WorldWideScience

Sample records for central amazon forest

  1. Monoterpene Compositions of Three Forested Ecosystems in the Central Amazon Basin

    Science.gov (United States)

    Jardine, A.; Fuentes, J. D.; Manzi, A. O.; Higuchi, N.; Chambers, J. Q.; Jardine, K.

    2014-12-01

    Monoterpenes play fundamental roles as secondary metabolites in forested ecosystems and as gas and liquid phase secondary organic aerosol (SOA) precursors in their surrounding atmospheres. While the chemical pathways involved in ozonolysis driven SOA formation from individual monoterpene precursors is known, local and regional chemical transport models are still lacking observations of speciated monoterpenes from forested atmospheres. Here, we present high vertically resolved mixing ratio profiles of speciated monoterpenes from the ambient air of three neighboring forested ecosystems in the central Amazon Basin. Two well-drained plateau primary forests and one seasonally flooded valley forest were sampled during the afternoon hours (13:00 - 16:30) on walkup towers from the initiation of the 2013-14 wet season through the onset of the 2014 dry season (Nov 2013 - Jul 2014). Ambient mixing ratios in all three ecosystems were greatest in the upper canopy with secondary sources of some monoterpenes within the sub-canopies. Relative vertical compositions of monoterpenes did not change significantly throughout the seasons for either ecosystem type. Both ecosystem types were dominated by d-limonene (up to 1.6 ppb) with equally strong mixing ratios of alpha-pinene in the valley compared to the much weaker a-pinene mixing ratios on the plateaus (up to 200 ppt). The highly reactive cis- and trans-beta-ocimene were consistently present in both ecosystems (up to 250 ppt) with the addition of equally high camphene mixing ratios in the valley forest (up to 200 ppt) which is present in the plateau ecosystems in low quantities (50 ppt). With respect to clean atmosphere mixing ratios of 10 ppb ozone, lifetimes are below 2 hours for camphene and below 30 minutes for ocimene, suggesting a potentially large impact on local and possibly regional ozonolysis and subsequent SOA composition.

  2. Large-scale wind disturbances promote tree diversity in a Central Amazon forest.

    Science.gov (United States)

    Marra, Daniel Magnabosco; Chambers, Jeffrey Q; Higuchi, Niro; Trumbore, Susan E; Ribeiro, Gabriel H P M; Dos Santos, Joaquim; Negrón-Juárez, Robinson I; Reu, Björn; Wirth, Christian

    2014-01-01

    Canopy gaps created by wind-throw events, or blowdowns, create a complex mosaic of forest patches varying in disturbance intensity and recovery in the Central Amazon. Using field and remote sensing data, we investigated the short-term (four-year) effects of large (>2000 m(2)) blowdown gaps created during a single storm event in January 2005 near Manaus, Brazil, to study (i) how forest structure and composition vary with disturbance gradients and (ii) whether tree diversity is promoted by niche differentiation related to wind-throw events at the landscape scale. In the forest area affected by the blowdown, tree mortality ranged from 0 to 70%, and was highest on plateaus and slopes. Less impacted areas in the region affected by the blowdown had overlapping characteristics with a nearby unaffected forest in tree density (583 ± 46 trees ha(-1)) (mean ± 99% Confidence Interval) and basal area (26.7 ± 2.4 m(2) ha(-1)). Highly impacted areas had tree density and basal area as low as 120 trees ha(-1) and 14.9 m(2) ha(-1), respectively. In general, these structural measures correlated negatively with an index of tree mortality intensity derived from satellite imagery. Four years after the blowdown event, differences in size-distribution, fraction of resprouters, floristic composition and species diversity still correlated with disturbance measures such as tree mortality and gap size. Our results suggest that the gradients of wind disturbance intensity encompassed in large blowdown gaps (>2000 m(2)) promote tree diversity. Specialists for particular disturbance intensities existed along the entire gradient. The existence of species or genera taking an intermediate position between undisturbed and gap specialists led to a peak of rarefied richness and diversity at intermediate disturbance levels. A diverse set of species differing widely in requirements and recruitment strategies forms the initial post-disturbance cohort, thus lending a high resilience towards wind

  3. Central Amazon Forest Enhanced Vegetation Index Seasonality Driven by Strongly Seasonal Leaf Flush

    Science.gov (United States)

    Wu, J.; Nelson, B. W.; Lopes, A. P.; Graca, P. M. L. D. A.; Tavares, J. V.; Prohaska, N.; Martins, G.; Saleska, S. R.

    2015-12-01

    ). Both reached minimum greenness in May (late wet season) and maximum during October to December (late dry to early wet season). We conclude that seasonal variation in EVI of Central Amazon forest is real and is driven by the seasonally changing mix of leaf age detected in crown-level leaf cohorts.

  4. The changing Amazon forest.

    Science.gov (United States)

    Phillips, Oliver L; Lewis, Simon L; Baker, Timothy R; Chao, Kuo-Jung; Higuchi, Niro

    2008-05-27

    Long-term monitoring of distributed, multiple plots is the key to quantify macroecological patterns and changes. Here we examine the evidence for concerted changes in the structure, dynamics and composition of old-growth Amazonian forests in the late twentieth century. In the 1980s and 1990s, mature forests gained biomass and underwent accelerated growth and dynamics, all consistent with a widespread, long-acting stimulation of growth. Because growth on average exceeded mortality, intact Amazonian forests have been a carbon sink. In the late twentieth century, biomass of trees of more than 10cm diameter increased by 0.62+/-0.23tCha-1yr-1 averaged across the basin. This implies a carbon sink in Neotropical old-growth forest of at least 0.49+/-0.18PgCyr-1. If other biomass and necromass components are also increased proportionally, then the old-growth forest sink here has been 0.79+/-0.29PgCyr-1, even before allowing for any gains in soil carbon stocks. This is approximately equal to the carbon emissions to the atmosphere by Amazon deforestation. There is also evidence for recent changes in Amazon biodiversity. In the future, the growth response of remaining old-growth mature Amazon forests will saturate, and these ecosystems may switch from sink to source driven by higher respiration (temperature), higher mortality (as outputs equilibrate to the growth inputs and periodic drought) or compositional change (disturbances). Any switch from carbon sink to source would have profound implications for global climate, biodiversity and human welfare, while the documented acceleration of tree growth and mortality may already be affecting the interactions among millions of species.

  5. The floating forest: traditional knowledge and use of matupa vegetation islands by riverine peoples of the central Amazon.

    Directory of Open Access Journals (Sweden)

    Carolina T de Freitas

    Full Text Available Matupás are floating vegetation islands found in floodplain lakes of the central Brazilian Amazon. They form initially from the agglomeration of aquatic vegetation, and through time can accumulate a substrate of organic matter sufficient to grow forest patches of several hectares in area and up to 12 m in height. There is little published information on matupás despite their singular characteristics and importance to local fauna and people. In this study we document the traditional ecological knowledge of riverine populations who live near and interact with matupás. We expected that their knowledge, acquired through long term observations and use in different stages of the matupá life cycle, could help clarify various aspects about the ecology and natural history of these islands that field biologists may not have had the opportunity to observe. Research was carried out in five riverine communities of the Amanã Sustainable Development Reserve (Brazil. Semi-structured interviews were conducted with 45 inhabitants in order to register local understandings of how matupás are formed, biotic/abiotic factors related to their occurrence, the plants and animals that occur on them, their ecological relevance, and local uses. Local people elucidated several little-known aspects about matupá ecology, especially regarding the importance of seasonal dynamics of high/low water for matupás formation and the relevance of these islands for fish populations. Soil from matupás is especially fertile and is frequently gathered for use in vegetable gardens. In some cases, crops are planted directly onto matupás, representing an incipient agricultural experiment that was previously undocumented in the Amazon. Matupás are also considered a strategic habitat for fishing, mainly for arapaima (Arapaima gigas. The systematic study of traditional ecological knowledge proved to be an important tool for understanding this little-known Amazonian landscape.

  6. The Floating Forest: Traditional Knowledge and Use of Matupá Vegetation Islands by Riverine Peoples of the Central Amazon

    Science.gov (United States)

    de Freitas, Carolina T.; Shepard, Glenn H.; Piedade, Maria T. F.

    2015-01-01

    Matupás are floating vegetation islands found in floodplain lakes of the central Brazilian Amazon. They form initially from the agglomeration of aquatic vegetation, and through time can accumulate a substrate of organic matter sufficient to grow forest patches of several hectares in area and up to 12 m in height. There is little published information on matupás despite their singular characteristics and importance to local fauna and people. In this study we document the traditional ecological knowledge of riverine populations who live near and interact with matupás. We expected that their knowledge, acquired through long term observations and use in different stages of the matupá life cycle, could help clarify various aspects about the ecology and natural history of these islands that field biologists may not have had the opportunity to observe. Research was carried out in five riverine communities of the Amanã Sustainable Development Reserve (Brazil). Semi-structured interviews were conducted with 45 inhabitants in order to register local understandings of how matupás are formed, biotic/abiotic factors related to their occurrence, the plants and animals that occur on them, their ecological relevance, and local uses. Local people elucidated several little-known aspects about matupá ecology, especially regarding the importance of seasonal dynamics of high/low water for matupás formation and the relevance of these islands for fish populations. Soil from matupás is especially fertile and is frequently gathered for use in vegetable gardens. In some cases, crops are planted directly onto matupás, representing an incipient agricultural experiment that was previously undocumented in the Amazon. Matupás are also considered a strategic habitat for fishing, mainly for arapaima (Arapaima gigas). The systematic study of traditional ecological knowledge proved to be an important tool for understanding this little-known Amazonian landscape. PMID:25837281

  7. Amazon Forest Responses to Drought and Fire

    Science.gov (United States)

    Morton, D. C.

    2015-12-01

    Deforestation and agricultural land uses provide a consistent source of ignitions along the Amazon frontier during the dry season. The risk of understory fires in Amazon forests is amplified by drought conditions, when fires at the forest edge may spread for weeks before rains begin. Fire activity also impacts the regional response of intact forests to drought through diffuse light effects and nutrient redistribution, highlighting the complexity of feedbacks in this coupled human and natural system. This talk will focus on recent advances in our understanding of fire-climate feedbacks in the Amazon, building on research themes initiated under NASA's Large-scale Biosphere-Atmosphere Experiment in Amazonia (LBA). NASA's LBA program began in the wake of the 1997-1998 El Niño, a strong event that exposed the vulnerability of Amazon forests to drought and fire under current climate and projections of climate change. With forecasts of another strong El Niño event in 2015-2016, this talk will provide a multi-scale synthesis of Amazon forest responses to drought and fire based on field measurements, airborne lidar data, and satellite observations of fires, rainfall, and terrestrial water storage. These studies offer new insights into the mechanisms governing fire season severity in the southern Amazon and regional variability in carbon losses from understory fires. The contributions from remote sensing to our understanding of drought and fire in Amazon forests reflect the legacy of NASA's LBA program and the sustained commitment to interdisciplinary research across the Amazon region.

  8. Methanol and isoprene emissions from the fast growing tropical pioneer species Vismia guianensis (Aubl.) Pers. (Hypericaceae) in the central Amazon forest

    Science.gov (United States)

    Jardine, Kolby J.; Jardine, Angela B.; Souza, Vinicius F.; Carneiro, Vilany; Ceron, Joao V.; Gimenez, Bruno O.; Soares, Cilene P.; Durgante, Flavia M.; Higuchi, Niro; Manzi, Antonio O.; Gonçalves, José F. C.; Garcia, Sabrina; Martin, Scot T.; Zorzanelli, Raquel F.; Piva, Luani R.; Chambers, Jeff Q.

    2016-05-01

    Isoprene (Is) emissions by plants represent a loss of carbon and energy resources leading to the initial hypothesis that fast growing pioneer species in secondary tropical forests allocate carbon primarily to growth at the expense of isoprenoid defenses. In this study, we quantified leaf isoprene and methanol emissions from the abundant pantropical pioneer tree species Vismia guianensis and ambient isoprene concentrations above a diverse secondary forest in the central Amazon. As photosynthetically active radiation (PAR) was varied (0 to 3000 µmol m-2 s-1) under standard leaf temperature (30 °C), isoprene emissions from V. guianensis increased without saturation up to 80 nmol m-2 s-1. A nonlinear increase in isoprene emissions with respect to net photosynthesis (Pn) resulted in the fraction of Pn dedicated to isoprene emissions increasing with light intensity (up to 2 % of Pn). Emission responses to temperature under standard light conditions (PAR of 1000 µmol m-2 s-1) resulted in the classic uncoupling of isoprene emissions (Topt, iso > 40 °C) from net photosynthesis (Topt, Pn = 30.0-32.5 °C) with up to 7 % of Pn emitted as isoprene at 40 °C. Under standard environmental conditions of PAR and leaf temperature, young V. guianensis leaves showed high methanol emissions, low Pn, and low isoprene emissions. In contrast, mature leaves showed high Pn, high isoprene emissions, and low methanol emissions, highlighting the differential control of leaf phenology over methanol and isoprene emissions. High daytime ambient isoprene concentrations (11 ppbv) were observed above a secondary Amazon rainforest, suggesting that isoprene emissions are common among neotropical pioneer species. The results are not consistent with the initial hypothesis and support a functional role of methanol during leaf expansion and the establishment of photosynthetic machinery and a protective role of isoprene for photosynthesis during high temperature extremes regularly experienced in

  9. Seasonal variations in the stable oxygen isotope ratio of wood cellulose reveal annual rings of trees in a Central Amazon terra firme forest.

    Science.gov (United States)

    Ohashi, Shinta; Durgante, Flávia M; Kagawa, Akira; Kajimoto, Takuya; Trumbore, Susan E; Xu, Xiaomei; Ishizuka, Moriyoshi; Higuchi, Niro

    2016-03-01

    In Amazonian non-flooded forests with a moderate dry season, many trees do not form anatomically definite annual rings. Alternative indicators of annual rings, such as the oxygen (δ(18)Owc) and carbon stable isotope ratios of wood cellulose (δ(13)Cwc), have been proposed; however, their applicability in Amazonian forests remains unclear. We examined seasonal variations in the δ(18)Owc and δ(13)Cwc of three common species (Eschweilera coriacea, Iryanthera coriacea, and Protium hebetatum) in Manaus, Brazil (Central Amazon). E. coriacea was also sampled in two other regions to determine the synchronicity of the isotopic signals among different regions. The annual cyclicity of δ(18)Owc variation was cross-checked by (14)C dating. The δ(18)Owc showed distinct seasonal variations that matched the amplitude observed in the δ(18)O of precipitation, whereas seasonal δ(13)Cwc variations were less distinct in most cases. The δ(18)Owc variation patterns were similar within and between some individual trees in Manaus. However, the δ(18)Owc patterns of E. coriacea differed by region. The ages of some samples estimated from the δ(18)Owc cycles were offset from the ages estimated by (14)C dating. In the case of E. coriacea, this phenomenon suggested that missing or wedging rings may occur frequently even in well-grown individuals. Successful cross-dating may be facilitated by establishing δ(18)Owc master chronologies at both seasonal and inter-annual scales for tree species with distinct annual rings in each region.

  10. Amazon Flooded Forest. Teacher Resource Guide.

    Science.gov (United States)

    Duvall, Todd

    This teacher's resource guide was created to accompany the Amazon Flooded Forest exhibit at the Oregon Zoo. The enclosed lessons and activities are designed to extend into several aspects of daily curriculum including science, math, reading, writing, speaking, and geography. The materials are intended for use in grades 3-6 although most activities…

  11. Amazon forests green-up during 2005 drought.

    Science.gov (United States)

    Saleska, Scott R; Didan, Kamel; Huete, Alfredo R; da Rocha, Humberto R

    2007-10-26

    Coupled climate-carbon cycle models suggest that Amazon forests are vulnerable to both long- and short-term droughts, but satellite observations showed a large-scale photosynthetic green-up in intact evergreen forests of the Amazon in response to a short, intense drought in 2005. These findings suggest that Amazon forests, although threatened by human-caused deforestation and fire and possibly by more severe long-term droughts, may be more resilient to climate changes than ecosystem models assume.

  12. Oribatid mite (Acari: Oribatida contribution to decomposition dynamic of leaf litter in primary forest, second growth, and polyculture in the Central Amazon

    Directory of Open Access Journals (Sweden)

    E. Franklin

    Full Text Available We studied the contribution of oribatid mites in the dynamics of litter decomposition in an experiment using litterbags of three different mesh sizes (20 µm, 250 µm, and 1 cm. The experiment was carried out at a primary forest (FLO, a secondary forest (SEC, and at two polyculture systems (POA and POC. We compared the weight loss of the leaves of Vismia guianensis and the changes of the oribatid mite species community. We processed the samples after 26, 58, 111, 174, 278, and 350 days from the beginning of the experiment by using the Berlese-Tullgren to extract the animals. We hypothesized that: 1. the abundance and diversity of oribatid mites would exert an influence in the decomposition process; 2. there would be a successional changing of the species during decomposition; and 3. there would be differences in the colonization of species in relation to the mesh size of the litterbags. A total of 95 species of oribatid mites was found. The biomass data was the first registered for the Amazon region. The great dominance of oribatid mites did not exert an influence in the decomposition process. There was not a successional changing of the species during the course of the decomposition process, unlike those shown by results obtained in the temperate forest, because we found neither early colonizers nor species that prefer advanced decomposition stages. The oribatid mite community, which developed in the litterbags under tropical conditions, was atypical of the normal stages of leaf litter breakdown and decomposition. There were differences in the colonization of species in relation to the mesh size of the litterbags. These differences were very closely related to the specific habits and habitat of the dominant species.

  13. Amazon forest response to repeated droughts

    Science.gov (United States)

    Feldpausch, T. R.; Phillips, O. L.; Brienen, R. J. W.; Gloor, E.; Lloyd, J.; Lopez-Gonzalez, G.; Monteagudo-Mendoza, A.; Malhi, Y.; Alarcón, A.; Álvarez Dávila, E.; Alvarez-Loayza, P.; Andrade, A.; Aragao, L. E. O. C.; Arroyo, L.; Aymard C., G. A.; Baker, T. R.; Baraloto, C.; Barroso, J.; Bonal, D.; Castro, W.; Chama, V.; Chave, J.; Domingues, T. F.; Fauset, S.; Groot, N.; Honorio Coronado, E.; Laurance, S.; Laurance, W. F.; Lewis, S. L.; Licona, J. C.; Marimon, B. S.; Marimon-Junior, B. H.; Mendoza Bautista, C.; Neill, D. A.; Oliveira, E. A.; Oliveira dos Santos, C.; Pallqui Camacho, N. C.; Pardo-Molina, G.; Prieto, A.; Quesada, C. A.; Ramírez, F.; Ramírez-Angulo, H.; Réjou-Méchain, M.; Rudas, A.; Saiz, G.; Salomão, R. P.; Silva-Espejo, J. E.; Silveira, M.; Steege, H.; Stropp, J.; Terborgh, J.; Thomas-Caesar, R.; Heijden, G. M. F.; Vásquez Martinez, R.; Vilanova, E.; Vos, V. A.

    2016-07-01

    The Amazon Basin has experienced more variable climate over the last decade, with a severe and widespread drought in 2005 causing large basin-wide losses of biomass. A drought of similar climatological magnitude occurred again in 2010; however, there has been no basin-wide ground-based evaluation of effects on vegetation. We examine to what extent the 2010 drought affected forest dynamics using ground-based observations of mortality and growth from an extensive forest plot network. We find that during the 2010 drought interval, forests did not gain biomass (net change: -0.43 Mg ha-1, confidence interval (CI): -1.11, 0.19, n = 97), regardless of whether forests experienced precipitation deficit anomalies. This contrasted with a long-term biomass sink during the baseline pre-2010 drought period (1998 to pre-2010) of 1.33 Mg ha-1 yr-1 (CI: 0.90, 1.74, p drought (i.e., reversal of the baseline net sink) was -1.95 Mg ha-1 yr-1 (CI:-2.77, -1.18; p drought history. Thus, there was no evidence that pre-2010 droughts compounded the effects of the 2010 drought. We detected a systematic basin-wide impact of the 2010 drought on tree growth rates across Amazonia, which was related to the strength of the moisture deficit. This impact differed from the drought event in 2005 which did not affect productivity. Based on these ground data, live biomass in trees and corresponding estimates of live biomass in lianas and roots, we estimate that intact forests in Amazonia were carbon neutral in 2010 (-0.07 Pg C yr-1 CI:-0.42, 0.23), consistent with results from an independent analysis of airborne estimates of land-atmospheric fluxes during 2010. Relative to the long-term mean, the 2010 drought resulted in a reduction in biomass carbon uptake of 1.1 Pg C, compared to 1.6 Pg C for the 2005 event.

  14. Priority Areas for Establishing National Forests in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Adalberto Veríssimo

    2002-06-01

    Full Text Available Brazil will benefit if it gains control of its vast Amazonian timber resources. Without immediate planning, the fate of much of the Amazon will be decided by predatory and largely unregulated timber interests. Logging in the Amazon is a transient process of natural resource mining. Older logging frontiers are being exhausted of timber resources and will face severe wood shortages within 5 yr. The Brazilian government can avoid the continued repetition of this process in frontier areas by establishing a network of National Forests (Florestas Nacionais or Flonas to stabilize the timber industry and simultaneously protect large tracts of forest. Flonas currently comprise less than 2% of the Brazilian Amazon (83,000 km2. If all these forests were used for sustainable logging, they would provide less than 10% of the demand for Amazonian timber. To sustainably supply the present and near-future demand for timber, approximately 700,000 km2 of the Amazon forest needs to be brought into well-managed production. Brazil's National Forest Program, launched in 2000, is designed to create at least 400,000 km2 of new Flonas. Objective decision-making tools are needed to site these new national forests. We present here a method for optimally locating the needed Flonas that incorporates information on existing protected areas, current vegetation cover, areas of human occupation, and timber stocks. The method combines these data in a spatial database that makes it possible to model the economic potential of the region's various forests as a function of their accessibility and timber values while constraining model solutions for existing areas of protection or human occupation. Our results indicate that 1.15 x 106 km2 of forests (23% of the Brazilian Amazon could be established as Flonas in a manner that will promote sustainable forest management; these Flonas would also serve as buffer zones for fully protected areas such as parks and reserves.

  15. Resilience of Amazon forests emerges from plant trait diversity

    Science.gov (United States)

    Sakschewski, Boris; von Bloh, Werner; Boit, Alice; Poorter, Lourens; Peña-Claros, Marielos; Heinke, Jens; Joshi, Jasmin; Thonicke, Kirsten

    2016-11-01

    Climate change threatens ecosystems worldwide, yet their potential future resilience remains largely unquantified. In recent years many studies have shown that biodiversity, and in particular functional diversity, can enhance ecosystem resilience by providing a higher response diversity. So far these insights have been mostly neglected in large-scale projections of ecosystem responses to climate change. Here we show that plant trait diversity, as a key component of functional diversity, can have a strikingly positive effect on the Amazon forests' biomass under future climate change. Using a terrestrial biogeochemical model that simulates diverse forest communities on the basis of individual tree growth, we show that plant trait diversity may enable the Amazon forests to adjust to new climate conditions via a process of ecological sorting, protecting the Amazon's carbon sink function. Therefore, plant trait diversity, and biodiversity in general, should be considered in large-scale ecosystem projections and be included as an integral part of climate change research and policy.

  16. Modelling basin-wide variations in Amazon forest photosynthesis

    Science.gov (United States)

    Mercado, Lina; Lloyd, Jon; Domingues, Tomas; Fyllas, Nikolaos; Patino, Sandra; Dolman, Han; Sitch, Stephen

    2010-05-01

    Given the importance of Amazon rainforest in the global carbon and hydrological cycles, there is a need to use parameterized and validated ecosystem gas exchange and vegetation models for this region in order to adequately simulate present and future carbon and water balances. Recent research has found major differences in above-ground net primary productivity (ANPP), above ground biomass and tree dynamics across Amazonia. West Amazonia is more dynamic, with younger trees, higher stem growth rates and lower biomass than central and eastern Amazon (Baker et al. 2004; Malhi et al. 2004; Phillips et al. 2004). A factor of three variation in above-ground net primary productivity has been estimated across Amazonia by Malhi et al. (2004). Different hypotheses have been proposed to explain the observed spatial variability in ANPP (Malhi et al. 2004). First, due to the proximity to the Andes, sites from western Amazonia tend to have richer soils than central and eastern Amazon and therefore soil fertility could possibly be highly related to the high wood productivity found in western sites. Second, if GPP does not vary across the Amazon basin then different patterns of carbon allocation to respiration could also explain the observed ANPP gradient. However since plant growth depends on the interaction between photosynthesis, transport of assimilates, plant respiration, water relations and mineral nutrition, variations in plant gross photosynthesis (GPP) could also explain the observed variations in ANPP. In this study we investigate whether Amazon GPP can explain variations of observed ANPP. We use a sun and shade canopy gas exchange model that has been calibrated and evaluated at five rainforest sites (Mercado et al. 2009) to simulate gross primary productivity of 50 sites across the Amazon basin during the period 1980-2001. Such simulation differs from the ones performed with global vegetation models (Cox et al. 1998; Sitch et al. 2003) where i) single plant functional

  17. Amazon Forests Response to Droughts: A Perspective from the MAIAC Product

    Science.gov (United States)

    Bi, Jian; Myneni, Ranga; Lyapustin, Alexei; Wang, Yujie; Park, Taejin; Chi, Chen; Yan, Kai; Knyazikhin, Yuri

    2016-01-01

    Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth's climate system. It is only possible to assess Amazon forests' response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC) Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation index (VI) data to assess Amazon forests' response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6) MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1) the droughts decreased the greenness (i.e., photosynthetic activity) of Amazon forests; (2) the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3) in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  18. Atmospheric turbulence within and above an Amazon forest

    CERN Document Server

    Ramos, F M; Sá, L D A; Rosa, R R; Ramos, Fernando M.; Bolzan, Mauricio J. A.; Sa, Leonardo D. A.; Rosa, Reinaldo R.

    2004-01-01

    In this paper, we discuss the impact of a rain forest canopy on the statistical characteristics of atmospheric turbulence. This issue is of particular interest for understanding on how the Amazon terrestrial biosphere interact with the atmosphere. For this, we used a probability density function model of velocity and temperature differences based on Tsallis' non-extensive thermostatistics. We compared theoretical results with experimental data measured in a 66 m micrometeorological tower, during the wet-season campaign of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). Particularly, we investigated how the value of the entropic parameter is affected when one moves into the canopy, or when one passes from day/unstable to night/stable conditions. We show that this new approach provides interesting insights on turbulence in a complex environment such as the Amazon forest.

