Event Schemas in Autism Spectrum Disorders: The Role of Theory of Mind and Weak Central Coherence
Loth, Eva; Gomez, Juan Carlos; Happe, Francesca
2008-01-01
Event schemas (generalized knowledge of what happens at common real-life events, e.g., a birthday party) are an important cognitive tool for social understanding: They provide structure for social experiences while accounting for many variable aspects. Using an event narratives task, this study tested the hypotheses that theory of mind (ToM)…
Is a coherence theory of understanding possible?
Directory of Open Access Journals (Sweden)
Victor Gijsbers
2015-03-01
Full Text Available Coherence is a measure of how much our beliefs hang together. Understanding is achieved when we see that something is not just a brute, isolated fact. This suggests that it might be possible to develop a coherence theory of understanding, which is what we attempt to do in this article using several formal measures of coherence. However, it turns out that a coherence theory runs into trouble with the asymmetry of understanding. We identify four difficulties and give suggestions for how they could be solved. These solutions all point away from coherence and towards a rather different notion, unification, which casts some (though not conclusive doubt on the possibility of a coherence theory of understanding.
Theory of coherent phonons in graphene
Sanders, G. D.; Stanton, C. J.; Kim, J.-H.; Yee, K.-J.; Jung, M. H.; Hong, B. H.; Haroz, E. H.; Kono, J.
2011-03-01
We develop a theory for the generation and detection of coherent phonons in graphene. Coherent phonons are generated via the deformation potential electron-phonon interaction with photogenerated carriers. In our theory the electronic states are treated in a third nearest neighbor extended tight binding formalism which gives a good description of the states over the entire graphene Brillouin zone while the phonon states are treated in a valence force field model. The equations of motion for the coherent phonon amplitudes are obtained in a density matrix formalism and we find that the coherent phonon amplitudes satisfy driven oscillator equations for each value of the phonon wavevector. Comparison is made with recent experimental measurements. Supported by NSF through grants OISE-0530220 and DMR-0706313 and the ONR through grant ONR-00075094, and the Robert A. Welch Foundation through grant No. C-1509.
Coherent Synchrotron Radiation: Theory and Simulations.
Energy Technology Data Exchange (ETDEWEB)
Novokhatski, Alexander; /SLAC
2012-03-29
The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit
Ergodic Theory, Open Dynamics, and Coherent Structures
Bose, Christopher; Froyland, Gary
2014-01-01
This book is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, dynamical systems, numerical analysis, fluid dynamics, and networks. The volume will serve as a valuable reference for mathematicians, physicists, engineers, physical oceanographers, atmospheric scientists, biologists, and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open, coherent, or non-equilibrium behavior.
Linear algebraic theory of partial coherence: continuous fields and measures of partial coherence.
Ozaktas, Haldun M; Gulcu, Talha Cihad; Alper Kutay, M
2016-11-01
This work presents a linear algebraic theory of partial coherence for optical fields of continuous variables. This approach facilitates use of linear algebraic techniques and makes it possible to precisely define the concepts of incoherence and coherence in a mathematical way. We have proposed five scalar measures for the degree of partial coherence. These measures are zero for incoherent fields, unity for fully coherent fields, and between zero and one for partially coherent fields.
Leslie J. King
2005-01-01
Scientific geography is one of the great traditions of contemporary geography. The scientific approach in geography, as elsewhere, invovles the precise definition of variables and theoretical relationships that can be shown to be logically consistent. the theories are judged on the clarity of specification of their hypotheses and on their ability to be varified through statistical empirical analysis.
Morgan, Bronwyn; Maybery, Murray; Durkin, Kevin
2003-01-01
Compared preschoolers with autism spectrum disorders with a matched control group to investigate whether weak central coherence could account for deficits in two behaviors purported to tap capabilities fundamental to a theory of mind: joint attention and pretend play. Found that pretend play did not differentiate the two groups. Weak central…
Weak central coherence in patients with Alzheimer's disease
Institute of Scientific and Technical Information of China (English)
Selina M(a)rdh
2013-01-01
Central coherence refers to the ability to interpret details of information into a whole. To date, the concept of central coherence is mainly used in research of autism, Asperger's syndrome and recently in the research on eating disorders. The main purpose of the present study was to examine central coherence in patients with Alzheimer's disease. Nine Alzheimer's disease patients and ten age- and gender-matched control subjects, who differed significantly in neurological assessment, were shown a picture of a fire. Compared to control subjects, the Alzheimer's disease patients described the picture in a fragmented way by mentioning details and separate objects without perceiving the context of the fire. In conclusion, patients with Alzheimer's disease are at the weak end of central coherence, and hence suffer from a fragmented view of their surroundings. The findings have important clinical implications for the understanding of patients with Alzheimer's diseaseand also for the possibility of caregivers to meet the Alzheimer's disease individual in an appropriate way in the everyday care.
Theory of coherent phonons in carbon nanotubes and graphene nanoribbons
Sanders, G. D.; Stanton, C. J.; Nugraha, A. R. T.; Saito, R.
2013-03-01
We have performed theoretical studies on generating and detecting coherent radial breathing mode (RBM) phonons in single-walled carbon nanotubes and coherent radial breathing like mode (RBLM) phonons in graphene nanoribbons. A microscopic theory incorporating electronic states, phonon modes, optical matrix elements, and electron-phonon interaction matrix elements allows us to calculate the coherent phonon spectrum. The coherent phonon amplitudes satisfy a driven oscillator equation with a driving term that depends on photoexcited carrier density. We study the coherent phonon spectrum for nanotubes of different chirality and for armchair and zigzag graphene nanoribbons. We compare our results with a simpler, effective mass theory where we find reasonable agreement with the main features of our computed coherent phonon spectrum. Supported by NSF through grants OISE-0968405 and DMR-1105437 and MEXT through grant No. 20241023
Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.
Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper
2002-08-01
A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.
Relating the Resource Theories of Entanglement and Quantum Coherence.
Chitambar, Eric; Hsieh, Min-Hsiu
2016-07-01
Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.
Relating the Resource Theories of Entanglement and Quantum Coherence
Chitambar, Eric; Hsieh, Min-Hsiu
2016-07-01
Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.
Theory of coherent phonons in carbon nanotubes and graphene nanoribbons
Sanders, G. D.; Nugraha, A. R. T.; Sato, K.; Kim, J.-H.; Kono, J.; Saito, R.; Stanton, C. J.
2013-04-01
We survey our recent theoretical studies on the generation and detection of coherent radial breathing mode (RBM) phonons in single-walled carbon nanotubes and coherent radial breathing like mode (RBLM) phonons in graphene nanoribbons. We present a microscopic theory for the electronic states, phonon modes, optical matrix elements and electron-phonon interaction matrix elements that allows us to calculate the coherent phonon spectrum. An extended tight-binding (ETB) model has been used for the electronic structure and a valence force field (VFF) model has been used for the phonon modes. The coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on the photoexcited carrier density. We discuss the dependence of the coherent phonon spectrum on the nanotube chirality and type, and also on the graphene nanoribbon mod number and class (armchair versus zigzag). We compare these results with a simpler effective mass theory where reasonable agreement with the main features of the coherent phonon spectrum is found. In particular, the effective mass theory helps us to understand the initial phase of the coherent phonon oscillations for a given nanotube chirality and type. We compare these results to two different experiments for nanotubes: (i) micelle suspended tubes and (ii) aligned nanotube films. In the case of graphene nanoribbons, there are no experimental observations to date. We also discuss, based on the evaluation of the electron-phonon interaction matrix elements, the initial phase of the coherent phonon amplitude and its dependence on the chirality and type. Finally, we discuss previously unpublished results for coherent phonon amplitudes in zigzag nanoribbons obtained using an effective mass theory.
Coherent control of quantum systems as a resource theory
Matera, J. M.; Egloff, D.; Killoran, N.; Plenio, M. B.
2016-08-01
Control at the interface between the classical and the quantum world is fundamental in quantum physics. In particular, how classical control is enhanced by coherence effects is an important question both from a theoretical as well as from a technological point of view. In this work, we establish a resource theory describing this setting and explore relations to the theory of coherence, entanglement and information processing. Specifically, for the coherent control of quantum systems, the relevant resources of entanglement and coherence are found to be equivalent and closely related to a measure of discord. The results are then applied to the DQC1 protocol and the precision of the final measurement is expressed in terms of the available resources.
Towards Resource Theory of Coherence in Distributed Scenarios
Streltsov, Alexander; Rana, Swapan; Bera, Manabendra Nath; Lewenstein, Maciej
2017-01-01
The search for a simple description of fundamental physical processes is an important part of quantum theory. One example for such an abstraction can be found in the distance lab paradigm: if two separated parties are connected via a classical channel, it is notoriously difficult to characterize all possible operations these parties can perform. This class of operations is widely known as local operations and classical communication. Surprisingly, the situation becomes comparably simple if the more general class of separable operations is considered, a finding that has been extensively used in quantum information theory for many years. Here, we propose a related approach for the resource theory of quantum coherence, where two distant parties can perform only measurements that do not create coherence and can communicate their outcomes via a classical channel. We call this class local incoherent operations and classical communication. While the characterization of this class is also difficult in general, we show that the larger class of separable incoherent operations has a simple mathematical form, yet still preserves the main features of local incoherent operations and classical communication. We demonstrate the relevance of our approach by applying it to three different tasks: assisted coherence distillation, quantum teleportation, and single-shot quantum state merging. We expect that the results we obtain in this work also transfer to other concepts of coherence that are discussed in recent literature. The approach we present here opens new ways to study the resource theory of coherence in distributed scenarios.
On the Axiomatic Theory of Multistate Coherent Structures.
1981-10-01
ONR Contract N00014-76-C-0839. * S On leave from the Institute de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, Brasil. 01 1882 017 ON...THE AXIOMATIC THEORY OF MULTISTATE COHERENT STRUCTURES Wagner de Souza Borges and Fl~vio Wagner Rodrigues Instituto de Matematica e Estatistica
Application of linear systems theory to characterize coherence scanning interferometry
Mandal, Rahul; Palodhi, Kanik; Coupland, Jeremy; Leach, Richard; Mansfield, Daniel
2012-04-01
This paper considers coherence scanning interferometry as a linear filtering operation that is characterised by a point spread function in the space domain or equivalently a transfer function in the frequency domain. The applicability of the theory is discussed and the effects of these functions on the measured interferograms, and their influence on the resulting surface measurements, are described. The practical characterisation of coherence scanning interferometers using a spherical reference artefact is then considered and a new method to compensate measurement errors, based on a modified inverse filter, is demonstrated.
Schlueter-Kuck, Kristy L
2016-01-01
We present a frame-invariant method for detecting coherent structures from Lagrangian flow trajectories that can be sparse in number, as is the case in many fluid mechanics applications of practical interest. The method, based on principles used in graph coloring and spectral graph drawing algorithms, examines a measure of the kinematic dissimilarity of all pairs of fluid trajectories, either measured experimentally, e.g. using particle tracking velocimetry; or numerically, by advecting fluid particles in the Eulerian velocity field. Coherence is assigned to groups of particles whose kinematics remain similar throughout the time interval for which trajectory data is available, regardless of their physical proximity to one another. Through the use of several analytical and experimental validation cases, this algorithm is shown to robustly detect coherent structures using significantly less flow data than is required by existing spectral graph theory methods.
Momentum dissipation and effective theories of coherent and incoherent transport
Davison, Richard A
2014-01-01
We study heat transport in two systems without momentum conservation: a hydrodynamic system, and a holographic system with spatially dependent, massless scalar fields. When momentum dissipates slowly, there is a well-defined, coherent collective excitation in the AC heat conductivity, and a crossover between sound-like and diffusive transport at small and large distance scales. When momentum dissipates quickly, there is no such excitation in the incoherent AC heat conductivity, and diffusion dominates at all distance scales. For a critical value of the momentum dissipation rate, we compute exact expressions for the Green's functions of our holographic system due to an emergent gravitational self-duality, similar to electric/magnetic duality, and SL(2,R) symmetries. We extend the coherent/incoherent classification to examples of charge transport in other holographic systems: probe brane theories and neutral theories with non-Maxwell actions.
Aljunied, Mariam; Frederickson, Norah
2013-01-01
Central coherence refers to an in-built propensity to form meaningful links over a wide range of stimuli and to generalize over as wide a range of contexts as possible. In children with autism this ability is diminished, and the impact of central coherence deficits in children with autism have previously been observed using static measures of…
Directory of Open Access Journals (Sweden)
Pina Filippello
2013-05-01
Full Text Available The central coherence involves the processes of perceptual coding and attention mechanisms, highly deficient in children with ADHD (Booth & Happé, 2010. According to this theory, also children with autism are overly focused on details to the expense of a global perspective, and this negatively affects their ability to integrate environmental stimuli into a coherent whole (Happé, Booth, Charlton, Hughes, 2006. The aim of this study was to determine differences in central coherence of children with high functioning autism (ASD; n=10, children with attention-deficit hyperactivity disorder (ADHD; n=10 and typically developing peers (n=10. Individuals with ADHD exhibit significant deficits in perceptual skills and problem solving, failing also in mental states understanding tasks. While the children with autism spectrum disorder show impairments in making pragmatic inferences. Future research should therefore concentrate on the investigation of the cognitive and psychological mechanisms underlying these effects.
Coherence theory and coherence phenomena in a closed spin 1/2 system
Dannenberg, O
2006-01-01
We study a simplified Heisenberg spin model in order to clarify the idea of decoherence in closed quantum systems. For this purpose, we define a new concept: the coherence function $\\Xi(t)$, which describes the dynamics of coherence in the whole system, and which is linked with the total coarse-grained (von Neumann) entropy of all particles. We discuss in some detail a general coherence theory and its elementary results. For example, in the particular setup, decoherence diagonalises reduced density matrices in all possible basis sets. As expected, decoherence is understood as a statistical process that is caused by the dynamics of the system, similar to entropy. Moreover, the concept of decoherence time is applicable in closed systems. However, in most cases, the decay of off-diagonal elements differs from the usual $\\exp(-t/\\tau_d)$ behaviour. We have solved the form of decoherence time $\\tau_d$ in an infinite Heisenberg model with respect to density $\\rho$, spatial dimension $D$ and $\\epsilon$ in a $1/r^{\\e...
Toward a limited realism for psychiatric nosology based on the coherence theory of truth.
Kendler, K S
2015-04-01
A fundamental debate in the philosophy of science is whether our central concepts are true or only useful instruments to help predict and manipulate the world. The first position is termed 'realism' and the second 'instrumentalism'. Strong support for the instrumentalist position comes from the 'pessimistic induction' (PI) argument. Given that many key scientific concepts once considered true (e.g., humors, ether, epicycles, phlogiston) are now considered false, how, the argument goes, can we assert that our current concepts are true? The PI argument applies strongly to psychiatric diagnoses. Given our long history of abandoned diagnoses, arguments that we have finally 'gotten it right' and developed definitive psychiatric categories that correspond to observer-independent reality are difficult to defend. For our current diagnostic categories, we should settle for a less ambitious vision of truth. For this, the coherence theory, which postulates that something is true when it fits well with the other things we confidently know about the world, can serve us well. Using the coherence theory, a diagnosis is real to the extent that it is well integrated into our accumulating scientific data base. Furthermore, the coherence theory establishes a framework for us to evaluate our diagnostic categories and can provide a set of criteria, closely related to our concept of validators, for deciding when they are getting better. Finally, we need be much less skeptical about the truth status of the aggregate concept of psychiatric illness than we are regarding the specific categories in our current nosology.
Quantum theory of optical coherence selected papers and lectures
Glauber, Roy J
2007-01-01
A summary of the pioneering work of Glauber in the field of optical coherence phenomena and photon statistics, this book describes the fundamental ideas of modern quantum optics and photonics in a tutorial style. It is thus not only intended as a reference for researchers in the field, but also to give graduate students an insight into the basic theories of the field. Written by the Nobel Laureate himself, the concepts described in this book have formed the basis for three further Nobel Prizes in Physics within the last decade
Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers.
Li, Huanan; Suwunnarat, Suwun; Fleischmann, Ragnar; Schanz, Holger; Kottos, Tsampikos
2017-01-27
We employ random matrix theory in order to investigate coherent perfect absorption (CPA) in lossy systems with complex internal dynamics. The loss strength γ_{CPA} and energy E_{CPA}, for which a CPA occurs, are expressed in terms of the eigenmodes of the isolated cavity-thus carrying over the information about the chaotic nature of the target-and their coupling to a finite number of scattering channels. Our results are tested against numerical calculations using complex networks of resonators and chaotic graphs as CPA cavities.
Coherent cross-polarization theory for a spin-12 coupled to a general object
Magusin; Veeman
2000-04-01
Zero-order average-Hamiltonian theory is used to extend the product-operator description of coherent spin-spin cross-polarization to the case of a spin-12 coupled to a general object, like a molecular rotor or a quantum oscillator. The object, which is not necessarily in a Boltzmann equilibrium state, is assumed to have no interaction with the lattice and no internal relaxation capacity. The Bloch-Wangsness-Redfield (BWR) theory for incoherent processes like spin-lattice relaxation does not apply for such an isolated spin-object pair. Nevertheless spectral density at the Larmor frequency, of key importance in BWR theory, also plays a central role in object-induced spin polarization. Spectral density in our theory is represented by quantum operators J(-) and J(+). If J(-) and J(+) do not commute, the spin-object coupling may cause spin polarization in an initially saturated spin system. This represents a coherent mechanism for spin cooling, which in specific cases may lead to enhanced spin polarization above the thermal equilibrium value. A master equation is derived for general spin-object cross-polarization, and applied to the case of a spin pair inside a uniaxial rotor, and a spin coupled to a microelectronic LC circuit. Copyright 2000 Academic Press.
Viola, Lorenza; Tannor, David
2011-08-01
tomography, which is a necessary 'primitive' for inferring the target quantum state and thereby diagnosing the control performance. Next, the impact of realistic control and system imperfections in continuous-time Markovian feedback strategies for rapid state preparation is analyzed by Combes and Wiseman. A prominent role is played in the special issue by optimal control (OC) approaches, reflecting their central importance for quantum control and QIP. The OC contributions have been divided into two separate sections, depending on whether the target dynamics is modeled as Hamiltonian (section 3) or dissipative (section 4), respectively. The contribution by Beltrani et al deals with `control landscapes', which provide a foundation for analyzing the performance of numerical OC algorithms and their robustness against control errors. Specifically, this paper characterizes geometric properties of the control landscape, relevant to the optimal control of state-to-state transitions. Application of OC theory to the problem of population transfer and coherence enhancement in Λ-systems is studied by Kumar et al, whereas Goerz et al report on the OC-design of a high-fidelity controlled phase-gate in atomic qubits. The robustness of an OC solution is specifically addressed by Negretti et al, along with an approach for identifying easily implementable while still 'close-to-optimal' control pulses. Powerful relaxation-optimized OC schemes (based on so-called opengrape algorithms) for generating unitary target gates in the presence of known dissipation parameters are discussed by Schulte-Herbrüggen et al. Next, Lapert et al report on the problem of time-optimal control of spin-1/2 systems undergoing Bloch relaxation dynamics, highlighting the crucial role played by singular extremals in the control synthesis. Alternative approaches for optimized control of qubits exposed to various decoherence processes are developed by Esher et al and Xue et al, based on a perturbative 'bath
Computing Lagrangian coherent structures from their variational theory.
Farazmand, Mohammad; Haller, George
2012-03-01
Using the recently developed variational theory of hyperbolic Lagrangian coherent structures (LCSs), we introduce a computational approach that renders attracting and repelling LCSs as smooth, parametrized curves in two-dimensional flows. The curves are obtained as trajectories of an autonomous ordinary differential equation for the tensor lines of the Cauchy-Green strain tensor. This approach eliminates false positives and negatives in LCS detection by separating true exponential stretching from shear in a frame-independent fashion. Having an explicitly parametrized form for hyperbolic LCSs also allows for their further in-depth analysis and accurate advection as material lines. We illustrate these results on a kinematic model flow and on a direct numerical simulation of two-dimensional turbulence.
Effective field theory for coherent optical pulse propagation
Park, Q H; Park, Q Han
1996-01-01
Hidden nonabelian symmetries in nonlinear interactions of radiation with matter are clarified. In terms of a nonabelian potential variable, we construct an effective field theory of self-induced transparency, a phenomenon of lossless coherent pulse propagation, in association with Hermitian symmetric spaces G/H. Various new properties of self-induced transparency, e.g. soliton numbers, effective potential energy, gauge symmetry and discrete symmetries, modified pulse area, conserved U(1)-charge etc. are addressed and elaborated in the nondegenerate two-level case where G/H = SU(2)/U(1). Using the U(1)-charge conservation, a new type of analysis on pulse stability is given which agrees with earlier numerical results.
Paths to policy coherence to create market economies in Central and Eastern Europe
DEFF Research Database (Denmark)
Careja, Romana
2011-01-01
centralized economies of Central and Eastern Europe into market-driven ones. It shows that government characteristics with likely impact on the quality of policy-making, such as accountability and institutional constraints, are associated with coherent policies only in a limited number of cases. It also shows...
The quantum coherent mechanism for singlet fission: experiment and theory.
Chan, Wai-Lun; Berkelbach, Timothy C; Provorse, Makenzie R; Monahan, Nicholas R; Tritsch, John R; Hybertsen, Mark S; Reichman, David R; Gao, Jiali; Zhu, X-Y
2013-06-18
The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline
The pragmatics of discourse coherence : Theory and applications
Redeker, Gisela; Gruber, Helmut
2014-01-01
Over the past four decades, discourse coherence has been studied from linguistic, psycholinguistic, computational, and applied perspectives. This volume identifies current issues and under-researched topics in the pragmatics of discourse coherence. Nine studies from various disciplines address the r
Temporal coherence length of light in semiclassical field theory models
Jagielski, Borys; Vistnes, Arnt Inge
2010-01-01
The following work is motivated by the conceptual problems associated with the wave-particle duality and the notion of the photon. Two simple classical models for radiation from individual emitters are compared, one based on sines with random phasejumps, another based on pulse trains. The sum signal is calculated for a varying number of emitters. The focus lies on the final signal's statistical features quantified by means of the temporal coherence function and the temporal coherence length. We show how these features might be used to experimentally differentiate between the models. We also point to ambiguities in the definition of the temporal coherence length.
Randomized central limit theorems: A unified theory
Eliazar, Iddo; Klafter, Joseph
2010-08-01
The central limit theorems (CLTs) characterize the macroscopic statistical behavior of large ensembles of independent and identically distributed random variables. The CLTs assert that the universal probability laws governing ensembles’ aggregate statistics are either Gaussian or Lévy, and that the universal probability laws governing ensembles’ extreme statistics are Fréchet, Weibull, or Gumbel. The scaling schemes underlying the CLTs are deterministic—scaling all ensemble components by a common deterministic scale. However, there are “random environment” settings in which the underlying scaling schemes are stochastic—scaling the ensemble components by different random scales. Examples of such settings include Holtsmark’s law for gravitational fields and the Stretched Exponential law for relaxation times. In this paper we establish a unified theory of randomized central limit theorems (RCLTs)—in which the deterministic CLT scaling schemes are replaced with stochastic scaling schemes—and present “randomized counterparts” to the classic CLTs. The RCLT scaling schemes are shown to be governed by Poisson processes with power-law statistics, and the RCLTs are shown to universally yield the Lévy, Fréchet, and Weibull probability laws.
Transport theory: Spatial coherence of random laser emission
Frank, Regine
2012-01-01
Recently random laser reached the stage of technologi- cal applicability. They have already been engineered as coherent microscope light sources in combination with light transport based disordered lenses. The big issue for all kinds of applications is the degree of coherence of the emitted radiation. The lasing spot sizes in dif- ferent regimes may provide different degrees of spatial and temporal coherence and as a consequence they can be perfectly tunable light sources for the case that the modal behavior can be controlled easily. In this letter we investigate the spatial coherence lengths of different random laser samples theoretically. The samples only vary in their filling with spherical ZnO Mie scatterers. Beyond we show, that the scattering mean free paths of random lasers are not only a material characteristics and dependent to the filling, instead the mean free paths change in depth of the sample and therefor depend on the nonlinear self-consistent gain of the random lasing principle.
Chitambar, Eric; Gour, Gilad
2016-07-01
Considerable work has recently been directed toward developing resource theories of quantum coherence. In this Letter, we establish a criterion of physical consistency for any resource theory. This criterion requires that all free operations in a given resource theory be implementable by a unitary evolution and projective measurement that are both free operations in an extended resource theory. We show that all currently proposed basis-dependent theories of coherence fail to satisfy this criterion. We further characterize the physically consistent resource theory of coherence and find its operational power to be quite limited. After relaxing the condition of physical consistency, we introduce the class of dephasing-covariant incoherent operations as a natural generalization of the physically consistent operations. Necessary and sufficient conditions are derived for the convertibility of qubit states using dephasing-covariant operations, and we show that these conditions also hold for other well-known classes of incoherent operations.
Chitambar, Eric; Gour, Gilad
2016-07-15
Considerable work has recently been directed toward developing resource theories of quantum coherence. In this Letter, we establish a criterion of physical consistency for any resource theory. This criterion requires that all free operations in a given resource theory be implementable by a unitary evolution and projective measurement that are both free operations in an extended resource theory. We show that all currently proposed basis-dependent theories of coherence fail to satisfy this criterion. We further characterize the physically consistent resource theory of coherence and find its operational power to be quite limited. After relaxing the condition of physical consistency, we introduce the class of dephasing-covariant incoherent operations as a natural generalization of the physically consistent operations. Necessary and sufficient conditions are derived for the convertibility of qubit states using dephasing-covariant operations, and we show that these conditions also hold for other well-known classes of incoherent operations.
Institute of Scientific and Technical Information of China (English)
Lin Zhou; Yan Lu
2015-01-01
Objective:To study the effect of optical coherence tomography (OCT) in assessing the prognosis of central serouschorioretinopathy.Methods: 100 cases of central serous chorioretinopathy patients diagnosed in our hospital from 2013 May to 2014 May were enrolled in observation group and furtherly divided into neural epithelium detachment group, pigment epithelium detachment group, neural and pigment epithelium detachment group according to FFA. 100 cases health people received healthy examination in our hospital during the same period were enrolled in control group. Then optical coherence tomography and multifocal ERG results were compared.Results:(1) optical coherence tomography: Sfct, Nct, Sct, Tct, Ict of observation group were higher than those of control group; Sfct, Nct, Sct, Tct, Ict of neural and pigment epithelium detachment group were higher than those of neural epithelium detachment group and pigment epithelium detachment group; (2) multifocal ERG: 1ring and 2 ring of P1 wave reaction density of observation group were lower than those of control group; 3ring, 4 ring, 5 ring of P1 wave reaction density of observation group had no difference with control group.Conclusion:optical coherence tomography (OCT) can accurately assay choroidal thickness of central serouschorioretinopathy and has good consistency with fundus fluorescein angiography and multifocal ERG results.
Schlueter, Kristy; Dabiri, John
2016-11-01
Coherent structure identification is important in many fluid dynamics applications, including transport phenomena in ocean flows and mixing and diffusion in turbulence. However, many of the techniques currently available for measuring such flows, including ocean drifter datasets and particle tracking velocimetry, only result in sparse velocity data. This is often insufficient for the use of current coherent structure detection algorithms based on analysis of the deformation gradient. Here, we present a frame-invariant method for detecting coherent structures from Lagrangian flow trajectories that can be sparse in number. The method, based on principles used in graph coloring algorithms, examines a measure of the kinematic dissimilarity of all pairs of flow trajectories, either measured experimentally, e.g. using particle tracking velocimetry; or numerically, by advecting fluid particles in the Eulerian velocity field. Coherence is assigned to groups of particles whose kinematics remain similar throughout the time interval for which trajectory data is available, regardless of their physical proximity to one another. Through the use of several analytical and experimental validation cases, this algorithm is shown to robustly detect coherent structures using significantly less flow data than is required by existing methods. This research was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Self-Organized Complexity and Coherent Infomax from the Viewpoint of Jaynes’s Probability Theory
Directory of Open Access Journals (Sweden)
William A. Phillips
2012-01-01
Full Text Available This paper discusses concepts of self-organized complexity and the theory of Coherent Infomax in the light of Jaynes’s probability theory. Coherent Infomax, shows, in principle, how adaptively self-organized complexity can be preserved and improved by using probabilistic inference that is context-sensitive. It argues that neural systems do this by combining local reliability with flexible, holistic, context-sensitivity. Jaynes argued that the logic of probabilistic inference shows it to be based upon Bayesian and Maximum Entropy methods or special cases of them. He presented his probability theory as the logic of science; here it is considered as the logic of life. It is concluded that the theory of Coherent Infomax specifies a general objective for probabilistic inference, and that contextual interactions in neural systems perform functions required of the scientist within Jaynes’s theory.
Glauber theory and the quantum coherence of curvature inhomogeneities
Giovannini, Massimo
2016-01-01
The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose-Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.
Glauber theory and the quantum coherence of curvature inhomogeneities
Giovannini, Massimo
2017-02-01
The curvature inhomogeneities are systematically scrutinized in the framework of the Glauber approach. The amplified quantum fluctuations of the scalar and tensor modes of the geometry are shown to be first-order coherent while the interference of the corresponding intensities is larger than in the case of Bose–Einstein correlations. After showing that the degree of second-order coherence does not suffice to characterize unambiguously the curvature inhomogeneities, we argue that direct analyses of the degrees of third- and fourth-order coherence are necessary to discriminate between different correlated states and to infer more reliably the statistical properties of the large-scale fluctuations. We speculate that the moments of the multiplicity distributions of the relic phonons might be observationally accessible thanks to new generations of instruments able to count the single photons of the Cosmic Microwave Background in the THz region.
Unified asymptotic theory for all partial directed coherence forms.
Baccalá, L A; de Brito, C S N; Takahashi, D Y; Sameshima, K
2013-08-28
This paper presents a unified mathematical derivation of the asymptotic behaviour of the three main forms of partial directed coherence (PDC). Numerical examples are used to contrast PDC, gPDC (generalized PDC) and iPDC (information PDC) as to meaning and applicability and, more importantly, to show their essential statistical equivalence insofar as connectivity inference is concerned.
Dressed coherent states in finite quantum systems: A cooperative game theory approach
Vourdas, A.
2017-01-01
A quantum system with variables in Z(d) is considered. Coherent density matrices and coherent projectors of rank n are introduced, and their properties (e.g., the resolution of the identity) are discussed. Cooperative game theory and in particular the Shapley methodology, is used to renormalize coherent states, into a particular type of coherent density matrices (dressed coherent states). The Q-function of a Hermitian operator, is then renormalized into a physical analogue of the Shapley values. Both the Q-function and the Shapley values, are used to study the relocation of a Hamiltonian in phase space as the coupling constant varies, and its effect on the ground state of the system. The formalism is also generalized for any total set of states, for which we have no resolution of the identity. The dressing formalism leads to density matrices that resolve the identity, and makes them practically useful.
Directory of Open Access Journals (Sweden)
Inês Bernardino
Full Text Available The weak central coherence hypothesis represents one of the current explanatory models in Autism Spectrum Disorders (ASD. Several experimental paradigms based on hierarchical figures have been used to test this controversial account. We addressed this hypothesis by testing central coherence in ASD (n = 19 with intellectual disability and n = 20 without intellectual disability, Williams syndrome (WS, n = 18, matched controls with intellectual disability (n = 20 and chronological age-matched controls (n = 20. We predicted that central coherence should be most impaired in ASD for the weak central coherence account to hold true. An alternative account includes dorsal stream dysfunction which dominates in WS. Central coherence was first measured by requiring subjects to perform local/global preference judgments using hierarchical figures under 6 different experimental settings (memory and perception tasks with 3 distinct geometries with and without local/global manipulations. We replicated these experiments under 4 additional conditions (memory/perception*local/global in which subjects reported the correct local or global configurations. Finally, we used a visuoconstructive task to measure local/global perceptual interference. WS participants were the most impaired in central coherence whereas ASD participants showed a pattern of coherence loss found in other studies only in four task conditions favoring local analysis but it tended to disappear when matching for intellectual disability. We conclude that abnormal central coherence does not provide a comprehensive explanation of ASD deficits and is more prominent in populations, namely WS, characterized by strongly impaired dorsal stream functioning and other phenotypic traits that contrast with the autistic phenotype. Taken together these findings suggest that other mechanisms such as dorsal stream deficits (largest in WS may underlie impaired central coherence.
Simplifying Central Place Theory Using GIS and GPS
Theo, Lisa
2011-01-01
A constant struggle for teachers at all levels is finding ways to successfully teach students complex theories and concepts. Student comprehension is often enhanced by applying these theories and concepts to real world situations. This project demonstrates central place theory by examining highway billboard signs along major Wisconsin highways. In…
The coherence problem with the Unified Neutral Theory of Biodiversity.
Clark, James S
2012-04-01
The Unified Neutral Theory of Biodiversity (UNTB), proposed as an alternative to niche theory, has been viewed as a theory that species coexist without niche differences, without fitness differences, or with equal probability of success. Support is claimed when models lacking species differences predict highly aggregated metrics, such as species abundance distributions (SADs) or species area distributions (SARs). Here, I summarize why UNTB generates confusion, and is not actually relevant to niche theory (i.e. an explanation for why and how many species coexist). Equal probability is not a theory, but lack of one; it does not include or exclude any process relevant to coexistence of competitors. Models lacking explicit species can make useful predictions, but this does not support neutral theory. I provide s suggestions that could help reduce confusion generated by the debate.
Coherent versus Measurement Feedback: Linear Systems Theory for Quantum Information
Yamamoto, Naoki
2014-10-01
To control a quantum system via feedback, we generally have two options in choosing a control scheme. One is the coherent feedback, which feeds the output field of the system, through a fully quantum device, back to manipulate the system without involving any measurement process. The other one is measurement-based feedback, which measures the output field and performs a real-time manipulation on the system based on the measurement results. Both schemes have advantages and disadvantages, depending on the system and the control goal; hence, their comparison in several situations is important. This paper considers a general open linear quantum system with the following specific control goals: backaction evasion, generation of a quantum nondemolished variable, and generation of a decoherence-free subsystem, all of which have important roles in quantum information science. Some no-go theorems are proven, clarifying that those goals cannot be achieved by any measurement-based feedback control. On the other hand, it is shown that, for each control goal there exists a coherent feedback controller accomplishing the task. The key idea to obtain all the results is system theoretic characterizations of the above three notions in terms of controllability and observability properties or transfer functions of linear systems, which are consistent with their standard definitions.
A coherent modified Redfield theory for excitation energy transfer in molecular aggregates
Energy Technology Data Exchange (ETDEWEB)
Hwang-Fu, Yu-Hsien; Chen, Wei; Cheng, Yuan-Chung, E-mail: yuanchung@ntu.edu.tw
2015-02-02
Highlights: • A CMRT method for coherent energy transfer in molecular aggregates was developed. • Applicability of the method was verified in two-site systems with various parameters. • CMRT accurately describes population dynamics in the FMO-complex. • The method is accurate in a large parameter space and computationally efficient. - Abstract: Excitation energy transfer (EET) is crucial in photosynthetic light harvesting, and quantum coherence has been recently proven to be a ubiquitous phenomenon in photosynthetic EET. In this work, we derive a coherent modified Redfield theory (CMRT) that generalizes the modified Redfield theory to treat coherence dynamics. We apply the CMRT method to simulate the EET in a dimer system and compare the results with those obtained from numerically exact path integral calculations. The comparison shows that CMRT provides excellent computational efficiency and accuracy within a large EET parameter space. Furthermore, we simulate the EET dynamics in the FMO complex at 77 K using CMRT. The results show pronounced non-Markovian effects and long-lasting coherences in the ultrafast EET, in excellent agreement with calculations using the hierarchy equation of motion approach. In summary, we have successfully developed a simple yet powerful framework for coherent EET dynamics in photosynthetic systems and organic materials.
Skorich, Daniel P; May, Adrienne R; Talipski, Louisa A; Hall, Marnie H; Dolstra, Anita J; Gash, Tahlia B; Gunningham, Beth H
2016-03-01
We explore the relationship between the 'theory of mind' (ToM) and 'central coherence' difficulties of autism. We introduce covariation between hierarchically-embedded categories and social information--at the local level, the global level, or at both levels simultaneously--within a category confusion task. We then ask participants to infer the mental state of novel category members, and measure participants' autism-spectrum quotient (AQ). Results reveal a positive relationship between AQ and the degree of local/global social categorization, which in turn predicts the pattern of mental state inferences. These results provide preliminary evidence for a causal relationship between central coherence and ToM abilities. Implications with regard to ToM processes, social categorization, intervention, and the development of a unified account of autism are discussed.
Functional approach to coherent states in non commutative theories
Lubo, M
2003-01-01
In many high dimensional noncommutative theories, no state saturates simultaneously all the non trivial Heisenberg uncertainty relations. This differs from the usual theory where the squeezed states possess this property. The important role played by these states when recovering classical mechanics as a limit of quantum theory makes necessary the investigation of the possible generalizations in the noncommutative context. We propose an extension based on a variational principle. The action considered is the sum of the squares of the terms associated to the non trivial Heisenberg uncertainty relations. We first verify that our proposal works in the usual theory: we find the known gaussian functions and, besides them, other states which can be expressed as products of gaussians with specific hypergeometrics. We illustrate our construction in three models defined on a four dimensional phase space: two models endowed with a minimal length uncertainty and the popular case in which the commutators of the positions ...
Coherence scanning interferometry: linear theory of surface measurement.
Coupland, Jeremy; Mandal, Rahul; Palodhi, Kanik; Leach, Richard
2013-06-01
The characterization of imaging methods as three-dimensional (3D) linear filtering operations provides a useful way to compare the 3D performance of optical surface topography measuring instruments, such as coherence scanning interferometry, confocal and structured light microscopy. In this way, the imaging system is defined in terms of the point spread function in the space domain or equivalently by the transfer function in the spatial frequency domain. The derivation of these characteristics usually involves making the Born approximation, which is strictly only applicable to weakly scattering objects; however, for the case of surface scattering, the system is linear if multiple scattering is assumed to be negligible and the Kirchhoff approximation is assumed. A difference between the filter characteristics derived in each case is found. However this paper discusses these differences and explains the equivalence of the two approaches when applied to a weakly scattering object.
Automatic theory generation from analyst text files using coherence networks
Shaffer, Steven C.
2014-05-01
This paper describes a three-phase process of extracting knowledge from analyst textual reports. Phase 1 involves performing natural language processing on the source text to extract subject-predicate-object triples. In phase 2, these triples are then fed into a coherence network analysis process, using a genetic algorithm optimization. Finally, the highest-value sub networks are processed into a semantic network graph for display. Initial work on a well- known data set (a Wikipedia article on Abraham Lincoln) has shown excellent results without any specific tuning. Next, we ran the process on the SYNthetic Counter-INsurgency (SYNCOIN) data set, developed at Penn State, yielding interesting and potentially useful results.
Correct Path-Integral Formulation of Quantum Thermal Field Theory in Coherent State Representation
Institute of Scientific and Technical Information of China (English)
SU Jun-Chen; ZHENG Fu-Hou
2005-01-01
The path-integral quantization of thermal scalar, vector, and spinor fields is performed newly in the coherent-state representation. In doing this, we choose the thermal electrodynamics and ψ4 theory as examples. By this quantization, correct expressions of the partition functions and the generating functionals for the quantum thermal electrodynamics and ψ4 theory are obtained in the coherent-state representation. These expressions allow us to perform analytical calculations of the partition functions and generating functionals and therefore are useful in practical applications. Especially, the perturbative expansions of the generating functionals are derived specifically by virtue of the stationary-phase method. The generating functionals formulated in the position space are re-derived from the ones given in the coherent-state representation.
Central Place Theory and Distribution of Post Offices in Cities
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The feasibility of application of the Central Place Theory in the distribution of post offices in cities is analysed, the grade scale structure and space distribution structure Shijiazhauang of post offices in city are studied, the research results prove the actual value of the Central Place Theory, and the suggestion of adjustment in the space distribution Shijiazhuang of post offices in city is put forward.
Wavefront sensing based on phase contrast theory and coherent optical processing
Lei, Huang; Qi, Bian; Chenlu, Zhou; Tenghao, Li; Mali, Gong
2016-07-01
A novel wavefront sensing method based on phase contrast theory and coherent optical processing is proposed. The wavefront gradient field in the object plane is modulated into intensity distribution in a gang of patterns, making high-density detection available. By applying the method, we have also designed a wavefront sensor. It consists of a classical coherent optical processing system, a CCD detector array, two pieces of orthogonal composite sinusoidal gratings, and a mechanical structure that can perform real-time linear positioning. The simulation results prove and demonstrate the validity of the method and the sensor in high-precision measurement of the wavefront gradient field.
Analytic function theory of several variables elements of Oka’s coherence
Noguchi, Junjiro
2016-01-01
The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps). The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appear...
Hahn, Noemi; Snedeker, Jesse; Rabagliati, Hugh
2015-12-01
Individuals with autism spectrum disorders (ASD) have often been reported to have difficulty integrating information into its broader context, which has motivated the Weak Central Coherence theory of ASD. In the linguistic domain, evidence for this difficulty comes from reports of impaired use of linguistic context to resolve ambiguous words. However, recent work has suggested that impaired use of linguistic context may not be characteristic of ASD, and is instead better explained by co-occurring language impairments. Here, we provide a strong test of these claims, using the visual world eye tracking paradigm to examine the online mechanisms by which children with autism resolve linguistic ambiguity. To address concerns about both language impairments and compensatory strategies, we used a sample whose verbal skills were strong and whose average age (7; 6) was lower than previous work on lexical ambiguity resolution in ASD. Participants (40 with autism and 40 controls) heard sentences with ambiguous words in contexts that either strongly supported one reading or were consistent with both (John fed/saw the bat). We measured activation of the unintended meaning through implicit semantic priming of an associate (looks to a depicted baseball glove). Contrary to the predictions of weak central coherence, children with ASD, like controls, quickly used context to resolve ambiguity, selecting appropriate meanings within a second. We discuss how these results constrain the generality of weak central coherence.
An interface energy density-based theory considering the coherent interface effect in nanomaterials
Yao, Yin; Chen, Shaohua; Fang, Daining
2017-02-01
To characterize the coherent interface effect conveniently and feasibly in nanomaterials, a continuum theory is proposed that is based on the concept of the interface free energy density, which is a dominant factor affecting the mechanical properties of the coherent interface in materials of all scales. The effect of the residual strain caused by self-relaxation and the lattice misfit of nanomaterials, as well as that due to the interface deformation induced by an external load on the interface free energy density is considered. In contrast to the existing theories, the stress discontinuity at the interface is characterized by the interface free energy density through an interface-induced traction. As a result, the interface elastic constant introduced in previous theories, which is not easy to determine precisely, is avoided in the present theory. Only the surface energy density of the bulk materials forming the interface, the relaxation parameter induced by surface relaxation, and the mismatch parameter for forming a coherent interface between the two surfaces are involved. All the related parameters are far easier to determine than the interface elastic constants. The effective bulk and shear moduli of a nanoparticle-reinforced nanocomposite are predicted using the proposed theory. Closed-form solutions are achieved, demonstrating the feasibility and convenience of the proposed model for predicting the interface effect in nanomaterials.
What does the frontomedian cortex contribute to language processing: coherence or theory of mind?
Ferstl, Evelyn C; von Cramon, D Yves
2002-11-01
The frontomedian cortex (FMC) has been shown to be important for coherence processes in language comprehension, i.e., for establishing the pragmatic connection between successively presented sentences. The same brain region has a role during theory-of-mind processes, i.e., during the attribution of other people's actions to their motivations, beliefs, or emotions. In this study, we used event-related functional magnetic resonance imaging at 3 T to disentangle the relative contributions of the FMC to theory-of-mind (ToM) and coherence processes, respectively. The BOLD response of nine participants was recorded while they listened to pragmatically coherent or unrelated sentence pairs. Using a logic instruction for inanimate sentence pairs, ToM processing was discouraged during the first part of the experiment. Using explicit ToM instructions for sentence pairs mentioning human protagonists, ToM processing was induced during the second part. In three of the resulting four conditions a significant increase in the BOLD response was observed in FMC: when ToM instructions were given, both coherent and incoherent trials elicited frontomedian activation, in replication of previous results showing involvement of the FMC during ToM tasks. When logic instructions were given, the coherent trials, but not the incoherent trials, activated the FMC. These results clearly show that the FMC plays a role in coherence processes even in the absence of concomitant ToM processes. The findings support the view of this cortex having a domain-independent functionality related to volitional aspects of the initiation and maintenance of nonautomatic cognitive processes.
Barnes, Jack A.; Loock, Hans-Peter
2016-10-01
Several mathematical models exist in the literature to describe the properties of optical resonators. Here, coupled mode theory and coherent superposition theory are compared and their consistency is demonstrated as they are applied to phase-shift cavity ring-down measurements in optical (micro-)cavities. In the particular case of a whispering gallery mode in a microsphere cavity these models are applied to transmission measurements and backscattering measurements through the fiber taper that couples light into the microresonator. It is shown that both models produce identical relations when applied to these traveling wave cavities.
Lang, Katie; Roberts, Marion; Harrison, Amy; Lopez, Carolina; Goddard, Elizabeth; Khondoker, Mizan; Treasure, Janet; Tchanturia, Kate
2016-01-01
Background Large variability in tests and differences in scoring systems used to study central coherence in eating disorders may lead to different interpretations, inconsistent findings and between study discrepancies. This study aimed to address inconsistencies by collating data from several studies from the same research group that used the Rey Osterrieth Complex Figure Test (Rey Figure) in order to produce norms to provide benchmark data for future studies. Method Data was collated from 984 participants in total. Anorexia Nervosa, Bulimia Nervosa, recovered Anorexia Nervosa, unaffected family members and healthy controls were compared using the Rey Figure. Results Poor global processing was observed across all current eating disorder sub-groups and in unaffected relatives. There was no difference in performance between recovered AN and HC groups. Conclusions This is the largest dataset reported in the literature and supports previous studies implicating poor global processing across eating disorders using the Rey Figure. It provides robust normative data useful for future studies. PMID:27806073
Riches, N. G.; Loucas, T.; Baird, G.; Charman, T.; Simonoff, E.
