.E.

    1983-09-01

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors

  4. New challenges for HEP computing: RHIC [Relativistic Heavy Ion Collider] and CEBAF [Continuous Electron Beam Accelerator Facility

    International Nuclear Information System (INIS)

    LeVine, M.J.

    1990-01-01

    We will look at two facilities; RHIC and CEBF. CEBF is in the construction phase, RHIC is about to begin construction. For each of them, we examine the kinds of physics measurements that motivated their construction, and the implications of these experiments for computing. Emphasis will be on on-line requirements, driven by the data rates produced by these experiments

  5. Software quality assurance plan for the National Ignition Facility integrated computer control system

    Energy Technology Data Exchange (ETDEWEB)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project`s controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy`s (DOE`s) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project.

  6. Software quality assurance plan for the National Ignition Facility integrated computer control system

    International Nuclear Information System (INIS)

    Woodruff, J.

    1996-11-01

    Quality achievement is the responsibility of the line organizations of the National Ignition Facility (NIF) Project. This Software Quality Assurance Plan (SQAP) applies to the activities of the Integrated Computer Control System (ICCS) organization and its subcontractors. The Plan describes the activities implemented by the ICCS section to achieve quality in the NIF Project's controls software and implements the NIF Quality Assurance Program Plan (QAPP, NIF-95-499, L-15958-2) and the Department of Energy's (DOE's) Order 5700.6C. This SQAP governs the quality affecting activities associated with developing and deploying all control system software during the life cycle of the NIF Project

  7. A resource facility for kinetic analysis: modeling using the SAAM computer programs.

    Science.gov (United States)

    Foster, D M; Boston, R C; Jacquez, J A; Zech, L

    1989-01-01

    Kinetic analysis and integrated system modeling have contributed significantly to understanding the physiology and pathophysiology of metabolic systems in humans and animals. Many experimental biologists are aware of the usefulness of these techniques and recognize that kinetic modeling requires special expertise. The Resource Facility for Kinetic Analysis (RFKA) provides this expertise through: (1) development and application of modeling technology for biomedical problems, and (2) development of computer-based kinetic modeling methodologies concentrating on the computer program Simulation, Analysis, and Modeling (SAAM) and its conversational version, CONversational SAAM (CONSAM). The RFKA offers consultation to the biomedical community in the use of modeling to analyze kinetic data and trains individuals in using this technology for biomedical research. Early versions of SAAM were widely applied in solving dosimetry problems; many users, however, are not familiar with recent improvements to the software. The purpose of this paper is to acquaint biomedical researchers in the dosimetry field with RFKA, which, together with the joint National Cancer Institute-National Heart, Lung and Blood Institute project, is overseeing SAAM development and applications. In addition, RFKA provides many service activities to the SAAM user community that are relevant to solving dosimetry problems.

  8. An automated entry control system for nuclear facilities

    International Nuclear Information System (INIS)

    Ream, W.K.; Espinoza, J.

    1985-01-01

    An entry control system to automatically control access to nuclear facilities is described. The design uses a centrally located console, integrated into the regular security system, to monitor the computer-controlled passage into and out of sensitive areas. Four types of entry control points are used: an unmanned enclosed portal with metal and SNM detectors for contraband detection with positive personnel identification, a bypass portal for contraband search after a contraband alarm in a regular portal also with positive personnel identification, a single door entry point with positive personnel identification, and a single door entry point with only a magnetic card-type identification. Security force action is required only as a response to an alarm. The integration of the entry control function into the security system computer is also described. The interface between the entry control system and the monitoring security personnel utilizing a color graphics display with touch screen input is emphasized

  9. Family planning utilization and factors associated among women receiving abortion services in health facilities of central zone towns of Tigray, Northern Ethiopia: a cross sectional Study.

    Science.gov (United States)

    Hagos, Goshu; Tura, Gurmesa; Kahsay, Gizienesh; Haile, Kebede; Grum, Teklit; Araya, Tsige

    2018-06-05

    Abortion remains among the leading causes of maternal death worldwide. Post-abortion contraception is significantly effective in preventing unintended pregnancy and abortion if provided before women leave the health facilty. However, the status of post-abortion family planning (PAFP) utilization and the contributing factors are not well studied in Tigray region. So, we conduct study aimed on family planning utilization and factors associated with it among women receiving abortion services. A facility based cross-sectional study design was conducted among women receiving abortion services in central zone of Tigray from December 2015to February 2016 using a total of 416 sample size. Women who came for abortion services were selected using systematic random sampling technique.. The data were collected using a pre-tested interviewer administered questionnair. Data were coded and entered in to Epi info 7 and then exported to SPSS for analysis. Descriptive statisticslike frequencies and mean were computed to display the results. Both Bivariable and multivariable logistic regression was used in the analysis. Variables statistically significant at p < 0.05 in the bivariable analysis were checked in multivariable logistic regration to identify independently associated factors. Then variables which were significantly associated with post abortion family planning utilization at p-value < 0.05 in the multivariable analysis were declared as significantly associated factors. A total of 409 abortion clients were interviewed in this study with 98.3% of response rate. Majority 290 (70.9%) of study participants utilized contracepives after abortion. Type of health facility, the decision maker on timing of having child, knowledge that pregnancy can happen soon after abortion and husband's opposition towards contraceptives were significantly associated with Post-abortion family planning ustilization. About one-third of abortion women failed to receive contraceptive before

  10. AIRDOS-II computer code for estimating radiation dose to man from airborne radionuclides in areas surrouding nuclear facilities

    International Nuclear Information System (INIS)

    Moore, R.E.

    1977-04-01

    The AIRDOS-II computer code estimates individual and population doses resulting from the simultaneous atmospheric release of as many as 36 radionuclides from a nuclear facility. This report describes the meteorological and environmental models used is the code, their computer implementation, and the applicability of the code to assessments of radiological impact. Atmospheric dispersion and surface deposition of released radionuclides are estimated as a function of direction and distance from a nuclear power plant or fuel-cycle facility, and doses to man through inhalation, air immersion, exposure to contaminated ground, food ingestion, and water immersion are estimated in the surrounding area. Annual doses are estimated for total body, GI tract, bone, thyroid, lungs, muscle, kidneys, liver, spleen, testes, and ovaries. Either the annual population doses (man-rems/year) or the highest annual individual doses in the assessment area (rems/year), whichever are applicable, are summarized in output tables in several ways--by nuclides, modes of exposure, and organs. The location of the highest individual doses for each reference organ estimated for the area is specified in the output data

  11. A Bioinformatics Facility for NASA

    Science.gov (United States)

    Schweighofer, Karl; Pohorille, Andrew

    2006-01-01

    Building on an existing prototype, we have fielded a facility with bioinformatics technologies that will help NASA meet its unique requirements for biological research. This facility consists of a cluster of computers capable of performing computationally intensive tasks, software tools, databases and knowledge management systems. Novel computational technologies for analyzing and integrating new biological data and already existing knowledge have been developed. With continued development and support, the facility will fulfill strategic NASA s bioinformatics needs in astrobiology and space exploration. . As a demonstration of these capabilities, we will present a detailed analysis of how spaceflight factors impact gene expression in the liver and kidney for mice flown aboard shuttle flight STS-108. We have found that many genes involved in signal transduction, cell cycle, and development respond to changes in microgravity, but that most metabolic pathways appear unchanged.

  12. Final report for the Idaho National Engineering Laboratory Central Facilities Area Landfill 2

    International Nuclear Information System (INIS)

    Doornbos, M.H.; Morgan, M.E.; Hubbell, J.M.

    1991-04-01

    This report summarize activities completed during FY-88 through FY-91 for the US Department of Energy's (DOE's) Hazardous Waste Remedial Actions Program (HAZWRAP) at the Idaho National Engineering Laboratory (INEL) Central Facilities Area (CFA) Landfill 2. The objectives of this program are to demonstrate new technologies or innovative uses of existing technologies for the identification and remediation of hazardous wastes within a municipal-type landfill. The site was chosen as a candidate site because it represents a problem typical of both DOE and public landfills. The HAZWRAP Technology Demonstration Project began at the INEL CFA Landfill 2 in 1987. During characterization and identification activities, several organic ''hotspots'' or anomalies were identified. Proposals were then solicited from the private sector for innovative technologies to remediate the isolated areas. Remediation was planned to be implemented using horizontal wells installed underneath a portion of the landfill. These innovative technologies and the well installation were planned to support the current goals of the DOE and the Environmental Protection Agency to treat hazardous waste in place. 2 refs., 2 figs., 2 tabs

  13. Unique life sciences research facilities at NASA Ames Research Center

    Science.gov (United States)

    Mulenburg, G. M.; Vasques, M.; Caldwell, W. F.; Tucker, J.

    1994-01-01

    The Life Science Division at NASA's Ames Research Center has a suite of specialized facilities that enable scientists to study the effects of gravity on living systems. This paper describes some of these facilities and their use in research. Seven centrifuges, each with its own unique abilities, allow testing of a variety of parameters on test subjects ranging from single cells through hardware to humans. The Vestibular Research Facility allows the study of both centrifugation and linear acceleration on animals and humans. The Biocomputation Center uses computers for 3D reconstruction of physiological systems, and interactive research tools for virtual reality modeling. Psycophysiological, cardiovascular, exercise physiology, and biomechanical studies are conducted in the 12 bed Human Research Facility and samples are analyzed in the certified Central Clinical Laboratory and other laboratories at Ames. Human bedrest, water immersion and lower body negative pressure equipment are also available to study physiological changes associated with weightlessness. These and other weightlessness models are used in specialized laboratories for the study of basic physiological mechanisms, metabolism and cell biology. Visual-motor performance, perception, and adaptation are studied using ground-based models as well as short term weightlessness experiments (parabolic flights). The unique combination of Life Science research facilities, laboratories, and equipment at Ames Research Center are described in detail in relation to their research contributions.

  14. Hanford facility dangerous waste Part A, Form 3 and Part B permit application documentation, Central Waste Complex (WA7890008967)(TSD: TS-2-4)

    Energy Technology Data Exchange (ETDEWEB)

    Saueressig, D.G.

    1998-05-20

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998.

  15. Enabling Extreme Scale Earth Science Applications at the Oak Ridge Leadership Computing Facility

    Science.gov (United States)

    Anantharaj, V. G.; Mozdzynski, G.; Hamrud, M.; Deconinck, W.; Smith, L.; Hack, J.

    2014-12-01

    The Oak Ridge Leadership Facility (OLCF), established at the Oak Ridge National Laboratory (ORNL) under the auspices of the U.S. Department of Energy (DOE), welcomes investigators from universities, government agencies, national laboratories and industry who are prepared to perform breakthrough research across a broad domain of scientific disciplines, including earth and space sciences. Titan, the OLCF flagship system, is currently listed as #2 in the Top500 list of supercomputers in the world, and the largest available for open science. The computational resources are allocated primarily via the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, sponsored by the U.S. DOE Office of Science. In 2014, over 2.25 billion core hours on Titan were awarded via INCITE projects., including 14% of the allocation toward earth sciences. The INCITE competition is also open to research scientists based outside the USA. In fact, international research projects account for 12% of the INCITE awards in 2014. The INCITE scientific review panel also includes 20% participation from international experts. Recent accomplishments in earth sciences at OLCF include the world's first continuous simulation of 21,000 years of earth's climate history (2009); and an unprecedented simulation of a magnitude 8 earthquake over 125 sq. miles. One of the ongoing international projects involves scaling the ECMWF Integrated Forecasting System (IFS) model to over 200K cores of Titan. ECMWF is a partner in the EU funded Collaborative Research into Exascale Systemware, Tools and Applications (CRESTA) project. The significance of the research carried out within this project is the demonstration of techniques required to scale current generation Petascale capable simulation codes towards the performance levels required for running on future Exascale systems. One of the techniques pursued by ECMWF is to use Fortran2008 coarrays to overlap computations and communications and

  16. Specific features of organizng the computer-aided design of radio-electronic equipment for electrophysical facilities

    International Nuclear Information System (INIS)

    Mozin, I.V.; Vasil'ev, M.P.

    1985-01-01

    Problems of developing systems for computer-aided design (CAD) of radioelectronic equipment for large electrophysical facilities such as charged particle accelerators of new generation are discussed. The PLATA subsystem representing a part of CAD and used for printed circuit design is described. The subsystem PLATA is utilized to design, on the average, up to 150 types of circuits a year, 100-120 of which belong to circuits of increased complexity. In this case labour productivity of a designer at documentation increases almost two times

  17. Thermal studies of the canister staging pit in a hypothetical Yucca Mountain canister handling facility using computational fluid dynamics

    International Nuclear Information System (INIS)

    Soltani, Mehdi; Barringer, Chris; Bues, Timothy T. de

    2007-01-01

    The proposed Yucca Mountain nuclear waste storage site will contain facilities for preparing the radioactive waste canisters for burial. A previous facility design considered was the Canister Handling Facility Staging Pit. This design is no longer used, but its thermal evaluation is typical of such facilities. Structural concrete can be adversely affected by the heat from radioactive decay. Consequently, facilities must have heating ventilation and air conditioning (HVAC) systems for cooling. Concrete temperatures are a function of conductive, convective and radiative heat transfer. The prediction of concrete temperatures under such complex conditions can only be adequately handled by computational fluid dynamics (CFD). The objective of the CFD analysis was to predict concrete temperatures under normal and off-normal conditions. Normal operation assumed steady state conditions with constant HVAC flow and temperatures. However, off-normal operation was an unsteady scenario which assumed a total HVAC failure for a period of 30 days. This scenario was particularly complex in that the concrete temperatures would gradually rise, and air flows would be buoyancy driven. The CFD analysis concluded that concrete wall temperatures would be at or below the maximum temperature limits in both the normal and off-normal scenarios. While this analysis was specific to a facility design that is no longer used, it demonstrates that such facilities are reasonably expected to have satisfactory thermal performance. (author)

  18. Liquid Effluent Retention Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Liquid Effluent Retention Facility (LERF) is located in the central part of the Hanford Site. LERF is permitted by the State of Washington and has three liquid...

  19. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  20. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site's centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million

  1. Radiation safety training for accelerator facilities

    International Nuclear Information System (INIS)

    Trinoskey, P.A.

    1997-02-01

    In November 1992, a working group was formed within the U.S. Department of Energy's (DOE's) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise

  2. Computer-guided facility for the study of single crystals at the gamma diffractometer GADI

    International Nuclear Information System (INIS)

    Heer, H.; Bleichert, H.; Gruhn, W.; Moeller, R.

    1984-10-01

    In the study of solid-state properties it is in many cases necessary to work with single crystals. The increased requirement in the industry and research as well as the desire for better characterization by means of γ-diffractometry made it necessary to improve and to modernize the existing instrument. The advantages of a computer-guided facility against the conventional, semiautomatic operation are manifold. Not only the process guidance, but also the data acquisition and evaluation are performed by the computer. By a remote control the operator is able to find quickly a reflex and to drive the crystal in every desired measuring position. The complete protocollation of all important measuring parameters, the convenient data storage, as well as the automatic evaluation are much useful for the user. Finally the measuring time can be increased to practically 24 hours per day. By this the versed characterization by means of γ-diffractometry is put on a completely new level. (orig.) [de

  3. Decommissioning Facility Characterization DB System

    International Nuclear Information System (INIS)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S.

    2010-01-01

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  4. Decommissioning Facility Characterization DB System

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. K.; Ji, Y. H.; Park, J. H.; Chung, U. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    Basically, when a decommissioning is planed for a nuclear facility, an investigation into the characterization of the nuclear facility is first required. The results of such an investigation are used for calculating the quantities of dismantled waste and estimating the cost of the decommissioning project. In this paper, it is presented a computer system for the characterization of nuclear facilities, called DEFACS (DEcommissioning FAcility Characterization DB System). This system consists of four main parts: a management coding system for grouping items, a data input system, a data processing system and a data output system. All data is processed in a simplified and formatted manner in order to provide useful information to the decommissioning planner. For the hardware, PC grade computers running Oracle software on Microsoft Windows OS were selected. The characterization data results for the nuclear facility under decommissioning will be utilized for the work-unit productivity calculation system and decommissioning engineering system as basic sources of information

  5. Facility model for the Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Thomas, K.E.; Sohn, C.L.; Yarbro, T.F.; Hench, K.W.

    1986-01-01

    The Los Alamos Plutonium Facility contains more than sixty unit processes and handles a large variety of nuclear materials, including many forms of plutonium-bearing scrap. The management of the Plutonium Facility is supporting the development of a computer model of the facility as a means of effectively integrating the large amount of information required for material control, process planning, and facility development. The model is designed to provide a flexible, easily maintainable facility description that allows the faciltiy to be represented at any desired level of detail within a single modeling framework, and to do this using a model program and data files that can be read and understood by a technically qualified person without modeling experience. These characteristics were achieved by structuring the model so that all facility data is contained in data files, formulating the model in a simulation language that provides a flexible set of data structures and permits a near-English-language syntax, and using a description for unit processes that can represent either a true unit process or a major subsection of the facility. Use of the model is illustrated by applying it to two configurations of a fictitious nuclear material processing line

  6. The FOSS GIS Workbench on the GFZ Load Sharing Facility compute cluster

    Science.gov (United States)

    Löwe, P.; Klump, J.; Thaler, J.

    2012-04-01

    Compute clusters can be used as GIS workbenches, their wealth of resources allow us to take on geocomputation tasks which exceed the limitations of smaller systems. To harness these capabilities requires a Geographic Information System (GIS), able to utilize the available cluster configuration/architecture and a sufficient degree of user friendliness to allow for wide application. In this paper we report on the first successful porting of GRASS GIS, the oldest and largest Free Open Source (FOSS) GIS project, onto a compute cluster using Platform Computing's Load Sharing Facility (LSF). In 2008, GRASS6.3 was installed on the GFZ compute cluster, which at that time comprised 32 nodes. The interaction with the GIS was limited to the command line interface, which required further development to encapsulate the GRASS GIS business layer to facilitate its use by users not familiar with GRASS GIS. During the summer of 2011, multiple versions of GRASS GIS (v 6.4, 6.5 and 7.0) were installed on the upgraded GFZ compute cluster, now consisting of 234 nodes with 480 CPUs providing 3084 cores. The GFZ compute cluster currently offers 19 different processing queues with varying hardware capabilities and priorities, allowing for fine-grained scheduling and load balancing. After successful testing of core GIS functionalities, including the graphical user interface, mechanisms were developed to deploy scripted geocomputation tasks onto dedicated processing queues. The mechanisms are based on earlier work by NETELER et al. (2008). A first application of the new GIS functionality was the generation of maps of simulated tsunamis in the Mediterranean Sea for the Tsunami Atlas of the FP-7 TRIDEC Project (www.tridec-online.eu). For this, up to 500 processing nodes were used in parallel. Further trials included the processing of geometrically complex problems, requiring significant amounts of processing time. The GIS cluster successfully completed all these tasks, with processing times

  7. Automated Computer-Based Facility for Measurement of Near-Field Structure of Microwave Radiators and Scatterers

    DEFF Research Database (Denmark)

    Mishra, Shantnu R.;; Pavlasek, Tomas J. F.;; Muresan, Letitia V.

    1980-01-01

    An automatic facility for measuring the three-dimensional structure of the near fields of microwave radiators and scatterers is described. The amplitude and phase for different polarization components can be recorded in analog and digital form using a microprocessor-based system. The stored data...... are transferred to a large high-speed computer for bulk processing and for the production of isophot and equiphase contour maps or profiles. The performance of the system is demonstrated through results for a single conical horn, for interacting rectangular horns, for multiple cylindrical scatterers...

  8. Rethinking the economics of centralized spent fuel storage

    International Nuclear Information System (INIS)

    Wood, T.W.; Short, S.M.; Dippold, D.G.; Rod, S.R.; Williams, J.W.

    1991-01-01

    The technology for extended storage of spent nuclear fuel (SNF), either at-reactor or in a centralized facility such as a monitored retrievable storage (MRS) facility, is well-developed and proven from an engineering and safety perspective. The question of whether spent fuel should await its final geologic disposal while at a reactor site or in an MRS facility is essentially an economic one. While intuition and previous results suggest that centralized storage will be more economical than at-reactor storage beyond some break-even quantity of SNF, the incremental costs of pool storage at-reactor are close to zero as long as pool capacity is generally available. Thus, if economics is the prime motivator, the quantity of spent fuel required to warrant centralized storage could be quite large. The economics of centralizing the storage of spent fuel at a single site, as opposed to continued storage at over 100 reactor sites, has been the subject of several recent analyses. Most of these analyses involved calculating the benefits of an MRS facility (in terms of avoided utility costs) with a pre-defined MRS operating scenario (e.g., spent fuel acceptance schedule, storage capacity, and typical storage cycle). While these analyses provided some insight into the economic justification for an MRS facility, even the most favorable scenarios resulted in net costs of hundreds of millions of dollars when evaluated on a discounted cash flow basis

  9. Fast network centrality analysis using GPUs

    Directory of Open Access Journals (Sweden)

    Shi Zhiao

    2011-05-01

    Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.

  10. Safeguards Automated Facility Evaluation (SAFE) methodology

    International Nuclear Information System (INIS)

    Chapman, L.D.; Grady, L.M.; Bennett, H.A.; Sasser, D.W.; Engi, D.

    1978-08-01

    An automated approach to facility safeguards effectiveness evaluation has been developed. This automated process, called Safeguards Automated Facility Evaluation (SAFE), consists of a collection of a continuous stream of operational modules for facility characterization, the selection of critical paths, and the evaluation of safeguards effectiveness along these paths. The technique has been implemented on an interactive computer time-sharing system and makes use of computer graphics for the processing and presentation of information. Using this technique, a comprehensive evaluation of a safeguards system can be provided by systematically varying the parameters that characterize the physical protection components of a facility to reflect the perceived adversary attributes and strategy, environmental conditions, and site operational conditions. The SAFE procedure has broad applications in the nuclear facility safeguards field as well as in the security field in general. Any fixed facility containing valuable materials or components to be protected from theft or sabotage could be analyzed using this same automated evaluation technique

  11. Wind Energy Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laurie, Carol

    2017-02-01

    This book takes readers inside the places where daily discoveries shape the next generation of wind power systems. Energy Department laboratory facilities span the United States and offer wind research capabilities to meet industry needs. The facilities described in this book make it possible for industry players to increase reliability, improve efficiency, and reduce the cost of wind energy -- one discovery at a time. Whether you require blade testing or resource characterization, grid integration or high-performance computing, Department of Energy laboratory facilities offer a variety of capabilities to meet your wind research needs.

  12. Central tarsal bone fractures in horses not used for racing: Computed tomographic configuration and long-term outcome of lag screw fixation.

    Science.gov (United States)

    Gunst, S; Del Chicca, F; Fürst, A E; Kuemmerle, J M

    2016-09-01

    There are no reports on the configuration of equine central tarsal bone fractures based on cross-sectional imaging and clinical and radiographic long-term outcome after internal fixation. To report clinical, radiographic and computed tomographic findings of equine central tarsal bone fractures and to evaluate the long-term outcome of internal fixation. Retrospective case series. All horses diagnosed with a central tarsal bone fracture at our institution in 2009-2013 were included. Computed tomography and internal fixation using lag screw technique was performed in all patients. Medical records and diagnostic images were reviewed retrospectively. A clinical and radiographic follow-up examination was performed at least 1 year post operatively. A central tarsal bone fracture was diagnosed in 6 horses. Five were Warmbloods used for showjumping and one was a Quarter Horse used for reining. All horses had sagittal slab fractures that began dorsally, ran in a plantar or plantaromedial direction and exited the plantar cortex at the plantar or plantaromedial indentation of the central tarsal bone. Marked sclerosis of the central tarsal bone was diagnosed in all patients. At long-term follow-up, 5/6 horses were sound and used as intended although mild osteophyte formation at the distal intertarsal joint was commonly observed. Central tarsal bone fractures in nonracehorses had a distinct configuration but radiographically subtle additional fracture lines can occur. A chronic stress related aetiology seems likely. Internal fixation of these fractures based on an accurate diagnosis of the individual fracture configuration resulted in a very good prognosis. © 2015 EVJ Ltd.

  13. Decentralized School vs. Centralized School. Investigation No. 3.

    Science.gov (United States)

    Paseur, C. Herbert

    A report is presented of a comparative investigation of a decentralized and a centralized school facility. Comparative data are provided regarding costs of the facilities, amount of educational area provided by the facilities, and types of educational areas provided. Evaluative comments are included regarding cost savings versus educational…

  14. Rethinking the economics of centralized spent fuel storage

    International Nuclear Information System (INIS)

    Wood, T.W.; Short, S.M.; Dippold, D.G.; Rod, S.R.; Williams, J.W.

    1991-04-01

    The technology for extended storage of spent nuclear fuel (SNF), either at-reactor or in a centralized facility such as a monitored retrievable storage (MRS) facility, is well-developed and proven from an engineering and safety perspective. The question of whether spent fuel should await its final geologic disposal while at a reactor site or in an MRS facility is essentially an economic one. While intuition and previous results suggest that centralized storage will be more economical than at-reactor storage beyond some break-even quantity of SNF, the incremental costs of pool storage at-reactor are close to zero as long as pool capacity is generally available. Thus, if economics is the prime motivator, the quantity of spent fuel required to warrant centralized storage could be quite large. The economics of centralizing the storage of spent fuel at a single site, as opposed to continued storage at over 100 reactor sites, has been the subject of several recent analyses. Most of these analyses involved calculating the benefits of an MRS facility with a pre-defined MRS operating scenario. This paper reverses this approach to economic analysis of the MRS by seeking the optimal MRS operating scenario (in terms of the parameters listed above) implied by the economic incentives arising from the relative costs of at-reactor storage and centralized storage. This approach treats an MRS as a possible storage location that will be used according to its economic value in system operation. 5 refs., 5 figs

  15. Integrated assessment of a new Waste-to-Energy facility in Central Greece in the context of regional perspectives

    International Nuclear Information System (INIS)

    Perkoulidis, G.; Papageorgiou, A.; Karagiannidis, A.; Kalogirou, S.