  19. Socio-ecological costs of Amazon nut and timber production at community household forests in the Bolivian Amazon

    Science.gov (United States)

    Mohren, Frits; Ascarrunz, Nataly; Dressler, Wolfram; Peña-Claros, Marielos

    2017-01-01

    The Bolivian Amazon holds a complex configuration of people and forested landscapes in which communities hold secure tenure rights over a rich ecosystem offering a range of livelihood income opportunities. A large share of this income is derived from Amazon nut (Bertholletia excelsa). Many communities also have long-standing experience with community timber management plans. However, livelihood needs and desires for better living conditions may continue to place these resources under considerable stress as income needs and opportunities intensify and diversify. We aim to identify the socioeconomic and biophysical factors determining the income from forests, husbandry, off-farm and two keystone forest products (i.e., Amazon nut and timber) in the Bolivian Amazon region. We used structural equation modelling tools to account for the complex inter-relationships between socioeconomic and biophysical factors in predicting each source of income. The potential exists to increase incomes from existing livelihood activities in ways that reduce dependency upon forest resources. For example, changes in off-farm income sources can act to increase or decrease forest incomes. Market accessibility, social, financial, and natural and physical assets determined the amount of income community households could derive from Amazon nut and timber. Factors related to community households’ local ecological knowledge, such as the number of non-timber forest products harvested and the number of management practices applied to enhance Amazon nut production, defined the amount of income these households could derive from Amazon nut and timber, respectively. The (inter) relationships found among socioeconomic and biophysical factors over income shed light on ways to improve forest-dependent livelihoods in the Bolivian Amazon. We believe that our analysis could be applicable to other contexts throughout the tropics as well. PMID:28235090

  20. Does the disturbance hypothesis explain the biomass increase in basin-wide Amazon forest plot data?

    OpenAIRE

    Gloor, M.; Phillips, Oliver L.; Lloyd, J.; Lewis, Simon L.; Malhi, Y; Baker, T. R.; Lopez Gonzalez, G.; J. Peacock; Almeida, S; Alves de Oliveira, Atila Cristina; Alvarez, E; Amaral, Ieda; Arroyo, L.; Aymard, Gerardo; Banki, Olaf

    2009-01-01

    Positive aboveground biomass trends have been reported from old-growth forests across the Amazon basin and hypothesized to reflect a large-scale response to exterior forcing. The result could, however, be an artefact due to a sampling bias induced by the nature of forest growth dynamics. Here, we characterize statistically the disturbance process in Amazon old-growth forests as recorded in 135 forest plots of the RAINFOR network up to 2006, and other independent research programmes, and explo...

  1. Emissions Of Forest Fires In The Amazon: Impact On The Tropical Mountain Forest In Ecuador

    Science.gov (United States)

    Fabian, P.; Rollenbeck, R.; Thiemens, M. H.; Brothers, L.

    2006-12-01

    Biomass burning is a source of carbon, sulphur, and nitrogen compounds which, along with their photochemically generated reaction products, can be transported over very large distances, even traversing oceans. Four years of regular rain and fog-water measurements in the tropical mountain forest at the eastern slopes of the Ecuadorian Andes, along an altitude profile between 1800 m and 3185 m, have been carried out. The ion composition of rain and fog-water samples shows frequent episodes of significantly enhanced nitrogen and sulphur, resulting in annual deposition rates of about 5 kg N/ha and 10 kg S/ha into this ecosystem, which are comparable to those of polluted central Europe. By relating back trajectories calculated by means of the FLEXTRA model to the distributions of satellite derived forest fire pixels, it can be shown that most episodes of enhanced ion concentration, with pH values as low as 4.0, can be attributed to biomass burning in the Amazon. First analyses of oxygen isotopes 16O, 17O, and 18O of nitrate in fogwater samples show mass independent fractionation values ranging between 15 and 20 per mille, clearly indicating that nitrate in the samples is a product of atmospheric conversion of precursors, while the isotope data of river samples taken downstream of the research area are grouped in the region of microbial nitrate. This strongly supports the aforementioned trajectory results and shows that the tropical mountain forest in Ecuador, with local pollution sources missing,is "fertilized" by long-range transport of substances originating from forest fires in Colombia, Venezuela, Brazil, and Peru, far upwind of the research site.

  2. Conteúdo dos criadouros larvais e comportamento de adultos de Toxorhynchites (Lynchiella haemorrhoidalis haemorrhoidalis (Fabricius (Diptera, Culicidae numa floresta de terra-firme da Amazônia central Larval breeding site contents and adult behavior of toxorhynchites (Lynchiella haemorrhoidalis haemorrhoidalis (Fabricius (Diptera, Culicidae in an upland forest of the central amazon

    Directory of Open Access Journals (Sweden)

    Rosa Sá Gomes Hutchings

    1995-01-01

    Full Text Available The natural breeding sites of Toxorhynchites (Lynchiella haemorrhoidalis haemorihoidalis (Fabricius, 1794, in two study areas, were sampled monthly, during a period of one year, in an upland "terra-firme" forest of the Central Amazon. These natural breeding sites, consisting of water filled palm bracts on the ground, contained invertobrates and vertebrates along with palm inflorescences, leaves and twigs. The inhabitants of the non-submersed area of the bracts include Diplopoda, Acarina, Araneae, Pseudoscorpiones, Isopoda, Blattodea, Coleoptera (Carabidae, Curculionidae, Scolytidae, Staphilinidae. Collembola, Dermaptera, Diptera (Cecidomyidae, Drosophilidae, Mycetophilidae, Tipulidae, Hemiptera, Hymenoptera and Trichoptera. The submersed areas of the bracts were inhabited by Oligochaeta, Coleoptera (Dysticidae, Helodidae, Histeridae, Hydrophilidae, Limnebiidae, Diptera (Ceratopogonidae, Chirononiidae, Culicidae, Psychodidae, Stratiomyidae, Syrphidae. Odonata, along with immature Dendrobatidae e Hylidae. The ovipositing, resting and feeding behaviors of T. h. haemorrhoidalis adults are described.

  3. Trading forests for yields in the Peruvian Amazon

    Science.gov (United States)

    Gibbs, Holly

    2012-03-01

    Our knowledge of how agriculture expands, and the types of land it replaces, is remarkably limited across the tropics. Most remote-sensing studies focus on the net gains and losses in forests and agricultural land rather than the land-use transition pathways (Gibbs et al 2010). Only a handful of studies identify land sources for new croplands or plantations, and then only for farming systems aggregated together (e.g., Koh and Wilcove 2008, Morton et al 2006, Gibbs et al 2010). Gutiérrez-Vélez et al (2011), however, have taken a leap forward by tracking the different expansion pathways for smallholder and industrial oil palm plantations. Using a combination of Landsat, MODIS and field surveys, they investigate whether higher yields in new agricultural lands spare forests in the Peruvian Amazon and in a smaller focus area in the Ucayali region. Across the Peruvian Amazon, they show that between 2000 and 2010, new high-yield oil palm plantations replaced forests 72% of the time and accounted for 1.3% of total deforestation, with most expansion occurring after 2006. Gutiérrez-Vélez et al went further in the Ucayali region and compared land sources for new high-yield and low-yield plantations. Expansion of higher-yield agricultural lands should logically reduce the total area needed for production, thus potentially sparing forests. In the Ucayali focus area, expansion of high-yield oil palm did convert less total land area but more forest was cleared than with low-yield expansion. Smaller-scale plantations tended to expand into already cleared areas while industrial-scale plantations traded their greater yields for forests, leading to higher land-clearing carbon emissions per production unit (Gibbs et al 2008). Gutiérrez-Vélez et al show that higher yields may require less land for production but more forest may be lost in the process, and they emphasize the need for stronger incentives for land sparing. The potential land-saving nature of these high

  4. Amazon old-growth forest wind disturbance and the regional carbon balance

    Science.gov (United States)

    Chambers, J. Q.; Negron Juarez, R. I.; Marra, D. M.; Roberts, D. A.; Hurtt, G. C.; Lima, A.; Higuchi, N.

    2010-12-01

    Estimating the carbon balance of a landscape is challenging. A key problem is determining whether or not measurements made in plots are representative of the carbon state of a larger region. A key parameter for calculating landscape carbon balance is the return frequency of episodic disturbances. If disturbances are clustered and occur more frequently than the time required for biomass recovery, a spatial mixture of patches in different stages of recovery occurs. Under these shifting steady-state mosaic conditions, quantifying the mean state of ecosystem attributes such as carbon balance or tree species diversity is difficult. In this study, satellite remote sensing (Landsat) was coupled with field investigations to create ~25 year landscape-scale disturbance chronosequence for old-growth forest in the Central Amazon. The detected disturbances were caused by strong storms which resulted in tree mortality events ranging from small clusters of 7-10 downed trees, to large contiguous blowdowns larger than 30 ha in size. Using the chronosequence, a cumulative probability distribution function was developed, which followed a power law, and was used to parameterize a forest carbon balance model. Results demonstrate that for power law exponents less than about 2.0, the spatial scale at which forest carbon balance establishes is much larger than generally expected. Ultimately, an increase in wind disturbance frequency and/or intensity with a warming climate has the potential to cause a net loss of carbon from Amazon forests to the atmosphere.

  5. Soluble iron nutrients in Saharan dust over the central Amazon rainforest

    Science.gov (United States)

    Rizzolo, Joana A.; Barbosa, Cybelli G. G.; Borillo, Guilherme C.; Godoi, Ana F. L.; Souza, Rodrigo A. F.; Andreoli, Rita V.; Manzi, Antônio O.; Sá, Marta O.; Alves, Eliane G.; Pöhlker, Christopher; Angelis, Isabella H.; Ditas, Florian; Saturno, Jorge; Moran-Zuloaga, Daniel; Rizzo, Luciana V.; Rosário, Nilton E.; Pauliquevis, Theotonio; Santos, Rosa M. N.; Yamamoto, Carlos I.; Andreae, Meinrat O.; Artaxo, Paulo; Taylor, Philip E.; Godoi, Ricardo H. M.

    2017-02-01

    The intercontinental transport of aerosols from the Sahara desert plays a significant role in nutrient cycles in the Amazon rainforest, since it carries many types of minerals to these otherwise low-fertility lands. Iron is one of the micronutrients essential for plant growth, and its long-range transport might be an important source for the iron-limited Amazon rainforest. This study assesses the bioavailability of iron Fe(II) and Fe(III) in the particulate matter over the Amazon forest, which was transported from the Sahara desert (for the sake of our discussion, this term also includes the Sahel region). The sampling campaign was carried out above and below the forest canopy at the ATTO site (Amazon Tall Tower Observatory), a near-pristine area in the central Amazon Basin, from March to April 2015. Measurements reached peak concentrations for soluble Fe(III) (48 ng m-3), Fe(II) (16 ng m-3), Na (470 ng m-3), Ca (194 ng m-3), K (65 ng m-3), and Mg (89 ng m-3) during a time period of dust transport from the Sahara, as confirmed by ground-based and satellite remote sensing data and air mass backward trajectories. Dust sampled above the Amazon canopy included primary biological aerosols and other coarse particles up to 12 µm in diameter. Atmospheric transport of weathered Saharan dust, followed by surface deposition, resulted in substantial iron bioavailability across the rainforest canopy. The seasonal deposition of dust, rich in soluble iron, and other minerals is likely to assist both bacteria and fungi within the topsoil and on canopy surfaces, and especially benefit highly bioabsorbent species. In this scenario, Saharan dust can provide essential macronutrients and micronutrients to plant roots, and also directly to plant leaves. The influence of this input on the ecology of the forest canopy and topsoil is discussed, and we argue that this influence would likely be different from that of nutrients from the weathered Amazon bedrock, which otherwise provides the

  6. Investigating Landsat-derived forest evapotranspiration in the Amazon

    Science.gov (United States)

    Khand, K. B.; Numata, I.; Kjaersgaard, J.; Cochrane, M. A.

    2015-12-01

    Nearly half of annual rainfall in the Amazon rainforest region is returned to the atmosphere through evapotranspiration (ET). However, this land-atmosphere water vapor feedback in Amazonia has been continuously disturbed by anthropogenic influence and climate change such as severe drought events. While forest ET dynamics in the Amazon have been studied from both point estimates (or in-situ measurements) and regional land-surface models as well as coarse-spatial satellite data, finer spatial data is required to address the spatial variability of forest ET associated with both forest disturbances and extreme climate events. We use Landsat-based METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration) model to generate high-resolution (30 m) ET products and investigate its potential to characterize local and regional ET behavior by comparison to ET calculated from flux tower data. METRIC estimates actual ET as residual of the surface energy balance and is applied to capture the spatial variability of forest ET. The flux tower data were collected at two sites with different forest types: Para with wet equatorial forest and Rondônia with seasonally dry tropical forest. Our study was conducted on the dry season of the years 2003 and 2005 for Para, and 2000 through 2002 for Rondônia as a function of data availability of both cloud-free Landsat images and meteorological data for METRIC processing. Daily gridded actual ET estimates from METRIC during the dry season were obtained using a cubic spline interpolation of ETrF (fraction of reference ET) values between the satellite image dates and multiplying by daily reference ET. Across the all study years, differences between the daily ET estimates for the selected image dates from METRIC and the flux towers were less than 1.2 mm/day, while on monthly basis, these averaged daily ET differences were much lower (< 0.5 mm). At Para, the correlation (R2) between the daily ET rates from METRIC and the

  7. Global Changes And Tree Growth Rate In The Amazon Forest

    Science.gov (United States)

    Camargo, P. B.; Vieira, S. A.; Trumbore, S. E.

    2003-12-01

    A better understanding of the variations in the dynamics and structure of trees in tropical forests is necessary for predicting the potential for these ecosystems to lose or store carbon. In general, tropical forests have been treated as if all trees behaved similarly, and little is known about how forests vary across the large extent of the Amazon basin. Our data show large differences in forest structure, biomass, and tree growth rates among plots under study in three locations in Brazil: ZF-2 Bionte/Jacaranda plots \\(Manaus\\), Catuaba Reserve \\(Rio Branco\\), and Tapaj¢s National Forest \\(Santarém\\). These locations span an east-west transect of the Amazon basin with different dry-season lengths. The number of stems >10cm diameter and stocks of C in aboveground biomass are the highest in Manaus \\(626ha-1, 180.1Mg.C.ha-1\\), than Rio Branco \\(466ha-1, 122.1Mg.C.ha-1\\) or Santarém \\(460ha-1, 140.6Mg.C.ha-1\\). Estimates of mean annual accumulation of C ranged from 1.6 \\(Manaus\\) and 2.5 \\(Rio Branco\\) to 2.8Mg.C.ha-1.yr-1 \\(Santarém\\). Trees in the 10-30cm diameter-size showed the highest accumulation of C \\(38%, 55%, and 56% - Manaus, Rio Branco, and Santarém, respectively\\). Our results showed marked seasonal growth, with the highest growth rates in the wet-season and the lowest growth rates in the dry-season. This effect was most evident for trees with diameter >50cm. The comparison of the three areas investigated suggests that forests experiencing a longer dry-season have larger annual diameter growth increments for individual trees. Tree average age was larger in Manaus where the increment was smaller. In all the three areas it was found specimens with DBH smaller than 30cm, but with ages over 200 years. It was found a specimen of 17 cm of DBH and age of 920 years. The fact that small trees can reach old ages may alter the scope of the present forest management planning whose focus is tree species of economical interest and the time the

  8. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    Science.gov (United States)

    Zemp, Delphine Clara; Schleussner, Carl-Friedrich; Barbosa, Henrique M. J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-03-01

    Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Amazon forest loss increases nonlinearly with dry-season intensification. We apply a novel complex-network approach, in which Amazon forest patches are linked by observation-based atmospheric water fluxes. Our results suggest that the risk of self-amplified forest loss is reduced with increasing heterogeneity in the response of forest patches to reduced rainfall. Under dry-season Amazonian rainfall reductions, comparable to Last Glacial Maximum conditions, additional forest loss due to self-amplified effects occurs in 10-13% of the Amazon basin. Although our findings do not indicate that the projected rainfall changes for the end of the twenty-first century will lead to complete Amazon dieback, they suggest that frequent extreme drought events have the potential to destabilize large parts of the Amazon forest.

  9. Sources of optically active aerosol particles over the Amazon forest

    Science.gov (United States)

    Guyon, Pascal; Graham, Bim; Roberts, Gregory C.; Mayol-Bracero, Olga L.; Maenhaut, Willy; Artaxo, Paulo; Andreae, Meinrat O.

    Size-fractionated ambient aerosol samples were collected at a pasture site and a primary rainforest site in the Brazilian Amazon Basin during two field campaigns (April-May and September-October 1999), as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). The samples were analyzed for up to 19 trace elements by particle-induced X-ray emission analysis (PIXE), for equivalent black carbon (BC e) by a light reflectance technique and for mass concentration by gravimetric analysis. Additionally, we made continuous measurements of absorption and light scattering by aerosol particles. The vertical chemical composition gradients at the forest site have been discussed in a companion article (Journal of Geophysical Research-Atmospheres 108 (D18), 4591 (doi:4510.1029/2003JD003465)). In this article, we present the results of a source identification and quantitative apportionment study of the wet and dry season aerosols, including an apportionment of the measured scattering and absorption properties of the total aerosol in terms of the identified aerosol sources. Source apportionments (obtained from absolute principal component analysis) revealed that the wet and dry season aerosols contained the same three main components, but in different (absolute and relative) amounts: the wet season aerosol consisted mainly of a natural biogenic component, whereas pyrogenic aerosols dominated the dry season aerosol mass. The third component identified was soil dust, which was often internally mixed with the biomass-burning aerosol. All three components contributed significantly to light extinction during both seasons. At the pasture site, up to 47% of the light absorption was attributed to biogenic particles during the wet season, and up to 35% at the tower site during the wet-to-dry transition period. The results from the present study suggest that, in addition to pyrogenic particles, biogenic and soil dust aerosols must be

  10. Comparações entre as propriedades químicas de solos das regiões da floresta amazônica e do cerrado do Brasil Central Comparisons of chemical properties of forest (Amazon region and savanna soils (central region of Brazil

    Directory of Open Access Journals (Sweden)

    J.L.I. Demattê

    1993-09-01

    e para os solos argilosos a muito argilosos, o teor de carbono orgânico é sempre mais elevado na região de cerrado. Não houve diferenças significativas entre o teor de carbono orgânico dos solos com vegetação de cerrado e cerradão. Por outro lado, o teor de carbono orgânico dos latossolos da região Amazônica é mais elevado do que dos PVA.Chemical properties were studied in soil samples from two main fisiographic regions of Brazil: the Amazon region represented by the tropical rain forests and the Brazilian central region represented by the savanna (cerrado vegetation. For this study 17 profiles were selected from the Triângulo Mineiro area: 6 profiles from Goias state, and 5 profiles from the south eastern part of the Mato Grosso State. Most of the profiles are oxisols from medium to clayey texture. For the Amazon region 76 profiles were selected (38 oxisols and 38 ultisols located from Para to Acre States. The following depths were selected: 0-10 cm; 10-40 cm; 40-80 cm and 80-100 cm. The litter layer was not studied. The savanna region has soil in a more advanced weathered stage than the Amazon region. The Ki index of savanna soils varies from 6.0 to 1.5 and of Amazon soils the variation is from 1.3 to 2.5 that included Oxisols (Ki from 1.3 to 2.0 and Ultisols (Ki above 2.0. This indicates that the clay mineralogy of savanna soils is represented by an oxidic mineralogy that is more stable than in the Amazon region represented by a caulinitic mineralogy with 2:1 contribution. The Amazon soils are more acid and present exchangeable At in higher amounts than savanna soils with a direct effect on chemical management. Soils pH correction requires more lime in Amazon soils than in the savanna. The are great differences in both regions between base saturation and pH index. In Amazon soils the pH increase follows the base saturation while this does not occur in savanna soils. In sandy soils the organic carbon is higher in Amazon for all depths studied. In

  11. Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks

    NARCIS (Netherlands)

    Zemp, Delphine Clara; Schleussner, Carl Friedrich; Barbosa, Henrique M.J.; Hirota, Marina; Montade, Vincent; Sampaio, Gilvan; Staal, Arie; Wang-Erlandsson, Lan; Rammig, Anja

    2017-01-01

    © 2017 The Author(s).Reduced rainfall increases the risk of forest dieback, while in return forest loss might intensify regional droughts. The consequences of this vegetation-atmosphere feedback for the stability of the Amazon forest are still unclear. Here we show that the risk of self-amplified Am

  12. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point.

    Science.gov (United States)

    Nepstad, Daniel C; Stickler, Claudia M; Filho, Britaldo Soares-; Merry, Frank

    2008-05-27

    Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. Forest fires, drought and logging increase susceptibility to further burning while deforestation and smoke can inhibit rainfall, exacerbating fire risk. If sea surface temperature anomalies (such as El Niño episodes) and associated Amazon droughts of the last decade continue into the future, approximately 55% of the forests of the Amazon will be cleared, logged, damaged by drought or burned over the next 20 years, emitting 15-26Pg of carbon to the atmosphere. Several important trends could prevent a near-term dieback. As fire-sensitive investments accumulate in the landscape, property holders use less fire and invest more in fire control. Commodity markets are demanding higher environmental performance from farmers and cattle ranchers. Protected areas have been established in the pathway of expanding agricultural frontiers. Finally, emerging carbon market incentives for reductions in deforestation could support these trends.

  13. Long-term Carbon Loss and Recovery Following Selective Logging in Amazon Forests

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Maoyi; Asner, Gregory P.

    2010-09-30

    Amazon deforestation contributes significantly to global carbon (C) emissions. In comparison, the contribution from selective logging to atmospheric CO2 emissions, and its impact on regional C dynamics, is highly uncertain. Using a new geographically-based modeling approach in combination with high resolution remote sensing data from 1999-2002, we estimate that C emissions were 0.04 – 0.05 Pg C yr-1 due to selective logging from a ~2,664,960 km2 region of the Brazilian Amazon. Selective logging was responsible for 15-19% higher carbon emissions than reported from deforestation (clear-cutting) alone. Our simulations indicated that forest carbon lost via selective logging lasts two to three decades following harvest, and that the original live biomass takes up to a century to recover, if the forests are not subsequently cleared. The two- to three-decade loss of carbon results from the biomass damaged by logging activities, including leaves, wood, and roots, estimated to be 89.1 Tg C yr-1 from 1999-2002 over the study region, leaving 70.0 Tg C yr-1 and 7.9 Tg C yr-1 to accumulate as coarse woody debris and soil C, respectively. While avoided deforestation is central to crediting rainforest nations for reduced carbon emissions, the extent and intensity of selective logging are also critical to determining carbon emissions in the context of Reduced Emissions from Deforestation and Forest Degradation (REDD). We show that a combination of automated high-resolution satellite monitoring and detailed forest C modeling can yield spatially explicit estimates of harvest related C losses and subsequent recovery in support of REDD and other international carbon market mechanisms.

  14. Seroprevalence of Toxoplasma gondii in free-living Amazon River dolphins (Inia geoffrensis) from central Amazon, Brazil

    OpenAIRE

    P.S. Santos; ALBUQUERQUE, G. R.; da Silva, V. M. F.; Martin, A R; Marvulo,M.F.V.; S.L.P. Souza; Ragozo, A. M. A. [UNESP; Nascimento, C. C.; Gennari,S.M.; Dubey, J. P.; Silva, J. C. R.

    2011-01-01

    Toxoplasma gondii is an important pathogen in aquatic mammals and its presence in these animals may indicate the water contamination of aquatic environment by oocysts. Serum samples from 95 free-living Amazon River dolphins (Inia geoffrensis) from the Mamiraua Sustainable Development Reserve (RDSM), Tefe, Amazonas, Central Amazon, Brazil were tested for T. gondii antibodies using the modified agglutination test (MAT). Antibodies (MAT >= 25) to T. gondii were found in 82 (86.3%) dolphins with ...

  15. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    Science.gov (United States)

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  16. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    Directory of Open Access Journals (Sweden)

    Kolby J. Jardine

    2015-09-01

    Full Text Available Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  17. Amazon Forest maintenance as a source of environmental services

    Directory of Open Access Journals (Sweden)

    Philip M. Fearnside

    2008-03-01

    Full Text Available Amazonian forest produces environmental services such as maintenance of biodiversity, water cycling and carbon stocks. These services have a much greater value to human society than do the timber, beef and other products that are obtained by destroying the forest. Yet institutional mechanisms are still lacking to transform the value of the standing forest into the foundation of an economy based on maintaining rather than destroying this ecosystem. Forest management for commodities such as timber and non-timber forest products faces severe limitations and inherent contradictions unless income is supplemented based on environmenta lservices. Amazon forest is threatened by deforestation, logging, forest fires and climate change. Measures to avoid deforestation include repression through command and control, creation of protected areas, and reformulation of infrastructure decisions and development policies. An economy primarily based on the value of environmental services is essential for long-term maintenance of the forest. Much progress has been made in the decades since I first proposed such a transition, but many issues also remain unresolved. These include theoretical issues regarding accounting procedures, improved quantification of the services and of the benefits of different policy options, and effective uses of the funds generated in ways that maintain both the forest and the human population.A floresta amazônica produz serviços ambientais, tais como a manutenção da biodiversidade, da ciclagem de água e dos estoques de carbono. Estes serviços têm um valor muito maior para a sociedade humana do que a madeira, carne bovina e outros produtos que são obtidos destruindo a floresta. Mecanismos institucionais ainda estão faltando para transformar o valor da floresta em pé no alicerce de uma economia baseada em manter, em lugar de destruir, este ecossistema. Manejo florestal para madeira e para produtos florestais n

  18. Drought impacts on the Amazon forest: the remote sensing perspective.

    Science.gov (United States)

    Asner, Gregory P; Alencar, Ane

    2010-08-01

    Drought varies spatially and temporally throughout the Amazon basin, challenging efforts to assess ecological impacts via field measurements alone. Remote sensing offers a range of regional insights into drought-mediated changes in cloud cover and rainfall, canopy physiology, and fire. Here, we summarize remote sensing studies of Amazônia which indicate that: fires and burn scars are more common during drought years; hydrological function including floodplain area is significantly affected by drought; and land use affects the sensitivity of the forest to dry conditions and increases fire susceptibility during drought. We highlight two controversial areas of research centering on canopy physiological responses to drought and changes in subcanopy fires during drought. By comparing findings from field and satellite studies, we contend that current remote sensing observations and techniques cannot resolve these controversies using current satellite observations. We conclude that studies integrating multiple lines of evidence from physiological, disturbance-fire, and hydrological remote sensing, as well as field measurements, are critically needed to narrow our uncertainty of basin-level responses to drought and climate change.

  19. Sensitivity of Amazon rainforest to drought: results from forest inventories

    Directory of Open Access Journals (Sweden)

    Matteucci G

    2009-06-01

    Full Text Available A recent study based on inventory data from the RAINFOR network, published in the journal Science, reported a relevant effect of an anomalous dry year (2005 on biomass accumulation and mortality in Amazon old-growth forests. Results were obtained by comparing inventory data taken before and after the dry year and point to biomass losses in consequence of drought. These losses were driven by large mortality increases at some plots and by small but diffuse declines in growth. If upscaled to the area affected by drought, the release of carbon (1.21 PgC would be much larger than that resulting from deforestation in the area (0.3÷0.8 PgC and would offset the carbon gained in the recent past (0.5 PgC. As the frequency of extreme dry years is expected to increase in future climate scenarios, regional carbon balances may be strongly impacted with a positive feedback on climate change. The main results of the paper are briefly presented and commented.