2016-01-01
According to the weak central coherence (CC) account individuals with autism spectrum disorders (ASD) exhibit enhanced local processing and weak part-whole integration. CC was investigated in the verbal domain. Adolescents, recruited using a 2 (ASD status) by 2 (language impairment status) design, completed an aural forced choice comprehension…
Regarding optical coherence tomography grading of ischemia in central retinal venous occlusion
Directory of Open Access Journals (Sweden)
Tripathy K
2017-02-01
Full Text Available Koushik TripathyDepartment of Vitreoretina and Uvea, ICARE Eye Hospital & Postgraduate Institute, Noida, Uttar Pradesh, IndiaThe author read with interest the article by Browning et al.1 The author humbly wants to discuss a few facts.1. The article1 discusses grading of retinal ischemia based on optical coherence tomography features in central retinal venous occlusion. As coexisting central retinal arterial occlusion or cilioretinal arterial occlusion may also cause inner retinal hyper-reflectivity, exclusion of such cases is an important consideration before implicating central retinal venous occlusion for the ischemia. Extensive intraretinal hemorrhages are other important hindrances to the evaluation of the perfusion status of the retina using both fluorescein angiogram and optical coherence tomography.2. It would be interesting to know the gonioscopic findings, especially neovascularization of the anterior chamber angle if it was performed at presentation and during the follow-ups.3. The manuscript documented that the incidence of anterior segment neovascularization at 1 year was 8.9% in severe ischemia group.1 The incidence of anterior segment neovascularization in perfused groups was higher (15.4% and 17.6% for mild and moderate ischemia, respectively. Although the sample size was low, such findings are contrary to the literature2 and require further discussion. Authors' replyDavid J Browning, Omar S Punjabi, Chong LeeDepartment of Ophthalmology, Charlotte Eye, Ear, Nose and Throat Associates, P.A., Charlotte, NC, USA We thank Dr Tripathy for his interest in our article and would respond to his above-mentioned points.1. We agree that excluding eyes with cilioretinal artery and central retinal artery occlusions is necessary to be able to attribute inner retinal reflectivity changes to central retinal vein occlusion. Cilioretinal artery occlusion is associated with a band of ischemic retinal whitening and central retinal artery occlusion
Second central extension in Galilean covariant field theory
Hagen, C R
2002-01-01
The second central extension of the planar Galilei group has been alleged to have its origin in the spin variable. This idea is explored here by considering local Galilean covariant field theory for free fields of arbitrary spin. It is shown that such systems generally display only a trivial realization of the second central extension. While it is possible to realize any desired value of the extension parameter by suitable redefinition of the boost operator, such an approach has no necessary connection to the spin of the basic underlying field.
Centrality of the collision and random matrix theory
Institute of Scientific and Technical Information of China (English)
Z.Wazir
2010-01-01
I discuss the results from a study of the central 12CC collisions at 4.2 A GeV/c.The data have been analyzed using a new method based on the Random Matrix Theory.The simulation data coming from the Ultra Relativistic Quantum Molecular Dynamics code were used in the analyses.I found that the behavior of the nearest neighbor spacing distribution for the protons,neutrons and neutral pions depends critically on the multiplicity of secondary particles for simulated data.I conclude that the obtained results offer the possibility of fixing the centrality using the critical values of the multiplicity.
Institute of Scientific and Technical Information of China (English)
Ahmed; F.Abdel; Ghany; Samer; M.Botros; Tamer; M.El-Raggal
2015-01-01
AIM: To assess the relation between central retinal artery(CRA) resistive index(RI) and retinal nerve fiber thickness measured by optical coherence tomography(OCT) in assessment of disease progress in cases of open angle glaucoma.METHODS: Twenty-three patients with diagnosed open angle glaucoma were included in this study. They were examined by colored duplex ultrasonography of CRA with estimation of RI of CRA and ophthalmic artery(OA)with estimation of CRA/OA RI ratio as well as OCT measurement of the average retinal nerve fiber layer(RNFL) thickness in order to assess the disease progress.RESULTS: There was strong inverse relation between the increased RI in CRA as well as the increased CRA/OA RI ratio and the decrease in average RNFL thickness in cases of open angle glaucoma.CONCLUSION: Assessment of CRA RI can indirectly assess the vascular changes associated with glaucoma and can assess the degree of retinal atrophy helping in evaluating prognosis thus guiding the choice of treatment.
Role of diffusional coherency strain theory in the discontinuous precipitation in Mg–Al alloy
Indian Academy of Sciences (India)
K T Kashyap; C Ramachandra; M Sujatha; B Chatterji
2000-02-01
Discontinuous precipitation (DP) occurs in many alloy systems under certain conditions. It is called discontinuous precipitation because precipitation occurs on prior matrix grain boundaries followed by grain boundary movement. The DP nodule consists of alternate lamellae of the precipitate and the matrix respectively. The chemical driving force for DP is one of solute supersaturation. Although solute supersaturation is responsible for precipitation, it has to be coupled with another driving force to explain grain boundary migration. This coupling driving force has been identified to be diffusional coherency strain which has been verified to be active in diffusion induced grain boundary migration and liquid film migration. To test diffusional coherency strain theory for discontinuous precipitation Mg–7Al and Mg–7Al–1Pb alloys were studied. While the fraction transformed was high at 6% in Mg–7Al alloy, it was significantly low at 2% in Mg–7Al–1Pb alloy. The velocity of DP nodules decreased by half in alloy with Pb as compared to the alloy without Pb. Theoretical calculations also predict that the misfit parameter th decreases with the addition of Pb. These observations are an evidence to the fact that diffusional coherency strain is the most active driving force for the movement of the grain boundaries of the DP nodules during discontinuous precipitation in Mg–Al alloy.
Some steps toward a central theory of ecosystem dynamics.
Ulanowicz, Robert E
2003-12-01
Ecology is said by many to suffer for want of a central theory, such as Newton's laws of motion provide for classical mechanics or Schroedinger's wave equation provides for quantum physics. From among a plurality of contending laws to govern ecosystem behavior, the principle of increasing ascendency shows some early promise of being able to address the major questions asked of a theory of ecosystems, including, "How do organisms come to be distributed in time and space?, what accounts for the log-normal distribution of species numbers?, and how is the diversity of ecosystems related to their stability, resilience and persistence?" While some progress has been made in applying the concept of ascendency to the first issue, more work is needed to articulate exactly how it relates to the latter two. Accordingly, seven theoretical tasks are suggested that could help to establish these connections and to promote further consideration of the ascendency principle as the kernel of a theory of ecosystems.
Shaping femtosecond coherent anti-Stokes Raman spectra using optimal control theory.
Pezeshki, Soroosh; Schreiber, Michael; Kleinekathöfer, Ulrich
2008-04-21
Optimal control theory is used to tailor laser pulses which enhance a femtosecond time-resolved coherent anti-Stokes Raman scattering (fs-CARS) spectrum in a certain frequency range. For this aim the optimal control theory has to be applied to a target state distributed in time. Explicit control mechanisms are given for shaping either the Stokes or the probe pulse in the four-wave mixing process. A simple molecule for which highly accurate potential energy surfaces are available, namely molecular iodine, is used to test the procedure. This approach of controlling vibrational motion and delivering higher intensities to certain frequency ranges might also be important for the improvement of CARS microscopy.
Directory of Open Access Journals (Sweden)
Søren Ventegodt
2005-01-01
Full Text Available A theoretical framework of existential coherence is presented, explaining how health, quality of life (QOL, and the ability to function were originally created and developed to rehabilitate human life from an existential perspective. The theory is inspired by the work of Aaron Antonovsky and explains our surprising recent empirical findings—that QOL, health, and ability primarily are determined by our consciousness. The theory is a matrix of nine key elements in five layers: (1 coherence; (2 purpose and talent; (3 consciousness, love, and physicality/sexuality; (4 light and joy; and (5 QOL/meaning of life. The layer above causes the layer below, with the layer of QOL again feeding the fundamental layer of coherence. The model holds the person responsible for his or her own degree of reality, happiness, and being present. The model implies that when a person takes responsibility in all nine “dimensions” of life, he or she can improve and develop health, the ability to function, all aspects of QOL, and the meaning of life. The theory of existential coherence integrates a wide range of QOL theories from Jung and Maslow to Frankl and Wilber. It is a nine-ray theory in accordance with Gurjieff's enneagram and the old Indian chakra system. It can be used in the holistic medical clinic and in existential coaching. Love is in the center of the model and rehabilitation of love in its broadest sense is, accordingly, the essence of holistic medicine. To know yourself, your purpose of life (life mission and talents, and taking these into full use and becoming coherent with life inside and reality outside is what human life is essentially about. The new model has been developed to integrate the existing knowledge in the complex field of holistic medicine. Its strength is that it empowers the holistic physician to treat the patient with even severe diseases and can also be used for existential rehabilitation, holistic psychiatry, and sexology. Its major
Ventegodt, Søren; Flensborg-Madsen, Trine; Andersen, Niels Jørgen; Merrick, Joav
2005-05-06
A theoretical framework of existential coherence is presented, explaining how health, quality of life (QOL), and the ability to function were originally created and developed to rehabilitate human life from an existential perspective. The theory is inspired by the work of Aaron Antonovsky and explains our surprising recent empirical findings -- that QOL, health, and ability primarily are determined by our consciousness. The theory is a matrix of nine key elements in five layers: (1) coherence; (2) purpose and talent; (3) consciousness, love, and physicality/sexuality; (4) light and joy; and (5) QOL/meaning of life. The layer above causes the layer below, with the layer of QOL again feeding the fundamental layer of coherence. The model holds the person responsible for his or her own degree of reality, happiness, and being present. The model implies that when a person takes responsibility in all nine "dimensions" of life, he or she can improve and develop health, the ability to function, all aspects of QOL, and the meaning of life. The theory of existential coherence integrates a wide range of QOL theories from Jung and Maslow to Frankl and Wilber. It is a nine-ray theory in accordance with Gurjieff's enneagram and the old Indian chakra system. It can be used in the holistic medical clinic and in existential coaching. Love is in the center of the model and rehabilitation of love in its broadest sense is, accordingly, the essence of holistic medicine. To know yourself, your purpose of life (life mission) and talents, and taking these into full use and becoming coherent with life inside and reality outside is what human life is essentially about. The new model has been developed to integrate the existing knowledge in the complex field of holistic medicine. Its strength is that it empowers the holistic physician to treat the patient with even severe diseases and can also be used for existential rehabilitation, holistic psychiatry, and sexology. Its major weakness is
Zhou, Chenyi; Guo, Hong
2017-01-01
We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.
Hameroff, Stuart R
2004-11-01
Malignant cells are characterized by abnormal segregation of chromosomes during mitosis ("aneuploidy"), generally considered a result of malignancy originating in genetic mutations. However, recent evidence supports a century-old concept that maldistribution of chromosomes (and resultant genomic instability) due to abnormalities in mitosis itself is the primary cause of malignancy rather than a mere byproduct. In normal mitosis chromosomes replicate into sister chromatids which are then precisely separated and transported into mirror-like sets by structural protein assemblies called mitotic spindles and centrioles, both composed of microtubules. The elegant yet poorly understood ballet-like movements and geometric organization occurring in mitosis have suggested guidance by some type of organizing field, however neither electromagnetic nor chemical gradient fields have been demonstrated or shown to be sufficient. It is proposed here that normal mirror-like mitosis is organized by quantum coherence and quantum entanglement among microtubule-based centrioles and mitotic spindles which ensure precise, complementary duplication of daughter cell genomes and recognition of daughter cell boundaries. Evidence and theory supporting organized quantum states in cytoplasm/nucleoplasm (and quantum optical properties of centrioles in particular) at physiological temperature are presented. Impairment of quantum coherence and/or entanglement among microtubule-based mitotic spindles and centrioles can result in abnormal distribution of chromosomes, abnormal differentiation and uncontrolled growth, and account for all aspects of malignancy. New approaches to cancer therapy and stem cell production are suggested via non-thermal laser-mediated effects aimed at quantum optical states of centrioles.
Microscopic theory of coherent and incoherent optical properties of semiconductor heterostructures
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Martin
2008-09-02
An important question is whether there is a regime in which lasing from indirect semiconductors is possible. Thus, we discuss this question in this thesis. It is shown that under incoherent emission conditions it is possible to create an exciton condensate in multiple-quantum-well (MQW) systems. The influence of a MQW structure on the exciton lifetime is investigated. For the description of the light-matter interaction of a QW in the coherent excitation regime, the semiconductor Bloch equation (SBE) are used. The incoherent regime is described by the semiconductor luminescence equations (SLE). In principle it is even possible to couple SBE and SLE. The resulting theory is able to describe interactions between coherent and incoherent processes we investigate both, the coherent and the incoherent light-emission regime. Thus we define the investigated system and introduce the many-body Hamiltonian that describes consistently the light-matter interaction in the classical and the quantum limit. We introduce the SBE that allow to compute the light-matter interaction in the coherent scenario. The extended scattering model is used to investigate the absorption of a Ge QW for different time delays after the excitations. In this context, we analyze whether there is a regime in which optical gain can be realized. Then we apply a transfer-matrix method to include into our calculations the influence of the dielectric environment on the optical response. Thereafter the SLE for a MQW system are introduced. We derive a scheme that allows for decoupling environmental effects from the pure PL-emission properties of the QW. The PL of the actual QW system is obtained by multiplying this filter function and the free-space PL that describes the quantum emission into a medium with spatially constant background-refractive index. It is studied how the MQW-Bragg structure influences the PL-emission properties compared to the emission of a single QW device. As a last feature, it is shown
Institute of Scientific and Technical Information of China (English)
Liu Zi-Xin; Wen Sheng-Hui; Li Ming
2008-01-01
A combination of the iterative perturbation theory (ITP) of the dynamical mean field theory (DMFT) and coherent-potential approximation (CPA) is generalized to the double exchange model with orbital degeneracy. The Hubbard interaction and the off-diagonal components for the hopping matrix tmnijn(m≠n) are considered in our calculation of spectrum and optical conductivity. The numerical results show that the effects of the non-diagonal hopping matrix elements are important.
Limited role of spectra in dynamo theory: coherent versus random dynamos.
Tobias, Steven M; Cattaneo, Fausto
2008-09-19
We discuss the importance of phase information and coherence times in determining the dynamo properties of turbulent flows. We compare the kinematic dynamo properties of three flows with the same energy spectrum. The first flow is dominated by coherent structures with nontrivial phase information and long eddy coherence times, the second has random phases and long-coherence time, the third has nontrivial phase information, but short coherence time. We demonstrate that the first flow is the most efficient kinematic dynamo, owing to the presence of sustained stretching and constructive folding. We argue that these results place limitations on the possible inferences of the dynamo properties of flows from the use of spectra alone, and that the role of coherent structures must always be accounted for.
Yan, Jiawei; Ke, Youqi
2016-07-01
Electron transport properties of nanoelectronics can be significantly influenced by the inevitable and randomly distributed impurities/defects. For theoretical simulation of disordered nanoscale electronics, one is interested in both the configurationally averaged transport property and its statistical fluctuation that tells device-to-device variability induced by disorder. However, due to the lack of an effective method to do disorder averaging under the nonequilibrium condition, the important effects of disorders on electron transport remain largely unexplored or poorly understood. In this work, we report a general formalism of Green's function based nonequilibrium effective medium theory to calculate the disordered nanoelectronics. In this method, based on a generalized coherent potential approximation for the Keldysh nonequilibrium Green's function, we developed a generalized nonequilibrium vertex correction method to calculate the average of a two-Keldysh-Green's-function correlator. We obtain nine nonequilibrium vertex correction terms, as a complete family, to express the average of any two-Green's-function correlator and find they can be solved by a set of linear equations. As an important result, the averaged nonequilibrium density matrix, averaged current, disorder-induced current fluctuation, and averaged shot noise, which involve different two-Green's-function correlators, can all be derived and computed in an effective and unified way. To test the general applicability of this method, we applied it to compute the transmission coefficient and its fluctuation with a square-lattice tight-binding model and compared with the exact results and other previously proposed approximations. Our results show very good agreement with the exact results for a wide range of disorder concentrations and energies. In addition, to incorporate with density functional theory to realize first-principles quantum transport simulation, we have also derived a general form of
Yashiki, Satoshi
2016-09-01
We analyze the controllability of interference phenomena between partially coherent fields by introducing the Wigner distribution function (WDF) and entropy, which is defined using the intensity matrix [H. Gamo, J. Opt. Soc. Am. 47, 976 (1957)]. The analytical derivation of the WDF and entropy is presented for a partially coherent imaging system consisting of two pinholes illuminated by a circular source. It is shown that the WDF, defined in the 4D space-spatial frequency region, and entropy can be useful tools to understand how one can freely and quantitatively control the interference when any optical components in the partially coherent imaging system are changed.
Ex vivo and in vivo coherent Raman imaging of the peripheral and central nervous system
Huff, Terry Brandon
A hallmark of nervous system disorders is damage or degradation of the myelin sheath. Unraveling the mechanisms underlying myelin degeneration and repair represent one of the great challenges in medicine. This thesis work details the development and utilization of advanced optical imaging methods to gain insight into the structure and function of myelin in both healthy and diseased states in the in vivo environment. This first part of this thesis discusses ex vivo studies of the effects of high-frequency stimulation of spinal tissues on the structure of the node of Ranvier as investigated by coherent anti-Stokes Raman scattering (CARS) imaging (manuscript submitted to Journal of Neurosciece). Reversible paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation, beginning minutes after the onset and continuing for up to 10 min after stimulation was ceased. A mechanistic study revealed a Ca2+ dependent pathway: high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down. Also, the construction of dual-scanning CARS microscope for large area mapping of CNS tissues is detailed (Optics Express, 2008, 16:19396-193409). A confocal scanning head equipped with a rotating polygon mirror provides high speed, high resolution imaging and is coupled with a motorized sample stage to generate high-resolution large-area images of mouse brain coronal section and guinea pig spinal cord cross section. The polygon mirror decreases the mosaic acquisition time significantly without reducing the resolution of individual images. The ex vivo studies are then extended to in vivo imaging of mouse sciatic nerve tissue by CARS and second harmonic generation (SHG) imaging (Journal of Microscopy, 2007, 225: 175-182). Following a minimally invasive surgery to open the skin, CARS imaging of myelinated axons and SHG imaging of the
Directory of Open Access Journals (Sweden)
Anthony Pak Hin Kong
2014-04-01
Our results seemed to suggest that speakers with anomic aphasia had reduced proportion of essential information content, lower degree of elaboration, simplified discourse structure, and more structural disruptions than their healthy counterparts. We argue that the above characteristics have contributed to the reduced overall coherence in their oral discourse. The use of RST to quantify discourse coherence provided more objective measurement on macro-linguistic characteristics in aphasia and, therefore, warrants further investigation.
Lederman, Linda Costigan; Rogers, Don
The two papers in this document focus on general systems theory. In her paper, Linda Lederman discusses the emergence and evolution of general systems theory, defines its central concepts, and draws some conclusions regarding the nature of the theory and its value as an epistemology. Don Rogers, in his paper, relates some of the important features…
Equivariant K-Theory of Central Extensions and Twisted Equivariant K-theory: Sl3(Z) and St3(Z)
Barcenas, Noe; Velasquez, Mario
2013-01-01
We compare twisted Equivariant K-theory of Sl3Z with untwisted equivariant K-Theory of its universal central extension, St3Z. Using universal coefficient theorems by the authors, the computations explained here give the domain of Baum-Connes assembly maps landing on the topological K-theory of twisted group C*-algebras related to Sl3Z, for which a version of Poincar\\'e Duality studied previously by Echterhoff, Emerson and Kim is verified.
Jaime, Mark; McMahon, Camilla M.; Davidson, Bridget C.; Newell, Lisa C.; Mundy, Peter C.; Henderson, Heather A.
2016-01-01
Although prior studies have demonstrated reduced resting state EEG coherence in adults with autism spectrum disorder (ASD), no studies have explored the nature of EEG coherence during joint attention. We examined the EEG coherence of the joint attention network in adolescents with and without ASD during congruent and incongruent joint attention…
Coherence properties of third and fourth generation X-ray sources. Theory and experiment
Energy Technology Data Exchange (ETDEWEB)
Singer, Andrej
2013-06-15
Interference effects are among the most fascinating optical phenomena. For instance, the butterflies and soap bubbles owe their beautiful colors to interference effects. They appear as a result of the superposition principle, valid in electrodynamics due to the linearity of the wave equation. If two waves interfere, the total radiation field is a sum of these two fields and depends strongly on the relative phases between these fields. While the oscillation frequency of individual fields is typically too large to be observed by a human eye or other detection systems, the phase differences between these fields manifest themselves as relatively slowly varying field strength modulations. These modulations can be detected, provided the oscillating frequencies of the superposed fields are similar. As such, the interference provides a superb measure of the phase differences of optical light, which may carry detailed information about a source or a scattering object. The ability of waves to interfere depends strongly on the degree of correlation between these waves, i.e. their mutual coherence. Until the middle of the 20th century, the coherence of light available to experimentalists was poor. A significant effort had to be made to extend the degree of coherence, which made the electromagnetic field determination using of the interference principle very challenging. Coherence is the defining feature of a laser, whose invention initiated a revolutionary development of experimental techniques based on interference, such as holography. Important contributions to this development were also provided by astronomists, as due to enormous intergalactic distances the radiation from stars has a high transverse coherence length at earth. With the construction of third generation synchrotron sources, partially coherent X-ray sources have become feasible. New areas of research utilizing highly coherent X-ray beams have emerged, including X-ray photon correlation spectroscopy (XPCS), X
Lebreton, A; Braive, R; Sagnes, I; Robert-Philip, I; Beveratos, A
2013-01-01
Interferometric photon-correlation measurements, which correspond to the second-order intensity cross-correlations between the two output ports of an unbalanced Michelson interferometer, are sensitive to both amplitude and phase fluctuations of an incoming beam of light. Here, we present the theoretical framework behind these measurements and show that they can be used to unambiguously differentiate a coherent wave undergoing dynamical amplitude and phase fluctuations from a chaotic state of light. This technique may thus be used to characterize the output of nanolasers and monitor the onset of coherent emission.
Directory of Open Access Journals (Sweden)
Khaja WA
2015-06-01
Full Text Available Wassia A Khaja, Sandeep Grover, Amy T Kelmenson, Lee R Ferguson, Kumar Sambhav, Kakarla V Chalam Department of Ophthalmology, University of Florida, College of Medicine, Jacksonville, FL, USA Background: Central corneal thickness (CCT can be measured by using contact and non-contact methods. Ultrasound pachymetry (US pachymetry is a contact method for measuring CCT and is perhaps the most commonly used method. However, non-contact methods like scanning slit topography (Orbscan II, slit-lamp optical coherence tomography (SL-OCT, and specular microscopy are also used. Not many studies have correlated the measurement of CCT with all four modalities. The purpose of this study was to compare and correlate the CCT measurements obtained by US pachymetry with SL-OCT, specular microscopy, and Orbscan. Method: This is a prospective, comparative study done in an institutional setting. Thirty-two eyes of 32 subjects with no known ocular disease and best-corrected visual acuity of 20/20 were enrolled. CCT measurements were obtained using SL-OCT, specular microscopy, scanning slit topography (Orbscan, and US pachymetry. Three measurements were made with each instrument by the same operator. Mean, standard deviation, and coefficient of variation were calculated for CCT measurements acquired by the four measurement devices. Bland–Altman plot was constructed to determine the agreements between the CCT measurements obtained by different equipment. Results: The mean CCT was 548.16±48.68 µm by US pachymetry. In comparison, CCT averaged 546.36±44.17 µm by SL-OCT, 557.61±49.92 µm by specular microscopy, and 551.03±48.96 µm by Orbscan for all subjects. Measurements by the various modalities were strongly correlated. Correlations (r2 of CCT, as measured by US pachymetry compared with other modalities, were: SL-OCT (r2=0.98, P<0.0001, specular microscopy (r2=0.98, P<0.0001, and Orbscan (r2=0.96, P<0.0001. All modalities had a linear correlation with US
Maximal coherence in a generic basis
Yao, Yao; Dong, G. H.; Ge, Li; Li, Mo; Sun, C. P.
2016-12-01
Since quantum coherence is an undoubted characteristic trait of quantum physics, the quantification and application of quantum coherence has been one of the long-standing central topics in quantum information science. Within the framework of a resource theory of quantum coherence proposed recently, a fiducial basis should be preselected for characterizing the quantum coherence in specific circumstances, namely, the quantum coherence is a basis-dependent quantity. Therefore, a natural question is raised: what are the maximum and minimum coherences contained in a certain quantum state with respect to a generic basis? While the minimum case is trivial, it is not so intuitive to verify in which basis the quantum coherence is maximal. Based on the coherence measure of relative entropy, we indicate the particular basis in which the quantum coherence is maximal for a given state, where the Fourier matrix (or more generally, complex Hadamard matrices) plays a critical role in determining the basis. Intriguingly, though we can prove that the basis associated with the Fourier matrix is a stationary point for optimizing the l1 norm of coherence, numerical simulation shows that it is not a global optimal choice.
Tierz, Miguel
2016-01-01
We give explicit analytical expressions for the partition function of $% U(N)_{k}\\times U(N+M)_{-k}$ ABJ theory at weak coupling ($k\\rightarrow \\infty )$ for finite and arbitrary values of $N$ and $M$ (including the ABJM case and its mass-deformed generalization). We obtain the expressions by identifying the one-matrix model formulation with a Meixner-Pollaczek ensemble and using the corresponding orthogonal polynomials, which are also eigenfunctions of a $su(1,1)$ quantum oscillator. Wilson loops in mass-deformed ABJM are also studied in the same limit and interpreted in terms of $su(1,1)$ coherent states.
The coherent scattering function of the reptation model: simulations compared to theory
Baumgärtner, A.; Ebert, U.; Schäfer, L.
2003-01-01
We present results of Monte Carlo simulations measuring the coherent structure function of a chain moving through an ordered lattice of fixed topological obstacles. Our computer experiments use chains up to 320 beads and cover a large range of wave vectors and a time range exceeding the reptation ti
Cukierman, A.; Lippi, F.
1998-01-01
This paper proposes a conceptual framework to investigate the effects of central bank independence, of the degree of centralization of wage bargaining and of the interaction between those institutional variables, on real wages, unemployment and inflation, in a framework in which unions are averse to
Stability of Spatial Structure of Urban Agglomeration in China Based on Central Place Theory
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper brings forward the concept of stability of the spatial structure of urban agglomeration (UA) based on Central Place Theory by introducing centrality index and fractal theory. Before assessment, K=4 is selected as parameter to calculate centrality index and fractal dimension (K represents the quantitive relationship between city and the counties in Central Place Theory), and then found the number of nodes, the type of spatial structure, the spatial allocation of nodes with different hierarchy affecting the stability of spatial structure. According to spatial contact direction and the level of stability, UAs in China are classified into five types. Finally, it is posed as a further question that how to use hierarchical relation K=6 and K=7 in central place system to coordinate with the assessment of stability of spatial structure is brought forward.
Allegra, Michele; Giorda, Paolo; Lloyd, Seth
2016-04-01
Assessing the role of interference in natural and artificial quantum dynamical processes is a crucial task in quantum information theory. To this aim, an appropriate formalism is provided by the decoherent histories framework. While this approach has been deeply explored from different theoretical perspectives, it still lacks of a comprehensive set of tools able to concisely quantify the amount of coherence developed by a given dynamics. In this paper, we introduce and test different measures of the (average) coherence present in dissipative (Markovian) quantum evolutions, at various time scales and for different levels of environmentally induced decoherence. In order to show the effectiveness of the introduced tools, we apply them to a paradigmatic quantum process where the role of coherence is being hotly debated: exciton transport in photosynthetic complexes. To spot out the essential features that may determine the performance of the transport, we focus on a relevant trimeric subunit of the Fenna-Matthews-Olson complex and we use a simplified (Haken-Strobl) model for the system-bath interaction. Our analysis illustrates how the high efficiency of environmentally assisted transport can be traced back to a quantum recoil avoiding effect on the exciton dynamics, that preserves and sustains the benefits of the initial fast quantum delocalization of the exciton over the network. Indeed, for intermediate levels of decoherence, the bath is seen to selectively kill the negative interference between different exciton pathways, while retaining the initial positive one. The concepts and tools here developed show how the decoherent histories approach can be used to quantify the relation between coherence and efficiency in quantum dynamical processes.
Energy Technology Data Exchange (ETDEWEB)
Manjaly, Z.M.
2007-10-15
The contribution covers the following chapters: 1. In search of the hidden: an FMRI study with implications for the study of patients with autism and with acquired brain injury. 2. Context-dependent interactions of left posterior inferior frontal gyrus in a local visual search task unrelated to language. 3. Neurophysiological correlates of relatively enhanced local visual search in autistic adolescents.
Correspondence and coherence in science
Directory of Open Access Journals (Sweden)
Neal V. Dawson
2009-03-01
Full Text Available This paper introduces historical aspects of the concepts correspondence and coherence with emphasis on the nineteenth century when key aspects of modern science were emerging. It is not intended to be a definitive history of the concepts of correspondence and coherence as they have been used across the centuries in the field of inquiry that we now call science. Rather it is a brief history that highlights the apparent origins of the concepts and provides a discussion of how these concepts contributed to two important science related controversies. The first relates to aspects of evolution in which correspondence and coherence, as competing theories of truth, played a central role. The controversy about evolution continues into the beginning of the twenty-first century in forms that are recognizably similar to those of the middle of the nineteenth century. The second controversy relates to the etiology of blood-born infections (sepsis during childbirth (childbed fever. In addition to correspondence and coherence, the authors introduce other theories of truth and discuss an evolutionarily cogent theory of truth, the pragmatic theory of truth.
Theory of cellwise optimization for solar central receiver system
Lipps, F. W.
1985-05-01
Cost effective optimization of the solar central receiver system is primarily concerned with the distribution of heliostats in the collector field, including the boundaries of the field. The cellwise optimization procedure determines the optimum cell usage and heliostat spacing parameters for each cell in the collector field. Spacing parameters determine the heliostat density and neighborhood structure uniformly in each cell. Consequently, the cellwise approach ignores heliostat mismatch at cell boundaries. Ignoring the cell boundary problem permits an easy solution for the optimum in terms of appropriately defined annual average data. Insolation, receiver interception, shading and blocking, cosine effects, and the cost parameters combine to control the optimum. Many trade offs are represented. Outputs include the receiver flux density distribution for design time, coefficients for an actual layout, the optimum boundary and various performance and cost estimates for the optimum field. It is also possible to optimize receiver size and tower height by a repeated application of the field optimization procedure.
Stupakov, Gennady; Zhou, Demin
2016-04-01
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked against numerical simulations with the CSRZ computer code.
Theory of coherent molecule to surface electron injection: An analytical model
Indian Academy of Sciences (India)
S Ramakrishna; T Seideman; F Willig; V May
2009-09-01
Electron transfer from a molecular level to empty continuum levels of a substrate is described theoretically. Using a quasicontinuum approach to model the substrate, analytical expressions pertaining to the time-dependent probability among the various levels of the substrate is presented along with its extension to coherently excited molecular vibrational modes. Hidden time scales and dynamics are revealed in the analysis and possible experiments to observe the new results are suggested. We note the applicability of the model to the description of a variety of other phenomena that are formally similar to the electron injection problem, although pertaining to different physics.
Stupakov, Gennady
2016-01-01
We develop a general model of coherent synchrotron radiation (CSR) impedance with shielding provided by two parallel conducting plates. This model allows us to easily reproduce all previously known analytical CSR wakes and to expand the analysis to the situations not explored before. It reduces calculations of the impedance to taking integrals along the trajectory of the beam. New analytical results are derived for the radiation impedance with shielding for the following orbits: a kink, a bending magnet, a wiggler of finite length, and an infinitely long wiggler. All our formulas are benchmarked agains numerical simulations with the CSRZ computer code.
On the theory of coherent pair production in crystals in presence of acoustic waves
Mkrtchyan, A R; Grigoryan, L S; Khachatrian, B V
2002-01-01
The influence of hypersonic waves excited in a single crystal is investigated on the process of electron-positron pair creation by high-energy photons. The coherent part of the corresponding differential cross-section is derived as a function of the amplitude and wave number of the hypersound. The values of the parameters are specified for which the latter affects remarkably on the pair creation cross-section. It is shown that under certain conditions the presence of hypersonic waves can result in enhancement of the process cross-section.
Yan, Jiawei; Ke, Youqi
In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.
Directory of Open Access Journals (Sweden)
Ana Elina Martínez Insua
2011-12-01
Full Text Available Este artículo estudia cómo las construcciones con there pueden haber contribuido a la creación de coherencia discursiva a lo largo de la historia del inglés. Desde el marco teórico de la denominada Meta-Informative Centering Theory (MIC, exploraremos la posibilidad de establecer conexiones entre la estructura sintáctica estudiada y diversos tipos de transiciones entre centros de atención (Brennan, Friedman & Pollard, 1987. En última instancia, esto contribuirá a la mejor caracterización de la interacción entre las teorías MIC y Centering Theory, el orden de palabras y la estructura de la información en una lengua con orden de palabras rígido. El estudio de corpus que aquí se presenta se basa en datos extraídos de muestras de inglés oral y escrito correspondientes al periodo que va del Inglés Medio tardío al Inglés Contemporáneo. Los datos muestran la capacidad de las construcciones con there para funcionar bien como estructuras altamente coherentes que mantienen el tópico local previo, o bien como instrumentos para cambiar el centro de atención local.This paper is concerned with how there-constructions may have helped to achieve discourse coherence in the recent history of English. From the theoretical framework of Meta-Informative Centering Theory (MIC the paper explores the possibility to establish a relation between the syntactic structures under analysis and the distinction between 'smooth-shift' and 'rough-shift' transitions from one centre of attention to another (Brennan, Friedman & Pollard, 1987. This will help, ultimately, to investigate the interaction between centering and MIC theories, word order and information structure in a 'non-free' word order language such as English. A corpus- driven analysis of the behaviour of spoken and written there-constructions from late Middle English to Present Day English will show their capacity to function either as highly coherent
Lavoie,Marc
2010-01-01
The subprime financial crisis has forced several North American and European central banks to take extraordinary measures and to modify some of their operational procedures. These changes have made even clearer the deficiencies and lack of realism in mainstream monetary theory, as can be found in both undergraduate textbooks and most macroeconomic models. They have also forced monetary authorities to reject publicly some of the assumptions and key features of mainstream monetary theory, feari...
Superspace Formulation of N=4 Super Yang-Mills Theory with a Central Charge
Saito, J
2005-01-01
A superspace formulation using superconnections and supercurvatures is specifically constructed for N=4 extended super Yang-Mills theory with a central charge in four dimensions, first proposed by Sohnius, Stelle and West long ago. We find that the constraints, almost uniquely derived from the possible spin structure of the multiplet, can be algebraically solved which results in an off-shell supersymmetric formulation of the theory on the superspace.
DEFF Research Database (Denmark)
Happel, Christoph M.; Thommes, Jan; Thrane, Lars;
2011-01-01
We introduce a new method of rotational image acquisition for four-dimensional (4D) optical coherence tomography (OCT) of beating embryonic chick hearts. The rotational axis and the central A-scan of the OCT are identical. An out-of-phase image sequence covering multiple heartbeats is acquired...... at every angle of an incremental rotation of the deflection mirrors of the OCT system. Image acquisition is accomplished after a rotation of 180◦. Comparison of a displayed live M-mode of the central A-scan with a reference M-mode allows instant detection of translational movements of the embryo....... For calculation of 4D data sets, we apply an imagebased retrospective gating algorithm using the phase information of the common central A-scan present in all acquired images. This leads to cylindrical three-dimensional data sets for every time step of the cardiac cycle that can be used for 4D visualization...
Amador, Filomena; Martinho, Ana Paula; Bacelar-Nicolau, Paula; Caeiro, Sandra; Oliveira, Carla Padrel
2015-01-01
Universities are an important part of the process of change taking place in society. However, this is often overshadowed by these institutions giving priority to technocratic models in the relationship between science and society. In this context, according to Habermas, theories can serve to clarify practical questions and guide praxis into the…
Yeung, Michael S.; Lee, Derek; Lee, Robert S.; Neureuther, Andrew R.
1993-08-01
In this paper, we extend the Hopkins formulation to take into account high numerical aperture and thin-film interference effects by introducing a new TCC function for each depth inside the photoresist, which completely characterizes the lens/thin-film system with respect to partial coherence, aberrations, defocus and interference effects at the given depth within the photoresist. The basis of the new formulation lies in the fact that, in the presence of the thin- film stack, each point on the exit pupil of the optical system maps linearly not into a single plane wave, but into a family of multiply reflected and generally obliquely propagating plane waves, when bleaching induced scattering effects are neglected. The response within the photoresist due to each incident plane wave is calculated by the method of thin-film optics. The results are then used in the calculation of a new, matrix pupil function of the lens/thin- film system for each depth within the photoresist. Obliquity factors appropriate to high-NA systems are included in the new pupil function. For the Koehler illumination commonly used in reduction projection systems, it is shown that the total irradiance at each depth within the photoresist is expressible in terms of a matrix TCC in the limit when the rays incident on the mask are all nearly vertical, as is the case in a 5X reduction system.
Strengthening sense of coherence: opportunities for theory building in health promotion.
Super, S; Wagemakers, M A E; Picavet, H S J; Verkooijen, K T; Koelen, M A
2016-12-01
Sense of coherence (SOC) reflects a coping capacity of people to deal with everyday life stressors and consists of three elements: comprehensibility, manageability and meaningfulness. SOC is often considered to be a stable entity that is developed in young adulthood and stabilizes around the age of 30. Recent studies have questioned this stability of SOC and some studies report on interventions that have been successful in strengthening SOC in adult populations. Currently, however, there is no clear understanding of the mechanisms underlying SOC. As a consequence, it is a challenge to determine what is needed in health promotion activities to strengthen SOC. This article aims to explore the mechanisms underlying SOC as these insights may underpin future health promotion efforts. An exploration of the salutogenic model suggests two important mechanisms: the behavioural and the perceptual. The behavioural mechanism highlights the possibility to empower people to use their resources in stressful situations. The perceptual mechanism suggests that, in order for people to deal with life stressors, it is essential that they are able to reflect on their understanding of the stressful situation and the resources that are available. Based on these mechanisms, we suggest that both empowerment and reflection processes, which are interdependent, may be relevant for health promotion activities that aim to strengthen SOC. The successful application of resources to deal with stressors is not only likely to have a positive influence on health, but also creates consistent and meaningful life experiences that can positively reinforce SOC levels.
Spin Coherent State Representation of the Crow-Kimura and Eigen Models of Quasispecies Theory
Ancliff, Mark; Park, Jeong-Man
2011-05-01
We present a spin coherent state representation of the Crow-Kimura and Eigen models of biological evolution. We deal with quasispecies models where the fitness is a function of Hamming distances from one or more reference sequences. In the limit of large sequence length N, we find exact expressions for the mean fitness and magnetization of the asymptotic quasispecies distribution in symmetric fitness landscapes. The results are obtained by constructing a path integral for the propagator on the coset SU(2)/ U(1) and taking the classical limit. The classical limit gives a Hamiltonian function on a circle for one reference sequence, and on the product of 2 m -1 circles for m reference sequences. We apply our representation to study the Schuster-Swetina phenomena, where a wide lower peak is selected over a narrow higher peak. The quadratic landscape with two reference sequences is also analyzed specifically and we present the phase diagram on the mutation-fitness parameter phase space. Furthermore, we use our method to investigate more biologically relevant system, a model of escape from adaptive conflict through gene duplication, and find three different phases for the asymptotic population distribution.
F-theory compactifications and central charges of BPS-states
Obikhod, Tetiana V
2016-01-01
F-theory, as Theory of Everything is compactified on Calabi-Yau threefolds or fourfolds. Using toric approximation of Batyrev and mirror symmetry of Calabi-Yau manifolds it is possible to present Calabi-Yau in the form of dual integer polyhedra. With the help of Gelfand, Zelevinsky, Kapranov algorithm were calculated the numbers of BPS-states in F-theory, and by application of Tate algorithm were determined the enhanced symmetries. As the result, any integral dual polyhedron representing a Calabi-Yau manifold, is characterized by its own set of topological invariants - the numbers of BPS states, whose central charges are classified by enhanced symmetries.
Huang, Jinxin; Yuan, Qun; Zhang, Buyun; Xu, Ke; Tankam, Patrice; Clarkson, Eric; Kupinski, Matthew A; Hindman, Holly B; Aquavella, James V; Suleski, Thomas J; Rolland, Jannick P
2014-12-01
To extend our understanding of tear film dynamics for the management of dry eye disease, we propose a method to optically sense the tear film and estimate simultaneously the thicknesses of the lipid and aqueous layers. The proposed method, SDT-OCT, combines ultra-high axial resolution optical coherence tomography (OCT) and a robust estimator based on statistical decision theory (SDT) to achieve thickness measurements at the nanometer scale. Unlike conventional Fourier-domain OCT where peak detection of layers occurs in Fourier space, in SDT-OCT thickness is estimated using statistical decision theory directly on the raw spectra acquired with the OCT system. In this paper, we demonstrate in simulation that a customized OCT system tailored to ~1 µm axial point spread function (FWHM) in the corneal tissue, combined with the maximum-likelihood estimator, can estimate thicknesses of the nanometer-scale lipid and micron-scale aqueous layers of the tear film, simultaneously, with nanometer precision. This capability was validated in experiments using a physical phantom that consists of two layers of optical coatings that mimic the lipid and aqueous layers of the tear film.
Ab Initio Theory of Coherent Laser-Induced Magnetization in Metals
Berritta, Marco; Mondal, Ritwik; Carva, Karel; Oppeneer, Peter M.
2016-09-01
We present the first materials specific ab initio theory of the magnetization induced by circularly polarized laser light in metals. Our calculations are based on nonlinear density matrix theory and include the effect of absorption. We show that the induced magnetization, commonly referred to as inverse Faraday effect, is strongly materials and frequency dependent, and demonstrate the existence of both spin and orbital induced magnetizations which exhibit a surprisingly different behavior. We show that for nonmagnetic metals (such as Cu, Au, Pd, Pt) and antiferromagnetic metals the induced magnetization is antisymmetric in the light's helicity, whereas for ferromagnetic metals (Fe, Co, Ni, FePt) the imparted magnetization is only asymmetric in the helicity. We compute effective optomagnetic fields that correspond to the induced magnetizations and provide guidelines for achieving all-optical helicity-dependent switching.
Carberry, S; Carberry, Sandra; Harvey, Terrence
1997-01-01
This paper presents a message planner, TraumaGEN, that draws on rhetorical structure and discourse theory to address the problem of producing integrated messages from individual critiques, each of which is designed to achieve its own communicative goal. TraumaGEN takes into account the purpose of the messages, the situation in which the messages will be received, and the social role of the system.
Institute of Scientific and Technical Information of China (English)
李洪坤; 廖志华
2015-01-01
Based on Rhetorical Structure Theory (RST), this study intends to investigate into the typical features of rhetorical rela-tions in Chinese EFL learners'argumentative writing and their relationship with writing quality. A set of 60 essays (30 with the highest scores and another 30 with the lowest scores)were drawn from SWECCL (Spoken and Written English Corpus of Chinese Learners). These essays were then cut into elementary discourse units and manually annotated with rhetorical relations. Research findings show that there is no significant difference in terms of the total numbers and types of rhetorical relations between the two proficiency groups. However, comparisons of the rhetorical relations both at the intra-paragraph and at the inter-paragraph level in-dicate statistical differences between the two groups.
Directory of Open Access Journals (Sweden)
Andreas Ebneter
Full Text Available Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001 compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001. Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.
Aspects of the theory of atoms and coherent matter and their interaction with electromagnetic fields
Energy Technology Data Exchange (ETDEWEB)
Nilsen, Halvor Moell
2002-07-01
In the present work I have outlined and contributed to the time-dependent theory of the interaction between atoms and electromagnetic fields and the theory of Bose-Einstein condensates. New numerical methods and algorithms have been developed and applied in practice. Calculations have exhibited certain new dynamical features. All these calculations are in a regime where the applied field is of the same magnitude as the atomic field. In the case of BEC we have investigated the use of time-dependent methods to calculate the excitation frequencies. We also investigated the possibility of nonlinear coupling for a scissors mode and found no such contributions to damping which is consistent with other studies . Special emphasis has also been paid to the gyroscopic motion of rotating BEC where several models were investigated. Briefly, the main conclusions are: (1) Rydberg wave packets appear for direct excitations of Rydberg atoms for long pulses. (2) The survival of just a few states is decided by symmetry of the Hamiltonian. (3) For few cycle intense pulses classical and quantum mechanics show remarkable similarity. (4) Time-dependent methods for finding excitation frequencies have been shown to be very efficient. (5) New dynamical features is shown in gyroscopic motion of BEC. (6) It was shown that no nonlinear mixing of scissors modes occur in the standard Gross-Pitaevskii regime. As mentioned in the introduction, this work is a part of very active research fields and new progress is constantly reported. Thus, the present work cannot be concluded as a closed loop. The fast development of grid based numerical solutions for atoms in intense fields will surely make great contribution to solve many of today's problems. It is a very important area of research to understand both nonperturbative atomic response and highly nonlinear optics. In the field of Bose-Einstein condensation the new experimental achievements constantly drive the field forward. The new
Briskman, J; Happé, F; Frith, U
2001-03-01
Information on everyday life activities and preferences in both social and nonsocial domains was obtained from parents and children who had taken part in an experimental study of central coherence. Comparisons were made between parents who had a son with autism, parents with a dyslexic son, and families without a history of developmental disorder, as well as the male siblings in these families. Data on everyday preferences and abilities were elicited by means of an experimental questionnaire. Significant group differences in social and nonsocial preferences were found, suggesting that some parents showed similarities with their son with autism, in preference for nonsocial activities and ability in detail-focused processing. A similar experimental questionnaire, completed by parents on behalf of their sons, discriminated between autism group probands and controls, but did not differentiate sibling groups. The relevance of the nonsocial items to central coherence is discussed in the light of the findings in Part I: autism parents who reported more autism-related nonsocial (but not social) preferences, tended to show a piecemeal processing style on the experimental tasks.
Coherent structures in a baroclinic atmosphere. IV - A comparison between theory and data
Malanotte-Rizzoli, Paola; Hancock, Paul J.