    2010-01-01

    The main aim of this study is the integrated assessment of a proposed Waste-to-Energy facility that could contribute in the Municipal Solid Waste Management system of the Region of Central Greece. In the context of this paper alternative transfer schemes for supplying the candidate facility were assessed considering local conditions and economical criteria. A mixed-integer linear programming model was applied for the determination of optimum locations of Transfer Stations for an efficient supplying chain between the waste producers and the Waste-to-Energy facility. Moreover different Regional Waste Management Scenarios were assessed against multiple criteria, via the Multi Criteria Decision Making method ELECTRE III. The chosen criteria were total cost, Biodegradable Municipal Waste diversion from landfill, energy recovery and Greenhouse Gas emissions and the analysis demonstrated that a Waste Management Scenario based on a Waste-to-Energy plant with an adjacent landfill for disposal of the residues would be the best performing option for the Region, depending however on the priorities of the decision makers. In addition the study demonstrated that efficient planning is necessary and the case of three sanitary landfills operating in parallel with the WtE plant in the study area should be avoided. Moreover alternative cases of energy recovery of the candidate Waste-to-Energy facility were evaluated against the requirements of the new European Commission Directive on waste in order for the facility to be recognized as recovery operation. The latter issue is of high significance and the decision makers in European Union countries should take it into account from now on, in order to plan and implement facilities that recover energy efficiently. Finally a sensitivity check was performed in order to evaluate the effects of increased recycling rate, on the calorific value of treated Municipal Solid Waste and the gate fee of the candidate plant and found that increased

  16. The CUTLASS database facilities

    International Nuclear Information System (INIS)

    Jervis, P.; Rutter, P.

    1988-09-01

    The enhancement of the CUTLASS database management system to provide improved facilities for data handling is seen as a prerequisite to its effective use for future power station data processing and control applications. This particularly applies to the larger projects such as AGR data processing system refurbishments, and the data processing systems required for the new Coal Fired Reference Design stations. In anticipation of the need for improved data handling facilities in CUTLASS, the CEGB established a User Sub-Group in the early 1980's to define the database facilities required by users. Following the endorsement of the resulting specification and a detailed design study, the database facilities have been implemented as an integral part of the CUTLASS system. This paper provides an introduction to the range of CUTLASS Database facilities, and emphasises the role of Database as the central facility around which future Kit 1 and (particularly) Kit 6 CUTLASS based data processing and control systems will be designed and implemented. (author)

  17. Cathare2 V1.3E post-test computations of SPE-1 and SPE-2 experiments at PMK-NVH facility

    International Nuclear Information System (INIS)

    Belliard, M.; Laugier, E.

    1994-01-01

    This paper presents the first CATHARE2 V1.3E simulations of the SPE-2 transients at PMK-NVH loop. Concerning the SPE-1 and the SPE-2 experimentations at PMK-NVH, it contains a description of the facilities and the transient, as well as different conditions of use. The paper includes also a presentation of the CATHARE2 model and different type of computation, such as the steady state computation or SPE-1 and SPE-2 transient (TEC). 4 refs., 12 figs., 4 tabs

  18. Computer Operating System Maintenance.

    Science.gov (United States)

    1982-06-01

    FACILITY The Computer Management Information Facility ( CMIF ) system was developed by Rapp Systems to fulfill the need at the CRF to record and report on...computer center resource usage and utilization. The foundation of the CMIF system is a System 2000 data base (CRFMGMT) which stores and permits access

  19. Parallel Algorithm for Incremental Betweenness Centrality on Large Graphs

    KAUST Repository

    Jamour, Fuad Tarek

    2017-10-17

    Betweenness centrality quantifies the importance of nodes in a graph in many applications, including network analysis, community detection and identification of influential users. Typically, graphs in such applications evolve over time. Thus, the computation of betweenness centrality should be performed incrementally. This is challenging because updating even a single edge may trigger the computation of all-pairs shortest paths in the entire graph. Existing approaches cannot scale to large graphs: they either require excessive memory (i.e., quadratic to the size of the input graph) or perform unnecessary computations rendering them prohibitively slow. We propose iCentral; a novel incremental algorithm for computing betweenness centrality in evolving graphs. We decompose the graph into biconnected components and prove that processing can be localized within the affected components. iCentral is the first algorithm to support incremental betweeness centrality computation within a graph component. This is done efficiently, in linear space; consequently, iCentral scales to large graphs. We demonstrate with real datasets that the serial implementation of iCentral is up to 3.7 times faster than existing serial methods. Our parallel implementation that scales to large graphs, is an order of magnitude faster than the state-of-the-art parallel algorithm, while using an order of magnitude less computational resources.

  20. Centralized Monitoring of the Microsoft Windows-based computers of the LHC Experiment Control Systems

    International Nuclear Information System (INIS)

    Varela Rodriguez, F

    2011-01-01

    The control system of each of the four major Experiments at the CERN Large Hadron Collider (LHC) is distributed over up to 160 computers running either Linux or Microsoft Windows. A quick response to abnormal situations of the computer infrastructure is crucial to maximize the physics usage. For this reason, a tool was developed to supervise, identify errors and troubleshoot such a large system. Although the monitoring of the performance of the Linux computers and their processes was available since the first versions of the tool, it is only recently that the software package has been extended to provide similar functionality for the nodes running Microsoft Windows as this platform is the most commonly used in the LHC detector control systems. In this paper, the architecture and the functionality of the Windows Management Instrumentation (WMI) client developed to provide centralized monitoring of the nodes running different flavour of the Microsoft platform, as well as the interface to the SCADA software of the control systems are presented. The tool is currently being commissioned by the Experiments and it has already proven to be very efficient optimize the running systems and to detect misbehaving processes or nodes.

  1. Centralized Monitoring of the Microsoft Windows-based computers of the LHC Experiment Control Systems

    Science.gov (United States)

    Varela Rodriguez, F.

    2011-12-01

    The control system of each of the four major Experiments at the CERN Large Hadron Collider (LHC) is distributed over up to 160 computers running either Linux or Microsoft Windows. A quick response to abnormal situations of the computer infrastructure is crucial to maximize the physics usage. For this reason, a tool was developed to supervise, identify errors and troubleshoot such a large system. Although the monitoring of the performance of the Linux computers and their processes was available since the first versions of the tool, it is only recently that the software package has been extended to provide similar functionality for the nodes running Microsoft Windows as this platform is the most commonly used in the LHC detector control systems. In this paper, the architecture and the functionality of the Windows Management Instrumentation (WMI) client developed to provide centralized monitoring of the nodes running different flavour of the Microsoft platform, as well as the interface to the SCADA software of the control systems are presented. The tool is currently being commissioned by the Experiments and it has already proven to be very efficient optimize the running systems and to detect misbehaving processes or nodes.

  2. Spatial interaction models facility location using game theory

    CERN Document Server

    D'Amato, Egidio; Pardalos, Panos

    2017-01-01

    Facility location theory develops the idea of locating one or more facilities by optimizing suitable criteria such as minimizing transportation cost, or capturing the largest market share. The contributions in this book focus an approach to facility location theory through game theoretical tools highlighting situations where a location decision is faced by several decision makers and leading to a game theoretical framework in non-cooperative and cooperative methods. Models and methods regarding the facility location via game theory are explored and applications are illustrated through economics, engineering, and physics. Mathematicians, engineers, economists and computer scientists working in theory, applications and computational aspects of facility location problems using game theory will find this book useful.

  3. Facility Description 2012. Summary report of the encapsulation plant and disposal facility designs

    International Nuclear Information System (INIS)

    Palomaeki, J.; Ristimaeki, L.

    2013-10-01

    The purpose of the facility description is to be a specific summary report of the scope of Posiva's nuclear facilities (encapsulation plant and disposal facility) in Olkiluoto. This facility description is based on the 2012 designs and completing Posiva working reports. The facility description depicts the nuclear facilities and their operation as the disposal of spent nuclear fuel starts in Olkiluoto in about 2020. According to the decisions-in-principle of the government, the spent nuclear fuel from Loviisa and Olkiluoto nuclear power plants in operation and in future cumulative spent nuclear fuel from Loviisa 1 and 2, Olkiluoto 1, 2, 3 and 4 nuclear power plants, is permitted to be disposed of in Olkiluoto bedrock. The design of the disposal facility is based on the KBS-3V concept (vertical disposal). Long-term safety concept is based on the multi-barrier principle i.e. several release barriers, which ensure one another so that insufficiency in the performance of one barrier doesn't jeopardize long-term safety of the disposal. The release barriers are the following: canister, bentonite buffer and deposition tunnel backfill, and the host rock around the repository. The canisters are installed into the deposition holes, which are bored to the floor of the deposition tunnels. The canisters are enveloped with compacted bentonite blocks, which swell after absorbing water. The surrounding bedrock and the central and access tunnel backfill provide additional retardation, retention, and dilution. The nuclear facilities consist of an encapsulation plant and of underground final disposal facility including other aboveground buildings and surface structures serving the facility. The access tunnel and ventilation shafts to the underground disposal facility and some auxiliary rooms are constructed as a part of ONKALO underground rock characterization facility during years 2004-2014. The construction works needed for the repository start after obtaining the construction

  4. Collaboration between J-PARC and computing science

    International Nuclear Information System (INIS)

    Nakatani, Takeshi; Inamura, Yasuhiro

    2010-01-01

    Many world-forefront experimental apparatuses are under construction at Materials and Life Science Facility of Japan Proton Accelerator Research Complex (J-PARC), and new experimental methods supported by the computer facility are under development towards practical use. Many problems, however, remains to be developed as a large open use facility under the Low for Promotion of Public Utilization. Some of them need the cooperation of experimental scientists and computer scientists to be solved. Present status of the computing ability at Materials and Life Science Facility of J-PARC, and research results expected to be brought by the collaboration of experimental- and computer-scientists are described. (author)

  5. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Felicia Angelica [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.; Waymire, Russell L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Security Systems Analysis Dept.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  6. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-01-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documents have also been provided to KHNP-CRI.

  7. Plancton: an opportunistic distributed computing project based on Docker containers

    Science.gov (United States)

    Concas, Matteo; Berzano, Dario; Bagnasco, Stefano; Lusso, Stefano; Masera, Massimo; Puccio, Maximiliano; Vallero, Sara

    2017-10-01

    The computing power of most modern commodity computers is far from being fully exploited by standard usage patterns. In this work we describe the development and setup of a virtual computing cluster based on Docker containers used as worker nodes. The facility is based on Plancton: a lightweight fire-and-forget background service. Plancton spawns and controls a local pool of Docker containers on a host with free resources, by constantly monitoring its CPU utilisation. It is designed to release the resources allocated opportunistically, whenever another demanding task is run by the host user, according to configurable policies. This is attained by killing a number of running containers. One of the advantages of a thin virtualization layer such as Linux containers is that they can be started almost instantly upon request. We will show how fast the start-up and disposal of containers eventually enables us to implement an opportunistic cluster based on Plancton daemons without a central control node, where the spawned Docker containers behave as job pilots. Finally, we will show how Plancton was configured to run up to 10 000 concurrent opportunistic jobs on the ALICE High-Level Trigger facility, by giving a considerable advantage in terms of management compared to virtual machines.

  8. Physics and detector simulation facility Type O workstation specifications

    International Nuclear Information System (INIS)

    Chartrand, G.; Cormell, L.R.; Hahn, R.; Jacobson, D.; Johnstad, H.; Leibold, P.; Marquez, M.; Ramsey, B.; Roberts, L.; Scipioni, B.; Yost, G.P.

    1990-11-01

    This document specifies the requirements for the front-end network of workstations of a distributed computing facility. This facility will be needed to perform the physics and detector simulations for the design of Superconducting Super Collider (SSC) detectors, and other computations in support of physics and detector needs. A detailed description of the computer simulation facility is given in the overall system specification document. This document provides revised subsystem specifications for the network of monitor-less Type 0 workstations. The requirements specified in this document supersede the requirements given. In Section 2 a brief functional description of the facility and its use are provided. The list of detailed specifications (vendor requirements) is given in Section 3 and the qualifying requirements (benchmarks) are described in Section 4

  9. Cardiac tamponade in an infant during contrast infusion through central venous catheter for chest computed tomography; Tamponamento cardiaco durante infusao de contraste em acesso venoso central para realizacao de tomografia computadorizada do torax em lactente

    Energy Technology Data Exchange (ETDEWEB)

    Daud, Danilo Felix; Campos, Marcos Menezes Freitas de; Fleury Neto, Augusto de Padua [Hospital Geral de Palmas, TO (Brazil)

    2013-11-15

    Complications from central venous catheterization include infectious conditions, pneumothorax, hemothorax and venous thrombosis. Pericardial effusion with cardiac tamponade hardly occurs, and in infants is generally caused by umbilical catheterization. The authors describe the case of cardiac tamponade occurred in an infant during chest computed tomography with contrast infusion through a central venous catheter inserted into the right internal jugular vein. (author)

  10. A distributed process monitoring system for nuclear powered electrical generating facilities

    International Nuclear Information System (INIS)

    Sweney, A.D.

    1991-01-01

    Duke Power Company is one of the largest investor owned utilities in the United States, with a service area of 20,000 square miles extending across North and South Carolina. Oconee Nuclear Station, one of Duke Power's three nuclear generating facilities, is a three unit pressurized water reactor site and has, over the course of its 15-year operating lifetime, effectively run out of plant processing capability. From a severely overcrowded cable spread room to an aging overtaxed Operator Aid Computer, the problems with trying to add additional process variables to the present centralized Operator Aid Computer are almost insurmountable obstacles. This paper reports that for this reason, and to realize the inherent benefits of a distributed process monitoring and control system, Oconee has embarked on a project to demonstrate the ability of a distributed system to perform in the nuclear power plant environment

  11. Argonne Leadership Computing Facility 2011 annual report : Shaping future supercomputing.

    Energy Technology Data Exchange (ETDEWEB)

    Papka, M.; Messina, P.; Coffey, R.; Drugan, C. (LCF)

    2012-08-16

    The ALCF's Early Science Program aims to prepare key applications for the architecture and scale of Mira and to solidify libraries and infrastructure that will pave the way for other future production applications. Two billion core-hours have been allocated to 16 Early Science projects on Mira. The projects, in addition to promising delivery of exciting new science, are all based on state-of-the-art, petascale, parallel applications. The project teams, in collaboration with ALCF staff and IBM, have undertaken intensive efforts to adapt their software to take advantage of Mira's Blue Gene/Q architecture, which, in a number of ways, is a precursor to future high-performance-computing architecture. The Argonne Leadership Computing Facility (ALCF) enables transformative science that solves some of the most difficult challenges in biology, chemistry, energy, climate, materials, physics, and other scientific realms. Users partnering with ALCF staff have reached research milestones previously unattainable, due to the ALCF's world-class supercomputing resources and expertise in computation science. In 2011, the ALCF's commitment to providing outstanding science and leadership-class resources was honored with several prestigious awards. Research on multiscale brain blood flow simulations was named a Gordon Bell Prize finalist. Intrepid, the ALCF's BG/P system, ranked No. 1 on the Graph 500 list for the second consecutive year. The next-generation BG/Q prototype again topped the Green500 list. Skilled experts at the ALCF enable researchers to conduct breakthrough science on the Blue Gene system in key ways. The Catalyst Team matches project PIs with experienced computational scientists to maximize and accelerate research in their specific scientific domains. The Performance Engineering Team facilitates the effective use of applications on the Blue Gene system by assessing and improving the algorithms used by applications and the techniques used to

  12. Hanford facility dangerous waste Part A, Form 3, and Part B permit application documentation for the Central Waste Complex (WA7890008967) (TSD: TS-2-4)

    International Nuclear Information System (INIS)

    Saueressig, D.G.

    1998-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, operating, treatment, storage, and/or disposal units, such as the Central Waste Complex (this document, DOE/RL-91-17). Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the content of the Part B permit application guidance prepared by the Washington State Department of Ecology (Ecology 1996) and the U.S. Environmental Protection Agency (40 Code of Federal Regulations 270), with additional information needed by the Hazardous and Solid Waste Amendments and revisions of Washington Administrative Code 173-303. For ease of reference, the Washington State Department of Ecology alpha-numeric section identifiers from the permit application guidance documentation (Ecology 1996) follow, in brackets, the chapter headings and subheadings. A checklist indicating where information is contained in the Central Waste Complex permit application documentation, in relation to the Washington State Department of Ecology guidance, is located in the Contents section. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Wherever appropriate, the Central Waste Complex permit application documentation makes cross-reference to the General Information Portion, rather than duplicating text. Information provided in this Central Waste Complex permit application documentation is current as of May 1998

  13. A stand alone computer system to aid the development of mirror fusion test facility RF heating systems

    International Nuclear Information System (INIS)

    Thomas, R.A.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) control system architecture requires the Supervisory Control and Diagnostic System (SCDS) to communicate with a LSI-11 Local Control Computer (LCC) that in turn communicates via a fiber optic link to CAMAC based control hardware located near the machine. In many cases, the control hardware is very complex and requires a sizable development effort prior to being integrated into the overall MFTF-B system. One such effort was the development of the Electron Cyclotron Resonance Heating (ECRH) system. It became clear that a stand alone computer system was needed to simulate the functions of SCDS. This paper describes the hardware and software necessary to implement the SCDS Simulation Computer (SSC). It consists of a Digital Equipment Corporation (DEC) LSI-11 computer and a Winchester/Floppy disk operating under the DEC RT-11 operating system. All application software for MFTF-B is programmed in PASCAL, which allowed us to adapt procedures originally written for SCDS to the SSC. This nearly identical software interface means that software written during the equipment development will be useful to the SCDS programmers in the integration phase

  14. Los Alamos Plutonium Facility Waste Management System

    International Nuclear Information System (INIS)

    Smith, K.; Montoya, A.; Wieneke, R.; Wulff, D.; Smith, C.; Gruetzmacher, K.

    1997-01-01

    This paper describes the new computer-based transuranic (TRU) Waste Management System (WMS) being implemented at the Plutonium Facility at Los Alamos National Laboratory (LANL). The Waste Management System is a distributed computer processing system stored in a Sybase database and accessed by a graphical user interface (GUI) written in Omnis7. It resides on the local area network at the Plutonium Facility and is accessible by authorized TRU waste originators, count room personnel, radiation protection technicians (RPTs), quality assurance personnel, and waste management personnel for data input and verification. Future goals include bringing outside groups like the LANL Waste Management Facility on-line to participate in this streamlined system. The WMS is changing the TRU paper trail into a computer trail, saving time and eliminating errors and inconsistencies in the process

  15. The development and operation of the international solar-terrestrial physics central data handling facility

    Science.gov (United States)

    Lehtonen, Kenneth

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) International Solar-Terrestrial Physics (ISTP) Program is committed to the development of a comprehensive, multi-mission ground data system which will support a variety of national and international scientific missions in an effort to study the flow of energy from the sun through the Earth-space environment, known as the geospace. A major component of the ISTP ground data system is an ISTP-dedicated Central Data Handling Facility (CDHF). Acquisition, development, and operation of the ISTP CDHF were delegated by the ISTP Project Office within the Flight Projects Directorate to the Information Processing Division (IPD) within the Mission Operations and Data Systems Directorate (MO&DSD). The ISTP CDHF supports the receipt, storage, and electronic access of the full complement of ISTP Level-zero science data; serves as the linchpin for the centralized processing and long-term storage of all key parameters generated either by the ISTP CDHF itself or received from external, ISTP Program approved sources; and provides the required networking and 'science-friendly' interfaces for the ISTP investigators. Once connected to the ISTP CDHF, the online catalog of key parameters can be browsed from their remote processing facilities for the immediate electronic receipt of selected key parameters using the NASA Science Internet (NSI), managed by NASA's Ames Research Center. The purpose of this paper is twofold: (1) to describe how the ISTP CDHF was successfully implemented and operated to support initially the Japanese Geomagnetic Tail (GEOTAIL) mission and correlative science investigations, and (2) to describe how the ISTP CDHF has been enhanced to support ongoing as well as future ISTP missions. Emphasis will be placed on how various project management approaches were undertaken that proved to be highly effective in delivering an operational ISTP CDHF to the Project on schedule and

  16. Quality Assurance Project Plan for Closure of the Central Facilities Area Sewage Treatment Plant Lagoon 3 and Land Application Area

    International Nuclear Information System (INIS)

    Lewis, Michael G.

    2016-01-01

    This quality assurance project plan describes the technical requirements and quality assurance activities of the environmental data collection/analyses operations to close Central Facilities Area Sewage treatment Plant Lagoon 3 and the land application area. It describes the organization and persons involved, the data quality objectives, the analytical procedures, and the specific quality control measures to be employed. All quality assurance project plan activities are implemented to determine whether the results of the sampling and monitoring performed are of the right type, quantity, and quality to satisfy the requirements for closing Lagoon 3 and the land application area.

  17. Quality Assurance Project Plan for Closure of the Central Facilities Area Sewage Treatment Plant Lagoon 3 and Land Application Area

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-10-01

    This quality assurance project plan describes the technical requirements and quality assurance activities of the environmental data collection/analyses operations to close Central Facilities Area Sewage treatment Plant Lagoon 3 and the land application area. It describes the organization and persons involved, the data quality objectives, the analytical procedures, and the specific quality control measures to be employed. All quality assurance project plan activities are implemented to determine whether the results of the sampling and monitoring performed are of the right type, quantity, and quality to satisfy the requirements for closing Lagoon 3 and the land application area.

  18. Development of a Computer Program for an Analysis of the Logistics and Transportation Costs of the PWR Spent Fuels in Korea

    International Nuclear Information System (INIS)

    Cha, Jeong Hun; Choi, Heui Joo; Lee, Jong Youl; Choi, Jong Won

    2009-01-01

    It is expected that a substantial amount of spent fuels will be transported from the four nuclear power plant (NPP) sites in Korea to a hypothetical centralized interim storage facility or a final repository in the near future. The cost for the transportation is proportional to the amount of spent fuels. In this paper, a cost estimation program is developed based on the conceptual design of a transportation system and a logistics analysis. Using the developed computer program, named as CASK, the minimum capacity of a centralized interim storage facility (CISF) and the transportation cost for PWR spent fuels are calculated. The PWR spent fuels are transported from 4 NPP sites to a final repository (FR) via the CISF. Since NPP sites and the CISF are located along the coast, a sea-transportation is considered and a road-transportation is considered between the CISF and the FR. The result shows that the minimum capacity of the interim storage facility is 15,000 MTU

  19. Navier-Stokes Simulation of Airconditioning Facility of a Large Modem Computer Room

    Science.gov (United States)

    2005-01-01

    NASA recently assembled one of the world's fastest operational supercomputers to meet the agency's new high performance computing needs. This large-scale system, named Columbia, consists of 20 interconnected SGI Altix 512-processor systems, for a total of 10,240 Intel Itanium-2 processors. High-fidelity CFD simulations were performed for the NASA Advanced Supercomputing (NAS) computer room at Ames Research Center. The purpose of the simulations was to assess the adequacy of the existing air handling and conditioning system and make recommendations for changes in the design of the system if needed. The simulations were performed with NASA's OVERFLOW-2 CFD code which utilizes overset structured grids. A new set of boundary conditions were developed and added to the flow solver for modeling the roomls air-conditioning and proper cooling of the equipment. Boundary condition parameters for the flow solver are based on cooler CFM (flow rate) ratings and some reasonable assumptions of flow and heat transfer data for the floor and central processing units (CPU) . The geometry modeling from blue prints and grid generation were handled by the NASA Ames software package Chimera Grid Tools (CGT). This geometric model was developed as a CGT-scripted template, which can be easily modified to accommodate any changes in shape and size of the room, locations and dimensions of the CPU racks, disk racks, coolers, power distribution units, and mass-storage system. The compute nodes are grouped in pairs of racks with an aisle in the middle. High-speed connection cables connect the racks with overhead cable trays. The cool air from the cooling units is pumped into the computer room from a sub-floor through perforated floor tiles. The CPU cooling fans draw cool air from the floor tiles, which run along the outside length of each rack, and eject warm air into the center isle between the racks. This warm air is eventually drawn into the cooling units located near the walls of the room. One

  20. Maintenance facilities, stores and records

    International Nuclear Information System (INIS)

    Fischer, K.

    1986-01-01

    The topics of this report are: on-site or off-site facilities. On-site facilities: workshops and special facilities. KWU's Service Center, a typical off-site supporting facility in Germany, capabilities and activities. A pool for special tools and equipment: devices for plugging of nozzles, for handling of RPU-studs and RPU internals etc. Devices for and management of radiological protection on-site for typical outage work. Spare parts and spare part management on site, typical examples. KWU's centralized spare part pools for components, generators and turbines etc. A computerized system for spare parts storage and maintenance planning. A system for mutual exchange of operational experience with respect to maintenance and repair activities. Systematic evaluation of failures and statistical results. (orig./GL)

  1. Computer Aided Mathematics

    DEFF Research Database (Denmark)

    Sinclair, Robert

    1998-01-01

    Course notes of a PhD course held in 1998. The central idea is to introduce students to computational mathematics using object oriented programming in C++.......Course notes of a PhD course held in 1998. The central idea is to introduce students to computational mathematics using object oriented programming in C++....

  2. Exercise evaluation and simulation facility

    International Nuclear Information System (INIS)

    Meitzler, W.D.; Jaske, R.T.

    1983-12-01

    The Exercise Evaluation and Simulation Facility (EESF) is a mini computer based system that will serve as a tool to aid FEMA in the evaluation of radiological emergency plans and preparedness around commercial nucler power facilities. The EESF integrates the following resources: a meteorological model, dose model, evacuation model, map information, and exercise information into a single system. Thus the user may access these various resources concurrently, and on completion display the results on a color graphic display or hardcopy unit. A unique capability made possible by the integration of these models is the computation of estimated total dose to the population

  3. Nuclear fuel cycle facilities in the world (excluding the centrally planned economies)

    International Nuclear Information System (INIS)

    1979-01-01

    Information on the existing, under construction and planned fuel cycle facilities in the various countries is presented. Some thirty countries have activities related to different nuclear fuel cycle steps and the information covers the capacity, status, location, and the names of owners of the facilities

  4. The role of micro size computing clusters for small physics groups

    International Nuclear Information System (INIS)

    Shevel, A Y

    2014-01-01

    A small physics group (3-15 persons) might use a number of computing facilities for the analysis/simulation, developing/testing, teaching. It is discussed different types of computing facilities: collaboration computing facilities, group local computing cluster (including colocation), cloud computing. The author discuss the growing variety of different computing options for small groups and does emphasize the role of the group owned computing cluster of micro size.