  20. Nutrient retranslocation in forest species in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Murilo Rezende Machado

    2016-01-01

    Full Text Available Internal retranslocation is an important mechanism for nutrient conservation in plants, which depends on different factors. However, there are little data about this subject, especially on tropical forest species. This study aimed to evaluate the macronutrient retranslocation dynamic and the influence of ecological (P: pioneer x NP: non-pioneer and phenological (ND: non-deciduous x D: semideciduous / deciduous characteristics on the macronutrient content of leaves of five tree species on monospecific plantations in the Brazilian Amazon: Acacia mangium Willd., Parkia decussata Ducke, Dipteryx odorata (Aublet Willd., Jacaranda copaia (Aubl. D. Don and Swietenia macrophylla King. Photosynthetically active green leaves and senescent leaves (leaf litter were collected. Retranslocation was estimated through an equation proposed by Attiwill, Guthrie and Leuning (1978. The pioneer species presented higher foliar contents of N; the non-pioneer species presented higher contents of K, Ca and S; and the results were inconclusive for P and Mg. The deciduous species presented higher foliar contents of K and of P, whereas the foliar contents of N, Ca, Mg and S were virtually identical between the phenological groups. The internal retranslocation of foliar nutrients in pioneer and non-deciduous species was higher than that of non-pioneer and deciduous species.

  1. Macrofungal diversity in Colombian Amazon forests varies with regions and regimes of disturbance

    NARCIS (Netherlands)

    Lopez-Quintero, C.A.; Straatsma, G.; Franco-Molano, A.E.; Boekhout, T.

    2012-01-01

    Here we present the results of fungal biodiversity studies from some selected Colombian Amazon forests in relationship to plant biodiversity and successional stages after slash and burn agriculture. Macrofungal diversity was found to differ between forests occurring in two regions (Araracuara vs Ama

  2. Amazon forest dynamics under changing abiotic conditions in the early Miocene (Colombian Amazonia)

    NARCIS (Netherlands)

    Salamanca Villegas, S.; van Soelen, E.; Teunissen van Manen, M.L.; Flantua, S.G.A.; Santos, R.V.; Roddaz, M.; Dantas, E.L.; van Loon, E.; Sinninghe Damsté, J.S.; Kim, J.-H.; Hoorn, C.

    2016-01-01

    Aim We analysed in detail a past marine incursion event in north-westernAmazonia and measured its effect on the forest composition. We also deter-mined the sediment provenance in the ?uvio-estuarine system and recon-structed the overall ?oral composition of the Amazon lowland forest duringthe Miocen

  3. Amazon Forests Maintain Consistent Canopy Structure and Greenness During the Dry Season

    Science.gov (United States)

    Morton, Douglas C.; Nagol, Jyoteshwar; Carabajal, Claudia C.; Rosette, Jacqueline; Palace, Michael; Cook, Bruce D.; Vermote, Eric F.; Harding, David J.; North, Peter R. J.

    2014-01-01

    The seasonality of sunlight and rainfall regulates net primary production in tropical forests. Previous studies have suggested that light is more limiting than water for tropical forest productivity, consistent with greening of Amazon forests during the dry season in satellite data.We evaluated four potential mechanisms for the seasonal green-up phenomenon, including increases in leaf area or leaf reflectance, using a sophisticated radiative transfer model and independent satellite observations from lidar and optical sensors. Here we show that the apparent green up of Amazon forests in optical remote sensing data resulted from seasonal changes in near-infrared reflectance, an artefact of variations in sun-sensor geometry. Correcting this bidirectional reflectance effect eliminated seasonal changes in surface reflectance, consistent with independent lidar observations and model simulations with unchanging canopy properties. The stability of Amazon forest structure and reflectance over seasonal timescales challenges the paradigm of light-limited net primary production in Amazon forests and enhanced forest growth during drought conditions. Correcting optical remote sensing data for artefacts of sun-sensor geometry is essential to isolate the response of global vegetation to seasonal and interannual climate variability.

  4. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil.

    Science.gov (United States)

    Ceddia, Marcos Bacis; Villela, André Luis Oliveira; Pinheiro, Érika Flávia Machado; Wendroth, Ole

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0-30 and the 0-100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km(2) and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m(-2), respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock.

  5. Observations of atmospheric monoaromatic hydrocarbons at urban, semi-urban and forest environments in the Amazon region

    Science.gov (United States)

    Paralovo, Sarah L.; Borillo, Guilherme C.; Barbosa, Cybelli G. G.; Godoi, Ana Flavia L.; Yamamoto, Carlos I.; de Souza, Rodrigo A. F.; Andreoli, Rita V.; Costa, Patrícia S.; Almeida, Gerson P.; Manzi, Antonio O.; Pöhlker, Christopher; Yáñez-Serrano, Ana M.; Kesselmeier, Jürgen; Godoi, Ricardo H. M.

    2016-03-01

    The Amazon region is one of the most significant natural ecosystems on the planet. Of special interest as a major study area is the interface between the forest and Manaus city, a state capital in Brazil embedded in the heart of the Amazon forest. In view of the interactions between natural and anthropogenic processes, an integrated experiment was conducted measuring the concentrations of the volatile organic compounds (VOCs) benzene, toluene, ethylbenzene and meta, ortho, para-xylene (known as BTEX), all of them regarded as pollutants with harmful effects on human health and vegetation and acting also as important precursors of tropospheric ozone. Furthermore, these compounds also take part in the formation of secondary organic aerosols, which can influence the pattern of cloud formation, and thus the regional water cycle and climate. The samples were collected in 2012/2013 at three different sites: (i) The Amazon Tall Tower Observatory (ATTO), a pristine rain forest region in the central Amazon Basin; (ii) Manacapuru, a semi-urban site located southwest and downwind of Manaus as a preview of the Green Ocean Amazon Experiment (GoAmazon 2014/15); and (iii) the city of Manaus (distributed over three sites). Results indicate that there is an increase in pollutant concentrations with increasing proximity to urban areas. For instance, the benzene concentration ranges were 0.237-19.6 (Manaus), 0.036-0.948 (Manacapuru) and 0.018-0.313 μg m-3 (ATTO). Toluene ranges were 0.700-832 (Manaus), 0.091-2.75 μg m-3 (Manacapuru) and 0.011-4.93 (ATTO). For ethylbenzene, they were 0.165-447 (Manaus), 0.018-1.20 μg m-3 (Manacapuru) and 0.047-0.401 (ATTO). Some indication was found for toluene to be released from the forest. No significant difference was found between the BTEX levels measured in the dry season and the wet seasons. Furthermore, it was observed that, in general, the city of Manaus seems to be less impacted by these pollutants than other cities in Brazil and in other

  6. Mosquito (Diptera: Culicidae) diversity of a forest-fragment mosaic in the Amazon rain forest.

    Science.gov (United States)

    Hutchings, Rosa Sá Gomes; Sallum, Maria Anice Mureb; Hutchings, Roger William

    2011-03-01

    To study the impact of Amazonian forest fragmentation on the mosquito fauna, an inventory of Culicidae was conducted in the upland forest research areas of the Biological Dynamics of Forest Fragments Project located 60 km north of Manaus, Amazonas, Brazil. The culicid community was sampled monthly between February 2002 and May 2003. CDC light traps, flight interception traps, manual aspiration, and net sweeping were used to capture adult specimens along the edges and within forest fragments of different sizes (1, 10, and 100 ha), in second-growth areas surrounding the fragments and around camps. We collected 5,204 specimens, distributed in 18 genera and 160 species level taxa. A list of mosquito taxa is presented with 145 species found in the survey, including seven new records for Brazil, 16 new records for the state of Amazonas, along with the 15 morphotypes that probably represent undescribed species. No exotic species [Aedes aegypti (L.) and Aedes albopictus (Skuse)] were found within the sampled areas. Several species collected are potential vectors of Plasmodium causing human malaria and of various arboviruses. The epidemiological and ecological implications of mosquito species found are discussed, and the results are compared with other mosquito inventories from the Amazon region.

  7. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images.

    Science.gov (United States)

    Arellano, Paul; Tansey, Kevin; Balzter, Heiko; Boyd, Doreen S

    2015-10-01

    The global demand for fossil energy is triggering oil exploration and production projects in remote areas of the world. During the last few decades hydrocarbon production has caused pollution in the Amazon forest inflicting considerable environmental impact. Until now it is not clear how hydrocarbon pollution affects the health of the tropical forest flora. During a field campaign in polluted and pristine forest, more than 1100 leaf samples were collected and analysed for biophysical and biochemical parameters. The results revealed that tropical forests exposed to hydrocarbon pollution show reduced levels of chlorophyll content, higher levels of foliar water content and leaf structural changes. In order to map this impact over wider geographical areas, vegetation indices were applied to hyperspectral Hyperion satellite imagery. Three vegetation indices (SR, NDVI and NDVI705) were found to be the most appropriate indices to detect the effects of petroleum pollution in the Amazon forest.

  8. Landscape fragmentation, severe drought, and the new Amazon forest fire regime.

    Science.gov (United States)

    Alencar, Ane A; Brando, Paulo M; Asner, Gregory P; Putz, Francis E

    2015-09-01

    Changes in weather and land use are transforming the spatial and temporal characteristics of fire regimes in Amazonia, with important effects on the functioning of dense (i.e., closed-canopy), open-canopy, and transitional forests across the Basin. To quantify, document, and describe the characteristics and recent changes in forest fire regimes, we sampled 6 million ha of these three representative forests of the eastern and southern edges of the Amazon using 24 years (1983-2007) of satellite-derived annual forest fire scar maps and 16 years of monthly hot pixel information (1992-2007). Our results reveal that changes in forest fire regime properties differentially affected these three forest types in terms of area burned and fire scar size, frequency, and seasonality. During the study period, forest fires burned 15% (0.3 million ha), 44% (1 million ha), and 46% (0.6 million ha) of dense, open, and transitional forests, respectively. Total forest area burned and fire scar size tended to increase over time (even in years of average rainfall in open canopy and transitional forests). In dense forests, most of the temporal variability in fire regime properties was linked to El Nino Southern Oscillation (ENSO)-related droughts. Compared with dense forests, transitional and open forests experienced fires twice as frequently, with at least 20% of these forests' areas burning two or more times during the 24-year study period. Open and transitional forests also experienced higher deforestation rates than dense forests. During drier years, the end of the dry season was delayed by about a month, which resulted in larger burn scars and increases in overall area burned later in the season. These observations suggest that climate-mediated forest flammability is enhanced by landscape fragmentation caused by deforestation, as observed for open and transitional forests in the Eastern portion of the Amazon Basin.

  9. Screening of antibacterial extracts from plants native to the Brazilian Amazon Rain Forest and Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Suffredini I.B.

    2004-01-01

    Full Text Available More than 20% of the world's biodiversity is located in Brazilian forests and only a few plant extracts have been evaluated for potential antibacterial activity. In the present study, 705 organic and aqueous extracts of plants obtained from different Amazon Rain Forest and Atlantic Forest plants were screened for antibacterial activity at 100 µg/ml, using a microdilution broth assay against Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli. One extract, VO581, was active against S. aureus (minimum inhibitory concentration (MIC = 140 µg/ml and minimal bactericidal concentration (MBC = 160 µg/ml, organic extract obtained from stems and two extracts were active against E. faecalis, SM053 (MIC = 80 µg/ml and MBC = 90 µg/ml, organic extract obtained from aerial parts, and MY841 (MIC = 30 µg/ml and MBC = 50 µg/ml, organic extract obtained from stems. The most active fractions are being fractionated to identify their active substances. Higher concentrations of other extracts are currently being evaluated against the same microorganisms.

  10. Coordination of physiological and structural traits in Amazon forest trees

    Science.gov (United States)

    Patiño, S.; Fyllas, N. M.; Baker, T. R.; Paiva, R.; Quesada, C. A.; Santos, A. J. B.; Schwarz, M.; Ter Steege, H.; Phillips, O. L.; Lloyd, J.

    2012-02-01

    Many plant traits covary in a non-random manner reflecting interdependencies associated with "ecological strategy" dimensions. To understand how plants integrate their structural and physiological investments, data on leaf and leaflet size and the ratio of leaf area to sapwood area (ΦLS) obtained for 1020 individual trees (encompassing 661 species) located in 52 tropical forest plots across the Amazon Basin were incorporated into an analysis utilising existing data on species maximum height (Hmax), seed size, leaf mass per unit area (MA), foliar nutrients and δ13C, and branch xylem density (ρx). Utilising a common principal components approach allowing eigenvalues to vary between two soil fertility dependent species groups, five taxonomically controlled trait dimensions were identified. The first involves primarily cations, foliar carbon and MA and is associated with differences in foliar construction costs. The second relates to some components of the classic "leaf economic spectrum", but with increased individual leaf areas and a higher ΦLS newly identified components for tropical tree species. The third relates primarily to increasing Hmax and hence variations in light acquisition strategy involving greater MA, reductions in ΦLS and less negative δ13C. Although these first three dimensions were more important for species from high fertility sites the final two dimensions were more important for low fertility species and were associated with variations linked to reproductive and shade tolerance strategies. Environmental conditions influenced structural traits with ρx of individual species decreasing with increased soil fertility and higher temperatures. This soil fertility response appears to be synchronised with increases in foliar nutrient concentrations and reductions in foliar [C]. Leaf and leaflet area and ΦLS were less responsive to the environment than ρx. Thus, although genetically determined foliar traits such as those associated with leaf

  11. The spatial extent of change in tropical forest ecosystem services in the Amazon delta

    Science.gov (United States)

    de Araujo Barbosa, C. C.; Atkinson, P.; Dearing, J.

    2014-12-01

    Deltas hold major economic potential due their strategic location, close to seas and inland waterways, thereby supporting intense economic activity. The increasing pace of human development activities in coastal deltas over the past five decades has also strained environmental resources and produced extensive economic and sociocultural impacts. The Amazon delta is located in the Amazon Basin, North Brazil, the largest river basin on Earth and also one of the least understood. A considerable segment of the population living in the Amazon delta is directly dependent on the local extraction of natural resources for their livelihood. Areas sparsely inhabited may be exploited with few negative consequences for the environment. However, increasing pressure on ecosystem services is amplified by large fluxes of immigrants from other parts of the country, especially from the semi-arid zone in Northeast Brazil to the lowland forests of the Amazon delta. Here we present partial results from a bigger research project. Therefore, the focus will be on presenting an overview of the current state, and the extent of changes on forest related ecosystem services in the Amazon delta over the last three decades. We aggregated a multitude of datasets, from a variety of sources, for example, from satellite imagery such as the Advanced Very High Resolution Radiometer (AVHRR), the Global Inventory Modelling and Mapping Studies (GIMMS), the Moderate Resolution Imaging Spectroradiometer (MODIS), and climate datasets at meteorological station level from the Brazilian National Institute of Meteorology (INMET) and social and economic statistics data from the Brazilian Institute of Geography and Statistics (IBGE) and from the Brazilian Institute of Applied Economic Research (IPEA). Through analysis of socioeconomic and satellite earth observation data we were able to produce and present spatially-explicit information with the current state and transition in forest cover and its impacts to forest

  12. Four novel Talaromyces species isolated from leaf litter from Colombian Amazon rain forests

    NARCIS (Netherlands)

    Yilmaz, Neriman; López-Quintero, Carlos A.; Vasco-Palacios, Aída Marcela; Frisvad, Jens C.; Theelen, Bart; Boekhout, Teun; Samson, Robert A.; Houbraken, Jos

    2016-01-01

    Various Talaromyces strains were isolated during a survey of fungi involved in leaf litter decomposition in tropical lowland forests in the Caquetá and Amacayacu areas of the Colombian Amazon. Four new Talaromyces species are described using a polyphasic approach, which includes phenotypic character

  13. Up-regulation of Amazon forest photosynthesis precedes elevated mortality under drought

    Science.gov (United States)

    Saleska, S. R.; Christoffersen, B. O.; Longo, M.; Restrepo-Coupe, N.; Alves, L. F.; Wiedemann, K. T.; Stark, S. C.; Hayek, M.; Wu, J.; Munger, J. W.; Meir, P.; Oliveira Junior, R. C.; da Silva, R.; Camargo, P. B. D.

    2015-12-01

    Coupled climate-carbon cycle models indicate that Amazon forests may be vulnerable to drought, with some predicting drought-induced collapse of the Amazon forest and conversion to savanna, under future climate change. While much progress has been made in understanding tropical forest drought response, a holistic picture encompassing both short-term physiological (e.g., photosynthesis) and longer term demographic responses (e.g., mortality) remains elusive, mainly due to the rarity of coinciding relevant measurements and drought events. Here we address this knowledge gap by analyzing the response of an eastern Amazonian forest at both timescales to the El Nino-induced drought of late 2009 / early 2010 (distinct from the Atlantic SST-induced drought to hit Western Amazonia in mid/late 2010) using eddy flux measurements of carbon exchange and periodic tree demographic surveys. We partitioned the drought response of GPP into environmental (light, vapor pressure deficit (VPD), diffuse light) and biological responses. Based on environmental conditions alone (high VPD), we expected GPP to be 1-2 umol CO2 m-2 s-1 less than average during drought. In contrast, GPP was elevated by 2-4 umol CO2 m-2 s-1 above this expected negative response over a period of ~45 days, consistent with previously observed green-up from satelliltes during the 2005 Amazon drought. At the same time, drought significantly elevated 2009-2011 tree mortality, by ~50% above that during non-drought periods, consistent with a quantitative drought-mortality relationship reported for other Amazon forests. This work suggests that observations of "green-up" of forest canopies during drought may be consistent with subsequent drought-induced tree mortality, in contrast to expectation. More importantly, it highlights endogenous biological regulation of photosynthesis as an important mechanism, neglected by models, in mediating drought responses in tropical forests.

  14. Modeling Amazon forest vegetation dynamics and community response to increased wind disturbance

    Science.gov (United States)

    Holm, J. A.; Negron Juarez, R. I.; Chambers, J. Q.; Marra, D.; Rifai, S. W.; Knox, R. G.; Riley, W. J.; Koven, C. D.; McGroddy, M. E.; Urquiza-Muñoz, J. D.; Tello-Espinoza, R.; Ribeiro, G. H. P. M.; Higuchi, N.

    2015-12-01

    Determining the drivers of tree mortality in Amazonia is a complex task, yet essential to reliable prediction of carbon storage in a warmer climate. Past studies have shown an east-west gradient of forest disturbance and rainfall amount across Amazonia. This study uses remote sensing and dynamic vegetation modeling to take a deeper look at drivers of tree mortality and community composition shifts associated with varying mortality rates. Our analysis, using 20 years of Landsat 5 images, showed that ever-wet Amazonia (located in north-west Amazonia, i.e. NWA) was more susceptible to windthrows than the Central Amazon (i.e. CA), which has a a well-defined dry season. The higher frequency of windthrows in NWA forest correlates with higher frequency and intensity of deep convection events in this region, observed using Tropical Rainfall Measuring Mission (TRMM) data. While a combination of factors including: soil characteristics (and by proxy rooting depth) and community composition exacerbate the regional gradient of disturbance, wind was the mechanistic agent of disturbance. Using an individual-based gap model for tropical forests populated with the most representative NWA tree species and increased mortality rates, we found a decrease of biomass in this region and a slight increase in NPP compared to a control simulation, a pattern that is similar to observations. The model predicted which species had the largest response in basal area change due to elevated disturbance, but there was a non-significant shift in community composition in the NWA forests. However, analysis found strong differences in community composition between the modeled NWA and CA regions, consistent with observed results. When CA forests were subject to higher mortality rate similar to the current NWA region, dissimilarity in community composition continued to persist. In addition the model identified species-specific maximum tree height and maximum diameter as the most influential predictors of

  15. Spatial variability of soil carbon stock in the Urucu river basin, Central Amazon-Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ceddia, Marcos Bacis, E-mail: marcosceddia@gmail.com [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Villela, André Luis Oliveira [Colégio Técnico da UFRRJ, RJ, Seropédica 23890-000 (Brazil); Pinheiro, Érika Flávia Machado [Department of Soil, Institute of Agronomy, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ 23890-000 (Brazil); Wendroth, Ole [Department of Plant & Soil Sciences, University of Kentucky, College of Agriculture, Lexington, KY (United States)

    2015-09-01

    The Amazon Forest plays a major role in C sequestration and release. However, few regional estimates of soil organic carbon (SOC) stock in this ecoregion exist. One of the barriers to improve SOC estimates is the lack of recent soil data at high spatial resolution, which hampers the application of new methods for mapping SOC stock. The aims of this work were: (i) to quantify SOC stock under undisturbed vegetation for the 0–30 and the 0–100 cm under Amazon Forest; (ii) to correlate the SOC stock with soil mapping units and relief attributes and (iii) to evaluate three geostatistical techniques to generate maps of SOC stock (ordinary, isotopic and heterotopic cokriging). The study site is located in the Central region of Amazon State, Brazil. The soil survey covered the study site that has an area of 80 km{sup 2} and resulted in a 1:10,000 soil map. It consisted of 315 field observations (96 complete soil profiles and 219 boreholes). SOC stock was calculated by summing C stocks by horizon, determined as a product of BD, SOC and the horizon thickness. For each one of the 315 soil observations, relief attributes were derived from a topographic map to understand SOC dynamics. The SOC stocks across 30 and 100 cm soil depth were 3.28 and 7.32 kg C m{sup −2}, respectively, which is, 34 and 16%, lower than other studies. The SOC stock is higher in soils developed in relief forms exhibiting well-drained soils, which are covered by Upland Dense Tropical Rainforest. Only SOC stock in the upper 100 cm exhibited spatial dependence allowing the generation of spatial variability maps based on spatial (co)-regionalization. The CTI was inversely correlated with SOC stock and was the only auxiliary variable feasible to be used in cokriging interpolation. The heterotopic cokriging presented the best performance for mapping SOC stock. - Highlights: • The SOC stocks across 30 and 100 cm depth were 3.28 and 7.32 kg C m{sup −2}, respectively. • SOC stocks were 34 and 16

  16. Performance of the Enhanced Vegetation Index to Detect Inner-annual Dry Season and Drought Impacts on Amazon Forest Canopies

    Science.gov (United States)

    Brede, B.; Verbesselt, J.; Dutrieux, L.; Herold, M.

    2015-04-01

    The Amazon rainforests represent the largest connected forested area in the tropics and play an integral role in the global carbon cycle. In the last years the discussion about their phenology and response to drought has intensified. A recent study argued that seasonality in greenness expressed as Enhanced Vegetation Index (EVI) is an artifact of variations in sun-sensor geometry throughout the year. We aimed to reproduce these results with the Moderate-Resolution Imaging Spectroradiometer (MODIS) MCD43 product suite, which allows modeling the Bidirectional Reflectance Distribution Function (BRDF) and keeping sun-sensor geometry constant. The derived BRDF-adjusted EVI was spatially aggregated over large areas of central Amazon forests. The resulting time series of EVI spanning the 2000-2013 period contained distinct seasonal patterns with peak values at the onset of the dry season, but also followed the same pattern of sun geometry expressed as Solar Zenith Angle (SZA). Additionally, we assessed EVI's sensitivity to precipitation anomalies. For that we compared BRDF-adjusted EVI dry season anomalies to two drought indices (Maximum Cumulative Water Deficit, Standardized Precipitation Index). This analysis covered the whole of Amazonia and data from the years 2000 to 2013. The results showed no meaningful connection between EVI anomalies and drought. This is in contrast to other studies that investigate the drought impact on EVI and forest photosynthetic capacity. The results from both sub-analyses question the predictive power of EVI for large scale assessments of forest ecosystem functioning in Amazonia. Based on the presented results, we recommend a careful evaluation of the EVI for applications in tropical forests, including rigorous validation supported by ground plots.

  17. Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon

    Science.gov (United States)

    Longo, Marcos; Keller, Michael; dos-Santos, Maiza N.; Leitold, Veronika; Pinagé, Ekena R.; Baccini, Alessandro; Saatchi, Sassan; Nogueira, Euler M.; Batistella, Mateus; Morton, Douglas C.

    2016-11-01

    Deforestation rates have declined in the Brazilian Amazon since 2005, yet degradation from logging, fire, and fragmentation has continued in frontier forests. In this study we quantified the aboveground carbon density (ACD) in intact and degraded forests using the largest data set of integrated forest inventory plots (n = 359) and airborne lidar data (18,000 ha) assembled to date for the Brazilian Amazon. We developed statistical models relating inventory ACD estimates to lidar metrics that explained 70% of the variance across forest types. Airborne lidar-ACD estimates for intact forests ranged between 5.0 ± 2.5 and 31.9 ± 10.8 kg C m-2. Degradation carbon losses were large and persistent. Sites that burned multiple times within a decade lost up to 15.0 ± 0.7 kg C m-2 (94%) of ACD. Forests that burned nearly 15 years ago had between 4.1 ± 0.5 and 6.8 ± 0.3 kg C m-2 (22-40%) less ACD than intact forests. Even for low-impact logging disturbances, ACD was between 0.7 ± 0.3 and 4.4 ± 0.4 kg C m-2 (4-21%) lower than unlogged forests. Comparing biomass estimates from airborne lidar to existing biomass maps, we found that regional and pantropical products consistently overestimated ACD in degraded forests, underestimated ACD in intact forests, and showed little sensitivity to fires and logging. Fine-scale heterogeneity in ACD across intact and degraded forests highlights the benefits of airborne lidar for carbon mapping. Differences between airborne lidar and regional biomass maps underscore the need to improve and update biomass estimates for dynamic land use frontiers, to better characterize deforestation and degradation carbon emissions for regional carbon budgets and Reduce Emissions from Deforestation and forest Degradation (REDD+).

  18. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Izaya; Cochrane, Mark A [GIScCE, South Dakota State University (United States); Souza, Carlos M Jr; Sales, Marcio H [Instituto do Homen e Meio Ambiente da Amazonia-IMAZON (Brazil)

    2011-10-15

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  19. Biogeochemistry and biodiversity interact to govern N2 fixers (Fabaceae) across Amazon tropical forests

    Science.gov (United States)

    Batterman, Sarah; Hedin, Lars; Lloyd, Jon; Quesada, Beto

    2015-04-01

    Dinitrogen (N2)-fixing trees in the Fabaceae fulfill a central role in tropical rainforests by supplying nitrogen from the atmosphere, yet whether they will support a forest CO2 sink in the future by alleviating nitrogen limitation may depend on whether and how they are controlled by local environmental conditions. Theory predicts that soil nutrients govern the function of N2 fixers, yet there have been no large-scale field-based tests of this idea. Moreover, recent findings indicate that N2-fixing species behave differently in biogeochemical cycles, suggesting that any environmental control may differ by species, and that the diversity of N2-fixing trees may be critical for ensuring tropical forest function. In this talk, we will use the RAINFOR dataset of 108 (~1.0 ha) lowland tropical rainforest plots from across the Amazon Basin to test whether the abundance and diversity of N2-fixing trees are controlled by soil nutrient availability (i.e., increasing with phosphorus and decreasing with nitrogen), or if fixer abundance and diversity simply follow the dynamics of all tree species. We also test an alternative - but not mutually exclusive - hypothesis that the governing factor for fixers is forest disturbance. Results show a surprising lack of control by local nutrients or disturbance on the abundance or diversity of N2 fixers. The dominant driver of fixer diversity was the total number of tree species, with fixers comprising 10% of all species in a forest plot (R2 = 0.75, linear regression). When considering the dominant taxa of N2 fixers (Inga, Swartzia, Tachigali) alone, environmental factors (nitrogen, phosphorus and disturbance) became important and clearly governed their abundance. These taxa, which contain >60% of N2-fixing trees in the data set, appear to have evolved to specialize in different local environmental conditions. The strong biogeochemistry-by-biodiversity interaction observed here points to a need to consider individual species or taxa of N2

  20. Spatiotemporal NDVI, LAI, albedo, and surface temperature dynamics in the southwest of the Brazilian Amazon forest

    Science.gov (United States)

    Querino, Carlos Alexandre Santos; Beneditti, Cristina Aparecida; Machado, Nadja Gomes; da Silva, Marcelo José Gama; da Silva Querino, Juliane Kayse Albuquerque; dos Santos Neto, Luiz Alves; Biudes, Marcelo Sacardi

    2016-04-01

    During the last decades, the Amazon rainforest underwent uncontrolled exploitation that modified its environmental variables. The current paper analyzes the spatiotemporal dynamics of the normalized difference vegetation index (NDVI), leaf area index (LAI), and surface albedo, and temperature in two different vegetation covers, preserved and deforested areas. We calculated the remote-sensing products using Landsat 5 TM images obtained during the dry season 1984, 1991, 2000, and 2011 of the central region of the State of Rondônia, Brazil. The results showed a reduction of vegetation indexes NDVI (˜0.70 in 1984 to ˜0.27 in 2011) and LAI (˜1.8 in 1984 to ˜0.3 in 2011), with an increase of surface albedo (0.12 in 1984 to 0.20 in 2011) and temperature (˜24°C in 1984 to 30°C in 2011) as the effect of the rainforest converted in grassland during the study period. No changes in any variables were observed in the protected area. Forest conversion into grassland resulted in a decrease of 69% in NDVI and 110% in LAI and a rise of 59% and 24% in albedo and surface temperature, respectively.