1987-01-01
This paper presents the results of a data analysis, on an extensive series of Atlantic blocks, for the composites of both the positive and the negative anomaly cases and for the winter climatology, using the composite approach of Dole (1982, 1986). The results are compared with predictions of the theory formulated by Malguzzi and Malanotte-Rizzoli (1984, 1985) and Malanotte-Rizzoli and Malguzzi (1987) to model the blocking events. The results of the analyses indicate that the composite of the positive anomaly cases shows a strong northern barrier centered in the latitude band 62-72 deg N, in agreement with the northern confinement of the block. The northern, positive wall is not present in the climatology; its presence and significance are doubtful and debatable for the negative anomaly composite. For the individual positive cases for which a smooth and zonal upstream wind could be defined, the V-function shows the appearance of both a northern and southern wall below the tropopause.
Directory of Open Access Journals (Sweden)
J.C. KONDYLAKIS
2012-12-01
Full Text Available An application of fractal theory in geological formations in the central Corinthian Gulf, Greece, is presented in an attempt to study the nature of presently active deformation. Fault patterns are approximated under the perspective of fractal theory concept, leading to the conclusion that fractal approach can be considered valid for the region of study. Nevertheless, homogeneity may be expected with the reservation that there are no considerable changes in the viscosities of the ductile layers in the region, so that the characteristic exponent b+1-a is less than zero.
Institute of Scientific and Technical Information of China (English)
Yuchuan BAI; Andreas MALCHEREK; Changbo JIANG
2001-01-01
The formation of sand wave is such a process in which the roughness and discontinuity of the original bed surface cause the disturbance of the bottom laminar flow in an open channel,and the development of the disturbance in turn leads to instability of the flow and the appearance of the coherent structure. The evolution and development of the coherent structure further promote the undulations of bed surface and sand waves rise finally. The sand wave is explained as a result of action that the bed sediment particles are disturbed by the coherent structure. This study shows that the sand wave formation is the result of disturbance action of neutral coherent structure, and the sand wave shape obtained in computations is identical to the practical one.
Institute of Scientific and Technical Information of China (English)
JING Hui; GENG Zhen-Duo
2008-01-01
@@ We show that by making a generalized atom-molecule dark state,coherent creation of triatomic molecules can be enhanced in a repulsive atomic Bose-Einstein condensate.The dynamics of heteronuclear trimer creation is significantJy different from the homonuclear case and further enhancement can be realized by controlling its chemical reaction channels,The possibility of manipulating atom-trimer conversion provides an appealing research area for current coherent matter-wave optics.
Dosen, K
2008-01-01
Positive modalities in systems in the vicinity of S4 and S5 are investigated in terms of categorial proof theory. Coherence and maximality results are demonstrated, and connections with mixed distributive laws and Frobenius algebras are exhibited.
Central Charges and the Sign of Entanglement in 4D Conformal Field Theories.
Perlmutter, Eric; Rangamani, Mukund; Rota, Massimiliano
2015-10-23
We explore properties of the universal terms in the entanglement entropy and logarithmic negativity in 4D conformal field theories, aiming to clarify the ways in which they behave like the analogous entanglement measures in quantum mechanics. We show that, unlike entanglement entropy in finite-dimensional systems, the sign of the universal part of entanglement entropy is indeterminate. In particular, if and only if the central charges obey a>c, the entanglement across certain classes of entangling surfaces can become arbitrarily negative, depending on the geometry and topology of the surface. The negative contribution is proportional to the product of a-c and the genus of the surface. Similarly, we show that in a>c theories, the logarithmic negativity does not always exceed the entanglement entropy.
Reščič, J.; Kalyuzhnyi, Y. V.; Cummings, P. T.
2016-10-01
The approach developed earlier to describe the dimerizing shielded attractive shell (SAS) primitive model of chemical association due to Cummings and Stell is generalized and extended to include a description of a polymerizing SAS model. Our extension is based on the combination of the resummed thermodynamic perturbation theory for central force (RTPT-CF) associating potential and self consistent scheme, which takes into account the changes in the system free volume due to association. Theoretical results for thermodynamical properties of the model at different bonding length, density and temperature are compared against newly generated computer simulation results. The theory gives very accurate predictions for the model with bonding length L * from the range 0 < L * < 0.6 at all values of the density and temperature studied, including the limit of infinitely large temperature.
Coherent superposition theory of SH wave defect mode of phononic crystal%声子晶体中 SH 波缺陷模的相干叠加理论
Institute of Scientific and Technical Information of China (English)
刘启能; 刘沁
2015-01-01
Using the coherent superposition principle,the transmittance formula and frequency formula of SH wave defect mode are derived in 1D doping phononic crystal,and the coherent superposition theory is established.The coherent superposition theory,the transfer matrix theory and the resonance theory are compared.The coherent superposition theory has advantages of the transfer matrix theory and the reso-nance theory,and the coherent superposition theory does not have disadvantages of the transfer matrix theory and the resonance theory.The coherent superposition theory is a better way to study SH wave defect mode of phononic crystal.%利用波的相干叠加原理推导出一维掺杂声子晶体中 SH 波缺陷模的透射率公式和频率公式，即建立了缺陷模的相干叠加法。将相干叠加法与转移矩阵法和共振理论进行了比较研究，结果表明缺陷模的相干叠加法具备转移矩阵法和共振理论各自的优点，又克服了转移矩阵法和共振理论各自的不足。相干叠加法是研究一维掺杂声子晶体中 SH 波缺陷模的一种更有效的方法。
Optical Coherence and Quantum Optics
Mandel, Leonard
1995-01-01
This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi
Withington, Stafford; Thomas, Christopher N
2009-06-01
Free-space power detectors often have energy absorbing structures comprising multilayer systems of patterned thin films. We show that for any system of interacting resistive films, the expectation value of the absorbed power is given by the contraction of two tensor fields: one describes the spatial state of coherence of the incoming radiation, the other the state of coherence to which the detector is sensitive. Equivalently, the natural modes of the optical field scatter power into the natural modes of the detector. We describe a procedure for determining the amplitude, phase, and polarization patterns of a detector's optical modes and their relative responsivities. The procedure gives the state of coherence of the currents flowing in the system and leads to important conceptual insights into the way the pixels of an imaging array interact and extract information from an optical field.
Directory of Open Access Journals (Sweden)
Jerzy Boehlke
2010-07-01
Full Text Available This paper presents the major methodological challenges in microeconomic theory of the firm in theeconomies of Central and Eastern Europe. The methodological weaknesses of the theory are not only thecause of cognitive limitation but also an important condition for an effective economic policy during thetransition period.
Prediction of Velocity-Dip-Position at the Central Section of Open Channels using Entropy Theory
Directory of Open Access Journals (Sweden)
Snehasis Kundu
2017-01-01
Full Text Available An analytical model to predict the velocity-dip-position at the central section of open channels is presented in this study. Unlike the previous studies where empirical or semi-empirical models were suggested, in this study the model is derived by using entropy theory. Using the principle of maximum entropy, the model for dip-position is derived by maximizing the Shannon entropy function after assuming dimensionless dip-position at the central section as a random variable. No estimation of empirical parameter is required for calculating dip-position from the proposed model. The model is able to predict the location of maximum velocity at the central section of an open channel with any aspect ratio. The developed model of velocity-dip-position is tested with experimental data from twenty-two researchers reported in literature for a wide range of aspect ratio. The model is also compared with other existing empirical models. The present model shows good agreement with the observed data and provides least prediction error compared to other models.
Buckingham, Michael J
2013-08-01
Acoustic attenuation in seawater usually has little effect on the spatial statistics of ambient noise in the ocean. This expectation does not hold, however, at higher frequencies, above 10 kHz, and extreme depths, in excess of 6 km, an operating regime that is within the capabilities of the most recently developed acoustic instrument platforms. To quantify the effects of attenuation, theoretical models for the vertical directionality and the spatial coherence of wind-generated ambient noise are developed in this paper, based on a uniform distribution of surface sources above a semi-infinite, homogeneous ocean. Since there are no bottom reflections, all the noise is downward traveling; and the angular width of the directional density function becomes progressively narrower with increasing frequency because sound from the more distant sources experiences greater attenuation than acoustic arrivals from overhead. This narrowing of the noise lobe modifies the spatial coherence, shifting the zeros in the horizontal (vertical) coherence function to higher (lower) frequencies. In addition, the attenuation modifies the amplitudes of the higher-order oscillations in the horizontal and vertical coherence functions, tending to suppress the former and enhance the latter. These effects are large enough to be detectable with the latest deep-diving sensor technology.
Aeberhard, U.
2014-03-01
The generation of photocurrents due to coupling of electrons to both classical and quantized electromagnetic fields in thin semiconductor films is described within the framework of the nonequilibrium Green's function formalism. For the coherent coupling to classical fields corresponding to single field operator averages, an effective two-time intraband self-energy is derived from a band decoupling procedure. The evaluation of coherent photogeneration is performed self-consistently with the propagation of the fields by using for the latter a transfer matrix formalism with an extinction coefficient derived from the electronic Green's functions. For the "incoherent" coupling to fluctuations of the quantized fields, which need to be considered for the inclusion of spontaneous emission, the first self-consistent Born self-energy is used, with full spatial resolution in the photon Green's functions. These are obtained from the numerical solution of Dyson and Keldysh equations including a nonlocal photon self-energy based on the same interband polarization function as used for the coherent case. A comparison of the spectral and integral photocurrent generation pattern reveals a close agreement between coherent and incoherent coupling for the case of an ultrathin, selectively contacted absorber layer at short circuit conditions.
COHERENT LIGHT-RECORDING TECHNIQUES.
On the basis of diffraction theory, quantum-mechanics and information theory, it is shown that the principle of coherent light recording is the...mechanical, magnetic or electric approaches. Photographic coherent light recording tests were made by the dynamic sweep tests on 16 mm Recordak Micro-File
Berginc, G.
2013-11-01
We have developed a general formalism based on Green's functions to calculate the coherent electromagnetic field scattered by a random medium with rough boundaries. The approximate expression derived makes it possible to determine the effective permittivity, which is generalised for a layer of an inhomogeneous random medium with different types of particles and bounded with randomly rough interfaces. This effective permittivity describes the coherent propagation of an electromagnetic wave in a random medium with randomly rough boundaries. We have obtained an expression, which contains the Maxwell - Garnett formula at the low-frequency limit, and the Keller formula; the latter has been proved to be in good agreement with experiments for particles whose dimensions are larger than a wavelength.
Vertical Handoff and Admission Control Strategy in 4G Wireless Network Using Centrality Graph Theory
Directory of Open Access Journals (Sweden)
A. Ferdinand Christopher
2014-06-01
Full Text Available Vertical Handoff (VHO is a crucial mechanism for the architecture of the Fourth Generation (4G Heterogeneous Wireless Networks (HWN, because the users of 4G-HWN are capable of switching to any network in a seamless manner. These algorithms need to be practical and true to a wide range of applications hence utilization of an application layer parameter is important to decide the handoff and admission control. As a noticeable number of OSN users increased among smart phones, this study proposes a deployment of social context incorporated with vertical handoff and admission control algorithms called VHO-AC for the 4G-HWN environment. Admission of a node is decided based on the Graph Centrality Theory, which is contributing their measures to design an application layer parameter called Social Centrality Measure (SCM. The simulation results show that social network traffic flowing out of 2G and 3G base stations is much reduced than the existing SCVH method.
Myslivets, S A; Kimberg, V V; George, T F; George, Thomas F.
2003-01-01
A scheme is analyzed for effcient generation of vacuum ultraviolet radiation through four-wave mixing processes assisted by the technique of Stark-chirped rapid adiabatic passage. These opportunities are associated with pulse excitation of laddertype short-wavelength two-photon atomic or molecular transitions so that relaxation processes can be neglected. In this three-laser technique, a delayed-pulse of strong oR-resonant infrared radiation sweeps the laser-induced Stark-shift of a two-photon transition in a such way that facilitates robust maximum two-photon coherence induced by the first ultraviolet laser. A judiciously delayed third pulse scatters at this coherence and generates short-wavelength radiation. A theoretical analysis of these problems based on the density matrix is performed. A numerical model is developed to carry out simulations of a typical experiment. The results illustrate a behavior of populations, coherence and generated radiation along the medium as well as opportunities of effcient ge...
Streltsov, Alexander
2015-01-01
The basis of any quantum resource theory are free states and free operations, these are states and operations which can be created or performed at no cost. In the resource theory of quantum coherence free states are states which are diagonal in a fixed reference basis. This choice is natural in many experimental scenarios where the reference basis is singled out by the unavoidable decoherence. The corresponding free operations are called incoherent, they can be implemented as a generalized measurement which does not create any coherence. However, a general quantum operation admits different experimental realizations, and a quantum operation which seems incoherent in one experimental realization might create coherence in another. Starting from this observation, we propose the framework of genuine quantum coherence. This approach is based on a simple principle: we demand that a genuinely incoherent operation preserves all incoherent states. This simple condition automatically guarantees that the operation is in...
de Vicente, Julio I.; Streltsov, Alexander
2017-01-01
Any quantum resource theory is based on free states and free operations, i.e. states and operations which can be created and performed at no cost. In the resource theory of coherence free states are diagonal in some fixed basis, and free operations are those which cannot create coherence for some particular experimental realization. Recently, some problems of this approach have been discussed, and new sets of operations have been proposed to resolve these problems. We propose here the framework of genuine quantum coherence. This approach is based on a simple principle: we demand that a genuinely incoherent operation preserves all incoherent states. This framework captures coherence under additional constrains such as energy preservation and all genuinely incoherent operations are incoherent regardless of their particular experimental realization. We also introduce the full class of operations with this property, which we call fully incoherent. We analyze in detail the mathematical structure of these classes and also study possible state transformations. We show that deterministic manipulation is severely limited, even in the asymptotic settings. In particular, this framework does not have a unique golden unit, i.e. there is no single state from which all other states can be created deterministically with the free operations. This suggests that any reasonably powerful resource theory of coherence must contain free operations which can potentially create coherence in some experimental realization.
Converting Coherence to Quantum Correlations.
Ma, Jiajun; Yadin, Benjamin; Girolami, Davide; Vedral, Vlatko; Gu, Mile
2016-04-22
Recent results in quantum information theory characterize quantum coherence in the context of resource theories. Here, we study the relation between quantum coherence and quantum discord, a kind of quantum correlation which appears even in nonentangled states. We prove that the creation of quantum discord with multipartite incoherent operations is bounded by the amount of quantum coherence consumed in its subsystems during the process. We show how the interplay between quantum coherence consumption and creation of quantum discord works in the preparation of multipartite quantum correlated states and in the model of deterministic quantum computation with one qubit.
Reich, Daniel M
2013-01-01
Laser cooling of molecules employing broadband optical pumping involves a timescale separation between laser excitation and spontaneous emission. Here, we optimize the optical pumping step using shaped laser pulses. We derive two optimization functionals to drive population into those excited state levels that have the largest spontaneous emission rates to the target state. We show that, when using optimal control, laser cooling of molecules works even if the Franck-Condon map governing the transitions is preferential to heating rather than cooling. Our optimization functional is also applicable to the laser cooling of other degrees of freedom provided the cooling cycle consists of coherent excitation and dissipative deexcitation steps whose timescales are separated.
Huang, Jinhai; Lu, Weicong; Savini, Giacomo; Chen, Hao; Wang, Chengfang; Yu, Xinxin; Bao, Fangjun; Wang, Qinmei
2016-01-01
Purpose. To compare between a new optical biometer (AL-Scan, Nidek Co., Aichi, Japan) and an anterior segment optical coherence tomographer (Visante AS-OCT, Carl Zeiss Meditec, Dublin, USA) for measuring central corneal thickness (CCT), anterior chamber depth (ACD), and aqueous depth (AD). Methods. Sixty-three eyes of 63 normal subjects were examined with AL-Scan and Visante AS-OCT in this prospective study. One eye per subject was measured three times with both devices to record their CCT, ACD, and AD. All procedures were performed by the same operator. Agreement between the two devices was assessed using paired t-tests, Bland-Altman plots, and 95% limits of agreement (LoA). Results. The mean CCT, ACD, and AD measured by AL-Scan were 538.59 ± 27.37 μm, 3.70 ± 0.30 mm, and 3.16 ± 0.30 mm, respectively. The mean values obtained by the Visante OCT were 536.14 ± 26.61 μm for CCT, 3.71 ± 0.29 mm for ACD, and 3.17 ± 0.29 mm for AD. The mean CCT by the AL-Scan was higher than that obtained by the Visante AS-OCT (difference = 2.45 ± 6.07 μm, P < 0.05). The differences in ACD and AD measurements were not statistically significant. The 95% LoA of CCT, ACD, and AD were between −9.44 and 14.35 μm, −0.15 and 0.12 mm, and −0.15 and 0.12 mm, respectively. Conclusions. Since these two devices were comparable for measuring CCT, ACD, and AD, their results can be interchangeably used in the clinic. PMID:27403339
Directory of Open Access Journals (Sweden)
Jinhai Huang
2016-01-01
Full Text Available Purpose. To compare between a new optical biometer (AL-Scan, Nidek Co., Aichi, Japan and an anterior segment optical coherence tomographer (Visante AS-OCT, Carl Zeiss Meditec, Dublin, USA for measuring central corneal thickness (CCT, anterior chamber depth (ACD, and aqueous depth (AD. Methods. Sixty-three eyes of 63 normal subjects were examined with AL-Scan and Visante AS-OCT in this prospective study. One eye per subject was measured three times with both devices to record their CCT, ACD, and AD. All procedures were performed by the same operator. Agreement between the two devices was assessed using paired t-tests, Bland-Altman plots, and 95% limits of agreement (LoA. Results. The mean CCT, ACD, and AD measured by AL-Scan were 538.59±27.37 μm, 3.70±0.30 mm, and 3.16±0.30 mm, respectively. The mean values obtained by the Visante OCT were 536.14±26.61 μm for CCT, 3.71±0.29 mm for ACD, and 3.17±0.29 mm for AD. The mean CCT by the AL-Scan was higher than that obtained by the Visante AS-OCT (difference = 2.45±6.07 μm, P<0.05. The differences in ACD and AD measurements were not statistically significant. The 95% LoA of CCT, ACD, and AD were between −9.44 and 14.35 μm, −0.15 and 0.12 mm, and −0.15 and 0.12 mm, respectively. Conclusions. Since these two devices were comparable for measuring CCT, ACD, and AD, their results can be interchangeably used in the clinic.
Coherent states, wavelets, and their generalizations
Ali, Syed Twareque; Gazeau, Jean-Pierre
2014-01-01
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altoget...
Dental Optical Coherence Tomography
Directory of Open Access Journals (Sweden)
Kun-Feng Lin
2013-07-01
Full Text Available This review paper describes the applications of dental optical coherence tomography (OCT in oral tissue images, caries, periodontal disease and oral cancer. The background of OCT, including basic theory, system setup, light sources, spatial resolution and system limitations, is provided. The comparisons between OCT and other clinical oral diagnostic methods are also discussed.
Perspective: Quantum or classical coherence?
Miller, William H
2012-06-07
Some coherence effects in chemical dynamics are described correctly by classical mechanics, while others only appear in a quantum treatment--and when these are observed experimentally it is not always immediately obvious whether their origin is classical or quantum. Semiclassical theory provides a systematic way of adding quantum coherence to classical molecular dynamics and thus provides a useful way to distinguish between classical and quantum coherence. Several examples are discussed which illustrate both cases. Particularly interesting is the situation with electronically non-adiabatic processes, where sometimes whether the coherence effects are classical or quantum depends on what specific aspects of the process are observed.
On Radar Resolution in Coherent Change Detection.
Energy Technology Data Exchange (ETDEWEB)
Bickel, Douglas L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-11-01
It is commonly observed that resolution plays a role in coherent change detection. Although this is the case, the relationship of the resolution in coherent change detection is not yet defined . In this document, we present an analytical method of evaluating this relationship using detection theory. Specifically we examine the effect of resolution on receiver operating characteristic curves for coherent change detection.
Quantum Coherence as a Resource
Streltsov, Alexander; Plenio, Martin B
2016-01-01
The coherent superposition of states, in combination with energy quantization, represents one of the most fundamental features that mark the departure of quantum mechanics from the classical realm. Quantum coherence in many-body systems embodies the essence of entanglement and is an essential ingredient for a plethora of physical phenomena in quantum optics, quantum information, solid state physics, and nanoscale thermodynamics. In recent years, research on the presence and functional role of quantum coherence in biological systems has also attracted a considerable interest. Despite the fundamental importance of quantum coherence, the development of a rigorous theory of quantum coherence as a physical resource has only been initiated recently. In this Colloquium we discuss and review the development of this rapidly growing research field that encompasses the characterization, quantification, manipulation, dynamical evolution, and operational application of quantum coherence.
Kalyuzhnyi, Y V; Marshall, B D; Chapman, W G; Cummings, P T
2013-07-28
We propose a second-order version of the resummed thermodynamic perturbation theory for patchy colloidal models with arbitrary number of multiply bondable patches. The model is represented by the hard-sphere fluid system with several attractive patches on the surface and resummation is carried out to account for blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. The theory represents an extension of the earlier proposed first order resummed thermodynamic perturbation theory for central force associating potential and takes into account formation of the rings of the particles. In the limiting case of singly bondable patches (total blockage), the theory reduces to Wertheim thermodynamic perturbation theory for associating fluids. Closed-form expressions for the Helmholtz free energy, pressure, internal energy, and chemical potential of the model with an arbitrary number of equivalent doubly bondable patches are derived. Predictions of the theory for the model with two patches appears to be in a very good agreement with predictions of new NVT and NPT Monte Carlo simulations, including the region of strong association.
Capuzzi, Pablo; Chitra, R.; Menotti, Chiara; Minguzz, Anna; Vignolo, Patrizia
2006-05-01
opportunity to thank all the participants of ICOMP-X, and in particular the contributors to this issue, for the high quality of science presented at the conference and in this journal. The success of the conference would not have been possible without the program committee which included D Charalambidis, L Cocke, R Freeman, Y Fujimura, S Goreslavsky, A L'Huillier, F Krausz, R Levis, S H Lin, A Maquet, J Marangos, K Midorikawa, G Mourou, P Salieres, W Sandner, K Schafer, A Scrinzi, A M Sergeev, H Stapelfeldt, A Starace, J Ullrich, M Vrakking, and K Yamanouchi. A particularly lively atmosphere in the discussions was ensured by many students who were able to participate in the conference, in part due to generous support of the Canadian Institute for Photonic Innovations (CIPI) to the Canadian, and of the US Department of Energy Office of Basic Energy Sciences to the American students. Additional support to the conference was provided by the Natural Sciences and Engineering Research Council (NSERC), the National Research Council of Canada (NRC), Pfeiffer Vacuum, Femtolasers Produktions GmbH, Roentdek Handels GmbH, Coherent Laser Products, and Amplitude Technologies. Last but not least, the guest editors of this special issue would like to acknowledge the tremendous amount of work done by the staff of J. Phys. B in handling all aspects of the publication process. In particular, we would like to thank Isabelle Auffret-Babak, Alice Malhador and Joanna Dingley from the editorial team, Katie Gerrard in production and the Editor-in-Chief, Professor J-M Rost.
R. de Korte (Ronald); G.J. van der Pijl (Gert)
2009-01-01
textabstractPurpose The purpose of the paper is to present a theory of organisational change within the setting of a governmental bureaucracy. Design/methodology/ approach Orthodox grounded theory is employed in the setting of a change programme in 12 Audit departments of the Dutch Ministries (publi
关联理论视角下语篇连贯的动态研究%The Dynamic Study of Textual Coherence from the Perspective of Relevance Theory
Institute of Scientific and Technical Information of China (English)
王军
2011-01-01
从形式和语义角度对语篇连贯的静态进行研究,以及对其语用推理因素的研究未充分揭示语篇连贯的认知性进行阐述。人类的交际活动是一种认知活动。关联理论是建立在认知基础上、置语篇连贯于动态交际过程之中的。交际双方相互合作通过认知语境建构语篇连贯,所以连贯又是动态的交际双方运用认知语境共同追求最佳关联的结果的。%The static studies of textual coherence from the angle of form and semantics and the factors of its pragmatic inference have ignored the cognitive features of the textual coherence.Human communication is a cognitive activity.On the cognitive basis,the Relevance Theory sets textual coherence in the course of dynamic communication.Communicational partners cooperate to construct textual coherence through cognitive context.Coherence is the result of both partners of dynamic communication pursuing the optimal relevance together with the help of cognitive context.
Operator properties of generalized coherent state systems
Indian Academy of Sciences (India)
N Mukunda
2001-02-01
The main properties of standard quantum mechanical coherent states and the two generalizations of Klauder and of Perelomov are reviewed. For a system of generalized coherent states in the latter sense, necessary and sufﬁcient conditions for existence of a diagonal coherent stable representation for all Hilbert-Schmidt operators are obtained. The main ingredients are Clebsch-Gordan theory and induced representation theory.
Hickson, Mark, III
2000-01-01
Offers an empirically derived model (based on observations of administrative behavior at two institutions of higher education) describing relationships among central administrators, chairs, and faculty. Discusses change agents, the do-it-yourself approach, the rhetoric of change, the faculty retreat, hiring new and more administrators, creating…
Coherence and correspondence in medicine
Directory of Open Access Journals (Sweden)
Thomas G. Tape
2009-03-01
Full Text Available Many controversies in medical science can be framed as tension between a coherence approach (which seeks logic and explanation and a correspondence approach (which emphasizes empirical correctness. In many instances, a coherence-based theory leads to an understanding of disease that is not supported by empirical evidence. Physicians and patients alike tend to favor the coherence approach even in the face of strong, contradictory correspondence evidence. Examples include the management of atrial fibrillation, treatment of acute bronchitis, and the use of Vitamin E to prevent heart disease. Despite the frequent occurrence of controversy stemming from coherence-correspondence conflicts, medical professionals are generally unaware of these terms and the philosophical traditions that underlie them. Learning about the coherence-correspondence distinction and using the best of both approaches could not only help reconcile controversy but also lead to striking advances in medical science.
Robustness of coherence: An operational and observable measure of quantum coherence
Napoli, Carmine; Cianciaruso, Marco; Piani, Marco; Johnston, Nathaniel; Adesso, Gerardo
2016-01-01
Quantifying coherence is an essential endeavour for both quantum foundations and quantum technologies. Here the robustness of coherence is defined and proven a full monotone in the context of the recently introduced resource theories of quantum coherence. The measure is shown to be observable, as it can be recast as the expectation value of a coherence witness operator for any quantum state. The robustness of coherence is evaluated analytically on relevant classes of states, and an efficient semidefinite program that computes it on general states is given. An operational interpretation is finally provided: the robustness of coherence quantifies the advantage enabled by a quantum state in a phase-discrimination task.
World-Economic Theories and Problems: Quigley vs. Wallerstein vs Central Civilization
Directory of Open Access Journals (Sweden)
David Wilkinson
2015-08-01
Full Text Available This is one in a series of papers on civilizational issues. Its predecessors have argued for the existence of a world system/civilization, "Central Civilization," born regionally in the Middle East about 1500 B.C. in the collision of two smaller, expanding local civilizations, expanded throughout the globe, engulfing all competing civilizations to become the unique global social system in the last 100-150 years. If continuing social struggles both are and imply continuing social entities, there is social continuity-stabilities, trends and cycles--in the struggles forming and maintaining Central Civilization.ill A consequence of accepting Central Civilization as a genuine entity, or a reason for treating it as a fruitful heuristic, is, in particular, the finding that it possesses a political cycle (states system--univcesal empire characteristic of other entities commonly treated as civilizations (Wilkinson, 1986; 1987, 53-56; 1988 as well as a political evolution (from multistate anarchy to balance-of-power incipient but never successfully established in other world systems (Wilkinson, 1985.
World-Economic Theories and Problems: Quigley vs. Wallerstein vs Central Civilization
Directory of Open Access Journals (Sweden)
David Wilkinson
2015-08-01
Full Text Available This is one in a series of papers on civilizational issues. Its predecessors have argued for the existence of a world system/civilization, "Central Civilization," born regionally in the Middle East about 1500 B.C. in the collision of two smaller, expanding local civilizations, expanded throughout the globe, engulfing all competing civilizations to become the unique global social system in the last 100-150 years. If continuing social struggles both are and imply continuing social entities, there is social continuity-stabilities, trends and cycles--in the struggles forming and maintaining Central Civilizations. A consequence of accepting Central Civilization as a genuine entity, or a reason for treating it as a fruitful heuristic, is, in particular, the finding that it possesses a political cycle (states system--universal empire characteristic of other entities commonly treated as civilizations (Wilkinson, 1986; 1987, 53-56; 1988 as well as a political evolution (from multistate anarchy to balance-of-power incipient but never successfully established in other world systems (Wilkinson, 1985.
Quantum coherence of steered states
Hu, Xueyuan; Milne, Antony; Zhang, Boyang; Fan, Heng
2016-01-01
Lying at the heart of quantum mechanics, coherence has recently been studied as a key resource in quantum information theory. Quantum steering, a fundamental notion originally considered by Schödinger, has also recently received much attention. When Alice and Bob share a correlated quantum system, Alice can perform a local measurement to ‘steer’ Bob’s reduced state. We introduce the maximal steered coherence as a measure describing the extent to which steering can remotely create coherence; more precisely, we find the maximal coherence of Bob’s steered state in the eigenbasis of his original reduced state, where maximization is performed over all positive-operator valued measurements for Alice. We prove that maximal steered coherence vanishes for quantum-classical states whilst reaching a maximum for pure entangled states with full Schmidt rank. Although invariant under local unitary operations, maximal steered coherence may be increased when Bob performs a channel. For a two-qubit state we find that Bob’s channel can increase maximal steered coherence if and only if it is neither unital nor semi-classical, which coincides with the condition for increasing discord. Our results show that the power of steering for coherence generation, though related to discord, is distinct from existing measures of quantum correlation.
Electroencephalograpic coherence
Directory of Open Access Journals (Sweden)
Simon Brežan
2004-08-01
Full Text Available Different brain areas process various aspects of information in parallel as well as segregated way. It is not known, how is this information integrated into a unitary percept or action. The binding problem is one of the key problems in understanding brain function. Synchronized oscillatory activity of neurons is one possible mechanism of the functional integration of different communicating brain areas. The binding has been well-studied in the visual system, but it could also serve as a mechanism in visuomotor integration or functional coupling present with other brain processes and behavioural modes (perception, complex motor behaviour, selective attention, learning, working memory, etc.. Interregional synchronization of the electroencephalographic (EEG signal can be determined by EEG coherence analysis. In the article we present a research example of coherence changes in a visuomotor task. During this task, coherence between visual and motor brain areas increased. This might reflect functional coupling between those areas, but it could also be influenced by other cognitive processes (e.g. selective attention. Coherence analysis is suitable for studying integrative brain function. Because it measures only one of the possible mechanisms of integration, it offers promise especially when combined with other electrophysiological and functional imaging methods.
Coherence and Sense of Coherence
DEFF Research Database (Denmark)
Dau, Susanne
2014-01-01
Constraints in the implementation of models of blended learning can be explained by several causes, but in this paper, it is illustrated that lack of sense of coherence is a major factor of these constraints along with the referential whole of the perceived learning environments. The question...... of coherence is both related to conditional matters as learning environments, structure, clarity and linkage but also preconditioned matters and prerequisites among participants related to experiences and convenience. It is stressed that this calls for continuous assessment and reflections upon these terms...... and conditions if the student shall be able acquire the necessary competencies....
Coherence, Pseudo-Coherence, and Non-Coherence.
Enkvist, Nils Erik
Analysis of the factors that make a text coherent or non-coherent suggests that total coherence requires cohesion not only on the textual surface but on the semantic level as well. Syntactic evidence of non-coherence includes lack of formal agreement blocking a potential cross-reference, anaphoric and cataphoric references that do not follow their…
Accurate integral equation theory for the central force model of liquid water and ionic solutions
Ichiye, Toshiko; Haymet, A. D. J.
1988-10-01
The atom-atom pair correlation functions and thermodynamics of the central force model of water, introduced by Lemberg, Stillinger, and Rahman, have been calculated accurately by an integral equation method which incorporates two new developments. First, a rapid new scheme has been used to solve the Ornstein-Zernike equation. This scheme combines the renormalization methods of Allnatt, and Rossky and Friedman with an extension of the trigonometric basis-set solution of Labik and co-workers. Second, by adding approximate ``bridge'' functions to the hypernetted-chain (HNC) integral equation, we have obtained predictions for liquid water in which the hydrogen bond length and number are in good agreement with ``exact'' computer simulations of the same model force laws. In addition, for dilute ionic solutions, the ion-oxygen and ion-hydrogen coordination numbers display both the physically correct stoichiometry and good agreement with earlier simulations. These results represent a measurable improvement over both a previous HNC solution of the central force model and the ex-RISM integral equation solutions for the TIPS and other rigid molecule models of water.
Coherence and Sense of Coherence
DEFF Research Database (Denmark)
Dau, Susanne
2014-01-01
of coherence is both related to conditional matters as learning environments, structure, clarity and linkage but also preconditioned matters and prerequisites among participants related to experiences and convenience. It is stressed that this calls for continuous assessment and reflections upon these terms...... and conditions if the student shall be able acquire the necessary competencies....
Theory of Mind Deficit versus Faulty Procedural Memory in Autism Spectrum Disorders
Miguel Ángel Romero-Munguía
2013-01-01
Individuals with autism spectrum disorders (ASD) have impairments in social interaction, communicative capacity, and behavioral flexibility (core triad). Three major cognitive theories (theory of mind deficit, weak central coherence, and executive dysfunction) seem to explain many of these impairments. Currently, however, the empathizing-systemizing (a newer version of the theory of mind deficit account) and mnesic imbalance theories are the only ones that attempt to explain all these core tr...
DEFF Research Database (Denmark)
Thommes, Jan; Happel, Christoph M.; Thrane, Lars
2010-01-01
is used for this purpose, e.g. in MRT or CT of human hearts. For visualization of embryonic chick hearts with high-resolution optical coherence tomography (OCT), a gating trigger generated by laser Doppler velocimetry has been successfully demonstrated (1). But this takes time and adds to system......In vivo analysis of cardiac physiology and non-invasive imaging of the beating early embryonic heart in 2 and 3D remain a challenge in cardiovascular development research. 3D-imaging of the beating heart relies on gating of the acquired images according to the cardiac cycle. Mostly ECG triggering...... complexity. More recently, retrospective gating technologies were described (2; 3). In these studies, a time series of 2D images at several positions along the heart volume was used to produce a time sequence of 3D volumes of the beating heart. Rearrangement and validation of the asynchronously acquired...
Design of supercontinuum source for coherent anti-Stokes Raman scattering microscopy
Institute of Scientific and Technical Information of China (English)
ZHANG Hui; CHANG Sheng-jiang; ZHANG Yan-xin; ZHAO Xiang-ting
2008-01-01
A new method to obtain supemontinuum(SC)source for multiplex coherent anti-stokes Raman scattering(CARS)micros-copy is proposed.The nonlinear propagation in photonic-crystal fibers(PCF)of femtosecond pulse laser with central wavelength at 800.9 nm is studied with scalar wave theory.Based on the incident laser power and dispersion of PCF,super broadband source for multiplex CARS microscopy is designed.
Energy cost of creating quantum coherence
Misra, Avijit; Singh, Uttam; Bhattacharya, Samyadeb; Pati, Arun Kumar
2016-05-01
We consider physical situations where the resource theories of coherence and thermodynamics play competing roles. In particular, we study the creation of quantum coherence using unitary operations with limited thermodynamic resources. We find the maximal coherence that can be created under unitary operations starting from a thermal state and find explicitly the unitary transformation that creates the maximal coherence. Since coherence is created by unitary operations starting from a thermal state, it requires some amount of energy. This motivates us to explore the trade-off between the amount of coherence that can be created and the energy cost of the unitary process. We also find the maximal achievable coherence under the constraint on the available energy. Additionally, we compare the maximal coherence and the maximal total correlation that can be created under unitary transformations with the same available energy at our disposal. We find that when maximal coherence is created with limited energy, the total correlation created in the process is upper bounded by the maximal coherence, and vice versa. For two-qubit systems we show that no unitary transformation exists that creates the maximal coherence and maximal total correlation simultaneously with a limited energy cost.
String effect and QCD coherence
Energy Technology Data Exchange (ETDEWEB)
Azimov, Ya.I.; Dokshitzer, Yu.L.; Khoze, V.A.; Troyan, S.I.
1985-12-19
In the framework of the idea of local parton-hadron duality we discuss the asymptotic predictions of QCD perturbation theory for angular distributions of hadron flows in the three-jet events, e/sup +/e/sup -/->qanti qg->hadrons. The coherence of soft gluon emission provides the QCD explanation of the string effect observed in experiments. (orig.).
Smolyakov, A. I.; Chapurin, O.; Frias, W.; Koshkarov, O.; Romadanov, I.; Tang, T.; Umansky, M.; Raitses, Y.; Kaganovich, I. D.; Lakhin, V. P.
2017-01-01
Partially-magnetized plasmas with magnetized electrons and non-magnetized ions are common in Hall thrusters for electric propulsion and magnetron material processing devices. These plasmas are usually in strongly non-equilibrium state due to presence of crossed electric and magnetic fields, inhomogeneities of plasma density, temperature, magnetic field and beams of accelerated ions. Free energy from these sources make such plasmas prone to various instabilities resulting in turbulence, anomalous transport, and appearance of coherent structures as found in experiments. This paper provides an overview of instabilities that exist in such plasmas. A nonlinear fluid model has been developed for description of the Simon-Hoh, lower-hybrid and ion-sound instabilities. The model also incorporates electron gyroviscosity describing the effects of finite electron temperature. The nonlinear fluid model has been implemented in the BOUT++ framework. The results of nonlinear simulations are presented demonstrating turbulence, anomalous current and tendency toward the formation of coherent structures.
Taber, Keith S.; Billingsley, Berry; Riga, Fran; Newdick, Helen
2015-01-01
Teaching about the nature of science (NOS) is seen as a priority for science education in many national contexts. The present paper focuses on one central issue in learning about NOS: understanding the nature and status of scientific theories. A key challenge in teaching about NOS is to persuade students that scientific knowledge is generally…
Algebraic Theories and (Infinity,1)-Categories
Cranch, James
2010-01-01
We adapt the classical framework of algebraic theories to work in the setting of (infinity,1)-categories developed by Joyal and Lurie. This gives a suitable approach for describing highly structured objects from homotopy theory. A central example, treated at length, is the theory of E_infinity spaces: this has a tidy combinatorial description in terms of span diagrams of finite sets. We introduce a theory of distributive laws, allowing us to describe objects with two distributing E_infinity stuctures. From this we produce a theory of E_infinity ring spaces. We also study grouplike objects, and produce theories modelling infinite loop spaces (or connective spectra), and infinite loop spaces with coherent multiplicative structure (or connective ring spectra). We use this to construct the units of a grouplike E_infinity ring space in a natural manner. Lastly we provide a speculative pleasant description of the K-theory of monoidal quasicategories and quasicategories with ring-like structures.
Coupling of spatially partially coherent beams into planar waveguides.
Partanen, Henri; Tervo, Jani; Turunen, Jari
2015-03-23
The second-order coherence theory of partially spatially coherent light and the overlap integral method are applied to study the end-coupling of stationary multimode light beams into planar waveguides. A method is presented for the determination of the cross-spectral density function of the guided field. Examples are given on the effects of spatial coherence, lateral shift, angular tilt, and defocusing of the incident beam on the coupling efficiency, spatial coherence, and propagation characteristics of the guided field.
Institute of Scientific and Technical Information of China (English)
舒鹏; 孙延奎; 田小林
2012-01-01
为了自动获取所需医学参数,辅助医生诊断,提出了一种基于边缘检测和随机抽样一致性的中央角膜厚度自动测量方法.采用边缘检测算子获得眼前节组织光学相干层析图像中的初始边缘,然后利用随机抽样一致性算法对初始中央角膜上边缘进行圆弧拟合,进一步提取中央角膜下边缘并采用相同方法进行圆弧拟合,根据得到的中央角膜上下边缘计算中央角膜厚度.实验结果表明,该算法能排除图像中时常出现的中央亮线干扰,实时而准确地提取中央角膜上下边缘,得到的中央角膜厚度计算结果与人工分析基本一致,具有良好的应用价值和商业前景.%To obtain quantitative parameters automatically and help medical diagnosis, automatic measurement of central cornea thickness based on edge detection and random sample consensus (RANSAC) is employed. The initial edge in the eye anterior segment optical coherence tomography (OCT) image is obtained with an edge detector. Upper and lower edges of the central cornea are extraxted using the RANSAC circle fitting method. The central cornea thickness is then computed based on the edges. Experiments show that the proposed method can avoid the effect of light beam crossing, and good results comparable to manual analysis can be obtained in real time, indicating that the method has potential applications in the future.
Directory of Open Access Journals (Sweden)
Alan Santos
2014-03-01
Full Text Available The aim of this paper is to evaluate the difference in earnings of workers in the production of some agricultural commodities and workers in other crops in Brazil and in the Central-West region. It is mainly used the labor market segmentation theory, and references on the human capital theory and the agricultural labor market. Data from the National Sample Survey of Households (PNAD-IBGE of 2009 is used to present descriptive statistics on income and socioeconomic characteristics of workers, and to estimate a mincerian earnings equation, by the method of robust least squares. Soy, corn, sugar cane, and meat whore chosen to represent de agricultural commodities group. The results show that even controlling for the effect of human capital, there is differential in earnings for workers in commodity production in Brazil and in the Central-West region, indicating that the agricultural labor market is segmented.
Combescure, Monique; Robert, Didier
2012-06-01
The aim of this paper is to give a self-contained and unified presentation of a fermionic coherent state theory with the necessary mathematical details, discussing their definition, properties and some applications. After defining Grassmann algebras, it is possible to get a classical analog for the fermionic degrees of freedom in a quantum system. Following the basic work of Berezin (1966 The Method of Second Quantization (New York: Academic); 1987 Introduction to Superanalysis (Dordrecht: Reidel Publishing Company)), we show that we can compute with Grassmann numbers as we do with complex numbers: derivation, integration, Fourier transform. After that we show that we have quantization formulas for fermionic observables. In particular, there exists a Moyal product formula. As an application, we consider explicit computations for propagators with quadratic Hamiltonians in annihilation and creation operators. We prove a Mehler formula for the propagator and Mehlig-Wilkinson-type formulas for the covariant and contravariant symbols of ‘metaplectic’ transformations for fermionic states. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.
Institute of Scientific and Technical Information of China (English)
吴惠琴; 陆慧琴; 张红兵
2015-01-01
AlM:To investigate the features on prolonged central serous chorioretinopathy ( CSCR ) by optical coherent tomography ( OCT ) and to provide the basis of deciding the pathogenetic condition and prognosis. METHODS: Eighty - five patients who had been diagnosed with CSCR were grouped by suffering time as below: 32 patients suffered longer than 6mo as the prolonged and 53 patients with CSCR cured within that time. The imaging features of OCT were compared between the above groups.RESULTS:The incidence rate of neuroepithelial serous detachment extent above 500μm associated with pigmentary epithelial detachment in suffering eye and pigmentary epithelial damage in contralateral eye was significantly different between two groups. However, the incidence rate of neuroepithelial serous detachment extent above 4 000μm was not significant difference.CONCLUSlON:OCT could display clearly the change of every layer of retina with simplicity and visibility, which supplies us a new horizon to diagnose and trace CSCR. We could decide the pathogenetic condition and prognosis in accordance with the features of OCT, to provide references for the diagnosis and treatment of CSCR.%目的：：了解迁延型中心性浆液性脉络膜视网膜病变( central serous chorioretinopathy,CSCR)的光学相干断层成像( optical coherent tomography ,OCT)特点,从而为我们判断病情、了解预后提供依据。方法：收集临床确诊的CSCR患者共85例,6 mo以上未愈者视为迁延型共32例,6mo内病情痊愈者53例,观察其OCT成像特点并进行比较。结果：神经上皮浆液性脱离大于500μm、合并色素上皮脱离及健眼存在色素上皮损害的发生率两组之间存在显著性差异,而神经上皮脱离宽度>4000μm的发生率无统计学差异。结论：OCT成像简洁、直观,可清晰显示视网膜内各层的细节变化,在诊断、动态追踪方面展示给我们一个全新的视野,我们可根据OCT的成像特点判断病情,告知
Coherence and correspondence in engineering design
Directory of Open Access Journals (Sweden)
Konstantinos V. Katsikopoulos
2009-03-01
Full Text Available I show how the coherence/correspondence distinction can inform the conversation about decision methods for engineering design. Some engineers argue for the application of multi-attribute utility theory while others argue for what they call heuristics. To clarify the differences among methods, I first ask whether each method aims at achieving coherence or correspondence. By analyzing statements in the design literature, I argue that utility theory aims at achieving coherence and heuristics aim at achieving correspondence. Second, I ask if achieving coherence always implies achieving correspondence. It is important to provide an answer because while in design the objective is correspondence, it is difficult to assess it, and coherence that is easier to assess is used as a surrogate. I argue that coherence does not always imply correspondence in design and that this is also the case in problems studied in judgment and decision-making research. Uncovering the conditions under which coherence implies, or does not imply, correspondence is a topic where engineering design and judgment and decision-making research might connect.
再评韩礼德的连贯理论%A Brief Comment on Halliday＇s Theory of Coherence
Institute of Scientific and Technical Information of China (English)
蒋大山
2011-01-01
韩礼德与哈桑在1976年所著的《英语的衔接》一书中详细讨论了语篇衔接的各种手段,并围绕衔接的作用谈到语篇的连贯标准,认为语篇衔接是连贯的必备条件。通过分析韩礼德的连贯理论及衔接与连贯的关系问题,发现语篇衔接不一定连贯,而连贯的语篇不一定衔接,即二者之间并不存在必然的联系。%In Cohesion in English in 1976, Halliday and Hasan discussed in detail various forms of textual cohesion, and talked about in relative to the effect of cohesion the criteria for coherence in the text, supposing that textual cohesion is a necessary conditi
Partially coherent imaging and spatial coherence wavelets
Castaneda, R
2003-01-01
A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function.
Ovryn, Ben; Khaydarov, John D.