  5. Computer Security Incident Response Planning at Nuclear Facilities

    International Nuclear Information System (INIS)

    2016-06-01

    The purpose of this publication is to assist Member States in developing comprehensive contingency plans for computer security incidents with the potential to impact nuclear security and/or nuclear safety. It provides an outline and recommendations for establishing a computer security incident response capability as part of a computer security programme, and considers the roles and responsibilities of the system owner, operator, competent authority, and national technical authority in responding to a computer security incident with possible nuclear security repercussions

  6. Challenges for proteomics core facilities.

    Science.gov (United States)

    Lilley, Kathryn S; Deery, Michael J; Gatto, Laurent

    2011-03-01

    Many analytical techniques have been executed by core facilities established within academic, pharmaceutical and other industrial institutions. The centralization of such facilities ensures a level of expertise and hardware which often cannot be supported by individual laboratories. The establishment of a core facility thus makes the technology available for multiple researchers in the same institution. Often, the services within the core facility are also opened out to researchers from other institutions, frequently with a fee being levied for the service provided. In the 1990s, with the onset of the age of genomics, there was an abundance of DNA analysis facilities, many of which have since disappeared from institutions and are now available through commercial sources. Ten years on, as proteomics was beginning to be utilized by many researchers, this technology found itself an ideal candidate for being placed within a core facility. We discuss what in our view are the daily challenges of proteomics core facilities. We also examine the potential unmet needs of the proteomics core facility that may also be applicable to proteomics laboratories which do not function as core facilities. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Centralized disassembly and packaging of spent fuel in the DOE spent fuel management system

    International Nuclear Information System (INIS)

    Johnson, E.R.

    1986-01-01

    In October 1984, E.R. Johnson Associates, Inc. (JAI) initiated a study of the prospective use of a centralized facility for the disassembly and packaging of spent fuel to support the various elements of the US Dept. of Energy (DOE) spent fuel management system, including facilities for monitored retrievable storage (MRS) and repositories. It was DOE's original plan to receive spent fuel at each repository where it would be disassembled and packaged (overpacked) for disposal purposes. Subsequently, DOE considered the prospective use of MRS of spent fuel as an option for providing safe and reliable management of spent fuel. This study was designed to consider possible advantages of the use of centralized facilities for disassembly and packaging of spent fuel at whose location storage facilities could be added as required. The study was divided into three principal technical tasks that covered: (a) development of requirements and criteria for the central disassembly and packaging facility and associated systems. (2) Development of conceptual designs for the central disassembly and packaging facility and associated systems. (3) Estimation of capital and operating costs involved for all system facilities and determination of life cycle costs for various scenarios of operation - for comparison with the reference system

  8. Experimental facility for containment sump reliability studies (Generic Task A-43)

    International Nuclear Information System (INIS)

    Durgin, W.W.; Padmanabhan, M.; Janik, C.R.

    1980-12-01

    On July 3, 1979, Sandia National Laboratories (Sandia) contracted the Alden Research Laboratory (ARL) to conduct tests on unresolved safety issues associated with containment sump performance during the recirculation mode (Generic Task A-43). This report describes the test facility constructed and completed under Phase I, Task III of the contract. Sump performance is determined through the observation of vortex formation in the main tank and the measurement of swirl, pressure gradient, and entrained air in the suction pipes. The use of electrically operated valves and a sophisticated data acquisition system, with computer interface, allows the test flow parameters to be set and test data to be taken (with the exception of vortex observations) from a single central office

  9. UNI C - A True Internet Pioneer, the Danish Computing Centre for Research and Education

    DEFF Research Database (Denmark)

    Olesen, Dorte

    2015-01-01

    that small computers could now be purchased for local use by the university departments whereas the need for high performance computing could only be satisfied by a joint national purchase and advanced network access to this central computer facility.The new center was named UNI-C and succeeded in helping...... Danish frontline research to use innovative computing techniques and have major breakthroughs using the first massively parallel computer architectures, but the greatest impact of UNI-C on Danish society was the successful early roll out of the Internet to universities with a follow-up of establishing...... the first Danish Internet service to ordinary PC users. This very first Internet service became a great success and helped to put Denmark on the international map as one of the very early Internet adopters. It also meant that UNI-C was tasked by the Ministry of Education with delivering a number...

  10. Computer control and data acquisition system for the Mirror Fusion Test Facility Ion Cyclotron Resonant Heating System (ICRH)

    International Nuclear Information System (INIS)

    Cheshire, D.L.; Thomas, R.A.

    1985-01-01

    The Lawrence Livermore National Laboratory (LLNL) large Mirror Fusion Test Facility (MFTF-B) will employ an Ion Cyclotron Resonant Heating (ICRH) system for plasma startup. As the MFTF-B Industrial Participant, TRW has responsibility for the ICRH system, including development of the data acquisition and control system. During the MFTF-B Supervisory Control and Diagnostic System (SCDS). For subsystem development and checkout at TRW, and for verification and acceptance testing at LLNL, the system will be run from a stand-alone computer system designed to simulate the functions of SCDS. The ''SCDS Simulator'' was developed originally for the MFTF-B ECRH System; descriptions of the hardware and software are updated in this paper. The computer control and data acquisition functions implemented for ICRH are described, including development status, and test schedule at TRW and at LLNL. The application software is written for the SCDS Simulator, but it is programmed in PASCAL and designed to facilitate conversion for use on the SCDS computers

  11. A guide for the selection of computer assisted mapping (CAM) and facilities informations systems

    Energy Technology Data Exchange (ETDEWEB)

    Haslin, S.; Baxter, P.; Jarvis, L.

    1980-12-01

    Many distribution engineers are now aware that computer assisted mapping (CAM) and facilities informations systems are probably the most significant breakthrough to date in computer applications for distribution engineering. The Canadian Electrical Asociation (CEA) recognized this and requested engineers of B.C. Hydro make a study of the state of the art in Canadian utilities and the progress of CAM systems on an international basis. The purpose was to provide a guide to assist Canadian utility distribution engineers faced with the problem of studying the application of CAM systems as an alternative to present methods, consideration being given to the long-term and other benefits that were perhaps not apparent for those approaching this field for the first time. It soon became apparent that technology was developing at a high rate and competition in the market was very strong. Also a number of publications were produced by other sources which adequately covered the scope of this study. This report is thus a collection of references to reports, manuals, and other documents with a few considerations provided for those companies interested in exploring further the use of interactive graphics. 24 refs.

  12. LLL transient-electromagnetics-measurement facility

    International Nuclear Information System (INIS)

    Deadrick, F.J.; Miller, E.K.; Hudson, H.G.

    1975-01-01

    The operation and hardware of the Lawrence Livermore Laboratory's transient-electromagnetics (EM)-measurement facility are described. The transient-EM range is useful for determining the time-domain transient responses of structures to incident EM pulses. To illustrate the accuracy and utility of the EM-measurement facility, actual experimental measurements are compared to numerically computed values

  13. Savannah River Site Surplus Facilities Available for Reuse

    International Nuclear Information System (INIS)

    Clarke, R.M.; Owens, M.B.; Lentz, D.W.

    1995-01-01

    The purpose of this document is to provide a current, centralized list of Savannah River Site facilities, which are surplus and available for reuse. These surplus facilities may be made available for other DOE site missions, commercial economic development reuse, or other governmental reuse. SRS procedures also require that before new construction can be approved, available surplus facilities are screened for possible reuse in lieu of the proposed new construction

  14. Relativistic heavy ion facilities: worldwide

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs

  15. Automating an EXAFS facility: hardware and software considerations

    International Nuclear Information System (INIS)

    Georgopoulos, P.; Sayers, D.E.; Bunker, B.; Elam, T.; Grote, W.A.

    1981-01-01

    The basic design considerations for computer hardware and software, applicable not only to laboratory EXAFS facilities, but also to synchrotron installations, are reviewed. Uniformity and standardization of both hardware configurations and program packages for data collection and analysis are heavily emphasized. Specific recommendations are made with respect to choice of computers, peripherals, and interfaces, and guidelines for the development of software packages are set forth. A description of two working computer-interfaced EXAFS facilities is presented which can serve as prototypes for future developments. 3 figures

  16. Computer control and monitoring of neutral beam injectors on the 2XIIB CTR experiment at LLL

    International Nuclear Information System (INIS)

    Pollock, G.G.

    1975-01-01

    The original manual control system for the 12 neutral beam injectors on the 2XIIB Machine is being integrated with a computer control system. This, in turn, is a part of a multiple computer network comprised of the three computers which are involved in the operation and instrumentation of the 2XIIB experiment. The computer control system simplifies neutral beam operation and centralizes it to a single operating position. A special purpose console utilizes computer generated graphics and interactive function entry buttons to optimize the human/machine interface. Through the facilities of the computer network, a high level control function will be implemented for the use of the experimenter in a remotely located experiment diagnositcs area. In addition to controlling the injectors in normal operation, the computer system provides automatic conditioning of the injectors, bringing rebuilt units back to full energy output with minimum loss of useful life. The computer system also provides detail archive data recording

  17. Sports facilities: a problem of school sports in Nigeria | Olajide ...

    African Journals Online (AJOL)

    Facilities are very central to meaningful sports participation whether in School sports, amateur, recreational or competitive status. They are as important to the athletes as the laboratories are to the scientists. Without facilities sports cannot take place. This does not however imply that sports facility is the only variable that is ...

  18. Design/Installation and Structural Integrity Assessment of Bethel Valley Low-Level Waste collection and transfer system upgrade for Building 3092 (central off-gas scrubber facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-10-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in response to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lined concrete vault, replacing an existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. Ne scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation. A formal design certification statement is included herein on Page 53, a certification covering the installation shall be executed prior to placing the modified facility into service

  19. 41 CFR 105-56.027 - Centralized salary offset computer match.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Centralized salary... Services Administration 56-SALARY OFFSET FOR INDEBTEDNESS OF FEDERAL EMPLOYEES TO THE UNITED STATES Centralized Salary Offset (CSO) Procedures-GSA as Paying Agency § 105-56.027 Centralized salary offset...

  20. 41 CFR 105-56.017 - Centralized salary offset computer match.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Centralized salary... Services Administration 56-SALARY OFFSET FOR INDEBTEDNESS OF FEDERAL EMPLOYEES TO THE UNITED STATES Centralized Salary Offset (CSO) Procedures-GSA as Creditor Agency § 105-56.017 Centralized salary offset...

  1. Design of the disposal facility 2012

    International Nuclear Information System (INIS)

    Saanio, T.; Ikonen, A.; Keto, P.; Kirkkomaeki, T.; Kukkola, T.; Nieminen, J.; Raiko, H.

    2013-11-01

    The spent nuclear fuel accumulated from the nuclear power plants in Olkiluoto in Eurajoki and in Haestholmen in Loviisa will be disposed of in Olkiluoto. A facility complex will be constructed at Olkiluoto, and it will include two nuclear waste facilities according to Government Degree 736/2008. The nuclear waste facilities are an encapsulation plant, constructed to encapsulate spent nuclear fuel and a disposal facility consisting of an underground repository and other underground rooms and above ground service spaces. The repository is planned to be excavated to a depth of 400 - 450 meters. Access routes to the disposal facility are an inclined access tunnel and vertical shafts. The encapsulated fuel is transferred to the disposal facility in the canister lift. The canisters are transferred from the technical rooms to the disposal area via central tunnel and deposited in the deposition holes which are bored in the floors of the deposition tunnels and are lined beforehand with compacted bentonite blocks. Two parallel central tunnels connect all the deposition tunnels and these central tunnels are inter-connected at regular intervals. The solution improves the fire safety of the underground rooms and allows flexible backfilling and closing of the deposition tunnels in stages during the operational phase of the repository. An underground rock characterization facility, ONKALO, is excavated at the disposal level. ONKALO is designed and constructed so that it can later serve as part of the repository. The goal is that the first part of the disposal facility will be constructed under the building permit phase in the 2010's and operations will start in the 2020's. The fuel from 4 operating reactors as well the fuel from the fifth nuclear power plant under construction, has been taken into account in designing the disposal facility. According to the information from TVO and Fortum, the amount of the spent nuclear fuel is 5,440 tU. The disposal facility is being excavated

  2. EPA Facility Registry System (FRS): NCES

    Science.gov (United States)

    This web feature service contains location and facility identification information from EPA's Facility Registry System (FRS) for the subset of facilities that link to the National Center for Education Statistics (NCES). The primary federal database for collecting and analyzing data related to education in the United States and other Nations, NCES is located in the U.S. Department of Education, within the Institute of Education Sciences. FRS identifies and geospatially locates facilities, sites or places subject to environmental regulations or of environmental interest. Using vigorous verification and data management procedures, FRS integrates facility data from EPA00e2??s national program systems, other federal agencies, and State and tribal master facility records and provides EPA with a centrally managed, single source of comprehensive and authoritative information on facilities. This data set contains the subset of FRS integrated facilities that link to NCES school facilities once the NCES data has been integrated into the FRS database. Additional information on FRS is available at the EPA website http://www.epa.gov/enviro/html/fii/index.html.

  3. Irradiation facilities in JRR-3M

    International Nuclear Information System (INIS)

    Ohtomo, Akitoshi; Sigemoto, Masamitsu; Takahashi, Hidetake

    1992-01-01

    Irradiation facilities have been installed in the upgraded JRR-3 (JRR-3M) in Japan Atomic Energy Research Institute (JAERI). There are hydraulic rabbit facilities (HR), pneumatic rabbit facilities (PN), neutron activation analysis facility (PN3), uniform irradiation facility (SI), rotating irradiation facility and capsule irradiation facilities to carry out the neutron irradiation in the JRR-3M. These facilities are operated using a process control computer system to centerize the process information. Some of the characteristics for the facilities were satisfactorily measured at the same time of reactor performance test in 1990. During reactor operation, some of the tests are continued to confirm the basic characteristics on facilities, for example, PN3 was confirmed to have enough performance for activation analysis. Measurement of neutron flux at all irradiation positions has been carried out for the equilibrium core. (author)

  4. A central spent fuel storage in Sweden

    International Nuclear Information System (INIS)

    Gustafsson, B.; Hagberth, R.

    1978-01-01

    A planned central spent fuel storage facility in Sweden is described. The nuclear power program and quantities of spent fuel generated in Sweden is discussed. A general description of the facility is given with emphasis on the lay-out of the buildings, transport casks and fuel handling. Finally a possible design of a Swedish transportation system is discussed. (author)

  5. Industrial application of a graphics computer-based training system

    International Nuclear Information System (INIS)

    Klemm, R.W.

    1985-01-01

    Graphics Computer Based Training (GCBT) roles include drilling, tutoring, simulation and problem solving. Of these, Commonwealth Edison uses mainly tutoring, simulation and problem solving. These roles are not separate in any particular program. They are integrated to provide tutoring and part-task simulation, part-task simulation and problem solving, or problem solving tutoring. Commonwealth's Graphics Computer Based Training program was a result of over a year's worth of research and planning. The keys to the program are it's flexibility and control. Flexibility is maintained through stand alone units capable of program authoring and modification for plant/site specific users. Yet, the system has the capability to support up to 31 terminals with a 40 mb hard disk drive. Control of the GCBT program is accomplished through establishment of development priorities and a central development facility (Commonwealth Edison's Production Training Center)

  6. Guide to user facilities at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1984-04-01

    Lawrence Berkeley Laboratories' user facilities are described. Specific facilities include: the National Center for Electron Microscopy; the Bevalac; the SuperHILAC; the Neutral Beam Engineering Test Facility; the National Tritium Labeling Facility; the 88 inch Cyclotron; the Heavy Charged-Particle Treatment Facility; the 2.5 MeV Van de Graaff; the Sky Simulator; the Center for Computational Seismology; and the Low Background Counting Facility

  7. Multiplanar and two-dimensional imaging of central airway stenting with multidetector computed tomography

    Directory of Open Access Journals (Sweden)

    Ozgul Mehmet

    2012-08-01

    Full Text Available Abstract Background Multidetector computed tomography (MDCT provides guidance for primary screening of the central airways. The aim of our study was assessing the contribution of multidetector computed tomography- two dimensional reconstruction in the management of patients with tracheobronchial stenosis prior to the procedure and during a short follow up period of 3 months after the endobronchial treatment. Methods This is a retrospective study with data collected from an electronic database and from the medical records. Patients evaluated with MDCT and who had undergone a stenting procedure were included. A Philips RSGDT 07605 model MDCT was used, and slice thickness, 3 mm; overlap, 1.5 mm; matrix, 512x512; mass, 90 and kV, 120 were evaluated. The diameters of the airways 10 mm proximal and 10 mm distal to the obstruction were measured and the stent diameter (D was determined from the average between D upper and D lower. Results Fifty-six patients, 14 (25% women and 42 (75% men, mean age 55.3 ± 13.2 years (range: 16-79 years, were assessed by MDCT and then treated with placement of an endobronchial stent. A computed tomography review was made with 6 detector Philips RSGDT 07605 multidetector computed tomography device. Endobronchial therapy was provided for the patients with endoluminal lesions. Stents were placed into the area of stenosis in patients with external compression after dilatation and debulking procedures had been carried out. In one patient the migration of a stent was detected during the follow up period by using MDCT. Conclusions MDCT helps to define stent size, length and type in patients who are suitable for endobronchial stinting. This is a non-invasive, reliable method that helps decisions about optimal stent size and position, thus reducing complications.

  8. Characteristics of the TRISTAN control computer network

    International Nuclear Information System (INIS)

    Kurokawa, Shinichi; Akiyama, Atsuyoshi; Katoh, Tadahiko; Kikutani, Eiji; Koiso, Haruyo; Oide, Katsunobu; Shinomoto, Manabu; Kurihara, Michio; Abe, Kenichi

    1986-01-01

    Twenty-four minicomputers forming an N-to-N token-ring network control the TRISTAN accelerator complex. The computers are linked by optical fiber cables with 10 Mbps transmission speed. The software system is based on NODAL, a multicomputer interpretive language developed at the CERN SPS. The high-level services offered to the users of the network are remote execution by the EXEC, EXEC-P and IMEX commands of NODAL and uniform file access throughout the system. The network software was designed to achieve the fast response of the EXEC command. The performance of the network is also reported. Tasks that overload the minicomputers are processed on the KEK central computers. One minicomputer in the network serves as a gateway to KEKNET, which connects the minicomputer network and the central computers. The communication with the central computers is managed within the framework of the KEK NODAL system. NODAL programs communicate with the central computers calling NODAL functions; functions for exchanging data between a data set on the central computers and a NODAL variable, submitting a batch job to the central computers, checking the status of the submitted job, etc. are prepared. (orig.)

  9. Cloud Computing

    DEFF Research Database (Denmark)

    Krogh, Simon

    2013-01-01

    with technological changes, the paradigmatic pendulum has swung between increased centralization on one side and a focus on distributed computing that pushes IT power out to end users on the other. With the introduction of outsourcing and cloud computing, centralization in large data centers is again dominating...... the IT scene. In line with the views presented by Nicolas Carr in 2003 (Carr, 2003), it is a popular assumption that cloud computing will be the next utility (like water, electricity and gas) (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). However, this assumption disregards the fact that most IT production......), for instance, in establishing and maintaining trust between the involved parties (Sabherwal, 1999). So far, research in cloud computing has neglected this perspective and focused entirely on aspects relating to technology, economy, security and legal questions. While the core technologies of cloud computing (e...

  10. Hungary. Closure issues for centralized waste treatment and disposal facility in Puspokszilagy, Hungary

    International Nuclear Information System (INIS)

    2001-01-01

    The facility was commissioned in 1976. At the time that its mission was formulated, the facility was designed to collect, transport, treat as necessary and dispose all radioactive waste originating from institutional use of radioactivity. The facility is government owned and presently operated by the Budapest branch of the State Public Health and Medical Officer Services. The disposal site is located on the ridge of a hill near Puspokszilagy village approximately 40 km Northeast of Budapest. The disposal units are located in Quaternary layers of silt and clay sequences. Annual average precipitation is approximately 650-700 mm. The facility is a typical shallow land, near surface engineered type disposal unit. There are concrete trenches and shallow wells for waste disposal purposes

  11. Design of a radiation facility for very small specimens used in radiobiology studies

    Science.gov (United States)

    Rodriguez, Manuel; Jeraj, Robert

    2008-06-01

    A design of a radiation facility for very small specimens used in radiobiology is presented. This micro-irradiator has been primarily designed to irradiate partial bodies in zebrafish embryos 3-4 mm in length. A miniature x-ray, 50 kV photon beam, is used as a radiation source. The source is inserted in a cylindrical brass collimator that has a pinhole of 1.0 mm in diameter along the central axis to produce a pencil photon beam. The collimator with the source is attached underneath a computer-controlled movable table which holds the specimens. Using a 45° tilted mirror, a digital camera, connected to the computer, takes pictures of the specimen and the pinhole collimator. From the image provided by the camera, the relative distance from the specimen to the pinhole axis is calculated and coordinates are sent to the movable table to properly position the samples in the beam path. Due to its monitoring system, characteristic of the radiation beam, accuracy and precision of specimen positioning, and automatic image-based specimen recognition, this radiation facility is a suitable tool to irradiate partial bodies in zebrafish embryos, cell cultures or any other small specimen used in radiobiology research.

  12. Dynamic Thermal Loads and Cooling Requirements Calculations for V ACs System in Nuclear Fuel Processing Facilities Using Computer Aided Energy Conservation Models

    International Nuclear Information System (INIS)

    EL Fawal, M.M.; Gadalla, A.A.; Taher, B.M.

    2010-01-01

    In terms of nuclear safety, the most important function of ventilation air conditioning (VAC) systems is to maintain safe ambient conditions for components and structures important to safety inside the nuclear facility and to maintain appropriate working conditions for the plant's operating and maintenance staff. As a part of a study aimed to evaluate the performance of VAC system of the nuclear fuel cycle facility (NFCF) a computer model was developed and verified to evaluate the thermal loads and cooling requirements for different zones of fuel processing facility. The program is based on transfer function method (TFM) and it is used to calculate the dynamic heat gain by various multilayer walls constructions and windows hour by hour at any orientation of the building. The developed model was verified by comparing the obtained calculated results of the solar heat gain by a given building with the corresponding calculated values using finite difference method (FDM) and total equivalent temperature different method (TETD). As an example the developed program is used to calculate the cooling loads of the different zones of a typical nuclear fuel facility the results showed that the cooling capacities of the different cooling units of each zone of the facility meet the design requirements according to safety regulations in nuclear facilities.

  13. Coping with distributed computing

    International Nuclear Information System (INIS)

    Cormell, L.

    1992-09-01

    The rapid increase in the availability of high performance, cost-effective RISC/UNIX workstations has been both a blessing and a curse. The blessing of having extremely powerful computing engines available on the desk top is well-known to many users. The user has tremendous freedom, flexibility, and control of his environment. That freedom can, however, become the curse of distributed computing. The user must become a system manager to some extent, he must worry about backups, maintenance, upgrades, etc. Traditionally these activities have been the responsibility of a central computing group. The central computing group, however, may find that it can no longer provide all of the traditional services. With the plethora of workstations now found on so many desktops throughout the entire campus or lab, the central computing group may be swamped by support requests. This talk will address several of these computer support and management issues by providing some examples of the approaches taken at various HEP institutions. In addition, a brief review of commercial directions or products for distributed computing and management will be given

  14. GammaCHI: a package for the inversion and computation of the gamma and chi-square cumulative distribution functions (central and noncentral)

    NARCIS (Netherlands)

    A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)

    2015-01-01

    textabstractA Fortran 90 module GammaCHI for computing and inverting the gamma and chi-square cumulative distribution functions (central and noncentral) is presented. The main novelty of this package is the reliable and accurate inversion routines for the noncentral cumulative distribution

  15. Lustre Distributed Name Space (DNE) Evaluation at the Oak Ridge Leadership Computing Facility (OLCF)

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, James S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences; Leverman, Dustin B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences; Hanley, Jesse A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences; Oral, Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences

    2016-08-22

    This document describes the Lustre Distributed Name Space (DNE) evaluation carried at the Oak Ridge Leadership Computing Facility (OLCF) between 2014 and 2015. DNE is a development project funded by the OpenSFS, to improve Lustre metadata performance and scalability. The development effort has been split into two parts, the first part (DNE P1) providing support for remote directories over remote Lustre Metadata Server (MDS) nodes and Metadata Target (MDT) devices, while the second phase (DNE P2) addressed split directories over multiple remote MDS nodes and MDT devices. The OLCF have been actively evaluating the performance, reliability, and the functionality of both DNE phases. For these tests, internal OLCF testbed were used. Results are promising and OLCF is planning on a full DNE deployment by mid-2016 timeframe on production systems.

  16. Approximating centrality in evolving graphs: toward sublinearity

    Science.gov (United States)

    Priest, Benjamin W.; Cybenko, George

    2017-05-01

    The identification of important nodes is a ubiquitous problem in the analysis of social networks. Centrality indices (such as degree centrality, closeness centrality, betweenness centrality, PageRank, and others) are used across many domains to accomplish this task. However, the computation of such indices is expensive on large graphs. Moreover, evolving graphs are becoming increasingly important in many applications. It is therefore desirable to develop on-line algorithms that can approximate centrality measures using memory sublinear in the size of the graph. We discuss the challenges facing the semi-streaming computation of many centrality indices. In particular, we apply recent advances in the streaming and sketching literature to provide a preliminary streaming approximation algorithm for degree centrality utilizing CountSketch and a multi-pass semi-streaming approximation algorithm for closeness centrality leveraging a spanner obtained through iteratively sketching the vertex-edge adjacency matrix. We also discuss possible ways forward for approximating betweenness centrality, as well as spectral measures of centrality. We provide a preliminary result using sketched low-rank approximations to approximate the output of the HITS algorithm.