  1. Richardia Robineau-Desvoidy (Diptera, Tephritoidea, Richardiidae from Central Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Letícia Barros de Alencar

    2013-06-01

    Full Text Available Richardia Robineau-Desvoidy (Diptera, Tephritoidea, Richardiidae from Central Amazon, Brazil. There are 11 species of Richardia known to Brazil. Of these, only four are known to occur in the Brazilian Amazon Region, where the diversity of Richardia is underestimated. Herein we describe and illustrate Richardia intemperata sp. nov. and Richardia parispina sp. nov. from Amazonas, Brazil. An illustrated key to males from this region is also provided.

  2. The AmazonFACE research program: assessing the effects of increasing atmospheric CO2 on the ecology and resilience of the Amazon forest

    Science.gov (United States)

    Lapola, David; Quesada, Carlos; Norby, Richard; Araújo, Alessandro; Domingues, Tomas; Hartley, Iain; Kruijt, Bart; Lewin, Keith; Meir, Patrick; Ometto, Jean; Rammig, Anja

    2016-04-01

    The existence, magnitude and duration of a supposed "CO2 fertilization" effect in tropical forests remains largely undetermined, despite being suggested for nearly 20 years as a key knowledge gap for understanding the future resilience of Amazonian forests and its impact on the global carbon cycle. Reducing this uncertainty is critical for assessing the future of the Amazon region as well as its vulnerability to climate change. The AmazonFACE (Free-Air CO2 Enrichment) research program is an integrated model-experiment initiative of unprecedented scope in an old-growth Amazon forest near Manaus, Brazil - the first of its kind in tropical forest. The experimental treatment will simulate an atmospheric CO2 concentration [CO2] of the future in order to address the question: "How will rising atmospheric CO2 affect the resilience of the Amazon forest, the biodiversity it harbors, and the ecosystem services it provides, in light of projected climatic changes?" AmazonFACE is divided into three phases: (I) pre-experimental ecological characterization of the research site; (II) pilot experiment comprised of two 30-m diameter plots, with one treatment plot maintained at elevated [CO2] (ambient +200 ppmv), and the other control plot at ambient [CO2]; and (III) a fully-replicated long-term experiment comprised of four pairs of control/treatment FACE plots maintained for 10 years. A team of scientists from Brazil, USA, Australia and Europe will employ state-of-the-art methods to study the forest inside these plots in terms of carbon metabolism and cycling, water use, nutrient cycling, forest community composition, and interactions with environmental stressors. All project phases also encompass ecosystem-modeling activities in a way such that models provide hypothesis to be verified in the experiment, which in turn will feed models to ultimately produce more accurate projections of the environment. Resulting datasets and analyses will be a valuable resource for a broad community

  3. Seroprevalence of Toxoplasma gondii in free-living Amazon River dolphins (Inia geoffrensis) from central Amazon, Brazil.

    Science.gov (United States)

    Santos, P S; Albuquerque, G R; da Silva, V M F; Martin, A R; Marvulo, M F V; Souza, S L P; Ragozo, A M A; Nascimento, C C; Gennari, S M; Dubey, J P; Silva, J C R

    2011-12-29

    Toxoplasma gondii is an important pathogen in aquatic mammals and its presence in these animals may indicate the water contamination of aquatic environment by oocysts. Serum samples from 95 free-living Amazon River dolphins (Inia geoffrensis) from the Mamirauá Sustainable Development Reserve (RDSM), Tefé, Amazonas, Central Amazon, Brazil were tested for T. gondii antibodies using the modified agglutination test (MAT). Antibodies (MAT ≥ 25) to T. gondii were found in 82 (86.3%) dolphins with titers of 1:25 in 24, 1:50 in 56, and 1:500 in 2. Results suggest a high level contamination of the aquatic environment of the home range of these animals.

  4. Use and management of the natural resources of the Colombian Amazon rain forest: a biological approach

    Directory of Open Access Journals (Sweden)

    Angela Yaneth Landínez Torres

    2013-12-01

    Full Text Available This study analyzes the main features associated with biological use practices and management of forest resources in the Colombian Amazon. The theoretical cut proposal contrasts biological level, the forms of appropriation of forest resources in indigenous and urban contexts depending on the importance that such activity involves the establishment of management strategies biodiversity in Colombia. In this way, provides an integrative perspective that will address conflict situations considering environmental factors not only biological but cultural in various scenarios , to give sustenance to the decisions made and provide a reasonable treatment that enables the implementation of environmental regulation mechanisms in especially in areas such as strategic biological Colombian Amazon. Finally, reflect on the importance of facilitating the functional analysis of the connections and interrelationships of ecosystem components, including human communities, sketching involving both biological and social guidelines for sustainable use of biodiversity.

  5. Amazon forest structure generates diurnal and seasonal variability in light utilization

    Directory of Open Access Journals (Sweden)

    D. C. Morton

    2015-12-01

    Full Text Available The complex three-dimensional (3-D structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART model to simulate leaf absorption of photosynthetically active radiation (lAPAR for an Amazon forest. The 3-D model scene was developed from airborne lidar data, and local measurements of leaf reflectance, aerosols, and PAR were used to model lAPAR under direct and diffuse illumination conditions. Simulated lAPAR under clear sky and cloudy conditions was corrected for light saturation effects to estimate light utilization, the fraction of lAPAR available for photosynthesis. Although the fraction of incoming PAR absorbed by leaves was consistent throughout the year (0.80–0.82, light utilization varied seasonally (0.67–0.74, with minimum values during the Amazon dry season. Shadowing and light saturation effects moderated potential gains in forest productivity from increasing PAR during dry season months when the diffuse fraction from clouds and aerosols was low. Comparisons between DART and other models highlighted the role of 3-D forest structure to account for seasonal changes in light utilization. Our findings highlight how directional illumination and forest 3-D structure combine to influence diurnal and seasonal variability in light utilization, independent of further changes in leaf area, leaf age, or environmental controls on canopy photosynthesis. Changing illumination geometry constitutes an alternative biophysical explanation for observed seasonality in Amazon forest productivity without changes in canopy phenology.

  6. Amazon forest structure generates diurnal and seasonal variability in light utilization

    Science.gov (United States)

    Morton, Douglas C.; Rubio, Jérémy; Cook, Bruce D.; Gastellu-Etchegorry, Jean-Philippe; Longo, Marcos; Choi, Hyeungu; Hunter, Maria; Keller, Michael

    2016-04-01

    The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART) model to simulate leaf absorption of photosynthetically active radiation (lAPAR) for an Amazon forest. The 3-D model scene was developed from airborne lidar data, and local measurements of leaf reflectance, aerosols, and PAR were used to model lAPAR under direct and diffuse illumination conditions. Simulated lAPAR under clear-sky and cloudy conditions was corrected for light saturation effects to estimate light utilization, the fraction of lAPAR available for photosynthesis. Although the fraction of incoming PAR absorbed by leaves was consistent throughout the year (0.80-0.82), light utilization varied seasonally (0.67-0.74), with minimum values during the Amazon dry season. Shadowing and light saturation effects moderated potential gains in forest productivity from increasing PAR during dry-season months when the diffuse fraction from clouds and aerosols was low. Comparisons between DART and other models highlighted the role of 3-D forest structure to account for seasonal changes in light utilization. Our findings highlight how directional illumination and forest 3-D structure combine to influence diurnal and seasonal variability in light utilization, independent of further changes in leaf area, leaf age, or environmental controls on canopy photosynthesis. Changing illumination geometry constitutes an alternative biophysical explanation for observed seasonality in Amazon forest productivity without changes in canopy phenology.

  7. Effects of change in primary forest cover on armadillo (Cingulata, Mammalia burrow use in the Central Amazon Efectos del cambio en la cobertura de bosque primario sobre el uso de las madrigueras por los armadillos (Cingulata, Mammalia en la Amazonia Central

    Directory of Open Access Journals (Sweden)

    María Clara Arteaga

    2012-03-01

    Full Text Available Transformation of primary forest to other vegetation types alters the availability and distribution of resources, and thus affects their use by species that inhabit the forest. Although armadillos are important earthmover mammals in the Amazon forest, and their burrows play an important physical and ecological role in the ecosystem, the impact of loss of primary forest cover on these organisms has been poorly understood. In order to evaluate the effects of change in the primary forest cover on burrow use by armadillos, we performed 2 censuses in 33 plots within 12 sites of different vegetation cover characteristics, and recorded burrow density and current use. A total of 109 armadillo burrows were found; the sites with higher percentages of primary forest cover showed a larger number of active burrows, although burrow density and the probability of establishing new burrows remained unaffected by this variable. Our results show that areas with higher quantities of primary forest habitat show more intense use by armadillos, probably due to the permanence time of individuals. These findings suggest that the viability of armadillo populations, as well as the role that these animals play within the ecosystem, may be affected in disturbed areas.La transformación del bosque primario a otro tipo de vegetación cambia la disponibilidad y distribución de los recursos, afectando su uso por especies que habitan el bosque. Los armadillos son el principal grupo de mamíferos escavadores del Amazonas y sus madrigueras cumplen un papel físico y ecológico en el ecosistema. Sin embargo, no se conoce el impacto de la pérdida del bosque sobre estos organismos. Con el fin de evaluar el efecto de los cambios en la cobertura de bosque primario sobre el uso de sus madrigueras, realizamos 2 censos en 33 parcelas dentro de 12 localidades con diferentes coberturas vegetales y reportamos la densidad y el estado de uso de las madrigueras. Encontramos 109 madrigueras y

  8. A Decision Support System for Land Allocation under Multiple Objectives in Public Production Forests in the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Marco W. Lentini

    2010-01-01

    Full Text Available Logging in natural forests is a vital economic activity in the Brazilian Amazon. However, illegal and unplanned logging is exhausting forests rapidly. In 2006, a new forestry law in Brazil (Lei 11,284/2006 established the legal framework to develop state and national public forests for multiple uses. To support public forest planning efforts, we combine spatially explicit data on logging profits, biodiversity, and potential for community use for use within a forest planning optimization model. While generating optimal land use configurations, the model enables an assessment of the market and nonmarket tradeoffs associated with different land use priorities. We demonstrate the model's use for Faro State Forest, a 636,000 ha forest embedded within a large mosaic of conservation units recently established in the state of Pará. The datasets used span the entire Brazilian Amazon, implying that the analysis can be repeated for any public forest planning effort within the region.

  9. The ambiguity of drought events, a bottleneck for Amazon forest drought response modelling

    Science.gov (United States)

    De Deurwaerder, Hannes; Verbeeck, Hans; Baker, Timothy; Christoffersen, Bradley; Ciais, Philippe; Galbraith, David; Guimberteau, Matthieu; Kruijt, Bart; Langerwisch, Fanny; Meir, Patrick; Rammig, Anja; Thonicke, Kirsten; Von Randow, Celso; Zhang, Ke

    2016-04-01

    Considering the important role of the Amazon forest in the global water and carbon cycle, the prognosis of altered hydrological patterns resulting from climate change provides strong incentive for apprehending the direct implications of drought on the vegetation of this ecosystem. Dynamic global vegetation models have the potential of providing a useful tool to study drought impacts on various spatial and temporal scales. This however assumes the models being able to properly represent drought impact mechanisms. But how well do the models succeed in meeting this assumption? Within this study meteorological driver data and model output data of 4 different DGVMs, i.e. ORCHIDEE, JULES, INLAND and LPGmL, are studied. Using the palmer drought severity index (PDSI) and the mean cumulative water deficit (MWD), temporal and spatial representation of drought events are studied in the driver data and are referenced to historical extreme drought events in the Amazon. Subsequently, within the resulting temporal and spatial frame, we studied the drought impact on the above ground biomass (AGB) and gross primary production (GPP) fluxes. Flux tower data, field inventory data and the JUNG data-driven GPP product for the Amazon region are used for validation. Our findings not only suggest that the current state of the studied DGVMs is inadequate in representing Amazon droughts in general, but also highlights strong inter-model differences in drought responses. Using scatterplot-studies and input-output correlations, we provide insight in the origin of these encountered inter-model differences. In addition, we present directives of model development and improvement in scope of Amazon forest drought response modelling.

  10. Multiresolution quantification of deciduousness in West Central African forests

    Directory of Open Access Journals (Sweden)

    G. Viennois

    2013-04-01

    Full Text Available The characterization of leaf phenology in tropical forests is of major importance and improves our understanding of earth-atmosphere-climate interactions. The availability of satellite optical data with a high temporal resolution has permitted the identification of unexpected phenological cycles, particularly over the Amazon region. A primary issue in these studies is the relationship between the optical reflectance of pixels of 1 km or more in size and ground information of limited spatial extent. In this paper, we demonstrate that optical data with high to very-high spatial resolution can help bridge this scale gap by providing snapshots of the canopy that allow discernment of the leaf-phenological stage of trees and the proportions of leaved crowns within the canopy. We also propose applications for broad-scale forest characterization and mapping in West Central Africa over an area of 141 000 km2. Eleven years of the Moderate Resolution Imaging Spectroradiometer (MODIS Enhanced Vegetation Index (EVI data were averaged over the wet and dry seasons to provide a dataset of optimal radiometric quality at a spatial resolution of 250 m. Sample areas covered at a very-high (GeoEye and high (SPOT-5 spatial resolution were used to identify forest types and to quantify the proportion of leaved trees in the canopy. The dry season EVI was positively correlated with the proportion of leaved trees in the canopy. This relationship allowed the conversion of EVI into canopy deciduousness at the regional level. On this basis, ecologically important forest types could be mapped, including young secondary, open Marantaceae, Gilbertiodendron dewevrei and swamp forests. We show that in west central African forests, a large share of the variability in canopy reflectance, as captured by the EVI, is due to variation in the proportion of leaved trees in the upper canopy, thereby opening new perspectives for biodiversity and carbon-cycle applications.

  11. Resilience of southwestern Amazon forests to anthropogenic edge effects.

    Science.gov (United States)

    Phillips, Oliver L; Rose, Sam; Mendoza, Abel Monteagudo; Vargas, Percy Núñez

    2006-12-01

    Anthropogenic edge effects can compromise the conservation value of mature tropical forests. To date most edge-effect research in Amazonia has concentrated on forests in relatively seasonal locations or with poor soils in the east of the basin. We present the first evaluation from the relatively richer soils of far western Amazonia on the extent to which mature forest biomass, diversity, and composition are affected by edges. In a southwestern Amazonian landscape we surveyed woody plant diversity, species composition, and biomass in 88x0.1 ha samples of unflooded forest that spanned a wide range in soil properties and included samples as close as 50 m and as distant as >10 km from anthropogenic edges. We applied Mantel tests, multiple regression on distance matrices, and other multivariate techniques to identify anthropogenic effects before and after accounting for soil factors and spatial autocorrelation. The distance to the nearest edge, access point, and the geographical center of the nearest community ("anthropogenic-distance effects") all had no detectable effect on tree biomass or species diversity. Anthropogenic-distance effects on tree species composition were also below the limits of detection and were negligible in comparison with natural environmental and spatial factors. Analysis of the data set's capacity to detect anthropogenic effects confirmed that the forests were not severely affected by edges, although because our study had few plots within 100 m of forest edges, our confidence in patterns in the immediate vicinity of edges is limited. It therefore appears that the conservation value of most "edge" forests in this region has not yet been compromised substantially. We caution that because this is one case study it should not be overinterpreted, but one explanation for our findings may be that western Amazonian tree species are naturally faster growing and more disturbance adapted than those farther east.

  12. Monitoring Strategies for REDD+: Integrating Field, Airborne, and Satellite Observations of Amazon Forests

    Science.gov (United States)

    Morton, Douglas; Souza, Carlos, Jr.; Souza, Carlos, Jr.; Keller, Michael

    2012-01-01

    Large-scale tropical forest monitoring efforts in support of REDD+ (Reducing Emissions from Deforestation and forest Degradation plus enhancing forest carbon stocks) confront a range of challenges. REDD+ activities typically have short reporting time scales, diverse data needs, and low tolerance for uncertainties. Meeting these challenges will require innovative use of remote sensing data, including integrating data at different spatial and temporal resolutions. The global scientific community is engaged in developing, evaluating, and applying new methods for regional to global scale forest monitoring. Pilot REDD+ activities are underway across the tropics with support from a range of national and international groups, including SilvaCarbon, an interagency effort to coordinate US expertise on forest monitoring and resource management. Early actions on REDD+ have exposed some of the inherent tradeoffs that arise from the use of incomplete or inaccurate data to quantify forest area changes and related carbon emissions. Here, we summarize recent advances in forest monitoring to identify and target the main sources of uncertainty in estimates of forest area changes, aboveground carbon stocks, and Amazon forest carbon emissions.

  13. Simulating Amazon forest carbon cycling using an individual- and trait-based model.

    Science.gov (United States)

    Fauset, S.; Fyllas, N.; Galbraith, D.; Christoffersen, B. O.; Baker, T. R.; Johnson, M. O.; Malhi, Y.; Phillips, O. L.; Lloyd, J.; Gloor, E. U.

    2014-12-01

    The Amazon forest, a regional and global regulator of climate and store of enormous biodiversity, is an incredibly complex ecosystem. Just one ha of forest can contain 300 different species of tree, with an estimated 16,000 tree species present in the region. Different tree species, and even different individuals of a species, vary in their functional traits, influencing how they behave in response to the environment. Dynamic global vegetation models (DGVMs) are commonly used to simulate the response of the Amazon forest to global environmental change. Yet, such DGVMs typically use a plant functional type (PFT) approach where variation between individuals and species are not represented, which inherently limits the range of outcomes for Amazonia under climate change. Here, we report on recent advances in an alternative approach to tropical forest modeling that represents the size structure and variation of traits within a community, which we term the Trait-based Forest Simulator (TFS). As originally proposed, TFS was strictly a steady-state model and here we present an extension of TFS which includes full forest dynamics, and has been evaluated with data collected from intensive carbon cycling inventory plots from the GEM (Global Ecosystems Monitoring) network. Specifically, we compare the model output to stand-level data on productivity and respiration of the canopy, stems and roots. The model development process has highlighted ecological tradeoffs that are necessary to integrate into trait-based models, such as a shorter leaf lifetime with a lower leaf mass per area. The adapted TFS model simulates carbon cycling in forest plots, including variation in productivity between sites. These results lend confidence to the ability of next-generation vegetation models to accurately simulate forest sensitivity to future changes.

  14. Edaphic controls on ecosystem-level carbon allocation in two contrasting Amazon forests

    Science.gov (United States)

    Jiménez, Eliana M.; Peñuela-Mora, María. Cristina; Sierra, Carlos A.; Lloyd, Jon; Phillips, Oliver L.; Moreno, Flavio H.; Navarrete, Diego; Prieto, Adriana; Rudas, Agustín.; Álvarez, Esteban; Quesada, Carlos A.; Grande-Ortíz, Maria Angeles; García-Abril, Antonio; Patiño, Sandra

    2014-09-01

    Studies of carbon allocation in forests provide essential information for understanding spatial and temporal differences in carbon cycling that can inform models and predict possible responses to changes in climate. Amazon forests play a particularly significant role in the global carbon balance, but there are still large uncertainties regarding abiotic controls on the rates of net primary production (NPP) and the allocation of photosynthetic products to different ecosystem components. We evaluated three different aspects of stand-level carbon allocation (biomass, NPP, and its partitioning) in two amazon forests on different soils (nutrient-rich clay soils versus nutrient-poor sandy soils) but otherwise growing under similar conditions. We found differences in carbon allocation patterns between these two forests, showing that the forest on clay soil had a higher aboveground and total biomass as well as a higher aboveground NPP than the sandy forest. However, differences between the two forest types in terms of total NPP were smaller, as a consequence of different patterns in the carbon allocation of aboveground and belowground components. The proportional allocation of NPP to new foliage was relatively similar between them. Our results of aboveground biomass increments and fine-root production suggest a possible trade-off between carbon allocation to fine roots versus aboveground compartments, as opposed to the most commonly assumed trade-off between total aboveground and belowground production. Despite these differences among forests in terms of carbon allocation, the leaf area index showed only small differences, suggesting that this index is more indicative of total NPP than its aboveground or belowground components.

  15. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales.

    Science.gov (United States)

    Stickler, Claudia M; Coe, Michael T; Costa, Marcos H; Nepstad, Daniel C; McGrath, David G; Dias, Livia C P; Rodrigues, Hermann O; Soares-Filho, Britaldo S

    2013-06-01

    Tropical rainforest regions have large hydropower generation potential that figures prominently in many nations' energy growth strategies. Feasibility studies of hydropower plants typically ignore the effect of future deforestation or assume that deforestation will have a positive effect on river discharge and energy generation resulting from declines in evapotranspiration (ET) associated with forest conversion. Forest loss can also reduce river discharge, however, by inhibiting rainfall. We used land use, hydrological, and climate models to examine the local "direct" effects (through changes in ET within the watershed) and the potential regional "indirect" effects (through changes in rainfall) of deforestation on river discharge and energy generation potential for the Belo Monte energy complex, one of the world's largest hydropower plants that is currently under construction on the Xingu River in the eastern Amazon. In the absence of indirect effects of deforestation, simulated deforestation of 20% and 40% within the Xingu River basin increased discharge by 4-8% and 10-12%, with similar increases in energy generation. When indirect effects were considered, deforestation of the Amazon region inhibited rainfall within the Xingu Basin, counterbalancing declines in ET and decreasing discharge by 6-36%. Under business-as-usual projections of forest loss for 2050 (40%), simulated power generation declined to only 25% of maximum plant output and 60% of the industry's own projections. Like other energy sources, hydropower plants present large social and environmental costs. Their reliability as energy sources, however, must take into account their dependence on forests.

  16. Aerosol number fluxes over the Amazon rain forest during the wet season

    Directory of Open Access Journals (Sweden)

    P. Artaxo

    2009-12-01

    Full Text Available Number fluxes of particles with diameter larger than 10 nm were measured with the eddy covariance method over the Amazon rain forest during the wet season as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia campaign 2008. The primary goal was to investigate whether sources or sinks dominate the aerosol number flux in the tropical rain forest-atmosphere system.

    During the measurement campaign, from 12 March to 18 May, 60% of the particle fluxes pointed downward, which is a similar fraction to what has been observed over boreal forests. The net deposition flux prevailed even in the absolute cleanest atmospheric conditions during the campaign and therefore cannot be explained only by deposition of anthropogenic particles. The particle transfer velocity vt increased with increasing friction velocity and the relation is described by the equation vt = 2.4×10−3×u* where u* is the friction velocity.

    Upward particle fluxes often appeared in the morning hours and seem to a large extent to be an effect of entrainment fluxes into a growing mixed layer rather than primary aerosol emission. In general, the number source of primary aerosol particles within the footprint area of the measurements was small, possibly because the measured particle number fluxes reflect mostly particles less than approximately 200 nm. This is an indication that the contribution of primary biogenic aerosol particles to the aerosol population in the Amazon boundary layer may be low in terms of number concentrations. However, the possibility of horizontal variations in primary aerosol emission over the Amazon rain forest cannot be ruled out.

  17. Drought stress and carbon uptake in an Amazon forest measured with spaceborne imaging spectroscopy.

    Science.gov (United States)

    Asner, Gregory P; Nepstad, Daniel; Cardinot, Gina; Ray, David

    2004-04-20

    Amazônia contains vast stores of carbon in high-diversity ecosystems, yet this region undergoes major changes in precipitation affecting land use, carbon dynamics, and climate. The extent and structural complexity of Amazon forests impedes ground studies of ecosystem functions such as net primary production (NPP), water cycling, and carbon sequestration. Traditional modeling and remote-sensing approaches are not well suited to tropical forest studies, because (i) biophysical mechanisms determining drought effects on canopy water and carbon dynamics are poorly known, and (ii) remote-sensing metrics of canopy greenness may be insensitive to small changes in leaf area accompanying drought. New spaceborne imaging spectroscopy may detect drought stress in tropical forests, helping to monitor forest physiology and constrain carbon models. We combined a forest drought experiment in Amazônia with spaceborne imaging spectrometer measurements of this area. With field data on rainfall, soil water, and leaf and canopy responses, we tested whether spaceborne hyperspectral observations quantify differences in canopy water and NPP resulting from drought stress. We found that hyperspectral metrics of canopy water content and light-use efficiency are highly sensitive to drought. Using these observations, forest NPP was estimated with greater sensitivity to drought conditions than with traditional combinations of modeling, remote-sensing, and field measurements. Spaceborne imaging spectroscopy will increase the accuracy of ecological studies in humid tropical forests.

  18. Seasonal and spatial contrasts of sedimentary organic carbon in floodplain lakes of the central Amazon basin.

    Science.gov (United States)

    Sobrinho, Rodrigo; Kim, Jung-Hyun; Abril, Gwenaël; Zell, Claudia; Moreira-Turcq, Patricia; Mortillaro, Jean-Michel; Meziane, Tarik; Damsté, Jaap; Bernardes, Marcelo

    2014-05-01

    Three-quarters of the area of flooded land in the world are temporary wetlands (Downing, 2009), which play a significant role in the global carbon cycle(Einsele et al., 2001; Cole et al., 2007; Battin et al., 2009; Abril et al., 2013). Previous studies of the Amazonian floodplain lakes (várzeas), one important compartment of wetlands, showed that the sedimentation of organic carbon (OC) in the floodplain lakes is strongly linked to the periodical floods and to the biogeography from upstream to downstream(Victoria et al., 1992; Martinelli et al., 2003). However, the main sources of sedimentary OC remain uncertain. Hence, the study of the sources of OC buried in floodplain lake sediments can enhance our understanding of the carbon balance of the Amazon ecosystems. In this study, we investigated the seasonal and spatial pattern of sedimentary organic matter in five floodplain lakes of the central Amazon basin (Cabaliana, Janauaca, Canaçari, Miratuba, and Curuai) which have different morphologies, hydrodynamics and vegetation coverage. Surface sediments were collected in four hydrological seasons: low water (LW), rising water (RW), high water (HW) and falling water (FW) in 2009 and 2010. We investigated commonly used bulk geochemical tracers such as C:N ratio and stable isotopic composition of organic carbon (δ13COC). These results were compared with lignin-phenol parameters as an indicator of vascular plant detritus (Hedges and Ertel, 1982) and branched glycerol dialkyl glycerol tetraethers (brGDGTs) to trace the soil OC from land to the aquatic settings (Hopmans et al., 2004). Our data showed that during the RW and FW seasons, the concentration of lignin and brGDGTs were higher in comparison to other seasons. Our study also indicated that floodplain lake sediments primarily consisted of a mixture of C3 plant detritus and soil OC. However, a downstream increase in C4 plant-derived OC contribution was observed along the gradient of increasingly open waters, i

  19. Lessons from forest FACE experiments provide guidance for Amazon-FACE science plan (Invited)

    Science.gov (United States)

    Norby, R. J.; Lapola, D. M.