1997-04-01
We have combined Mie scattering theory and image theory to predict the forward scattering of light from spherical particles in a seeded fluid using high numerical aperture collection optics. Using this method, it is possible to determine all three components of a fluid's velocity by measuring the scattering from homogeneous spherical particles without moving the optics. The transverse velocity component is determined by following the centroid of the scattering pattern (with respect to time), while the component along the optical axis is determined by comparing the experimental data with numerical computations. We have verified our theoretical model and computer code by measuring the scattering from polystyrene particles illuminated with partially coherent, Koehler illumination in a transmitted light microscope. The three-dimensional scattering data is in quite good agreement with our model. To further verify our approach, we have measured the three- dimensional (parabolic) profile of a parallel flow of a low viscosity, seeded fluid in a straight channel (6 mm by 48 mm by 0.315 mm). The channel was placed on the stage of a conventional microscope equipped with a long working distance microscope objective, with the narrow dimension along the optical axis (OA). Instead of directly imaging the seed particles, the forward scattered light is recorded from the spherical, polystyrene seed particles (7 micrometer diameter).
Locally coupled coherent states and Herman-Kluk dynamics
Child, M. S.; Shalashilin, D. V.
2003-02-01
An exact analysis of coupled coherent state (CCS) theory in the moving locally quadratic Hamiltonian approximation is shown to reproduce both the linearized coherent state matrix element of the Herman-Kluk propagator and the coherent state overlap with Heller's thawed Gaussian wave function. The derivation is applicable to anharmonic as well as harmonic systems, because the quadratic approximation is taken to apply only in the vicinity of a particular classical trajectory. New compact expressions for the linearized Herman-Kluk coherent state matrix element are given, and improvements for the practical application of CCS theory are discussed.
On Longitudinal Spectral Coherence
DEFF Research Database (Denmark)
Kristensen, Leif
1979-01-01
It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between...
The influence of spatial coherence on the Goos-Haenchen shift at total internal reflection
Energy Technology Data Exchange (ETDEWEB)
Wang Liqin; Wang Ligang; Zhu Shiyao [Department of Physics, Zhejiang University, Hangzhou, 310027 (China); Zubairy, M Suhail [Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)], E-mail: sxwlg@yahoo.com.cn
2008-03-14
In this paper, the influence of spatial coherence on the Goos-Haenchen (GH) shift at total internal reflection is theoretically investigated. Based on the theory of partial coherence, a general integral expression of the cross-spectral density is derived for a partially coherent beam reflected from an interface. Using numerical simulation, we find that the GH shift of the reflected beam greatly depends on the spatial coherence, and the GH shift is greatly reduced with a decrease in spatial coherence.
Quantum dot spin coherence governed by a strained nuclear environment
Stockill, R.; Le Gall, C.; Matthiesen, C.; Huthmacher, L.; Clarke, E.; Hugues, M.; Atatüre, M.
2016-01-01
The interaction between a confined electron and the nuclei of an optically active quantum dot provides a uniquely rich manifestation of the central spin problem. Coherent qubit control combines with an ultrafast spin–photon interface to make these confined spins attractive candidates for quantum optical networks. Reaching the full potential of spin coherence has been hindered by the lack of knowledge of the key irreversible environment dynamics. Through all-optical Hahn echo decoupling we now recover the intrinsic coherence time set by the interaction with the inhomogeneously strained nuclear bath. The high-frequency nuclear dynamics are directly imprinted on the electron spin coherence, resulting in a dramatic jump of coherence times from few tens of nanoseconds to the microsecond regime between 2 and 3 T magnetic field and an exponential decay of coherence at high fields. These results reveal spin coherence can be improved by applying large magnetic fields and reducing strain inhomogeneity. PMID:27615704
Complex fermion coherent states
Tyc, T; Sanders, B C; Oliver, W D; Tyc, Tomas; Hamilton, Brett; Sanders, Barry C.; Oliver, William D.
2005-01-01
Whereas boson coherent states provide an elegant, intuitive and useful representation, we show that the desirable features of boson coherent states do not carry over very well to fermion fields unless one is prepared to use exotic approaches such as Grassmann fields. Specifically, we identify four appealing properties of boson coherent states (eigenstate of annihilation operator, displaced vacuum state, preservation of product states under linear coupling, and factorization of correlators) and show that fermion coherent states, and approximations to fermion coherent states, defined over the complex field, do not behave well for any of these four criteria.
Morsanyi, Kinga; Primi, Caterina; Handley, Simon J; Chiesi, Francesca; Galli, Silvia
2012-11-01
In two experiments, we tested some of the central claims of the empathizing-systemizing (E-S) theory. Experiment 1 showed that the systemizing quotient (SQ) was unrelated to performance on a mathematics test, although it was correlated with statistics-related attitudes, self-efficacy, and anxiety. In Experiment 2, systemizing skills, and gender differences in these skills, were more strongly related to spatial thinking styles than to SQ. In fact, when we partialled the effect of spatial thinking styles, SQ was no longer related to systemizing skills. Additionally, there was no relationship between the Autism Spectrum Quotient (AQ) and the SQ, or skills and interest in mathematics and mechanical reasoning. We discuss the implications of our findings for the E-S theory, and for understanding the autistic cognitive profile.
Goos-Hänchen shifts of partially coherent light fields.
Wang, Li-Gang; Zhu, Shi-Yao; Zubairy, M Suhail
2013-11-27
The Goos-Hänchen (GH) shift refers to a lateral displacement (from the path expected from geometrical optics) along an interface in totally internal reflection. This phenomenon results from a coherence effect. In order to bring to light the role of coherence, the reflection of partially coherent light fields was investigated within the framework of the theory of coherence. A formal expression for the GH shifts of partially coherent light fields is obtained in terms of Mercer's expansion. It is shown that both the spatial coherence and the beam width have an important effect on the GH shift, especially near the critical angles (such as totally reflection angle). These results are important to observe the GH shifts of the beams with imperfect coherence, like x-ray and matter-wave beams.
Experimental demonstration of coherent feedback control on optical field squeezing
Iida, Sanae; Yonezawa, Hidehiro; Yamamoto, Naoki; Furusawa, Akira
2011-01-01
Coherent feedback is a non-measurement based, hence a back-action free, method of control for quantum systems. A typical application of this control scheme is squeezing enhancement, a purely non-classical effect in quantum optics. In this paper we report its first experimental demonstration that well agrees with the theory taking into account time delays and losses in the coherent feedback loop. The results clarify both the benefit and the limitation of coherent feedback control in a practical situation.
Mode correlation and coherent-mode decomposition of laser beams
Institute of Scientific and Technical Information of China (English)
张彬; 文侨; 楚晓亮
2003-01-01
Theory of the coherent-mode decomposition of laser beams is proposed.The new model for the flat-topped beams proposed by Li recently is taken as an example.The analytical expressions for the M2-factor and mode coherence coefficients of flat-topped beams have been derived in the rectangular coordinate system,by means of which the mode correlation,mode structure,and coherent-mode decomposition of flat-topped beams can be analysed.
Generalizations of entanglement based on coherent states and convex sets
2002-01-01
Unentangled pure states on a bipartite system are exactly the coherent states with respect to the group of local transformations. What aspects of the study of entanglement are applicable to generalized coherent states? Conversely, what can be learned about entanglement from the well-studied theory of coherent states? With these questions in mind, we characterize unentangled pure states as extremal states when considered as linear functionals on the local Lie algebra. As a result, a relativize...
Institute of Scientific and Technical Information of China (English)
胡晓明
2007-01-01
The ideological trend of "counter-West centralism" is becomingmore and more obvious in the academic circle of Chinese literary theory fromthe 1980s to the beginning of this century.This article regards a certain numberof phenomena as surveying targets,and analyzes that this ideological trendis embodied not only in evident purposes,slogans and views,but also in there-thinking of education history and in the work of literary material and thereestablishing of criticism history.This article holds that the combination of twokinds of opposed learning trends for study and application respectively would behelpful in breaking through the barriers of single-sided logic,emphasizing nativeliterary tradition,participating in contemporary literature practice and definingChinese literary theory in the 21 st century.
Spectral Coherence Along a Lidar-Anemometer Beam
DEFF Research Database (Denmark)
Kristensen, Leif; Kirkegaard, Peter; Mann, Jakob
The theory of measuring the spectral coherence by means of a lidar anemometer has been outlined. It is based on the assumption that the turbulent velocity field can be considered statistically locally isotropic and on the validity of Taylor’s hypothesis. This implies that the longitudinal coherence...
On coherent structure in wall turbulence
Sharma, A S
2013-01-01
A new theory of coherent structure in wall turbulence is presented. The theory is the first to predict packets of hairpin vortices and other structure in turbulence, and their dynamics, based on an analysis of the Navier-Stokes equations, under an assumption of a turbulent mean profile. The assumption of the turbulent mean acts as a restriction on the class of possible structures. It is shown that the coherent structure is a manifestation of essentially low-dimensional flow dynamics, arising from a critical layer mechanism. Using the decomposition presented in McKeon & Sharma (J. Fluid Mech, 658, 2010), complex coherent structure is recreated from minimal superpositions of response modes predicted by the analysis, which take the form of radially-varying travelling waves. By way of example, simple combinations of these modes are offered that predicts hairpins and modulated hairpin packets. The phase interaction also predicts important skewness and correlation results known in the literature. It is also sho...
On -Coherent Endomorphism Rings
Indian Academy of Sciences (India)
Li-Xin Mao
2008-11-01
A ring is called right -coherent if every principal right ideal is finitely presented. Let $M_R$ be a right -module. We study the -coherence of the endomorphism ring of $M_R$. It is shown that is a right -coherent ring if and only if every endomorphism of $M_R$ has a pseudokernel in add $M_R; S$ is a left -coherent ring if and only if every endomorphism of $M_R$ has a pseudocokernel in add $M_R$. Some applications are given.
Eesley, G L
1981-01-01
Coherent Raman Spectroscopy provides a unified and general account of the fundamental aspects of nonlinear Raman spectroscopy, also known as coherent Raman spectroscopy. The theoretical basis from which coherent Raman spectroscopy developed is described, along with its applications, utility, and implementation as well as advantages and disadvantages. Experimental data which typifies each technique is presented. This book is comprised of four chapters and opens with an overview of nonlinear optics and coherent Raman spectroscopy, followed by a discussion on nonlinear transfer function of matter
Application Coherency Manager Project
National Aeronautics and Space Administration — This proposal describes an Application Coherency Manager that implements and manages the interdependencies of simulation, data, and platform information. It will...
Institute of Scientific and Technical Information of China (English)
李太珠; 潘乐
2016-01-01
The application of the Figure-Ground theory of Cognitive Linguistics to the study of English Suspense Movies Discourse coherence can help the audience to establish a mental contact between different parts of a text, thus forming a coherent discourse. In the audience's cognition of this kind of discourse, a key clue often becomes prominent as an important Cognitive Figure, while the whole film space context, including various entities and elements becomes a Reference Point or Ground. This Cognitive Figure can play the role of activating the next Cognitive Figure or Cognitive Target, but it itself is hidden, becoming the Reference Point or Ground of the latter. This cognitive method or approach can be repeated, making the text continue to move forward, and ultimately lead the audience to understand the truth and successfuly achieve the interpretation of the text.%利用认知语言学的“焦点/背景”理论来研究悬疑类英语电影语篇的连贯，有利于帮助观众在前后文之间建立起心智上的联系，从而形成前后连贯的语篇。在观众对该类语篇的认知中，某个关键的线索往往获得凸显，成为重要的认知焦点，而整个电影空间语境，包括各种实体和要素变成了参照点或背景。这个认知焦点可以发挥激活下一个认知焦点或认知目标的作用，而自己却隐去，成为后者的参照点或背景。这一认知方法或途径可以不断重复，使语篇继续推进下去，最终引导观众弄清事实真相，成功实现对语篇的解读。
Coherent control near metallic nanostructures
Energy Technology Data Exchange (ETDEWEB)
Efimov, Ilya [Los Alamos National Laboratory; Efimov, Anatoly [Los Alamos National Laboratory
2008-01-01
We study coherent control in the vicinity of metallic nanostructures. Unlike in the case of control in gas or liquid phase, the collective response of electrons in a metallic nanostructure can significantly enhance different frequency components of the control field. This enhancement strongly depends on the geometry of the nanostructure and can substantially modify the temporal profile of the local control field. The changes in the amplitude and phase of the control field near the nanostructure are studied using linear response theory. The inverse problem of finding the external electromagnetic field to generate the desired local control field is considered and solved.
Institute of Scientific and Technical Information of China (English)
张枝桥; 张承芬; 董方田; 陈有信; 于伟泓; 戴荣平; 郑霖
2011-01-01
Objective To assess the relationship between central visual acuity and retinal volume of macular fovea in patients with Stargardt disease by spectral-domain optical coherence tomography ( SD OCT). Methods It was a retrospective case series study. Twenty eyes of 10 patients with Stargardt disease were investigated by three-dimensional spectral-domain optical coherence tomography. SD OCT images were obtained and retrospectively analyzed. The retinal volumes of macular fovea were measured by SD OCT,whose diameters were set as 3 mm and 1 mm separately ( volume 3 and volume 1). The retinal thickness of macular fovea (macular thickness) and the width of IS/OS conjunction loss of macular fovea (IS/OS loss)were also measured by SD OCT. We correlated the logMAR BCVA with IS/OS loss, macular thickness,volume 3 and volume 1 by linear regression analysis. Results LogMAR BCVA was from 0. 3 to 1. 22.IS/OS loss was from 847 μm to 5306 μm. Macular thickness was from 20 μm to 126μm. Volume 3 and volume 1 was from 1. 06 to 1. 76 mm3 and 0. 06 to 0. 13 mm3. LogMAR BCVA correlated with the IS/OS loss (r = 0.695,P＜0. 05) , macular thickness (r= - 0. 601 ,P ＜ 0. 05), and volume 3 ( r = -0.725,P＜0. 05 ). LogMAR BCVA did not correlate with volume 1 ( r = - 0. 364, P ＞ 0. 05). Conclusions SD OCT could demonstrate the retinal structure of Stargardt disease clearly. The retinal volume of macular fovea accessed by SD OCT correlated with the visual acuity of Stargardt disease.%目的 应用频域相干光断层扫描(OCT)技术评价Stargardt病患者黄斑区视网膜容积与中心视力之间的关系.方法 回顾性病例系列研究.收集10例(20只眼)Stargardt病的临床资料进行回顾性分析.所有患者均使用频域OCT分别测量黄斑中心凹区视网膜厚度、黄斑中心凹区光感受器细胞内外节缺失宽度、黄斑中心凹区直径3 mm和1 mm范围内的视网膜容积.运用线性回归分析法,比较最小分辨角对数(logMAR)视力与黄
CERN. Geneva
2016-01-01
This is the 3rd of 4 short online videos. It explains what is: strangeness enhancement; centrality of lead-lead collisions; efficiency, yield, background etc. More details and related links on this indico event page. In more detail: What is Physics Master Classes Students after morning lectures, run programmes in the afternoon to do measurements. These tutorials are about how to use the software required to do these measurements. Background info and examples Looking for strange particles with ALICE http://aliceinfo.cern.ch/Public/MasterCL/MasterClassWebpage.html Introduction to first part of the exercise : what are strange particles, V0 decays, invariant mass. Demonstration of the software for the 1st part of the exercise - visual identification of V0s Introduction to second part of the exercise : strangeness enhancement; centrality of lead-lead collisions; explanation of efficiency, yield, background etc Demonstration of the software for the 2nd part of the exercise - invariant mass spectr...
Goniometer Control System for Coherent Bremsstrahlung Production
Acousta, V. M.
2002-08-01
A system for the generation of a high-intensity, quasi-monochromatic photon beam is discussed. The theory behind coherent bremsstrahlung photon beam production is analyzed and developed. The mechanics of a goniometer control system are presented. The software developed for remote control of the goniometer is also discussed. Finally, the results from various performance measurements are included.
Coherence, Abstraction, and Personal Involvement: Albert Einstein, Physicist and Humanist.
Ne'eman, Yuval
1979-01-01
Reviews Einstein's main contributions to physics, and analyzes the importance of a coherent body of theory. Einstein's involvement in nonscientific issues such as nuclear disarmament is also included. (HM)
Temporal coherence characterization of supercontinuum pulse trains using Michelson's interferometer.
Dutta, Rahul; Turunen, Jari; Genty, Goëry; Friberg, Ari T
2016-04-20
Temporal coherence properties of supercontinuum pulse trains generated in nonlinear fibers are analyzed within the framework of the second-order coherence theory of nonstationary light. Time-resolved Michelson's interference patterns are simulated, from which the full two-time mutual coherence function can (at least in principle) be determined experimentally. Standard time-integrated Michelson's interferograms are also simulated and shown to provide a rough estimate for the coherence time of the quasi-stationary contribution. A simple but illustrative analytical model representing supercontinuum pulse trains is presented, and numerically simulated realizations of such pulse trains are considered.
Quasi light fields: extending the light field to coherent radiation
Accardi, Anthony
2009-01-01
Imaging technologies such as dynamic viewpoint generation are engineered for incoherent radiation using the traditional light field, and for coherent radiation using electromagnetic field theory. We present a model of coherent image formation that strikes a balance between the utility of the light field and the comprehensive predictive power of Maxwell's equations. We synthesize research in optics and signal processing to formulate, capture, and form images from quasi light fields, which extend the light field from incoherent to coherent radiation. Our coherent cameras generalize the classic beamforming algorithm in sensor array processing, and invite further research on alternative notions of image formation.
Complex sine-Gordon Equation in Coherent Optical Pulse Propagation
Park, Q H
1999-01-01
It is shown that the McCall-Hahn theory of self-induced transparency in coherent optical pulse propagation can be identified with the complex sine-Gordon theory in the sharp line limit. We reformulate the theory in terms of the deformed gauged Wess-Zumino-Witten sigma model and address various new aspects of self-induced transparency.
García-Patrón, Raúl; Pirandola, Stefano; Lloyd, Seth; Shapiro, Jeffrey H.
2009-05-01
In this Letter we define a family of entanglement distribution protocols assisted by feedback classical communication that gives an operational interpretation to reverse coherent information, i.e., the symmetric counterpart of the well-known coherent information. This leads to the definition of a new entanglement distribution capacity that exceeds the unassisted capacity for some interesting channels.
DEFF Research Database (Denmark)
Jensen, Jesper Bevensee; Rodes, Roberto; Cheng, Ning;
2015-01-01
Recent advances and research on coherent technologies for access networks are discussed and put into context of user demands and standardization work.......Recent advances and research on coherent technologies for access networks are discussed and put into context of user demands and standardization work....
Understanding Causal Coherence Relations
Mulder, G.
2008-01-01
The research reported in this dissertation focuses on the cognitive processes and representations involved in understanding causal coherence relations in text. Coherence relations are the meaning relations between the information units in the text, such as Cause-Consequence. These relations can be m
DEFF Research Database (Denmark)
Jensen, Jesper Bevensee; Rodes, Roberto; Caballero Jambrina, Antonio;
2014-01-01
We present a review of research performed in the area of coherent access technologies employing vertical cavity surface emitting lasers (VCSELs). Experimental demonstrations of optical transmission over a passive fiber link with coherent detection using VCSEL local oscillators and directly modula...
Genovese, Luigi; Ospici, Matthieu; Deutsch, Thierry; Méhaut, Jean-François; Neelov, Alexey; Goedecker, Stefan
2009-07-21
We present the implementation of a full electronic structure calculation code on a hybrid parallel architecture with graphic processing units (GPUs). This implementation is performed on a free software code based on Daubechies wavelets. Such code shows very good performances, systematic convergence properties, and an excellent efficiency on parallel computers. Our GPU-based acceleration fully preserves all these properties. In particular, the code is able to run on many cores which may or may not have a GPU associated, and thus on parallel and massive parallel hybrid machines. With double precision calculations, we may achieve considerable speedup, between a factor of 20 for some operations and a factor of 6 for the whole density functional theory code.
How to quantify coherence: distinguishing speakable and unspeakable notions
Marvian, Iman
2016-01-01
Quantum coherence is a critical resource for many operational tasks. Understanding how to quantify and manipulate it also promises to have applications for a diverse set of problems in theoretical physics. For certain applications, however, one requires coherence between the eigenspaces of specific physical observables, such as energy, angular momentum, or photon number, and it makes a difference which eigenspaces appear in the superposition. For others, there is a preferred set of subspaces relative to which coherence is deemed a resource, but it is irrelevant which of the subspaces appear in the superposition. We term these two types of coherence unspeakable and speakable respectively. We argue that a useful approach to quantifying and characterizing unspeakable coherence is provided by the resource theory of asymmetry when the symmetry group is a group of translations, and we translate a number of prior results on asymmetry into the language of coherence. We also highlight some of the applications of this ...
Coherent radial-breathing-like phonons in graphene nanoribbons
Sanders, G. D.; Nugraha, A. R. T.; Saito, R.; Stanton, C. J.
2012-05-01
We have developed a microscopic theory for the generation and detection of coherent phonons in armchair and zigzag graphene nanoribbons using an extended tight-binding model for the electronic states and a valence force field model for the phonons. The coherent phonon amplitudes satisfy a driven oscillator equation with the driving term depending on photoexcited carrier density. We examine the coherent phonon radial-breathing-like mode amplitudes as a function of excitation energies and nanoribbon types. For photoexcitation near the optical absorption edge the coherent phonon driving term for the radial-breathing-like mode is much larger for zigzag nanoribbons where transitions between localized edge states provide the dominant contribution to the coherent phonon driving term. Using an effective mass theory, we explain how the armchair nanoribbon width changes in response to laser excitation.
A random matrix theory of decoherence
Energy Technology Data Exchange (ETDEWEB)
Gorin, T [Departamento de FIsica, Universidad de Guadalajara, Blvd Marcelino GarcIa Barragan y Calzada OlImpica, Guadalajara CP 44840, JalIsco (Mexico); Pineda, C [Institut fuer Physik und Astronomie, University of Potsdam, 14476 Potsdam (Germany); Kohler, H [Fachbereich Physik, Universitaet Duisburg-Essen, D-47057 Duisburg (Germany); Seligman, T H [Instituto de Ciencias FIsicas, Universidad Nacional Autonoma de Mexico (Mexico)], E-mail: thomas.gorin@red.cucei.udg.mx, E-mail: carlospgmat03@gmail.com
2008-11-15
Random matrix theory is used to represent generic loss of coherence of a fixed central system coupled to a quantum-chaotic environment, represented by a random matrix ensemble, via random interactions. We study the average density matrix arising from the ensemble induced, in contrast to previous studies where the average values of purity, concurrence and entropy were considered; we further discuss when one or the other approach is relevant. The two approaches agree in the limit of large environments. Analytic results for the average density matrix and its purity are presented in linear response approximation. The two-qubit system is analysed, mainly numerically, in more detail.
A random matrix theory of decoherence
Gorin, T.; Pineda, C.; Kohler, H.; Seligman, T. H.
2008-11-01
Random matrix theory is used to represent generic loss of coherence of a fixed central system coupled to a quantum-chaotic environment, represented by a random matrix ensemble, via random interactions. We study the average density matrix arising from the ensemble induced, in contrast to previous studies where the average values of purity, concurrence and entropy were considered; we further discuss when one or the other approach is relevant. The two approaches agree in the limit of large environments. Analytic results for the average density matrix and its purity are presented in linear response approximation. The two-qubit system is analysed, mainly numerically, in more detail.
Goos-H\\"{a}nchen Shifts of Partially Coherent Light Fields
Wang, Li-Gang; Zubairy, M Suhail
2013-01-01
We investigate the Goos-H\\"{a}nchen (GH) shifts of partially coherent fields (PCFs) by using the theory of coherence. We derive a formal expression for the GH shifts of PCFs in terms of Mercer's expansion, and then clearly demonstrate the dependence of the GH shift of each mode of PCFs on spatial coherence and beam width. We discuss the effect of spatial coherence on the resultant GH shifts, especially for the cases near the critical angles, such as totally reflection angle.
Coherent diffractive {rho} production
Energy Technology Data Exchange (ETDEWEB)
Hyett, N.M.; Tovey, S.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics
1995-12-31
Coherent diffractive {rho} production by neutrinos occurs at low four-momentum transfer and high energy transfer. These interactions are generally understood to occur via the coupling of the weak charged current to the vector meson, which scatters diffractively from the target nucleus. Since coherent events are those in which the nucleus interacts as a whole, ie without breakup, and with small recoil energy, these events have a very sharp |t|-distribution. This presentation deals mostly with the Monte Carlo simulation of the coherent diffractive production of the {rho} production and in particular with the reconstruction algorithm (description and efficiency) and the |t| distribution. 4 refs., 1 fig.
Institute of Scientific and Technical Information of China (English)
Michael Thomas
2005-01-01
@@ What makes a coherent EFL curriculum? How can curriculum planners avoid a mismatch between policy and pragmatics to produce an effective decision-making process? In The Second Language Curriculum, Johnson describes the coherent curriculum as one in which decision outcomes from the various stages of development are mutually consistent and complementary,and learning outcomes reflect curriculum aims.The achievement of coherence is said to depend crucially in most educational contexts upon the formalisation of decision-making processes and products. This formalisation facilitates consensus among those involved and is a prerequisite for effective evaluation and subsequent renewal (1994: xiii)
DEFF Research Database (Denmark)
Andersen, Anne Bendix; Frederiksen, Kirsten; Beedholm, Kirsten;
2016-01-01
of coherence in treatment and patient pathways. The aim of our study is to explore the role of health care providers in furthering coherence. Our ambition is to identify areas for improvement or change of collaborative practice between health care providers in municipalities, hospitals and general practice...... initiatives in health care. The present study will generate new, valuable insight into the areas of cross-sectorial health care collaboration. Our findings may facilitate change in current practice and improve the quality and coherence in patient pathways of EPCD. The findings of this study will be useful...
Field Theory for Coherent Optical Pulse Propagation
Park, Q H
1997-01-01
We introduce a new notion of "matrix potential" to nonlinear optical systems. In terms of a matrix potential $g$, we present a gauge field theoretic formulation of the Maxwell-Bloch equation that provides a semiclassical description of the propagation of optical pulses through resonant multi-level media. We show that the Bloch part of the equation can solved identically through $g$ and the remaining Maxwell equation becomes a second order differential equation with reduced set of variables due to the gauge invariance of the system. Our formulation clarifies the (nonabelian) symmetry structure of the Maxwell-Bloch equations for various multi-level media in association with symmetric spaces $G/H$. In particular, we associate nondegenerate two-level system for self-induced transparency with $G/H=SU(2)/U(1)$ and three-level $\\L $- or V-systems with $G/H = SU(3)/U(2)$. We give a detailed analysis for the two-level case in the matrix potential formalism, and address various new properties of the system including so...
Discrete Coherent State Path Integrals
Marchioro, Thomas L., II
1990-01-01
The quantum theory provides a fundamental understanding of the physical world; however, as the number of degrees of freedom rises, the information required to specify quantum wavefunctions grows geometrically. Because basis set expansions mirror this geometric growth, a strict practical limit on quantum mechanics as a numerical tool arises, specifically, three degrees of freedom or fewer. Recent progress has been made utilizing Feynman's Path Integral formalism to bypass this geometric growth and instead calculate time -dependent correlation functions directly. The solution of the Schrodinger equation is converted into a large dimensional (formally infinite) integration, which can then be attacked with Monte Carlo techniques. To date, work in this area has concentrated on developing sophisticated mathematical algorithms for evaluating the highly oscillatory integrands occurring in Feynman Path Integrals. In an alternative approach, this work demonstrates two formulations of quantum dynamics for which the number of mathematical operations does not scale geometrically. Both methods utilize the Coherent State basis of quantum mechanics. First, a localized coherent state basis set expansion and an approximate short time propagator are developed. Iterations of the short time propagator lead to the full quantum dynamics if the coherent state basis is sufficiently dense along the classical phase space path of the system. Second, the coherent state path integral is examined in detail. For a common class of Hamiltonians, H = p^2/2 + V( x) the path integral is reformulated from a phase space-like expression into one depending on (q,dot q). It is demonstrated that this new path integral expression contains localized damping terms which can serve as a statistical weight for Monte Carlo evaluation of the integral--a process which scales approximately linearly with the number of degrees of freedom. Corrections to the traditional coherent state path integral, inspired by a
Coherence relations in academic spoken discourse
Directory of Open Access Journals (Sweden)
Juliano Desiderato Antonio
2012-12-01
Full Text Available According to Rhetorical Structure Theory, implicit propositions emerge from the combination of pieces of text which hang together. Implicit propositions have received various labels as coherence relations, discourse relations, rhetorical relations or relational propositions. When two portions of a text hold a relation, the addressee of the text may recognize the connection even without the presence of a formal sign as a conjunction or a discourse marker. In this paper we claim that some intrinsic spoken discourse phenomena like paraphrasing, repetition, correction and parenthetical insertion hold coherence relations with other portions of discourse and, thus, may be considered strategies for the construction of coherence. The analysis, based on academic spoken discourse (five university lectures in Brazilian Portuguese, shows that these phenomena are recurring and relevant for the study of spoken discourse.
Coherence in Industrial Transformation
DEFF Research Database (Denmark)
Jørgensen, Ulrik; Lauridsen, Erik Hagelskjær
2003-01-01
The notion of coherence is used to illustrate the general finding, that the impact of environmental management systems and environmental policy is highly dependent of the context and interrelatedness of the systems, procedures and regimes established in society....
Dorfman, Konstantin E; Voronine, Dmitri V; Genevet, Patrice; Capasso, Federico; Scully, Marlan O
2012-01-01
We investigate surface plasmon amplification in a silver nanoshell coupled to an externally driven three-level gain medium, and show that quantum coherence significantly enhances the generation of surface plasmons. Surface plasmon amplification by stimulated emission of radiation is achieved in the absence of population inversion on the spasing transition, which reduces the pump requirements. The coherent drive allows us to control the dynamics, and holds promise for quantum control of nanoplasmonic devices.
Coherence vortices of partially coherent beams in the far field
Institute of Scientific and Technical Information of China (English)
Liu Pu-Sheng; Lü Bai-da
2007-01-01
Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator, zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points.If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.
Coherent X-ray radiation excited by a diverging relativistic electron beam in a single crystal
Energy Technology Data Exchange (ETDEWEB)
Blazhevich, S. V., E-mail: noskovbupk@mail.ru; Noskov, A. V. [Belgorod State National Research University (Russian Federation)
2015-05-15
We develop a dynamic theory of coherent X-rays generated in a single-crystal wafer by a diverging relativistic electron beam. The dependence of the spectral-angular density of coherent X-ray radiation on the angle of divergence is analyzed for the case when the angular spread can be described by the 2D Gaussian distribution. The theory constructed here makes it possible to analyze coherent radiation for an arbitrary angular distribution of electrons in the beam as well.
Stimulated coherent transition radiation
Energy Technology Data Exchange (ETDEWEB)
Hung-chi Lihn
1996-03-01
Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed.
Enhanced delegated computing using coherence
Barz, Stefanie; Dunjko, Vedran; Schlederer, Florian; Moore, Merritt; Kashefi, Elham; Walmsley, Ian A.
2016-03-01
A longstanding question is whether it is possible to delegate computational tasks securely—such that neither the computation nor the data is revealed to the server. Recently, both a classical and a quantum solution to this problem were found [C. Gentry, in Proceedings of the 41st Annual ACM Symposium on the Theory of Computing (Association for Computing Machinery, New York, 2009), pp. 167-178; A. Broadbent, J. Fitzsimons, and E. Kashefi, in Proceedings of the 50th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, CA, 2009), pp. 517-526]. Here, we study the first step towards the interplay between classical and quantum approaches and show how coherence can be used as a tool for secure delegated classical computation. We show that a client with limited computational capacity—restricted to an XOR gate—can perform universal classical computation by manipulating information carriers that may occupy superpositions of two states. Using single photonic qubits or coherent light, we experimentally implement secure delegated classical computations between an independent client and a server, which are installed in two different laboratories and separated by 50 m . The server has access to the light sources and measurement devices, whereas the client may use only a restricted set of passive optical devices to manipulate the information-carrying light beams. Thus, our work highlights how minimal quantum and classical resources can be combined and exploited for classical computing.
Wakefields in Coherent Synchrotron Radiation
Billinghurst, Brant E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; Dallin, L.; May, Tim E.; Vogt, J. M.; Wurtz, Ward A.; Warnock, Robert L.; Bizzozero, D. A.; Kramer, S.; Michaelian, K. H.
2016-06-01
When the electron bunches in a storage ring are sufficiently short the electrons act coherently producing radiation several orders of magnitude more intense than normal synchrotron radiation. This is referred to as Coherent Syncrotron Radiation (CSR). Due to the potential of CSR to provide a good source of Terahertz radiation for our users, the Canadian Light Source (CLS) has been researching the production and application of CSR. CSR has been produced at the CLS for many years, and has been used for a number of applications. However, resonances that permeate the spectrum at wavenumber intervals of 0.074 cm-1, and are highly stable under changes in the machine setup, have hampered some experiments. Analogous resonances were predicted long ago in an idealized theory. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber. The wakefield is observed directly in the 30-110 GHz range by rf diodes. These results are consistent with observations made by the interferometer in the THz range. Also discussed will be some practical examples of the application of CSR for the study of condensed phase samples using both transmission and Photoacoustic techniques.
SAR image effects on coherence and coherence estimation.
Energy Technology Data Exchange (ETDEWEB)
Bickel, Douglas Lloyd
2014-01-01
Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.
Discrete coherent states for higher Landau levels
Abreu, L. D.; Balazs, P.; de Gosson, M.; Mouayn, Z.
2015-12-01
We consider the quantum dynamics of a charged particle evolving under the action of a constant homogeneous magnetic field, with emphasis on the discrete subgroups of the Heisenberg group (in the Euclidean case) and of the SL(2 , R) group (in the Hyperbolic case). We investigate completeness properties of discrete coherent states associated with higher order Euclidean and hyperbolic Landau levels, partially extending classic results of Perelomov and of Bargmann, Butera, Girardello and Klauder. In the Euclidean case, our results follow from identifying the completeness problem with known results from the theory of Gabor frames. The results for the hyperbolic setting follow by using a combination of methods from coherent states, time-scale analysis and the theory of Fuchsian groups and their associated automorphic forms.
The relations between quantum coherence and quantum correlations
Pei, Pei; Mei, Di; Li, Chong
2010-01-01
We reexamine entanglement and quantum correlation from the point of their consanguineous quantum property, the coherence, and consider the quantum correlation as a kind of nonlocal coherence. We emphasize the importance of specifying the tensor product structure of the total state space before discussing quantum correlation. Utilizing off-diagonal elements of density matrix, a measure of quantum correlation for arbitrary dimension bipartite states is proposed. The relations between the proposed measure and others of quantum correlation are investigated with explicit examples. The close relation between nonlocal coherence and quantum correlation provides theory evidence to experimentally measure the bipartite quantum correlation by means of coherence, and indicates a developing way to measure quantum correlation for states with the presence of local coherence.
Coherent and incoherent nonparaxial self-accelerating Weber beams
Zhang, Yiqi; Wen, Feng; Li, Changbiao; Zhang, Zhaoyang; Zhang, Yanpeng; Belić, Milivoj R
2016-01-01
We investigate the coherent and incoherent nonparaxial Weber beams, theoretically and numerically. We show that the superposition of coherent self-accelerating Weber beams with transverse displacement cannot display the nonparaxial accelerating Talbot effect. The reason is that their lobes do not accelerate in unison, which is a requirement for the appearance of the effect. While for the incoherent Weber beams, they naturally cannot display the accelerating Talbot effect but can display the nonparaxial accelerating properties, although the transverse coherence length is smaller than the beam width, based on the second-order coherence theory. Our research method directly applies to the nonparaxial Mathieu beams as well, and one will obtain similar conclusions as for the Weber beams, although this is not discussed in the paper. Our investigation identifies families of nonparaxial accelerating beams that do not exhibit the accelerating Talbot effect, and in addition broadens the understanding of coherence proper...
Directory of Open Access Journals (Sweden)
Yu.V. Kalyuzhnyi
2012-06-01
Full Text Available The liquid-gas phase diagram for polydisperse dipolar hard-sphere fluid with polydispersity in the hard-sphere size and dipolar moment is calculated using extension of the recently proposed thermodynamic perturbation theory for central force (TPT-CF associating potential. To establish the connection with the phase behavior of ferrocolloidal dispersions it is assumed that the dipole moment is proportional to the cube of the hard-sphere diameter. We present and discuss the full phase diagram, which includes cloud and shadow curves, binodals and distribution functions of the coexisting daughter phases at different degrees of the system polydispersity. In all cases studied polydispersity increases the region of the phase instability and shifts the critical point to the higher values of the temperature and density. The larger size particles always fractionate to the liquid phase and the smaller size particles tend to move to the gas phase. At relatively high values of the system polydispersity three-phase coexistence is observed.
Coherent topological phenomena in protein folding
DEFF Research Database (Denmark)
Bohr, Henrik; Brunak, Søren; Bohr, Jakob
1997-01-01
A theory is presented for coherent topological phenomena in protein dynamics with implications for protein folding and stability. We discuss the relationship to the writhing number used in knot diagrams of DNA. The winding state defines a long-range order along the backbone of a protein with long......-range excitations, `wring' modes, that play an important role in protein denaturation and stability. Energy can be pumped into these excitations, either thermally or by an external force....
Dynamic coherent backscattering mirror
Energy Technology Data Exchange (ETDEWEB)
Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)
2016-02-15
The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.
Coherence for Monoidal Endofunctors
Dosen, K
2009-01-01
The goal of this paper is to prove coherence results with respect to relational graphs for monoidal endofunctors, i.e. endofunctors of a monoidal category that preserve the monoidal structure up to a natural transformation that need not be an isomorphism. These results are proved first in the absence of symmetry in the monoidal structure, and then with this symmetry. In the later parts of the paper the coherence results are extended to monoidal endofunctors in monoidal categories that have diagonal or codiagonal natural transformations, or where the monoidal structure is given by finite products or coproducts. Monoidal endofunctors are interesting because they stand behind monoidal monads and comonads, for which coherence will be proved in a sequel to this paper.
Treutlein, P; Steinmetz, T; Hänsch, T W; Reichel, J; Treutlein, Philipp; Hommelhoff, Peter; Steinmetz, Tilo; H\\"ansch, Theodor W.; Reichel, Jakob
2003-01-01
We report the coherent manipulation of internal states of neutral atoms in a magnetic microchip trap. Coherence lifetimes exceeding 1 s are observed with atoms at distances of $4-130 \\mu$m from the microchip surface. The coherence lifetime in the microtrap is independent of atom-surface distance and agrees well with the results of similar measurements in macroscopic magnetic traps. Due to the absence of surface-induced decoherence, a miniaturized atomic clock with a relative stability in the $10^{-13}$ range can be realized. For applications in quantum information processing, we propose to use microwave near-fields in the proximity of chip wires to create potentials that depend on the internal state of the atoms.
Dynamic coherent backscattering mirror
Xu, M.
2016-01-01
The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation. PMID:26937296
Lin, Jie; Cheng, Jing
2011-09-01
Lensless ghost diffraction with partially coherent sources is investigated theoretically and numerically. Based on the classical optical coherent theory and the Gauss-Shell model of the partially coherent sources, we derive an analytical imaging formula of lensless ghost diffraction (LGD). Using this formula, we can see the effects of the transverse size and coherence of the sources, the detector size and defocusing length on the quality of LGD. Numerical results are presented to show that for different detector sizes and defocusing lengths, high quality LGD can be realized by using sources with appropriate transverse sizes and coherent widths. These findings can be used to choose the optimal parameters in the design of a realistic LGD system.
Maintaining Web Cache Coherency
Directory of Open Access Journals (Sweden)
2000-01-01
Full Text Available Document coherency is a challenging problem for Web caching. Once the documents are cached throughout the Internet, it is often difficult to keep them coherent with the origin document without generating a new traffic that could increase the traffic on the international backbone and overload the popular servers. Several solutions have been proposed to solve this problem, among them two categories have been widely discussed: the strong document coherency and the weak document coherency. The cost and the efficiency of the two categories are still a controversial issue, while in some studies the strong coherency is far too expensive to be used in the Web context, in other studies it could be maintained at a low cost. The accuracy of these analysis is depending very much on how the document updating process is approximated. In this study, we compare some of the coherence methods proposed for Web caching. Among other points, we study the side effects of these methods on the Internet traffic. The ultimate goal is to study the cache behavior under several conditions, which will cover some of the factors that play an important role in the Web cache performance evaluation and quantify their impact on the simulation accuracy. The results presented in this study show indeed some differences in the outcome of the simulation of a Web cache depending on the workload being used, and the probability distribution used to approximate updates on the cached documents. Each experiment shows two case studies that outline the impact of the considered parameter on the performance of the cache.
DEFF Research Database (Denmark)
Wæver, Ole
2009-01-01
Kenneth N. Waltz's 1979 book, Theory of International Politics, is the most influential in the history of the discipline. It worked its effects to a large extent through raising the bar for what counted as theoretical work, in effect reshaping not only realism but rivals like liberalism and refle......Kenneth N. Waltz's 1979 book, Theory of International Politics, is the most influential in the history of the discipline. It worked its effects to a large extent through raising the bar for what counted as theoretical work, in effect reshaping not only realism but rivals like liberalism...... and reflectivism. Yet, ironically, there has been little attention to Waltz's very explicit and original arguments about the nature of theory. This article explores and explicates Waltz's theory of theory. Central attention is paid to his definition of theory as ‘a picture, mentally formed' and to the radical anti......-empiricism and anti-positivism of his position. Followers and critics alike have treated Waltzian neorealism as if it was at bottom a formal proposition about cause-effect relations. The extreme case of Waltz being so victorious in the discipline, and yet being consistently mis-interpreted on the question of theory...
Coherent states measurement entropy
Kwapien, J; Zyczkowski, K; Kwapien, Jaroslaw; Slomczynski, Wojciech; Zyczkowski, Karol
1996-01-01
Coherent states (CS) quantum entropy can be split into two components. The dynamical entropy is linked with the dynamical properties of a quantum system. The measurement entropy, which tends to zero in the semiclassical limit, describes the unpredictability induced by the process of a quantum approximate measurement. We study the CS--measurement entropy for spin coherent states defined on the sphere discussing different methods dealing with the time limit n \\to \\infty. In particular we propose an effective technique of computing the entropy by iterated function systems. The dependence of CS--measurement entropy on the character of the partition of the phase space is analysed.
Ferraro, Pietro; Zalevsky, Zeev
2011-01-01
This book deals with the latest achievements in the field of optical coherent microscopy. While many other books exist on microscopy and imaging, this book provides a unique resource dedicated solely to this subject. Similarly, many books describe applications of holography, interferometry and speckle to metrology but do not focus on their use for microscopy. The coherent light microscopy reference provided here does not focus on the experimental mechanics of such techniques but instead is meant to provide a users manual to illustrate the strengths and capabilities of developing techniques. Th
Seeds, Alwyn J; Fice, Martyn J; Balakier, Katarzyna; Natrella, Michele; Mitrofanov, Oleg; Lamponi, Marco; Chtioui, Mourad; van Dijk, Frederic; Pepper, Michael; Aeppli, Gabriel; Davies, A Giles; Dean, Paul; Linfield, Edmund; Renaud, Cyril C
2013-09-23
We present a review of recent developments in THz coherent systems based on photonic local oscillators. We show that such techniques can enable the creation of highly coherent, thus highly sensitive, systems for frequencies ranging from 100 GHz to 5 THz, within an energy efficient integrated platform. We suggest that such systems could enable the THz spectrum to realize its full applications potential. To demonstrate how photonics-enabled THz systems can be realized, we review the performance of key components, show recent demonstrations of integrated platforms, and give examples of applications.
Yamazoe, Kenji
2012-08-01
This paper defines a matrix from which coherence property of imaging by partially coherent Koehler illumination is determined. The matrix termed coherency matrix in imaging system is derived by the space average of a product of a column vector and its transpose conjugate where each row of the column vector represents mutually incoherent light. The coherency matrix in imaging system has similar properties to the polarization matrix that is utilized for calculating the light intensity and degree of polarization of polarized light. The coherency matrix in imaging system enables us to calculate not only image intensity but also degree of coherence for image. Simulation results of the degree of coherence for image given by the coherency matrix in imaging system correspond to the complex degree of coherence obtained by the van Cittert-Zernike theorem.
Atomic Coherent Trapping and Properties of Trapped Atom
Institute of Scientific and Technical Information of China (English)
YANG Guo-Jian; XIA Li-Xin; XIE Min
2006-01-01
Based on the theory of velocity-selective coherent population trapping, we investigate an atom-laser system where a pair of counterpropagating laser fields interact with a three-level atom. The influence of the parametric condition on the properties of the system such as velocity at which the atom is selected to be trapped, time needed for finishing the coherent trapping process, and possible electromagnetically induced transparency of an altrocold atomic medium,etc., is studied.
Coherent states: a contemporary panorama Coherent states: a contemporary panorama
Twareque Ali, S.; Antoine, Jean-Pierre; Bagarello, Fabio; Gazeau, Jean-Pierre
2012-06-01
Coherent states (CS) of the harmonic oscillator (also called canonical CS) were introduced in 1926 by Schrödinger in answer to a remark by Lorentz on the classical interpretation of the wave function. They were rediscovered in the early 1960s, first (somewhat implicitly) by Klauder in the context of a novel representation of quantum states, then by Glauber and Sudarshan for the description of coherence in lasers. Since then, CS have grown into an extremely rich domain that pervades almost every corner of physics and have also led to the development of several flourishing topics in mathematics. Along the way, a number of review articles have appeared in the literature, devoted to CS, notably the 1985 reprint volume of Klauder and Skagerstam [1], the 1990 review paper by Zhang et al [2], the 1993 Oak Ridge Conference [3] and the 1995 review paper by Ali et al [4]. Textbooks also have been published, among which one might mention the ground breaking text of Perelomov [5] focusing on the group-theoretical aspects, that of Ali et al [6]1 analyzing systematically the mathematical structure beyond the group-theoretical approach and also the relation to wavelet analysis, that of Dodonov and Man'ko [7] mostly devoted to quantum optics, that of Gazeau [8] more oriented towards the physical, probabilistic and quantization aspects, and finally the very recent one by Combescure and Robert [9]. In retrospect, one can see that the development of CS has gone through a two-phase transition. First, the (simultaneous) discovery in 1972 by Gilmore and Perelomov that CS were rooted in group theory, then the realization that CS can be defined in a purely algebraic way, as an eigenvalue problem or by a series expansion (Malkin and Man'ko 1969, Barut and Girardello 1971, Gazeau and Klauder 1999; references to the original articles may be found in the textbooks quoted above). Both facts resulted in an explosive expansion of the CS literature. We thought, therefore, that the time was ripe
History and status of coherent bremsstrahlung
Überall, Herbert
2005-08-01
Coherent bremsstrahlung research originated with the 1955 papers by Dyson and Uberall, Ter-Mikaelian, and Ferretti. Its intermediate status thirty years later has been documented by Saenz and Uberall in the book Coherent Radiation Sources (A. W. Sáenz and H. Überall, editors), Springer, Berlin 1985. The first precision experiments were carried out by Diambrini-Palazzi et al. (1 960) in Frascati shortly after the theory had been developed; see also Timm (1 969). After experimentation by dozens of electron accelerator laboratories all over the world, there are presently measurements being made by Arends et al. at the University of Mainz (MAMI, 855 MeV), Klein et al. at the University of Bonn (ELSA, 3 GeV), at CERN (20-170 GeV) by Avakian of the Yerevan Physics Institute and others, and with electron energies of 6 GeV at the Jefferson Laboratory, Newport News, VA (F. J. Klein, Catholic University, spokesperson). At Jefferson Lab, linearly polarized quasi-monochromatic coherent-bremsstrahlung photons [peaked at 1.8GeV, with polarization (after collimation) of 84%] are being used for the production (off protons) of ρ and ω mesons among others. Recent theoretical research deals with coherent bremsstrahlung in quasicrystals (Fusina, Langworthy, and Saenz, 2001), and with planar and axial coherent bremsstrahlung in a diamond crystal (Chouffani, Endo, and Uberall 2001-2), both at low energies. In the latter study, in which the concept of axial coherent bremsstrahlung is now stressed (while in the related processes of planar and axial channeling radiation this distinction is well known), photon emission occurs here not necessarily in the forward direction.