  17. Laser performance operations model (LPOM): a computational system that automates the setup and performance analysis of the national ignition facility

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M; House, R; Williams, W; Haynam, C; White, R; Orth, C; Sacks, R [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)], E-mail: shaw7@llnl.gov

    2008-05-15

    The National Ignition Facility (NIF) is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500-TW, 351-nm laser system together with a 10-m diameter target chamber with room for many target diagnostics. NIF will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. A computational system, the Laser Performance Operations Model (LPOM) has been developed and deployed that automates the laser setup process, and accurately predict laser energetics. LPOM determines the settings of the injection laser system required to achieve the desired main laser output, provides equipment protection, determines the diagnostic setup, and supplies post shot data analysis and reporting.

  18. The challenges of integrating multiple safeguards systems in a large nuclear facility

    International Nuclear Information System (INIS)

    Lavietes, A.; Liguori, C.; Pickrell, M.; Plenteda, R.; Sweet, M.

    2009-01-01

    Full-text: Implementing safeguards in a cost-effective manner in large nuclear facilities such as fuel conditioning, fuel reprocessing, and fuel fabrication plants requires the extensive use of instrumentation that is operated in unattended mode. The collected data is then periodically reviewed by the inspectors either on-site at a central location in the facility or remotely in the IAEA offices. A wide variety of instruments are deployed in large facilities, including video surveillance cameras, electronic sealing devices, non-destructive assay systems based on gamma ray and neutron detection, load cells for mass measurement, ID-readers, and other process-specific monitors. The challenge to integrate these different measurement instruments into an efficient, reliable, and secure system requires implementing standardization at various levels throughout the design process. This standardization includes the data generator behaviour and interface, networking solutions, and data security approaches. This standardization will provide a wide range of savings, including reduced training for inspectors and technicians, reduced periodic technical maintenance, reduced spare parts inventory, increased system robustness, and more predictive system behaviour. The development of standard building blocks will reduce the number of data generators required and allow implementation of simplified architectures that do not require local collection computers but rather utilize transmission of the acquired data directly to a central server via Ethernet connectivity. This approach will result in fewer system components and therefore reduced maintenance efforts and improved reliability. This paper discusses in detail the challenges and the subsequent solutions in the various areas that the IAEA Department of Safeguards has committed to pursue as the best sustainable way of maintaining the ability to implement reliable safeguards systems. (author)

  19. Centralized interim storage facility for radioactive wastes at Wuerenlingen (ZWILAG)

    International Nuclear Information System (INIS)

    Lutz, H.R.; Schnetzler, U.

    1994-01-01

    Radioactive waste management in Switzerland is the responsibility of the waste producers; in this respect, the law requires permanent, safe management of the wastes by means of final disposal. Nagra is responsible for the research and development work associated with final disposal. Processing of the wastes into a form suitable for disposal, as well as interim storage, remain the responsibility of the waste producers. In order to supplement the existing conditioning and storage facilities at the nuclear power plants and to replace the outdated waste treatment plant at the Paul Scherrer Institute (PSI) at Wuerenlingen, the operators of the Swiss nuclear power plants are planning a joint treatment and storage facility at the PSI-East site. The organisation ''Zwischenlager Wuerenlingen AG'', which was set up at the beginning of 1990, has been entrusted with this task. (author) 4 figs

  20. Centralization vs. Decentralization: A Location Analysis Approach for Librarians

    Science.gov (United States)

    Raffel, Jeffrey; Shishko, Robert

    1972-01-01

    An application of location theory to the question of centralized versus decentralized library facilities for a university, with relevance for special libraries is presented. The analysis provides models for a single library, for two or more libraries, or for decentralized facilities. (6 references) (Author/NH)

  1. Manual for operation of the multipurpose thermalhydraulic test facility TOPFLOW (Transient Two Phase Flow Test Facility)

    International Nuclear Information System (INIS)

    Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S.

    2004-07-01

    The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)

  2. Parallel Algorithm for Incremental Betweenness Centrality on Large Graphs

    KAUST Repository

    Jamour, Fuad Tarek; Skiadopoulos, Spiros; Kalnis, Panos

    2017-01-01

    : they either require excessive memory (i.e., quadratic to the size of the input graph) or perform unnecessary computations rendering them prohibitively slow. We propose iCentral; a novel incremental algorithm for computing betweenness centrality in evolving

  3. Computer-aided system for cryogenic research facilities

    International Nuclear Information System (INIS)

    Gerasimov, V.P.; Zhelamsky, M.V.; Mozin, I.V.; Repin, S.S.

    1994-01-01

    A computer-aided system is developed for the more effective choice and optimization of the design and manufacturing technologies of the superconductor for the magnet system of the International Thermonuclear Experimental Reactor (ITER) with the aim to ensure the superconductor certification. The computer-aided system provides acquisition, processing, storage and display of data describing the proceeding tests, the detection of any parameter deviations and their analysis. Besides, it generates commands for the equipment switch off in emergency situations. ((orig.))

  4. In-facility transport code review

    International Nuclear Information System (INIS)

    Spore, J.W.; Boyack, B.E.; Bohl, W.R.

    1996-07-01

    The following computer codes were reviewed by the In-Facility Transport Working Group for application to the in-facility transport of radioactive aerosols, flammable gases, and/or toxic gases: (1) CONTAIN, (2) FIRAC, (3) GASFLOW, (4) KBERT, and (5) MELCOR. Based on the review criteria as described in this report and the versions of each code available at the time of the review, MELCOR is the best code for the analysis of in-facility transport when multidimensional effects are not significant. When multi-dimensional effects are significant, GASFLOW should be used

  5. Centralized operation and monitoring system for nuclear power plants

    International Nuclear Information System (INIS)

    Kudo, Mitsuru; Sato, Hideyuki; Murata, Fumio

    1988-01-01

    According to the prospect of long term energy demand, in 2000, the nuclear power generation facilities in Japan are expected to take 15.9% of the total energy demand. From this fact, it is an important subject to supply nuclear power more stably, and in the field of instrumentation and control, many researches and developments and the incessant effort of improvement have been continued. In the central operation and monitoring system which is the center of the stable operation of nuclear power plants, the man-machine technology aiding operators by electronic and computer application technologies has been positively developed and applied. It is considered that hereafter, for the purpose of rationally heightening the operation reliability of the plants, the high quality man-machine system freely using the most advanced technologies such as high reliability digital technology, optical information transmission, knowledge engineering and so on is developed and applied. The technical trend of operation and monitoring system, the concept of heightening operation and monitoring capability, the upgrading of operation and monitoring system, and the latest operation, monitoring and control systems for nuclear power plants and waste treatment facilities are described. (K.I.)

  6. Neural computational modeling reveals a major role of corticospinal gating of central oscillations in the generation of essential tremor

    Directory of Open Access Journals (Sweden)

    Hong-en Qu

    2017-01-01

    Full Text Available Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.

  7. Neural computational modeling reveals a major role of corticospinal gating of central oscillations in the generation of essential tremor.

    Science.gov (United States)

    Qu, Hong-En; Niu, Chuanxin M; Li, Si; Hao, Man-Zhao; Hu, Zi-Xiang; Xie, Qing; Lan, Ning

    2017-12-01

    Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.

  8. Using high performance interconnects in a distributed computing and mass storage environment

    International Nuclear Information System (INIS)

    Ernst, M.

    1994-01-01

    Detector Collaborations of the HERA Experiments typically involve more than 500 physicists from a few dozen institutes. These physicists require access to large amounts of data in a fully transparent manner. Important issues include Distributed Mass Storage Management Systems in a Distributed and Heterogeneous Computing Environment. At the very center of a distributed system, including tens of CPUs and network attached mass storage peripherals are the communication links. Today scientists are witnessing an integration of computing and communication technology with the open-quote network close-quote becoming the computer. This contribution reports on a centrally operated computing facility for the HERA Experiments at DESY, including Symmetric Multiprocessor Machines (84 Processors), presently more than 400 GByte of magnetic disk and 40 TB of automoted tape storage, tied together by a HIPPI open-quote network close-quote. Focussing on the High Performance Interconnect technology, details will be provided about the HIPPI based open-quote Backplane close-quote configured around a 20 Gigabit/s Multi Media Router and the performance and efficiency of the related computer interfaces

  9. The dynamic analysis facility at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Argue, D.S.; Howatt, W.T.

    1979-10-01

    The Dynamic Analysis Facility at the Chalk River Nuclear Laboratories (CRNL) of Atomic Energy of Canada Limited (AECL) comprises a Hybrid Computer, consisting of two Applied Dynamic International AD/FIVE analog computers and a Digital Equipment Corporation (DEC) PDP-11/55 digital computer, and a Program Development System based on a DEC PDP-11/45 digital computer. This report describes the functions of the various hardware components of the Dynamic Analysis Facility and the interactions between them. A brief description of the software available to the user is also given. (auth)

  10. Nuclear and radiation safety of the centralized spent fuel storage facility in Ukraine

    International Nuclear Information System (INIS)

    Grigorash, O.V.; Dibach, O.M.; Panchenko, A.V.; Shugajlo, Ol-r P.; Kovbasenko, YU.P.; Vishemyirskij, M.P.; Bogorad, V.I.; Belykh, D.O.; Shendrovich, V.Ya.

    2017-01-01

    The paper presents the analysis of ensuring nuclear and radiation safety in the management of spent nuclear fuel at the Centralized SFSF and activities planned for Centralized SFSF life cycle stages. There are results of comparing requirements of U.S. regulatory documents used by the HOLTEC Company to design Centralized SFSF equipment staff with relevant requirements of Ukrainian regulations, results based on analysis of the most important factors of Centralized SFSF safety (strength and reliability, nuclear safety, thermal regimes and biological protection) and verified expert calculations of the SSTC NRS. The paper includes issues to be considered in further implementation of Centralized SFSF project.

  11. DNA computing models

    CERN Document Server

    Ignatova, Zoya; Zimmermann, Karl-Heinz

    2008-01-01

    In this excellent text, the reader is given a comprehensive introduction to the field of DNA computing. The book emphasizes computational methods to tackle central problems of DNA computing, such as controlling living cells, building patterns, and generating nanomachines.

  12. The emergence of care facilities in Thailand for older German-speaking people: structural backgrounds and facility operators as transnational actors.

    Science.gov (United States)

    Bender, Désirée; Hollstein, Tina; Schweppe, Cornelia

    2017-12-01

    This paper presents findings from an ethnographic study of old age care facilities for German-speaking people in Thailand. It analyses the conditions and processes behind the development and specific designs of such facilities. It first looks at the intertwinement, at the socio-structural level, of different transborder developments in which the facilities' emergence is embedded. Second, it analyses the processes that accompany the emergence, development and organisation of these facilities at the local level. In this regard, it points out the central role of the facility operators as transnational actors who mediate between different frames of reference and groups of actors involved in these facilities. It concludes that the processes of mediation and intertwining are an important and distinctive feature of the emergence of these facilities, necessitated by the fact that, although the facilities are located in Thailand, their 'markets' are in the German-speaking countries of their target groups.

  13. Performance assessment of the proposed Monitored Retrievable Storage Facility

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.; Winter, C.

    1986-02-01

    Pacific Northwest laboratory (PNL) has completed a performance evaluation of the proposed monitored retrievable storage (MRS) facility. This study was undertaken as part of the Department of Energy MRS Program at PNL. The objective of the performance evaluation was to determine whether the conceptual MRS facility would be able to process spent fuel at the specified design rate of 3600 metric tons of uranium (MTU) per year. The performance of the proposed facility was assessed using the computer model COMPACT (Computer Optimization of Processing and Cask Transport) to simulate facility operations. The COMPACT model consisted of three application models each of which addressed a different aspect of the facility's operation: MRS/waste transportation interface; cask handling capability; and disassembly/consolidation (hot cell) operations. Our conclusions, based on the assessment of design criteria for the proposed facility, are as follows: Facilities and equipment throughout the facility have capability beyond the 3600 MTU/y design requirement. This added capability provides a reserve to compensate for unexpected perturbations in shipping or handling of the spent fuel. Calculations indicate that the facility's maximum maintainable processing capability is approximately 4800 MTU/y

  14. Radiation sterilization facility for melon fly

    International Nuclear Information System (INIS)

    Danno, A.

    1985-01-01

    The melon fly (Dacus cucurbitae Coquillett) has been observed in Amami Island since l975. Kagoshima Prefecture has had a melon fly eradication project underway since 1979. A mass-fearing facility and a radiation sterilization facility were constructed in Naze in March of l98l. In the early stages of the project, sterile insects were produced at the rate of 4 x l0/sup 6/ pupae/week. In the later stages, the activity of the project was enlarged by tenfold. The conditions for design of the radiation sterilization facility, which has been developed with a central control system for automated irradiation, are examined from an engineering standpoint

  15. Three-dimensional coupled Monte Carlo-discrete ordinates computational scheme for shielding calculations of large and complex nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Y.; Fischer, U.

    2005-01-01

    Shielding calculations of advanced nuclear facilities such as accelerator based neutron sources or fusion devices of the tokamak type are complicated due to their complex geometries and their large dimensions, including bulk shields of several meters thickness. While the complexity of the geometry in the shielding calculation can be hardly handled by the discrete ordinates method, the deep penetration of radiation through bulk shields is a severe challenge for the Monte Carlo particle transport technique. This work proposes a dedicated computational scheme for coupled Monte Carlo-Discrete Ordinates transport calculations to handle this kind of shielding problems. The Monte Carlo technique is used to simulate the particle generation and transport in the target region with both complex geometry and reaction physics, and the discrete ordinates method is used to treat the deep penetration problem in the bulk shield. The coupling scheme has been implemented in a program system by loosely integrating the Monte Carlo transport code MCNP, the three-dimensional discrete ordinates code TORT and a newly developed coupling interface program for mapping process. Test calculations were performed with comparison to MCNP solutions. Satisfactory agreements were obtained between these two approaches. The program system has been chosen to treat the complicated shielding problem of the accelerator-based IFMIF neutron source. The successful application demonstrates that coupling scheme with the program system is a useful computational tool for the shielding analysis of complex and large nuclear facilities. (authors)

  16. Materials and Life Science Experimental Facility at the Japan Proton Accelerator Research Complex III: Neutron Devices and Computational and Sample Environments

    Directory of Open Access Journals (Sweden)

    Kaoru Sakasai

    2017-08-01

    Full Text Available Neutron devices such as neutron detectors, optical devices including supermirror devices and 3He neutron spin filters, and choppers are successfully developed and installed at the Materials Life Science Facility (MLF of the Japan Proton Accelerator Research Complex (J-PARC, Tokai, Japan. Four software components of MLF computational environment, instrument control, data acquisition, data analysis, and a database, have been developed and equipped at MLF. MLF also provides a wide variety of sample environment options including high and low temperatures, high magnetic fields, and high pressures. This paper describes the current status of neutron devices, computational and sample environments at MLF.

  17. Automated approach to nuclear facility safeguards effectiveness evaluation

    International Nuclear Information System (INIS)

    1977-01-01

    Concern over the security of nuclear facilities has generated a need for a reliable, time efficient, and easily applied method of evaluating the effectiveness of safeguards systems. Such an evaluation technique could be used (1) by the Nuclear Regulatory Commission to evaluate a licensee's proposal, (2) to assess the security status of a system, or (3) to design and/or upgrade nuclear facilities. The technique should be capable of starting with basic information, such as the facility layout and performance parameters for physical protection components, and analyzing that information so that a reliable overall facility evaluation is obtained. Responding to this expressed need, an automated approach to facility safeguards effectiveness evaluation has been developed. This procedure consists of a collection of functional modules for facility characterization, critical path generation, and path evaluation combined into a continuous stream of operations. The technique has been implemented on an interactive computer-timesharing system and makes use of computer graphics for the handling and presentation of information. Using this technique a thorough facility evaluation can be made by systematically varying parameters that characterize the physical protection components of a facility according to changes in perceived adversary attributes and strategy, environmental conditions, and site status

  18. AMRITA -- A computational facility

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, J.E. [California Inst. of Tech., CA (US); Quirk, J.J.

    1998-02-23

    Amrita is a software system for automating numerical investigations. The system is driven using its own powerful scripting language, Amrita, which facilitates both the composition and archiving of complete numerical investigations, as distinct from isolated computations. Once archived, an Amrita investigation can later be reproduced by any interested party, and not just the original investigator, for no cost other than the raw CPU time needed to parse the archived script. In fact, this entire lecture can be reconstructed in such a fashion. To do this, the script: constructs a number of shock-capturing schemes; runs a series of test problems, generates the plots shown; outputs the LATEX to typeset the notes; performs a myriad of behind-the-scenes tasks to glue everything together. Thus Amrita has all the characteristics of an operating system and should not be mistaken for a common-or-garden code.

  19. Centralized configuration system for a large scale farm of network booted computers

    Science.gov (United States)

    Ballestrero, S.; Brasolin, F.; Dârlea, G.-L.; Dumitru, I.; Scannicchio, D. A.; Twomey, M. S.; Vâlsan, M. L.; Zaytsev, A.

    2012-12-01

    The ATLAS trigger and data acquisition online farm is composed of nearly 3,000 computing nodes, with various configurations, functions and requirements. Maintaining such a cluster is a big challenge from the computer administration point of view, thus various tools have been adopted by the System Administration team to help manage the farm efficiently. In particular, a custom central configuration system, ConfDBv2, was developed for the overall farm management. The majority of the systems are network booted, and are running an operating system image provided by a Local File Server (LFS) via the local area network (LAN). This method guarantees the uniformity of the system and allows, in case of issues, very fast recovery of the local disks which could be used as scratch area. It also provides greater flexibility as the nodes can be reconfigured and restarted with a different operating system in a very timely manner. A user-friendly web interface offers a quick overview of the current farm configuration and status, allowing changes to be applied on selected subsets or on the whole farm in an efficient and consistent manner. Also, various actions that would otherwise be time consuming and error prone can be quickly and safely executed. We describe the design, functionality and performance of this system and its web-based interface, including its integration with other CERN and ATLAS databases and with the monitoring infrastructure.

  20. Computer applications for the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Worth, G.A.; Patterson, J.R.

    1976-01-01

    Computer applications for the FFTF reactor include plant surveillance functions and fuel handling and examination control functions. Plant surveillance systems provide the reactor operator with a selection of over forty continuously updated, formatted displays of correlated data. All data are checked for limits and validity and the operator is advised of any anomaly. Data are also recorded on magnetic tape for historical purposes. The system also provides calculated variables, such as reactor thermal power and anomalous reactivity. Supplementing the basic plant surveillance computer system is a minicomputer system that monitors the reactor cover gas to detect and characterize absorber or fuel pin failures. In addition to plant surveillance functions, computers are used in the FFTF for controlling selected refueling equipment and for post-irradiation fuel pin examination. Four fuel handling or examination systems operate under computer control with manual monitoring and over-ride capability

  1. Quality of Sulfadoxine-Pyrimethamine Given as Antimalarial Prophylaxis in Pregnant Women in Selected Health Facilities in Central Region of Ghana

    Directory of Open Access Journals (Sweden)

    Danny F. Yeboah

    2016-01-01

    Full Text Available The use of sulfadoxine-pyrimethamine (SP as an intermittent preventive treatment (IPT against malaria during pregnancy has become a policy in most sub-Sahara African countries and crucially depends on the efficacy of SP. This study sets out to evaluate the effectiveness of the SP given to the pregnant women in some selected health facilities in the Central Region of Ghana to prevent maternal malaria in pregnant women. A total of 543 pregnant women recruited from 7 selected health centres in Central Region of Ghana participated in the study. Parasite density of Plasmodium falciparum was determined from peripheral blood of the pregnant women using microscopy. High performance liquid chromatography (HPLC and dissolution tester were used to determine the quality of the SP. Malaria infection was recorded in 11.2% of pregnant women who had a history of SP consumption. SP failed the dissolution test. Pregnant women who did not receive IPT-SP were 44%. Low haemoglobin level was recorded in 73.5% of the pregnant women. The results indicated that SP was substandard. IPT-SP is ineffective in preventing malaria infection.

  2. Experience with a mobile data storage device for transfer of studies from the critical care unit to a central nuclear medicine computer

    International Nuclear Information System (INIS)

    Cradduck, T.D.; Driedger, A.A.

    1981-01-01

    The introduction of mobile scintillation cameras has enabled the more immediate provision of nuclear medicine services in areas remote from the central nuclear medicine laboratory. Since a large number of such studies involve the use of a computer for data analysis, the concurrent problem of how to transmit those data to the computer becomes critical. A device is described using hard magnetic discs as the recording media and which can be wheeled from the patient's bedside to the central computer for playback. Some initial design problems, primarily associated with the critical timing which is necessary for the collection of gated studies, were overcome and the unit has been in service for the past two years. The major limitations are the relatively small capacity of the discs and the fact that the data are recorded in list mode. These constraints result in studies having poor statistical validity. The slow turn-around time, which results from the necessity to transport the system to the department and replay the study into the computer before analysis can begin, is also of particular concern. The use of this unit has clearly demonstrated the very important role that nuclear medicine can play in the care of the critically ill patient. The introduction of a complete acquisition and analysis unit is planned so that prompt diagnostic decisions can be made available within the intensive care unit. (author)

  3. Lightweight scheduling of elastic analysis containers in a competitive cloud environment: a Docked Analysis Facility for ALICE

    Science.gov (United States)

    Berzano, D.; Blomer, J.; Buncic, P.; Charalampidis, I.; Ganis, G.; Meusel, R.

    2015-12-01

    During the last years, several Grid computing centres chose virtualization as a better way to manage diverse use cases with self-consistent environments on the same bare infrastructure. The maturity of control interfaces (such as OpenNebula and OpenStack) opened the possibility to easily change the amount of resources assigned to each use case by simply turning on and off virtual machines. Some of those private clouds use, in production, copies of the Virtual Analysis Facility, a fully virtualized and self-contained batch analysis cluster capable of expanding and shrinking automatically upon need: however, resources starvation occurs frequently as expansion has to compete with other virtual machines running long-living batch jobs. Such batch nodes cannot relinquish their resources in a timely fashion: the more jobs they run, the longer it takes to drain them and shut off, and making one-job virtual machines introduces a non-negligible virtualization overhead. By improving several components of the Virtual Analysis Facility we have realized an experimental “Docked” Analysis Facility for ALICE, which leverages containers instead of virtual machines for providing performance and security isolation. We will present the techniques we have used to address practical problems, such as software provisioning through CVMFS, as well as our considerations on the maturity of containers for High Performance Computing. As the abstraction layer is thinner, our Docked Analysis Facilities may feature a more fine-grained sizing, down to single-job node containers: we will show how this approach will positively impact automatic cluster resizing by deploying lightweight pilot containers instead of replacing central queue polls.

  4. Delivering Sustainable Facilities Management in Danish Housing Estates

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Jesper Ole; Jensen, Per Anker

    2009-01-01

    Housing plays a central role in sustainable development due to large resource consumption and as transition agent towards sustainable lifestyles. The aim is to evaluate current practice of housing administration in Denmark in order to evaluate if and how sustainable facilities management is suppo......Housing plays a central role in sustainable development due to large resource consumption and as transition agent towards sustainable lifestyles. The aim is to evaluate current practice of housing administration in Denmark in order to evaluate if and how sustainable facilities management...... is supporting social, economical and environmental sustainable development. Sustainable facility management (SFM) is as an 'umbrella' for various ways of reducing flows of energy, water and waste in the daily operation of the buildings, for instance by regular monitoring the consumption, by using 'green......-setting including the ownership of the building, the organisation of daily operation, the roles and relation between stakeholders are equally important in order to utilise the monitoring as a mean for transformation towards sustainable buildings and lifestyles....

  5. Centralized environmental radiation monitoring system in JAERI

    International Nuclear Information System (INIS)

    Katagiri, H.; Kobalyashi, H.

    1993-01-01

    JAERI has continued the environmental radiation background survey and monitoring to ensure the safety of the peoples around the institute since one year before the first criticality of JRR-1 (Japan Research Reactor No.1) in August 1957. Air absorbed doses from β and γ radiation, α and β radioactivity in air and the radioactivities in environmental samples were the monitoring items. For the monitoring of β and γ radiation and α and β radioactivity in air, monitoring station and the centralized automatic environmental radiation monitoring system applying a computer were established as a new challenging monitoring system for nuclear facility, which was the first one not only in Japan but also in the would in 1960 and since then the system has been renewed two times (in 1973 and 1988) by introducing the latest technology in the fields of radiation detection and computer control at each stage. Present system renewed in 1988 was designed to prevent the interruption of monitoring due to computer troubles, communication troubles and power failures especially an instant voltage drop arisen from thunder by reflecting the experiences through the operation and maintenance of the former system. Dual telemeters whose power is constantly supplied via batteries (capable of 10 min monitoring after power failure) are equipped in the monitoring center to cope with telemeter troubles, which has operated successfully without any suspension being attributable to the power failures and telemeter troubles

  6. Distributed computing at the SSCL

    International Nuclear Information System (INIS)

    Cormell, L.; White, R.

    1993-05-01

    The rapid increase in the availability of high performance, cost- effective RISC/UNIX workstations has been both a blessing and a curse. The blessing of having extremely powerful computing engines available on the desk top is well-known to many users. The user has tremendous freedom, flexibility, and control of his environment. That freedom can, however, become the curse of distributed computing. The user must become a system manager to some extent, he must worry about backups, maintenance, upgrades, etc. Traditionally these activities have been the responsibility of a central computing group. The central computing group, however, may find that it can no linger provide all of the traditional services. With the plethora of workstations now found on so many desktops throughout the entire campus or lab, the central computing group may be swamped by support requests. This talk will address several of these computer support and management issues by discussing the approach taken at the Superconducting Super Collider Laboratory. In addition, a brief review of the future directions of commercial products for distributed computing and management will be given

  7. Distributed computing at the SSCL

    International Nuclear Information System (INIS)

    Cormell, L.R.; White, R.C.