    2013-12-01

    Free-air CO2 enrichment (FACE) experiments have provided novel insights into the ecological mechanisms controlling the cycling and storage of carbon in terrestrial ecosystems, and they provide a strong foundation for next-generation experiments in unexplored biomes. Specific lessons from FACE experiments include: (1) Carbon cycle responses are time-dependent because component processes have different rate constants: for example, net primary productivity is increased by elevated CO2, but the response may diminish with time as N cycling feedbacks become important. (2) Carbon partitioning patterns determine the fate of the extra C taken up by CO2-enriched plants, but partitioning responses remain an important challenge for ecosystem models. (3) The influence of N cycling on plant and ecosystem C cycling continues to be a critical uncertainty, and new experiments, especially in the tropics, must also consider P cycling. (4) Plant community structure can influence the ecosystem response to elevated CO2, but dynamic vegetation effects have not been adequately addressed. These experiences from FACE experiments in temperate forests are now guiding the development of a science plan for a FACE experiment in Amazonia. Models and small-scale experimental results agree that elevated CO2 will affect the metabolism of tropical ecosystems, but the qualitative and quantitative expression of the effects are largely unknown, representing a major source of uncertainty that limits our capacity to assess the vulnerability of the Amazon forest to climate change. Recognizing the high importance of the forests of the Amazon basin on global carbon, water, and energy cycles, biodiversity conservation, and the provision of essential services in Latin America, a consortium of Brazilian researchers and international collaborators have developed a science plan for Amazon-FACE. While the challenges presented both by infrastructure needs (roads, electricity, and provision of CO2) and biology (the

  20. The impact of rise of the Andes and Amazon landscape evolution on diversification of lowland terra-firme forest birds

    Science.gov (United States)

    Aleixo, A.; Wilkinson, M. J.

    2011-12-01

    Since the 19th Century, the unmatched biological diversity of Amazonia has stimulated a diverse set of hypotheses accounting for patterns of species diversity and distribution in mega-diverse tropical environments. Unfortunately, the evidence supporting particular hypotheses to date is at best described as ambiguous, and no generalizations have emerged yet, mostly due to the lack of comprehensive comparative phylogeographic studies with thorough trans-Amazonian sampling of lineages. Here we report on spatial and temporal patterns of diversification estimated from mitochondrial gene trees for 31 lineages of birds associated with upland terra-firme forest, the dominant habitat in modern lowland Amazonia. The results confirm the pervasive role of Amazonian rivers as primary barriers separating sister lineages of birds, and a protracted spatio-temporal pattern of diversification, with a gradual reduction of earlier (1st and 2nd) and older (> 2 mya) splits associated with each lineage in an eastward direction (the easternmost tributaries of the Amazon, the Xingu and Tocantins Rivers, are not associated with any splits older than > 2 mya). This "younging-eastward" pattern may have an abiotic explanation related to landscape evolution. Triggered by a new pulse of Andean uplift, it has been proposed that modern Amazon basin landscapes may have evolved successively eastward, away from the mountain chain, starting ~10 mya. This process was likely based on the deposition of vast fluvial sediment masses, known as megafans, which apparently extended in series progressively eastward from Andean sources. The effects on drainage patterns are apparent from the location of axial rivers such as the Negro / Orinoco and Madeira which lie at the distal ends of major megafan ramparts at cratonic margins furthest from the Andes. Megafan extension plausibly explains the progressive extinction of the original Pebas wetland of west-central Amazonia by the present fluvial landsurfaces where

  1. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure.

    Science.gov (United States)

    Tang, Hao; Dubayah, Ralph

    2017-03-07

    Light-regime variability is an important limiting factor constraining tree growth in tropical forests. However, there is considerable debate about whether radiation-induced green-up during the dry season is real, or an apparent artifact of the remote-sensing techniques used to infer seasonal changes in canopy leaf area. Direct and widespread observations of vertical canopy structures that drive radiation regimes have been largely absent. Here we analyze seasonal dynamic patterns between the canopy and understory layers in Amazon evergreen forests using observations of vertical canopy structure from a spaceborne lidar. We discovered that net leaf flushing of the canopy layer mainly occurs in early dry season, and is followed by net abscission in late dry season that coincides with increasing leaf area of the understory layer. Our observations of understory development from lidar either weakly respond to or are not correlated to seasonal variations in precipitation or insolation, but are strongly related to the seasonal structural dynamics of the canopy layer. We hypothesize that understory growth is driven by increased light gaps caused by seasonal variations of the canopy. This light-regime variability that exists in both spatial and temporal domains can better reveal the drought-induced green-up phenomenon, which appears less obvious when treating the Amazon forests as a whole.

  2. The Contribution of Multiple Use Forest Management to Small Farmers’ Annual Incomes in the Eastern Amazon

    Directory of Open Access Journals (Sweden)

    Plinio Sist

    2014-06-01

    Full Text Available Small-scale farmers in the Brazilian Amazon collectively hold tenure over more than 12 million ha of permanent forest reserves, as required by the Forest Code. The trade-off between forest conservation and other land uses entails opportunity costs for them and for the country, which have not been sufficiently studied. We assessed the potential income generated by multiple use forest management for farmers and compared it to the income potentially derived from six other agricultural land uses. Income from the forest was from (i logging, carried out by a logging company in partnership with farmers’ associations; and (ii harvesting the seeds of Carapa guianensis (local name andiroba for the production of oil. We then compared the income generated by multiple-use forest management with the income from different types of agrarian systems. According to our calculations in this study, the mean annual economic benefits from multiple forest use are the same as the least productive agrarian system, but only 25% of the annual income generated by the most productive system. Although the income generated by logging may be considered low when calculated on an annual basis and compared to incomes generated by agriculture, the one-time payment after logging is significant (US$5,800 to US$33,508 and could be used to implement more intensive and productive cropping systems such as planting black pepper. The income from forest management could also be used to establish permanent fields in deforested areas for highly productive annual crops using conservation agriculture techniques. These techniques are alternatives to the traditional land use based on periodic clearing of the forest. Nevertheless, the shift in current practices towards adoption of more sustainable conservation agriculture techniques will also require the technical and legal support of the State to help small farmers apply these alternatives, which aim to integrate forest management in

  3. Aboveground Biomass Modeling from Field and LiDAR Data in Brazilian Amazon Tropical Rain Forest

    Science.gov (United States)

    Silva, C. A.; Hudak, A. T.; Vierling, L. A.; Keller, M. M.; Klauberg Silva, C. K.

    2015-12-01

    Tropical forests are an important component of global carbon stocks, but tropical forest responses to climate change are not sufficiently studied or understood. Among remote sensing technologies, airborne LiDAR (Light Detection and Ranging) may be best suited for quantifying tropical forest carbon stocks. Our objective was to estimate aboveground biomass (AGB) using airborne LiDAR and field plot data in Brazilian tropical rain forest. Forest attributes such as tree density, diameter at breast height, and heights were measured at a combination of square plots and linear transects (n=82) distributed across six different geographic zones in the Amazon. Using previously published allometric equations, tree AGB was computed and then summed to calculate total AGB at each sample plot. LiDAR-derived canopy structure metrics were also computed at each sample plot, and random forest regression modelling was applied to predict AGB from selected LiDAR metrics. The LiDAR-derived AGB model was assessed using the random forest explained variation, adjusted coefficient of determination (Adj. R²), root mean square error (RMSE, both absolute and relative) and BIAS (both absolute and relative). Our findings showed that the 99th percentile of height and height skewness were the best LiDAR metrics for AGB prediction. The AGB model using these two best predictors explained 59.59% of AGB variation, with an Adj. R² of 0.92, RMSE of 33.37 Mg/ha (20.28%), and bias of -0.69 (-0.42%). This study showed that LiDAR canopy structure metrics can be used to predict AGC stocks in Tropical Forest with acceptable precision and accuracy. Therefore, we conclude that there is good potential to monitor carbon sequestration in Brazilian Tropical Rain Forest using airborne LiDAR data, large field plots, and the random forest algorithm.

  4. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm

    Directory of Open Access Journals (Sweden)

    Daiva Domenech Tupinambá

    2016-01-01

    Full Text Available This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7% were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area. More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied.

  5. Annual Cash Income from Community Forest Management in the Brazilian Amazon: Challenges for the Future

    Directory of Open Access Journals (Sweden)

    Marie-Gabrielle Piketty

    2015-11-01

    Full Text Available Community forest management (CFM is considered an alternative way to protect forests while providing income for smallholders. Since the mid-1990s, the number of CFM projects has rapidly increased in the Brazilian Amazon, although most of them still face several difficulties. In this paper, we discuss the obstacles to the financial viability of CFM in this region and propose some ways to overcome them. Based on evidence from five case studies, we assess the extent to which sustainable forest management for commercial timber production contributes to smallholder income. We show that harvesting timber only provides a limited cash income to smallholders, even though forest covers 80% of their landholding. Market access to timber is very uncertain and smallholder communities often fail to make a profit from their timber. Minimum remunerative public prices and support for timber marketing are thus needed. Simpler and more flexible procedures are required to reduce the high transaction costs of obtaining a permit and increase smallholder involvement in legal forest management for commercial purposes. Finally, a better assessment of timber potential in smallholder forest reserves through systematic inventories would be useful to avoid arousing false expectations.

  6. Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm.

    Science.gov (United States)

    Tupinambá, Daiva Domenech; Cantão, Maurício Egídio; Costa, Ohana Yonara Assis; Bergmann, Jessica Carvalho; Kruger, Ricardo Henrique; Kyaw, Cynthia Maria; Barreto, Cristine Chaves; Quirino, Betania Ferraz

    2016-01-01

    This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied.

  7. Use of Poisson spatiotemporal regression models for the Brazilian Amazon Forest: malaria count data

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Achcar

    2011-12-01

    Full Text Available INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.

  8. The nitrogen budget for different forest types in the central Congo Basin

    Science.gov (United States)

    Bauters, Marijn; Verbeeck, Hans; Cizungu, Landry; Boeckx, Pascal

    2016-04-01

    Characterization of fundamental processes in different forest types is vital to understand the interaction of forests with their changing environment. Recent data analyses, as well as modeling activities have shown that the CO2 uptake by terrestrial ecosystems strongly depends on site fertility, i.e. nutrient availability. Accurate projections of future net forest growth and terrestrial CO2 uptake thus necessitate an improved understanding on nutrient cycles and how these are coupled to the carbon (C) cycle in forests. This holds especially for tropical forests, since they represent about 40-50% of the total carbon that is stored in terrestrial vegetation, with the Amazon basin and the Congo basin being the largest two contiguous blocks. However, due to political instability and reduced accessibility in the central Africa region, there is a strong bias in scientific research towards the Amazon basin. Consequently, central African forests are poorly characterized and their role in global change interactions shows distinct knowledge gaps, which is important bottleneck for all efforts to further optimize Earth system models explicitly including this region. Research in the Congo Basin region should combine assessments of both carbon stocks and the underlying nutrient cycles which directly impact the forest productivity. We set up a monitoring network for carbon stocks and nitrogen fluxes in four different forest types in the Congo Basin, which is now operative. With the preliminary data, we can get a glimpse of the differences in nitrogen budget and biogeochemistry of African mixed lowland rainforest, monodominant lowland forest, mixed montane forest and eucalypt plantations.

  9. Seasonal variation of carbon uptake in a primary forest ecosystem in southwestern Amazon

    Science.gov (United States)

    Garcia, S.; Gonçalves, J. F.; Cirino, G. G.; Artaxo, P.

    2013-05-01

    Tropical rainforests possess a large carbon stock and their dynamics are strongly dependent on climatic factors. Carbon assimilation by tropical forests can be meaningfully altered by seasonal changes in rainfall regime. Considering the interactions of the plant-atmosphere system, this study evaluated the effect of the precipitation seasonality on the photosynthesis of a primary forest, located in the state of Rondônia (Rebio Jaru), southwest of the Amazon, Brazil. Precipitation data from Instituto Nacional de Metereologia (INMET) from five years (2006-2010) were analyzed and the NEE (Net Ecosystem Exchange) of CO2 was calculated for ten years (1999-2009) using data from the Large Scale Biosphere-Atmosphere Experiment in the Amazon (LBA). Furthermore, leaves gas exchanges were measured in 48 individual in three forest strata (canopy, sub-canopy and understory) using a infrared gas analyzer (IRGA model LI-6400, Li-cor, USA) during two distinct precipitation periods: at the end of the wet (May) and dry (Sept.) seasons. The climatological data exhibited an accentuated dry season between the months of June and August. The lower water availability inhibited the forest primary production and altered the CO2 assimilation observed in the variation in the NEE values (Fig. 1). The NEE values were larger in the dry season and showed a smaller carbon uptake in the ecosystem, when compared with the values from the wet season. In the period that succeeds the dry season, the photosynthetic rates measured in canopy leaves were 44,49% lower than the values measured in the period prior to the dry season. Therefore, it is possible to conclude that the accentuated dry season strongly controls the seasonal photosynthesis variation in the studied area, decreasing the carbon uptake into the ecosystem. Fig. 1: Seasonal cycle of Net Ecosystem Exchange (NEE) of CO2 between the forest and atmosphere, in Rebio Jaru (1999-2009, monthly averages).

  10. Changes in Amazon Forest Structure and Canopy Illumination from Multi-temporal Lidar Data

    Science.gov (United States)

    Leitold, V.; Morton, D. C.; Keller, M. M.; Cook, B.

    2015-12-01

    Lidar remote sensing of tropical forests provides unprecedented detail on 3D vegetation structure to support in-depth studies of ecosystem processes and carbon dynamics across large landscapes. Here, we used high-resolution, multi-temporal airborne lidar data from nine terra firme forest sites (total area = 3500 ha) in the Brazilian Amazon to estimate spatial and temporal patterns of forest disturbance and associated changes in canopy illumination. Across sites, we observed large variability in mean canopy height (15.7 m to 28.1 m) and the vertical distributions of forest vegetation and light penetration. At the site scale, lidar-derived canopy height models from repeat surveys showed minimal change in canopy structure over time intervals of 1 to 4 years, with nearly identical initial and final canopy height distributions. Annualized rates of total canopy turnover, based on losses in canopy height between lidar collections, ranged from 0.66 to 2.57% yr-1, with a mean value of 1.59% yr-1 across sites. Field estimates of tree crown sizes were used to classify canopy turnover into branch fall, tree fall and multiple tree fall events. Partial crown losses occurred most frequently across the landscape (40% of all events), but accounted for only a small fraction of the total turnover area (10%). Size-frequency distributions of canopy turnover followed a power-law distribution with a decline in the number of events with increasing size across all sites (range of λ between 1.26 - 1.35). The distributions of illumination conditions before and after disturbance events were inverted, as fully-illuminated crowns were replaced by low-light conditions within patches of canopy loss. Estimates of the spatial and temporal patterns of Amazon forest disturbance and recovery from multi-temporal lidar data complement information from plot-scale (≤ 1ha) studies to provide a more complete understanding of regional variability in ecosystem structure and function under current climate.

  11. Merging plot and Landsata data to estimate the frequency distribution of Central Amazon mortality event size for landscape-scale ecosystem simulations

    Science.gov (United States)

    Di Vittorio, A. V.; Chambers, J. Q.

    2012-12-01

    Mitigation strategies and estimates of land use change emissions assume initial states of landscapes that respond to prescribed scenarios. The Amazon basin is a target for both mitigation (e.g. maintenance of old-growth forest) and land use change (e.g. agriculture), but the current states of its old-growth and secondary forest landscapes are uncertain with respect to carbon cycling. Contributing to this uncertainty in old-growth forest ecosystems is a mosaic of patches in different successional stages, with the areal fraction of any particular stage relatively constant over large temporal and spatial scales. Old-growth mosaics are generally created through ongoing effects of tree mortality, with the Central Amazon mosaic generated primarily by wind mortality. Unfortunately, estimation of generalizable frequency distributions of mortality event size has been hindered by limited spatial and temporal scales of observations. To overcome these limitations we merge field and remotely sensed tree mortality data and fit the top two candidate distributions (power law and exponential) to these data to determine the most appropriate statistical mortality model for use in landscape-scale ecosystem simulations. Our results show that the power law model better represents the distribution of mortality event size than the exponential model. We also use an individual-tree-based forest stand model to simulate a 100 ha landscape using the best fit of each candidate distribution to demonstrate the effects of different mortality regimes on above ground biomass in the Central Amazon forest mosaic. We conclude that the correct mortality distribution model is critical for robust simulation of patch succession dynamics and above ground biomass.

  12. Widespread Amazon forest tree mortality from a single cross-basin squall line event

    Science.gov (United States)

    Negrón-Juárez, Robinson I.; Chambers, Jeffrey Q.; Guimaraes, Giuliano; Zeng, Hongcheng; Raupp, Carlos F. M.; Marra, Daniel M.; Ribeiro, Gabriel H. P. M.; Saatchi, Sassan S.; Nelson, Bruce W.; Higuchi, Niro

    2010-08-01

    Climate change is expected to increase the intensity of extreme precipitation events in Amazonia that in turn might produce more forest blowdowns associated with convective storms. Yet quantitative tree mortality associated with convective storms has never been reported across Amazonia, representing an important additional source of carbon to the atmosphere. Here we demonstrate that a single squall line (aligned cluster of convective storm cells) propagating across Amazonia in January, 2005, caused widespread forest tree mortality and may have contributed to the elevated mortality observed that year. Forest plot data demonstrated that the same year represented the second highest mortality rate over a 15-year annual monitoring interval. Over the Manaus region, disturbed forest patches generated by the squall followed a power-law distribution (scaling exponent α = 1.48) and produced a mortality of 0.3-0.5 million trees, equivalent to 30% of the observed annual deforestation reported in 2005 over the same area. Basin-wide, potential tree mortality from this one event was estimated at 542 ± 121 million trees, equivalent to 23% of the mean annual biomass accumulation estimated for these forests. Our results highlight the vulnerability of Amazon trees to wind-driven mortality associated with convective storms. Storm intensity is expected to increase with a warming climate, which would result in additional tree mortality and carbon release to the atmosphere, with the potential to further warm the climate system.

  13. In-canopy gradients, composition, and sources of optically active aerosols over the Amazon forest

    Science.gov (United States)

    Guyon, P.; Graham, B.; Roberts, G. C.; Mayol-Bracero, O. L.; Andreae, M. O.; Artaxo, P.; Maenhaut, W.

    2003-04-01

    As part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH), size-fractionated aerosol samples were collected at a primary rainforest site in the Brazilian Amazon during the wet and dry seasons. Daytime-nighttime segregated sampling was carried out at three different heights (above, within and below canopy level) on a 54 m meteorological tower. The samples were analyzed for up to 19 trace elements, equivalent black carbon (BCe) and mass concentrations. Additionally, measurements of scattering and absorption coefficients were performed. Absolute principal component analysis revealed that the wet and dry season aerosols contained the same three main aerosol components, namely a natural biogenic, a pyrogenic, and a soil dust component, but that these were present in different (absolute and relative) amounts. The elements related to biomass burning and soil dust generally exhibited highest concentrations above the canopy and during daytime, whilst forest-derived aerosol was more concentrated underneath the canopy and during nighttime. These variations can be largely attributed to daytime convective mixing and the formation of a shallow nocturnal boundary layer, along with the possibility of enhanced nighttime release of biogenic aerosol particles. All three components contributed significantly to light extinction, suggesting that, in addition to pyrogenic particles, biogenic and soil dust aerosols must be taken into account when modeling the physical and optical properties of aerosols in forested regions such the Amazon Basin.

  14. Grassland Species Collected in an Area of the Amazon Dense Rain Forest Southern

    Directory of Open Access Journals (Sweden)

    J. M. P. Florentino

    2013-07-01

    Full Text Available Abstract: The knowledge related to floristic composition and all strata, including herbaceous, are needed to characterize and understand the dynamics of tropical forests. This study aimed to investigate the floristic composition of herbs in an area of ??tropical rain forest of Mato Grosso, producing a list of herbaceous species are on site. All individuals and herbaceous hemiepiphytes above 5 cm were recorded. Inventoried 7,965 individuals, representing 70 species. The angiosperms were represented by 10 families, with the most representative families in number of species Cyperaceae and Poaceae. Ferns were represented by 13 families, the family Pteridaceae as the richest in species. These results reinforce the need to increase the sampling effort for the herbaceous layer, especially floristic surveys for Southern Amazon as of 70 species inventoried 11espies not have records for the state of Mato Grosso. The Amazon of Mato Grosso suffers severe pressure from deforestation, as part of the region known as the Arc of Deforestation. This fact combined with the results of this work shows the urgency to intensify the sampling effort in this region that presents itself as a void in terms of surveys of plant diversity.Keywords: floristic composition, plant diversity, ferns

  15. Use and management of forest resources in the Colombian Amazon: cultural particularities

    Directory of Open Access Journals (Sweden)

    Angela Landínez

    2012-10-01

    Full Text Available This study analyzes the main cultural particularities: worldviews and ways of knowing that are associated with the use and management practices of forest resources in the Colombian Amazon. The theoretical cutting proposal contrasts, cultural level, the forms of appropriation of forest resources in indigenous and urban contexts in light of the importance that such activity involves the establishment of management strategies biodiversity in Colombia. Thus, offers an integrated perspective that will address environmental situations considering conflicting factors not only biological but cultural in various scenarios, to give substance to the decisions made and provide a reasonable treatment that enables the implementation of environmental regulatory mechanisms in strategic special biological areas as the Colombian Amazon. Finally, reflect on the importance of facilitating the functional analysis of the connections and interrelationships of ecosystem components, including human communities, to sketch involving both biological and social guidelines for sustainable use of biodiversity.

  16. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon.

    Science.gov (United States)

    Aguiar, Ana Paula Dutra; Vieira, Ima Célia Guimarães; Assis, Talita Oliveira; Dalla-Nora, Eloi L; Toledo, Peter Mann; Santos-Junior, Roberto Araújo Oliveira; Batistella, Mateus; Coelho, Andrea Santos; Savaget, Elza Kawakami; Aragão, Luiz Eduardo Oliveira Cruz; Nobre, Carlos Afonso; Ometto, Jean Pierre H

    2016-05-01

    Following an intense occupation process that was initiated in the 1960s, deforestation rates in the Brazilian Amazon have decreased significantly since 2004, stabilizing around 6000 km(2) yr(-1) in the last 5 years. A convergence of conditions contributed to this, including the creation of protected areas, the use of effective monitoring systems, and credit restriction mechanisms. Nevertheless, other threats remain, including the rapidly expanding global markets for agricultural commodities, large-scale transportation and energy infrastructure projects, and weak institutions. We propose three updated qualitative and quantitative land-use scenarios for the Brazilian Amazon, including a normative 'Sustainability' scenario in which we envision major socio-economic, institutional, and environmental achievements in the region. We developed an innovative spatially explicit modelling approach capable of representing alternative pathways of the clear-cut deforestation, secondary vegetation dynamics, and the old-growth forest degradation. We use the computational models to estimate net deforestation-driven carbon emissions for the different scenarios. The region would become a sink of carbon after 2020 in a scenario of residual deforestation (~1000 km(2) yr(-1)) and a change in the current dynamics of the secondary vegetation - in a forest transition scenario. However, our results also show that the continuation of the current situation of relatively low deforestation rates and short life cycle of the secondary vegetation would maintain the region as a source of CO2 - even if a large portion of the deforested area is covered by secondary vegetation. In relation to the old-growth forest degradation process, we estimated average gross emission corresponding to 47% of the clear-cut deforestation from 2007 to 2013 (using the DEGRAD system data), although the aggregate effects of the postdisturbance regeneration can partially offset these emissions. Both processes (secondary

  17. Fine root dynamics for forests on contrasting soils in the colombian Amazon

    Directory of Open Access Journals (Sweden)

    E. M. Jiménez

    2009-03-01

    Full Text Available It has been hypothesized that in a gradient of increase of soil resources carbon allocated to belowground production (fine roots decreases. To evaluate this hypothesis, we measured the mass and production of fine roots (<2 mm by two methods: 1 ingrowth cores and, 2 sequential soil coring, during 2.2 years in two lowland forests with different soils in the colombian Amazon. Differences of soil resources were determined by the type and physical and chemical properties of soil: a forest on loamy soil (Ultisol at the Amacayacu National Natural Park and, the other on white sands (Spodosol at the Zafire Biological Station, located in the Forest Reservation of the Calderón River. We found that mass and production of fine roots was significantly different between soil depths (0–10 and 10–20 cm and also between forests. White-sand forest allocated more carbon to fine roots than the clayey forest; the production in white-sand forest was twice (2.98 and 3.33 Mg C ha−1 year−1, method 1 and 2, respectively as much as in clayey forest (1.51 and 1.36–1.03 Mg C ha−1 year−1, method 1 and 2, respectively; similarly, the average of fine root mass was higher in the white-sand forest (10.94 Mg C ha−1 than in the forest on clay soils (3.04–3.64 Mg C ha−1. The mass of fine roots also showed a temporal variation related to rainfall, such that production of fine roots decreased substantially in the dry period of the year 2005. Our results suggest that soil resources play an important role in patterns of carbon allocation in these forests; carbon allocated to above-and belowground organs is different between forest types, in such a way that a trade-off above/belowground seems to exist; as a result, it is probable that there are not differences in total net primary productivity between these two forests: does belowground offset lower aboveground production in poorer soils?