Spectral coherence along a lidar-anemometer beam
Energy Technology Data Exchange (ETDEWEB)
Kristensen, Leif; Kirkegaard, P.; Mann, J.; Mikkelsen, Torben; Nielsen, Morten; Sjoeholm, M.
2010-10-15
The theory of measuring the spectral coherence by means of a lidar anemometer has been outlined. It is based on the assumption that the turbulent velocity field can be considered statistically locally isotropic and on the validity of Taylor's hypothesis. This implies that the longitudinal coherence cannot be predicted realistically. Special emphasis has been placed on the effect of line average along the beam. One section has been devoted to the effect of spectral aliasing, which may cause severe problems in the interpretation of measured data. This work is considered the theoretical background for the understanding of the coherences calculated on basis of real date. (Author)
Thiele, Jan
2016-01-01
Man's individual responsibility is a very central notion in Muslim theology. Rational foundations for moral responsibility presuppose, however, that man has in some way control over his actions. It was therefore of central concern to theologians to formulate theories of action that were coherent enough to account for human self-determination. This article examines al-Bāqillānī's reflections on human acts and attempts to contextualise his thought within the discussions of his time. I will brie...
Coherence Constraints and the Last Hidden Optical Coherence
Qian, Xiao-Feng; Vamivakas, A Nick; Eberly, Joseph H
2016-01-01
We have discovered a new domain of optical coherence, and show that it is the third and last member of a previously unreported fundamental triad of coherences. These are unified by our derivation of a parallel triad of coherence constraints that take the form of complementarity relations. We have been able to enter this new coherence domain experimentally and we describe the novel tomographic approach devised for that purpose.
On Discourse Coherence of The Dumb Waiter from the Perspective of the Principle of Goal
Institute of Scientific and Technical Information of China (English)
马文
2012-01-01
The principle of goal is a new theory which can be used to analyze discourse coherence.However,so far,none of the previous scholars has ever used this principle to analyze the coherence of dialogues in drama.Therefore,this essay will try to analyze the dialogue coherence in Harold Pinter's The Dumb Waiter by the principle of goal in order to reveal the implication and themes underneath the coherent or incoherent dialogues,and present the significance of discourse coherence and incoherence in literary discourse which are quite different from court discourse.
How to quantify coherence: Distinguishing speakable and unspeakable notions
Marvian, Iman; Spekkens, Robert W.
2016-11-01
Quantum coherence is a critical resource for many operational tasks. Understanding how to quantify and manipulate it also promises to have applications for a diverse set of problems in theoretical physics. For certain applications, however, one requires coherence between the eigenspaces of specific physical observables, such as energy, angular momentum, or photon number, and it makes a difference which eigenspaces appear in the superposition. For others, there is a preferred set of subspaces relative to which coherence is deemed a resource, but it is irrelevant which of the subspaces appear in the superposition. We term these two types of coherence unspeakable and speakable, respectively. We argue that a useful approach to quantifying and characterizing unspeakable coherence is provided by the resource theory of asymmetry when the symmetry group is a group of translations, and we translate a number of prior results on asymmetry into the language of coherence. We also highlight some of the applications of this approach, for instance, in the context of quantum metrology, quantum speed limits, quantum thermodynamics, and nuclear magnetic resonance (NMR). The question of how best to treat speakable coherence as a resource is also considered. We review a popular approach in terms of operations that preserve the set of incoherent states, propose an alternative approach in terms of operations that are covariant under dephasing, and we outline the challenge of providing a physical justification for either approach. Finally, we note some mathematical connections that hold among the different approaches to quantifying coherence.
Hobson, R. Peter
2014-01-01
There is a growing body of opinion that we should view autism as fractionable into different, largely independent sets of clinical features. The alternative view is that autism is a coherent syndrome in which principal features of the disorder stand in intimate developmental relationship with each other. Studies of congenitally blind children…
Dybdal, Robert B. (Inventor); Curry, Samuel J. (Inventor)
2009-01-01
An apparatus includes antenna elements configured to receive a signal including pseudo-random code, and electronics configured to use the pseudo-random code to determine time delays of signals incident upon the antenna elements and to compensate the signals to coherently combine the antenna elements.
Multiphoton coherent population oscillation
Sharypov, A V
2014-01-01
We study the bichromatic driving of a two-level system which displays long-lived coherent population oscillations (CPO). We show that under certain conditions, multiphoton parametric interaction leads to the appearance of CPO resonances at the subharmonic frequencies. In addition, in the region of the CPO resonances, there is strong parametric interaction between the weak sideband components of the electromagnetic field.
2002-01-01
The Dutch book argument is a coherence condition for the existence of subjective probabilities. This note gives a general framework of analysis for this argument in a nonadditive probability setting. Particular cases are given by comonotonic and affinely related Dutch books that lead to Choquet expectations and Min expectations.
Bicartesian Coherence Revisited
Dosen, K
2007-01-01
A survey is given of results about coherence for categories with finite products and coproducts. For these results, which were published previously by the authors in several places, some formulations and proofs are here corrected, and matters are updated. The categories investigated in this paper formalize equality of proofs in classical and intuitionistic conjunctive-disjunctive logic without distribution of conjunction over disjunction.
DEFF Research Database (Denmark)
Andersen, Peter E.
2015-01-01
Optical coherence tomography (OCT) is a noninvasive imaging technique that provides real-time two- and three-dimensional images of scattering samples with micrometer resolution. Mapping the local reflectivity, OCT visualizes the morphology of the sample, in real time or at video rate. In addition...
Role of spatial coherence in Goos-Hänchen and Imbert-Fedorov shifts.
Aiello, Andrea; Woerdman, J P
2011-08-15
We present a theory for Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts for beams of light with arbitrary spatial coherence. By applying the well-known theory of partial spatial coherence, we can calculate explicitly spatial and angular GH and IF shifts for completely polarized beams of any shape and spatial coherence. For the specific case of a Gauss-Schell source, we find that only the angular part of GH and IF shifts is affected by the spatial coherence of the beam. A physical explanation of our results is given.
Institute of Scientific and Technical Information of China (English)
LIN Jie; CHENG Jing
2011-01-01
@@ Lensless ghost diffraction with partially coherent sources is investigated theoretically and numerically.Based on the classical optical coherent theory and the Gauss-Shell model of the partially coherent sources,we derive an analytical imaging formula of lensless ghost diffraction(LGD).Using this formula,we can see the effects of the transverse size and coherence of the sources,the detector size and defocusing length on the quality of LGD.Numerical results are presented to show that for different detector sizes and defocusing lengths,high quality LGD can be realized by using sources with appropriate transverse sizes and coherent widths.These findings can be used to choose the optimal parameters in the design of a realistic LGD system.%Lensless ghost diffraction with partially coherent sources is investigated theoretically and numerically. Based on the classical optical coherent theory and the Gauss-Shell model of the partially coherent sources, we derive an analytical imaging formula of lensless ghost diffraction (LGD). Using this formula, we can see the effects of the transverse size and coherence of the sources, the detector size and defocusing length on the quality of LGD. Numerical results are presented to show that for different detector sizes and defocusing lengths, high quality LGD can be realized by using sources with appropriate transverse sizes and coherent widths. These findings can be used to choose the optimal parameters in the design of a realistic LGD system.
Coherent states in quantum mechanics
Rodrigues, R D L; Fernandes, D
2001-01-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.
Entanglement and Coherence in Quantum State Merging.
Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-06-17
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Coherent hybrid electromagnetic field imaging
Cooke, Bradly J.; Guenther, David C.
2008-08-26
An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.
Jardine, John F
2015-01-01
This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory. Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, n...
Institute of Scientific and Technical Information of China (English)
王雪玲
2014-01-01
Cohesion and coherence in discourse analysis are two important terms .This article is mainly built on the basis of previous research on discourse analysis and translation ,and makes an exploratory study on cohesion and co-herence in translating classical poetry by comparing different versions of the same poem from the perspective of dis -course analysis .The main purpose is to learn how to grasp the discourse as a whole ,clarifying the inherent logic in the classical poetry ,the proper use of various cohesive devices to maintain the natural and coherent translation .%衔接和连贯是语篇分析中的两个重要术语。文章主要以前人对语篇分析与翻译的研究为基础，通过对比李白《送友人》的不同译本，从语篇分析的角度对古诗翻译中的衔接与连贯进行分析。同时指出在翻译古诗时，要理清古诗内在的逻辑关系，恰当运用各种语篇衔接手段，使译文保持自然和连贯。
Cox, David A
2012-01-01
Praise for the First Edition ". . .will certainly fascinate anyone interested in abstract algebra: a remarkable book!"—Monatshefte fur Mathematik Galois theory is one of the most established topics in mathematics, with historical roots that led to the development of many central concepts in modern algebra, including groups and fields. Covering classic applications of the theory, such as solvability by radicals, geometric constructions, and finite fields, Galois Theory, Second Edition delves into novel topics like Abel’s theory of Abelian equations, casus irreducibili, and the Galo
Emergence of non-zonal coherent structures
Bakas, Nikolaos A
2015-01-01
Planetary turbulence is observed to self-organize into large-scale structures such as zonal jets and coherent vortices. One of the simplest models that retains the relevant dynamics of turbulent self-organization is a barotropic flow in a beta-plane channel with turbulence sustained by random stirring. Non-linear integrations of this model show that as the energy input rate of the forcing is increased, the homogeneity of the flow is first broken by the emergence of non-zonal, coherent, westward propagating structures and at larger energy input rates by the emergence of zonal jets. The emergence of both non-zonal coherent structures and zonal jets is studied using a statistical theory, Stochastic Structural Stability Theory (S3T). S3T directly models a second-order approximation to the statistical mean turbulent state and allows the identification of statistical turbulent equilibria and study of their stability. Using S3T, the bifurcation properties of the homogeneous state in barotropic beta-plane turbulence ...
DEFF Research Database (Denmark)
Carroll, Joseph; Clasen, Mathias; Jonsson, Emelie
2017-01-01
Biocultural theory is an integrative research program designed to investigate the causal interactions between biological adaptations and cultural constructions. From the biocultural perspective, cultural processes are rooted in the biological necessities of the human life cycle: specifically human...... and ideological beliefs, and artistic practices such as music, dance, painting, and storytelling. Establishing biocultural theory as a program that self-consciously encompasses the different particular forms of human evolutionary research could help scholars and scientists envision their own specialized areas...... of research as contributions to a coherent, collective research program. This article argues that a mature biocultural paradigm needs to be informed by at least 7 major research clusters: (a) gene-culture coevolution; (b) human life history theory; (c) evolutionary social psychology; (d) anthropological...
Quantum coherence: Reciprocity and distribution
Kumar, Asutosh
2017-03-01
Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation-which we refer to as additivity relation-between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same.
Spectral coherence in windturbine wakes
Energy Technology Data Exchange (ETDEWEB)
Hojstrup, J. [Riso National Lab., Roskilde (Denmark)
1996-12-31
This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.
A resistance formula for coherent multi-barrier structures
Institute of Scientific and Technical Information of China (English)
Zhang Zhi-Chen; Yang Jian-Hong
2007-01-01
Using the Landauer formula and the quantum S-matrix scattering theory, we derive a resistance formula for multi-barrier structure under phase coherent transmission condition. This formula shows that when the transport is coherent, the potential wells of the structure are just like conductors contributing to the overall resistance. And because the resistance formula is derived based on the scattering theory, the barrier resistance will change with the number of scattering centres (i.e. the number of barriers) in the structure.
Coherent Transient Systems Evaluation
1993-06-17
manuscript is submitted for publication with the understanding that the United States Government is authorized to reproduce and distribute reprints...for governmental purposes. 1.0 Introduction The continuous optical correlator presented here is based on the phenomena of coherent transients, also...Gating the Continuous Processor Programming the continuous processor is accomplished by illuminati , n, the material with ,.’ modulated light pulses: a
Energy Technology Data Exchange (ETDEWEB)
Sebastion, R.L. [Coleman Research Corp., Springfield, VA (United States)
1995-10-01
The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.
Energy Technology Data Exchange (ETDEWEB)
Litvinenko,V.
2009-05-04
Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.
Institute of Scientific and Technical Information of China (English)
S. Salimi; A. Mohammadzadet
2011-01-01
Pair coherent state, is a state of a two-mode radiation field that is known as a state with non-gaussian wave function. In this paper, study on the pair coherent state, we notice that with superposition of two first terms of this states, one two-qubits formed. Because of the importance of two-qubits in theory of quantum entanglement, with two different measures with the title of concurrence and D-concurrence, we have studied the amount of entanglement and discussed its details. At the end, we describe these measures for pair coherent states as a function of the amplitude of the SU（2） coherent states.
Quantum-coherent mixtures of causal relations
MacLean, Jean-Philippe W; Spekkens, Robert W; Resch, Kevin J
2016-01-01
Understanding the causal influences that hold among the parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common cause acting on both. Here, we show that it is possible to have a coherent mixture of these two possibilities. We realize such a nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's paradox. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, such as Bell's theorem and the search for quantum gravity, but could also provide a resource for novel quantum technologies.
Entanglement and coherence in quantum state merging
Streltsov, A; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-01-01
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging where two parties aim to merge their parts of a tripartite quantum state. In standard quantum state merging, entanglement is considered as an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process, and apply them to several relevant scenarios. While quantum state merging can lead to ...
Coherent water transport across the South Atlantic
Wang, Y; Beron-Vera, F J
2015-01-01
The role of mesoscale eddies in transporting Agulhas leakage is investigated using a recent technique from nonlinear dynamical systems theory applied on geostrophic currents inferred from the over two-decade-long satellite altimetry record. Eddies are found to acquire material coherence away from the Agulhas retroflection, near the Walvis Ridge in the South Atlantic. Yearly, 1 to 4 coherent material eddies are detected with diameters ranging from 40 to 280 km. A total of 23 eddy cores of about 50 km in diameter and with at least 30% of their contents traceable into the Indian Ocean were found to travel across the subtropical gyre with minor filamentation. No more than 5\\% of such cores pour their contents on the North Brazil Current. While ability of eddies to carry Agulhas leakage northwestward across the South Atlantic is supported by our analysis, this is more restricted than suggested by earlier ring transport assessments.
Coherence in Turbulence: New Perspective
Levich, Eugene
2009-07-01
It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows
Frobenius-norm-based measures of quantum coherence and asymmetry.
Yao, Yao; Dong, G H; Xiao, Xing; Sun, C P
2016-08-25
We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory while the group theoretical approach is employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit physical meanings, we observe that these quantities are intimately related to the purity (or linear entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which can also be viewed as a normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of N-qubit quantum systems is considered under local independent and collective transformations. In- triguingly, it is illustrated that the collective effect has a significant impact on the asymmetry measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance.
Frobenius-norm-based measures of quantum coherence and asymmetry
Yao, Yao; Dong, G. H.; Xiao, Xing; Sun, C. P.
2016-08-01
We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory while the group theoretical approach is employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit physical meanings, we observe that these quantities are intimately related to the purity (or linear entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which can also be viewed as a normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of N-qubit quantum systems is considered under local independent and collective transformations. In- triguingly, it is illustrated that the collective effect has a significant impact on the asymmetry measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance.
Institute of Scientific and Technical Information of China (English)
徐旭宇; 李小波; 梁浩; 牛朝阳; 董杰
2014-01-01
A new central angle estimation method of the coherently distributed sources for bistatic MIMO radar is proposed based on second virtual array aperture extension. Firstly, the bistatic MIMO radar data model for the coherently distributed sources with the identical deterministic angular distribution function and distribution parameter is built based on nonuniform array. The second virtual array aperture extension is also realized by the colocated difference arrays of the minimum redundancy arrays. Furthermore, the new correlation matrix is obtained via transformal, eliminating redundant and changeable dimensional matrix. Finally, the central angles of DODs and DOAs are estimated without pairing algorithm by the idea of ESPRIT. Because of the second virtual array aperture extension, the proposed method provides much more parameter identifiability and better parameter estimation performance than the conventional bistatic MIMO radar. The effectiveness of the proposed method is verified with the computer simulation.%该文提出了基于二次虚拟孔径扩展的双基地MIMO雷达相干分布式目标中心角度估计算法。首先构造了基于非均匀阵列的具有相同确定性角信号分布函数和分布参数的相干分布式目标的双基地MIMO雷达信号模型，再利用基于最小冗余的差分共置阵列思想，实现了阵元二次虚拟扩展；然后通过构造置换、去冗余和换维矩阵，得到了新的协方差矩阵；最后利用 ESPRIT 算法思想，估计出相干分布式目标的发射、接收中心角，并且实现了角度参数的自动配对。由于该文算法实现了阵元二次虚拟扩展，因此相比于传统MIMO雷达能识别更多的目标，具有更高的估计精度。实验仿真结果证明了该文算法的有效性。
Holographic microscopy in low coherence
Chmelík, Radim; Petráček, Jiří; Slabá, Michala; Kollárová, Věra; Slabý, Tomáš; Čolláková, Jana; Komrska, Jiří; Dostál, Zbyněk.; Veselý, Pavel
2016-03-01
Low coherence of the illumination substantially improves the quality of holographic and quantitative phase imaging (QPI) by elimination of the coherence noise and various artefacts and by improving the lateral resolution compared to the coherent holographic microscopy. Attributes of coherence-controlled holographic microscope (CCHM) designed and built as an off-axis holographic system allowing QPI within the range from complete coherent to incoherent illumination confirmed these expected advantages. Low coherence illumination also furnishes the coherence gating which constraints imaging of some spatial frequencies of an object axially thus forming an optical section in the wide sense. In this way the depth discrimination capability of the microscope is introduced at the price of restricting the axial interval of possible numerical refocusing. We describe theoretically these effects for the whole range of illumination coherence. We also show that the axial refocusing constraints can be overcome using advanced mode of imaging based on mutual lateral shift of reference and object image fields in CCHM. Lowering the spatial coherence of illumination means increasing its numerical aperture. We study how this change of the illumination geometry influences 3D objects QPI and especially the interpretation of live cells QPI in terms of the dry mass density measurement. In this way a strong dependence of the imaging process on the light coherence is demonstrated. The theoretical calculations and numerical simulations are supported by experimental data including a chance of time-lapse watching of live cells even in optically turbid milieu.
Central Serous Chorioretinopathy after Solar Eclipse Viewing
Directory of Open Access Journals (Sweden)
Allie Lee
2010-01-01
Full Text Available Purpose: To report a case of central serous chorioretinopathy after solar eclipse viewing. Case Report: A middle-age man developed a sudden-onset unilateral scotoma after viewing a partial solar eclipse in Hong Kong. Fundus examination, fluorescein angiography, and optical coherence tomography showed features compatible with central serous chorioretinopathy. The patient was managed conservatively and reevaluated periodically. Serial optical coherence tomographic evaluations demonstrated an initial increase in the amount of subretinal fluid which spontaneously resolved 10 weeks after the onset of symptoms. Conclusion: This case demonstrates the possibility of development of central serous chorioretinopathy following solar eclipse viewing.
Topological Properties of Spatial Coherence Function
Institute of Scientific and Technical Information of China (English)
REN Ji-Rong; ZHU Tao; DUAN Yi-Shi
2008-01-01
The topological properties of the spatial coherence function are investigated rigorously.The phase singular structures(coherence vortices)of coherence function can be naturally deduced from the topological current,which is an abstract mathematical object studied previously.We find that coherence vortices are characterized by the Hopf index and Brouwer degree in topology.The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function.
Assisted distillation of quantum coherence
Chitambar, E; Rana, S; Bera, M N; Adesso, G; Lewenstein, M
2015-01-01
We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system while general local quantum operations are permitted on the other, an operational paradigm that we call local quantum-incoherent operations and classical communication (LQICC). We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, a direct analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.
Volitional Control of Neuromagnetic Coherence
Directory of Open Access Journals (Sweden)
Matthew D Sacchet
2012-12-01
Full Text Available Coherence of neural activity between circumscribed brain regions has been implicated as an indicator of intracerebral communication in various cognitive processes. While neural activity can be volitionally controlled with neurofeedback, the volitional control of coherence has not yet been explored. Learned volitional control of coherence could elucidate mechanisms of associations between cortical areas and its cognitive correlates and may have clinical implications. Neural coherence may also provide a signal for brain-computer interfaces (BCI. In the present study we used the Weighted Overlapping Segment Averaging (WOSA method to assess coherence between bilateral magnetoencephalograph (MEG sensors during voluntary digit movement as a basis for BCI control. Participants controlled an onscreen cursor, with a success rate of 124 of 180 (68.9%, sign-test p < 0.001 and 84 out of 100 (84%, sign-test p < 0.001. The present findings suggest that neural coherence may be volitionally controlled and may have specific behavioral correlates.
Relations Between Characteristic Function, Positive P-Representation and Coherent Thermal State
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; XU Xing-Lei
2007-01-01
We employ the coherent thermal states (a kind of entangled states) in thermal field dynamics to establish a complete entangled state formalism expressing pseudo-classical representations of density operator for light field.Especially, the relationship between the coherent thermal state and the characteristic function and the positive P representation in quantum optics theory are obtained.
Objective Eulerian Coherent Structures
Serra, M
2015-01-01
We define objective Eulerian Coherent Structures (OECSs) in two-dimensional, non-autonomous dynamical systems as instantaneously most influential material curves. Specifically, OECSs are stationary curves of the averaged instantaneous material stretching-rate or material shearing-rate functionals. From these objective (frame-invariant) variational principles, we obtain explicit differential equations for hyperbolic, elliptic and parabolic OECSs. As illustration, we compute OECSs in an unsteady ocean velocity data set. In comparison to structures suggested by other common Eulerian diagnostic tools, we find OECSs to be the correct short-term cores of observed trajectory deformation patterns.
Brignon, Arnaud
2013-01-01
Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme
Diffraction coherence in optics
Françon, M; Green, L L
2013-01-01
Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th
Optical coherence refractometry.
Tomlins, Peter H; Woolliams, Peter; Hart, Christian; Beaumont, Andrew; Tedaldi, Matthew
2008-10-01
We introduce a novel approach to refractometry using a low coherence interferometer at multiple angles of incidence. We show that for plane parallel samples it is possible to measure their phase refractive index rather than the group index that is usually measured by interferometric methods. This is a significant development because it enables bulk refractive index measurement of scattering and soft samples, not relying on surface measurements that can be prone to error. Our technique is also noncontact and compatible with in situ refractive index measurements. Here, we demonstrate this new technique on a pure silica test piece and a highly scattering resin slab, comparing the results with standard critical angle refractometry.
Coherent dynamics in semiconductors
DEFF Research Database (Denmark)
Hvam, Jørn Märcher
1998-01-01
Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... and molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...
DEFF Research Database (Denmark)
Andersen, Anne Bendix; Frederiksen, Kirsten; Beedholm, Kirsten;
2016-01-01
in general practice, outpatient clinics, home care and physiotherapy. Furthermore, field observations are conducted in general practice, home care and rehabilitation settings. Perspectives Knowledge about the practice of cross-sectorial collaboration is crucial to the future planning of collaborating...... initiatives in health care. The present study will generate new, valuable insight into the areas of cross-sectorial health care collaboration. Our findings may facilitate change in current practice and improve the quality and coherence in patient pathways of EPCD. The findings of this study will be useful...
Coherent signal processing in optical coherence tomography
Kulkarni, Manish Dinkarrao
1999-09-01
Optical coherence tomography (OCT) is a novel method for non-invasive sub-surface imaging of biological tissue micro-structures. OCT achieves high spatial resolution ( ~ 15 m m in three dimensions) using a fiber-optically integrated system which is suitable for application in minimally invasive diagnostics, including endoscopy. OCT uses an optical heterodyne detection technique based on white light interferometry. Therefore extremely faint reflections ( ~ 10 fW) are routinely detected with high spatial localization. The goal of this thesis is twofold. The first is to present a theoretical model for describing image formation in OCT, and attempt to enhance the current level of understanding of this new modality. The second objective is to present signal processing methods for improving OCT image quality. We present deconvolution algorithms to obtain improved longitudinal resolution in OCT. This technique may be implemented without increasing system complexity as compared to current clinical OCT systems. Since the spectrum of the light backscattered from bio-scatterers is closely associated with ultrastructural variations in tissue, we propose a new technique for measuring spectra as a function of depth. This advance may assist OCT in differentiating various tissue types and detecting abnormalities within a tissue. In addition to depth resolved spectroscopy, Doppler processing of OCT signals can also improve OCT image contrast. We present a new technique, termed color Doppler OCT (CDOCT). It is an innovative extension of OCT for performing spatially localized optical Doppler velocimetry. Micron-resolution imaging of blood flow in sub-surface vessels in living tissue using CDOCT is demonstrated. The fundamental issues regarding the trade- off between the velocity estimation precision and image acquisition rate are presented. We also present novel algorithms for high accuracy velocity estimation. In many blood vessels velocities tend to be on the order of a few cm
Review of Entangled Coherent States
Sanders, Barry C
2011-01-01
We review entangled coherent state research since its first implicit use in 1967 to the present. Entangled coherent states are important to quantum superselection principles, quantum information processing, quantum optics, and mathematical physics. Despite their inherent fragility they have produced in a conditional propagating-wave quantum optics realization. Fundamentally the states are intriguing because they are entanglements of the coherent states, which are in a sense the most classical of all states of a dynamical system.
Coherent phonons in carbon based nanostructures
Sanders, G. D.; Nugraha, A. R. T.; Sato, K.; Kim, J.-H.; Lim, Y.-S.; Kono, J.; Saito, R.; Stanton, C. J.
2014-06-01
We have developed a theory for the generation and detection of coherent phonons in carbon based nanotstructures such as single walled nanotubes (SWNTs), graphene, and graphene nanoribbons. Coherent phonons are generated via the deformation potential electron/hole-phonon interaction with ultrafast photo-excited carriers. They modulate the reflectance or absorption of an optical probe pules on a THz time scale and might be useful for optical modulators. In our theory the electronic states are treated in a third nearest neighbor extended tight binding formalism which gives a good description of the states over the entire Brillouin zone while the phonon states are treated using valence force field models which include bond stretching, in-plane and out-of-plane bond bending, and bond twisting interactions up to fourth neighbor distances. We compare our theory to experiments for the low frequency radial breathing mode (RBM) in micelle suspended single-walled nanotubes (SWNTs). The analysis of such data provides a wealth of information on the dynamics and interplay of photons, phonons and electrons in these carbon based nanostructures.
Bosonization, coherent states and semiclassical quantum Hall skyrmions.
Dutta, Sreedhar B; Shankar, R
2008-07-09
We bosonize (2+1)-dimensional fermionic theory using coherent states. The gauge-invariant subspace of boson-Chern-Simons Hilbert space is mapped to fermionic Hilbert space. This subspace is then equipped with a coherent state basis. These coherent states are labelled by a dynamic spinor field. The label manifold could be assigned a physical meaning in terms of density and spin density. A path-integral representation of the evolution operator in terms of these physical variables is given. The corresponding classical theory when restricted to LLL is described by spin fluctuations alone and is found to be the NLSM with Hopf term. The formalism developed here is suitable to study quantum Hall skyrmions semiclassically and/or beyond the hydrodynamic limit. The effects of Landau level mixing or the presence of slowly varying external fields can also be easily incorporated.
Chadzitaskos, G; Tolar, J
2011-01-01
We present a possible construction of coherent states on the unit circle as configuration space. In our approach the phase space is the product Z x S^1. Because of the duality of canonical coordinates and momenta, i.e. the angular variable and the integers, this formulation can also be interpreted as coherent states over an infinite periodic chain. For the construction we use the analogy with our quantization over a finite periodic chain where the phase space was Z_M x Z_M. Properties of the coherent states constructed in this way are studied and the coherent states are shown to satisfy the resolution of unity.
Discourse Coherence:Receiver’s Context Selection
Institute of Scientific and Technical Information of China (English)
董淑新
2012-01-01
Discourse is a kind of ostensive-inferential communication. Discourse as a communication always occurs in certain context which helps us interpret an utterance. Obviously, context or contextual assumptions play a crucial role in answering these questions. Therefore, the crucial point to solve the problem of discourse coherence is how to select the contexts. Con⁃text selection is not random but limited by the language users’cognitive environment. According to Relevance Theory, con⁃text selection is achieved through seeking for relevance.
The origins of macroscopic quantum coherence in high temperature superconductivity
Energy Technology Data Exchange (ETDEWEB)
Turner, Philip, E-mail: ph.turner@napier.ac.uk [Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom); Nottale, Laurent, E-mail: laurent.nottale@obspm.fr [CNRS, LUTH, Observatoire de Paris-Meudon, 5 Place Janssen, 92190 Meudon (France)
2015-08-15
Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new
Directory of Open Access Journals (Sweden)
Maria da Conceição Samu Pezzi
2010-06-01
managerial practice in CME, describe its process, and construct a theoretical model about human resources management. Study of qualitative nature, whose participants were nurses of three public hospitals of the Rio de Janeiro. We utilized as referential the Symbolic Interaction and the Grounded Theory. Based on the collected data and realities of each CME are found five categories, beyond the central phenomenon. Process of nurses´ basic actuation is attached to the experience in the personal knowledge, work process knowledge and science of its realities.
Joyal, André
2009-01-01
We define weak units in a semi-monoidal 2-category $\\CC$ as cancellable pseudo-idempotents: they are pairs $(I,\\alpha)$ where $I$ is an object such that tensoring with $I$ from either side constitutes a biequivalence of $\\CC$, and $\\alpha: I \\tensor I \\to I$ is an equivalence in $\\CC$. We show that this notion of weak unit has coherence built in: Theorem A: $\\alpha$ has a canonical associator 2-cell, which automatically satisfies the pentagon equation. Theorem B: every morphism of weak units is automatically compatible with those associators. Theorem C: the 2-category of weak units is contractible if non-empty. Finally we show (Theorem E) that the notion of weak unit is equivalent to the notion obtained from the definition of tricategory: $\\alpha$ alone induces the whole family of left and right maps (indexed by the objects), as well as the whole family of Kelly 2-cells (one for each pair of objects), satisfying the relevant coherence axioms.
Bernardo, Jose M
2000-01-01
This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critica
Coherent neutrino radiation in supernovae at two loops
Sedrakian, A; Dieperink, AEL
2000-01-01
We develop a neutrino transport theory, in terms of the real-time nonequilibrium Green's functions, which is applicable to physical conditions arbitrary far from thermal equilibrium. We compute the coherent neutrino radiation in cores of supernovae by evaluating the two-particle-two-hole (2p-2h) pol
A Cohesive and Coherent Analysis of The Purloined Letter
Institute of Scientific and Technical Information of China (English)
杜娟娟; 郭鸿雁
2013-01-01
The thesis aims to do a research on the cohesion and coherence in The Purloined Letter written by Edgar Allan Poe based on the theories of Halliday and Hasan as well as the Chinese scholars Zhang Delu and Liu Rushan. By the means of them, Poe’s ingenious composition and vivid characters emerge in the mind of the readers.
Institute of Scientific and Technical Information of China (English)
郝军生; 赵金亮
2013-01-01
目的 应用频域光学相干断层扫描图像增强技术检测中心性浆液性脉络膜视网膜病变黄斑中心凹下脉络膜厚度,并探讨其对视网膜浆液性脱离影响的相关因素.方法 临床病例对照研究.对2011年10月至2012年3月在莒县人民医院眼科的患者及志愿者行双眼扫描检查,采用SpectralisOCT EDI(Enhanced Depth Imaging,图像增强技术)技术,对被检眼以长度为8.8 mm的扫描线段对后极部黄斑中心凹0°和90°方位进行扫描,测量中心凹下脉络膜厚度值,并行扫描面积8.8 mm×8.8 mm的黄斑区扫描,测量患眼视网膜浆液性脱离的高度,基底部最宽度,中心凹6.0 mm区容积及视网膜隆起高度.测量患者对侧眼及志愿者双眼黄斑中心凹6.0 mm区容积.采用SPSS17.0统计学软件行数据处理,所有检测数据均以均数±标准差(x±s)表示,采用两独立样本均数t检验比较患者病眼、对侧眼与对照组正常眼间各检测值的差异,应用直线相关分析法分析相关性,P ＜0.05为差异有统计学意义.结果 本组病例观察到中浆患眼的脉络膜厚度增加.与对侧眼及正常对照组比较,差异有统计学意义(P =0.001,0.000).患病对侧眼脉络膜厚度与对照组比较,差异亦有统计学意义(P=0.018).患眼脉络膜平均厚度与中心凹下视网膜浆液性脱离区的平均高度、脱离区基底部平均宽度、患病眼中心凹6.0mm内容积及患眼视网膜隆起高度在统计学上无相关性(r=0.096,0.020,0.042,0.087;P=0.545,0.898,0.793,0.582).结论 光学相干断层扫描图像增强技术发现中心性浆液性脉络膜视网膜病变患者的脉络膜厚度增厚,包括无活动病变的对侧眼.%ObJective To observe the changes of choroidal thickness under the central fovea in central serous chorioretinopathy(CSC)eyes using optical coherence tomography and discuss the relative influence factors in exudative retinal detachment.Methods The central fovea at 0°and 90
OPTICAL COHERENCE TOMOGRAPHY IN JUVENILE NEURONAL CEROID LIPOFUSCINOSIS
DEFF Research Database (Denmark)
Hansen, Michael S.; Hove, Marianne N; Jensen, Hanne;
2016-01-01
PURPOSE: To report optical coherence tomography findings obtained in two patients with juvenile neuronal ceroid lipofuscinosis. METHODS: Two case reports. RESULTS: Two 7-year-old girls presented with decreased visual acuity, clumsiness, night blindness, and behavioral problems. Optical coherence...... tomography showed an overall reduction in thickness of the central retina, as well as the outer and the inner retinal layers. The degenerative retinal changes were the same, despite different mutations in the CLN3 gene. CONCLUSION: In these rare cases of juvenile neuronal ceroid lipofuscinosis, optical...
Robustness of a coherence vortex.
Alves, Cleberson R; Jesus-Silva, Alcenisio J; Fonseca, Eduardo J S
2016-09-20
We study, experimentally and theoretically, the behavior of a coherence vortex after its transmission through obstacles. Notably, we find that such a vortex survives and preserves its effective topological charge. Despite suffering changes on the modulus of the coherence function, these changes disappear during propagation.
Dynamics of generalized coherent states
De Martino, S; Illuminati, F; De Martino, S; De Siena, S; Illuminati, F
1995-01-01
We show that generalized coherent states follow Schr\\"{o}dinger dynamics in time-dependent potentials. The normalized wave-packets follow a classical evolution without spreading; in turn, the Schr\\"{o}dinger potential depends on the state through the classical trajectory. This feedback mechanism with continuous dynamical re-adjustement allows the packets to remain coherent indefinetely.
COHERENT-LIGHT RECORDING TECHNIQUES.
The purpose of this report is to summarize, define and demonstrate techniques necessary for the application of coherent light to the problems of...Investigations into such areas as the coherent light source itself, modulation, deflection or scanning techniques, readout techniques and the evaluation of recording media are reported.
Coherent structure and Intermittent Turbulence in the Solar Wind Plasma
Sondhiya, Deepak Kumar; Gwal, Ashok Kumar; Kasde, Satish Kumar
2016-07-01
We analyze the coherent structures and intermittent turbulence in the solar wind plasma using measurements from the Wind spacecraft. Previously established novel wavelet and higher order statistics are used in this work. We analyze the wavelet power spectrum of various solar wind plasma parameters. We construct a statistical significance level in the wavelet power spectrum to quantify the interference effects arising from filling missing data in the time series, allowing extraction of significant power from the measured data. We analyze each wavelet power spectra for transient coherency, and global periodicities resulting from the superposition of repeating coherent structures. Furthermore, these coherent structures are preferentially found in plasma unstable to the mirror and firehose instabilities. These results offer a new understanding of various processes in a turbulent regime. Finally, we discuss the implications of our results for current theories of solar wind generation and describe future work for determining the relationship between the coherent structures in our ionic composition data and the structure of the coronal magnetic field. Keywords: Wavelet Power Spectrum, Coherent structure and Solar wind plasma
Coherent Scatter Imaging Measurements
Ur Rehman, Mahboob
In conventional radiography, anatomical information of the patients can be obtained, distinguishing different tissue types, e.g. bone and soft tissue. However, it is difficult to obtain appreciable contrast between two different types of soft tissues. Instead, coherent x-ray scattering can be utilized to obtain images which can differentiate between normal and cancerous cells of breast. An x-ray system using a conventional source and simple slot apertures was tested. Materials with scatter signatures that mimic breast cancer were buried in layers of fat of increasing thickness and imaged. The result showed that the contrast and signal to noise ratio (SNR) remained high even with added fat layers and short scan times.
Coherent imaging without phases
Moscoso, Miguel; Papanicolaou, George
2015-01-01
In this paper we consider narrow band, active array imaging of weak localized scatterers when only the intensities are recorded at an array with N transducers. We consider that the medium is homogeneous and, hence, wave propagation is fully coherent. This work is an extension of our previous paper, where we showed that using linear combinations of intensity-only measurements imaging of localized scatterers can be carried out efficiently using MUSIC or sparsity promoting optimization. Here we show the same strategy can be accomplished with only 3N-2 illuminations, therefore reducing enormously the data acquisition process. Furthermore, we show that in the paraxial regime one can form the images by using six illuminations only. In particular, this paraxial regime includes Fresnel and Fraunhofer diffraction. The key point of this work is that if one controls the illuminations, imaging with intensity-only can be easily reduced to a imaging with phases and, therefore, one can apply standard imaging techniques. Det...
DEFF Research Database (Denmark)
Fercher, A.F.; Andersen, Peter E.
2017-01-01
Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... used in the medical field, in particular, in ophthalmology. Owing to the high transmissivity of ocular media, the depth penetration is considerable. Corresponding applications in dermatology are somewhat hindered by the strong scattering of epidermic tissue (μs ≈ 102 mm−1). As OCT provides images...... for intraoperative monitoring, and in microsurgical intervention. Optical biopsy based on OCT also provides diagnostic information by differentiating the architectural morphology of urological tissue, gastrointestinal tissue, and respiratory tissue....
DEFF Research Database (Denmark)
Andersen, Anne Bendix; Frederiksen, Kirsten; Beedholm, Kirsten
2016-01-01
Background During the past decade, politicians and healthcare providers have strived to create a coherent healthcare system across primary and secondary healthcare sectors in Denmark. Nevertheless, elderly patients with chronic diseases (EPCD) continue to report experiences of poor-quality care...... to an acute care ward to discharge and later in meetings with healthcare providers in general practice, outpatient clinics, home care and physiotherapy. Furthermore, field observations were conducted in general practice, home care and rehabilitation settings. Research design An explorative design based...... on an interactionistic approach was used. As a consequence, the focus of data collection is the production of meaning happening between human beings in social interaction in the field of cross-sectorial collaboration. Research questions The research questions reflect the interactionistic approach as they concentrate...
Optical coherence in astrophysics
Moret-Bailly, Jacques
2013-01-01
Many physicists and most astrophysicists assume that the photon is a small particle which, in a very low pressure gas can only interact with a single molecule. Thus, the interaction of light with this gas is incoherent. W. E.Lamb Jr, W. P. Schleich, M. O. Scully and C. H. Townes (Reviews of Modern Physics 71, S263, 1999) have criticized this view: In accordance with quantum electrodynamics the photon is a pseudo-particle resulting from the quantization of a deterministic exchange of energy between identical molecules and a normal mode of electromagnetic field. Following Lamb et al., we study models in which some variables have an unusual value for a spectroscopist: extremely low pressure hydrogen, but huge light paths, extremely hot sources. However, the magnitudes of the spectral radiances and column densities can be similar in astrophysics and in a laboratory using lasers. Thus, several coherent effects must be taken into account: superradiance, multiphoton interactions, impulsive stimulated Raman scatterin...
Quantum information and coherence
Öhberg, Patrik
2014-01-01
This book offers an introduction to ten key topics in quantum information science and quantum coherent phenomena, aimed at graduate-student level. The chapters cover some of the most recent developments in this dynamic research field where theoretical and experimental physics, combined with computer science, provide a fascinating arena for groundbreaking new concepts in information processing. The book addresses both the theoretical and experimental aspects of the subject, and clearly demonstrates how progress in experimental techniques has stimulated a great deal of theoretical effort and vice versa. Experiments are shifting from simply preparing and measuring quantum states to controlling and manipulating them, and the book outlines how the first real applications, notably quantum key distribution for secure communication, are starting to emerge. The chapters cover quantum retrodiction, ultracold quantum gases in optical lattices, optomechanics, quantum algorithms, quantum key distribution, quantum cont...
Huang, David
Optical coherence tomography (OCT) is a new method for noninvasive cross-sectional imaging in biological systems. In OCT, the longitudinal locations of tissue structures are determined by measuring the time-of-flight delays of light backscattered from these structures. The optical delays are measured by low coherence interferometry. Information on lateral position is provided by transverse scanning of the probe beam. The two dimensional map of optical scattering from internal tissue microstructures is then represented in a false-color or grayscale image. OCT is the optical analog of ultrasonic pulse-echo imaging, but with greatly improved spatial resolutions (a few microns). This thesis describes the development of this new high resolution tomographic imaging technology and the demonstration of its use in a variety of tissues under both in vitro and in vivo conditions. In vitro OCT ranging and imaging studies were performed using human ocular and arterial tissues, two clinically relevant examples of transparent and turbid media, respectively. In the anterior eye, precise measurements of cornea and anterior chamber dimensions were made. In the arterial specimens, the differentiation between fatty -calcified and fibromuscular tissues was demonstrated. In vivo OCT imaging in the retina and optic nerve head in human subjects was also performed. The delineation of retinal layers, which has not been possible with other noninvasive imaging techniques, is demonstrated in these OCT images. OCT has high spatial resolution but limited penetration into turbid tissue. It has potential for diagnostic applications where high resolution is needed and optical access is available, such as in the eye, skin, surgically exposed tissues, and surfaces that can be reached by various catheters and endoscopic probes. In particular, the measurement of fine retinal structures promises improvements in the diagnosis and management of glaucoma, macular edema and other vitreo-retinal diseases
Nielsen, M. A.
2000-01-01
Quantum information theory is the study of the achievable limits of information processing within quantum mechanics. Many different types of information can be accommodated within quantum mechanics, including classical information, coherent quantum information, and entanglement. Exploring the rich variety of capabilities allowed by these types of information is the subject of quantum information theory, and of this Dissertation. In particular, I demonstrate several novel limits to the informa...
Origin of long-lived coherence and excitation dynamics in pigment-protein complexes
Zhang, Zhedong
2015-01-01
We uncover the mechanism of long-lived coherence that the discrete vibrational modes effectively weaken the exciton-environment interaction. This subsequently demonstrates the role of vibrational coherence which greatly contributes to long-lived feature of the excitonic coherence that has been observed in femtosecond experiments. To test the validity of our effective theory, we study the pigment-protein complex in details by exploring the energy transfer and coherence dynamics. The ground-state coherence generated by incoherent radiations is demonstrated to be significant to promote the excitation energy transfer. This on the other hand, seems to be natural from the point of view of nonequilibriumness, which funnels the downhill immigration of excitons. Moreover we also confirm that the considerable improvement of energy transfer is always accompanied by the long-lived oscillation of coherence.
Origin of long-lived quantum coherence and excitation dynamics in pigment-protein complexes
Zhang, Zhedong; Wang, Jin
2016-11-01
We explore the mechanism for the long-lived quantum coherence by considering the discrete phonon modes: these vibrational modes effectively weaken the exciton-environment interaction, due to the new composite (polaron) formed by excitons and vibrons. This subsequently demonstrates the role of vibrational coherence which greatly contributes to long-lived feature of the excitonic coherence that has been observed in femtosecond experiments. The estimation of the timescale of coherence elongated by vibrational modes is given in an analytical manner. To test the validity of our theory, we study the pigment-protein complex in detail by exploring the energy transfer and coherence dynamics. The ground-state vibrational coherence generated by incoherent radiations is shown to be long-survived and is demonstrated to be significant in promoting the excitation energy transfer. This is attributed to the nonequilibriumness of the system caused by the detailed-balance-breaking, which funnels the downhill migration of excitons.
Institute of Scientific and Technical Information of China (English)
LI Weibing; CHEN Jian; YU Fei; CHEN Xinzhao
2006-01-01
The routine wave superposition approach cannot be used in reconstruction and prediction of a coherent acoustic field, because it is impossible to separate the pressures generated by individual sources. According to the superposition theory of the coherent acoustic field , a novel method based on the combined wave superposition approach is developed to reconstruct and predict the coherent acoustic field by building the combined pressure matching matrixes between the hologram surfaces and the sources. The method can reconstruct the acoustic information on surfaces of the individual sources, and it is possible to predict the acoustic field radiated from every source and the total coherent acoustic field can also be calculated spontaneously. The experimental and numerical simulation results show that this method can effectively solve the holographic reconstruction and prediction of the coherent acoustic field and it can also be used as a coherent acoustic field separation technique. The study on this novel method extends the application scope of the acoustic holography technique.