    1994-01-01

    The rapid increase in the availability of high performance, cost-effective RISC/UNIX workstations has been both a blessing and a curse. The blessing of having extremely powerful computing engines available on the desk top is well-known to many users. The user has tremendous freedom, flexibility, and control of his environment. That freedom can, however, become the curse of distributed computing. The user must become a system manager to some extent, he must worry about backups, maintenance, upgrades, etc. Traditionally these activities have been the responsibility of central computing group. The central computing group, however, may find that it can no longer provide all of the traditional services. With the plethora of workstations now found on so many desktops throughout the entire campus or lab, the central computing group may be swamped by support requests. This talk will address several of these computer support and management issues by discussing the approach taken at the Superconducting Super Collider Laboratory (SSCL). In addition, a brief review of the future directions of commercial products for distributed computing and management will be given

  8. Centralization Versus Decentralization: A Location Analysis Approach for Librarians.

    Science.gov (United States)

    Shishko, Robert; Raffel, Jeffrey

    One of the questions that seems to perplex many university and special librarians is whether to move in the direction of centralizing or decentralizing the library's collections and facilities. Presented is a theoretical approach, employing location theory, to the library centralization-decentralization question. Location theory allows the analyst…

  9. Novel PCA-VIP scheme for ranking MRI protocols and identifying computer-extracted MRI measurements associated with central gland and peripheral zone prostate tumors.

    Science.gov (United States)

    Ginsburg, Shoshana B; Viswanath, Satish E; Bloch, B Nicolas; Rofsky, Neil M; Genega, Elizabeth M; Lenkinski, Robert E; Madabhushi, Anant

    2015-05-01

    To identify computer-extracted features for central gland and peripheral zone prostate cancer localization on multiparametric magnetic resonance imaging (MRI). Preoperative T2-weighted (T2w), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) MRI were acquired from 23 men with confirmed prostate cancer. Following radical prostatectomy, the cancer extent was delineated by a pathologist on ex vivo histology and mapped to MRI by nonlinear registration of histology and corresponding MRI slices. In all, 244 computer-extracted features were extracted from MRI, and principal component analysis (PCA) was employed to reduce the data dimensionality so that a generalizable classifier could be constructed. A novel variable importance on projection (VIP) measure for PCA (PCA-VIP) was leveraged to identify computer-extracted MRI features that discriminate between cancer and normal prostate, and these features were used to construct classifiers for cancer localization. Classifiers using features selected by PCA-VIP yielded an area under the curve (AUC) of 0.79 and 0.85 for peripheral zone and central gland tumors, respectively. For tumor localization in the central gland, T2w, DCE, and DWI MRI features contributed 71.6%, 18.1%, and 10.2%, respectively; for peripheral zone tumors T2w, DCE, and DWI MRI contributed 29.6%, 21.7%, and 48.7%, respectively. PCA-VIP identified relatively stable subsets of MRI features that performed well in localizing prostate cancer on MRI. © 2014 Wiley Periodicals, Inc.

  10. Performance analysis of cloud computing services for many-tasks scientific computing

    NARCIS (Netherlands)

    Iosup, A.; Ostermann, S.; Yigitbasi, M.N.; Prodan, R.; Fahringer, T.; Epema, D.H.J.

    2011-01-01

    Cloud computing is an emerging commercial infrastructure paradigm that promises to eliminate the need for maintaining expensive computing facilities by companies and institutes alike. Through the use of virtualization and resource time sharing, clouds serve with a single set of physical resources a

  11. Operational facility-integrated computer system for safeguards

    International Nuclear Information System (INIS)

    Armento, W.J.; Brooksbank, R.E.; Krichinsky, A.M.

    1980-01-01

    A computer system for safeguards in an active, remotely operated, nuclear fuel processing pilot plant has been developed. This sytem maintains (1) comprehensive records of special nuclear materials, (2) automatically updated book inventory files, (3) material transfer catalogs, (4) timely inventory estimations, (5) sample transactions, (6) automatic, on-line volume balances and alarmings, and (7) terminal access and applications software monitoring and logging. Future development will include near-real-time SNM mass balancing as both a static, in-tank summation and a dynamic, in-line determination. It is planned to incorporate aspects of site security and physical protection into the computer monitoring

  12. Public acceptance for centralized storage and repositories of low-level waste session (Panel)

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, H.R.

    1995-12-31

    Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance, and lessons learned in each country. The audience is invited to participate in the discussion.

  13. Visitor's Computer Guidelines | CTIO

    Science.gov (United States)

    Visitor's Computer Guidelines Network Connection Request Instruments Instruments by Telescope IR Instruments Guidelines Library Facilities Outreach NOAO-S EPO Program team Art of Darkness Image Gallery EPO/CADIAS ‹› You are here CTIO Home » Astronomers » Visitor's Computer Guidelines Visitor's Computer

  14. Central dot sign in entities other than Caroli disease

    International Nuclear Information System (INIS)

    Ahmadi, T.; Itai, Yuji; Minami, Manabu.

    1997-01-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ''central dot sign'' on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  15. Central dot sign in entities other than Caroli disease

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, T.; Itai, Yuji [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Minami, Manabu

    1997-11-01

    The purpose of this study was to describe central dot sign (tiny dots with strong contrast enhancement of the portal vein within dilated hepatic bile ducts on computed tomography) in entities other than Caroli disease, especially in peribiliary cysts with or without autosomal-dominant polycystic kidney disease. Computed tomography in 74 cases of peribiliary cysts and 134 cases of other liver diseases and states possibly showing central dot sign were retrospectively reviewed to examine the central dot sign. In three cases of peribiliary cysts, some part of the liver showed strongly enhanced portal radicles surrounded completely or partially by low-attenuation, enlarged peribiliary cysts, presenting ``central dot sign`` on contrast-enhanced computed tomography. We suggest that in addition to Caroli disease, some other entities and diseases of the liver may demonstrate central dot sign and this sign should not be considered a specific finding of Caroli disease. (author)

  16. Computing challenges of the CMS experiment

    International Nuclear Information System (INIS)

    Krammer, N.; Liko, D.

    2017-01-01

    The success of the LHC experiments is due to the magnificent performance of the detector systems and the excellent operating computing systems. The CMS offline software and computing system is successfully fulfilling the LHC Run 2 requirements. For the increased data rate of future LHC operation, together with high pileup interactions, improvements of the usage of the current computing facilities and new technologies became necessary. Especially for the challenge of the future HL-LHC a more flexible and sophisticated computing model is needed. In this presentation, I will discuss the current computing system used in the LHC Run 2 and future computing facilities for the HL-LHC runs using flexible computing technologies like commercial and academic computing clouds. The cloud resources are highly virtualized and can be deployed for a variety of computing tasks providing the capacities for the increasing needs of large scale scientific computing.

  17. Facility effluent monitoring plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontag, S.

    1991-11-01

    A facility effluent monitoring plant is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The UO 3 Plant is located in the south-central portion of the 200 West Area of the Hanford Site. The plant consists of two primary processing buildings and several ancillary facilities. The purpose of the UO 3 Plant is to receive uranyl nitrate hexahydrate (UNH) from the Plutonium-Uranium Extraction (PUREX) Plant, concentrate it, convert the UNH to uranium trioxide (UO 3 ) powder by calcination and package it for offsite shipment. The UO 3 Plant has been placed in a standby mode. There are two liquid discharges, and three gaseous exhaust stacks, and seven building exhausters that are active during standby conditions

  18. Design of an error-free nondestructive plutonium assay facility

    International Nuclear Information System (INIS)

    Moore, C.B.; Steward, W.E.

    1987-01-01

    An automated, at-line nondestructive assay (NDA) laboratory is installed in facilities recently constructed at the Savannah River Plant. The laboratory will enhance nuclear materials accounting in new plutonium scrap and waste recovery facilities. The advantages of at-line NDA operations will not be realized if results are clouded by errors in analytical procedures, sample identification, record keeping, or techniques for extracting samples from process streams. Minimization of such errors has been a primary design objective for the new facility. Concepts for achieving that objective include mechanizing the administrative tasks of scheduling activities in the laboratory, identifying samples, recording and storing assay data, and transmitting results information to process control and materials accounting functions. These concepts have been implemented in an analytical computer system that is programmed to avoid the obvious sources of error encountered in laboratory operations. The laboratory computer exchanges information with process control and materials accounting computers, transmitting results information and obtaining process data and accounting information as required to guide process operations and maintain current records of materials flow through the new facility

  19. BWR plant advanced central control panel PODIA

    International Nuclear Information System (INIS)

    Fujii, K.; Hayakawa, H.; Ikeda, Y.; Neda, T.; Suto, O.; Takamiya, S.

    1983-01-01

    BWR plant central control panels have become more and more enlarged and complicated recently due to the magnification of the scale of a plant and the requirement to reinforce safety. So, it is important to make communication between men and the complicated central control panel smooth. Toshiba has developed an advanced central control panel, named PODIA, which uses many computers and color CRTs, and PODIA is now in the stage of application to practical plants. In this article, the writers first touch upon control functions transition in the central control room, the PODIA position concerning the world-wide trend in this technology phase and the human engineering on the design. Then they present concrete design concepts for the control board and computer system which constitute PODIA

  20. Annual report to the Laser Facility Committee 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The report covers the work done at, or in association with, the Central Laser Facility during the year ended 31 March 1983. There are eight chapters in all, six corresponding to the six groups of the Glass Laser Scientific Programme and Scheduling Committee, a chapter on gas laser development, and a chapter describing the work and development of the newly established Ultraviolet Radiation Facility. (author)

  1. Argonne Laboratory Computing Resource Center - FY2004 Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.

    2005-04-14

    In the spring of 2002, Argonne National Laboratory founded the Laboratory Computing Resource Center, and in April 2003 LCRC began full operations with Argonne's first teraflops computing cluster. The LCRC's driving mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting application use and development. This report describes the scientific activities, computing facilities, and usage in the first eighteen months of LCRC operation. In this short time LCRC has had broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. Steering for LCRC comes from the Computational Science Advisory Committee, composed of computing experts from many Laboratory divisions. The CSAC Allocations Committee makes decisions on individual project allocations for Jazz.

  2. Towards higher reliability of CMS computing facilities

    International Nuclear Information System (INIS)

    Bagliesi, G; Bloom, K; Brew, C; Flix, J; Kreuzer, P; Sciabà, A

    2012-01-01

    The CMS experiment has adopted a computing system where resources are distributed worldwide in more than 50 sites. The operation of the system requires a stable and reliable behaviour of the underlying infrastructure. CMS has established procedures to extensively test all relevant aspects of a site and their capability to sustain the various CMS computing workflows at the required scale. The Site Readiness monitoring infrastructure has been instrumental in understanding how the system as a whole was improving towards LHC operations, measuring the reliability of sites when running CMS activities, and providing sites with the information they need to troubleshoot any problem. This contribution reviews the complete automation of the Site Readiness program, with the description of monitoring tools and their inclusion into the Site Status Board (SSB), the performance checks, the use of tools like HammerCloud, and the impact in improving the overall reliability of the Grid from the point of view of the CMS computing system. These results are used by CMS to select good sites to conduct workflows, in order to maximize workflows efficiencies. The performance against these tests seen at the sites during the first years of LHC running is as well reviewed.

  3. PROFEAT Update: A Protein Features Web Server with Added Facility to Compute Network Descriptors for Studying Omics-Derived Networks.

    Science.gov (United States)

    Zhang, P; Tao, L; Zeng, X; Qin, C; Chen, S Y; Zhu, F; Yang, S Y; Li, Z R; Chen, W P; Chen, Y Z

    2017-02-03

    The studies of biological, disease, and pharmacological networks are facilitated by the systems-level investigations using computational tools. In particular, the network descriptors developed in other disciplines have found increasing applications in the study of the protein, gene regulatory, metabolic, disease, and drug-targeted networks. Facilities are provided by the public web servers for computing network descriptors, but many descriptors are not covered, including those used or useful for biological studies. We upgraded the PROFEAT web server http://bidd2.nus.edu.sg/cgi-bin/profeat2016/main.cgi for computing up to 329 network descriptors and protein-protein interaction descriptors. PROFEAT network descriptors comprehensively describe the topological and connectivity characteristics of unweighted (uniform binding constants and molecular levels), edge-weighted (varying binding constants), node-weighted (varying molecular levels), edge-node-weighted (varying binding constants and molecular levels), and directed (oriented processes) networks. The usefulness of the network descriptors is illustrated by the literature-reported studies of the biological networks derived from the genome, interactome, transcriptome, metabolome, and diseasome profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Development of a personal computer based facility-level SSAC component and inspector support system

    International Nuclear Information System (INIS)

    Markov, A.

    1989-08-01

    Research Contract No. 4658/RB was conducted between the IAEA and the Bulgarian Committee on Use of Atomic Energy for Peaceful Purposes. The contract required the Committee to develop and program a personal computer based software package to be used as a facility-level computerized State System of Accounting and Control (SSAC) at an off-load power reactor. The software delivered, called the National Safeguards System (NSS) keeps track of all fuel assembly activity at a power reactor and generates all ledgers, MBA material balances and any required reports to national or international authorities. The NSS is designed to operate on a PC/AT or compatible equipment with a hard disk of 20 MB, color graphics monitor or adaptor and at least one floppy disk drive, 360 Kb. The programs are written in Basic (compiler 2.0). They are executed under MS DOS 3.1 or later

  5. Method and computer program product for maintenance and modernization backlogging

    Science.gov (United States)

    Mattimore, Bernard G; Reynolds, Paul E; Farrell, Jill M

    2013-02-19

    According to one embodiment, a computer program product for determining future facility conditions includes a computer readable medium having computer readable program code stored therein. The computer readable program code includes computer readable program code for calculating a time period specific maintenance cost, for calculating a time period specific modernization factor, and for calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. In another embodiment, a computer-implemented method for calculating future facility conditions includes calculating a time period specific maintenance cost, calculating a time period specific modernization factor, and calculating a time period specific backlog factor. Future facility conditions equal the time period specific maintenance cost plus the time period specific modernization factor plus the time period specific backlog factor. Other embodiments are also presented.

  6. Race, wealth, and solid waste facilities in North Carolina.

    Science.gov (United States)

    Norton, Jennifer M; Wing, Steve; Lipscomb, Hester J; Kaufman, Jay S; Marshall, Stephen W; Cravey, Altha J

    2007-09-01

    Concern has been expressed in North Carolina that solid waste facilities may be disproportionately located in poor communities and in communities of color, that this represents an environmental injustice, and that solid waste facilities negatively impact the health of host communities. Our goal in this study was to conduct a statewide analysis of the location of solid waste facilities in relation to community race and wealth. We used census block groups to obtain racial and economic characteristics, and information on solid waste facilities was abstracted from solid waste facility permit records. We used logistic regression to compute prevalence odds ratios for 2003, and Cox regression to compute hazard ratios of facilities issued permits between 1990 and 2003. The adjusted prevalence odds of a solid waste facility was 2.8 times greater in block groups with > or = 50% people of color compared with block groups with or = 100,000 dollars. Among block groups that did not have a previously permitted solid waste facility, the adjusted hazard of a new permitted facility was 2.7 times higher in block groups with > or = 50% people of color compared with block groups with waste facilities present numerous public health concerns. In North Carolina solid waste facilities are disproportionately located in communities of color and low wealth. In the absence of action to promote environmental justice, the continued need for new facilities could exacerbate this environmental injustice.

  7. A high-speed, multi-input serial-interfacing system for a computer with simultaneous back-up recording on magnetic tape

    International Nuclear Information System (INIS)

    Andeweg, A.H.

    1983-01-01

    A system has been developed that interfaces nuclear-instrument data modules and a multichannel analyser into a computer. The interface converts 4-bit binary-coded decimal (BCD) data into 8-bit packed BCD data, and converts the parallel data into serial data. The data are transmitted up to a distance of 500m at a transfer rate of 153,6kbaud via an RS422 transmission link to a central computer system. One or more multichannel analyser systems can be connected to the system via a routine device. The routing device serves these analysers on a first-come-first-served mode. The data transmitted to the computer system are recorded simultaneously on a digital magnetic-tape drive to provide a back-up facility

  8. Assessment of the proposed decontamination and waste treatment facility at LLNL

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1987-01-01

    To provide a centralized decontamination and waste treatment facility (DWTF) at LLNL, the construction of a new installation has been planned. Objectives for this new facility were to replace obsolete, structurally and environmentally sub-marginal liquid and solid waste process facilities and decontamination facility and to bring these facilities into compliance with existing federal, state and local regulations as well as DOE orders. In a previous study, SAIC conducted a preliminary review and evaluation of existing facilities at LLNL and cost effectiveness of the proposed DWTF. This document reports on a detailed review of specific aspects of the proposed DWTF

  9. Experiments in computing: a survey.

    Science.gov (United States)

    Tedre, Matti; Moisseinen, Nella

    2014-01-01

    Experiments play a central role in science. The role of experiments in computing is, however, unclear. Questions about the relevance of experiments in computing attracted little attention until the 1980s. As the discipline then saw a push towards experimental computer science, a variety of technically, theoretically, and empirically oriented views on experiments emerged. As a consequence of those debates, today's computing fields use experiments and experiment terminology in a variety of ways. This paper analyzes experimentation debates in computing. It presents five ways in which debaters have conceptualized experiments in computing: feasibility experiment, trial experiment, field experiment, comparison experiment, and controlled experiment. This paper has three aims: to clarify experiment terminology in computing; to contribute to disciplinary self-understanding of computing; and, due to computing's centrality in other fields, to promote understanding of experiments in modern science in general.

  10. Rancang Bangun STIKI Class Facilities E-Complaint

    OpenAIRE

    Ni Kadek Ariasih; I Made Gede Sri Artha

    2017-01-01

    STMIK STIKOM Indonesia is one of the institutions in the field of computer-based education. In order to support the effectiveness of the implementation of teaching and learning activities that take place, it is need a service that support the availability of adequate class facilities and complaints services if there are constraints on facilities in the classroom. So far, the management of complaints complaints against classroom facilities or in the labarotorium which is handled by the Househo...

  11. New Mandatory Computer Security Course

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Just like any other organization, CERN is permanently under attack - even right now. Consequently it's important to be vigilant about security risks, protecting CERN's reputation - and your work. The availability, integrity and confidentiality of CERN's computing services and the unhindered operation of its accelerators and experiments come down to the combined efforts of the CERN Security Team and you. In order to remain par with the attack trends, the Security Team regularly reminds CERN users about the computer security risks, and about the rules for using CERN’s computing facilities. Since 2007, newcomers have to follow a dedicated basic computer security course informing them about the “Do’s” and “Dont’s” when using CERNs computing facilities. This course has recently been redesigned. It is now mandatory for all CERN members (users and staff) owning a CERN computer account and must be followed once every three years. Members who...

  12. Design/installation and structural integrity assessment of Bethel Valley low-level waste collection and transfer system upgrade for Building 3092 (Central Off-Gas Scrubber Facility) at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-01-01

    This document describes and assesses planned modifications to be made to the Building 3092 Central Off-Gas Scrubber Facility of the Oak Ridge National Laboratory, Oak Ridge, Tennessee. The modifications are made in responsible to the requirements of 40CFR264 Subpart J, relating to environmental protection requirements for buried tank systems. The modifications include the provision of a new scrubber recirculation tank in a new, below ground, lines concrete vault, replacing and existing recirculation sump that does not provide double containment. A new buried, double contained pipeline is provided to permit discharge of spent scrubber recirculation fluid to the Central Waste Collection Header. The new vault, tank, and discharge line are provided with leak detection and provisions to remove accumulated liquid. New scrubber recirculation pumps, piping, and accessories are also provided. This assessment concludes that the planned modifications comply with applicable requirements of 40CFR264 Subpart J, as set forth in Appendix F to the Federal Facility Agreement, Docket No. 89-04-FF, covering the Oak Ridge Reservation

  13. Computational simulation of multi-strut central lobed injection of hydrogen in a scramjet combustor

    Directory of Open Access Journals (Sweden)

    Gautam Choubey

    2016-09-01

    Full Text Available Multi-strut injection is an approach to increase the overall performance of Scramjet while reducing the risk of thermal choking in a supersonic combustor. Hence computational simulation of Scramjet combustor at Mach 2.5 through multiple central lobed struts (three struts have been presented and discussed in the present research article. The geometry and model used here is slight modification of the DLR (German Aerospace Center scramjet model. Present results show that the presence of three struts injector improves the performance of scramjet combustor as compared to single strut injector. The combustion efficiency is also found to be highest in case of three strut fuel injection system. In order to validate the results, the numerical data for single strut injection is compared with experimental result which is taken from the literature.

  14. Altitude simulation facility for testing large space motors

    Science.gov (United States)

    Katz, U.; Lustig, J.; Cohen, Y.; Malkin, I.

    1993-02-01

    This work describes the design of an altitude simulation facility for testing the AKM motor installed in the 'Ofeq' satellite launcher. The facility, which is controlled by a computer, consists of a diffuser and a single-stage ejector fed with preheated air. The calculations of performance and dimensions of the gas extraction system were conducted according to a one-dimensional analysis. Tests were carried out on a small-scale model of the facility in order to examine the design concept, then the full-scale facility was constructed and operated. There was good agreement among the results obtained from the small-scale facility, from the full-scale facility, and from calculations.

  15. Issues and Recommendations Arising from the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility Composite Analysis - 13374

    Energy Technology Data Exchange (ETDEWEB)

    Rood, Arthur S.; Schafer, Annette L.; Sondrup, A. Jeff [Idaho National Laboratory, Battelle Energy Alliance, P.O. Box 1625, Idaho Falls, ID 83401-2107 (United States)

    2013-07-01

    Development of the composite analysis (CA) for the Idaho National Laboratory's (INLs) proposed remote-handled (RH) low-level waste (LLW) disposal facility has underscored the importance of consistency between analyses conducted for site-specific performance assessments (PAs) for LLW disposal facilities, sites regulated by the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) [1], and residual decontamination and decommissioning (D and D) inventories. Consistency is difficult to achieve because: 1) different legacy sources and compliance time-periods were deemed important for each of the sites evaluated at INL (e.g., 100 years for CERCLA regulated facilities vs. 1,000 years for LLW disposal facilities regulated under U.S. Department of Energy (DOE) Order 435.1 [2]); 2) fate and transport assumptions, parameters, and models have evolved through time at the INL including the use of screening-level parameters vs. site-specific values; and 3) evaluation objectives for the various CERCLA sites were inconsistent with those relevant to either the PA or CA including the assessment of risk rather than effective dose. The proposed single site-wide CA approach would provide needed consistency, allowing ready incorporation of new information and/or facilities in addition to being cost effective in terms of preparation of CAs and review by the DOE. A single site-wide CA would include a central database of all existing INL sources, including those from currently operating LLW facilities, D and D activities, and those from the sites evaluated under CERCLA. The framework presented for the INL RH-LLW disposal facility allows for development of a single CA encompassing air and groundwater impacts. For groundwater impacts, a site-wide MODFLOW/MT3D-MS model was used to develop unit-response functions for all potential sources providing responses for a grid of receptors. Convolution and superposition of the response functions are used to compute

  16. Control system of test and research facilities for nuclear energy industry

    International Nuclear Information System (INIS)

    1983-01-01

    IHI manufactures several kinds of test and research facilities used for research and development of new type power reactor and solidification system of high level radioactive liquid waste and safety research of light water reactor. These facilities are usually new type plants themselves, so that their control systems have to be designed individually for each plant with the basic conception. They have many operation modes because of their purposes of research and development, so the operation has to be automatized and requires the complicated sequence control system. In addition to these requirements, the detail design is hardly fixed on schedule and often modified during the initial start up period. Therefore, the computer control system was applied to these facilities with CRT display for man-machine communication earlier than to commercial power plants, because in the computer system the control logic is not hard wired but soft programmed and can be easily modified. In this paper, two typical computer control systems, one for PWR reflood test facility and another for mock-up test facility for solidification of liquid waste, are introduced. (author)

  17. Systems management of facilities agreements

    International Nuclear Information System (INIS)

    Blundell, A.

    1998-01-01

    The various types of facilities agreements, the historical obstacles to implementation of agreement management systems and the new opportunities emerging as industry is beginning to make an effort to overcome these obstacles, are reviewed. Barriers to computerized agreement management systems (lack of consistency, lack of standards, scarcity of appropriate computer software) are discussed. Characteristic features of a model facilities agreement management system and the forces driving the changing attitudes towards such systems (e.g. mergers) are also described

  18. National Ignition Facility integrated computer control system

    International Nuclear Information System (INIS)

    Van Arsdall, P.J. LLNL

    1998-01-01

    The NIF design team is developing the Integrated Computer Control System (ICCS), which is based on an object-oriented software framework applicable to event-driven control systems. The framework provides an open, extensible architecture that is sufficiently abstract to construct future mission-critical control systems. The ICCS will become operational when the first 8 out of 192 beams are activated in mid 2000. The ICCS consists of 300 front-end processors attached to 60,000 control points coordinated by a supervisory system. Computers running either Solaris or VxWorks are networked over a hybrid configuration of switched fast Ethernet and asynchronous transfer mode (ATM). ATM carries digital motion video from sensors to operator consoles. Supervisory software is constructed by extending the reusable framework components for each specific application. The framework incorporates services for database persistence, system configuration, graphical user interface, status monitoring, event logging, scripting language, alert management, and access control. More than twenty collaborating software applications are derived from the common framework. The framework is interoperable among different kinds of computers and functions as a plug-in software bus by leveraging a common object request brokering architecture (CORBA). CORBA transparently distributes the software objects across the network. Because of the pivotal role played, CORBA was tested to ensure adequate performance

  19. Annual report to the Laser Facility Committee 1986

    International Nuclear Information System (INIS)

    1986-01-01

    This paper is the annual report of the Science and Engineering Research Council, research and development work carried out at the Central Laser Facility, Rutherford Laboratory, United Kingdom, 1985/6. Part I contains the technical details of the studies of the High Power Laser scientific programme and Laser Support Facility, as well as the Laser Research and Development investigations. Part II concerns the application of UV lasers to microcircuit fabrication. (UK)

  20. Further computer appreciation

    CERN Document Server

    Fry, T F

    2014-01-01

    Further Computer Appreciation is a comprehensive cover of the principles and aspects in computer appreciation. The book starts by describing the development of computers from the first to the third computer generations, to the development of processors and storage systems, up to the present position of computers and future trends. The text tackles the basic elements, concepts and functions of digital computers, computer arithmetic, input media and devices, and computer output. The basic central processor functions, data storage and the organization of data by classification of computer files,

  1. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  2. Distributed control system for the FMIT

    International Nuclear Information System (INIS)

    Johnson, J.A.; Machen, D.R.; Suyama, R.M.