  18. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

    Science.gov (United States)

    Mitchard, Edward T A; Feldpausch, Ted R; Brienen, Roel J W; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R; Lewis, Simon L; Lloyd, Jon; Quesada, Carlos A; Gloor, Manuel; ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragão, Luiz E O C; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I; Cerón, Carlos E; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R C; Di Fiore, Anthony; Domingues, Tomas F; Erwin, Terry L; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N; Killeen, Tim J; Laurance, William F; Levis, Carolina; Magnusson, William E; Marimon, Beatriz S; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T; Neill, David; Núñez Vargas, Mario P; Palacios, Walter A; Parada, Alexander; Pardo Molina, Guido; Peña-Claros, Marielos; Pitman, Nigel; Peres, Carlos A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H; Rudas, Agustin; Salomão, Rafael P; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F; Steininger, Marc K; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R; van der Heijden, Geertje M F; Vieira, Ima C G; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A; Wang, Ophelia; Zartman, Charles E; Malhi, Yadvinder; Phillips, Oliver L

    2014-01-01

    Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities

  19. Sensitivity of ALOS/PALSAR imagery to forest degradation by fire in northern Amazon

    Science.gov (United States)

    Martins, Flora da Silva Ramos Vieira; dos Santos, João Roberto; Galvão, Lênio Soares; Xaud, Haron Abrahim Magalhães

    2016-07-01

    We evaluated the sensitivity of the full polarimetric Phased Array type L-band Synthetic Aperture Radar (PALSAR), onboard the Advanced Land Observing Satellite (ALOS), to forest degradation caused by fires in northern Amazon, Brazil. We searched for changes in PALSAR signal and tri-dimensional polarimetric responses for different classes of fire disturbance defined by fire frequency and severity. Since the aboveground biomass (AGB) is affected by fire, multiple regression models to estimate AGB were obtained for the whole set of coherent and incoherent attributes (general model) and for each set separately (specific models). The results showed that the polarimetric L-band PALSAR attributes were sensitive to variations in canopy structure and AGB caused by forest fire. However, except for the unburned and thrice burned classes, no single PALSAR attribute was able to discriminate between the intermediate classes of forest degradation by fire. Both the coherent and incoherent polarimetric attributes were important to explain AGB variations in tropical forests affected by fire. The HV backscattering coefficient, anisotropy, double-bounce component, orientation angle, volume index and HH-VV phase difference were PALSAR attributes selected from multiple regression analysis to estimate AGB. The general regression model, combining phase and power radar metrics, presented better results than specific models using coherent or incoherent attributes. The polarimetric responses indicated the dominance of VV-oriented backscattering in primary forest and lightly burned forests. The HH-oriented backscattering predominated in heavily and frequently burned forests. The results suggested a greater contribution of horizontally arranged constituents such as fallen trunks or branches in areas severely affected by fire.

  20. Performance of the Enhanced Vegetation Index to Detect Inner-annual Dry Season and Drought Impacts on Amazon Forest Canopies

    NARCIS (Netherlands)

    Brede, B.; Verbesselt, J.; Dutrieux, L.; Herold, M.

    2015-01-01

    The Amazon rainforests represent the largest connected forested area in the tropics and play an integral role in the global carbon cycle. In the last years the discussion about their phenology and response to drought has intensified. A recent study argued that seasonality in greenness expressed as E

  1. Tropical forest mapping at regional scale using the GRFM SAR mosaics over the Amazon in South America

    NARCIS (Netherlands)

    Sgrenzaroli, M.

    2004-01-01

    The work described in this thesis concerns the estimation of tropical forest vegetation cover in the Amazon region using as data source a continental scale high resolution (100 m) radar mosaic as data source. The radar mosaic was compiled by the Jet Propulsion Laboratory (NASA JPL) using approximate

  2. Interpretation of Variations in Modis-Measured Greenness Levels of Amazon Forests During 2000 to 2009

    Science.gov (United States)

    Samanta, Arindam; Ganguly, Sangram; Vermote, Eric; Nemani, Ramakrishna R.; Myneni, Ranga B.

    2012-01-01

    This work investigates variations in satellite-measured greenness of Amazon forests using ten years of NASA Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) data. Corruption of optical remote sensing data with clouds and aerosols is prevalent in this region; filtering corrupted data causes spatial sampling constraints, as well as reducing the record length, which introduces large biases in estimates of greenness anomalies. The EVI data, analyzed in multiple ways and taking into account EVI accuracy, consistently show a pattern of negligible changes in the greenness levels of forests both in the area affected by drought in 2005 and outside it. Small random patches of anomalous greening and browning-especially prominent in 2009-appear in all ten years, irrespective of contemporaneous variations in precipitation, but with no persistence over time. The fact that over 90% of the EVI anomalies are insignificantly small-within the envelope of error (95% confidence interval) in EVI-warrants cautious interpretation of these results: there were no changes in the greenness of these forests, or if there were changes, the EVI data failed to capture these either because the constituent reflectances were saturated or the moderate resolution precluded viewing small-scale variations. This suggests a need for more accurate and spatially resolved synoptic views from satellite data and corroborating comprehensive ground sampling to understand the greenness dynamics of these forests.

  3. How natural Forest Conversion Affects Insect Biodiversity in the Peruvian Amazon: Can Agroforestry Help?

    Directory of Open Access Journals (Sweden)

    Jitka Perry

    2016-04-01

    Full Text Available The Amazonian rainforest is a unique ecosystem that comprises habitat for thousands of animal species. Over the last decades, the ever-increasing human population has caused forest conversion to agricultural land with concomitant high biodiversity losses, mainly near a number of fast-growing cities in the Peruvian Amazon. In this research, we evaluated insect species richness and diversity in five ecosystems: natural forests, multistrata agroforests, cocoa agroforests, annual cropping monoculture and degraded grasslands. We determined the relationship between land use intensity and insect diversity changes. Collected insects were taxonomically determined to morphospecies and data evaluated using standardized biodiversity indices. The highest species richness and abundance were found in natural forests, followed by agroforestry systems. Conversely, monocultures and degraded grasslands were found to be biodiversity-poor ecosystems. Diversity indices were relatively high for all ecosystems assessed with decreasing values along the disturbance gradient. An increase in land use disturbance causes not only insect diversity decreases but also complete changes in species composition. As agroforests, especially those with cocoa, currently cover many hectares of tropical land and show a species composition similar to natural forest sites, we can consider them as biodiversity reservoirs for some of the rainforest insect species.

  4. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    Science.gov (United States)

    Baker, P. A.; Fritz, S. C.; Silva, C. G.; Rigsby, C. A.; Absy, M. L.; Almeida, R. P.; Caputo, M.; Chiessi, C. M.; Cruz, F. W.; Dick, C. W.; Feakins, S. J.; Figueiredo, J.; Freeman, K. H.; Hoorn, C.; Jaramillo, C.; Kern, A. K.; Latrubesse, E. M.; Ledru, M. P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W. E.; Ramos, M. I. F.; Ribas, C. C.; Trnadade, R.; West, A. J.; Wahnfried, I.; Willard, D. A.

    2015-12-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  5. Trans-Amazon Drilling Project (TADP): origins and evolution of the forests, climate, and hydrology of the South American tropics

    Science.gov (United States)

    Baker, P.A.; Fritz, S.C.; Silva, C.G.; Rigsby, C.A.; Absy, M.L.; Almeida, R.P.; Caputo, M.C.; Chiessi, C.M.; Cruz, F.W.; Dick, C.W.; Feakins, S.J.; Figueiredo, J.; Freeman, K.H.; Hoorn, C.; Jaramillo, C.A.; Kern, A.; Latrubesse, E.M.; Ledru, M.P.; Marzoli, A.; Myrbo, A.; Noren, A.; Piller, W.E.; Ramos, M.I.F.; Ribas, C.C.; Trinadade, R.; West, A.J.; Wahnfried, I.; Willard, Debra A.

    2015-01-01

    This article presents the scientific rationale for an ambitious ICDP drilling project to continuously sample Late Cretaceous to modern sediment in four different sedimentary basins that transect the equatorial Amazon of Brazil, from the Andean foreland to the Atlantic Ocean. The goals of this project are to document the evolution of plant biodiversity in the Amazon forests and to relate biotic diversification to changes in the physical environment, including climate, tectonism, and the surface landscape. These goals require long sedimentary records from each of the major sedimentary basins across the heart of the Brazilian Amazon, which can only be obtained by drilling because of the scarcity of Cenozoic outcrops. The proposed drilling will provide the first long, nearly continuous regional records of the Cenozoic history of the forests, their plant diversity, and the associated changes in climate and environment. It also will address fundamental questions about landscape evolution, including the history of Andean uplift and erosion as recorded in Andean foreland basins and the development of west-to-east hydrologic continuity between the Andes, the Amazon lowlands, and the equatorial Atlantic. Because many modern rivers of the Amazon basin flow along the major axes of the old sedimentary basins, we plan to locate drill sites on the margin of large rivers and to access the targeted drill sites by navigation along these rivers.

  6. Aerosol number fluxes over the Amazon rain forest during the wet season

    Directory of Open Access Journals (Sweden)

    L. Ahlm

    2009-08-01

    Full Text Available Number fluxes of particles with diameter larger than 10 nm were measured with the eddy covariance method over the Amazon rain forest during the wet season as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia campaign 2008. The primary goal was to investigate whether sources or sinks dominate the aerosol number flux in the tropical rain forest-atmosphere system.

    During the measurement campaign, from 12 March to 18 May, 60% of the particle fluxes pointed downward, which is a similar fraction to what has been observed over boreal forests. The particle transfer velocity vt increased with increasing friction velocity and the relation is described by the equation vt=2.4×10−3·u where u is the friction velocity.

    Upward particle fluxes often appeared in the morning hours and seem to a large extent to be an effect of entrainment fluxes into a growing mixed layer rather than primary aerosol emission. In general, primary aerosol emission had a limited impact on the total aerosol number population in this study, possibly because the measured particle number fluxes reflect mostly particles less than approximately 200 nm.

    The net deposition flux prevailed even in the absolute cleanest atmospheric conditions during the campaign and therefore cannot be explained only by deposition of anthropogenic particles. It seems that a significant contribution of secondary aerosol particles to the aerosol population is the most reasonable explanation for the net downward flux. This is an indication that secondary aerosol particles may dominate the aerosol number population in the Amazon boundary layer and that the contribution of primary aerosol particles may be low in terms of numbers. However, aerosol flux measurements should be repeated in a more remote area of the Amazon with less influence from anthropogenic sources before

  7. Post-crackdown effectiveness of field-based forest law enforcement in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Jan Börner

    Full Text Available Regulatory enforcement of forest conservation laws is often dismissed as an ineffective approach to reducing tropical forest loss. Yet, effective enforcement is often a precondition for alternative conservation measures, such as payments for environmental services, to achieve desired outcomes. Fair and efficient policies to reducing emissions from deforestation and forest degradation (REDD will thus crucially depend on understanding the determinants and requirements of enforcement effectiveness. Among potential REDD candidate countries, Brazil is considered to possess the most advanced deforestation monitoring and enforcement infrastructure. This study explores a unique dataset of over 15 thousand point coordinates of enforcement missions in the Brazilian Amazon during 2009 and 2010, after major reductions of deforestation in the region. We study whether local deforestation patterns have been affected by field-based enforcement and to what extent these effects vary across administrative boundaries. Spatial matching and regression techniques are applied at different spatial resolutions. We find that field-based enforcement operations have not been universally effective in deterring deforestation during our observation period. Inspections have been most effective in reducing large-scale deforestation in the states of Mato Grosso and Pará, where average conservation effects were 4.0 and 9.9 hectares per inspection, respectively. Despite regional and actor-specific heterogeneity in inspection effectiveness, field-based law enforcement is highly cost-effective on average and might be enhanced by closer collaboration between national and state-level authorities.

  8. High-resolution Mapping of Forest Carbon Stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-03-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or Light Detection and Ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (>40 % of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon mapping samples had 14.6 % uncertainty at 1 ha resolution, and regional maps based on stratification and regression approaches had 25.6 % and 29.6 % uncertainty, respectively, in any given hectare. High-resolution approaches with reported local-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision-makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  9. High-resolution mapping of forest carbon stocks in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    G. P. Asner

    2012-07-01

    Full Text Available High-resolution mapping of tropical forest carbon stocks can assist forest management and improve implementation of large-scale carbon retention and enhancement programs. Previous high-resolution approaches have relied on field plot and/or light detection and ranging (LiDAR samples of aboveground carbon density, which are typically upscaled to larger geographic areas using stratification maps. Such efforts often rely on detailed vegetation maps to stratify the region for sampling, but existing tropical forest maps are often too coarse and field plots too sparse for high-resolution carbon assessments. We developed a top-down approach for high-resolution carbon mapping in a 16.5 million ha region (> 40% of the Colombian Amazon – a remote landscape seldom documented. We report on three advances for large-scale carbon mapping: (i employing a universal approach to airborne LiDAR-calibration with limited field data; (ii quantifying environmental controls over carbon densities; and (iii developing stratification- and regression-based approaches for scaling up to regions outside of LiDAR coverage. We found that carbon stocks are predicted by a combination of satellite-derived elevation, fractional canopy cover and terrain ruggedness, allowing upscaling of the LiDAR samples to the full 16.5 million ha region. LiDAR-derived carbon maps have 14% uncertainty at 1 ha resolution, and the regional map based on stratification has 28% uncertainty in any given hectare. High-resolution approaches with quantifiable pixel-scale uncertainties will provide the most confidence for monitoring changes in tropical forest carbon stocks. Improved confidence will allow resource managers and decision makers to more rapidly and effectively implement actions that better conserve and utilize forests in tropical regions.

  10. Contrasting Patterns of Damage and Recovery in Logged Amazon Forests From Small Footprint LiDAR Data

    Science.gov (United States)

    Morton, D. C.; Keller, M.; Cook, B. D.; Hunter, Maria; Sales, Marcio; Spinelli, L.; Victoria, D.; Andersen, H.-E.; Saleska, S.

    2012-01-01

    Tropical forests ecosystems respond dynamically to climate variability and disturbances on time scales of minutes to millennia. To date, our knowledge of disturbance and recovery processes in tropical forests is derived almost exclusively from networks of forest inventory plots. These plots typically sample small areas (less than or equal to 1 ha) in conservation units that are protected from logging and fire. Amazon forests with frequent disturbances from human activity remain under-studied. Ongoing negotiations on REDD+ (Reducing Emissions from Deforestation and Forest Degradation plus enhancing forest carbon stocks) have placed additional emphasis on identifying degraded forests and quantifying changing carbon stocks in both degraded and intact tropical forests. We evaluated patterns of forest disturbance and recovery at four -1000 ha sites in the Brazilian Amazon using small footprint LiDAR data and coincident field measurements. Large area coverage with airborne LiDAR data in 2011-2012 included logged and unmanaged areas in Cotriguacu (Mato Grosso), Fiona do Jamari (Rondonia), and Floresta Estadual do Antimary (Acre), and unmanaged forest within Reserva Ducke (Amazonas). Logging infrastructure (skid trails, log decks, and roads) was identified using LiDAR returns from understory vegetation and validated based on field data. At each logged site, canopy gaps from logging activity and LiDAR metrics of canopy heights were used to quantify differences in forest structure between logged and unlogged areas. Contrasting patterns of harvesting operations and canopy damages at the three logged sites reflect different levels of pre-harvest planning (i.e., informal logging compared to state or national logging concessions), harvest intensity, and site conditions. Finally, we used multi-temporal LiDAR data from two sites, Reserva Ducke (2009, 2012) and Antimary (2010, 2011), to evaluate gap phase dynamics in unmanaged forest areas. The rates and patterns of canopy gap

  11. Mapping Canopy Damage from Understory Fires in Amazon Forests Using Annual Time Series of Landsat and MODIS Data

    Science.gov (United States)

    Morton, Douglas C.; DeFries, Ruth S.; Nagol, Jyoteshwar; Souza, Carlos M., Jr.; Kasischke, Eric S.; Hurtt, George C.; Dubayah, Ralph

    2011-01-01

    Understory fires in Amazon forests alter forest structure, species composition, and the likelihood of future disturbance. The annual extent of fire-damaged forest in Amazonia remains uncertain due to difficulties in separating burning from other types of forest damage in satellite data. We developed a new approach, the Burn Damage and Recovery (BDR) algorithm, to identify fire-related canopy damages using spatial and spectral information from multi-year time series of satellite data. The BDR approach identifies understory fires in intact and logged Amazon forests based on the reduction and recovery of live canopy cover in the years following fire damages and the size and shape of individual understory burn scars. The BDR algorithm was applied to time series of Landsat (1997-2004) and MODIS (2000-2005) data covering one Landsat scene (path/row 226/068) in southern Amazonia and the results were compared to field observations, image-derived burn scars, and independent data on selective logging and deforestation. Landsat resolution was essential for detection of burn scars less than 50 ha, yet these small burns contributed only 12% of all burned forest detected during 1997-2002. MODIS data were suitable for mapping medium (50-500 ha) and large (greater than 500 ha) burn scars that accounted for the majority of all fire-damaged forest in this study. Therefore, moderate resolution satellite data may be suitable to provide estimates of the extent of fire-damaged Amazon forest at a regional scale. In the study region, Landsat-based understory fire damages in 1999 (1508 square kilometers) were an order of magnitude higher than during the 1997-1998 El Nino event (124 square kilometers and 39 square kilometers, respectively), suggesting a different link between climate and understory fires than previously reported for other Amazon regions. The results in this study illustrate the potential to address critical questions concerning climate and fire risk in Amazon forests by

  12. Fine root dynamics for forests on contrasting soils in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    E. M. Jiménez

    2009-12-01

    Full Text Available It has been hypothesized that as soil fertility increases, the amount of carbon allocated to below-ground production (fine roots should decrease. To evaluate this hypothesis, we measured the standing crop fine root mass and the production of fine roots (<2 mm by two methods: (1 ingrowth cores and, (2 sequential soil coring, during 2.2 years in two lowland forests growing on different soils types in the Colombian Amazon. Differences of soil resources were defined by the type and physical and chemical properties of soil: a forest on clay loam soil (Endostagnic Plinthosol at the Amacayacu National Natural Park and, the other on white sand (Ortseinc Podzol at the Zafire Biological Station, located in the Forest Reservation of the Calderón River. We found that the standing crop fine root mass and the production was significantly different between soil depths (0–10 and 10–20 cm and also between forests. The loamy sand forest allocated more carbon to fine roots than the clay loam forest with the production in loamy sand forest twice (mean±standard error=2.98±0.36 and 3.33±0.69 Mg C ha−1 yr−1, method 1 and 2, respectively as much as for the more fertile loamy soil forest (1.51±0.14, method 1, and from 1.03±0.31 to 1.36±0.23 Mg C ha−1 yr−1, method 2. Similarly, the average of standing crop fine root mass was higher in the white-sands forest (10.94±0.33 Mg C ha−1 as compared to the forest on the more fertile soil (from 3.04±0.15 to 3.64±0.18 Mg C ha−1. The standing crop fine root mass also showed a temporal pattern related to rainfall, with the production of fine roots decreasing substantially in the dry period of the year 2005. These results suggest that soil resources may play an important role in patterns of carbon allocation to the production of fine roots in these forests as the proportion of carbon allocated to above- and below-ground organs is different

  13. Long-term observations of cloud condensation nuclei in the Amazon rain forest - Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction

    Science.gov (United States)

    Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian; Klimach, Thomas; Hrabe de Angelis, Isabella; Araújo, Alessandro; Brito, Joel; Carbone, Samara; Cheng, Yafang; Chi, Xuguang; Ditz, Reiner; Gunthe, Sachin S.; Kesselmeier, Jürgen; Könemann, Tobias; Lavrič, Jošt V.; Martin, Scot T.; Mikhailov, Eugene; Moran-Zuloaga, Daniel; Rose, Diana; Saturno, Jorge; Su, Hang; Thalman, Ryan; Walter, David; Wang, Jian; Wolff, Stefan; Barbosa, Henrique M. J.; Artaxo, Paulo; Andreae, Meinrat O.; Pöschl, Ulrich

    2016-12-01

    Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014-February 2015). The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation (S = 0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172 nm at S = 0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit = 0.14 ± 0.03), higher values for the accumulation mode (κAcc = 0.22 ± 0.05), and an overall mean value of κmean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.

  14. Long-term Chemical Characterization of Submicron Aerosol Particles in the Amazon Forest - ATTO Station

    Science.gov (United States)

    Carbone, S.; Brito, J.; Rizzo, L. V.; Holanda, B. A.; Cirino, G. G.; Saturno, J.; Krüger, M. L.; Pöhlker, C.; Ng, N. L.; Xu, L.; Andreae, M. O.; Artaxo, P.

    2015-12-01

    The study of the chemical composition of aerosol particles in the Amazon forest represents a step forward to understand the strong coupling between the atmosphere and the forest. For this reason submicron aerosol particles were investigated in the Amazon forest, where biogenic and anthropogenic aerosol particles coexist at the different seasons (wet/dry). The measurements were performed at the ATTO station, which is located about 150 km northeast of Manaus. At ATTO station the Aerosol chemical speciation monitor (ACSM, Aerodyne) and the Multiangle absorption photometer (MAAP, Thermo 5012) have been operated continuously from March 2014 to July 2015. In this study, long-term measurements (near-real-time, ~30 minutes) of PM1 chemical composition were investigated for the first time in this environment.The wet season presented lower concentrations than the dry season (~5 times). In terms of chemical composition, both seasons were dominated by organics (75 and 63%) followed by sulfate (11 and 13%). Nitrate presented different ratio values between the mass-to-charges 30 to 46 (main nitrate fragments) suggesting the presence of nitrate as inorganic and organic nitrate during both seasons. The results indicated that about 75% of the nitrate signal was from organic nitrate during the dry season. In addition, several episodes with elevated amount of chloride, likely in the form of sea-salt from the Atlantic Ocean, were observed during the wet season. During those episodes, chloride comprised up to 7% of the PM1. During the dry season, chloride was also observed; however, with different volatility, which suggested that Chloride was present in different form and source. Moreover, the constant presence of sulfate and BC during the wet season might be related to biomass burning emissions from Africa. BC concentration was 2.5 times higher during the dry season. Further characterization of the organic fraction was accomplished with the positive matrix factorization (PMF), which

  15. A comparison of dry and wet season aerosol number fluxes over the Amazon rain forest

    Directory of Open Access Journals (Sweden)

    L. Ahlm

    2010-03-01

    Full Text Available Vertical number fluxes of aerosol particles and vertical fluxes of CO2 were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season.

    Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes.

    In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO2 fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest

  16. Measurements of soil and canopy exchange rates in the Amazon rain forest using Rn-222

    Science.gov (United States)

    Trumbore, S. E.; Keller, M.; Wofsy, S. C.; Da Costa, J. M.

    1990-01-01

    Measurements were taken of the emission of Rn-222 from Amazon forest rocks and soils and used as a tracer of ventilation of the forest canopy layer at night. It was determined that the greatest resistance to transfer of trace gases from the soil to the atmosphere lies in the soil air space. Profiles of Rn-222 and CO2 showed steepest concentration gradients in the layer between 0 and 3 m above soil surface. Aerodynamic resistances calculated for this layer from Rn-222 and CO2 varied from 1.6 to 18 s/cm, with greater resistance during the afternoon than at night. The resistance to exchange with air from the entire 41 m layer below the canopy averaged 4.8 s/cm during 13 nights of CO2 profiles. The calculated average time to flush the layer below 41 m is 5.5 hr, and it is concluded that this indicates that significant exchange occurs despite nocturnal stratification.

  17. Surface Soil Changes Following Selective Logging in an Eastern Amazon Forest

    Science.gov (United States)

    Olander, Lydia P.; Bustamante, Mercedes M.; Asner, Gregory P.; Telles, Everaldo; Prado, Zayra; Camargo, Plinio B.

    2005-01-01

    In the Brazilian Amazon, selective logging is second only to forest conversion in its extent. Conversion to pasture or agriculture tends to reduce soil nutrients and site productivity over time unless fertilizers are added. Logging removes nutrients in bole wood, enough that repeated logging could deplete essential nutrients over time. After a single logging event, nutrient losses are likely to be too small to observe in the large soil nutrient pools, but disturbances associated with logging also alter soil properties. Selective logging, particularly reduced-impact logging, results in consistent patterns of disturbance that may be associated with particular changes in soil properties. Soil bulk density, pH, carbon (C), nitrogen (N), phosphorus (P), calcium (Ca), magnesium (Mg), potassium (K), iron (Fe), aluminum (Al), delta(sup 3)C, delta(sup 15)N, and P fractionations were measured on the soils of four different types of loggingrelated disturbances: roads, decks, skids, and treefall gaps. Litter biomass and percent bare ground were also determined in these areas. To evaluate the importance of fresh foliage inputs from downed tree crowns in treefall gaps, foliar nutrients for mature forest trees were also determined and compared to that of fresh litterfall. The immediate impacts of logging on soil properties and how these might link to the longer-term estimated nutrient losses and the observed changes in soils were studied.

  18. Nutrients and water-forest interactions in an Amazon floodplain lake: an ecological approach

    Directory of Open Access Journals (Sweden)

    Fabio Aprile

    2013-06-01

    Full Text Available AIM: Catalão Lake was surveyed between 2002 and 2011 with the aim of studying seasonality of the flow of nutrients between water, sediment and aquatic macrophytes. The role of the flood pulse and the ecological mechanisms influencing the forest-water interactions in the Amazon floodplain were discussed; METHODS: Catalão Lake is located in the Amazon floodplain (03º 08'-03º 14' S and 59º 53'-59º 58' W, near the confluence of the Solimões and Negro rivers, approximately 3000 m from the port of CEASA, near the city of Manaus. It is considered to be a mixed water lake because it receives white waters rich in sediments from the Solimões River and black waters with humic substances from the Negro River. Physical and chemical parameters including C, N and P levels were studied in the diverse compartments, and a flux model was developed; RESULTS: There is a strong nutritional (C, N and P and ionic (Na+, K+, Ca2+, Mg2+, Cl-, HCO3-, CO3(2- and SO4(2- flow from the rivers to the lake. The highest C:N:P ratio was found in Paspalum repens which, during periods of drought, played an important role in releaseing nutrients into the water. The connectivity of the lake with the rivers ensured a high variation of transparency and nutrient content, fundamental for biological processes. A model of the nutrient flow, interaction and connectivity between ecosystems, and the influence of the hydrological cycle has been developed.

  19. Preliminary characterization of submicron secondary aerosol in the amazon forest - ATTO station

    Science.gov (United States)

    Carbone, S.; Ferreira De Brito, J.; Andreae, M. O.; Pöhlker, C.; Chi, X.; Saturno, J.; Barbosa, H. M.; Artaxo, P.

    2014-12-01

    Biogenic secondary organic aerosol particles are investigated in the Amazon in the context of the GoAmazon Project. The forest naturally emits a large number of gaseous compounds; they are called the volatile organic compounds (VOCs). They are emitted through processes that are not totally understood. Part of those gaseous compounds are converted into aerosol particles, which affect the biogeochemical cycles, the radiation balance, the mechanisms involving cloud formation and evolution, among few other important effects. In this study the aerosol life-cycle is investigated at the ATTO station, which is located about 150 km northeast of Manaus, with emphasis on the natural organic component and its impacts in the ecosystem. To achieve these objectives physical and chemical aerosol properties have been investigated, such as the chemical composition with aerosol chemical speciation monitor (ACSM), nanoparticle size distribution (using the SMPS - Scanning Mobility Particle Sizer), optical properties with measurements of scattering and absorption (using nephelometers and aethalometers). Those instruments have been operating continuously since February 2014 together with trace gases (O3, CO2, CO, SO2 and NOx) analyzers and additional meteorological instruments. On average PM1 (the sum of black carbon, organic and inorganic ions) totalized 1.0±0.3 μg m-3, where the organic fraction was dominant (75%). During the beginning of the dry season (July/August) the organic aerosol presented a moderate oxygenated character with the oxygen to carbon ratio (O:C) of 0.7. In the wet season some episodes containing significant amount of chloride and backward wind trajectories suggest aerosol contribution from the Atlantic Ocean. A more comprehensive analysis will include an investigation of the different oxidized fractions of the organic aerosol and optical properties.

  20. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment.