Central Coherence in Autistic Children and Its Links with Theory of Mind%自闭症儿童的中心信息整合及其与心理理论的关系
Institute of Scientific and Technical Information of China (English)
桑标; 任真; 邓赐平
2006-01-01
研究用积木测验和镶嵌图形测验测量中心信息整合,用5个信念任务测量心理理论能力,比较了12名自闭症儿童和同等言语能力的28名正常儿童的表现,并分析了心理理论和中心信息整合的相关.结果表明:(1)中心信息整合的测量指标积木测验和镶嵌图形测验成绩保持中高度相关;(2)自闭症儿童中心信息整合显著弱于正常儿童;(3)心理理论和中心信息整合成绩相互独立.
自闭症儿童的心理理论与中心信息整合的关系探讨%The Links Between Theory of Mind and Central Coherence in Autism
Institute of Scientific and Technical Information of China (English)
桑标; 任真; 邓赐平
2005-01-01
自闭症儿童的心理理论一直是儿童心理理论研究的重要领域,自闭症儿童身上心理理论缺失这一领域特殊性的加工缺损与弱的中心信息整合这一领域一般性的加工异常之间的关系研究逐渐受到了广泛关注.在阐述自闭症领域的心理理论研究,并介绍弱的中心信息整合理论的基本观点和实验证据之后,在此探讨了两者之间的关系,包括两者相互独立的观点、相互关联的观点以及其他的不同观点,并对今后的研究方向做出了展望.
Coherent Vortex Evolution in Drift Wave Turbulence
Gatto, R.; Terry, P. W.
1998-11-01
Localized structures in turbulence are subject to loss of coherence by mixing. Phase space structures, such as drift-hole, (P. W. Terry, P. H. Diamond, T. S. Hahm, Phys. Fluids B) 2 9 2048 (1990) possess a self-electric field, which if sufficiently large maintains particle trapping against the tidal deformations of ambient turbulence. We show here that intense vortices in fluid drift wave turbulence avoid mixing by suppressing ambient turbulence with the strong flow shear of the vortex edge. Analysis of turbulence evolution in the vortex edge recovers Rapid Distortion Theory (G. K. Batchelor and I. Proudman, Q. J. Mech. Appl. Math.) 7 83 (1954) as the short time limit and the shear suppression scaling theory (H. Biglari, P. H. Diamond and P. W. Terry, Phys. Fluids B) 2 1 (1990) as the long time limit. Shear suppression leads to an amplitude condition for coherence and delineates the Gaussian core from the non Gaussian tail of the probability distribution function. The amplitude condition of shear suppression is compared with the trapping condition for phase space holes. The possibility of nonlinear vortex growth will be examined by considering electron dynamics in the vortex evolution.
Coherence and aberration effects in surface plasmon polariton imaging
Berthel, Martin; Jiang, Quanbo; Chartrand, Camille; Bellessa, Joel; Huant, Serge; Genet, Cyriaque; Drezet, Aurélien
2015-09-01
We study theoretically and experimentally coherent imaging of surface plasmon polaritons using either leakage radiation microscopy through a thin metal film or interference microscopy through a thick metal film. Using a rigorous modal formalism based on scalar Whittaker potentials, we develop a systematic analytical and vectorial method adapted to the analysis of coherent imaging involving surface plasmon polaritons. The study includes geometrical aberrations due index mismatch which played an important role in the interpretation of recent experiments using leakage radiation microscopy. We compare our theory with experiments using classical or quantum near-field scanning optical microscopy probes and show that the approach leads to a full interpretation of the recorded optical images.
TURBULENT COHERENT STRUCTURES IN CHANNELS WITH SAND WAVES
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Sand wave bed is one of the typical shape of complicated boundaries in hydraulics and river dynamics, and sand wave motion is the main form of the bed load motion in-rivers, thence the study of turbulent structures over sand waves is of importance both in theory and practice. In this paper turbulent coherent structures over single-and multi-sand waves were studied experimentally, the formulae for the separation length and vortex shedding period of the turbulent flow over single-sand wave were suggested, and the characteristics of turbulent coherent structures over multi-sand waves were also given.
Two-pion interferometry for a partially coherent evolution source
Institute of Scientific and Technical Information of China (English)
LI Jian-Wei; YU Li-Li; ZHANG Wei-Ning
2008-01-01
We give the formulas of two-pion Hanbury-Brown-Twiss (HBT) correlation function for a partially coherent evolution pion-emitting source,using quantum probability amplitudes in a path-integral formalism.The multiple scattering of the particles in the source is taken into consideration based on Glauber scattering theory.Two-pion interferometry with effects of the multiple scattering and source collective expansion is examined for a partially coherent source of hadronic gas with a finite baryon density and evolving hydrodynamically.We do not find observable effect of either the multiple scattering or the source collective expansion on HBT chaotic parameter.
Coherence and aberration effects in surface plasmon polariton imaging
Berthel, Martin; Chartrand, Camille; Bellessa, Joel; Huant, Serge; Genet, Cyriaque; Drezet, Aurélien
2016-01-01
We study theoretically and experimentally coherent imaging of surface plasmon polaritons using either leakage radiation microscopy through a thin metal film or interference microscopy through a thick metal film. Using a rigorous modal formalism based on scalar Whittaker potentials we develop a systematic analytical and vectorial method adapted to the analysis of coherent imaging involving surface plasmon polaritons. The study includes geometrical aberrations due index mismatch which played an important role in the interpretation of recent experiments using leakage radiation microscopy. We compare our theory with experiments using classical or quantum near-field scanning optical microscopy probes and show that the approach leads to a full interpretation of the recorded optical images.
Coherent quantum trasport in ferromagnet-superconductor-ferromagnet graphene junctions
Directory of Open Access Journals (Sweden)
M Salehi
2010-09-01
Full Text Available In this paper, we investigate the coherent quantum transport in grapheme-based ferromagnet-superconductor-ferromagent junctions within the framework of BCS theory using DBdG quasiparticles equation .The coherency with the finite size of superconductor region has two characteristic features subgap electron transport and oscillations of differential conductance. we show that periodic vanishing of the Andreev reflection at the energies called geometrical resonances above the superconducting gap is a striking consequence of quasiparticles interference. We suggest to make devices that produce polarized spin-current with possible applications in spintronics.
High performance fiber-based optical coherent detection
Chen, Youming
The sensitivity of signal detection is of major interest for optical high speed communication systems and LIght Detection And Ranging (lidar) systems. Sensitive receivers in fiber-optical networks can reduce transmitter power or amplifier amplification requirements and extend link spans. High receiver sensitivity allows links to be established over long distances in deep space satellite communication systems and large atmospheric attenuation to be overcome in terrestrial free space communications. For lidar systems, the sensitivity of signal detection determines how far and how accurately the lidar can detect the remote objects. Optical receivers employ either coherent or direct detection. In addition to amplitude, coherent detection extracts frequency and phase information from received signals, whereas direct detection extracts the received pulse amplitude only. In theory, coherent detection should yield the highest receiver sensitivity. Another possible technique to improve detection sensitivity is to employ a fiber preamplifier. This technique has been successfully demonstrated in direct detection systems but not in the coherent detection systems. Due to the existence of amplified spontaneous emission (ASE) inside the amplifier, the sensitivity of coherent detection varies with the data rate or pulse rate. For this reason, optically preamplified coherent detection is not used in applications as commonly as optically preamplified direct detection. We investigate the performance of coherent detection employing a fiber amplifier and time-domain-filter. The fiber amplifier is used as the optical preamplifier of the coherent detection system. To reduce the noise induced by the preamplifier to a maximum extent, we investigate the noise properties for both a single pass amplifier and a double pass amplifier. The relative intensity noise and linewidth broadening caused by ASE have been experimentally characterized. The results show that the double pass amplifier has
Coherence Properties of the LCLS
Energy Technology Data Exchange (ETDEWEB)
Ocko, Samuel
2010-08-25
The LINAC Coherent Light Source (LCLS), an X-Ray free-electron laser(FEL) based on the self amplified spontaneous emission principle, has recently come on-line. For many users it is desirable to have an idea of the level of transverse coherence of the X-Ray beam produced. In this paper, we analyze the output of GENESIS simulations of electrons traveling through the FEL. We first test the validity of an approach that ignores the details of how the beam was produced, and instead, by assuming a Gaussian-Schell model of transverse coherence, predicts the level of transverse coherence simply through looking at the beam radius at several longitudinal slices. We then develop a Markov chain Monte Carlo approach to calculating the degree of transverse coherence, which offers a {approx}100-fold speedup compared to the brute-force algorithm previously in use. We find the beam highly coherent. Using a similar Markov chain Monte Carlo approach, we estimate the reasonability of assuming the beam to have a Gaussian-Schell model of transverse coherence, with inconclusive results.
Gurr, Henry
2014-03-01
Princeton Physicist J. J. Hopfield's Mathematical Model of the Mammalian Brain, (Similar To Ising Glass Model of a crystal of magnetic spin particles) says our Brain-Work for Memory, Perception, Language, Thinking, etc, (Even the AHA-EUREKA-Flash Of Insight Type Problem Solving), is achieved by our massively inter-connected CNS Neurons ... working together ... MINIMIZING an analog of physical energy ... thus yielding Optimal Solutions: These ``best'' answers, correspond to highest mental coherence, for most facets organism response, beit mental (eg: perception, memory, ideas, thinking, etc) or physical-muscular-actions (eg speaking, tool using, trail following, etc). Our brain is this way, because living creature, MUST be evolved, so they will find & use the best actions, for survival!!! Our human heritage, is to instantly compute near optimal future plans, (mental & physical-muscular), and be able to accomplish plans reliably & efficiently. If you know of book or articles in these topic areas, please email to HenryG--USCA.edu How to work well, with your own ``self'', called mind-body, will follow!! Conjectures: Who is the ``I'' that appears to make decisions? Am ``I'' the master of my domain? Is there an ``I'' or am ``I'' merely an illusion of reality.
Sociological theory and Jungian psychology.
Walker, Gavin
2012-01-01
[[disenchantmentCarl JungpsychoanalysissociologyMax Weber ] In this article I seek to relate the psychology of Carl Jung to sociological theory, specifically Weber. I first present an outline of Jungian psychology. I then seek to relate this as psychology to Weber’s interpretivism. I point to basic methodological compatibilities within a Kantian frame, from which emerge central concerns with the factors limiting rationality. These generate the conceptual frameworks for parallel enquiries into the development and fate of rationality in cultural history. Religion is a major theme here: contrasts of eastern and western religion; the rise of prophetic religion and the disenchantment of modernity. Weber’s categories ‘ascetic’ and ‘mystic’ seem applicable to his own and Jung’s approaches and indeed temperaments, while a shared ironic view of rationality leads to similar visions of the disenchanted modern world. I conclude that Jung is sociologically coherent, but in an entirely different sense from Freud: rather than a constellation of family, socialization, ideology, social continuity, there is an analysis of cultural history against a background of adult normal psychology. I conclude that sociology should acknowledge Jung, but not in terms of over-arching theory. Rather Jungian insights might be used to orient new enquiries, and for reflexive analysis of sociology’s methodological debates.
Hemispheric Coherence in ASD with and without Comorbid ADHD and Anxiety
Directory of Open Access Journals (Sweden)
A. Saunders
2016-01-01
Full Text Available There is a growing body of evidence suggesting that altered brain connectivity may be a defining feature of disorders such as autism spectrum disorder (ASD, anxiety, and ADHD. This study investigated whether resting state functional connectivity, measured by 128-channel EEG oscillation coherence, differs between developmental disorders. Analyses were conducted separately on groups with and without comorbid conditions. Analyses revealed increased coherence across central electrodes over the primary motor cortex and decreased coherence in the frontal lobe networks in those with ASD compared to neurotypical controls. There was increased coherence in occipital lobe networks in the ADHD group compared to other groups. Symptoms of generalised anxiety were positively correlated with both frontal-occipital intrahemispheric (alpha only coherence and occipital interhemispheric coherence (alpha, approaching theta band. The patterns of coherence in the ASD pure group were different when comorbid conditions were included in the analyses, suggesting that aberrant coherence in the frontal and central areas of the brain is specifically associated with ASD. Our findings support the idea that comorbid conditions are additive, rather than being symptoms of the same disorder.
International workshop on phase retrieval and coherent scattering. Coherence 2005
Energy Technology Data Exchange (ETDEWEB)
Nugent, K.A.; Fienup, J.R.; Van Dyck, D.; Van Aert, S.; Weitkamp, T.; Diaz, A.; Pfeiffer, F.; Cloetens, P.; Stampanoni, M.; Bunk, O.; David, C.; Bronnikov, A.V.; Shen, Q.; Xiao, X.; Gureyev, T.E.; Nesterets, Ya.I.; Paganin, D.M.; Wilkins, S.W.; Mokso, R.; Cloetens, P.; Ludwig, W.; Hignette, O.; Maire, E.; Faulkner, H.M.L.; Rodenburg, J.M.; Wu, X.; Liu, H.; Grubel, G.; Ludwig, K.F.; Livet, F.; Bley, F.; Simon, J.P.; Caudron, R.; Le Bolloc' h, D.; Moussaid, A.; Gutt, C.; Sprung, M.; Madsen, A.; Tolan, M.; Sinha, S.K.; Scheffold, F.; Schurtenberger, P.; Robert, A.; Madsen, A.; Falus, P.; Borthwick, M.A.; Mochrie, S.G.J.; Livet, F.; Sutton, M.D.; Ehrburger-Dolle, F.; Bley, F.; Geissler, E.; Sikharulidze, I.; Jeu, W.H. de; Lurio, L.B.; Hu, X.; Jiao, X.; Jiang, Z.; Lurio, L.B.; Hu, X.; Jiao, X.; Jiang, Z.; Naryanan, S.; Sinha, S.K.; Lal, J.; Naryanan, S.; Sinha, S.K.; Lal, J.; Robinson, I.K.; Chapman, H.N.; Barty, A.; Beetz, T.; Cui, C.; Hajdu, J.; Hau-Riege, S.P.; He, H.; Stadler, L.M.; Sepiol, B.; Harder, R.; Robinson, I.K.; Zontone, F.; Vogl, G.; Howells, M.; London, R.; Marchesini, S.; Shapiro, D.; Spence, J.C.H.; Weierstall, U.; Eisebitt, S.; Shapiro, D.; Lima, E.; Elser, V.; Howells, M.R.; Huang, X.; Jacobsen, C.; Kirz, J.; Miao, H.; Neiman, A.; Sayre, D.; Thibault, P.; Vartanyants, I.A.; Robinson, I.K.; Onken, J.D.; Pfeifer, M.A.; Williams, G.J.; Pfeiffer, F.; Metzger, H.; Zhong, Z.; Bauer, G.; Nishino, Y.; Miao, J.; Kohmura, Y.; Yamamoto, M.; Takahashi, Y.; Koike, K.; Ebisuzaki, T.; Ishikawa, T.; Spence, J.C.H.; Doak, B
2005-07-01
The contributions of the participants have been organized into 3 topics: 1) phase retrieval methods, 2) X-ray photon correlation spectroscopy, and 3) coherent diffraction imaging. This document gathers the abstracts of the presentations and of the posters.
Institute of Scientific and Technical Information of China (English)
陈英; 穆华; 廖敏华; 郑江娉; 白洁; 张晓梅
2013-01-01
Objective To explore the characteristics of central exudative chorioretinopathy (CEC)by FFA (fluorescent fundus angiography) and OCT (coherent tomography).Methods Compared the image inspection results of FFA and OCT from 25 patients (25 eyes) diagnosed CEC.Results Both FFA and OCT had advantages in diagnosing CEC.FFA could identify early subretinal neovascularization and located the leakage point sites therefore reflected the scope and extent of the disease,and OCT could clearly point out the morphology,size and position of CNV.Conclusions The combination of FFA and OCT can diagnose CEC more effectively.%目的 通过荧光素眼底血管造影(FFA)和相干光断层扫描(OCT)探讨中心性渗出性脉络膜视网膜病变(CEC)的脉络膜新生血管(CNV)特征.方法 取25例(25只眼)中渗患者进行FFA及OCT检查,并对两种不同的图像检查结果进行对比分析.结果 FFA和OCT在对CEC的诊断上各具优势,FFA有助于发现早期的视网膜下新生血管,可定位渗漏点部位,反映疾病的范围和程度,OCT检查可以明确CEC患者病变中CNV的形态、大小及位置.结论 FFA与OCT联合应用可以更有效地诊断CEC.
Coherence in Linear Predicate Logic
Dosen, K
2007-01-01
Coherence with respect to Kelly-Mac Lane graphs is proved for categories that correspond to the multiplicative fragment without constant propositions of classical linear first-order predicate logic without or with mix. To obtain this result, coherence is first established for categories that correspond to the multiplicative conjunction-disjunction fragment with first-order quantifiers of classical linear logic, a fragment lacking negation. These results extend results published in previous two books by the authors, where coherence was established for categories of the corresponding fragments of propositional classical linear logic, which are related to proof nets, and which could be described as star-autonomous categories without unit objects.
Coherent control of quantum dots
DEFF Research Database (Denmark)
Johansen, Jeppe; Lodahl, Peter; Hvam, Jørn Märcher
In recent years much effort has been devoted to the use of semiconductor quantum dotsystems as building blocks for solid-state-based quantum logic devices. One importantparameter for such devices is the coherence time, which determines the number ofpossible quantum operations. From earlier...... measurements the coherence time of the selfassembledquantum dots (QDs) has been reported to be limited by the spontaneousemission rate at cryogenic temperatures1.In this project we propose to alter the coherence time of QDs by taking advantage of arecent technique on modifying spontaneous emission rates...
Nel, Louis
2016-01-01
This book presents a detailed, self-contained theory of continuous mappings. It is mainly addressed to students who have already studied these mappings in the setting of metric spaces, as well as multidimensional differential calculus. The needed background facts about sets, metric spaces and linear algebra are developed in detail, so as to provide a seamless transition between students' previous studies and new material. In view of its many novel features, this book will be of interest also to mature readers who have studied continuous mappings from the subject's classical texts and wish to become acquainted with a new approach. The theory of continuous mappings serves as infrastructure for more specialized mathematical theories like differential equations, integral equations, operator theory, dynamical systems, global analysis, topological groups, topological rings and many more. In light of the centrality of the topic, a book of this kind fits a variety of applications, especially those that contribute to ...
Ishizaki, Akihito; Fleming, Graham R
2009-06-21
A new quantum dynamic equation for excitation energy transfer is developed which can describe quantum coherent wavelike motion and incoherent hopping in a unified manner. The developed equation reduces to the conventional Redfield theory and Forster theory in their respective limits of validity. In the regime of coherent wavelike motion, the equation predicts several times longer lifetime of electronic coherence between chromophores than does the conventional Redfield equation. Furthermore, we show quantum coherent motion can be observed even when reorganization energy is large in comparison to intersite electronic coupling (the Forster incoherent regime). In the region of small reorganization energy, slow fluctuation sustains longer-lived coherent oscillation, whereas the Markov approximation in the Redfield framework causes infinitely fast fluctuation and then collapses the quantum coherence. In the region of large reorganization energy, sluggish dissipation of reorganization energy increases the time electronic excitation stays above an energy barrier separating chromophores and thus prolongs delocalization over the chromophores.
Metal-insulator transition: the Mott criterion and coherence length
Pergament, A
2003-01-01
On the basis of the Mott criterion for metal-insulator transition (MIT), an expression for the correlation length, identical to that for the coherence length in the theory of superconductivity, is obtained. This correlation length characterizes the size of an electron-hole pair (in an excitonic insulator) or the effective Bohr radius (as, e.g., in doped semiconductors). The relation obtained is used for calculation of the coherence length in vanadium dioxide. The presence of two characteristic coherence lengths (xi sub 1 approx 20 A and xi sub 2 approx 2 A) is found. This is associated with the specific features of the transition mechanism in VO sub 2 : this mechanism represents a combination of the purely electronic Mott-Hubbard contribution and the structural (Peierls-like) one. It is shown, however, that the driving force of the MIT in VO sub 2 is the electron-correlation Mott-Hubbard transition.
Coherence Without Commutative Diagrams, Lie-Hedra and Other Curiosities
Markl, M; Markl, Martin; Shnider, Steve
1997-01-01
The paper is devoted to the coherence problem for algebraic structures on a category. We describe coherence constraints in terms of the cohomology of the corresponding operad. Our approach enables us to introduce the concept of coherence even for structures which are not given by commutative diagrams. In the second part of the paper we discuss `quantizations' of various algebraic structures. We prove that there always exists the `canonical quantization' and show that the two prominent examples -- Drinfel'd's quasi-Hopf algebras and Gurevich's generalized Lie algebras -- are canonical quantizations of their `classical limits.' The second part can be read independently, though the abstract theory of the first part is necessary for the full understanding of the results.
The density matrix picture of laser coherent control current
Institute of Scientific and Technical Information of China (English)
SHOU Qian; ZHANG Haichao; LIU Luning; LIN Weizhu
2004-01-01
The physical substance of the coherent control current and the optical rectification have been analyzed based on density matrix perturbation theory. The analytical results demonstrate that they arise from the real and virtual manifestations of the same nonlinear process associated with diagonal and non-diagonal density matrix.And in terms of polarization, they respectively arise from the intraband and interband polarizations. Both the evolution of the coherent control current exited by ultrafast laser pulse and its dependence on frequency have been studied in time and frequency domains. In order to get an explicit knowledge of intraband polarization and the origination of the coherent control current, we have investigated the initial photo-carriers momentum distribution. The ultrafast decay of the polar momentum population in order of tens of femtosends is given to illustrate its instantaneous optical response.
On gl((⌒)2｜2)(2)k Current Superalgebra and Twisted Conformal Field Theory
Institute of Scientific and Technical Information of China (English)
DING Xiang-Mao; WANG Gui-Dong; WANG Shi-Kun
2007-01-01
Motivated by the recently discovered hidden symmetry of the type ∏B Green-Schwarz superstring on certain background, the non-semisimple Kac-Moody twisted superalgebra gl((⌒)2|2)(2)k is investigated by means of the vector coherent state method and boson-fermion realization. The free field realization of the twisted current superalgebra at general level k is constructed. The corresponding Conformal Field Theory (CFT) has zero central charge. According to the classification theory, this CFT is a nonunitary field theory. After projecting out a U(1) factor and an outer automorphism operator, we get the free field representation of psl((⌒)2|2)(2)k, which is the algebra of gl((⌒)2|2)(2)k modulo the Z4-outer automorphism, the CFT has central charge -2.
Coherent Radio Emission from Pulsars
Mitra, Dipanjan; Gil, Janusz
2015-01-01
We review a physical model where the high brightness temperature of 10$^{25}-10^{30}$ K observed in pulsar radio emission is explained by coherent curvature radiation excited in the relativistic electron-positron plasma in the pulsar magnetosphere.
Coherent Control of Bond Making
Levin, Liat; Rybak, Leonid; Kosloff, Ronnie; Koch, Christiane P; Amitay, Zohar
2014-01-01
We demonstrate for the first time coherent control of bond making, a milestone on the way to coherent control of photo-induced bimolecular chemical reactions. In strong-field multiphoton femtosecond photoassociation experiments, we find the yield of detected magnesium dimer molecules to be enhanced for positively chirped pulses and suppressed for negatively chirped pulses. Our ab initio model shows that control is achieved by purification via Franck-Condon filtering combined with chirp-dependent Raman transitions. Experimental closed-loop phase optimization using a learning algorithm yields an improved pulse that utilizes vibrational coherent dynamics in addition to chirp-dependent Raman transitions. Our results show that coherent control of binary photo-reactions is feasible even under thermal conditions.
Pairing versus quarteting coherence length
Delion, Doru S
2015-01-01
We systematically analyse the coherence length in even-even nuclei. The pairing coherence length in the spin-singlet channel for the effective density dependent delta (DDD) and Gaussian interaction is estimated. We consider in our calculations bound states as well as narrow resonances. It turns out that the pairing gaps given by the DDD interaction are similar to those of the Gaussian potential if one renormalizes the radial width to the nuclear radius. The correlations induced by the pairing interaction have in all considered cases a long range character inside the nucleus and decrease towards the surface. The mean coherence length is larger than the geometrical radius for light nuclei and approaches this value for heavy nuclei. The effect of the temperature and states in continuum is investigated. Strong shell effects are evidenced, especially for protons. We generalize this concept to quartets by considering similar relations, but between proton and neutron pairs. The quartet coherence length has a similar...
Coherence matrix of plasmonic beams
DEFF Research Database (Denmark)
Novitsky, Andrey; Lavrinenko, Andrei
2013-01-01
We consider monochromatic electromagnetic beams of surface plasmon-polaritons created at interfaces between dielectric media and metals. We theoretically study non-coherent superpositions of elementary surface waves and discuss their spectral degree of polarization, Stokes parameters, and the for...... of the spectral coherence matrix. We compare the polarization properties of the surface plasmonspolaritons as three-dimensional and two-dimensional fields concluding that the latter is superior....
Novelty, coherence, and Mendeleev's periodic table.
Schindler, Samuel
2014-03-01
Predictivism is the view that successful predictions of "novel" evidence carry more confirmational weight than accommodations of already known evidence. Novelty, in this context, has traditionally been conceived of as temporal novelty. However temporal predictivism has been criticized for lacking a rationale: why should the time order of theory and evidence matter? Instead, it has been proposed, novelty should be construed in terms of use-novelty, according to which evidence is novel if it was not used in the construction of a theory. Only if evidence is use-novel can it fully support the theory entailing it. As I point out in this paper, the writings of the most influential proponent of use-novelty contain a weaker and a stronger version of use-novelty. However both versions, I argue, are problematic. With regard to the appraisal of Mendeleev' periodic table, the most contentious historical case in the predictivism debate, I argue that temporal predictivism is indeed supported, although in ways not previously appreciated. On the basis of this case, I argue for a form of so-called symptomatic predictivism according to which temporally novel predictions carry more confirmational weight only insofar as they reveal the theory's presumed coherence of facts as real.
Stewart, Ian
2003-01-01
Ian Stewart's Galois Theory has been in print for 30 years. Resoundingly popular, it still serves its purpose exceedingly well. Yet mathematics education has changed considerably since 1973, when theory took precedence over examples, and the time has come to bring this presentation in line with more modern approaches.To this end, the story now begins with polynomials over the complex numbers, and the central quest is to understand when such polynomials have solutions that can be expressed by radicals. Reorganization of the material places the concrete before the abstract, thus motivating the g
(Inter)textuality, Semantics, and Coherence.
Weiser, Irwin
Although the concept of coherence is elusive, explorations of the historical, theoretical, and empirical discussions of coherence can illuminate, though not eliminate, the concept's elusiveness. There are three inter-related and overlapping ways that readers make coherence. Intratextuality, the notion that readers perceive a text as coherent if it…
Coherence Studies for Synthetic Aperture Sonar
2014-09-30
TITLE AND SUBTITLE Coherence Studies for Synthetic Aperture Sonar 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-13-1-0020 5c. PROGRAM...systematic look at, coherence. 15. SUBJECT TERMS Synthetic; Aperture Sonar , Coherence, Seafloor Scatter, Propagation Variability 16. SECURITY...reconstruction of the document. Coherence Studies for Synthetic Aperture Sonar Anthony P. Lyons The Pennsylvania State University Applied Research
A Construal Model Perspective on Discourse Coherence
Yang, Hongyan
2015-01-01
Discourse coherence is a common phenomenon in linguistic studies, and plays an important role in discourse analysis. As a common and extremely important type of language phenomena, discourse coherence has drawn more and more scholars' attention, but they emphasis on partial discourse coherence, paying a little attention to holistic coherence. The…
Theory of Mind Deficit versus Faulty Procedural Memory in Autism Spectrum Disorders.
Romero-Munguía, Miguel Ángel
2013-01-01
Individuals with autism spectrum disorders (ASD) have impairments in social interaction, communicative capacity, and behavioral flexibility (core triad). Three major cognitive theories (theory of mind deficit, weak central coherence, and executive dysfunction) seem to explain many of these impairments. Currently, however, the empathizing-systemizing (a newer version of the theory of mind deficit account) and mnesic imbalance theories are the only ones that attempt to explain all these core triadic symptoms of ASD On the other hand, theory of mind deficit in empathizing-systemizing theory is the most influential account for ASD, but its counterpart in the mnesic imbalance theory, faulty procedural memory, seems to occur earlier in development; consequently, this might be a better solution to the problem of the etiology of ASD, if it truly meets the precedence criterion. Hence, in the present paper I review the reasoning in favor of the theory of mind deficit but with a new interpretation based on the mnesic imbalance theory, which posits that faulty procedural memory causes deficits in several cognitive skills, resulting in poor performance in theory of mind tasks.
Theory of Mind Deficit versus Faulty Procedural Memory in Autism Spectrum Disorders
Directory of Open Access Journals (Sweden)
Miguel Ángel Romero-Munguía
2013-01-01
Full Text Available Individuals with autism spectrum disorders (ASD have impairments in social interaction, communicative capacity, and behavioral flexibility (core triad. Three major cognitive theories (theory of mind deficit, weak central coherence, and executive dysfunction seem to explain many of these impairments. Currently, however, the empathizing-systemizing (a newer version of the theory of mind deficit account and mnesic imbalance theories are the only ones that attempt to explain all these core triadic symptoms of ASD On the other hand, theory of mind deficit in empathizing-systemizing theory is the most influential account for ASD, but its counterpart in the mnesic imbalance theory, faulty procedural memory, seems to occur earlier in development; consequently, this might be a better solution to the problem of the etiology of ASD, if it truly meets the precedence criterion. Hence, in the present paper I review the reasoning in favor of the theory of mind deficit but with a new interpretation based on the mnesic imbalance theory, which posits that faulty procedural memory causes deficits in several cognitive skills, resulting in poor performance in theory of mind tasks.
Qin, Zhiyuan; Tao, Rumao; Zhou, Pu; Xu, Xiaojun; Liu, Zejin
2013-11-20
Based on partially coherent Bessel-Gaussian beams (BGBs), the coherence evolution of the partially coherent beams carrying optical vortices in non-Kolmogorov turbulence is investigated in detail. The analytical formulas for the spatial coherence length of partially coherent BGBs with optical vortices in non-Kolmogorov turbulence have been derived by using the combination of a coherence superposition approximation of decentered Gaussian beams and the extended Huygens-Fresnel principle. The influences of beam and turbulence parameters on spatial coherence are investigated by numerical examples. Numerical results reveal that the coherence of the partially coherent laser beam with vortices is independent of the optical vortices, and the spatial correlation length of the beams does not decrease monotonically during propagation in non-Kolmogorov turbulence. Within a certain propagation distance, the coherence of the partially coherent beam will improve, and the improvement of the coherence of the partially coherent beams is closely related to the beam and turbulence parameters.
Spin squeezing in nonlinear spin coherent states
Wang, Xiaoguang
2001-01-01
We introduce the nonlinear spin coherent state via its ladder operator formalism and propose a type of nonlinear spin coherent state by the nonlinear time evolution of spin coherent states. By a new version of spectroscopic squeezing criteria we study the spin squeezing in both the spin coherent state and nonlinear spin coherent state. The results show that the spin coherent state is not squeezed in the x, y, and z directions, and the nonlinear spin coherent state may be squeezed in the x and...
Energy Technology Data Exchange (ETDEWEB)
Offord, S.J.
1986-01-01
Researchers are suggesting unipolar affective disorders may be related to an abnormality in biogenic amine receptor-sensitivity. This abnormality may be a result of a dysfunction in central serotonin (5-HT) release mechanisms. 5-HT neurotransmission is modulated by presynaptic autoreceptors, which are members of the 5-HT/sub 1/ receptor subtype. The autoreceptor is thought to play an important role in the homeostasis of the central 5-HT synapse and could be a site at which some antidepressants mediate their therapeutic effect. The number of 5-HT/sub 1/ type receptor binding sites are reduced and behavior mediated by this receptor is abolished following repeated injections of monoamine oxidase inhibitor type antidepressants. These changes did not occur following a single injection. It was hypothesized that repeated treatment with a monoamine oxidase inhibitor would reduce the sensitivity of 5-HT autoreceptors and enhance 5-HT release. Rats were pretreated with single or repeated (twice daily for 7 days) intraperitoneal injections of nialamide (40 mg/kg) or chlorimipramine (10 mg/kg) and the ability of the autoreceptor agonist to inhibit potassium-induced /sup 3/H-5-HT release was evaluated using an in vitro superfusion system. These changes in 5-HT autoreceptor activity are consistent with other reports evaluating monoamine oxidase inhibitors on 5-HT/sub 1/ type receptors. It is hypothesized that the changes in 5-HT neurotransmission are related to the antidepressant mechanism of monoamine oxidase inhibitors.
Directory of Open Access Journals (Sweden)
Pier Alberto Testoni
2007-01-01
Full Text Available Optical coherence tomography (OCT is an optical imaging modality that performs high-resolution, cross-sectional, subsurface tomographic imaging of the microstructure of tissues. The physical principle of OCT is similar to that of B-mode ultrasound imaging, except that it uses infrared light waves rather than acoustic waves. The in vivo resolution is 10–25 times better (about 10 µm than with high-frequency ultrasound imaging, but the depth of penetration is limited to 1–3 mm, depending on tissue structure, depth of focus of the probe used, and pressure applied to the tissue surface. In the last decade, OCT technology has evolved from an experimental laboratory tool to a new diagnostic imaging modality with a wide spectrum of clinical applications in medical practice, including the gastrointestinal tract and pancreatico-biliary ductal system. OCT imaging from the gastrointestinal tract can be done in humans by using narrow-diameter, catheter-based probes that can be inserted through the accessory channel of either a conventional front-view endoscope, for investigating the epithelial structure of the gastrointestinal tract, or a side-view endoscope, inside a standard transparent ERCP (endoscopic retrograde cholangiopancreatography catheter, for investigating the pancreatico-biliary ductal system. The esophagus and esophagogastric junction have been the most widely investigated organs so far; more recently, duodenum, colon, and the pancreatico-biliary ductal system have also been extensively investigated. OCT imaging of the gastrointestinal wall structure is characterized by a multiple-layer architecture that permits an accurate evaluation of the mucosa, lamina propria, muscularis mucosae, and part of the submucosa. The technique may therefore be used to identify preneoplastic conditions of the gastrointestinal tract, such as Barrett's epithelium and dysplasia, and evaluate the depth of penetration of early-stage neoplastic lesions. OCT imaging
Energy Technology Data Exchange (ETDEWEB)
Grubelich, Mark C.; Su, Jiann-Cherng; Knudsen, Steven D.
2017-02-28
A centralizer assembly is disclosed that allows for the assembly to be deployed in-situ. The centralizer assembly includes flexible members that can be extended into the well bore in situ by the initiation of a gas generating device. The centralizer assembly can support a large load carrying capability compared to a traditional bow spring with little or no installation drag. Additionally, larger displacements can be produced to centralize an extremely deviated casing.
Coherent states and applications in mathematical physics
Combescure, Monique
2012-01-01
This book presents the various types of coherent states introduced and studied in the physics and mathematics literature and describes their properties together with application to quantum physics problems. It is intended to serve as a compendium on coherent states and their applications for physicists and mathematicians, stretching from the basic mathematical structures of generalized coherent states in the sense of Perelomov via the semiclassical evolution of coherent states to various specific examples of coherent states (hydrogen atom, quantum oscillator, ...).
Toward optical coherence topography
Sayegh, Samir; Jiang, Yanshui
2012-03-01
Commercial OCT systems provide pachymetry measurements. Full corneal topographic information of anterior and posterior corneal surfaces for use in cataract surgery and refractive procedures is a desirable goal and would add to the usefulness of anterior and posterior segment evaluation. While substantial progress has been made towards obtaining "average" central corneal power (D Huang), power in different meridians and topography are still missing. This is usually reported to be due to eye movement. We analyze the role of centration, eye movements and develop a model that allows for the formulation of criteria for obtaining reliable topographic data within ¼ diopter.
Coherence measurements and coherent diffractive imaging at FLASH
Energy Technology Data Exchange (ETDEWEB)
Vartanyants, I A; Mancuso, A P; Singer, A; Yefanov, O M; Gulden, J, E-mail: ivan.vartaniants@desy.d [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany)
2010-10-14
We present an overview of recent experiments performed at the free-electron laser (FEL) FLASH at DESY in Hamburg. Experiments were focused on coherence measurements and coherent x-ray diffractive imaging (CXDI) of periodic and non-periodic biological samples. Young's double slit experiment was performed at FLASH to measure its coherence properties at a fundamental wavelength of 13.7 nm. Additionally, a uniformly redundant array was used to measure the coherence properties of the third harmonic (2.7 nm) of an 8 nm fundamental wavelength at FLASH. Coherent imaging of a two-dimensional (2D) finite crystal structure using a single pulse train of FLASH radiation was demonstrated. We show that the structure is reconstructed to the detector-limited resolution of 220 nm, given an adequate signal to noise ratio. We have also employed CXDI in a non-destructive regime to compare the images of a biological sample using single, femtosecond pulses of FLASH radiation. We have verified that images reconstructed using CXDI are similar for statistically different FEL pulses. We have also demonstrated Fourier transform holography of the same biological sample and present diffraction data measured at the third harmonic of FLASH, reaching into the water window.
Fourier phase in Fourier-domain optical coherence tomography.
Uttam, Shikhar; Liu, Yang
2015-12-01
Phase of an electromagnetic wave propagating through a sample-of-interest is well understood in the context of quantitative phase imaging in transmission-mode microscopy. In the past decade, Fourier-domain optical coherence tomography has been used to extend quantitative phase imaging to the reflection-mode. Unlike transmission-mode electromagnetic phase, however, the origin and characteristics of reflection-mode Fourier phase are poorly understood, especially in samples with a slowly varying refractive index. In this paper, the general theory of Fourier phase from first principles is presented, and it is shown that Fourier phase is a joint estimate of subresolution offset and mean spatial frequency of the coherence-gated sample refractive index. It is also shown that both spectral-domain phase microscopy and depth-resolved spatial-domain low-coherence quantitative phase microscopy are special cases of this general theory. Analytical expressions are provided for both, and simulations are presented to explain and support the theoretical results. These results are further used to show how Fourier phase allows the estimation of an axial mean spatial frequency profile of the sample, along with depth-resolved characterization of localized optical density change and sample heterogeneity. Finally, a Fourier phase-based explanation of Doppler optical coherence tomography is also provided.
Quantum correlations and coherence in spin-1 Heisenberg chains
Malvezzi, A. L.; Karpat, G.; ćakmak, B.; Fanchini, F. F.; Debarba, T.; Vianna, R. O.
2016-05-01
We explore quantum and classical correlations along with coherence in the ground states of spin-1 Heisenberg chains, namely the one-dimensional XXZ model and the one-dimensional bilinear biquadratic model, with the techniques of density matrix renormalization group theory. Exploiting the tools of quantum information theory, that is, by studying quantum discord, quantum mutual information, and three recently introduced coherence measures in the reduced density matrix of two nearest neighbor spins in the bulk, we investigate the quantum phase transitions and special symmetry points in these models. We point out the relative strengths and weaknesses of correlation and coherence measures as figures of merit to witness the quantum phase transitions and symmetry points in the considered spin-1 Heisenberg chains. In particular, we demonstrate that, as none of the studied measures can detect the infinite-order Kosterlitz-Thouless transition in the XXZ model, they appear to be able to signal the existence of the same type of transition in the biliear biquadratic model. However, we argue that what is actually detected by the measures here is the SU(3) symmetry point of the model rather than the infinite-order quantum phase transition. Moreover, we show in the XXZ model that examining even single site coherence can be sufficient to spotlight the second-order phase transition and the SU(2) symmetry point.
Spatial Coherence of Synchrotron Radiation
Energy Technology Data Exchange (ETDEWEB)
Marchesini, S; Coisson, R
2003-10-30
Synchrotron Radiation (SR) has been widely used since the 80's as a tool for many applications of UV, soft X rays and hard X rays in condensed matter physics, chemistry and biology. The evolution of SR sources towards higher brightness has led to the design of low-emittance electron storage rings (emittance is the product of beam size and divergence), and the development of special source magnetic structures, as undulators. This means that more and more photons are available on a narrow bandwidth and on a small collimated beam; in other words there is the possibility of getting a high power in a coherent beam. In most applications, a monochromator is used, and the temporal coherence of the light is given by the monochromator bandwidth. With smaller and smaller sources, even without the use of collimators, the spatial coherence of the light has become appreciable, first in the UV and soft X ray range, and then also with hard X rays. This has made possible new or improved experiments in interferometry, microscopy, holography, correlation spectroscopy, etc. In view of these recent possibilities and applications, it is useful to review some basic concepts about spatial coherence of SR, and its measurement and applications. In particular we show how the spatial coherence properties of the radiation in the far field can be calculated with simple operations from the single-electron amplitude and the electron beam angular and position spreads. The gaussian approximation will be studied in detail for a discussion of the properties of the far field mutual coherence and the estimate of the coherence widths, and the comparison with the VanCittert-Zernike limit.
Lagrangian based methods for coherent structure detection
Energy Technology Data Exchange (ETDEWEB)
Allshouse, Michael R., E-mail: mallshouse@chaos.utexas.edu [Center for Nonlinear Dynamics and Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States); Peacock, Thomas, E-mail: tomp@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2015-09-15
There has been a proliferation in the development of Lagrangian analytical methods for detecting coherent structures in fluid flow transport, yielding a variety of qualitatively different approaches. We present a review of four approaches and demonstrate the utility of these methods via their application to the same sample analytic model, the canonical double-gyre flow, highlighting the pros and cons of each approach. Two of the methods, the geometric and probabilistic approaches, are well established and require velocity field data over the time interval of interest to identify particularly important material lines and surfaces, and influential regions, respectively. The other two approaches, implementing tools from cluster and braid theory, seek coherent structures based on limited trajectory data, attempting to partition the flow transport into distinct regions. All four of these approaches share the common trait that they are objective methods, meaning that their results do not depend on the frame of reference used. For each method, we also present a number of example applications ranging from blood flow and chemical reactions to ocean and atmospheric flows.
Institute of Scientific and Technical Information of China (English)
Zhu Yanping; Song Yaoliang; Chen Jinli; Zhao Delin
2012-01-01
Compressed Sensing (CS) theory is a great breakthrough of the traditional Nyquist sampling theory.It can accomplish compressive sampling and signal recovery based on the sparsity of interested signal,the randomness of measurement matrix and nonlinear optimization method of signal recovery.Firstly,the CS principle is reviewed.Then the ambiguity function of Multiple-Input Multiple-Output (MIMO) radar is deduced.After that,combined with CS theory,the ambiguity function of MIMO radar is analyzed and simulated in detail.At last,the resolutions of coherent and non-coherent MIMO radars on the CS theory are discussed.Simulation results show that the coherent MIMO radar has better resolution performance than the non-coherent.But the coherent ambiguity function has higher side lobes,which caused a deterioration in radar target detection performances.The stochastic embattling method of sparse array based on minimizing the statistical coherence of sensing matrix is proposed.And simulation results show that it could effectively suppress side lobes of the ambiguity function and improve the capability of weak target detection.
Institute of Scientific and Technical Information of China (English)
葛建杰; 王沫学; 高夕宁; 赵玉新
2011-01-01
目的 探讨光学相干断层扫描(optical coherence tomography,OCT)对光动力疗法(photodynamic terapy PDT)治疗中心性渗出性脉络膜视网膜病变(central exudative chorioretinopathy,CEC)脉络膜新生血管(choroidal neovascularization,CNV)的临床应用价值.方法 对CEC患者45例(46只眼)进行光学相干断层扫描,荧光素眼底血管造影(fundus fluorescein angiography,FFA),吲哚青绿脉络膜血管造影(indocyanine green angiography,ICGA)检查.根据FFA,ICGA和OCT检查结果,明确CNV位置、范围和大小.PDT治疗按维替泊芬PDT治疗(VIP)研究组的方法 进行.并对其疗效进行评价.结果 光动力疗法(PDT)治疗后视力提高者13只眼,占28.26%;视力稳定不变者22只眼,占47.82%;视力下降者11只眼,占23.92%.OCT复查结果 为14只眼(3044%)黄斑水肿消失;18只眼(39.13%)黄斑水肿减轻;10只眼(21.73%)无变化;4只眼(8.7%)黄斑冰肿加重.CNV消失15只眼(32.61%),CNV缩小24只眼(52.17%),CNV无变化4只眼(8.7%),CNV增大3只眼(6.52%).治疗后视网膜厚度明显变薄(P<0.01).黄斑中心凹视网膜神经上皮层厚度与视力呈负相关(r=0.4963,P<0.01).结论 OCT可客观、精确地显示CNV的位置、大小、范围及视网膜水肿的变化程度,对指导光动力疗法(PDT)治疗中心性渗出性脉络膜视网膜病变(CEC)脉络膜新生血管(CNV)的疗效评价有着重要价值.%Objective To verify the applicable significance of optical coherence tomography (OCT)photodynamic therapy (PDT) for central exudative chorioretinopathy (CEC) choroidal neovascularization (CNV). Methods Forty-five cases (46 eyes) of central exudative chorioretinopathy (CEC) were managed with PDT. Before and post-treatment, all cases underwent OCT, fiuorescein angiography (FFA) and indocyanine green angiography (ICGA). PDT treatment was in accordance with the PDT verteporfin therapy (VIP) Study Group methods. Results The visual acuities of last visit were compared with those before the
Coherent states in quantum physics
Gazeau, Jean-Pierre
2009-01-01
This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:
Duality in adiabatic level crossing Quantum coherence and complete reflection
Fujikawa, K; Fujikawa, Kazuo; Suzuki, Hiroshi
1997-01-01
A field dependent su(2) gauge transformation connects between the adiabatic and diabatic pictures in the (Landau-Zener-Stueckelberg) level crossing problem. It is pointed out that weak and strong level crossing interactions are interchanged under this transformation, and thus realizing a naive strong and weak duality. A reliable perturbation theory is thus formulated in the both limits of weak and strong interactions. Main characteristics of the level crossing phenomena such as the Landau-Zener formula including its numerical coefficient are well-described by simple perturbation theory without referring to Stokes phenomena. We also show that quantum coherence in a double well potential is generally suppressed by the effect of level crossing, which is analogous to the effect of Ohmic dissipation on quantum coherence.