    1979-01-01

    The control system for the Fusion Materials Irradiation Test (FMIT) Facility will provide the primary data acquisition, control, and interface components that integrate all of the individual FMIT systems into a functional facility. The control system consists of a distributed computer network, control consoles and instrumentation subsystems. The FMIT Facility will be started, operated and secured from a Central Control Room. All FMIT systems and experimental functions will be monitored from the Central Control Room. The data acquisition and control signals will be handled by a data communications network, which connects dual computers in the Central Control Room to the microcomputers in CAMAC crates near the various subsystems of the facility

  3. Implementation of computer security at nuclear facilities in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lochthofen, Andre; Sommer, Dagmar [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany)

    2013-07-01

    In recent years, electrical and I and C components in nuclear power plants (NPPs) were replaced by software-based components. Due to the increased number of software-based systems also the threat of malevolent interferences and cyber-attacks on NPPs has increased. In order to maintain nuclear security, conventional physical protection measures and protection measures in the field of computer security have to be implemented. Therefore, the existing security management process of the NPPs has to be expanded to computer security aspects. In this paper, we give an overview of computer security requirements for German NPPs. Furthermore, some examples for the implementation of computer security projects based on a GRS-best-practice-approach are shown. (orig.)

  4. Implementation of computer security at nuclear facilities in Germany

    International Nuclear Information System (INIS)

    Lochthofen, Andre; Sommer, Dagmar

    2013-01-01

    In recent years, electrical and I and C components in nuclear power plants (NPPs) were replaced by software-based components. Due to the increased number of software-based systems also the threat of malevolent interferences and cyber-attacks on NPPs has increased. In order to maintain nuclear security, conventional physical protection measures and protection measures in the field of computer security have to be implemented. Therefore, the existing security management process of the NPPs has to be expanded to computer security aspects. In this paper, we give an overview of computer security requirements for German NPPs. Furthermore, some examples for the implementation of computer security projects based on a GRS-best-practice-approach are shown. (orig.)

  5. Central Libraries in Uncertain Times.

    Science.gov (United States)

    Kenney, Brian J.

    2001-01-01

    Discusses security and safety issues for public libraries, especially high-profile central facilities, in light of the September 11 terrorist attacks. Highlights include inspecting bags as patrons enter as well as exit; the need for security guidelines for any type of disaster or emergency; building design; and the importance of communication.…

  6. HVAC optimization as facility requirements change with corporate restructuring

    Energy Technology Data Exchange (ETDEWEB)

    Rodak, R.R.; Sankey, M.S.

    1997-06-01

    The hyper-competitive, dynamic 1990`s forced many corporations to {open_quotes}Right-Size,{close_quotes} relocating resources and equipment -- even consolidating. These changes led to utility reduction if HVAC optimization was thoroughly addressed, and energy conservation opportunities were identified and properly designed. This is true particularly when the facility`s heating and cooling systems are matched to correspond with the load changes attributed to the reduction of staff and computers. Computers have been downsized and processing power per unit of energy input increased, thus, the need for large mainframe computer centers, and their associated high intensity energy usage, have been decreased or eliminated. Cooling, therefore, also has been reduced.

  7. Composite analysis E-area vaults and saltstone disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

  8. Composite analysis E-area vaults and saltstone disposal facilities

    International Nuclear Information System (INIS)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public

  9. Preliminary design of a Tandem-Mirror-Next-Step facility

    International Nuclear Information System (INIS)

    Damm, C.C.; Doggett, J.N.; Bulmer, R.H.

    1980-01-01

    The Tandem-Mirror-Next-Step (TMNS) facility is designed to demonstrate the engineering feasibility of a tandem-mirror reactor. The facility is based on a deuterium-tritium (D-T) burning, tandem-mirror device with a fusion power output of 245 MW. The fusion power density in the central cell is 2.1 MW/m 3 , with a resultant neutron wall loading of 0.5 MW/m 2 . Overall machine length is 116 m, and the effective central-cell length is 50.9 m. The magnet system includes end cells with yin-yang magnets to provide magnetohydrodynamic (MHD) stability and thermal-barrier cells to help achieve a plasma Q of 4.7 (where Q = fusion power/injected power). Neutral beams at energies up to 200 keV are used for plasma heating, fueling, and barrier pumping. Electron cyclotron resonant heating at 50 and 100 GHz is used to control the electron temperature in the barriers. Based on the resulting engineering design, the overall cost of the facility is estimated to be just under $1 billion. Unresolved physics issues include central-cell β-limits against MHD ballooning modes (the assumed reference value of β exceeds the current theory-derived limit), and the removal of thermalized α-particles from the plasma

  10. Nuclear fuel cycle facility accident analysis handbook

    International Nuclear Information System (INIS)

    Ayer, J.E.; Clark, A.T.; Loysen, P.; Ballinger, M.Y.; Mishima, J.; Owczarski, P.C.; Gregory, W.S.; Nichols, B.D.

    1988-05-01

    The Accident Analysis Handbook (AAH) covers four generic facilities: fuel manufacturing, fuel reprocessing, waste storage/solidification, and spent fuel storage; and six accident types: fire, explosion, tornado, criticality, spill, and equipment failure. These are the accident types considered to make major contributions to the radiological risk from accidents in nuclear fuel cycle facility operations. The AAH will enable the user to calculate source term releases from accident scenarios manually or by computer. A major feature of the AAH is development of accident sample problems to provide input to source term analysis methods and transport computer codes. Sample problems and illustrative examples for different accident types are included in the AAH

  11. Reminder: Mandatory Computer Security Course

    CERN Multimedia

    IT Department

    2011-01-01

    Just like any other organization, CERN is permanently under attack – even right now. Consequently it's important to be vigilant about security risks, protecting CERN's reputation - and your work. The availability, integrity and confidentiality of CERN's computing services and the unhindered operation of its accelerators and experiments come down to the combined efforts of the CERN Security Team and you. In order to remain par with the attack trends, the Security Team regularly reminds CERN users about the computer security risks, and about the rules for using CERN’s computing facilities. Therefore, a new dedicated basic computer security course has been designed informing you about the “Do’s” and “Dont’s” when using CERN's computing facilities. This course is mandatory for all person owning a CERN computer account and must be followed once every three years. Users who have never done the course, or whose course needs to be renewe...

  12. Central alarm system replacement in NPP Krsko

    International Nuclear Information System (INIS)

    Cicvaric, D.; Susnic, M.; Djetelic, N.

    2004-01-01

    Current NPP Krsko central alarm system consists of three main segments. Main Control Board alarm system (BETA 1000), Ventilation Control Board alarm system (BETA 1000) and Electrical Control Board alarm system (BETA 1100). All sections are equipped with specific BetaTone audible alarms and silence, acknowledge as well as test push buttons. The main reason for central alarm system replacement is system obsolescence and problems with maintenance, due to lack of spare parts. Other issue is lack of system redundancy, which could lead to loss of several Alarm Light Boxes in the event of particular power supply failure. Current central alarm system does not provide means of alarm optimization, grouping or prioritization. There are three main options for central alarm system replacement: Conventional annunciator system, hybrid annunciator system and advanced alarm system. Advanced alarm system implementation requires Main Control Board upgrade, integration of process instrumentation and plant process computer as well as long time for replacement. NPP Krsko has decided to implement hybrid alarm system with patchwork approach. The new central alarm system will be stand alone, digital, with advanced filtering and alarm grouping options. Sequence of event recorder will be linked with plant process computer and time synchronized with redundant GPS signal. Advanced functions such as link to plant procedures will be implemented with plant process computer upgrade in outage 2006. Central alarm system replacement is due in outage 2004.(author)

  13. [A computer aided design approach of all-ceramics abutment for maxilla central incisor].

    Science.gov (United States)

    Sun, Yu-chun; Zhao, Yi-jiao; Wang, Yong; Han, Jing-yun; Lin, Ye; Lü, Pei-jun

    2010-10-01

    To establish the computer aided design (CAD) software platform of individualized abutment for the maxilla central incisor. Three-dimentional data of the incisor was collected by scanning and geometric transformation. Data mainly included the occlusal part of the healing abutment, the location carinae of the bedpiece, the occlusal 1/3 part of the artificial gingiva's inner surface, and so on. The all-ceramic crown designed in advanced was "virtual cutback" to get the original data of the abutment's supragingival part. The abutment's in-gum part was designed to simulate the individual natural tooth root. The functions such as "data offset", "bi-rail sweep surface" and "loft surface" were used in the process of CAD. The CAD route of the individualized all-ceramic abutment was set up. The functions and application methods were decided and the complete CAD process was realized. The software platform was basically set up according to the requests of the dental clinic.

  14. Computer Identification of Symptomatic Deep Venous Thrombosis Associated with Peripherally Inserted Central Catheters

    Science.gov (United States)

    Evans, R. Scott; Linford, Lorraine H.; Sharp, Jamie H.; White, Gayle; Lloyd, James F.; Weaver, Lindell K.

    2007-01-01

    Peripherally inserted central catheters (PICCs) are considered a safe method to provide long-term antibiotic therapy, chemotherapy and nutrition support. Deep venous thrombosis (DVT) is a complication that requires early PICC removal, may extend hospitalization and can result in pulmonary embolism. PICC insertion teams strive to understand risk factors and develop methods to prevent DVTs. However, they can only manage what they can measure. At LDS Hospital, identification of PICC associated DVTs was dependent on verbal notification or manual surveillance of more than a thousand free-text vascular reports. Accurate DVT rates were not known which hindered prevention. We describe the development of a computer application (PICC-DVT monitor) to identify PICC associated DVTs each day. A one-year evaluation of the monitor by the PICC team and a review of 445 random vascular reports found a positive predictive value of 98%, sensitivity of 94%, specificity of 100% and a PICC team associated DVT rate of 2.8%. PMID:18693831

  15. Facility/equipment performance evaluation using microcomputer simulation analysis

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.

    1985-08-01

    A computer simulation analysis model was developed at the Pacific Northwest Laboratory to assist in assuring the adequacy of the Monitored Retrievable Storage facility design to meet the specified spent nuclear fuel throughput requirements. The microcomputer-based model was applied to the analysis of material flow, equipment capability and facility layout. The simulation analysis evaluated uncertainties concerning both facility throughput requirements and process duration times as part of the development of a comprehensive estimate of facility performance. The evaluations provided feedback into the design review task to identify areas where design modifications should be considered

  16. A rare case of dilated invaginated odontome with talon cusp in a permanent maxillary central incisor diagnosed by cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Jaya, Ranganathan; Kumar, Rangarajan Sundaresan Mohan; Srinivasan, Ramasamy [Dept. of Conservative Dentistry and Endodontics, Priyadarshini Dental College and Hospital, Chennai (India)

    2013-09-15

    It has been a challenge to establish the accurate diagnosis of developmental tooth anomalies based on periapical radiographs. Recently, three-dimensional imaging by cone beam computed tomography has provided useful information to investigate the complex anatomy of and establish the proper management for tooth anomalies. The most severe variant of dens invaginatus, known as dilated odontome, is a rare occurrence, and the cone beam computed tomographic findings of this anomaly have never been reported for an erupted permanent maxillary central incisor. The occurrence of talon cusp occurring along with dens invaginatus is also unusual. The aim of this report was to show the importance of cone beam computed tomography in contributing to the accurate diagnosis and evaluation of the complex anatomy of this rare anomaly.

  17. A rare case of dilated invaginated odontome with talon cusp in a permanent maxillary central incisor diagnosed by cone beam computed tomography

    International Nuclear Information System (INIS)

    Jaya, Ranganathan; Kumar, Rangarajan Sundaresan Mohan; Srinivasan, Ramasamy

    2013-01-01

    It has been a challenge to establish the accurate diagnosis of developmental tooth anomalies based on periapical radiographs. Recently, three-dimensional imaging by cone beam computed tomography has provided useful information to investigate the complex anatomy of and establish the proper management for tooth anomalies. The most severe variant of dens invaginatus, known as dilated odontome, is a rare occurrence, and the cone beam computed tomographic findings of this anomaly have never been reported for an erupted permanent maxillary central incisor. The occurrence of talon cusp occurring along with dens invaginatus is also unusual. The aim of this report was to show the importance of cone beam computed tomography in contributing to the accurate diagnosis and evaluation of the complex anatomy of this rare anomaly.

  18. Physics Detector Simulation Facility (PDSF) architecture/utilization

    International Nuclear Information System (INIS)

    Scipioni, B.

    1993-05-01

    The current systems architecture for the SSCL's Physics Detector Simulation Facility (PDSF) is presented. Systems analysis data is presented and discussed. In particular, these data disclose the effectiveness of utilization of the facility for meeting the needs of physics computing, especially as concerns parallel architecture and processing. Detailed design plans for the highly networked, symmetric, parallel, UNIX workstation-based facility are given and discussed in light of the design philosophy. Included are network, CPU, disk, router, concentrator, tape, user and job capacities and throughput

  19. Computing in Research.

    Science.gov (United States)

    Ashenhurst, Robert L.

    The introduction and diffusion of automatic computing facilities during the 1960's is reviewed; it is described as a time when research strategies in a broad variety of disciplines changed to take advantage of the newfound power provided by the computer. Several types of typical problems encountered by researchers who adopted the new technologies,…

  20. Human factors engineering report for the cold vacuum drying facility

    Energy Technology Data Exchange (ETDEWEB)

    IMKER, F.W.

    1999-06-30

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF.

  1. Human factors engineering report for the cold vacuum drying facility

    International Nuclear Information System (INIS)

    IMKER, F.W.

    1999-01-01

    The purpose of this report is to present the results and findings of the final Human Factors Engineering (HFE) technical analysis and evaluation of the Cold Vacuum Drying Facility (CVDF). Ergonomics issues are also addressed in this report, as appropriate. This report follows up and completes the preliminary work accomplished and reported by the Preliminary HFE Analysis report (SNF-2825, Spent Nuclear Fuel Project Cold Vacuum Drying Facility Human Factors Engineering Analysis: Results and Findings). This analysis avoids redundancy of effort except for ensuring that previously recommended HFE design changes have not affected other parts of the system. Changes in one part of the system may affect other parts of the system where those changes were not applied. The final HFE analysis and evaluation of the CVDF human-machine interactions (HMI) was expanded to include: the physical work environment, human-computer interface (HCI) including workstation and software, operator tasks, tools, maintainability, communications, staffing, training, and the overall ability of humans to accomplish their responsibilities, as appropriate. Key focal areas for this report are the process bay operations, process water conditioning (PWC) skid, tank room, and Central Control Room operations. These key areas contain the system safety-class components and are the foundation for the human factors design basis of the CVDF

  2. User Facilities: The Education of New Neutron Users

    International Nuclear Information System (INIS)

    Hernandez, Yamali; Brown, Craig M.

    2009-01-01

    Neutron scattering is a particularly useful tool enabling the study of compositional, structural and dynamical properties of materials down to the atomic scale. Due to the complexity of operating an intense source of neutrons, this technique is primarily practiced at large national facilities that cater to the research needs of chemists, biologists, physicists, engineers, and material scientists in general. In particular, these user facilities provide specialized instrumentation along with the scientific and technical support required to efficiently utilize it. Since neutron scattering experiments are performed at central facilities rather than in the home-laboratories of individual investigators, the facilities themselves must play a key role in the education and development of new users. The role of neutron scattering facilities in educating young scientists will be examined using examples from current programs at the National Institute of Standards and Technology Center for Neutron Research.

  3. A DOE Computer Code Toolbox: Issues and Opportunities

    International Nuclear Information System (INIS)

    Vincent, A.M. III

    2001-01-01

    The initial activities of a Department of Energy (DOE) Safety Analysis Software Group to establish a Safety Analysis Toolbox of computer models are discussed. The toolbox shall be a DOE Complex repository of verified and validated computer models that are configuration-controlled and made available for specific accident analysis applications. The toolbox concept was recommended by the Defense Nuclear Facilities Safety Board staff as a mechanism to partially address Software Quality Assurance issues. Toolbox candidate codes have been identified through review of a DOE Survey of Software practices and processes, and through consideration of earlier findings of the Accident Phenomenology and Consequence Evaluation program sponsored by the DOE National Nuclear Security Agency/Office of Defense Programs. Planning is described to collect these high-use codes, apply tailored SQA specific to the individual codes, and implement the software toolbox concept. While issues exist such as resource allocation and the interface among code developers, code users, and toolbox maintainers, significant benefits can be achieved through a centralized toolbox and subsequent standardized applications

  4. Providing a computing environment for a high energy physics workshop

    International Nuclear Information System (INIS)

    Nicholls, J.

    1991-03-01

    Although computing facilities have been provided at conferences and workshops remote from the hose institution for some years, the equipment provided has rarely been capable of providing for much more than simple editing and electronic mail over leased lines. This presentation describes the pioneering effort involved by the Computing Department/Division at Fermilab in providing a local computing facility with world-wide networking capability for the Physics at Fermilab in the 1990's workshop held in Breckenridge, Colorado, in August 1989, as well as the enhanced facilities provided for the 1990 Summer Study on High Energy Physics at Snowmass, Colorado, in June/July 1990. Issues discussed include type and sizing of the facilities, advance preparations, shipping, on-site support, as well as an evaluation of the value of the facility to the workshop participants

  5. MONITOR: A computer model for estimating the costs of an integral monitored retrievable storage facility

    International Nuclear Information System (INIS)

    Reimus, P.W.; Sevigny, N.L.; Schutz, M.E.; Heller, R.A.

    1986-12-01

    The MONITOR model is a FORTRAN 77 based computer code that provides parametric life-cycle cost estimates for a monitored retrievable storage (MRS) facility. MONITOR is very flexible in that it can estimate the costs of an MRS facility operating under almost any conceivable nuclear waste logistics scenario. The model can also accommodate input data of varying degrees of complexity and detail (ranging from very simple to more complex) which makes it ideal for use in the MRS program, where new designs and new cost data are frequently offered for consideration. MONITOR can be run as an independent program, or it can be interfaced with the Waste System Transportation and Economic Simulation (WASTES) model, a program that simulates the movement of waste through a complete nuclear waste disposal system. The WASTES model drives the MONITOR model by providing it with the annual quantities of waste that are received, stored, and shipped at the MRS facility. Three runs of MONITOR are documented in this report. Two of the runs are for Version 1 of the MONITOR code. A simulation which uses the costs developed by the Ralph M. Parsons Company in the 2A (backup) version of the MRS cost estimate. In one of these runs MONITOR was run as an independent model, and in the other run MONITOR was run using an input file generated by the WASTES model. The two runs correspond to identical cases, and the fact that they gave identical results verified that the code performed the same calculations in both modes of operation. The third run was made for Version 2 of the MONITOR code. A simulation which uses the costs developed by the Ralph M. Parsons Company in the 2B (integral) version of the MRS cost estimate. This run was made with MONITOR being run as an independent model. The results of several cases have been verified by hand calculations

  6. National Biomedical Tracer Facility. Project definition study

    International Nuclear Information System (INIS)

    Schafer, R.

    1995-01-01

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H - , H + , and D + ). The proposed NBTF facility includes an 80 MeV, 1 mA H - cyclotron that will produce proton-induced (neutron deficient) research isotopes

  7. Measuring School Facility Conditions: An Illustration of the Importance of Purpose

    Science.gov (United States)

    Roberts, Lance W.

    2009-01-01

    Purpose: The purpose of this paper is to argue that taking the educational purposes of schools into account is central to understanding the place and importance of facilities to learning outcomes. The paper begins by observing that the research literature connecting facility conditions to student outcomes is mixed. A closer examination of this…

  8. Initial operation of the Holifield facility

    International Nuclear Information System (INIS)

    Ball, J.B.

    1982-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) is located at Oak Ridge National Laboratory and operated, by the Physics Division, as a national user facility for research in heavy-ion science. The facility operates two accelerators: the new Pelletron electrostatic accelerator, designed to accelerate all ions at terminal potentials up to 25 million volts, and the Oak Ridge Isochronous Cyclotron (ORIC) which, in addition to its stand-alone capabilities, has been modified to serve also as a booster accelerator for ion beams from the Pelletron. In addition, a number of state-of-the-art experimental devices, a new data acquisition computer system, and special user accommodations have been implemented as part of the facility. The construction of the facility was completed officially in June of this year. This paper reports on the present status of facility operation, observations from testing and running of the 25 MV Pelletron, experience with coupled operation of the Pelletron with the ORIC booster, and a brief summary of the experimental devices now available at the facility

  9. Initial operation of the Holifield Facility

    International Nuclear Information System (INIS)

    Ball, J.B.

    1983-01-01

    The Holifield Heavy Ion Research Facility (HHIRF) is located at Oak Ridge National Laboratory and operated, by the Physics Division, as a national user facility for research in heavy-ion science. The facility operates two accelerators: the new pelletron electrostatic accelerator, designed to accelerate all ions at terminal potentials up to 25 million volts, and the Oak Ridge Isochronous Cyclotron (ORIC) which, in addition to its stand-alone capabilities, has been modified to serve also as a booster accelerator for ion beams from the Pelletron. In addition, a number of state-of-the-art experimental devices, a new data acquisition computer system, and special user accommodations have been implemented as part of the facility. The construction of the facility was completed officially in June of this year. This paper reports on the present status of facility operation, observations from testing and running of the 25 MV Pelletron, experience with coupled operation of the Pelletron with the ORIC booster, and a brief summary of the experimental devices now available at the facility

  10. Computer performance evaluation of FACOM 230-75 computer system, (2)

    International Nuclear Information System (INIS)

    Fujii, Minoru; Asai, Kiyoshi

    1980-08-01

    In this report are described computer performance evaluations for FACOM230-75 computers in JAERI. The evaluations are performed on following items: (1) Cost/benefit analysis of timesharing terminals, (2) Analysis of the response time of timesharing terminals, (3) Analysis of throughout time for batch job processing, (4) Estimation of current potential demands for computer time, (5) Determination of appropriate number of card readers and line printers. These evaluations are done mainly from the standpoint of cost reduction of computing facilities. The techniques adapted are very practical ones. This report will be useful for those people who are concerned with the management of computing installation. (author)

  11. Digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Crawford, Kevan

    1986-01-01

    Currently, the use of digital computers in energy producing systems has been limited to data acquisition functions. These computers have greatly reduced human involvement in the moment to moment decision process and the crisis decision process, thereby improving the safety of the dynamic energy producing systems. However, in addition to data acquisition, control of energy producing systems also includes data comparison, decision making, and control actions. The majority of the later functions are accomplished through the use of analog computers in a distributed configuration. The lack of cooperation and hence, inefficiency in distributed control, and the extent of human interaction in critical phases of control have provided the incentive to improve the later three functions of energy systems control. Properly applied, centralized control by digital computers can increase efficiency by making the system react as a single unit and by implementing efficient power changes to match demand. Additionally, safety will be improved by further limiting human involvement to action only in the case of a failure of the centralized control system. This paper presents a hardware and software design for the centralized control of a research nuclear reactor by a digital computer. Current nuclear reactor control philosophies which include redundancy, inherent safety in failure, and conservative yet operational scram initiation were used as the bases of the design. The control philosophies were applied to the power monitoring system, the fuel temperature monitoring system, the area radiation monitoring system, and the overall system interaction. Unlike the single function analog computers that are currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control rod movements to conform with operator requests, automatically log the required physical parameters during reactor

  12. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…

  13. The Education Value of Cloud Computing

    Science.gov (United States)

    Katzan, Harry, Jr.

    2010-01-01

    Cloud computing is a technique for supplying computer facilities and providing access to software via the Internet. Cloud computing represents a contextual shift in how computers are provisioned and accessed. One of the defining characteristics of cloud software service is the transfer of control from the client domain to the service provider.…

  14. Green Computing

    Directory of Open Access Journals (Sweden)

    K. Shalini

    2013-01-01

    Full Text Available Green computing is all about using computers in a smarter and eco-friendly way. It is the environmentally responsible use of computers and related resources which includes the implementation of energy-efficient central processing units, servers and peripherals as well as reduced resource consumption and proper disposal of electronic waste .Computers certainly make up a large part of many people lives and traditionally are extremely damaging to the environment. Manufacturers of computer and its parts have been espousing the green cause to help protect environment from computers and electronic waste in any way.Research continues into key areas such as making the use of computers as energy-efficient as Possible, and designing algorithms and systems for efficiency-related computer technologies.

  15. Update on the TRIUMF Central Control System

    International Nuclear Information System (INIS)

    Mouat, M.M.; Diel, D.A.; Grant, P.A.; Klassen, E.; Lee, K.S.; Ludgate, G.A.; Richards, J.E.; Yogendran, P.J.; Kadantsev, S.G.

    1994-01-01

    The continuing evolution of the TRIUMF Central Control System is currently subject to three major influences. Most imperative is the need to replace the obsolete Nova computers that still handle much of the routine cyclotron operation. Smooth integration of a number of isolated control systems into the CCS is another focus. The third major force arises from the requirements of developing new projects in a system that has reached serious expansion constraints. The plan for phasing out the Novas, integrating the orphaned systems and allowing expansion of the CCS in a smooth fashion is discussed. This is a conservative approach, relying on the strengths of the present hardware configuration, the substantial financial investment in existing equipment, and the expertise of available personnel, while meeting the present and future requirements. Details of the modified and expanded hardware configuration are described. This review also briefly mentions new support for device access, X-window displays, database usage, and plans for one of the upcoming projects, namely an eye cancer proton therapy treatment facility. ((orig.))

  16. Site development in the Central Midwest Compact Region

    International Nuclear Information System (INIS)

    Lash, T.R.