    Science.gov (United States)

    Brando, Paulo M; Nepstad, Daniel C; Davidson, Eric A; Trumbore, Susan E; Ray, David; Camargo, Plínio

    2008-05-27

    The Amazon Basin experiences severe droughts that may become more common in the future. Little is known of the effects of such droughts on Amazon forest productivity and carbon allocation. We tested the prediction that severe drought decreases litterfall and wood production but potentially has multiple cancelling effects on belowground production within a 7-year partial throughfall exclusion experiment. We simulated an approximately 35-41% reduction in effective rainfall from 2000 through 2004 in a 1ha plot and compared forest response with a similar control plot. Wood production was the most sensitive component of above-ground net primary productivity (ANPP) to drought, declining by 13% the first year and up to 62% thereafter. Litterfall declined only in the third year of drought, with a maximum difference of 23% below the control plot. Soil CO2 efflux and its 14C signature showed no significant treatment response, suggesting similar amounts and sources of belowground production. ANPP was similar between plots in 2000 and declined to a low of 41% below the control plot during the subsequent treatment years, rebounding to only a 10% difference during the first post-treatment year. Live aboveground carbon declined by 32.5Mgha-1 through the effects of drought on ANPP and tree mortality. Results of this unreplicated, long-term, large-scale ecosystem manipulation experiment demonstrate that multi-year severe drought can substantially reduce Amazon forest carbon stocks.

  1. Impact of seasonal hydrological variation on the distributions of tetraether lipids along the Amazon River in the central Amazon basin: implications for the MBT/CBT paleothermometer and the BIT index

    NARCIS (Netherlands)

    Zell, C.; Kim, J.-H.; Abril, G.; Lima Sobrinho, R.; Dorhout, D.; Moreiro-Turcq, P.; Sinninghe Damsté, J.S.

    2013-01-01

    Suspended particulate matter (SPM) was collected along the Amazon River in the central Amazon basin and in three tributaries during the rising water (RW), high water (HW), falling water (FW) and low water (LW) season. Changes in the concentration and the distribution of branched glycerol dialkyl gly

  2. STRUCTURE AND SPATIAL DISTRIBUTION OF ‘ANDIROBEIRAS’ (Carapa spp. IN FLOODPLAIN FOREST OF THE AMAZON ESTUARY

    Directory of Open Access Journals (Sweden)

    Jadson Coelho de Abreu

    2014-12-01

    Full Text Available The aim of this study was to evaluate whether the density of occurrence of andirobeiras is dependent of the Amazon River distance, analyzing their spatial distribution and diameter structure of the population in a floodplain forest in Amapá state, Brazilian Amazon. This work is part of ‘Florestam’ project (ecology and forest management for the multiple use of the floodplains of the Amazon estuary.This study was conducted in an environment protected area of 136.59 ha, located in Fazendinha district, city of Macapá, AP state (00º03'04, 24 "S and 51º 07'42, 72" W. Three transects perpendicular to the Amazon river were launched, apart from each other every 500 m, to guide the direction and location of trees. All andirobeiras with (CBH circumference at breast height ≥ 15 cm were inventoried and mapped. The number of diameter classes was defined according to Higushi. We tested the fit of andirobeira diameter distribution to the exponential model by Meyer. We calculated the ratio q of De Liocourt for the observed and for the estimated frequencies. We calculated Morisita index, variance/mean ratio, and aggregation to infer the spatial distribution. Six hundred and eighty productive and unproductive andirobeiras  were inventoried with a basal area of 55.84 m2, generating a density of 5 trees ha-1.The diameter distribution were generated with 9 classes of 11 cm diameter range and the determination coefficient for the exponential model was 0.93 and the quotient q = 2.03.The indices used showed that the spatial distribution of adult andirobeiras occurs in the aggregate form. The andirobeira diameter structure shows great number of young individuals and that the population is not senescent. The density of adult andirobeiras depends on the river distance, with the greatest concentration of trees in more remote areas of Amazon River.

  3. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

    Directory of Open Access Journals (Sweden)

    C. A. Quesada

    2012-06-01

    Full Text Available Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates.

    Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset.

    Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales.

    A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the

  4. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate

    Science.gov (United States)

    Quesada, C. A.; Phillips, O. L.; Schwarz, M.; Czimczik, C. I.; Baker, T. R.; Patiño, S.; Fyllas, N. M.; Hodnett, M. G.; Herrera, R.; Almeida, S.; Alvarez Dávila, E.; Arneth, A.; Arroyo, L.; Chao, K. J.; Dezzeo, N.; Erwin, T.; di Fiore, A.; Higuchi, N.; Honorio Coronado, E.; Jimenez, E. M.; Killeen, T.; Lezama, A. T.; Lloyd, G.; López-González, G.; Luizão, F. J.; Malhi, Y.; Monteagudo, A.; Neill, D. A.; Núñez Vargas, P.; Paiva, R.; Peacock, J.; Peñuela, M. C.; Peña Cruz, A.; Pitman, N.; Priante Filho, N.; Prieto, A.; Ramírez, H.; Rudas, A.; Salomão, R.; Santos, A. J. B.; Schmerler, J.; Silva, N.; Silveira, M.; Vásquez, R.; Vieira, I.; Terborgh, J.; Lloyd, J.

    2012-06-01

    Forest structure and dynamics vary across the Amazon Basin in an east-west gradient coincident with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. Soil samples were collected in a total of 59 different forest plots across the Amazon Basin and analysed for exchangeable cations, carbon, nitrogen and pH, with several phosphorus fractions of likely different plant availability also quantified. Physical properties were additionally examined and an index of soil physical quality developed. Bivariate relationships of soil and climatic properties with above-ground wood productivity, stand-level tree turnover rates, above-ground wood biomass and wood density were first examined with multivariate regression models then applied. Both forms of analysis were undertaken with and without considerations regarding the underlying spatial structure of the dataset. Despite the presence of autocorrelated spatial structures complicating many analyses, forest structure and dynamics were found to be strongly and quantitatively related to edaphic as well as climatic conditions. Basin-wide differences in stand-level turnover rates are mostly influenced by soil physical properties with variations in rates of coarse wood production mostly related to soil phosphorus status. Total soil P was a better predictor of wood production rates than any of the fractionated organic- or inorganic-P pools. This suggests that it is not only the immediately available P forms, but probably the entire soil phosphorus pool that is interacting with forest growth on longer timescales. A role for soil potassium in modulating Amazon forest dynamics through its effects on stand-level wood density was also detected. Taking this into account, otherwise enigmatic variations in stand-level biomass across the Basin were then accounted for through the

  5. The Impact of Rise of the Andes and Amazon Landscape Evolution on Diversification of Lowland terra-firme Forest Birds

    Science.gov (United States)

    Aleixo, Alexandre; Wilkinson, M. Justin

    2011-01-01

    Since the 19th Century, the unmatched biological diversity of Amazonia has stimulated a diverse set of hypotheses accounting for patterns of species diversity and distribution in mega-diverse tropical environments. Unfortunately, the evidence supporting particular hypotheses to date is at best described as ambiguous, and no generalizations have emerged yet, mostly due to the lack of comprehensive comparative phylogeographic studies with thorough trans-Amazonian sampling of lineages. Here we report on spatial and temporal patterns of diversification estimated from mitochondrial gene trees for 31 lineages of birds associated with upland terra-firme forest, the dominant habitat in modern lowland Amazonia. The results confirm the pervasive role of Amazonian rivers as primary barriers separating sister lineages of birds, and a protracted spatio-temporal pattern of diversification, with a gradual reduction of earlier (1st and 2nd) and older (> 2 mya) splits associated with each lineage in an eastward direction. (The easternmost tributaries of the Amazon, the Xingu and Tocantins Rivers, are not associated with any splits older than > 2 mya). For the suboscine passerines, maximum-likelihood estimates of rates of diversification point to an overall constant rate over the past 5 my (up to a significant downturn at 300,000 y ago). This "younging-eastward" pattern may have an abiotic explanation related to landscape evolution. Triggered by a new pulse of Andean uplift, it has been proposed that modern Amazon basin landscapes may have evolved successively eastward, away from the mountain chain, starting approximately 10 mya. This process was likely based on the deposition of vast fluvial sediment masses, known as megafans, that may have extended progressively and in series eastward from Andean sources. This process plausibly explains the progressive extinction of original Pebas wetland of western-central Amazonia by the present fluvial landsurfaces of a more terra-firme type

  6. Phorcotabanus cinereus (Wiedemann, 1821 (Diptera, Tabanidae, an ornithophilic species of Tabanid in Central Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Limeira-de-Oliveira Francisco

    2002-01-01

    Full Text Available In Central Amazon, Brazil, the tabanid Phorcotabanus cinereus (Wiedemann was recorded attacking the native duck Cairina moschata (Linnaeus (Anseriformes, Anatidae. The flight and behavior of the tabanid during the attacks and the host's defenses were videotaped and analyzed in slow motion. The tabanid was recorded flying rapidly around the heads of the ducks before landing. Landing always took place on the beak, and then the tabanid walked to the fleshy caruncle on the basal part of the beak to bite and feed. Firstly the duck defends itself through lateral harsh head movements, and then, when it is being bitten, it defends itself by rubbing its head on the body, or dipping the head into water, when swimming. If disturbed, the fly resumed the same pattern of flight as before and would generally try to land again on the same host and bite in the same place. This feeding activity was observed predominantly between 9:30 am and 4:30 pm and always in open areas, near aquatic environments, from June 1996 to January 1997, the dry season in Central Amazon. To test the attractiveness of other animals to P. cinereus, mammals, caimans and domestic and wild birds were placed in suitable habitat and the response of P. cinereus observed. P. cinereus did not attack these animals, suggesting that this species has a preference for ducks, which are plentiful in the region.

  7. Modeling the complex impacts of timber harvests to find optimal management regimes for Amazon tidal floodplain forests

    Science.gov (United States)

    Fortini, Lucas; Cropper, Wendell P.; Zarin, Daniel J.

    2015-01-01

    At the Amazon estuary, the oldest logging frontier in the Amazon, no studies have comprehensively explored the potential long-term population and yield consequences of multiple timber harvests over time. Matrix population modeling is one way to simulate long-term impacts of tree harvests, but this approach has often ignored common impacts of tree harvests including incidental damage, changes in post-harvest demography, shifts in the distribution of merchantable trees, and shifts in stand composition. We designed a matrix-based forest management model that incorporates these harvest-related impacts so resulting simulations reflect forest stand dynamics under repeated timber harvests as well as the realities of local smallholder timber management systems. Using a wide range of values for management criteria (e.g., length of cutting cycle, minimum cut diameter), we projected the long-term population dynamics and yields of hundreds of timber management regimes in the Amazon estuary, where small-scale, unmechanized logging is an important economic activity. These results were then compared to find optimal stand-level and species-specific sustainable timber management (STM) regimes using a set of timber yield and population growth indicators. Prospects for STM in Amazonian tidal floodplain forests are better than for many other tropical forests. However, generally high stock recovery rates between harvests are due to the comparatively high projected mean annualized yields from fast-growing species that effectively counterbalance the projected yield declines from other species. For Amazonian tidal floodplain forests, national management guidelines provide neither the highest yields nor the highest sustained population growth for species under management. Our research shows that management guidelines specific to a region’s ecological settings can be further refined to consider differences in species demographic responses to repeated harvests. In principle, such fine

  8. Use of morphometric soil aggregates parameters to evaluate the reclamation process in mined areas located at amazon forest - Brazil

    Science.gov (United States)

    Ribeiro, A. I.; Fengler, F. H.; Longo, R. M.; Mello, G. F.; Damame, D. B.; Crowley, D. E.

    2015-12-01

    Brazil has a high mineral potential that have been explored over the years. A large fraction of these mineral resources are located in Amazon region, which is known for its large biodiversity and world climate importance. As the policies that control the Amazon preservation are relatively new, several mining activities have been exploring the Amazon territory, promoting a large process of degradation. Once the mining activities have a high potential of environmental changes the government created polices to restrain the mining in Amazon forests and obligate mining companies to reclaim theirs minded areas. However, the measurement of reclamation development still is a challenging task for the Professionals involved. The volume and complexity of the variables, allied to the difficulty in identifying the reclamation of ecosystem functionalities are still lack to ensure the reclamation success. In this sense this work aims to investigate the representativeness of morphometric soil aggregates parameters in the understanding of reclamation development. The study area is located in the National Forest of Jamari, State of Rondônia. In the past mining companies explored the region producing eight closed mines that are now in reclamation process. The soil aggregates morphometric measurements: geometric mean diameter (GMD), aggregate circularity index, and aggregate roundness, were choose based in its obtaining facility, and their association to biological activity. To achieve the proposed objective the aggregates of eight sites in reclamation, from different closed mines, where chosen and compared to Amazon forest and open mine soil aggregates. The results were analyzed to one way ANOVA to identifying differences between areas in reclamation, natural ecosystem, and open mine. It was obtained differences for GMD and circularity index. However, only the circularity index allowed to identifying differences between the reclamation sites. The results allowed concluding: (1

  9. Seroprevalence of Toxoplasma gondii in free-living Amazon river dolphins (Inia geoffrensis) from central Amazon, Brazil

    Science.gov (United States)

    Toxoplasma gondii is an important pathogen in aquatic mammals and its presence in these animals may indicate water contamination of aquatic environment by oocysts. Serum samples from 95 dolphins from free-living Amazon River dolphins (Inia geoffrensis) from Sustainable Development Reserve Mamirauá (...

  10. Estimation of gross primary production of the Amazon-Cerrado transitional forest by remote sensing techniques

    Directory of Open Access Journals (Sweden)

    Maísa Caldas Souza

    2014-03-01

    Full Text Available The gross primary production (GPP of ecosystems is an important variable in the study of global climate change. Generally, the GPP has been estimated by micrometeorological techniques. However, these techniques have a high cost of implantation and maintenance, making the use of orbital sensor data an option to be evaluated. Thus, the objective of this study was to evaluate the potential of the MODIS (Moderate Resolution Imaging Spectroradiometer MOD17A2 product and the vegetation photosynthesis model (VPM to predict the GPP of the Amazon-Cerrado transitional forest. The GPP predicted by MOD17A2 (GPP MODIS and VPM (GPP VPM were validated with the GPP estimated by eddy covariance (GPP EC. The GPP MODIS, GPP VPM and GPP EC have similar seasonality, with higher values in the wet season and lower in the dry season. However, the VPM performed was better than the MOD17A2 to estimate the GPP, due to use local climatic data for predict the light use efficiency, while the MOD17A2 use a global circulation model and the lookup table of each vegetation type to estimate the light use efficiency.

  11. Airborne and spaceborne radar images for geologic and environmental mapping in the Amazon rain forest, Brazil

    Science.gov (United States)

    Ford, John P.; Hurtak, James J.

    1986-01-01

    Spaceborne and airborne radar image of portions of the Middle and Upper Amazon basin in the state of Amazonas and the Territory of Roraima are compared for purposes of geological and environmental mapping. The contrasted illumination geometries and imaging parameters are related to terrain slope and surface roughness characteristics for corresponding areas that were covered by each of the radar imaging systems. Landforms range from deeply dissected mountain and plateau with relief up to 500 m in Roraima, revealing ancient layered rocks through folded residual mountains to deeply beveled pediplain in Amazonas. Geomorphic features provide distinct textural signatures that are characteristic of different rock associations. The principle drainages in the areas covered are the Rio Negro, Rio Branco, and the Rio Japura. Shadowing effects and low radar sensitivity to subtle linear fractures that are aligned parallel or nearly parallel to the direction of radar illumination illustrate the need to obtain multiple coverage with viewing directions about 90 degrees. Perception of standing water and alluvial forest in floodplains varies with incident angle and with season. Multitemporal data sets acquired over periods of years provide an ideal method of monitoring environmental changes.

  12. Analysis of results of biomass forest inventory in northeastern Amazon for development of REDD+ carbon project

    Directory of Open Access Journals (Sweden)

    LEONEL N.C. MELLO

    2016-03-01

    Full Text Available ABSTRACT In Brazil, a significant reduction in deforestation rates occurred during the last decade. In spite of that fact, the average annual rates are still too high, approximately 400.000 ha/year (INPE/Prodes. The projects of emissions reduction through avoided deforestation (REED+ are an important tool to reduce deforestation rates in Brazil. Understanding the amazon forest structure, in terms of biomass stock is key to design avoided deforestation strategies. In this work, we analyze data results from aboveground biomass of 1,019.346,27 hectares in the state of Pará. It was collected data from 16,722 trees in 83 random independent plots. It was tested 4 allometric equations, for DBH > 10cm: Brown et al. (1989, Brown and Lugo (1999, Chambers et al. (2000, Higuchi et al. (1998. It revealed that the biggest carbon stock of above ground biomass is stocked on the interval at DBH between 30cm and 80cm. This biomass compartment stocks 75.70% of total biomass in Higuchi et al. (1998 equation, 75.56% of total biomass in Brown et al. (1989 equation, 78.83% of total biomass in Chambers et al. (2000 equation, and 73.22% in Brown and Lugo (1999 equation.

  13. Effects of partial throughfall exclusion on the phenology of Coussarea racemosa (Rubiaceae) in an east-central Amazon rainforest.

    Science.gov (United States)

    Brando, Paulo; Ray, David; Nepstad, Daniel; Cardinot, Gina; Curran, Lisa M; Oliveira, Rafael

    2006-11-01

    Severe droughts may alter the reproductive phenology of tropical tree species, but our understanding of these effects has been hampered by confounded variation in drought, light and other factors during natural drought events. We used a large-scale experimental reduction of throughfall in an eastern-central Amazon forest to study the phenological response to drought of an abundant subcanopy tree, Coussarea racemosa. We hypothesized that drought would alter the production and the timing of reproduction, as well as the number of viable fruits. The study system comprised two 1-ha plots in the Tapajos National Forest, Para, Brazil: a dry plot where 50% of incoming precipitation (80% throughfall) was diverted from the soil during the six-month wet season beginning in January 2000, and a wet plot that received natural rainfall inputs. Fruit production of C. racemosa was quantified every 15 days using 100 litter traps (0.5 m(2)) in each plot. The production of new leaves and flowers was recorded monthly for C. racemosa individuals. Soil water, pre-dawn leaf water potential and solar radiation were measured to help interpret phenological patterns. Over the approximately 3.5-year period (April 2000 through December 2003), total fruit production remained similar between plots, declining by 12%. In 2003, production was four times higher in both plots than in previous years. In the dry plot, fruit fall shifted 40 and 60 days later into the dry season in 2002 and 2003, respectively. Total fruit fall dry mass production was variable across the study period. Foliage and flower production coincided with peak irradiance early in the dry season until delays in flowering appeared in the dry plot in 2002 and 2003. Plant water stress, through its influence on leaf developmental processes and, perhaps, inhibition of photosynthesis, appears to have altered both the timing of fruit fall and the quality and number of seeds produced.

  14. Abiotic variability among different aquatic systems of the central Amazon floodplain during drought and flood events.

    Science.gov (United States)

    Affonso, A G; Queiroz, H L; Novo, E M L M

    2015-11-01

    This paper examines water properties from lakes, (depression lakes, sensu Junk et al., 2012), channels (scroll lakes with high connectivity, sensu Junk et al., 2012) and paleo-channels (scroll lakes with low connectivity-sensu Junk et al., 2012, locally called ressacas) located in Mamirauá Sustainable Development Reserve, in Central Amazon floodplain, Amazonas, Brazil. We analysed surface temperature, conductivity, pH, dissolved oxygen, turbidity, transparency, suspended inorganic and organic matter, chlorophyll-a, pheophytin, total nitrogen, total phosphorus, organic and inorganic carbon in 2009 high water phase, 2009 and 2010 low water phases. Multivariate statistical analyses of 24 aquatic systems (6 ressacas, 12 lakes and 6 channels, 142 samples) were applied to the variables in order to: 1) quantify differences among aquatic system types; 2) assess how those differences are affected in the different phases of the hydrological year. First, we analysed the entire set of variables to test for differences among phases of the hydrological year and types of aquatic systems using a PERMANOVA two-way crossed design. The results showed that the all measured limnological variables are distinct regarding both factors: types of aquatic systems and hydrological phases. In general, the magnitude and amplitude of all variables were higher in the low water phase than in the high water phase, except for water transparency in all aquatic system's types. PERMANOVA showed that the differences between aquatic system's types and hydrological phases of all variables were highly significant for both main factors (type and phase) and for the type x phase interaction. Limnological patterns of Amazon floodplain aquatic systems are highly dynamic, dependent on the surrounding environment, flood pulse, main river input and system type. These patterns show how undisturbed systems respond to natural variability in such a diverse environment, and how distinct are those aquatic systems

  15. Abiotic variability among different aquatic systems of the central Amazon floodplain during drought and flood events

    Directory of Open Access Journals (Sweden)

    A. G. Affonso

    Full Text Available Abstract This paper examines water properties from lakes, (depression lakes, sensu Junk et al., 2012, channels (scroll lakes with high connectivity, sensu Junk et al., 2012 and paleo-channels (scroll lakes with low connectivity-sensu Junk et al., 2012, locally called ressacas located in Mamirauá Sustainable Development Reserve, in Central Amazon floodplain, Amazonas, Brazil. We analysed surface temperature, conductivity, pH, dissolved oxygen, turbidity, transparency, suspended inorganic and organic matter, chlorophyll-a, pheophytin, total nitrogen, total phosphorus, organic and inorganic carbon in 2009 high water phase, 2009 and 2010 low water phases. Multivariate statistical analyses of 24 aquatic systems (6 ressacas, 12 lakes and 6 channels, 142 samples were applied to the variables in order to: 1 quantify differences among aquatic system types; 2 assess how those differences are affected in the different phases of the hydrological year. First, we analysed the entire set of variables to test for differences among phases of the hydrological year and types of aquatic systems using a PERMANOVA two-way crossed design. The results showed that the all measured limnological variables are distinct regarding both factors: types of aquatic systems and hydrological phases. In general, the magnitude and amplitude of all variables were higher in the low water phase than in the high water phase, except for water transparency in all aquatic system’s types. PERMANOVA showed that the differences between aquatic system’s types and hydrological phases of all variables were highly significant for both main factors (type and phase and for the type x phase interaction. Limnological patterns of Amazon floodplain aquatic systems are highly dynamic, dependent on the surrounding environment, flood pulse, main river input and system type. These patterns show how undisturbed systems respond to natural variability in such a diverse environment, and how distinct are

  16. La producción familiar como alternativa de un desarrollo sostenible para la Amazonía; Lecciones aprendidas de iniciativas de uso forestal por productores familiares en la Amazonía boliviana, brasilera, ecuatoriana y peruana

    NARCIS (Netherlands)

    Pokorny, B.; Godar, J.; Hoch, L.; Johnson, J.; Koning, de J.; Medina, G.; Steinbrenner, R.; Vos, V.; Weigelt, J.

    2010-01-01

    Abstract: Between 2005 and 2009, the EU-financed project ForLive set out to analyse promising local forest management initiatives in the Amazon Basin in four countries: Ecuador, Bolivia, Brazil, and Peru. Researchers aimed to identify locally viable practices that benefit livelihoods and ecological

  17. Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil

    Science.gov (United States)

    Liesenberg, Veraldo; Gloaguen, Richard

    2013-04-01

    Single, interferometric dual, and quad-polarization mode data were evaluated for the characterization and classification of seven land use classes in an area with shifting cultivation practices located in the Eastern Amazon (Brazil). The Advanced Land-Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data were acquired during a six month interval. A clear-sky Landsat-5/TM image acquired at the same period was used as additional ground reference and as ancillary input data in the classification scheme. We evaluated backscattering intensity, polarimetric features, interferometric coherence and texture parameters for classification purposes using support vector machines (SVM) and feature selection. Results showed that the forest classes were characterized by low temporal backscattering intensity variability, low coherence and high entropy. Quad polarization mode performed better than dual and single polarizations but overall accuracies remain low and were affected by precipitation events on the date and prior SAR date acquisition. Misclassifications were reduced by integrating Landsat data and an overall accuracy of 85% was attained. The integration of Landsat to both quad and dual polarization modes showed similarity at the 5% significance level. SVM was not affected by SAR dimensionality and feature selection technique reveals that co-polarized channels as well as SAR derived parameters such as Alpha-Entropy decomposition were important ranked features after Landsat' near-infrared and green bands. We show that in absence of Landsat data, polarimetric features extracted from quad-polarization L-band increase classification accuracies when compared to single and dual polarization alone. We argue that the joint analysis of SAR and their derived parameters with optical data performs even better and thus encourage the further development of joint techniques under the Reducing Emissions from Deforestation and Degradation (REDD) mechanism.

  18. Tranquilidad and hardship in the forest : livelihoods and perceptions of Camba forest dwellers in the northern Bolivian Amazon

    NARCIS (Netherlands)

    Henkemans, A.B.

    2002-01-01

    Sustainable management of tropical forests relies largely on the interest of forest dwelling people in long-term forest extraction and their capacity to prevent forest degradation by other forest users. This study discusses the role of the forest in the livelihoods and perceptions of Camba (multi-e

  19. Forest Fragmentation in the Lower Amazon Floodplain: Implications for Biodiversity and Ecosystem Service Provision to Riverine Populations

    Directory of Open Access Journals (Sweden)

    Vivian Renó

    2016-10-01

    Full Text Available This article analyzes the process of forest fragmentation of a floodplain landscape of the Lower Amazon over a 30-year period and its implications for the biodiversity and the provision of ecosystem services to the riverine population. To this end, we created a multi-temporal forest cover map based on Landsat images, and then analyzed the fragmentation dynamics through landscape metrics. From the analyses of the landscape and bibliographic information, we made inferences regarding the potential impacts of fragmentation on the biodiversity of trees, birds, mammals and insects. Subsequently, we used data on the local populations’ environmental perception to assess whether the inferred impacts on biodiversity are perceived by these populations and whether the ecosystem services related to the biodiversity of the addressed groups are compromised. The results show a 70% reduction of the forest habitat as well as important changes in the landscape structure that constitute a high degree of forest fragmentation. The perceived landscape alterations indicate that there is great potential for compromise of the biodiversity of trees, birds, mammals and insects. The field interviews corroborate the inferred impacts on biodiversity and indicate that the ecosystem services of the local communities have been compromised. More than 95% of the communities report a decreased variety and/or abundance of animal and plant species, 46% report a decrease in agricultural productivity, and 19% confirm a higher incidence of pests during the last 30 years. The present study provides evidence of an accelerated process of degradation of the floodplain forests of the Lower Amazon and indicate substantial compromise of the ecosystem services provision to the riverine population in recent decades, including reductions of food resources (animals and plants, fire wood, raw material and medicine, as well as lower agricultural productivity due to probable lack of pollination

  20. From landless to forestless? : settlers, livelihoods and forest dynamics in the Brazilian Amazon

    NARCIS (Netherlands)

    Homero Diniz, F.

    2013-01-01

      Keywords: deforestation; remote sensing; mental models; stakeholders’ perceptions; agrarian reform   Over the last decades, hundreds of thousands of families have settled in projects in the Brazilian Amazon within the Agrarian Reform Program (ARP) framework, the rationale being

  1. Formic and acetic acid over the central Amazon region, Brazil. I - Dry season

    Science.gov (United States)

    Andreae, M. O.; Andreae, T. W.; Talbot, R. W.; Harriss, R. C.