Velocity measurement by coherent x-ray heterodyning
Energy Technology Data Exchange (ETDEWEB)
Lhermitte, Julien R. M.; Rogers, Michael C.; Manet, Sabine; Sutton, Mark
2017-01-01
We present a small-angle coherent x-ray scattering technique used for measuring flow velocities in slow moving materials. The technique is an extension of X-ray Photon Correlation Spectroscopy (XPCS): It involves mixing the scattering from moving tracer particles with a static reference that heterodynes the signal. This acts to elongate temporal effects caused by flow in homodyne measurements, allowing for a more robust measurement of flow properties. Using coherent x-ray heterodyning, velocities ranging from 0.1 to 10 μm/s were measured for a viscous fluid pushed through a rectangular channel. We describe experimental protocols and theory for making these Poiseuille flow profile measurements and also develop the relevant theory for using heterodyne XPCS to measure velocities in uniform and Couette flows.
Digital signal processing techniques for coherent optical communication
Goldfarb, Gilad
Coherent detection with subsequent digital signal processing (DSP) is developed, analyzed theoretically and numerically and experimentally demonstrated in various fiber-optic transmission scenarios. The use of DSP in conjunction with coherent detection unleashes the benefits of coherent detection which rely on the preservaton of full information of the incoming field. These benefits include high receiver sensitivity, the ability to achieve high spectral-efficiency and the use of advanced modulation formats. With the immense advancements in DSP speeds, many of the problems hindering the use of coherent detection in optical transmission systems have been eliminated. Most notably, DSP alleviates the need for hardware phase-locking and polarization tracking, which can now be achieved in the digital domain. The complexity previously associated with coherent detection is hence significantly diminished and coherent detection is once gain considered a feasible detection alternative. In this thesis, several aspects of coherent detection (with or without subsequent DSP) are addressed. Coherent detection is presented as a means to extend the dispersion limit of a duobinary signal using an analog decision-directed phase-lock loop. Analytical bit-error ratio estimation for quadrature phase-shift keying signals is derived. To validate the promise for high spectral efficiency, the orthogonal-wavelength-division multiplexing scheme is suggested. In this scheme the WDM channels are spaced at the symbol rate, thus achieving the spectral efficiency limit. Theory, simulation and experimental results demonstrate the feasibility of this approach. Infinite impulse response filtering is shown to be an efficient alternative to finite impulse response filtering for chromatic dispersion compensation. Theory, design considerations, simulation and experimental results relating to this topic are presented. Interaction between fiber dispersion and nonlinearity remains the last major challenge
Spatial coherences of the sound pressure and the particle velocity in underwater ambient noise
Institute of Scientific and Technical Information of China (English)
YAN Jin; LUO Xianzhi; HOU Chaohuan
2007-01-01
The spatial coherences were investigated between the sound pressure and the three orthogonal components of the particle velocity in underwater ambient noise. Based on the ray theory, integral expression was derived for the spatial coherence matrix of the sound pressure and the particle velocity in a stratified ocean with dipole noise sources homogenously distributed on the surface. The integrand includes a multiplying factor of the vertical directivity of the noise intensity, and the layered ocean environment affects the spatial coherences via this directivity factor. For a shallow water environment and a semi-infinite homogenous medium, the coherence calculation results were given. It was showed that the sound speed profile and the sea bottom could not be neglected in determining the spatial coherences of the ambient noise vector field.
Zimanyi, Eric N; Silbey, Robert J
2010-10-14
Recent experiments on resonance energy transfer (RET) in photosynthetic systems have found evidence of quantum coherence between the donor and the acceptor. Under these conditions, Förster's theory of RET is no longer applicable and no theory of coherent RET advanced to date rivals the intuitive simplicity of Förster's theory. Here, we develop a framework for understanding RET that is based on classical electrodynamics but still captures the essence of the quantum coherence between the molecules. Our theory requires only a knowledge of the complex polarizabilities of the two molecules participating in the transfer as well as the distance between them. We compare our results to quantum mechanical calculations and show that the results agree quantitatively.
Commentary on "Distributed Revisiting: An Analytic for Retention of Coherent Science Learning"
Hewitt, Jim
2015-01-01
The article, "Distributed Revisiting: An Analytic for Retention of Coherent Science Learning" is an interesting study that operates at the intersection of learning theory and learning analytics. The authors observe that the relationship between learning theory and research in the learning analytics field is constrained by several…
Land Reform and Land Consolidation in Central and Eastern Europe after 1989
DEFF Research Database (Denmark)
Hartvigsen, Morten B.
instruments are well on the way in the region, land banking instruments have largely failed in the region, at least as tools for supporting land consolidation programs. Based on the limited theory available, the analysis has revealed how limited land mobility is often hampering the outcome of land...... are not competitive in the globalized economy. Drawing on the classical theory on land fragmentation, this PhD study explores the coherence between the land reform approaches applied in 25 study countries and the outcome in form of farm structures and land fragmentation. Most of the Central and Eastern European...... countries have introduced land consolidation instruments to address the structural problems in agriculture. The PhD study analyses the experiences from introduction of land consolidation and land banking instruments and provides the first full overview of the experiences achieved. While land consolidation...
Coherent Dynamics of Complex Quantum Systems
Akulin, Vladimir M
2006-01-01
A large number of modern problems in physics, chemistry, and quantum electronics require a consideration of population dynamics in complex multilevel quantum systems. The purpose of this book is to provide a systematic treatment of these questions and to present a number of exactly solvable problems. It considers the different dynamical problems frequently encountered in different areas of physics from the same perspective, based mainly on the fundamental ideas of group theory and on the idea of ensemble average. Also treated are concepts of complete quantum control and correction of decoherence induced errors that are complementary to the idea of ensemble average. "Coherent Dynamics of Complex Quantum Systems" is aimed at senior-level undergraduate students in the areas of Atomic, Molecular, and Laser Physics, Physical Chemistry, Quantum Optics and Quantum Informatics. It should help them put particular problems in these fields into a broader scientific context and thereby take advantage of the well-elabora...
Coherence and measurement in quantum thermodynamics
Kammerlander, P.; Anders, J.
2016-02-01
Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.
Comment on "Spatial Coherence and Optical Beam Shifts"
Wang, Li-Gang; Zubairy, M Suhail
2013-01-01
This comment is to show that our simulation data, based on our theory and method in Ref. [J. Phys. B 41, 055401 (2008)], are also in agreement with the experimental data presented for $D_{p}-D_{s}$ in Ref. [Phys. Rev. Lett. \\textbf{109}, 213901 (2012)]. We also demonstrate how to show the effect of spatial coherence on the GH shifts in this comment, therefore we disagree with the claims in Ref. [Phys. Rev. Lett. \\textbf{109}, 213901 (2012)].
Directory of Open Access Journals (Sweden)
Marcin Overgaard Ptaszynski
2011-10-01
Full Text Available
Abstract: The aim of this article is to contribute to the development of the modern theory of lexi-cographical functions by offering a critical examination of the following concepts associated with it: primary needs, primary data, secondary needs, secondary data, function-related needs, and function-related data. By way of introduction, a presentation of the basic tenets of the theory is offered, followed by a description of the gen-eral characteristics of secondary needs and data. Next, on the basis of both a critical analysis of the theory and an examination of selected data types in existing lexicographical products, it is argued that all user needs and all data that satisfy those needs are function-related. The distinction between the concepts function-related and usage-related is thus rejected. Since this has serious implications for the relation between secondary needs and data on the one hand and primary needs and data on the other, this relation is subsequently reconsid-ered. This leads to a redefinition of all the concepts examined. It is also explained why an ideal state of lexico-graphy, where secondary needs and data do not exist, cannot be achieved in the real world.
Keywords: DICTIONARY, LEXICOGRAPHY, LEXICOGRAPHICAL FUNCTION, PRIMARY NEED, PRIMARY DATA, SECONDARY NEED, SECONDARY DATA, FUNCTION-RELATED NEED, FUNCTION-RELATED DATA, EXTRA-LEXICOGRAPHICAL SITUATION, INTRA-LEXICOGRAPHICAL SITUATION, COMMUNICATIVE FUNCTION, COGNITIVE FUNCTION, OPERATIVE FUNCTION, TEXT RECEPTION, TEXT PRODUCTION, TRANSLATION
Opsomming: Funksieverwante sekondêre gebruikersbehoeftes en sekon-dêre data? 'n Kritiese ondersoek na 'n aantal kernbegrippe in die moderne teorie van leksikografiese funksies. Die doel van hierdie artikel is om by te dra tot die ontwikkeling van die moderne teorie van leksikografiese funksies deur 'n kritiese ondersoek aan te bied van die volgende begrippe wat daarmee verbind word: primêre behoeftes, primêre data
Coherent fiber supercontinuum for biophotonics.
Tu, Haohua; Boppart, Stephen A
2013-09-01
Biophotonics and nonlinear fiber optics have traditionally been two independent fields. Since the discovery of fiber-based supercontinuum generation in 1999, biophotonics applications employing incoherent light have experienced a large impact from nonlinear fiber optics, primarily because of the access to a wide range of wavelengths and a uniform spatial profile afforded by fiber supercontinuum. However, biophotonics applications employing coherent light have not benefited from the most well-known techniques of supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, and inadequate portability. Fortunately, a few key techniques involving nonlinear fiber optics and femtosecond laser development have emerged to overcome these critical limitations. Despite their relative independence, these techniques are the focus of this review, because they can be integrated into a low-cost portable biophotonics source platform. This platform can be shared across many different areas of research in biophotonics, enabling new applications such as point-of-care coherent optical biomedical imaging.
Coherent infrared imaging camera (CIRIC)
Energy Technology Data Exchange (ETDEWEB)
Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.
1995-07-01
New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.
Coherent controlization using superconducting qubits.
Friis, Nicolai; Melnikov, Alexey A; Kirchmair, Gerhard; Briegel, Hans J
2015-01-01
Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexible implementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect.
Physics-Based Predictions for Coherent Change Detection Using X-Band Synthetic Aperture Radar
Directory of Open Access Journals (Sweden)
Mark Preiss
2005-12-01
Full Text Available A theoretical model is developed to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The model is derived using a dyadic form for surface reflectivity in the Kirchhoff approximation. This permits the combination of Kirchhoff theory and spotlight synthetic aperture radar (SAR image formation theory. The resulting model is used to describe the interferometric coherency between pairs of SAR images of rough soil surfaces. The theoretical model is applied to SAR images formed before and after surface changes observed by a repeat-pass SAR system. The change in surface associated with a tyre track following vehicle passage is modelled and SAR coherency estimates are obtained. Predicted coherency distributions for both the change and no-change scenarios are used to estimate receiver operator curves for the detection of the changes using a high-resolution, X-band SAR system.
Nonideal rotations in nuclear magnetic resonance: Estimation of coherence transfer leakage
Energy Technology Data Exchange (ETDEWEB)
Jerschow, Alexej [Materials Sciences Division, 11-D62, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States); Chemistry Department, D62 Hildebrand, University of California at Berkeley, Berkeley, California 94720 (United States)
2000-07-15
When spherical tensors are rotated by certain angles, coherence transfer selection rules may apply. For example, a {pi} rotation cleanly inverts the coherence order. A {pi}/2 rotation of a T{sub 0}{sup 1} tensor creates only T{sub {+-}}{sub 1}{sup 1} tensors. In this work estimations are given for the coherence transfer leakage under the action of rotations with small errors in the rotation angle or axis. Although the theory is stated with particular applications to NMR (nuclear magnetic resonance) in mind it is equally applicable wherever nonideal rotations of spherical tensors are considered (e.g., quantum computing and relaxation theory). In NMR it is useful for the estimation of coherence transfer leakage, especially in pulse sequences with many n{pi} pulses. The results are also applicable to spinors and half-integer representations of the rotation group. (c) 2000 American Institute of Physics.
Steerability of Quantum Coherence in Accelerated Frame
Mondal, Debasis
2015-01-01
The interplay between steering and quantum coherence is studied in a scenario, where two atoms move through an external massless scalar field. We show that just like entanglement, the steering induced coherence of the equilibrium state may increase or decrease with acceleration depending on the initial condition of the state. We also investigate the condition for coherence steerability - as opposed to simple state steerability. Interestingly, we find that the quantum coherence of the equilibrium state cannot be steered, even when the steering induced coherence is non-zero. We argue that under any condition, gravity prohibits the coherence steering of the equilibrium state.
Institute of Scientific and Technical Information of China (English)
周恒; 马良
1995-01-01
By a proper combination of the modified weakly nonlinear theory of hydrodynamic stability and the energy method, the spatial evolution of the large-scale coherent structures in a mixing layer has been calculated. The results are satisfactory.
Interference due to coherence swapping
Indian Academy of Sciences (India)
Arun Kumar Pati; Marek Zukowski
2001-02-01
We propose a method called ‘coherence swapping’ which enables us to create superposition of a particle in two distinct paths, which is fed with initially incoherent, independent radiation. This phenomenon is also present for the charged particles, and can be used to swap the effect of ﬂux line due to the Aharonov–Bohm effect. We propose an optical version of experimental set-up to test the coherence swapping. The phenomenon, which is simpler than entanglement swapping or teleportation, raises some fundamental questions about the true nature of wave-particle duality, and also opens up the possibility of studying the quantum erasure from a new angle.
Directory of Open Access Journals (Sweden)
Diego Echevenguá Borges
2014-10-01
Full Text Available O presente estudo concentra esforços em identificar e analisar quais respostas estratégicas (OLIVER, 1991 três vinícolas da região central do Rio Grande do Sul acionaram frente às pressões do ambiente institucional relativas ao gerenciamento de práticas ambientalmente corretas. Ainda, pretende-se identificar se há resquícios de isomorfismo entre as ações das vinícolas objetos de estudo frente às pressões institucionais. Para tanto, foram revisados temas relativos à teoria institucional, em suas vertentes respostas estratégicas e pressões ambientais, bem como se buscou em sítios eletrônicos, artigos acadêmicos, etc., pressões oriundas do ambiente institucional relacionadas com o gerenciamento de práticas ambientalmente corretas. Foi realizado um estudo qualitativo, tendo como instrumento para coletar os dados primários junto a três vinícolas que compunham a amostra, um questionário semiestruturado com três questões abertas. Os resultados mostram que frente a pressão oriunda do governo e dos consumidores, as três vinícolas tendem a adotar comportamentos isomórficos, se conformando as exigência de ambos os constituintes. Conclui-se que as três vinícolas mesmo não buscando a certificação ISO 14001:2004, ou não percebendo a preocupação do consumidor com relação à gestão ambiental, estas trabalham de maneira proativa, mantendo bom relacionamento com os órgãos fiscalizadores, para que suas ações não venham a afetar o meio ambiente.
Coherent broadband light source for parallel optical coherence tomography
Rivier, S.; Laversenne, L.; Bourquin, S.; Salathé, R.P.; Pollnau, M.; Grivas, C.; Shepherd, D.P.; Eason, R.W.; Flury, M.; Philipoussis, I.; Herzig, H.P.
2004-01-01
A Ti:sapphire planar waveguide is rib structured by Ar ion milling to provide parallel channel waveguides. By coupling high-power pump light through a microlens array into the waveguides, a novel broadband luminescent parallel emitter is demonstrated as a light source for parallel optical coherence
Quantum secure direct communication of digital and analog signals using continuum coherent states
Guerra, Antônio Geovan de Araújo Holanda; Rios, Francisco Franklin Sousa; Ramos, Rubens Viana
2016-11-01
In this work, we present optical schemes for secure direct quantum communication of digital and analog signals using continuum coherent states and frequency-dependent phase modulation. The main advantages of the proposed schemes are that they do not use entangled states and they can be implemented with today technology. The theory of quantum interference of continuum coherent state is described, and the optical setups for secure direct communication are presented and their securities are discussed.
Institute of Scientific and Technical Information of China (English)
林隆清
2007-01-01
In the process of college English intensive reading teaching,the analysis of textual cohesion and coherence is of great significance in that it can help students better understand the structure and contents of the teaching mterials,improve their ability in commnding and applying the language,thus improving the quality of college English teaching.This paper tries to analyze how to apply the theory of textual cohesion and coherence to the teaching of college English intensive reading.
Fifth-Order Harmonic Generation using a Coherent Controlled Two-Pulsed Optical Field
Institute of Scientific and Technical Information of China (English)
刘婷婷; 王大威; 陆伟新; 孙泉; 杨宏; 蒋红兵; 龚旗煌
2002-01-01
We have experimentally studied the characteristics of fifth-order harmonic radiation produced by two coherent femtosecond laser pulses with a changeable relative phase. The intensities of harmonic generation are found to increase vith the coherent degree. In one optical period, the temporal variation of harmonics exhibits an asymmetric characteristic, vhich is interpreted in terms of ionization theory and the deformation of the wave packets of fundamental field contribution to harmonic generation.
Quantum secure direct communication of digital and analog signals using continuum coherent states
Guerra, Antônio Geovan de Araújo Holanda; Rios, Francisco Franklin Sousa; Ramos, Rubens Viana
2016-08-01
In this work, we present optical schemes for secure direct quantum communication of digital and analog signals using continuum coherent states and frequency-dependent phase modulation. The main advantages of the proposed schemes are that they do not use entangled states and they can be implemented with today technology. The theory of quantum interference of continuum coherent state is described, and the optical setups for secure direct communication are presented and their securities are discussed.
Controlling quantum coherence of atom laser by light with strong strength
Institute of Scientific and Technical Information of China (English)
JING; Hui(景辉); GE; Molin(葛墨林); GE; Molin(葛墨林)
2002-01-01
A new method for controlling the quantum coherence of atom laser by applying input light with strong strength is presented within the framework of quantum dynamical theory. Unlike the case of rotating wave approximation(RWA), we show that the non-classical properties, such as sub-Poisson distribution and quadrature squeezed effect, can appear in the output atom laser beam with time. By choosing suitable initial RF phase, a steady and brighter output of squeezed coherent atom laser is also available.
Directory of Open Access Journals (Sweden)
Leilei Jia
2014-01-01
Full Text Available By using the bifurcation theory of dynamical systems, we present the exact representation and topological classification of coherent matter waves in Bose-Einstein condensates (BECs, such as solitary waves and modulate amplitude waves (MAWs. The existence and multiplicity of such waves are determined by the parameter regions selected. The results show that the characteristic of coherent matter waves can be determined by the “angular momentum” in attractive BECs while for repulsive BECs; the waves of the coherent form are all MAWs. All exact explicit parametric representations of the above waves are exhibited and numerical simulations support the result.
Synthesizing time-evolving partially-coherent Schell-model sources
Van Zandt, Noah R.; Hyde, Milo W.; Bose-Pillai, Santasri R.; Voelz, David G.; Xiao, Xifeng; Fiorino, Steven T.
2017-03-01
Time-evolving simulation of sources with partial spatial and temporal coherence is sometimes instructive or necessary to explain optical coherence effects. Yet, existing time-evolving synthesis techniques often require prohibitive amounts of computer memory. This paper discusses three methods for the synthesis of continuous or pulsed time-evolving sources with nearly arbitrary spatial and temporal coherence. One method greatly reduces computer memory requirements, making this type of synthesis more practical. The utility of all three methods is demonstrated via a modified form of Young's experiment. Numerical simulation and laboratory results for time-averaged irradiance are presented and compared with theory to validate the synthesis techniques.
DEFF Research Database (Denmark)
Ma, Ning; Hanson, Steen Grüner; Lee, Tim K.;
2015-01-01
of special depolarizer: the random roughness birefringent screen (RRBS) is introduced to meet this requirement. The statistical properties of the field generated by the depolarizer is investigated and illustrated in terms of the 2x2 beam coherence and polarization matrix (BCPM) with the corresponding degree...... of coherence (DoC). and degree of polarization (DoP) P. The changes of the coherence and polarization when the speckle field propagates through any optical system are analysed within the framework of the complex ABCD-matrix theory....
Institute of Scientific and Technical Information of China (English)
杭荟; 王秀英; 刘庆淮
2015-01-01
目的：：评价利用OCT加强深度扫描模式测量中心性浆液性脉络膜视网膜病变( central serous chorioretinopathy, CSC)脉络膜厚度的意义。方法：采用回顾性病例对照研究。纳入经临床确诊的CSC患者65例65眼和年龄、性别、屈光度相匹配的正常对照组50例50眼。使用光学相干断层扫描的加强深度扫描模式( coherence tomography with enhanced depth imaging, OCT-EDI)分别测量65例患者的患眼和对侧眼,以及50例50眼正常对照者的黄斑中心凹下脉络膜厚度(subfoveal choroidal thickness,SFCT)。其中65例患者中有40例自愈,14例行光动力学( photodynamic therapy, PDT)治疗,11例行氩激光(laser photocoagulation,LP)治疗,分别测量3mo后的SFCT,与前次的比较进行统计学分析。结果：CSC患者65例的患眼和对侧眼,以及50例50眼正常对照组的SFCT测量结果分别为436.23±89.50,389.45±101.03,329.36±95.87µm。患眼和对侧眼SFCT分别与正常对照组比较,显著增加(P=0.008,P=0.013)。患眼的SFCT与对侧眼比较也有统计学差异( P=0.021)。 PDT治疗后SFCT显著性降低( P=0.032), LP治疗后和自愈者SFCT水平较前降低,但未显示出统计学差异( P=0.057 , 0.076)。结论：OCT-EDI是观察CSC脉络膜形态的有效方法,CSC患者SFCT较对侧眼和正常对照组明显增高。%Abstract• AlM: To evaluate the meaning of using optical coherence tomography with enhanced depth imaging ( OCT-EDl ) to measure choroidal thickness of central serous retinopathy ( CSC) .•METHODS: With the retrospective case control study, 65 patients (65 eyes) with CSC and 50 healthy controls (50 eyes ) with age, gender and diopter - matched were recruited in this study. OCT-EDl were used to measure the subfoveal choroidal thickness ( SFCT ) in CSC eyes, the fellow eyes and also the control eyes. Of which 40 of the 65 CSC patients self-cured, 14 of them were treated with photodynamic therapy ( PDT ) , the left 11 accepted the
Point-defect diffusion from coherent quasielastic neutron scattering
Energy Technology Data Exchange (ETDEWEB)
Gillan, M.J.; Wolf, D.
1985-09-16
We outline a theory which suggests that the dynamics of point defects in crystals can be studied by coherent quasielastic neutron scattering. The theory assumes that the surrounding lattice distortion follows each defect instantaneously, and that the distortion fields of different defects can be linearly superposed. The energy width of the scattered intensity yields the hopping rate and jump vectors of the defects. We discuss systems for which the predicted effects for ionic defects are observable, pointing out that the detection of small polaron hopping should also be possible.
Coherent optical control of polarization with a critical metasurface
Kang, Ming
2015-01-01
We describe the mechanism by which a metamaterial surface can act as an ideal phase-controlled rotatable linear polarizer. With equal-power linearly polarized beams incident on each side of the surface, varying the relative phase rotates the polarization angles of the output beams, while keeping the polarization exactly linear. The explanation is based on coupled-mode theory and the idea of coherent perfect absorption into auxiliary polarization channels. The polarization-rotating behavior occurs at a critical point of the coupled-mode theory, which can be associated with the exceptional point of a parity-time (PT) symmetric effective Hamiltonian.
Atomistic Analysis of Room Temperature Quantum Coherence in Two-Dimensional CdSe Nanostructures.
Pal, Sougata; Nijjar, Parmeet; Frauenheim, Thomas; Prezhdo, Oleg V
2017-03-02
Recent experiments on CdSe nanoplatelets synthesized with precisely controlled thickness that eliminates ensemble disorder have allowed accurate measurement of quantum coherence at room temperature. Matching exactly the CdSe cores of the experimentally studied particles and considering several defects, we establish the atomistic origins of the loss of coherence between heavy and light hole excitations in two-dimensional CdSe and CdSe/CdZnS core/shell structures. The coherence times obtained using molecular dynamics based on tight-binding density functional theory are in excellent agreement with the measured values. We show that a long coherence time is a consequence of both small fluctuations in the energy gap between the excited state pair, which is much less than thermal energy, and a slow decay of correlation between the energies of the two states. Anionic defects at the core/shell interface have little effect on the coherence lifetime, while cationic defects strongly perturb the electronic structure, destroying the experimentally observed coherence. By coupling to the same phonon modes, the heavy and light holes synchronize their energy fluctuations, facilitating long-lived coherence. We further demonstrate that the electronic excitations are localized close to the surface of these narrow nanoscale systems, and therefore, they couple most strongly to surface acoustic phonons. The established features of electron-phonon coupling and the influence of defects, surfaces, and core/shell interfaces provide important insights into quantum coherence in nanoscale materials in general.
Tan, S.; Tsang, L.; Xu, X.; Ding, K. H.
2015-12-01
In this paper we describe partial coherent model and fully coherent snowpack scattering model based on numerical simulation of Maxwell's equation. In medium characterization, we derive the correlation functions from the pair distribution functions of sticky spheres and multiple-size spheres used in QCA. We show that both the Percus-Yevick pair functions and the bicontinuous model have tails in the correlation functions that are distinctly different from the traditional exponential correlation functions. The methodologies of using ground measurements of grain size distributions and correlation functions to obtain model parameters are addressed. The DMRT theory has been extended to model the backscattering enhancement. We developed the methodology of cyclical corrections beyond first order to all orders of multiple scattering. This enables the physical modeling of combined active and passive microwave remote sensing of snow over the same scene. The bicontinuous /DMRT is applied to compare with data acquired in the NoSREx campaign, and the model results are validated against coincidental active and passive measurements using the same set of physical parameters of snow in all frequency and polarization channels. The DMRT is a partially coherent approach that one accounts for the coherent wave interaction only within few wavelengths as represented by phase matrix. However, the phase information of field is lost in propagating the specific intensity via RT and this hinders the use of DMRT in coherent synthetic aperture radar (SAR) analysis, including InSAR, PolInSAR and Tomo-SAR. One can alternatively calculate the scattering matrix of the terrestrial snowpack above ground by solving the volume integral equations directly with half space Green's function. The scattering matrix of the snowpack is computed for each realization giving rise to the speckle statistics. The resulting bistatic scattering automatically includes the backscattering enhancement effects. Tomograms of
Tolerance on tilt error for coherent combining of fiber lasers
Institute of Scientific and Technical Information of China (English)
Pu Zhou; Zilun Chen; Xiaolin Wang; Xiao Li; Zejin Liu; Xiaojun Xu
2009-01-01
Limited by the precision of optical machining and assembling, the optical axes of lasers in an array cannot be strictly parallel to each other, which will result in the beam quality degradation of the combined beam. The tolerance on tilt error for coherent combining of fiber lasers is studied in detail. The complex amplitude distribution in the far field for the Gaussian beam with tilt angle is obtained by a novel coordinate transform method. Effect of tilt error on coherent combining is modelled analytically. Beam propagation factor is used to evaluate the effect of coherent combining. Numerical results show that for ring-distributed fiber laser array with central wavelength 位 and geometry size D, if the root-mean-square (RMS) value of the tilt error is smaller than 0.72位/D, the energy encircled in the diffraction-limited bucket can be ensured to be more than 50% of the value when there is no tilt error. The results are helpful to the designing and manufacturing of fiber array for coherent combining.
Auñón, Juan Miguel; Nieto-Vesperinas, Manuel
2014-01-01
We present a theory and computation method of radiation pressure from partially coherent light by establishing a coherent mode representation of the radiation forces. This is illustrated with the near field emitted from a Gaussian Schell model source, mechanically acting on a single cylinder with magnetodielectric behavior, or on a photonic molecule constituted by a pair of such cylinders. Thus after studying the force produced by a single particle, we address the effects of the spatial coherence on the bonding and anti-bonding states of two particles. The coherence length manifests the critical limitation of the contribution of evanescent modes to the scattered fields, and hence to the nature and strength of the electromagnetic fores, even when electric and/or magnetic partial wave resonances are excited.
Writing Quality, Coherence, and Cohesion.
McCulley, George A.
1985-01-01
Using a random sample of 493 persuasive papers written by 17-year-olds during the 1978-79 National Assessment of Educational Progress writing evaluation, a study investigated the relationships among features of textual cohesion and primary trait assessments of writing quality and coherence, with manuscript length held statistically constant. (HOD)
Coherent Detection of Electron Dephasing
Strambini, E.; Chirolli, L.; Giovanetti, V.; Taddei, F.; Fazio, R.; Piazza, V.
2010-01-01
We show that an Aharonov-Bohm ring with asymmetric electron injection can act as a coherent detector of electron dephasing. The presence of a dephasing source in one of the two arms of a moderately-to-highly asymmetric ring changes the response of the system from total reflection to complete transmi
Localized coherence of freak waves
Latifah, Arnida L.; van Groesen, E.
2016-09-01
This paper investigates in detail a possible mechanism of energy convergence leading to freak waves. We give examples of a freak wave as a (weak) pseudo-maximal wave to illustrate the importance of phase coherence. Given a time signal at a certain position, we identify parts of the time signal with successive high amplitudes, so-called group events, that may lead to a freak wave using wavelet transform analysis. The local coherence of the critical group event is measured by its time spreading of the most energetic waves. Four types of signals have been investigated: dispersive focusing, normal sea condition, thunderstorm condition and an experimental irregular wave. In all cases presented in this paper, it is shown that a high correlation exists between the local coherence and the appearance of a freak wave. This makes it plausible that freak waves can be developed by local interactions of waves in a wave group and that the effect of waves that are not in the immediate vicinity is minimal. This indicates that a local coherence mechanism within a wave group can be one mechanism that leads to the appearance of a freak wave.
Coherent state quantization of quaternions
Energy Technology Data Exchange (ETDEWEB)
Muraleetharan, B., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com [Department of Mathematics and Statistics, University of Jaffna, Thirunelveli (Sri Lanka); Thirulogasanthar, K., E-mail: bbmuraleetharan@jfn.ac.lk, E-mail: santhar@gmail.com [Department of Computer Science and Software Engineering, Concordia University, 1455 De Maisonneuve Blvd. West, Montreal, Quebec H3G 1M8 (Canada)
2015-08-15
Parallel to the quantization of the complex plane, using the canonical coherent states of a right quaternionic Hilbert space, quaternion field of quaternionic quantum mechanics is quantized. Associated upper symbols, lower symbols, and related quantities are analyzed. Quaternionic version of the harmonic oscillator and Weyl-Heisenberg algebra are also obtained.
Optical coherent control in semiconductors
DEFF Research Database (Denmark)
Østergaard, John Erland; Vadim, Lyssenko; Hvam, Jørn Märcher
2001-01-01
of quantum control including the recent applications to semiconductors and nanostructures. We study the influence of inhomogeneous broadening in semiconductors on CC results. Photoluminescence (PL) and the coherent emission in four-wave mixing (FWM) is recorded after resonant excitation with phase...
Neutrino production coherence and oscillation experiments
Akhmedov, Evgeny; Smirnov, Alexei
2012-01-01
Neutrino oscillations are only observable when the neutrino production, propagation and detection coherence conditions are satisfied. In this paper we consider in detail neutrino production coherence, taking \\pi\\to \\mu \
Quantum process tomography quantifies coherence transfer dynamics in vibrational exciton.
Chuntonov, Lev; Ma, Jianqiang
2013-10-31
Quantum coherence has been a subject of great interest in many scientific disciplines. However, detailed characterization of the quantum coherence in molecular systems, especially its transfer and relaxation mechanisms, still remains a major challenge. The difficulties arise in part because the spectroscopic signatures of the coherence transfer are typically overwhelmed by other excitation-relaxation processes. We use quantum process tomography (QPT) via two-dimensional infrared spectroscopy to quantify the rate of the elusive coherence transfer between two vibrational exciton states. QPT retrieves the dynamics of the dissipative quantum system directly from the experimental observables. It thus serves as an experimental alternative to theoretical models of the system-bath interaction and can be used to validate these theories. Our results for coupled carbonyl groups of a diketone molecule in chloroform, used as a benchmark system, reveal the nonsecular nature of the interaction between the exciton and the Markovian bath and open the door for the systematic studies of the dissipative quantum systems dynamics in detail.
Correlation singularities in partially coherent electromagnetic beams
Raghunathan, S.B.; Schouten, H.F.; Visser, T.D.
2012-01-01
We demonstrate that coherence vortices, singularities of the correlation function, generally occur in partially coherent electromagnetic beams. In successive cross sections of Gaussian Schell-model beams, their locus is found to be a closed string. These coherence singularities have implications for
Central simple Poisson algebras
Institute of Scientific and Technical Information of China (English)
SU Yucai; XU Xiaoping
2004-01-01
Poisson algebras are fundamental algebraic structures in physics and symplectic geometry. However, the structure theory of Poisson algebras has not been well developed. In this paper, we determine the structure of the central simple Poisson algebras related to locally finite derivations, over an algebraically closed field of characteristic zero.The Lie algebra structures of these Poisson algebras are in general not finitely-graded.
Understanding Second-Order Theory of Mind
2015-03-01
2.0 [ Artificial Intelligence ]: General—cognitive simula- tion; I.2.11 [ Artificial Intelligence ]: Distributed Artificial Intelligence — intelligent ...agents, coherence and coordination General Terms Theory Keywords theory of mind; human-robot teams 1. INTRODUCTION Theory of mind (ToM) is a critical...posit that that mechanism is simulation. Overall, robots with theory of mind are viewed as more natural and intelligent teammates to their human
Measuring finite quantum geometries via quasi-coherent states
Schneiderbauer, Lukas; Steinacker, Harold C.
2016-07-01
We develop a systematic approach to determine and measure numerically the geometry of generic quantum or ‘fuzzy’ geometries realized by a set of finite-dimensional Hermitian matrices. The method is designed to recover the semi-classical limit of quantized symplectic spaces embedded in {{{R}}}d including the well-known examples of fuzzy spaces, but it applies much more generally. The central tool is provided by quasi-coherent states, which are defined as ground states of Laplace- or Dirac operators corresponding to localized point branes in target space. The displacement energy of these quasi-coherent states is used to extract the local dimension and tangent space of the semi-classical geometry, and provides a measure for the quality and self-consistency of the semi-classical approximation. The method is discussed and tested with various examples, and implemented in an open-source Mathematica package.
Measuring finite Quantum Geometries via Quasi-Coherent States
Schneiderbauer, Lukas
2016-01-01
We develop a systematic approach to determine and measure numerically the geometry of generic quantum or "fuzzy" geometries realized by a set of finite-dimensional hermitian matrices. The method is designed to recover the semi-classical limit of quantized symplectic spaces embedded in $\\mathbb{R}^d$ including the well-known examples of fuzzy spaces, but it applies much more generally. The central tool is provided by quasi-coherent states, which are defined as ground states of Laplace- or Dirac operators corresponding to localized point branes in target space. The displacement energy of these quasi-coherent states is used to extract the local dimension and tangent space of the semi-classical geometry, and provides a measure for the quality and self-consistency of the semi-classical approximation. The method is discussed and tested with various examples, and implemented in an open-source Mathematica package.
Influence of coherent adiabatic excitation on femtosecond transient signals
Conde, A Peralta; Longarte, A
2016-01-01
The transient signals derived from femtosecond pump-probe experiments are analyzed in terms of the coherent evolution of the energy levels perturbed by the excitation pulse. The model system is treated as the sum of independent two-level subsystems that evolve adiabatically or are permanently excited, depending on the detuning from the central wavelength of the excitation laser. This approach will allow us to explain numerically and analytically the convergence between the coherent and incoherent (rate equations) treatments for complex multi-level systems. It will be also shown that the parameter that determines the validity of the incoherent treatment is the distribution of states outside and inside the laser bandwidth, rather than the density of states as it is commonly accepted.
Harary, Frank
2015-01-01
Presented in 1962-63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics.Lectures by this volume's editor, Frank Harary, include ""Some Theorems and Concepts of Graph Theory,"" ""Topological Concepts in Graph Theory,"" ""Graphical Reconstruction,"" and other introduc
Ballagh, R.; Savage, C. M.
2000-01-01
We review the current theory of atom lasers. A tutorial treatment of second quantisation and the Gross-Pitaevskii equation is presented, and basic concepts of coherence are outlined. The generic types of atom laser models are surveyed and illustrated by specific examples. We conclude with detailed treatments of the mechanisms of gain and output coupling.
Coherent transport through interacting quantum dots
Energy Technology Data Exchange (ETDEWEB)
Hiltscher, Bastian
2012-10-05
The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in
Characterisation of dispersive systems using a coherer
Directory of Open Access Journals (Sweden)
Nikolić Pantelija M.
2002-01-01
Full Text Available The possibility of characterization of aluminium powders using a horizontal coherer has been considered. Al powders of known dimension were treated with a high frequency electromagnetic field or with a DC electric field, which were increased until a dielectric breakdown occurred. Using a multifunctional card PC-428 Electronic Design and a suitable interface between the coherer and PC, the activation time of the coherer was measured as a function of powder dimension and the distance between the coherer electrodes. It was also shown that the average dimension of powders of unknown size could be determined using the coherer.
Directory of Open Access Journals (Sweden)
Valter Alnis Bezerra
2003-06-01
theories in the early 70s. The success of renormalization was such that, from its beginnings as a mere ad hoc theoretical device, it gradually earned the condition of a criterion for the construction and appraisal of theories in field physics. One of the aims of this article is to show that this change in the methodological status of renormalization can be understood in the context of Larry Laudan's reticulational model of rationality. In spite of the extraordinary theoretical and empirical progress achieved, however, there were always polemics regarding the place that renormalization should occupy within the conceptual structure of the discipline. These polemics revolve around the fact that renormalization apparently goes against a cognitive value that is regarded as fundamental, namely, consistency. The second aim of this paper is to show how the reticulational model helps to throw light upon this question as well. We attempt to show in which sense it was rational to accept renormalization in particle and field physics despite the problem of inconsistency. To this end we make use of the theses of the reticulational model, supplemented with theses from Putnam and Quine, and from the coherence theory of justification.
DEFF Research Database (Denmark)
Rijkhoff, Jan
2010-01-01
This paper argues that grammatical theorizing and linguistic typologizing must go hand in hand and that rare typological features play a central role in the interaction of typology and theory. The paper is organized as follows. Section 2 discusses a sampling method that (compared to other sampling...... Functional (Discourse) Grammar and sections 4 and 5 are concerned with the crucial role of rara both in theory driven data collection and in data driven theory building....
Vibrational and coherence dynamics of molecules
Zhang, Zhedong
2015-01-01
We {\\it analytically} investigate the population and coherence dynamics and relaxations in the vibrational energy transport in molecules. The corresponding two time scales $t_1$ and $t_2$ are explored. Coherence-population entanglement is found to considerably promote the time scale $t_2$ for dephasing and the amplitude of coherence. This is attributed to the suppression of the environment-induced drift force by coherence. Moreover the population imbalance (magnetization) is shown to be significantly amplified with the coherence-population entanglement. Contrary to the previous studies, we exactly elucidate a coherent process by showing $t_1
How coherent are Josephson junctions?
Paik, Hanhee; Bishop, Lev S; Kirchmair, G; Catelani, G; Sears, A P; Johnson, B R; Reagor, M J; Frunzio, L; Glazman, L; Schoelkopf, R J
2011-01-01
Attaining sufficient coherence is a requirement for realizing a large-scale quantum computer. We present a new implementation of a superconducting transmon qubit that is strongly coupled to a three-dimensional superconducting cavity. We observe a reproducible increase in the coherence times of qubit (both $T_1$ and $T_2$ > 10 microseconds) and cavity ($T_{cav}$ ~ 50 microseconds) by more than an order of magnitude compared to the current state-of-art superconducting qubits. This enables the study of the stability and quality of Josephson junctions at precisions exceeding one part per million. Surprisingly, we see no evidence for $1/f$ critical current noise. At elevated temperatures, we observe the dissipation due to a small density (< 1 - 10 ppm) of thermally-excited quasiparticles. The results suggest that the overall quality of Josephson junctions will allow error rates of a few $10^{-4}$, approaching the error correction threshold.
Neutrino induced coherent pion production
Hernández, E; Valverde, M; Vicente-Vacas, M J
2009-01-01
We discuss different parameterizations of the $C_5^A(q^2)$ $N\\Delta$ axial form factor, fitted to the old Argonne bubble chamber data for pion production by neutrinos, and we use coherent pion production to test their low $q^2$ behavior. We find moderate effects that will be difficult to observe with the accuracy of present experiments. We also discuss the use of the Rein-Sehgal model for low energy coherent pion production. By comparison to a microscopic calculation, we show the weaknesses of some of the approximations in that model that lead to very large cross sections as well as to the wrong shapes for differential ones. Finally we show that models based on the partial conservation of the axial current hypothesis are not fully reliable for differential cross sections that depend on the angle formed by the pion and the incident neutrino.
Coherent phase argument for inflation
Energy Technology Data Exchange (ETDEWEB)
Scott Dodelson
2004-03-17
Cosmologists have developed a phenomenally successful picture of structure in the universe based on the idea that the universe expanded exponentially in its earliest moments. There are three pieces of evidence for this exponential expansion--inflation--from observations of anisotropies in the cosmic microwave background. First, the shape of the primordial spectrum is very similar to that predicted by generic inflation models. Second, the angular scale at which the first acoustic peak appears is consistent with the flat universe predicted by inflation. Here the author describes the third piece of evidence, perhaps the most convincing of all: the phase coherence needed to account for the clear peak/trough structure observed by the WMAP satellite and its predecessors. The author also discusses alternatives to inflation that have been proposed recently and explain how they produce coherent phases.
Detecting coherent structures using braids
Allshouse, Michael R
2011-01-01
The detection of coherent structures is an important problem in fluid dynamics, particularly in geophysical applications. For instance, knowledge of how regions of fluid are isolated from each other allows prediction of the ultimate fate of oil spills. Existing methods detect Lagrangian coherent structures, which are barriers to transport, by examining the stretching field as given by finite-time Lyapunov exponents. These methods are very effective when the velocity field is well-determined, but in many applications only a small number of flow trajectories are known, for example when dealing with oceanic float data. We introduce a topological method for detecting invariant regions based on a small set of trajectories. In the method we regard the two-dimensional trajectory data as a braid in three dimensions, with time being the third coordinate. Invariant regions then correspond to trajectories that travel together and do not entangle other trajectories. We detect these regions by examining the growth of hypo...
Photoelectric converters with quantum coherence.
Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can
2016-05-01
Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency η_{CA}. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of QDs to sunlight and fermion baths can coexist steadily in nanoelectronic systems. Our analysis indicates that the efficiency at maximum power is no longer limited to η_{CA} through manipulation of carefully controlled quantum coherences.
Photoelectric converters with quantum coherence
Su, Shan-He; Sun, Chang-Pu; Li, Sheng-Wen; Chen, Jin-Can
2016-05-01
Photon impingement is capable of liberating electrons in electronic devices and driving the electron flux from the lower chemical potential to higher chemical potential. Previous studies hinted that the thermodynamic efficiency of a nanosized photoelectric converter at maximum power is bounded by the Curzon-Ahlborn efficiency ηCA. In this study, we apply quantum effects to design a photoelectric converter based on a three-level quantum dot (QD) interacting with fermionic baths and photons. We show that, by adopting a pair of suitable degenerate states, quantum coherences induced by the couplings of QDs to sunlight and fermion baths can coexist steadily in nanoelectronic systems. Our analysis indicates that the efficiency at maximum power is no longer limited to ηCA through manipulation of carefully controlled quantum coherences.
Coherent optical methods for metallography
Energy Technology Data Exchange (ETDEWEB)
Pechersky, M.J.
1991-01-01
Numerous methods based on coherent optical techniques have been developed over the past two decades for nondestructive evaluation, vibration analysis and experimental mechanics. These methods have a great deal of potential for the enhancement of metallographic evaluations and for materials characterization in general. One such technique described in this paper is the determination of the material damping factors in metals. Damping loss factors as low as 10-5 were measured on bronze and aluminum specimens using a technique based on laser vibrometry. Differences between cast and wrought bronze were easily distinguishable as well as the difference between the bronze and aluminum. Other coherent optical techniques may be used to evaluate residual stresses and to locate and identify microcracking, subsurface voids and other imperfections. These techniques and others can serve as a bridge between microstructural investigations and the macroscopic behavior of materials.
Coherent optical methods for metallography
Energy Technology Data Exchange (ETDEWEB)
Pechersky, M.J.
1991-12-31
Numerous methods based on coherent optical techniques have been developed over the past two decades for nondestructive evaluation, vibration analysis and experimental mechanics. These methods have a great deal of potential for the enhancement of metallographic evaluations and for materials characterization in general. One such technique described in this paper is the determination of the material damping factors in metals. Damping loss factors as low as 10-5 were measured on bronze and aluminum specimens using a technique based on laser vibrometry. Differences between cast and wrought bronze were easily distinguishable as well as the difference between the bronze and aluminum. Other coherent optical techniques may be used to evaluate residual stresses and to locate and identify microcracking, subsurface voids and other imperfections. These techniques and others can serve as a bridge between microstructural investigations and the macroscopic behavior of materials.
Remote creation of quantum coherence
Ma, Teng; Zhao, Ming-Jing; Fei, Shao-Ming; Long, Gui-Lu
2016-10-01
We study remote creation of coherence (RCC) for a quantum system, A, with the help of quantum operations on another system, B, and one-way classical communication. We show that all the nonincoherent quantum states are useful for RCC and all the incoherent-quantum states are not. The necessary and sufficient conditions of RCC for the quantum operations on system B are presented for pure states. The upper bound of average RCC is derived, giving a relation among the entanglement (concurrence), the RCC of the given quantum state, and the RCC of the corresponding maximally entangled state. Moreover, for two-qubit systems we find a simple factorization law for the average remote-created coherence.
The global coherence initiative: creating a coherent planetary standing wave.