    1986-01-01

    Illinois and Kentucky, the two members of the Central Midwest Interstate Low-Level Radioactive Waste Compact, are well along in fulfilling their responsibility to provide new low-level radioactive waste (LLW) disposal capacity, which has been delegated to states and regions by federal law. The host state for facilities under the compact will be Illinois, and thus the focus of this paper is on Illinois' siting process. Illinois has both the statutory authority for LLW management and a cabinet-level agency, the Illinois Department of Nuclear Safety (IDNS), which has the responsibility for implementing the state management act. Based on activities to date, the Central Midwest Region expects to meet the milestones established by the federal Low-Level Radioactive Waste Policy Amendments Act of 1985. Illinois, however, cannot take further progress toward managing and disposing of our LLW for granted. IDNS and the Central Midwest Compact Commission (CMCC) must continue vigorously to press ahead to assure timely development of new disposal capacity. This paper provides background information on (1) the laws under which new facilities will be established in the Central Midwest Region, (2) the activities of IDNS and CMCC, and (3) planned activities by both IDNS and the CMCC

  17. Description of mathematical models and computer programs

    International Nuclear Information System (INIS)

    1977-01-01

    The paper gives a description of mathematical models and computer programs for analysing possible strategies for spent fuel management, with emphasis on economic analysis. The computer programs developed, describe the material flows, facility construction schedules, capital investment schedules and operating costs for the facilities used in managing the spent fuel. The computer programs use a combination of simulation and optimization procedures for the economic analyses. Many of the fuel cycle steps (such as spent fuel discharges, storage at the reactor, and transport to the RFCC) are described in physical and economic terms through simulation modeling, while others (such as reprocessing plant size and commissioning schedules, interim storage facility commissioning schedules etc.) are subjected to economic optimization procedures to determine the approximate lowest-cost plans from among the available feasible alternatives

  18. Image processing technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Beom; Kim, Woong Ki; Park, Soon Young

    1993-05-01

    Digital image processing technique is being actively studied since microprocessors and semiconductor memory devices have been developed in 1960's. Now image processing board for personal computer as well as image processing system for workstation is developed and widely applied to medical science, military, remote inspection, and nuclear industry. Image processing technology which provides computer system with vision ability not only recognizes nonobvious information but processes large information and therefore this technique is applied to various fields like remote measurement, object recognition and decision in adverse environment, and analysis of X-ray penetration image in nuclear facilities. In this report, various applications of image processing to nuclear facilities are examined, and image processing techniques are also analysed with the view of proposing the ideas for future applications. (Author)

  19. Grid computing in pakistan and: opening to large hadron collider experiments

    International Nuclear Information System (INIS)

    Batool, N.; Osman, A.; Mahmood, A.; Rana, M.A.

    2009-01-01

    A grid computing facility was developed at sister institutes Pakistan Institute of Nuclear Science and Technology (PINSTECH) and Pakistan Institute of Engineering and Applied Sciences (PIEAS) in collaboration with Large Hadron Collider (LHC) Computing Grid during early years of the present decade. The Grid facility PAKGRID-LCG2 as one of the grid node in Pakistan was developed employing mainly local means and is capable of supporting local and international research and computational tasks in the domain of LHC Computing Grid. Functional status of the facility is presented in terms of number of jobs performed. The facility developed provides a forum to local researchers in the field of high energy physics to participate in the LHC experiments and related activities at European particle physics research laboratory (CERN), which is one of the best physics laboratories in the world. It also provides a platform of an emerging computing technology (CT). (author)

  20. An enhanced aerobic bioremediation system at a central production facility -- system design and data analysis

    International Nuclear Information System (INIS)

    Chiang, C.; Petkovsky, P.; Beltz, M.; Rouse, S.; Boyd, T.; Newell, C.; McHugh, T.

    1993-01-01

    A successful field demonstration of the enhanced in-situ aerobic bioremediation with remarkable results took place during the period of August 1, 1991 through year-end 1992 at a central production facility in Michigan. The in-situ soil logging and groundwater sampling by the cone penetrometer/porous probe system provided a real-time definition of the groundwater flow ''channel'' and a clear delineation of the plume extent. That facilitated the design of the closed-loop bioremediation system, consisting of two downgradient pumping wells to completely capture the plume and two pairs of bi-level injection wells located upgradient of the plume. The purged groundwater from the two pumping wells after amending with dissolved oxygen is directly reinjected to the two pairs of upgradient bi-level injection wells. In addition, the performance of the system is monitored by 17 multilevel piezometers. Each piezometer consists of four vertical sampling levels, providing a total of 68 sampling points to fully define the three-dimensional characteristics of the BTEX and DO plumes. Based on a hydrograph analysis of the groundwater data, the closed-loop bioremediation system has been operating properly. In addition, a particle tracking analysis showed groundwater flowlines converge to the pumping wells demonstrating the effectiveness of the plume capture. The trend analysis showed a consistent decline of BTEX concentrations at all of the 68 sampling points

  1. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    Science.gov (United States)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits

  2. Scientific user facilities at Oak Ridge National Laboratory: New research capabilities and opportunities

    Science.gov (United States)

    Roberto, James

    2011-10-01

    Over the past decade, Oak Ridge National Laboratory (ORNL) has transformed its research infrastructure, particularly in the areas of neutron scattering, nanoscale science and technology, and high-performance computing. New facilities, including the Spallation Neutron Source, Center for Nanophase Materials Sciences, and Leadership Computing Facility, have been constructed that provide world-leading capabilities in neutron science, condensed matter and materials physics, and computational physics. In addition, many existing physics-related facilities have been upgraded with new capabilities, including new instruments and a high- intensity cold neutron source at the High Flux Isotope Reactor. These facilities are operated for the scientific community and are available to qualified users based on competitive peer-reviewed proposals. User facilities at ORNL currently welcome more than 2,500 researchers each year, mostly from universities. These facilities, many of which are unique in the world, will be reviewed including current and planned research capabilities, availability and operational performance, access procedures, and recent research results. Particular attention will be given to new neutron scattering capabilities, nanoscale science, and petascale simulation and modeling. In addition, user facilities provide a portal into ORNL that can enhance the development of research collaborations. The spectrum of partnership opportunities with ORNL will be described including collaborations, joint faculty, and graduate research and education.

  3. Parallel computing in enterprise modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Goldsby, Michael E.; Armstrong, Robert C.; Shneider, Max S.; Vanderveen, Keith; Ray, Jaideep; Heath, Zach; Allan, Benjamin A.

    2008-08-01

    This report presents the results of our efforts to apply high-performance computing to entity-based simulations with a multi-use plugin for parallel computing. We use the term 'Entity-based simulation' to describe a class of simulation which includes both discrete event simulation and agent based simulation. What simulations of this class share, and what differs from more traditional models, is that the result sought is emergent from a large number of contributing entities. Logistic, economic and social simulations are members of this class where things or people are organized or self-organize to produce a solution. Entity-based problems never have an a priori ergodic principle that will greatly simplify calculations. Because the results of entity-based simulations can only be realized at scale, scalable computing is de rigueur for large problems. Having said that, the absence of a spatial organizing principal makes the decomposition of the problem onto processors problematic. In addition, practitioners in this domain commonly use the Java programming language which presents its own problems in a high-performance setting. The plugin we have developed, called the Parallel Particle Data Model, overcomes both of these obstacles and is now being used by two Sandia frameworks: the Decision Analysis Center, and the Seldon social simulation facility. While the ability to engage U.S.-sized problems is now available to the Decision Analysis Center, this plugin is central to the success of Seldon. Because Seldon relies on computationally intensive cognitive sub-models, this work is necessary to achieve the scale necessary for realistic results. With the recent upheavals in the financial markets, and the inscrutability of terrorist activity, this simulation domain will likely need a capability with ever greater fidelity. High-performance computing will play an important part in enabling that greater fidelity.

  4. Report of the Central Tracking Group

    International Nuclear Information System (INIS)

    Cassel, D.G.; Hanson, G.G.

    1986-10-01

    Issues involved in building a realistic central tracking system for a general-purpose 4π detector for the SSC are addressed. Such a central tracking system must be capable of running at the full design luminosity of 10 33 cm -2 s -1 . Momentum measurement was required in a general-purpose 4π detector. Limitations on charged particle tracking detectors at the SSC imposed by rates and radiation damage are reviewed. Cell occupancy is the dominant constraint, which led us to the conclusion that only small cells, either wires or straw tubes, are suitable for a central tracking system at the SSC. Mechanical problems involved in building a central tracking system of either wires or straw tubes were studied, and our conclusion was that it is possible to build such a large central tracking system. Of course, a great deal of research and development is required. We also considered central tracking systems made of scintillating fibers or silicon microstrips, but our conclusion was that neither is a realistic candidate given the current state of technology. We began to work on computer simulation of a realistic central tracking system. Events from interesting physics processes at the SSC will be complex and will be further complicated by hits from out-of-time bunch crossings and multiple interactions within the same bunch crossing. Detailed computer simulations are needed to demonstrate that the pattern recognition and tracking problems can be solved

  5. User's guide for the small-angle neutron scattering facility

    International Nuclear Information System (INIS)

    Vlak, W.A.H.M.; Werkhoven, E.J.

    1989-04-01

    This report serves as a manual for the users of the small-angle neutron scattering instrument located at beamport HB3 of the High Flux Reactor in Petten. The main part of the text is devoted to the control of the facility and the data handling by means of a μVAX computer. Also, the various possibilities to access the facility across computer networks are discussed. A collection of menu-driven and command-driven programs, which utilize the flexibility of the VMS operating system without requiring detailed knowledge of the user about the computer environment, enables to control the instrument. For the convenience of the experienced user, who might wish to update or extend the software, a technical supplement is included. 15 figs.; 8 refs

  6. Quantum information. Teleportation - cryptography - quantum computer

    International Nuclear Information System (INIS)

    Koenneker, Carsten

    2012-01-01

    The following topics are dealt with: Reality in the test facility, quantum teleportation, the reality of quanta, interaction-free quantum measurement, rules for quantum computers, quantum computers with ions, spintronics with diamond, the limits of the quantum computers, a view in the future of quantum optics. (HSI)

  7. National Biomedical Tracer Facility. Project definition study

    Energy Technology Data Exchange (ETDEWEB)

    Schafer, R.

    1995-02-14

    We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

  8. Operators guide: Atmospheric Release Advisory Capability (ARAC) site facility

    International Nuclear Information System (INIS)

    Cassaro, E.; Lomonaco, L.

    1979-01-01

    The Atmospheric Release Advisory Capability (ARAC) is designed to help officials at designated DOE sites and other locations in estimating the effects of atmospheric releases of radionuclides or other hazardous materials by issuing real-time advisories to guide them in their planning. This report outlines the capabilities and sources of ARAC, and in more detail describes an ARAC Site Facility, its operating procedures and interactions with the ARAC Central Facility (ACF) located at LLL

  9. [Elderlies in street situation or social vulnerability: facilities and difficulties in the use of computational tools].

    Science.gov (United States)

    Frias, Marcos Antonio da Eira; Peres, Heloisa Helena Ciqueto; Pereira, Valclei Aparecida Gandolpho; Negreiros, Maria Célia de; Paranhos, Wana Yeda; Leite, Maria Madalena Januário

    2014-01-01

    This study aimed to identify the advantages and difficulties encountered by older people living on the streets or social vulnerability, to use the computer or internet. It is an exploratory qualitative research, in which five elderlies, attended on a non-governmental organization located in the city of São Paulo, have participated. The discourses were analyzed by content analysis technique and showed, as facilities, among others, to clarify doubts with the monitors, the stimulus for new discoveries coupled with proactivity and curiosity, and develop new skills. The mentioned difficulties were related to physical or cognitive issues, lack of instructor, and lack of knowledge to interact with the machine. The studies focusing on the elderly population living on the streets or in social vulnerability may contribute with evidence to guide the formulation of public policies to this population.

  10. The UK Human Genome Mapping Project online computing service.

    Science.gov (United States)

    Rysavy, F R; Bishop, M J; Gibbs, G P; Williams, G W

    1992-04-01

    This paper presents an overview of computing and networking facilities developed by the Medical Research Council to provide online computing support to the Human Genome Mapping Project (HGMP) in the UK. The facility is connected to a number of other computing facilities in various centres of genetics and molecular biology research excellence, either directly via high-speed links or through national and international wide-area networks. The paper describes the design and implementation of the current system, a 'client/server' network of Sun, IBM, DEC and Apple servers, gateways and workstations. A short outline of online computing services currently delivered by this system to the UK human genetics research community is also provided. More information about the services and their availability could be obtained by a direct approach to the UK HGMP-RC.

  11. COMPUTING

    CERN Multimedia

    M. Kasemann

    Overview In autumn the main focus was to process and handle CRAFT data and to perform the Summer08 MC production. The operational aspects were well covered by regular Computing Shifts, experts on duty and Computing Run Coordination. At the Computing Resource Board (CRB) in October a model to account for service work at Tier 2s was approved. The computing resources for 2009 were reviewed for presentation at the C-RRB. The quarterly resource monitoring is continuing. Facilities/Infrastructure operations Operations during CRAFT data taking ran fine. This proved to be a very valuable experience for T0 workflows and operations. The transfers of custodial data to most T1s went smoothly. A first round of reprocessing started at the Tier-1 centers end of November; it will take about two weeks. The Computing Shifts procedure was tested full scale during this period and proved to be very efficient: 30 Computing Shifts Persons (CSP) and 10 Computing Resources Coordinators (CRC). The shift program for the shut down w...

  12. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities

    International Nuclear Information System (INIS)

    Coppersmith, Kevin J.; Salomone, Lawrence A.; Fuller, Chris W.; Glaser, Laura L.; Hanson, Kathryn L.; Hartleb, Ross D.; Lettis, William R.; Lindvall, Scott C.; McDuffie, Stephen M.; McGuire, Robin K.; Stirewalt, Gerry L.; Toro, Gabriel R.; Youngs, Robert R.; Slayter, David L.; Bozkurt, Serkan B.; Cumbest, Randolph J.; Falero, Valentina Montaldo; Perman, Roseanne C.; Shumway, Allison M.; Syms, Frank H.; Tuttle, Martitia P.

    2012-01-01

    Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan

  13. Mechanistic facility safety and source term analysis

    International Nuclear Information System (INIS)

    PLYS, M.G.

    1999-01-01

    A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here

  14. In the land of the dinosaurs, how to survive experience with building of midrange computing cluster

    Energy Technology Data Exchange (ETDEWEB)

    Chevel, A E [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Lauret, J [SUNY at Stony Brook (United States)

    2001-07-01

    The authors discuss how to put into operation a midrange computing cluster for the Nuclear Chemistry Group (NCG) of the Stage University of New York at STONY Brook (SUNY-SB). The NCG is part and one of the collaborators within the RHIC/Phenix experiment located at the Brookhaven National Laboratory (BNL). The Phenix detector system produces about half a PB (or 500 TB) of data a year and our goal was to provide to this remote collaborating facility the means to be part of the analysis process. The computing installation was put into operation at the beginning of the year 2000. The cluster consists of 32 peripheral machines running under Linux and central server Alpha 4100 under Digital Unix 4.0f (formally True Unix 64). The realization process is under discussion.

  15. In the land of the dinosaurs, how to survive experience with building of midrange computing cluster

    International Nuclear Information System (INIS)

    Chevel, A.E.; Lauret, J.

    2001-01-01

    The authors discuss how to put into operation a midrange computing cluster for the Nuclear Chemistry Group (NCG) of the Stage University of New York at STONY Brook (SUNY-SB). The NCG is part and one of the collaborators within the RHIC/Phenix experiment located at the Brookhaven National Laboratory (BNL). The Phenix detector system produces about half a PB (or 500 TB) of data a year and our goal was to provide to this remote collaborating facility the means to be part of the analysis process. The computing installation was put into operation at the beginning of the year 2000. The cluster consists of 32 peripheral machines running under Linux and central server Alpha 4100 under Digital Unix 4.0f (formally True Unix 64). The realization process is under discussion

  16. Computing Nash equilibria through computational intelligence methods

    Science.gov (United States)

    Pavlidis, N. G.; Parsopoulos, K. E.; Vrahatis, M. N.

    2005-03-01

    Nash equilibrium constitutes a central solution concept in game theory. The task of detecting the Nash equilibria of a finite strategic game remains a challenging problem up-to-date. This paper investigates the effectiveness of three computational intelligence techniques, namely, covariance matrix adaptation evolution strategies, particle swarm optimization, as well as, differential evolution, to compute Nash equilibria of finite strategic games, as global minima of a real-valued, nonnegative function. An issue of particular interest is to detect more than one Nash equilibria of a game. The performance of the considered computational intelligence methods on this problem is investigated using multistart and deflection.

  17. Centralized vs. decentralized child mental health services.

    Science.gov (United States)

    Adams, M S

    1977-09-01

    One of the basic tenets of the Community Mental Health Center movement is that services should be provided in the consumers' community. Various centers across the country have attempted to do this in either a centralized or decentralized fashion. Historically, most health services have been provided centrally, a good example being the traditional general hospital with its centralized medical services. Over the years, some of these services have become decentralized to take the form of local health centers, health maintenance organizations, community clinics, etc, and now various large mental health centers are also being broken down into smaller community units. An example of each type of mental health facility is delineated here.

  18. Data acquisition and processing system at the NOVETTE laser-fusion facility

    International Nuclear Information System (INIS)

    Auerbach, J.M.; Severyn, J.R.; Kroepfl, D.J.

    1982-01-01

    The computer hardware and software used for acquisition and processing of data from experiments at the NOVETTE laser fusion facility are described. Nearly two hundred sensors are used to measure the performance of millimeter extent targets irradiated by multi-kilojoule laser pulses. Sensor output is recorded on CAMAC based digitizers, CCD arrays, and film. CAMAC instrument outputs are acquired and collected by a network of LSI-11 microprocessors centrally controlled by a VAX 11/780. The user controls the system through menus presented on color video displays equipped with touch panels. The control VAX collects data from all microprocessors and CCD arrays and stores them in a file for transport to a second VAX 11/780 which is used for processing and final analysis. Transfer is done through a high speed fiber-optic link. Relational data bases are used extensively in the processing and archiving of data

  19. How to Bill Your Computer Services.

    Science.gov (United States)

    Dooskin, Herbert P.

    1981-01-01

    A computer facility billing procedure should be designed so that the full costs of a computer center operation are equitably charged to the users. Design criteria, costing methods, and management's role are discussed. (Author/MLF)

  20. Approximation and Computation

    CERN Document Server

    Gautschi, Walter; Rassias, Themistocles M

    2011-01-01

    Approximation theory and numerical analysis are central to the creation of accurate computer simulations and mathematical models. Research in these areas can influence the computational techniques used in a variety of mathematical and computational sciences. This collection of contributed chapters, dedicated to renowned mathematician Gradimir V. Milovanovia, represent the recent work of experts in the fields of approximation theory and numerical analysis. These invited contributions describe new trends in these important areas of research including theoretic developments, new computational alg

  1. Expert systems for protective monitoring of facilities

    International Nuclear Information System (INIS)

    Carr, K.R.

    1987-01-01

    In complex plants, the possibility of serious operator error always exists to some extent, but, this can be especially true during an experiment or some other unusual exercise. Possible contributing factors to operational error include personnel fatigue, misunderstanding in communication, mistakes in executing orders, uncertainty about the delegated authority, pressure to meet a demanding schedule, and a lack of understanding of the possible consequences of deliberate violations of the facility's established operating procedures. Authoritative reports indicate that most of these factors were involved in the disastrous Russian Chernobyl-4 nuclear reactor accident in April 1986, which, ironically, occurred when a safety experiment was being conducted. Given the computer hardware and software now available for implementing expert systems together with integrated signal monitoring and communications, plant protection could be enhanced by an expert system with extended features to monitor the plant. The system could require information from the operators on a rigidly enforced schedule and automatically log in and report on a scheduled time basis to authorities at a central remote site during periods of safe operation. Additionally, the system could warn an operator or automatically shut down the plant in case of dangerous conditions, while simultaneously notifying independent, responsible, off-site personnel of the action taken. This approach would provide protection beyond that provided by typical facility scram circuits. This paper presents such an approach to implementing an expert system for plant protection, together with specific hardware and software configurations. The Chernobyl accident is used as the basis of discussion

  2. Bevalac Minibeam Facility

    International Nuclear Information System (INIS)

    Schimmerling, W.; Alonso, J.; Morgado, R.; Tobias, C.A.; Grunder, H.; Upham, F.T.; Windsor, A.; Armer, R.A.; Yang, T.C.H.; Gunn, J.T.

    1977-03-01

    The Minibeam Facility is a biomedical heavy-ion beam area at the Bevalac designed to satisfy the following requirements: (1) provide a beam incident in a vertical plane for experiments where a horizontal apparatus significantly increases the convenience of performing an experiment or even determines its feasibility; (2) provide an area that is well shielded with respect to electronic interference so that microvolt signals can be detected with acceptable signal-to-noise ratios; (3) provide a beam of small diameter, typically a few millimeters or less, for various studies of cellular function; and (4) provide a facility for experiments that require long setup and preparation times and apparatus that must be left relatively undisturbed between experiments and that need short periods of beam time. The design of such a facility and its main components is described. In addition to the above criteria, the design was constrained by the desire to have inexpensive, simple devices that work reliably and can be easily upgraded for interfacing to the Biomedical PDP 11/45 computer

  3. Annual report to the Laser Facility Committee 1984

    International Nuclear Information System (INIS)

    1984-01-01

    The report describes the work carried out at, or in association with, the Central Laser Facility (CLF), during the year ending March 1984. The CLF programme is divided into three main sections. The first, the glass laser scientific programme, is concerned with applications of the high power Nd glass laser. The second, the ultra violet radiation facility scientific programme, involves the excimer pumped frequency tunable lasers. The last, high power KrF laser development, describes Research and development work on this laser. (U.K.)

  4. Development of a computer code for shielding calculation in X-ray facilities

    International Nuclear Information System (INIS)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Moreira, Maria de L.; Guimaraes, Antonio C.F.

    2014-01-01

    The construction of an effective barrier against the interaction of ionizing radiation present in X-ray rooms requires consideration of many variables. The methodology used for specifying the thickness of primary and secondary shielding of an traditional X-ray room considers the following factors: factor of use, occupational factor, distance between the source and the wall, workload, Kerma in the air and distance between the patient and the receptor. With these data it was possible the development of a computer program in order to identify and use variables in functions obtained through graphics regressions offered by NCRP Report-147 (Structural Shielding Design for Medical X-Ray Imaging Facilities) for the calculation of shielding of the room walls as well as the wall of the darkroom and adjacent areas. With the built methodology, a program validation is done through comparing results with a base case provided by that report. The thickness of the obtained values comprise various materials such as steel, wood and concrete. After validation is made an application in a real case of radiographic room. His visual construction is done with the help of software used in modeling of indoor and outdoor. The construction of barriers for calculating program resulted in a user-friendly tool for planning radiographic rooms to comply with the limits established by CNEN-NN-3:01 published in September / 2011

  5. An application of data processing in the radiation measuring means near the nuclear facilities

    International Nuclear Information System (INIS)

    Joffre, H.

    1979-01-01

    The utilization of digital techniques in health physics is becoming general. A recent application, described here, is the realization of the radiation monitoring panel TCR in a building at the 'Centre d'Etudes Nucleaires Saclay'. This building, run by the 'Departement des Rayonnements Ionisants', produces radioelements used in research, medicine and industry. The TCR as designed and built includes 120 measuring channels, its centralizer unit comprises two computers, three visualization screens, two fast printers, a curve plotting table and a recording disc. After some months in operation, this facility proves to be very efficient in its monitoring function by providing new indications, the most important of which is the virtually immediate indication of the level of air contamination by radioactive aerosols in the working areas and in the gas effluents. The data processing by two computers and the super-dimensioned peripherals also appear to ensure an excellent reliability of the whole unit. Finally, in comparison with conventional TCRs, this new installation has very good operational and reliability characteristics in spite of a markedly lower cost [fr

  6. Computers in experimental nuclear power facilities

    International Nuclear Information System (INIS)

    Jukl, M.

    1982-01-01

    The CIS 3000 information system is described used for monitoring the operating modes of large technological equipment. The CIS system consists of two ADT computers, an external drum store an analog input side, a bivalent input side, 4 control consoles with monitors and acoustic signalling, a print-out area with typewriters and punching machines and linear recorders. Various applications are described of the installed CIS configuration as is the general-purpose program for processing measured values into a protocol. The program operates in the conversational mode. Different processing variants are shown on the display monitor. (M.D.)

  7. Peripherally inserted central catheters. Guidewire versus nonguidewire use: a comparative study.

    Science.gov (United States)

    Loughran, S C; Edwards, S; McClure, S

    1992-01-01

    To date, no research articles have been published that explore the practice of using guidewires for placement of peripherally inserted central catheters. The literature contains speculations regarding the pros and cons of guidewire use. However, no studies to date have compared patient outcomes when peripherally inserted central catheter lines are inserted with and without guidewires. To examine the use of guidewires for peripherally inserted central lines, a comparative study was conducted at two acute care facilities, one using guidewires for insertion and one inserting peripherally inserted central catheter lines without guidewires. 109 catheters were studied between January 1, 1990 and January 1, 1991. The primary focus of this study was to examine whether guidewire use places patients at higher risk for catheter-related complications, particularly phlebitis. No significant differences in phlebitis rates between the two study sites were found. Other catheter-related and noncatheter-related complications were similar between the two facilities. The results of this study do not support the belief that guidewire use increases complication rates.