McCraty, Rollin; Deyhle, Annette; Childre, Doc
2012-03-01
The much anticipated year of 2012 is now here. Amidst the predictions and cosmic alignments that many are aware of, one thing is for sure: it will be an interesting and exciting year as the speed of change continues to increase, bringing both chaos and great opportunity. One benchmark of these times is a shift in many people from a paradigm of competition to one of greater cooperation. All across the planet, increasing numbers of people are practicing heart-based living, and more groups are forming activities that support positive change and creative solutions for manifesting a better world. The Global Coherence Initiative (GCI) is a science-based, co-creative project to unite people in heart-focused care and intention. GCI is working in concert with other initiatives to realize the increased power of collective intention and consciousness. The convergence of several independent lines of evidence provides strong support for the existence of a global information field that connects all living systems and consciousness. Every cell in our bodies is bathed in an external and internal environment of fluctuating invisible magnetic forces that can affect virtually every cell and circuit in biological systems. Therefore, it should not be surprising that numerous physiological rhythms in humans and global collective behaviors are not only synchronized with solar and geomagnetic activity, but disruptions in these fields can create adverse effects on human health and behavior. The most likely mechanism for explaining how solar and geomagnetic influences affect human health and behavior are a coupling between the human nervous system and resonating geomagnetic frequencies, called Schumann resonances, which occur in the earth-ionosphere resonant cavity and Alfvén waves. It is well established that these resonant frequencies directly overlap with those of the human brain and cardiovascular system. If all living systems are indeed interconnected and communicate with each other
D-branes and coherent topological charge structure in QCD
Thacker, Hank
2006-12-01
Monte Carlo studies of pure glue SU(3) gauge theory using the overlap-based topological charge operator have revealed a laminar structure in the QCD vacuum consisting of extended, thin, co- herent, locally 3-dimensional sheets of topological charge embedded in 4D space, with opposite sign sheets interleaved. Studies of localization properties of Dirac eigenmodes have also shown evidence for the delocalization of low-lying modes on effectively 3-dimensional surfaces. In this talk, I review some theoretical ideas which suggest the possibility of 3-dimensionally coherent topological charge structure in 4-dimensional gauge theory and provide a possible interpretation of the observed structure. I begin with Luscher's "Wilson bag" integral over the 3-index Chern- Simons tensor. The analogy with a Wilson loop as a charged world line in 2-dimensional CP N-1 sigma models suggests that the Wilson bag surface represents the world volume of a physical membrane. The large-N chiral Lagrangian arguments of Witten also indicate the existence of multiple "k-vacuum" states with discontinuous transitions between k-vacua at θ = odd multi- ples of π. The domain walls between these vacua have the properties of a Wilson bag surface. Finally, I review the AdS/CFT duality view of θ dependence in QCD. The dual realtionship be- tween topological charge in gauge theory and Ramond-Ramond charge in type IIA string theory suggests that the coherent topological charge sheets observed on the lattice are the holographic image of wrapped D6 branes.
Hanle effect in coherent backscattering
Labeyrie, G; Müller, C A; Sigwarth, O; Delande, D; Kaiser, R
2002-01-01
We study the shape of the coherent backscattering (CBS) cone obtained when resonant light illuminates a thick cloud of laser-cooled rubidium atoms in presence of a homogenous magnetic field. We observe new magnetic field-dependent anisotropies in the CBS signal. We show that the observed behavior is due to the modification of the atomic radiation pattern by the magnetic field (Hanle effect in the excited state).
Scattering and coherence in EUVL
Milster, Tomas D.; Beaudry, Neil A.
1998-06-01
We illustrate the importance of considering scattering from the illuminator in extreme UV lithography systems. Our results indicate that a significant amount of amplitude modulation noise is present in the aerial image if scatter is present in a Koehler illuminator. The effect depends on the spatial frequency of the pattern on the mask, the numerical aperture of the projection camera, the coherence factor, and placement of the plane in the illuminator where the scattering occurs.
Spin coherence time analytical estimations
Orlov, Yuri
2015-01-01
Section I presents a variety of analytical estimations related to spin coherence time (SCT) in a purely electric frozen-spin ring. The main result is that, in the case of m > 0 and vertical oscillations only, the kinetic energy equilibrium shift equals zero, that is, SCT does not depend on these oscillations. Section II contains additional information on this case concerning terminology, electric field definition and vertical oscillations.
A Framework for Theory Development in Foresight
DEFF Research Database (Denmark)
Piirainen, Kalle
The academic literature has frequently observed that foresight lacks a coherent theoretical basis. The discussion on theory of foresight calls for ‘a theory’, but it rarely expounds what the scope of theorizing is or should be. We propose that ‘theory of foresight’ has three overlapping meanings...
Quantum learning of coherent states
Energy Technology Data Exchange (ETDEWEB)
Sentis, Gael [Universitat Autonoma de Barcelona, Fisica Teorica: Informacio i Fenomens Quantics, Barcelona (Spain); Guta, Madalin; Adesso, Gerardo [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom)
2015-12-15
We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian estimation measurements. Our results show that, even in absence of entanglement, collective quantum measurements yield an enhancement in the readout of classical information, which is particularly relevant in the operating regime of low-energy signals. (orig.)
Quantum learning of coherent states
Sentís, Gael; Adesso, Gerardo
2014-01-01
We develop a quantum learning scheme for binary discrimination of coherent states of light. This is a problem of technological relevance for the reading of information stored in a digital memory. In our setting, a coherent light source is used to illuminate a memory cell and retrieve its encoded bit by determining the quantum state of the reflected signal. We consider a situation where the amplitude of the states produced by the source is not fully known, but instead this information is encoded in a large training set comprising many copies of the same coherent state. We show that an optimal global measurement, performed jointly over the signal and the training set, provides higher successful identification rates than any learning strategy based on first estimating the unknown amplitude by means of Gaussian measurements on the training set, followed by an adaptive discrimination procedure on the signal. By considering a simplified variant of the problem, we argue that this is the case even for non-Gaussian es...
Analog signal processing for optical coherence imaging systems
Xu, Wei
Optical coherence tomography (OCT) and optical coherence microscopy (OCM) are non-invasive optical coherence imaging techniques, which enable micron-scale resolution, depth resolved imaging capability. Both OCT and OCM are based on Michelson interferometer theory. They are widely used in ophthalmology, gastroenterology and dermatology, because of their high resolution, safety and low cost. OCT creates cross sectional images whereas OCM obtains en face images. In this dissertation, the design and development of three increasingly complicated analog signal processing (ASP) solutions for optical coherence imaging are presented. The first ASP solution was implemented for a time domain OCT system with a Rapid Scanning Optical Delay line (RSOD)-based optical signal modulation and logarithmic amplifier (Log amp) based demodulation. This OCT system can acquire up to 1600 A-scans per second. The measured dynamic range is 106dB at 200A-scan per second. This OCT signal processing electronics includes an off-the-shelf filter box with a Log amp circuit implemented on a PCB board. The second ASP solution was developed for an OCM system with synchronized modulation and demodulation and compensation for interferometer phase drift. This OCM acquired micron-scale resolution, high dynamic range images at acquisition speeds up to 45,000 pixels/second. This OCM ASP solution is fully custom designed on a perforated circuit board. The third ASP solution was implemented on a single 2.2 mm x 2.2 mm complementary metal oxide semiconductor (CMOS) chip. This design is expandable to a multiple channel OCT system. A single on-chip CMOS photodetector and ASP channel was used for coherent demodulation in a time domain OCT system. Cross-sectional images were acquired with a dynamic range of 76dB (limited by photodetector responsivity). When incorporated with a bump-bonded InGaAs photodiode with higher responsivity, the expected dynamic range is close to 100dB.
Beta-adrenergic modulation of tremor and corticomuscular coherence in humans.
Directory of Open Access Journals (Sweden)
Mark R Baker
Full Text Available Coherence between the bioelectric activity of sensorimotor cortex and contralateral muscles can be observed around 20 Hz. By contrast, physiological tremor has a dominant frequency around 10 Hz. Although tremor has multiple sources, it is partly central in origin, reflecting a component of motoneuron discharge at this frequency. The motoneuron response to ~20 Hz descending input could be altered by non-linear interactions with ~10 Hz motoneuron firing. We investigated this further in eight healthy human subjects by testing the effects of the beta-adrenergic agents propranolol (non-selective β-antagonist and salbutamol (β(2-agonist, which are known to alter the size of physiological tremor. Corticomuscular coherence was assessed during an auxotonic precision grip task; tremor was quantified using accelerometry during index finger extension. Experiments with propranolol used a double-blind, placebo-controlled crossover design. A single oral dose of propranolol (40 mg significantly increased beta band (15.3-32.2 Hz corticomuscular coherence compared with placebo, but reduced tremor in the 6.2-11.9 Hz range. Salbutamol (2.5 mg was administered by inhalation. Whilst salbutamol significantly increased tremor amplitude as expected, it did not change corticomuscular coherence. The opposite direction of the effects of propranolol on corticomuscular coherence and tremor, and the fact that salbutamol enhances tremor but does not affect coherence, implies that the magnitude of corticomuscular coherence is little influenced by non-linear interactions with 10 Hz oscillations in motoneurons or the periphery. Instead, we suggest that propranolol and salbutamol may affect both tremor and corticomuscular coherence partly via a central site of action.
Köber, Christin; Schmiedek, Florian; Habermas, Tilmann
2015-02-01
The ability to narrate stories and a synchronic self-concept develop in the pre- and primary school years. Life story theory proposes that both developments extend to an even later developmental stage, that is, to adolescents' acquisition of a coherent life story. Cross-sectional evidence supports the emergence of a life story in adolescence, but is mixed in terms of later life span development. The present study examines longitudinally the development of global coherence in life narratives across almost the entire life span. Starting in 2003, a total of 172 participants narrated their lives over the course of 8 years (aged 16, 20, 24, 28, 44, and 69 when last tested) resulting in up to 4 life narratives per person. Three aspects of global life narrative coherence--temporal, causal-motivational, and thematic coherence--were measured with global ratings and predicted by their respective textual indicators. Children lacked most aspects of global coherence. Almost all indicators of temporal and causal-motivational coherence increased substantially across adolescence up to early adulthood, as did thematic coherence, which continued to develop throughout middle adulthood.
Strong electronic correlation effects in coherent multidimensional nonlinear optical spectroscopy.
Karadimitriou, M E; Kavousanaki, E G; Dani, K M; Fromer, N A; Perakis, I E
2011-05-12
We discuss a many-body theory of the coherent ultrafast nonlinear optical response of systems with a strongly correlated electronic ground state that responds unadiabatically to photoexcitation. We introduce a truncation of quantum kinetic density matrix equations of motion that does not rely on an expansion in terms of the interactions and thus applies to strongly correlated systems. For this we expand in terms of the optical field, separate out contributions to the time-evolved many-body state due to correlated and uncorrelated multiple optical transitions, and use "Hubbard operator" density matrices to describe the exact dynamics of the individual contributions within a subspace of strongly coupled states, including "pure dephasing". Our purpose is to develop a quantum mechanical tool capable of exploring how, by coherently photoexciting selected modes, one can trigger nonlinear dynamics of strongly coupled degrees of freedom. Such dynamics could lead to photoinduced phase transitions. We apply our theory to the nonlinear response of a two-dimensional electron gas (2DEG) in a magnetic field. We coherently photoexcite the two lowest Landau level (LL) excitations using three time-delayed optical pulses. We identify some striking temporal and spectral features due to dynamical coupling of the two LLs facilitated by inter-Landau-level magnetoplasmon and magnetoroton excitations and compare to three-pulse four-wave-mixing (FWM) experiments. We show that these features depend sensitively on the dynamics of four-particle correlations between an electron-hole pair and a magnetoplasmon/magnetoroton, reminiscent of exciton-exciton correlations in undoped semiconductors. Our results shed light into unexplored coherent dynamics and relaxation of the quantum Hall system (QHS) and can provide new insight into non-equilibrium co-operative phenomena in strongly correlated systems.
Numerical study of jet noise radiated by turbulent coherent structures
Energy Technology Data Exchange (ETDEWEB)
Bastin, F.
1995-08-01
a numerical approach of jet mixing noise prediction is presented, based on the assumption that the radiated sound field is essentially due to large-scale coherent turbulent structures. A semi-deterministic turbulence modelling is used to obtain the flow coherent fluctuations. This model is derived from the k-{epsilon} model and validated on the 2-D compressible shear layer case. Three plane jets at Mach 0.5, 1.33 and 2 are calculated. The semi-deterministic modelling yields a realistic unsteady representation of plane jets but not appropriate for axisymmetric jet computations. Lighthill`s analogy is used to estimate the noise radiated by the flow. Three integral formulations of the theory are compared and the most suitable one is expressed in space-time Fourier space. This formulation is associated to a geometrical interpretation of acoustic computations in (k, {omega}) plane. The only contribution of coherent structures cannot account for the high-frequency radiation of a subsonic jet and thus, the initial assumption is not verified in the subsonic range. The interpretation of Lighthill`s analogy in (k, {omega}) plane allows to conclude that the missing high-frequency components are due to the inner structure of the coherent motion. For supersonic jets, full acoustic spectra are obtained, at least in the forward arc where the dominant radiation is emitted. For the fastest jet (M = 2), no Mach waves are observed, which may be explained by a ratio of the structures convection velocity to the jet exit velocity lower in plane than in circular jets. This point is confirmed by instability theory calculations. Large eddy simulations (LES) were performed for subsonic jets. Data obtained in the plane jet case show that this technique allows only a slight improvement of acoustic results. To obtain a satisfactory high-frequency radiation, very fine grids should be considered, and the 2-D approximation could not be justified anymore. (Abstract Truncated)
Flensborg-Madsen, Trine; Ventegodt, Søren; Merrick, Joav
2005-09-14
We have previously concluded that the use of the Antonovsky Sense of Coherence (SOC) scale was unable to document a predicted strong association between SOC and physical health. By way of statistical methods numerous studies have investigated the validity, reliability, and applicability of the SOC scale with positive results. However, this paper analyses whether the questions in the SOC scale actually represent the universe of factors necessary to describe the phenomenon of SOC, which we believe is an important supplement to the statistically means of investigating validity and reliability. In this paper we explore the idea, the concepts, the theory and the operationalization behind the SOC Scale. The conclusions are: 1) it seems that Antonovsky's basic idea of coherence, for which he coined the term sense of coherence, as the basis for the highly popular salutogenic orientation is outstandingly good, in spite of the lack of statistical evidence; 2) the chosen key explanatory concepts of comprehensibility, manageability, and meaning, seems to be a fair, although mental, conceptualization of this idea; 3) Antonovsky's theory was unfortunately much less clear, as Antonovsky assumed predictability to be very important for the sense of coherence, especially for comprehensibility and manageability. This notion of predictability leaves its footprints in his operationalization of SOC into the SOC Scale. Our analysis convinced us that the SOC scale is unlikely to be a fair materialization of the idea of coherence and thus unlikely to measure SOC correctly.
Long-lived quantum coherence in photosynthetic complexes at physiological temperature
Panitchayangkoon, Gitt; Fransted, Kelly A; Caram, Justin R; Harel, Elad; Wen, Jianzhong; Blankenship, Robert E; Engel, Gregory S
2010-01-01
Photosynthetic antenna complexes capture and concentrate solar radiation by transferring the excitation to the reaction center which stores energy from the photon in chemical bonds. This process occurs with near-perfect quantum efficiency. Recent experiments at cryogenic temperatures have revealed that coherent energy transfer - a wavelike transfer mechanism - occurs in many photosynthetic pigment-protein complexes (1-4). Using the Fenna-Matthews-Olson antenna complex (FMO) as a model system, theoretical studies incorporating both incoherent and coherent transfer as well as thermal dephasing predict that environmentally assisted quantum transfer efficiency peaks near physiological temperature; these studies further show that this process is equivalent to a quantum random walk algorithm (5-8). This theory requires long-lived quantum coherence at room temperature, which never has been observed in FMO. Here we present the first evidence that quantum coherence survives in FMO at physiological temperature for at l...
Go With the Flow, on Jupiter and Snow. Coherence From Video Data without Trajectories
AlMomani, Abd AlRahman
2016-01-01
Viewing a data set such as the clouds of Jupiter, coherence is readily apparent to human observers, especially the Great Red Spot, but also other great storms and persistent structures. There are now many different definitions and perspectives mathematically describing coherent structures, but we will take an image processing perspective here. We describe an image processing perspective inference of coherent sets from a fluidic system directly from image data, without attempting to first model underlying flow fields, related to a concept in image processing called motion tracking. In contrast to standard spectral methods for image processing which are generally related to a symmetric affinity matrix, leading to standard spectral graph theory, we need a not symmetric affinity which arises naturally from the underlying arrow of time. We develop an anisotropic, directed diffusion operator corresponding to flow on a directed graph, from a directed affinity matrix developed with coherence in mind, and correspondin...
Ai, Qing; Jin, Bih-Yaw; Cheng, Yuan-Chung
2013-01-01
Elucidating quantum coherence effects and geometrical factors for efficient energy transfer in photosynthesis has the potential to uncover non-classical design principles for advanced organic materials. We study energy transfer in a linear light-harvesting model to reveal that dimerized geometries with strong electronic coherences within donor and acceptor pairs exhibit significantly improved efficiency, which is in marked contrast to predictions of the classical F\\"orster theory. We reveal that energy tuning due to coherent delocalization of photoexcitations is mainly responsible for the efficiency optimization. This coherence-assisted energy-tuning mechanism also explains the energetics and chlorophyll arrangements in the widely-studied Fenna-Matthews-Olson complex. We argue that a clustered network with rapid energy relaxation among donors and resonant energy transfer from donor to acceptor states provides a basic formula for constructing efficient light-harvesting systems, and the general principles revea...
Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean
Beron-Vera, F J; Haller, G; Farazmand, M; Trinanes, J; Wang, Y
2014-01-01
Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satell...
A simple optical system for interpreting coherence theory
Kelly, Damien P
2016-01-01
A new theoretical technique for understanding, analyzing and developing optical systems is presented. The approach is statistical in nature, where information about an object under investigation is discovered, by examining deviations from a known reference statistical distribution. A Fourier optics framework and a scalar description of the propagation of monochromatic light is initially assumed. An object (belonging to a known class of objects) is illuminated with a speckle field and the intensity of the resulting scattered optical field is detected at a series of spatial locations by point square law detectors. A new speckle field is generated (with a new diffuser) and the object is again illuminated and the intensities are again measured and noted. By making a large number of these statistical measurements - an ensemble averaging process (which in general can be a temporal or a spatial averaging process) - it is possible to determine the statistical relationship between the intensities detected in different...
Theory of coherent dynamic nuclear polarization in quantum dots
DEFF Research Database (Denmark)
Neder, Izhar; Rudner, Mark Spencer; Halperin, Bertrand
2014-01-01
We consider the production of dynamic nuclear spin polarization (DNP) in a two-electron double quantum dot, in which the electronic levels are repeatedly swept through a singlet-triplet avoided crossing. Our analysis helps to elucidate the intriguing interplay between electron-nuclear hyperfine...
Total quantum coherence and its applications
Yu, Chang-shui; Yang, Si-ren; Guo, Bao-qing
2016-09-01
Quantum coherence is the most fundamental feature of quantum mechanics. The usual understanding of it depends on the choice of the basis, that is, the coherence of the same quantum state is different within different reference framework. To reveal all the potential coherence, we present the total quantum coherence measures in terms of two different methods. One is optimizing maximal basis-dependent coherence with all potential bases considered and the other is quantifying the distance between the state and the incoherent state set. Interestingly, the coherence measures based on relative entropy and l_2 norm have the same form in the two different methods. In particular, we show that the measures based on the non-contractive l_2 norm are also a good measure different from the basis-dependent coherence. In addition, we show that all the measures are analytically calculable and have all the good properties. The experimental schemes for the detection of these coherence measures are also proposed by multiple copies of quantum states instead of reconstructing the full density matrix. By studying one type of quantum probing schemes, we find that both the normalized trace in the scheme of deterministic quantum computation with one qubit and the overlap of two states in quantum overlap measurement schemes can be well described by the change of total coherence of the probing qubit. Hence the nontrivial probing always leads to the change of the total coherence.
QoS-aware precautionary performance monitoring for PCE-based coherent optical OFDM networks
Institute of Scientific and Technical Information of China (English)
Yueming Lu; Lianxing Hou
2012-01-01
A quality-of-service (QoS) aware scheme,called precautionary performance monitoring,is proposed to solve the optical impairments and congestion control in coherent optical orthogonal frequency division multiplexed (CO-OFDM) networks.The centralized path computation element (PCE) extensions based on the QoS level are applied to optical performance monitoring in this letter.
Nicolo, Massimo; Rosa, Raffaella; Musetti, Donatella; Musolino, Maria; Traverso, Carlo Enrico
2016-02-01
Unilateral acute idiopathic maculopathy (UAIM) is a rare disorder presenting in young people with an acute onset of unilateral central visual loss often associated with a prodromal flu-like illness. The authors present the early anatomical findings of a 35-year-old man clinically diagnosed with UAIM using swept-source optical coherence tomography (SS-OCT) and SS-OCT angiography.
Coherent transport through interacting quantum dots
Energy Technology Data Exchange (ETDEWEB)
Hiltscher, Bastian
2012-10-05
The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in
The coherence of life: A new physiology challenging (neo)Darwinism
Energy Technology Data Exchange (ETDEWEB)
Jaeken, Laurent [Laboratory of Biochemistry, Department of Industrial Sciences and Technology, Karel de Grote-Hogeschool University College, Salesianenlaan 30, B-2660 Hoboken (Belgium)], E-mail: laurent.jaeken@Kdg.be
2009-10-15
Schroedinger argued that coherent behaviour is one of the most remarkable properties of life. Despite this, it is one of the most neglected properties, studied only by a few groups of rather independent scientists in the domains of physiology but also of fundamental physics. In contrast, classical cell physiology, built on membrane theory, does not take coherent behaviour into account. Recently several independent approaches to the problem of coherence have been unified yielding a new paradigm for cell physiology, which can be derived from a non-linear Schroedinger equation. The new paradigm replaces outdated membrane theory. Similarly (neo)Darwinism is not firmly grounded on fundamental physics. However, during the eighties (neo)Darwinism was taken up in a broader theory of evolution, based on the non-linear equations of fundamental physics. It is argued here that life's coherent behaviour and the new physiology built on these coherent properties is directly compatible with the modern view on evolution, since both are based on the same principles of non-linearity.
Central line infections - hospitals
... infection; Central venous catheter - infection; CVC - infection; Central venous device - infection; Infection control - central line infection; Nosocomial infection - central line infection; Hospital acquired ...
Reduced central blood volume in cirrhosis
DEFF Research Database (Denmark)
Bendtsen, F; Henriksen, Jens Henrik Sahl; Sørensen, T I
1989-01-01
for measuring the central blood volume. We have developed a method that enables us to determine directly the central blood volume, i.e., the blood volume in the heart cavities, lungs, and central arterial tree. In 60 patients with cirrhosis and 16 control subjects the central blood volume was assessed according......The pathogenesis of ascites formation in cirrhosis is uncertain. It is still under debate whether the effective blood volume is reduced (underfilling theory) or whether the intravascular compartment is expanded (overflow theory). This problem has not yet been solved because of insufficient tools...... to the kinetic theory as the product of cardiac output and mean transit time of the central vascular bed. Central blood volume was significantly smaller in patients with cirrhosis than in controls (mean 21 vs. 27 ml/kg estimated ideal body weight, p less than 0.001; 25% vs. 33% of the total blood volume, p less...
Cohering and decohering power of quantum channels
Mani, Azam; Karimipour, Vahid
2015-09-01
We introduce the concepts of cohering and decohering power of quantum channels. Using the axiomatic definition of the coherence measure, we show that the optimization required for calculations of these measures can be restricted to pure input states and hence greatly simplified. We then use two examples of this measure, one based on the skew information and the other based on the l1 norm; we find the cohering and decohering measures of a number of one-, two-, and n -qubit channels. Contrary to the view at first glance, it is seen that quantum channels can have cohering power. It is also shown that a specific property of a qubit unitary map is that it has equal cohering and decohering power in any basis. Finally, we derive simple relations between cohering and decohering powers of unitary qubit gates and their tensor products, results which have physically interesting implications.
Can Natural Sunlight Induce Coherent Exciton Dynamics?
Olšina, Jan; Wang, Chen; Cao, Jianshu
2014-01-01
Excitation of a model photosynthetic molecular aggregate by incoherent sunlight is systematically examined. For a closed system, the excited state coherence induced by the sunlight oscillates with an average amplitude that is inversely proportional to the excitonic gap, and reaches a stationary amplitude that depends on the temperature and coherence time of the radiation field. For an open system, the light-induced dynamical coherence relaxes to a static coherence determined by the non-canonical thermal distribution resulting from the entanglement with the phonon bath. The decay of the excited state population to the common ground state establishes a non-equilibrium steady-state flux driven by the sunlight, and it defines a time window to observe the transition from dynamical to static coherence. For the parameters relevant to photosynthetic systems, the exciton dynamics initiated by the sunlight exhibits a non-negligible amount of dynamical coherence (quantum beats) on the sub-picosecond timescale; however, ...
Does coherence enhance transport in photosynthesis?
Kassal, Ivan; Rahimi-Keshari, Saleh
2012-01-01
Recent observations of coherence in photosynthetic complexes have led to the question of whether quantum effects can occur in vivo, not under femtosecond laser pulses but in incoherent sunlight and at steady state, and, if so, whether the coherence explains the high exciton transfer efficiency. We distinguish several types of coherence and show that although some photosynthetic pathways are partially coherent processes, photosynthesis in nature proceeds through stationary states. This distinction allows us to rule out several mechanisms of transport enhancement in sunlight. In particular, although they are crucial for understanding exciton transport, neither wavelike motion nor microscopic coherence, on their own, enhance the efficiency. By contrast, two partially coherent mechanisms---ENAQT and supertransfer---can enhance transport even in sunlight and thus constitute motifs for the optimisation of artificial sunlight harvesting. Finally, we clarify the importance of ultrafast spectroscopy in understanding i...
Electronic coherence and the kinetics of inter-complex energy transfer in light-harvesting systems.
Huo, Pengfei; Miller, Thomas F
2015-12-14
We apply real-time path-integral dynamics simulations to characterize the role of electronic coherence in inter-complex excitation energy transfer (EET) processes. The analysis is performed using a system-bath model that exhibits the essential features of light-harvesting networks, including strong intra-complex electronic coupling and weak inter-complex coupling. Strong intra-complex coupling is known to generate both static and dynamic electron coherences, which delocalize the exciton over multiple chromophores and potentially influence the inter-complex EET dynamics. With numerical results from partial linearized density matrix (PLDM) real-time path-integral calculations, it is found that both static and dynamic coherence are correlated with the rate of inter-complex EET. To distinguish the impact of these two types of intra-complex coherence on the rate of inter-complex EET, we use Multi-Chromophore Förster Resonance Energy Transfer (MC-FRET) theory to map the original parameterization of the system-bath model to an alternative parameterization for which the effects of static coherence are preserved while the effects of dynamic coherence are largely eliminated. It is then shown that both parameterizations of the model (i.e., the original that supports dynamic coherence and the alternative that eliminates it), exhibit nearly identical EET kinetics and population dynamics over a wide range of parameters. These observations are found to hold for cases in which either the EET donor or acceptor is a dimeric complex and for cases in which the dimeric complex is either symmetric or asymmetric. The results from this study suggest that dynamic coherence plays only a minor role in the actual kinetics of inter-complex EET, whereas static coherence largely governs the kinetics of incoherent inter-complex EET in light-harvesting networks.
DEFF Research Database (Denmark)
Li, Xiao Qiang; Pryds, Anders; Carlsen, Jørn;
2015-01-01
with clinical examination, enhanced depth optical coherence tomography, fluorescein and indocyanine green angiography, and fundus photography. RESULTS: At presentation, atypical central serous chorioretinopathy with multiple retinal pigment epithelial detachments, a thick subfoveal choroid, and dilated...
EEG, alpha waves and coherence
Ascolani, Gianluca
This thesis addresses some theoretical issues generated by the results of recent analysis of EEG time series proving the brain dynamics are driven by abrupt changes making them depart from the ordinary Poisson condition. These changes are renewal, unpredictable and non-ergodic. We refer to them as crucial events. How is it possible that this form of randomness be compatible with the generation of waves, for instance alpha waves, whose observation seems to suggest the opposite view the brain is characterized by surprisingly extended coherence? To shed light into this apparently irretrievable contradiction we propose a model based on a generalized form of Langevin equation under the influence of a periodic stimulus. We assume that there exist two different forms of time, a subjective form compatible with Poisson statistical physical and an objective form that is accessible to experimental observation. The transition from the former to the latter form is determined by the brain dynamics interpreted as emerging from the cooperative interaction among many units that, in the absence of cooperation would generate Poisson fluctuations. We call natural time the brain internal time and we make the assumption that in the natural time representation the time evolution of the EEG variable y(t) is determined by a Langevin equation perturbed by a periodic process that in this time representation is hardly distinguishable from an erratic process. We show that the representation of this random process in the experimental time scale is characterized by a surprisingly extended coherence. We show that this model generates a sequence of damped oscillations with a time behavior that is remarkably similar to that derived from the analysis of real EEG's. The main result of this research work is that the existence of crucial events is not incompatible with the alpha wave coherence. In addition to this important result, we find another result that may help our group, or any other research
Metonymic Mind and Discourse Coherence
Institute of Scientific and Technical Information of China (English)
冷晓峰; 范振强
2007-01-01
Based on human bodily experience and the interaction with the objective world,a lot of universal schemata are formed in our brain. Also armed with metonymic mind which is based on Gestalt psychology and neural spreading activation,speakers obtain omissions when coding by making semantic leaps. This is done by selecting and coding part of the schema as reference points and let the addressees to infer the whole schemata or the other parts unsaid. This mechanism explains why discourses are coherent at some deeper level.
SO(10)-GUT coherent baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Garbrecht, Bjoern [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)]. E-mail: b.garbrecht@thphys.uni-heidelberg.de; Prokopec, Tomislav [Institute for Theoretical Physics (ITF) and Spinoza Institute, Utrecht University, Leuvenlaan 4, Postbus 80.195, 3508 TD Utrecht (Netherlands)]. E-mail: t.prokopec@phys.uu.nl; Schmidt, Michael G. [Institut fuer Theoretische Physik, Universitaet Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)]. E-mail: m.g.schmidt@thphys.uni-heidelberg.de
2006-02-20
A model for GUT baryogenesis, coherent baryogenesis within the framework of supersymmetric SO(10), is considered. In particular, we discuss the Barr-Raby model, where at the end of hybrid inflation charge asymmetries can be created through the time-dependent higgsino-gaugino mixing mass matrix. These asymmetries are processed to Standard Model matter through decays via nonrenormalizable (B-L)-violating operators. We find that a baryon asymmetry in accordance with observation can be generated. An appendix is devoted to provide useful formulas and concrete examples for calculations within SO(10)
Neutral current coherent pion production
Alvarez-Ruso, L; Vacas, M J Vicente
2007-01-01
We investigate the neutrino induced coherent pion production reaction at low and intermediate energies. The model includes pion, nucleon and Delta(1232) resonance as the relevant hadronic degrees of freedom. Nuclear medium effects on the production mechanisms and pion distortion are taken into account. We obtain that the dominance of the Delta excitation holds due to large cancellations among the background contributions. We consider two sets of vector and axial-vector N-Delta transition form-factors, evidencing the strong sensitivity of the results to the axial coupling C5A(0). The differences between neutrino and antineutrino cross sections, emerging from interference terms, are also discussed.
Institute of Scientific and Technical Information of China (English)
2008-01-01
Taking the famous genetic toggle switch as an example,we numerically investigated the effect of noise on bistability.We found that extrinsic noise resulting from stochastic fluctuations in synthesis and degradation rates and from the environmental fluctuation in gene regulatory processes can induce coherent switch,and that there is an optimal noise intensity such that the noise not only can induce this switch,but also can amplify a weak input signal.In addition,we found that the intrinsic noise introduced through the Poisson τ-leap algorithm cannot induce such a switch.
Computational invariant theory
Derksen, Harm
2015-01-01
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be ...
Coherence delay augmented laser beam homogenizer
Rasmussen, P.; Bernhardt, A.
1993-06-29
The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.
Coherent states for exactly solvable potentials
Shreecharan, T.; Panigrahi, Prasanta. K.; Banerji, J.
2003-01-01
A general algebraic procedure for constructing coherent states of a wide class of exactly solvable potentials e.g., Morse and P{\\"o}schl-Teller, is given. The method, {\\it a priori}, is potential independent and connects with earlier developed ones, including the oscillator based approaches for coherent states and their generalizations. This approach can be straightforwardly extended to construct more general coherent states for the quantum mechanical potential problems, like the nonlinear co...
Coherent lunar effect on solar neutrino
Ishikawa, K
2005-01-01
Coherent interaction of solar neutrino with the moon is investigated. Neutrino interacts with matters extremely weakly. So incoherent scattering event rate is negligibly small but coherent interaction of neutrino with a massive object can have a significant effect. We study coherent lunar effect on solar neutrino and show that a phase factor of the neutrino wave function is modified substantially if the neutrino penetrates through the moon. Possibility of measuring interference effect of solar neutrino during eclipse is pointed out.
Spatial coherence of random laser emission.
Redding, Brandon; Choma, Michael A; Cao, Hui
2011-09-01
We experimentally studied the spatial coherence of random laser emission from dye solutions containing nanoparticles. The spatial coherence, measured in a double slit experiment, varied significantly with the density of scatterers and the size and shape of the excitation volume. A qualitative explanation is provided, illustrating the dramatic difference from the spatial coherence of a conventional laser. This work demonstrates that random lasers can be controlled to provide intense, spatially incoherent emission for applications in which spatial cross talk or speckle limit performance.
Coherent LQG Control, Free-Carrier Oscillations, Optical Ising Machines and Pulsed OPO Dynamics
Hamerly, Ryan
2016-01-01
Broadly speaking, this thesis is about nonlinear optics, quantum mechanics, and computing. More specifically, it covers four main topics: Coherent LQG Control, Free-Carrier Oscillations, Optical Ising Machines and Pulsed OPO Dynamics. Tying them all together is a theory of open quantum systems called the SLH model, which I introduce in Chapters 1-2. The SLH model is a general framework for open quantum systems that interact through bosonic fields, and is the basis for the quantum circuit theory developed in the text. Coherent LQG control is discussed in Chapters 3-4, where I demonstrate that coherent feedback outperforms measurement-based feedback for certain linear quadratic-Gaussian (LQG) problems, and explain the discrepancy by the former's simultaneous utilization of both light quadratures. Semiclassical truncated-Wigner techniques for quantum-optical networks are discussed in Chapter 5, leading to a thorough discussion of quantum noise in systems with free-carrier nonlinearities (Chapter 6), comparison t...
Coherent phonons in carbon nanotubes and graphene
Kim, J.-H.; Nugraha, A. R. T.; Booshehri, L. G.; Hároz, E. H.; Sato, K.; Sanders, G. D.; Yee, K.-J.; Lim, Y.-S.; Stanton, C. J.; Saito, R.; Kono, J.
2013-02-01
We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite specific-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n + m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.
Coherent perfect absorption in photonic structures
Baldacci, Lorenzo; Tredicucci, Alessandro
2016-01-01
The ability to drive a system with an external input is a fundamental aspect of light-matter interaction. The coherent perfect absorption (CPA) phenomenon extends to the general multibeam interference phenomenology the well known critical coupling concepts. This interferometric control of absorption can be employed to reach full delivery of optical energy to nanoscale systems such as plasmonic nanoparticles, and multi-port interference can be used to enhance the absorption of a nanoscale device when it is embedded in a strongly scattering system, with potential applications to nanoscale sensing. Here we review the two-port CPA in reference to photonic structures which can resonantly couple to the external fields. A revised two-port theory of CPA is illustrated, which relies on the Scattering Matrix formalism and is valid for all linear two-port systems with reciprocity. Through a semiclassical approach, treating two-port critical coupling conditions in a non-perturbative regime, it is demonstrated that the st...
Mandl, Franz
2010-01-01
Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic
Quantum oscillators in the canonical coherent states
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Lima, A.F. de; Ferreira, K. de Araujo [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica; Vaidya, A.N. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
2001-11-01
The main characteristics of the quantum oscillator coherent states including the two-particle Calogero interaction are investigated. We show that these Calogero coherent states are the eigenstates of the second-order differential annihilation operator which is deduced via Wigner-Heisenberg algebraic technique and correspond exactly to the pure uncharged-bosonic states. They posses the important properties of non-orthogonality and completeness. The minimum uncertainty relation for the Wigner oscillator coherent states are investigated. New sets of even and odd coherent states are point out. (author)
Coherent spaces, Boolean rings and quantum gates
Vourdas, A.
2016-10-01
Coherent spaces spanned by a finite number of coherent states, are introduced. Their coherence properties are studied, using the Dirac contour representation. It is shown that the corresponding projectors resolve the identity, and that they transform into projectors of the same type, under displacement transformations, and also under time evolution. The set of these spaces, with the logical OR and AND operations is a distributive lattice, and with the logical XOR and AND operations is a Boolean ring (Stone's formalism). Applications of this Boolean ring into classical CNOT gates with n-ary variables, and also quantum CNOT gates with coherent states, are discussed.
Multi-channel coherent perfect absorbers
Bai, Ping
2016-05-18
The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.
Identification of the sensory/motor area and pathologic regions using ECoG coherence.
Towle, V L; Syed, I; Berger, C; Grzesczcuk, R; Milton, J; Erickson, R K; Cogen, P; Berkson, E; Spire, J P
1998-01-01
An electrophysiologic mapping technique which enables identification of the central sulcus and pathologic cortical regions is described. Electrocorticographic recordings of 1 min duration were recorded from 25 patients who were undergoing resection of tumors in the sensory-motor region or being evaluated for temporal lobectomy for epilepsy. Analysis of the patterns of subdural inter-electrode coherence revealed low coherence across the central sulcus for 11/12 cases where its location could be verified with direct cortical stimulation and/or somatosensory evoked potential mapping. Regions of high coherence identified the location of tumors in the sensory-motor region for 10/10 cases. Over the temporal lobe, localized areas of high coherence were evident in 8/9 epilepsy patients, but were not indicative of the location of mesial temporal lobe tumors or inter-ictal spiking, when present. We conclude that analysis of cortical coherence patterns may be helpful for revealing the location of pathologic processes relative to critical cortical areas.
2002-01-01
The Central Solenoid (CS) is a single layer coil wound internally in a supporting cylinder housed in the cryostat of the Liquid Argon Calorimeter. It was successfully tested at Toshiba in December 2000 and was delivered to CERN in September 2001 ready for integration in the LAr Calorimeter in 2003. An intermediate test of the chimney and proximity cryogenics was successfully performed in June 2002.
Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media
Hsu, Chia Wei; Bromberg, Yaron; Stone, A Douglas; Cao, Hui
2015-01-01
We study the optimal diffusive transmission and absorption of broadband or polychromatic light in a disordered medium. By introducing matrices describing broadband transmission and reflection, we formulate an extremal eigenvalue problem where the optimal input wavefront is given by the corresponding eigenvector. We show analytically that a single wavefront can exhibit strongly enhanced total transmission or total absorption across a bandwidth that is orders of magnitude broader than the spectral correlation width of the medium, due to long-range correlations in coherent diffusion. We find excellent agreement between the analytic theory and numerical simulations.
Coherent neutrino radiation in supernovae at two loops
Sedrakian, A.; Dieperink, A. E. L.
2000-01-01
We develop a neutrino transport theory, in terms of the real-time non-equilibrium Green's functions, which is applicable to physical conditions arbitrary far from thermal equilibrium. We compute the coherent neutrino radiation in cores of supernovae by evaluating the two-particle-two-hole (2p-2h) polarization function with dressed propagators. The propagator dressing is carried out in the particle-particle channel to all orders in the interaction. We show that at two loops there are two disti...
Coherent secondary emission from resonantly excited two-exciton states
DEFF Research Database (Denmark)
Birkedal, Dan
2000-01-01
The coherent interaction of light and the electronic states of semiconductors near the fundamental bandgap has been a very active topic of research since the advent of ultrafast lasers. While many of the ultrafast nonlinear properties of semiconductors have been well explained within mean field...... theories as e.g. the semiconductor Bloch equations, recent experimental and theoretical developments have demonstrated contributions to the third order nonlinear susceptibility from exciton-exciton correlations beyond the mean field approximation. Ultrafast transient four-wave mixing (TFWM)has been...
Long-range correlations and coherent structures in magnetohydrodynamic equilibria.
Weichman, Peter B
2012-12-01
The equilibrium theory of the 2D magnetohydrodynamic equations is derived, accounting for the full infinite hierarchies of conserved integrals. An exact description in terms of two coupled elastic membranes emerges, producing long-ranged correlations between the magnetic and velocity fields. This is quite different from the results of previous variational treatments, which relied on a local product ansatz for the thermodynamic Gibbs distribution. The equilibria display the same type of coherent structures, such as compact eddies and zonal jets, previously found in pure fluid equilibria. Possible consequences of this for recent simulations of the solar tachocline are discussed.
Coherent States, Dynamics and Semiclassical Limit on Quantum Groups
Aref'eva, I Ya; Viswanathan, K S; Volovich, I V
1994-01-01
Coherent states on the quantum group $SU_q(2)$ are defined by using harmonic analysis and representation theory of the algebra of functions on the quantum group. Semiclassical limit $q\\rightarrow 1$ is discussed and the crucial role of special states on the quantum algebra in an investigation of the semiclassical limit is emphasized. An approach to $q$-deformation as a $q$-Weyl quantization and a relavence of contact geometry in this context is pointed out. Dynamics on the quantum group parametrized by a real time variable and corresponding to classical rotations is considered.
Study of QCD Coherence in Hadronic Z decays
Chmeissani, M
1995-01-01
We present studies of QCD Coherence phenomenom, well know as the Angluar Ordering (AO), which has been predicted by QCD theory. The analysis is based on the Particle-Particle-Correlation-Asymetery (PPCA) and on the Energy-Mutiplicity-Mutiplicity-Correlation (EMMC) functions, as observables sensitive to Angular Ordering. The Monte Carlo programs and a sample of 800000 hadronic events registered by ALEPH detector in 1992 and 1993 were used in this analysis. We find that the data favors Monte Carlo programs with AO, which supports the QCD prediction.
Reactant-Product Quantum Coherence in Electron Transfer Reactions
Kominis, I K
2012-01-01
We investigate the physical meaning of quantum superposition states between reactants and products in electron transfer reactions. We show that such superpositions are strongly suppressed and to leading orders of perturbation theory do not pertain in electron transfer reactions. This is because of the intermediate manifold of states separating the reactants from the products. We provide an intuitive description of these considerations with Feynman diagrams. We also discuss the relation of such quantum coherences to understanding the fundamental quantum dynamics of spin-selective radical-ion-pair reactions.
Directory of Open Access Journals (Sweden)
Sophie Elizabeth Lind
2014-12-01
Full Text Available This study explored spatial navigation alongside several other cognitive abilities that are thought to share common underlying neurocognitive mechanisms (e.g., the capacity for self-projection, scene construction, or mental simulation, and which we hypothesised may be impaired in autism spectrum disorder (ASD. Twenty intellectually high-functioning children with ASD (with a mean age of ~8 years were compared to 20 sex, age, IQ, and language ability matched typically developing children on a series of tasks to assess spatial navigation, episodic memory, episodic future thinking (also known as episodic foresight or prospection, theory of mind, relational memory, and central coherence. This is the first study to explore these abilities concurrently within the same sample. Spatial navigation was assessed using the memory island task, which involves finding objects within a realistic, computer simulated, three-dimensional environment. Episodic memory and episodic future thinking were assessed using a past and future event description task. Theory of mind was assessed using the animations task, in which children were asked to describe the interactions between two animated triangles. Relational memory was assessed using a recognition task involving memory for items (line drawings, patterned backgrounds, or combinations of items and backgrounds. Central coherence was assessed by exploring differences in performance across segmented and unsegmented versions of block design. Children with ASD were found to show impairments in spatial navigation, episodic memory, episodic future thinking, and central coherence, but not theory of mind or relational memory. Among children with ASD, spatial navigation was found to be significantly negatively related to number of repetitive behaviours. In other words, children who showed more repetitive behaviours showed poorer spatial navigation. The theoretical and practical implications of the results are discussed.
Directory of Open Access Journals (Sweden)
Karel BARTOSEK
2010-02-01
Full Text Available La investigación francesa continúa interesándose por Europa Central. Desde luego, hay límites a este interés en el ambiente general de mi nueva patria: en la ignorancia, producto del largo desinterés de Francia por este espacio después de la Segunda Guerra Mundial, y en el comportamiento y la reflexión de la clase política y de los medios de comunicación (una anécdota para ilustrar este ambiente: durante la preparación de nuestro coloquio «Refugiados e inmigrantes de Europa Central en el movimiento antifascista y la Resistencia en Francia, 1933-1945», celebrado en París en octubre de 1986, el problema de la definición fue planteado concreta y «prácticamente». ¡Y hubo entonces un historiador eminente, para quién Alemania no formaría parte de Europa Central!.
Köber, Christin; Schmiedek, Florian; Habermas, Tilmann
2015-01-01
The ability to narrate stories and a synchronic self-concept develop in the pre- and primary school years. Life story theory proposes that both developments extend to an even later developmental stage, that is, to adolescents' acquisition of a coherent life story. Cross-sectional evidence supports the emergence of a life story in adolescence, but…
Biophotons, coherence and photocount statistics: A critical review
Energy Technology Data Exchange (ETDEWEB)
Cifra, Michal, E-mail: cifra@ufe.cz [Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague (Czech Republic); Brouder, Christian [Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Université Pierre et Marie Curie, Paris 6, CNRS UMR7590, Paris (France); Nerudová, Michaela [Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague (Czech Republic); Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Kučera, Ondřej [Institute of Photonics and Electronics, The Czech Academy of Sciences, Prague (Czech Republic)
2015-08-15
Biological samples continuously emit ultra-weak photon emission (UPE, or “biophotons”) which stems from electronic excited states generated chemically during oxidative metabolism and stress. Thus, UPE can potentially serve as a method for non-invasive diagnostics of oxidative processes or, if discovered, also of other processes capable of electron excitation. While the fundamental generating mechanisms of UPE are fairly elucidated together with their approximate ranges of intensities and spectra, the statistical properties of UPE are still a highly challenging topic. Here, we review claims about nontrivial statistical properties of UPE, such as coherence and squeezed states of light. After the introduction to the necessary theory, we categorize the experimental works of all authors to those with solid, conventional interpretation and those with unconventional and even speculative interpretation. The conclusion of our review is twofold; while the phenomenon of UPE from biological systems can be considered experimentally well established, no reliable evidence for the coherence or nonclassicality of UPE has actually been achieved up to now. Furthermore, we propose perspective avenues for the research of statistical properties of biological UPE. - Highlights: • We review statistical properties of biological ultra-weak photon emission. • Claims of coherence and squeezed states are assessed. • Perspective work in statistical properties of biological photon emission is sketched.