  8. NucleoRed - Computerized system for increasing the effectiveness of the technical administrative conduct of the Laguna Verde Central; NucleoRed - Sistema computarizado para incrementar la efectividad de la gestion tecnico-administrativa de la Central Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Luna D, J. [Central Nucleoelectrica Laguna Verde, Carretera cardel-Nautla Km. 42.5 Veracruz (Mexico)]. e-mail: jluna@cfe.gob.mx

    2003-07-01

    The on-line systems for the management of the Laguna Verde Central (CLV) have had the challenge to evolve from the PC's of first generation until emigrate to the new Internet technologies, so that they allow to the diverse work groups to have the computer tool that allows them to gather the necessary data and to carry out efficiently the analysis of their results. To confront the previous challenge, in the CLV it has been developed and implemented the Nucleo Red that is an on-line system with the objective of providing in it lines strategic information for the Technician-administrative management of the plant in the nuclear context. The Nucleo Red is the computational tool that reflects the technical administrative processes implemented by personnel of the different Operative departments, it seeks to cooperate to the reliable and efficient operation of the first nucleo electric central of Mexico, with technology and Mexican personnel the one which already it had received international recognitions. The perspective of this computer system is to continue inside the process of continuous improvement and that although it was designed for a nucleo electric plant it can also be taken to the conventional plants of generation of electric power, so that this technology can be taken advantage of in other non nuclear facilities. The objective of the present work, is to show the new modules that have been developed in the Nucleo Red, its operation in general, and the benefits that it presents its use. (Author)

  9. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the Path to Ignition

    International Nuclear Information System (INIS)

    Lagin, L J; Bettenhauasen, R C; Bowers, G A; Carey, R W; Edwards, O D; Estes, C M; Demaret, R D; Ferguson, S W; Fisher, J M; Ho, J C; Ludwigsen, A P; Mathisen, D G; Marshall, C D; Matone, J M; McGuigan, D L; Sanchez, R J; Shelton, R T; Stout, E A; Tekle, E; Townsend, S L; Van Arsdall, P J; Wilson, E F

    2007-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of 8 beams each using laser hardware that is modularized into more than 6,000 line replaceable units such as optical assemblies, laser amplifiers, and multifunction sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-Megajoule capability of infrared light. During the next two years, the control system will be expanded to include automation of target area systems including final optics, target positioners and

  10. Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the path to ignition

    International Nuclear Information System (INIS)

    Lagin, L.J.; Bettenhausen, R.C.; Bowers, G.A.; Carey, R.W.; Edwards, O.D.; Estes, C.M.; Demaret, R.D.; Ferguson, S.W.; Fisher, J.M.; Ho, J.C.; Ludwigsen, A.P.; Mathisen, D.G.; Marshall, C.D.; Matone, J.T.; McGuigan, D.L.; Sanchez, R.J.; Stout, E.A.; Tekle, E.A.; Townsend, S.L.; Van Arsdall, P.J.

    2008-01-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-MJ, 500-TW, ultraviolet laser system together with a 10-m diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of eight beams each using laser hardware that is modularized into more than 6000 line replaceable units such as optical assemblies, laser amplifiers, and multi-function sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-MJ capability of infrared light. During the next 2 years, the control system will be expanded in preparation for project completion in 2009 to include automation of target area systems including final optics

  11. Development of a Medical Cyclotron Production Facility

    Science.gov (United States)

    Allen, Danny R.

    2003-08-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes.

  12. Development of a Medical Cyclotron Production Facility

    International Nuclear Information System (INIS)

    Allen, Danny R.

    2003-01-01

    Development of a Cyclotron manufacturing facility begins with a business plan. Geographics, the size and activity of the medical community, the growth potential of the modality being served, and other business connections are all considered. This business used the customer base established by NuTech, Inc., an independent centralized nuclear pharmacy founded by Danny Allen. With two pharmacies in operation in Tyler and College Station and a customer base of 47 hospitals and clinics the existing delivery system and pharmacist staff is used for the cyclotron facility. We then added cyclotron products to contracts with these customers to guarantee a supply. We partnered with a company in the process of developing PET imaging centers. We then built an independent imaging center attached to the cyclotron facility to allow for the use of short-lived isotopes

  13. Human resources for refraction services in Central Nepal.

    Science.gov (United States)

    Kandel, Himal; Murthy, G V S; Bascaran, Covadonga

    2015-07-01

    Uncorrected refractive error is a public health problem globally and in Nepal. Planning of refraction services is hampered by a paucity of data. This study was conducted to determine availability and distribution of human resources for refraction, their efficiency, the type and extent of their training; the current service provision of refraction services and the unmet need in human resources for refraction in Central Nepal. This was a descriptive cross-sectional study. All refraction facilities in the Central Region were identified through an Internet search and interviews of key informants from the professional bodies and parent organisations of primary eye centres. A stratified simple random sampling technique was used to select 50 per cent of refraction facilities. The selected facilities were visited for primary data collection. Face-to-face interviews were conducted with the managers and the refractionists available in the facilities using a semi-structured questionnaire. Data was collected in 29 centres. All the managers (n=29; response rate 100 per cent) and 50 refractionists (Response rate 65.8 per cent) were interviewed. Optometrists and ophthalmic assistants were the main providers of refraction services (n=70, 92.11 per cent). They were unevenly distributed across the region, highly concentrated around urban areas. The median number of refractions per refractionist per year was 3,600 (IQR: 2,400 - 6,000). Interviewed refractionists stated that clients' knowledge, attitude and practice related factors such as lack of awareness of the need for refraction services and/or availability of existing services were the major barriers to the output of refraction services. The total number of refractions carried out in the Central Region per year was 653,176. An additional 170 refractionists would be needed to meet the unmet need of 1,323,234 refractions. The study findings demand a major effort to develop appropriately trained personnel when planning

  14. Computer utility for interactive instrument control

    International Nuclear Information System (INIS)

    Day, P.

    1975-08-01

    A careful study of the ANL laboratory automation needs in 1967 led to the conclusion that a central computer could support all of the real-time needs of a diverse collection of research instruments. A suitable hardware configuration would require an operating system to provide effective protection, fast real-time response and efficient data transfer. An SDS Sigma 5 satisfied all hardware criteria, however it was necessary to write an original operating system; services include program generation, experiment control real-time analysis, interactive graphics and final analysis. The system is providing real-time support for 21 concurrently running experiments, including an automated neutron diffractometer, a pulsed NMR spectrometer and multi-particle detection systems. It guarantees the protection of each user's interests and dynamically assigns core memory, disk space and 9-track magnetic tape usage. Multiplexor hardware capability allows the transfer of data between a user's device and assigned core area at rates of 100,000 bytes/sec. Real-time histogram generation for a user can proceed at rates of 50,000 points/sec. The facility has been self-running (no computer operator) for five years with a mean time between failures of 10 []ays and an uptime of 157 hours/week. (auth)

  15. The Emergence of Large-Scale Computer Assisted Summative Examination Facilities in Higher Education

    NARCIS (Netherlands)

    Draaijer, S.; Warburton, W. I.

    2014-01-01

    A case study is presented of VU University Amsterdam where a dedicated large-scale CAA examination facility was established. In the facility, 385 students can take an exam concurrently. The case study describes the change factors and processes leading up to the decision by the institution to

  16. Computers in Schools: White Boys Only?

    Science.gov (United States)

    Hammett, Roberta F.

    1997-01-01

    Discusses the role of computers in today's world and the construction of computer use attitudes, such as gender gaps. Suggests how schools might close the gaps. Includes a brief explanation about how facility with computers is important for women in their efforts to gain equitable treatment in all aspects of their lives. (PA)

  17. Fault tolerant computer control for a Maglev transportation system

    Science.gov (United States)

    Lala, Jaynarayan H.; Nagle, Gail A.; Anagnostopoulos, George

    1994-01-01

    Magnetically levitated (Maglev) vehicles operating on dedicated guideways at speeds of 500 km/hr are an emerging transportation alternative to short-haul air and high-speed rail. They have the potential to offer a service significantly more dependable than air and with less operating cost than both air and high-speed rail. Maglev transportation derives these benefits by using magnetic forces to suspend a vehicle 8 to 200 mm above the guideway. Magnetic forces are also used for propulsion and guidance. The combination of high speed, short headways, stringent ride quality requirements, and a distributed offboard propulsion system necessitates high levels of automation for the Maglev control and operation. Very high levels of safety and availability will be required for the Maglev control system. This paper describes the mission scenario, functional requirements, and dependability and performance requirements of the Maglev command, control, and communications system. A distributed hierarchical architecture consisting of vehicle on-board computers, wayside zone computers, a central computer facility, and communication links between these entities was synthesized to meet the functional and dependability requirements on the maglev. Two variations of the basic architecture are described: the Smart Vehicle Architecture (SVA) and the Zone Control Architecture (ZCA). Preliminary dependability modeling results are also presented.

  18. Evaluating computer program performance on the CRAY-1

    International Nuclear Information System (INIS)

    Rudsinski, L.; Pieper, G.W.

    1979-01-01

    The Advanced Scientific Computers Project of Argonne's Applied Mathematics Division has two objectives: to evaluate supercomputers and to determine their effect on Argonne's computing workload. Initial efforts have focused on the CRAY-1, which is the only advanced computer currently available. Users from seven Argonne divisions executed test programs on the CRAY and made performance comparisons with the IBM 370/195 at Argonne. This report describes these experiences and discusses various techniques for improving run times on the CRAY. Direct translations of code from scalar to vector processor reduced running times as much as two-fold, and this reduction will become more pronounced as the CRAY compiler is developed. Further improvement (two- to ten-fold) was realized by making minor code changes to facilitate compiler recognition of the parallel and vector structure within the programs. Finally, extensive rewriting of the FORTRAN code structure reduced execution times dramatically, in three cases by a factor of more than 20; and even greater reduction should be possible by changing algorithms within a production code. It is condluded that the CRAY-1 would be of great benefit to Argonne researchers. Existing codes could be modified with relative ease to run significantly faster than on the 370/195. More important, the CRAY would permit scientists to investigate complex problems currently deemed infeasibile on traditional scalar machines. Finally, an interface between the CRAY-1 and IBM computers such as the 370/195, scheduled by Cray Research for the first quarter of 1979, would considerably facilitate the task of integrating the CRAY into Argonne's Central Computing Facility. 13 tables

  19. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  20. Central eastern Europe approach to the security over nuclear materials

    International Nuclear Information System (INIS)

    Smagala, G.

    2002-01-01

    Full text: This paper presents an overview of the national approaches to physical protection of nuclear materials in Central Eastern Europe (CEE), with an emphasis on Poland. Soviet influence in the past led to inadequate safety culture in nuclear activities and insufficient security of nuclear materials and facilities in the region. In the centralized economies all aspects of nuclear activities, including ownership of the nuclear facilities, were the responsibility of the state with no clear separation between regulating and promoting functions. During the last decade a significant progress has been made in the region to clean up the legacy of the past and to improve practices in physical protection of nuclear materials. The countries of Central Eastern Europe have had many similar deficiencies in nuclear field and problems to overcome, but cannot be viewed as a uniform block. There are local variations within the region in a size of nuclear activities, formulated respective regulations and adopted measures to secure nuclear materials and facilities. Nevertheless, all twelve nations, with nuclear reactors and without nuclear facilities, have joined the convention on the physical protection of nuclear material and most of them declare that they have followed the IAEA recommendations INFCIRC/225/Rev.4 to elaborate and implement their physical protection systems of nuclear materials and facilities. The largest request for an international advisory mission (IPPAS) to review states' physical protection systems and to address needs for improvement was received from the countries of Central Eastern Europe. Poland belongs to the beneficiaries where the IPPAS mission and later follow-up consultations resulted in physical protection upgrade of the research reactor under the IAEA/US/UK technical assistance project. A powerful incentive to the progress made in a number of CEE countries was the goal of accession to the European Union. The physical protection of nuclear

  1. Neutron generator instrumentation at the Department 2350 Neutron Generator Test Facility

    International Nuclear Information System (INIS)

    Bryant, T.C.; Mowrer, G.R.

    1979-06-01

    The computer and waveform digitizing capability at the test facility has allowed several changes in the techniques used to test neutron generators. These changes include methods used to calibrate the instrumentation and changes in the operation of the test facility. These changes have increased the efficiency of the test facility as well as increasing both timing and amplitude accuracy of neutron generator waveforms

  2. PUREX/UO3 facilities deactivation lessons learned history

    International Nuclear Information System (INIS)

    Gerber, M.S.

    1997-01-01

    In May 1997, a historic deactivation project at the PUREX (Plutonium URanium EXtraction) facility at the Hanford Site in south-central Washington State concluded its activities (Figure ES-1). The project work was finished at $78 million under its original budget of $222.5 million, and 16 months ahead of schedule. Closely watched throughout the US Department of Energy (DOE) complex and by the US Department of Defense for the value of its lessons learned, the PUREX Deactivation Project has become the national model for the safe transition of contaminated facilities to shut down status

  3. Scale economies in a series of generic interim SNF storage facilities - 15104

    International Nuclear Information System (INIS)

    Rothwell, G.

    2015-01-01

    This paper describes a micro-economic, cost-engineering model of a centralized (Generic Interim Storage Facility - GISF) facility to monitor LWR irradiated fuel with particular attention to scale economies (e.g., to compare the likely costs at a power plant site or at regional, national and international facilities). This paper is based on the cost estimates of the Private Fuel Services Facility (PFSF) on the Skull Valley Band of Goshute Indians' Reservation in Utah, licensed by the US NRC in 2006 to centralize storage of 40.000 metric tons of heavy metal (MTHM) for 20 to 40 years. Assuming movement of the 40.000 MTHM every 40 years to a new facility, the levelized costs are 144 dollars/kg without high security and physical protection, and 208 dollars/kg with high security through 2111 (assuming disposal within a century), or about 0.50 dollars/MWh to 0.75 dollars/MWh depending on the burnup and thermal efficiency of the nuclear power plant. This cost estimate is generalized to explore scale economies for facilities with and without high security and physical protection. There are declining levelized costs with increasing size to 120.000 MTHM without high security, and to 500.000 MTHM with high security, i.e., the higher the level of security, the stronger the economies of scale. (author)

  4. Investigating for failure of central ventilation fan blade

    International Nuclear Information System (INIS)

    Koo, Jae Raeyang; Ko Woo Sig; Kim, Yeon Hwan; Park, Kwang Ha

    2002-01-01

    During the operation, central ventilation fan stopped when switch 'on' condition. When central ventilation fan disassemble, ten blades of fan fractured. We have searched cause of failure. We had modeling one of the fan blades and analysis with computer programs. Thus we have find that fracture of central ventilation fan blades is alternative stress and vibration at hub. In this paper, we have described cause of failure

  5. Automation of electromagnetic compatability (EMC) test facilities

    Science.gov (United States)

    Harrison, C. A.

    1986-01-01

    Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.

  6. Simulation of facility operations and materials accounting for a combined reprocessing/MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Whiteson, R.; Zardecki, A.

    1991-01-01

    We are developing a computer model of facility operations and nuclear materials accounting for a facility that reprocesses spent fuel and fabricates mixed oxide (MOX) fuel rods and assemblies from the recovered uranium and plutonium. The model will be used to determine the effectiveness of various materials measurement strategies for the facility and, ultimately, of other facility safeguards functions as well. This portion of the facility consists of a spent fuel storage pond, fuel shear, dissolver, clarifier, three solvent-extraction stages with uranium-plutonium separation after the first stage, and product concentrators. In this facility area mixed oxide is formed into pellets, the pellets are loaded into fuel rods, and the fuel rods are fabricated into fuel assemblies. These two facility sections are connected by a MOX conversion line in which the uranium and plutonium solutions from reprocessing are converted to mixed oxide. The model of the intermediate MOX conversion line used in the model is based on a design provided by Mike Ehinger of Oak Ridge National Laboratory (private communication). An initial version of the simulation model has been developed for the entire MOX conversion and fuel fabrication sections of the reprocessing/MOX fuel fabrication facility, and this model has been used to obtain inventory difference variance estimates for those sections of the facility. A significant fraction of the data files for the fuel reprocessing section have been developed, but these data files are not yet complete enough to permit simulation of reprocessing operations in the facility. Accordingly, the discussion in the following sections is restricted to the MOX conversion and fuel fabrication lines. 3 tabs

  7. Journal of EEA, Vol. 30, 2013 COMPUTERIZED FACILITIES ...

    African Journals Online (AJOL)

    dell

    Key words: Computer Aided Layout Design,. Construction ... Commonly used software are ... popular improvement-type methods are. Computerized Relative Allocation of Facilities .... closeness ratings values are given different numerical.

  8. Listed waste history at Hanford facility TSD units

    International Nuclear Information System (INIS)

    Miskho, A.G.

    1996-01-01

    This document was prepared to close out an occurrence report that Westinghouse Hanford Company issued on December 29, 1994. Occurrence Report RL-WHC-GENERAL-1994-0020 was issued because knowledge became available that could have impacted start up of a Hanford Site facility. The knowledge pertained to how certain wastes on the Hanford Site were treated, stored, or disposed of. This document consolidates the research performed by Westinghouse Hanford Company regarding listed waste management at onsite laboratories that transfer waste to the Double-Shell Tank System. Liquid and solid (non-liquid) dangerous wastes and mixed wastes at the Hanford Site are generated from various Site operations. These wastes may be sampled and characterized at onsite laboratories to meet waste management requirements. In some cases, the wastes that are generated in the field or in the laboratory from the analysis of samples require further management on the Hanford Site and are aggregated together in centralized tank storage facilities. The process knowledge presented herein documents the basis for designation and management of 242-A Evaporator Process Condensate, a waste stream derived from the treatment of the centralized tank storage facility waste (the Double-Shell Tank System). This document will not be updated as clean up of the Hanford Site progresses

  9. What it took to get an NRC license for centralized incineration

    International Nuclear Information System (INIS)

    DiSalvo, R.; Zielenbach, W.

    1987-01-01

    In 1982, Battelle joined five other commercial generators of low level radioactive waste in conducting a study of the technical and economic feasibility and the licensability of a central facility for incinerating LLW. The project generated a license application to the USNRC and supporting documentation related to the safety and environmental impacts of the facility. After thorough review, the NRC has issued a Finding of No Significant Impact and the associated license authorization, which is the first of its kind for an incineration facility

  10. HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Holzman, Burt [Fermilab; Bauerdick, Lothar A.T. [Fermilab; Bockelman, Brian [Nebraska U.; Dykstra, Dave [Fermilab; Fisk, Ian [New York U.; Fuess, Stuart [Fermilab; Garzoglio, Gabriele [Fermilab; Girone, Maria [CERN; Gutsche, Oliver [Fermilab; Hufnagel, Dirk [Fermilab; Kim, Hyunwoo [Fermilab; Kennedy, Robert [Fermilab; Magini, Nicolo [Fermilab; Mason, David [Fermilab; Spentzouris, Panagiotis [Fermilab; Tiradani, Anthony [Fermilab; Timm, Steve [Fermilab; Vaandering, Eric W. [Fermilab

    2017-09-29

    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing nterest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized both local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. In addition, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.

  11. Fabrication of Separator Demonstration Facility process vessel

    International Nuclear Information System (INIS)

    Oberst, E.F.

    1985-01-01

    The process vessel system is the central element in the Separator Development Facility (SDF). It houses the two major process components, i.e., the laser-beam folding optics and the separators pods. This major subsystem is the critical-path procurement for the SDF project. Details of the vaious parts of the process vessel are given

  12. Risk evaluation system for facility safeguards and security planning

    International Nuclear Information System (INIS)

    Udell, C.J.; Carlson, R.L.

    1987-01-01

    The Risk Evaluation System (RES) is an integrated approach to determining safeguards and security effectiveness and risk. RES combines the planning and technical analysis into a format that promotes an orderly development of protection strategies, planing assumptions, facility targets, vulnerability and risk determination, enhancement planning, and implementation. In addition, the RES computer database program enhances the capability of the analyst to perform a risk evaluation of the facility. The computer database is menu driven using data input screens and contains an algorithm for determining the probability of adversary defeat and risk. Also, base case and adjusted risk data records can be maintained and accessed easily

  13. Risk evaluation system for facility safeguards and security planning

    International Nuclear Information System (INIS)

    Udell, C.J.; Carlson, R.L.

    1987-01-01

    The Risk Evaluation System (RES) is an integrated approach to determining safeguards and security effectiveness and risk. RES combines the planning and technical analysis into a format that promotes an orderly development of protection strategies, planning assumptions, facility targets, vulnerability and risk determination, enhancement planning, and implementation. In addition, the RES computer database program enhances the capability of the analyst to perform a risk evaluation of the facility. The computer database is menu driven using data input screens and contains an algorithm for determining the probability of adversary defeat and risk. Also, base case and adjusted risk data records can be maintained and accessed easily

  14. Parallel computing works

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-23

    An account of the Caltech Concurrent Computation Program (C{sup 3}P), a five year project that focused on answering the question: Can parallel computers be used to do large-scale scientific computations '' As the title indicates, the question is answered in the affirmative, by implementing numerous scientific applications on real parallel computers and doing computations that produced new scientific results. In the process of doing so, C{sup 3}P helped design and build several new computers, designed and implemented basic system software, developed algorithms for frequently used mathematical computations on massively parallel machines, devised performance models and measured the performance of many computers, and created a high performance computing facility based exclusively on parallel computers. While the initial focus of C{sup 3}P was the hypercube architecture developed by C. Seitz, many of the methods developed and lessons learned have been applied successfully on other massively parallel architectures.

  15. AGIS: Integration of new technologies used in ATLAS Distributed Computing

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00291854; The ATLAS collaboration; Di Girolamo, Alessandro; Alandes Pradillo, Maria

    2017-01-01

    The variety of the ATLAS Distributed Computing infrastructure requires a central information system to define the topology of computing resources and to store different parameters and configuration data which are needed by various ATLAS software components. The ATLAS Grid Information System (AGIS) is the system designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by ATLAS Distributed Computing applications and services. Being an intermediate middleware system between clients and external information sources (like central BDII, GOCDB, MyOSG), AGIS defines the relations between experiment specific used resources and physical distributed computing capabilities. Being in production during LHC Runl AGIS became the central information system for Distributed Computing in ATLAS and it is continuously evolving to fulfil new user requests, enable enhanced operations and follow the extension of the ATLAS Computing model. The ATLAS Computin...

  16. Robins Air Force Base Solar Cogeneration Facility design

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, B.L.; Bodenschatz, C.A.

    1982-06-01

    A conceptual design and a cost estimate have been developed for a Solar Cogeneration Facility at Robins Air Force Base. This demonstration solar facility was designed to generate and deliver electrical power and process steam to the existing base distribution systems. The facility was to have the potential for construction and operation by 1986 and make use of existing technology. Specific objectives during the DOE funded conceptual design program were to: prepare a Solar Cogeneration Facility (overall System) Specification, select a preferred configuration and develop a conceptual design, establish the performance and economic characteristics of the facility, and prepare a development plan for the demonstration program. The Westinghouse team, comprised of the Westinghouse Advanced Energy Systems Division, Heery and Heery, Inc., and Foster Wheeler Solar Development Corporation, in conjunction with the U.S. Air Force Logistics Command and Georgia Power Company, has selected a conceptual design for the facility that will utilize the latest DOE central receiver technology, effectively utilize the energy collected in the application, operate base-loaded every sunny day of the year, and be applicable to a large number of military and industrial facilities throughout the country. The design of the facility incorporates the use of a Collector System, a Receiver System, an Electrical Power Generating System, a Balance of Facility - Steam and Feedwater System, and a Master Control System.

  17. Grid Computing at GSI for ALICE and FAIR - present and future

    International Nuclear Information System (INIS)

    Schwarz, Kilian; Uhlig, Florian; Karabowicz, Radoslaw; Montiel-Gonzalez, Almudena; Zynovyev, Mykhaylo; Preuss, Carsten

    2012-01-01

    The future FAIR experiments CBM and PANDA have computing requirements that fall in a category that could currently not be satisfied by one single computing centre. One needs a larger, distributed computing infrastructure to cope with the amount of data to be simulated and analysed. Since 2002, GSI operates a tier2 center for ALICE-CERN. The central component of the GSI computing facility and hence the core of the ALICE tier2 centre is a LSF/SGE batch farm, currently split into three subclusters with a total of 15000 CPU cores shared by the participating experiments, and accessible both locally and soon also completely via Grid. In terms of data storage, a 5.5 PB Lustre file system, directly accessible from all worker nodes is maintained, as well as a 300 TB xrootd-based Grid storage element. Based on this existing expertise, and utilising ALICE's middleware ‘AliEn’, the Grid infrastructure for PANDA and CBM is being built. Besides a tier0 centre at GSI, the computing Grids of the two FAIR collaborations encompass now more than 17 sites in 11 countries and are constantly expanding. The operation of the distributed FAIR computing infrastructure benefits significantly from the experience gained with the ALICE tier2 centre. A close collaboration between ALICE Offline and FAIR provides mutual advantages. The employment of a common Grid middleware as well as compatible simulation and analysis software frameworks ensure significant synergy effects.

  18. Computational Modeling in Support of High Altitude Testing Facilities, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation technology plays an important role in propulsion test facility design and development by assessing risks, identifying failure modes and predicting...

  19. Ice condenser testing facility and plans

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Ross, B.A.; Eschbach, E.J.; Ligotke, M.W.

    1987-01-01

    A facility is being constructed to experimentally validate the ICEDF computer code. The code was developed to estimate the extent of fission product retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The design and construction of the facility is based on a test design that addresses the validation needs of the code for conditions typical of those expected to occur during severe pressurized water reactor accidents. Detailed facility design has followed completion of a test design (i.e., assembled test cases each involving a different set of aerosol and thermohydraulic flow conditions). The test design was developed with the aid of statistical test design software and was scrutinized for applicability with the aid of ICEDF simulations. The test facility will incorporate a small section of a prototypic ice condenser (e.g., a cross section comprising the equivalent of four 1-ft-diameter ice baskets to their full prototypic height of 48 ft). The development of the test design, the detailed facility design, and the construction progress are described in this paper

  20. Future Facility: FAIR at GSI

    International Nuclear Information System (INIS)

    Rosner, Guenther

    2007-01-01

    The Facility for Antiproton and Ion Research, FAIR, is a new particle accelerator facility to be built at the GSI site in Germany. The research at FAIR will cover a wide range of topics in nuclear and hadron physics, high density plasma and atomic physics, and applications in condensed matter physics and biology. A 1.1 km circumference double ring of rapidly cycling 100 and 300 Tm synchrotrons, will be FAIR's central accelerator system. It will be used to produce, inter alia, high intensity secondary beams of antiprotons and short-lived radioactive nuclei. A subsequent suite of cooler and storage rings will deliver heavy ion and antiproton beams of unprecedented quality. Large experiments are presently being designed by the NUSTAR, PANDA, PAX, CBM, SPARC, FLAIR, HEDgeHOB and BIOMAT collaborations