    1988-01-01

    The concentrations of formic and acetic acids in the gas phase, atmospheric aerosol, and rainwater samples collected in Amazonia at ground level and in the atmosphere during the Amazon Boundary Layer Experiment in July/August 1985 were analyzed by ion exchange chromatography. The diurnal behavior of both acids at ground level and their vertical distribution in the forest canopy point to the existence of vegetative sources as well as to production by chemical reactions in the atmosphere. The concentrations of formic and acetic acids in the gas phase were about 2 orders of magnitude higher than the corresponding concentrations in the atmospheric aerosol. In rainwater, the total formate and acetate represented about one half of the anion equivalents, in contrast to less than 10 percent of the soluble anionic equivalents contributed by these acids in the atmospheric aerosol. The observed levels of these ions in rainwater are considered to be the result of a combination of chemical reactions in hydrometeors and the scavenging of the gaseous acids by cloud droplets.

  2. Conversion from forests to pastures in the Colombian Amazon leads to contrasting soil carbon dynamics depending on land management practices.

    Science.gov (United States)

    Navarrete, Diego; Sitch, Stephen; Aragão, Luiz E O C; Pedroni, Lucio

    2016-10-01

    Strategies to mitigate climate change by reducing deforestation and forest degradation (e.g. REDD+) require country- or region-specific information on temporal changes in forest carbon (C) pools to develop accurate emission factors. The soil C pool is one of the most important C reservoirs, but is rarely included in national forest reference emission levels due to a lack of data. Here, we present the soil organic C (SOC) dynamics along 20 years of forest-to-pasture conversion in two subregions with different management practices during pasture establishment in the Colombian Amazon: high-grazing intensity (HG) and low-grazing intensity (LG) subregions. We determined the pattern of SOC change resulting from the conversion from forest (C3 plants) to pasture (C4 plants) by analysing total SOC stocks and the natural abundance of the stable isotopes (13) C along two 20-year chronosequences identified in each subregion. We also analysed soil N stocks and the natural abundance of (15) N during pasture establishment. In general, total SOC stocks at 30 cm depth in the forest were similar for both subregions, with an average of 47.1 ± 1.8 Mg C ha(-1) in HG and 48.7 ± 3.1 Mg C ha(-1) in LG. However, 20 years after forest-to-pasture conversion SOC in HG decreased by 20%, whereas in LG SOC increased by 41%. This net SOC decrease in HG was due to a larger reduction in C3-derived input and to a comparatively smaller increase in C4-derived C input. In LG both C3- and C4-derived C input increased along the chronosequence. N stocks were generally similar in both subregions and soil N stock changes during pasture establishment were correlated with SOC changes. These results emphasize the importance of management practices involving low-grazing intensity in cattle activities to preserve SOC stocks and to reduce C emissions after land-cover change from forest to pasture in the Colombian Amazon.

  3. Estimating of gross primary production in an Amazon-Cerrado transitional forest using MODIS and Landsat imagery.

    Science.gov (United States)

    Danelichen, Victor H M; Biudes, Marcelo S; Velasque, Maísa C S; Machado, Nadja G; Gomes, Raphael S R; Vourlitis, George L; Nogueira, José S

    2015-09-01

    The acceleration of the anthropogenic activity has increased the atmospheric carbon concentration, which causes changes in regional climate. The Gross Primary Production (GPP) is an important variable in the global carbon cycle studies, since it defines the atmospheric carbon extraction rate from terrestrial ecosystems. The objective of this study was to estimate the GPP of the Amazon-Cerrado Transitional Forest by the Vegetation Photosynthesis Model (VPM) using local meteorological data and remote sensing data from MODIS and Landsat 5 TM reflectance from 2005 to 2008. The GPP was estimated using Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) calculated by MODIS and Landsat 5 TM images. The GPP estimates were compared with measurements in a flux tower by eddy covariance. The GPP measured in the tower was consistent with higher values during the wet season and there was a trend to increase from 2005 to 2008. The GPP estimated by VPM showed the same increasing trend observed in measured GPP and had high correlation and Willmott's coefficient and low error metrics in comparison to measured GPP. These results indicated high potential of the Landsat 5 TM images to estimate the GPP of Amazon-Cerrado Transitional Forest by VPM.

  4. Estimating of gross primary production in an Amazon-Cerrado transitional forest using MODIS and Landsat imagery

    Directory of Open Access Journals (Sweden)

    VICTOR H.M. DANELICHEN

    2015-09-01

    Full Text Available The acceleration of the anthropogenic activity has increased the atmospheric carbon concentration, which causes changes in regional climate. The Gross Primary Production (GPP is an important variable in the global carbon cycle studies, since it defines the atmospheric carbon extraction rate from terrestrial ecosystems. The objective of this study was to estimate the GPP of the Amazon-Cerrado Transitional Forest by the Vegetation Photosynthesis Model (VPM using local meteorological data and remote sensing data from MODIS and Landsat 5 TM reflectance from 2005 to 2008. The GPP was estimated using Normalized Difference Vegetation Index (NDVI and Enhanced Vegetation Index (EVI calculated by MODIS and Landsat 5 TM images. The GPP estimates were compared with measurements in a flux tower by eddy covariance. The GPP measured in the tower was consistent with higher values during the wet season and there was a trend to increase from 2005 to 2008. The GPP estimated by VPM showed the same increasing trend observed in measured GPP and had high correlation and Willmott's coefficient and low error metrics in comparison to measured GPP. These results indicated high potential of the Landsat 5 TM images to estimate the GPP of Amazon-Cerrado Transitional Forest by VPM.

  5. Bamboo-dominated forests of the southwest Amazon: detection, spatial extent, life cycle length and flowering waves.

    Directory of Open Access Journals (Sweden)

    Anelena L de Carvalho

    Full Text Available We map the extent, infer the life-cycle length and describe spatial and temporal patterns of flowering of sarmentose bamboos (Guadua spp in upland forests of the southwest Amazon. We first examine the spectra and the spectral separation of forests with different bamboo life stages. False-color composites from orbital sensors going back to 1975 are capable of distinguishing life stages. These woody bamboos flower produce massive quantities of seeds and then die. Life stage is synchronized, forming a single cohort within each population. Bamboo dominates at least 161,500 km(2 of forest, coincident with an area of recent or ongoing tectonic uplift, rapid mechanical erosion and poorly drained soils rich in exchangeable cations. Each bamboo population is confined to a single spatially continuous patch or to a core patch with small outliers. Using spatial congruence between pairs of mature-stage maps from different years, we estimate an average life cycle of 27-28 y. It is now possible to predict exactly where and approximately when new bamboo mortality events will occur. We also map 74 bamboo populations that flowered between 2001 and 2008 over the entire domain of bamboo-dominated forest. Population size averaged 330 km(2. Flowering events of these populations are temporally and/or spatially separated, restricting or preventing gene exchange. Nonetheless, adjacent populations flower closer in time than expected by chance, forming flowering waves. This may be a consequence of allochronic divergence from fewer ancestral populations and suggests a long history of widespread bamboo in the southwest Amazon.

  6. Biogenic cloud nuclei in the central Amazon during the transition from wet to dry season

    Science.gov (United States)

    Whitehead, James D.; Darbyshire, Eoghan; Brito, Joel; Barbosa, Henrique M. J.; Crawford, Ian; Stern, Rafael; Gallagher, Martin W.; Kaye, Paul H.; Allan, James D.; Coe, Hugh; Artaxo, Paulo; McFiggans, Gordon

    2016-08-01

    The Amazon basin is a vast continental area in which atmospheric composition is relatively unaffected by anthropogenic aerosol particles. Understanding the properties of the natural biogenic aerosol particles over the Amazon rainforest is key to understanding their influence on regional and global climate. While there have been a number of studies during the wet season, and of biomass burning particles in the dry season, there has been relatively little work on the transition period - the start of the dry season in the absence of biomass burning. As part of the Brazil-UK Network for Investigation of Amazonian Atmospheric Composition and Impacts on Climate (BUNIAACIC) project, aerosol measurements, focussing on unpolluted biogenic air masses, were conducted at a remote rainforest site in the central Amazon during the transition from wet to dry season in July 2013. This period marks the start of the dry season but before significant biomass burning occurs in the region. Median particle number concentrations were 266 cm-3, with size distributions dominated by an accumulation mode of 130-150 nm. During periods of low particle counts, a smaller Aitken mode could also be seen around 80 nm. While the concentrations were similar in magnitude to those seen during the wet season, the size distributions suggest an enhancement in the accumulation mode compared to the wet season, but not yet to the extent seen later in the dry season, when significant biomass burning takes place. Submicron nonrefractory aerosol composition, as measured by an aerosol chemical speciation monitor (ACSM), was dominated by organic material (around 81 %). Aerosol hygroscopicity was probed using measurements from a hygroscopicity tandem differential mobility analyser (HTDMA), and a quasi-monodisperse cloud condensation nuclei counter (CCNc). The hygroscopicity parameter, κ, was found to be low, ranging from 0.12 for Aitken-mode particles to 0.18 for accumulation-mode particles. This was consistent

  7. Decentralized forest governance in central Vietnam

    NARCIS (Netherlands)

    Tran Nam, T.; Burgers, P.P.M.

    2012-01-01

    A major challenge in decentralized forest governance in Vietnam is developing a mechanism that would support both reforestation and poverty reduction among people in rural communities. To help address this challenge, Forest Land Allocation (FLA) policies recognize local communities and individuals a

  8. Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties

    Directory of Open Access Journals (Sweden)

    C. A. Quesada

    2009-04-01

    Full Text Available Forest structure and dynamics have been noted to vary across the Amazon Basin in an east-west gradient in a pattern which coincides with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates.

    To test this hypothesis and assess the importance of edaphic properties in affect forest structure and dynamics, soil and plant samples were collected in a total of 59 different forest plots across the Amazon Basin. Samples were analysed for exchangeable cations, C, N, pH with various P fractions also determined. Physical properties were also examined and an index of soil physical quality developed.

    Overall, forest structure and dynamics were found to be strongly and quantitatively related to edaphic conditions. Tree turnover rates emerged to be mostly influenced by soil physical properties whereas forest growth rates were mainly related to a measure of available soil phosphorus, although also dependent on rainfall amount and distribution. On the other hand, large scale variations in forest biomass could not be explained by any of the edaphic properties measured, nor by variation in climate.

    A new hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining forest disturbance levels, species composition and forest productivity on a Basin wide scale.

  9. Deforestation and forest fires in Roraima and their relationship with phytoclimatic regions in the northern Brazilian Amazon.

    Science.gov (United States)

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 10(3) km(2) (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 10(3) km(2) (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  10. Optically stimulated luminescence dating of archaeological ceramics from Osvaldo and Lago Grande sites in central Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Hazenfratz, Roberto; Tudela, Diego R.G.; Munita, Casimiro S., E-mail: robertohm@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Mittani, Juan C.R.; Tatumi, Sonia H. [Universidade Federal de Sao Paulo (UNIFESP), Santos, SP (Brazil)

    2013-07-01

    Thermoluminescence (TL) and optically stimulated luminescence (OSL) dating are two important techniques for dating archaeological and geological material, especially suitable for archaeological ceramics, where samples for {sup 14}C dating are not available. In this work, five pottery shards from Osvaldo and Lago Grande archaeological sites were dated by OSL. For measurements, it was used the SAR protocol. The annual dose rates were estimated by the contents of U, Th and K, determined by instrumental neutron activation analysis (INAA) of the pottery shards and clay samples near both sites. Lago Grande and Osvaldo represent a microcosm of the region, and their proximity and high density of archaeological record turn them interesting to study possible relations of cultural and/or commercial exchange. Calculations showed that the water content is an important variable that cannot be neglected in OSL dating of pottery shards from central Amazon, due to the high humidity in regional soils. The results between 867 ± 101 and 1154 ± 62 years AD agreed with the average time span for the archaeological sites occupation found in the literature. (author)

  11. No greens in the forest? Note on the limited consumption of greens in the Amazon

    Directory of Open Access Journals (Sweden)

    Esther Katz

    2012-12-01

    Full Text Available The consumption of greens is reported as being very minor among Amazonian Indians. The authors of this article present a new review of this subject, based on fieldwork with Amerindians and other populations in different parts of the Brazilian Amazon and French Guiana. Written sources on Brazilian, Peruvian, Columbian and Venezuelan Amazon were also reviewed. The consumption of cultivated, semi-cultivated and wild species of greens was taken into account here, as the data specific to wild greens is very scarce. It is confirmed that greens are not commonly eaten among native Amazonians and that some ethnic groups do not consume them at all. The consumed species are usually young shoots of weeds or cassava leaves. Common in the Belém region are some specific aromatic plants, which have been diffused to other parts of the Amazon, together with introduced plants such as kale and coriander. Migrants from Northeastern Brazil settled in the Amazon consume some cultivated greens, especially aromatic plants. Maroons are the ones who use more greens in their diet. Native Amazonian people, who supplement agriculture with game and fish, follow a hunter-gatherer pattern, preferring wild fruit and tubers to greens.

  12. Estimates of forest height in the Amazon basin using radar altimeter data of SARIN mode onboard Cryosat-2

    Science.gov (United States)

    Yang, L.; Sun, G.; Liu, Q.

    2013-12-01

    Forest height is an important parameter for global carbon cycle studies. New technologies are required since the end of the operation ofGeoscience Laser Altimeter System (GLAS) onboard The Ice, Cloud, and land Elevation Satellite (IceSat) in 2009. CryoSat-2 is a European Space Agencyenvironmental research satellite which was launched in April 2010.The SIRAL (SAR Interferometer Radar Altimeter) on board CryoSat-2 provides three operational modes for different observational requirements. Before the launch of Icesat2 around July 2016, CryoSat data represents a unique source of information on regional-to-global scale forest canopy height.We propose to use radar altimetry waveforms from the synthetic aperture/interferometric (SARin) mode to estimate canopy height in the Amazon basin. To understand the relation between canopy structure and the SIRAL waveform in Ku band, a 3D model was developed and implemented based on a Lidar model by introducingthe scattering items from crown, trunk and ground surface at Ku band. The vertical distribution of tree crown volume within a SIRAL footprint was calculated from its 3-D stand model by summing the volumes of all tree crown cells at the same height from the ground. The preliminary comparisons between simulated and measured SIRAL waveforms show that the model captures the major characteristics of the SIRAL signature. Cryosat waveform data of SARin mode and from June, 2011 to June, 2012 (cycle 04) is used to retrieve canopy height at Amazon basin under Cryosat groundtrack. The canopy height is derived by extracting the key points of vegetation and ground returns after noise estimation. Because of lack of field tree height measurement in 2012 at Amazon, we validated the results using the field measurements at four areas (the km 67 camp, the km 77 camp, Ruropolis, the Taoajos river) of Tapajos National Forest, Brazil in November 1999, and compared the results with the canopy height estimation from previous studies using Laser

  13. Carbon content of Amazon forest biomass and changes after burning; Conteudo de carbono na biomassa florestal da Amazonia e alteracoes apos a queima

    Energy Technology Data Exchange (ETDEWEB)

    Graca, Paulo Mauricio Lima de Alencastro

    1997-04-01

    The carbon contained in the various types of vegetation in the Brazilian legal Amazon was estimated in 80 Pg, based on data from the literature. Transformations of biomass caused by burning took place in an open forest located in Nova Vida Ranch, Arquimedes, Roraima state. The direct and indirect method to estimate the biomass and charcoal after burning were compared and correlation coefficients are presented. Based on combustion efficiency from the above mentioned location and other localities in the Amazon, the carbon released upon burning was calculated. The annual contribution of carbon emitted to the atmosphere was also calculated and presented 119 refs., 18 figs., 16 tabs.

  14. Pioneer hydraulic fracturing intervention on Brazilian Amazon Forest; Operacao pioneira de fraturamento hidraulico na selva Amazonica brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cledeilson; Silva, Luis A.; Duque, Luis H.; Steffan, Rodolfo H.P.; Guimaraes, Zacarias [Baker Hughes, Houston, TX (United States); Sabino, Afonso H. dos S.; Corregio, Fabio; Ferreira, Jose Carlos da Silva; Melo, Marcelo Moura; Ludovice, Roberto C. [Petroleo Brasileiro S.A (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Hydraulic fracturing is a stimulation technique where fluid is pumped with enough energy to create a fracture in the reservoir and to propagate it filling the broken zone with proppant agent. To the end of the treatment the proppant agent will support the fracture creating a production flow path, once it will have permeability higher than the original formation. Since a long time it was desired to use that technique to explore tight reservoirs in the Solimoes basin. However the lack of information on the interest zones, the great amount of equipment and fluids volumes involved hindered the application in an area that withholds a environmental certification. In November 10th of 2011 these challenges were surpassed. This article describes the technique, job details and results of the pioneering hydraulic fracturing intervention in the heart of the Amazon forest that became economically viable the gas production in tight reservoirs of the Solimoes basin with minimum environmental impact. (author)

  15. Landscape-scale changes in forest structure and functional traits along an Andes-to-Amazon elevation gradient

    Science.gov (United States)

    Asner, G. P.; Anderson, C. B.; Martin, R. E.; Knapp, D. E.; Tupayachi, R.; Sinca, F.; Malhi, Y.

    2014-02-01

    Elevation gradients provide opportunities to explore environmental controls on forest structure and functioning. We used airborne imaging spectroscopy and lidar (light detection and ranging) to quantify changes in three-dimensional forest structure and canopy functional traits in twenty 25 ha landscapes distributed along a 3300 m elevation gradient from lowland Amazonia to treeline in the Peruvian Andes. Elevation was positively correlated with lidar-estimated canopy gap density and understory vegetation cover, and negatively related to canopy height and the vertical partitioning of vegetation in canopies. Increases in canopy gap density were tightly linked to increases in understory plant cover, and larger gaps (20-200 m2) produced 25-30 times the response in understory cover than did smaller gaps (soil increased, with elevation. Scaling of gap size to gap frequency (λ) was, however, nearly constant along the elevation gradient. When combined with other canopy structural and functional trait information, this suggests near-constant canopy turnover rates from the lowlands to treeline, which occurs independent of decreasing biomass or productivity with increasing elevation. Our results provide the first landscape-scale quantification of forest structure and canopy functional traits with changing elevation, thereby improving our understanding of disturbance, demography and ecosystem processes in the Andes-to-Amazon corridor.

  16. Tree-fall gaps and carbon cycling in the Brazilian Amazon: results from two large forest plots

    Science.gov (United States)

    Espirito-Santo, F.; Keller, M.; Linder, E.; De Oliveira, R., Jr.; Pereira, C.; Oliveira, C. G.

    2013-12-01

    The dynamics of gaps play a role in the regimes of tree mortality and production of coarse woody debris (CWD) in forests. Few studies have attempted to map the distribution of gaps in tropical forest and the production of CWD, a large pool of ecosystem carbon. Here we linked gap formation with carbon cycling through analysis of the CWD inside of gaps. We surveyed two large forest inventory plots of 114 and 53 ha of the Tapajós National Forest (TNF) in the Brazilian Amazon during 2008 and 2009, respectively. We mapped all gaps and collected data on light availability, CWD stocks and tree mortality in the field. Gap location, canopy opening (CO) and leaf area index (LAI) estimated in the field were compared with two IKONOS-2 high-resolution satellite images acquired approximately at the time of the field measurements. We provide the first statistics of CWD production based on gap size in the tropical forest literature. In the two large plots (167 ha total area) we found 96 gaps. The gaps represented 1.42% of the total area and gaps TNF, the production of CWD in recent gaps was 0.76 Mg C ha-1 year-1 and the mean tree mortality was 2.38 stems ha-1 year 1. The area of gaps estimated by using thresholds of light intensity measured by remote sensing optical instruments was twice as large as the gap areas measured on the ground. We found no significant correlation between spectral remote sensing images and CO and LAI, likely because the high faction of shadow in high-resolution satellite images. We conclude that less than 30% of the annual tree mortality and CWD flux was associated with gaps and the detection of gaps with high resolution optical remote sensing remains a challenge because of the high proportion of shadow in the those images. These results highlight the need for permanent plots for long-term carbon studies.

  17. Deforestation control in Mato Grosso: a new model for slowing the loss of Brazil's Amazon forest.

    Science.gov (United States)

    Fearnside, Philip M

    2003-08-01

    Controlling deforestation in Brazil's Amazon region has long been illusive despite repeated efforts of government authorities to slow the process. From 1997 to 2000, deforestation rates in Brazil's 9-state "Legal Amazon" region continually crept upward. Now, a licensing and enforcement program for clearing by large farmers and ranchers in the state of Mato Grosso appears to be having an effect. The deforestation rate in Mato Grosso was already beginning to slacken before initiation of the program in 1999, but examination of county-level data suggests that deforestation in already heavily cleared areas was falling due to lack of suitable uncleared land, while little-cleared areas were experiencing rapid deforestation. Following initiation of the program, the clearing rates declined in the recent frontiers. Areas with greater enforcement effort also appear to have experienced greater declines. Demonstration of government ability to enforce regulations and influence trends is important to domestic and international debates regarding use of avoided deforestation to mitigate global warming.

  18. Isotopes and soil physic analysis as a tool to meet answers related to soil-plant-atmosphere behavior of Amazon forest during droughts

    Science.gov (United States)

    Borma, L. D. S.; Oliveira, R. S.; Silva, R. D.; Chaparro Saaveedra, O. F.; Barros, F. V.; Bittencourt, P.

    2015-12-01

    Droughts and floods are part of the Amazon weather pattern, but in face of climate change, it has been expected an increase in their intensity and duration. Forests are important regulators of climate. However, it is still unknown how they respond to an increase in frequency and intensity of extreme droughts. Additionally, there are great uncertainties related with the forest behavior in an enriched CO2 environment. For the Amazon rainforest, some authors report forest growth in a drier climate, while others report forest mortality in these same conditions. The crucial factor in this process seem the linkage between atmospheric demand from water and its provision by soil moisture, intermediated by the plants. In theory, in regions where soil moisture is high, even in the absence of rainfall conditions, water exists in enough quantity to meet the atmospheric demand, and majority of plants behave as an evergreen forest. This is the case, for example, for some research sites of equatorial regions of the Amazon forest, which tend to increase evapotranspiration rates in dry season, when the atmospheric demand is higher. However, the extent to which soil moisture decreases, the plant is no longer able to meet the atmospheric demand, limiting evapotranspiration and possibly, entering in a dormant state. To understand the forest response to droughts, in terms of its potential to maintain or reduce evapotranspiration rates, it is necessary to know water dynamics in soil and soil layers where plants are able to extract water. It's a challenge, considering the great variability of soils and plants that forms the huge biodiversity of the Amazon forest. Here, we present an experiment design based on isotopic analyzes in a small watershed in Amazon basin. In order to understand the dynamics of the water used by the plant during the evaporation process, isotope analysis were carried out in soil water collected from shallow and deep groundwater, in the water collected on the bark

  19. Forest Energy Project of Central Finland; Keski-Suomen metsaeenergiaprojekti

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, M. [Regional Council of Central Finland, Jyvaeskylae (Finland); Kuitto, P.J. [VTT Energy, Jyvaeskylae (Finland). Fuel Production

    1997-12-01

    The Forest Energy Project of Central Finland (1994 - 1996) was one of the leading regional demonstration projects in Finland for testing and studying of the complete energy wood delivery chains and energy wood utilisation. The target of this provincial project was to collect and demonstrate the most promising energy wood procurement technologies and methods for utilisation of energy producers, forest industry and small and medium sized industries co- operating with forest owners, contractors and forest organisations. The project was a large development and technology transfer venture concentrated primarily on practical needs. Total delivery chains were formed of the best machine and method alternatives, and they were also demonstrated. The project offered hence a wide test field for regional and national techno / economical wood fuel development. The Forest Energy Project of Central Finland was a demonstration project supervised by the Regional Council of Central Finland. The project was a part of the national Bioenergy Research Programme. VTT Energy and the Forestry Board of Central Finland were responsible for the practical development work. A large number of provincial partners interested in wood fuels took part in the project. The project were carried out during the years 1994 - 1996. The total costs were 4.4 million FIM. The aim is to create a practical model for the entire system, by which enables the economically profitable increment of the utilisation of chip fuels in Central Finland by 100 GWh/1996 and 500 GWh/a (about 250 000 m{sup 3}) to the end of the decade. (orig.)

  20. Polarimetric Data for Tropical Forest Monitoring. Studies at the Colombian Amazon

    NARCIS (Netherlands)

    Quiñones Fernández, M.

    2002-01-01

    An urgent need exists for accurate data on the actual tropical forest extent, deforestation, forest structure, regeneration and diversity. The availability of accurate land cover maps and tropical forest type maps, and the possibility to update these maps frequently, is of great importance for the d

  1. Deforestation trends of tropical dry forests in central Brazil

    Science.gov (United States)

    Bianchi, Carlos A.; Haig, Susan M.

    2013-01-01

    Tropical dry forests are the most threatened forest type in the world yet a paucity of research about them stymies development of appropriate conservation actions. The Paranã River Basin has the most significant dry forest formations in the Cerrado biome of central Brazil and is threatened by intense land conversion to pastures and agriculture. We examined changes in Paranã River Basin deforestation rates and fragmentation across three time intervals that covered 31 yr using Landsat imagery. Our results indicated a 66.3 percent decrease in forest extent between 1977 and 2008, with an annual rate of forest cover change of 3.5 percent. Landscape metrics further indicated severe forest loss and fragmentation, resulting in an increase in the number of fragments and reduction in patch sizes. Forest fragments in flatlands have virtually disappeared and the only significant forest remnants are mostly found over limestone outcrops in the eastern part of the basin. If current patterns persist, we project that these forests will likely disappear within 25 yr. These patterns may be reversed with creation of protected areas and involvement of local people to preserve small fragments that can be managed for restoration.

  2. Topographic separation of two sympatric palms in the central Amazon - does dispersal play a role?

    Science.gov (United States)

    Gomes de Freitas, Cintia; Capellotto Costa, Flávia Regina; Svenning, Jens-Christian; Balslev, Henrik

    2012-02-01

    Despite broadly overlapping geographic distributions in the central Amazon basin, two congeneric palm species (Attalea attaleoides and Attalea microcarpa) have topographically separated distributions on a local scale in Reserva Ducke near Manaus. Our aim here was to determine if this local scale separation can be linked to (1) seedling stage specialization to different habitat conditions of the two species, and/or (2) environmentally-controlled seed dispersal. We assessed the role of these potential drivers by mapping the local distribution of the two species over a 25-km2 grid and testing for correlation to seed removal and seed germination patterns using seed sowing experiments. 360 seeds of each species were sown in 30 uniformly distributed plots (12 seeds of each species in each plot), and seed removal and germination were subsequently monitored. Adult populations of the two species showed opposite distribution patterns linked to topography. However, there was little evidence for specialization to different habitat conditions at the seedling stage: after 11 months, 26.1% of seeds of A. microcarpa had germinated along the entire topographic gradient, albeit with a tendency toward higher germination in more inclined areas. For A. attaleoides, only 2.2% seeds had germinated, and again along the entire topographic gradient. In contrast, there was evidence for environmentally-controlled seed dispersal: for both species, seed removal was higher in flat areas. Presence of adults did not affect germination or seed removal. Our results suggest that topographically differentiated distributions of A. attaleoides and A. microcarpa may be reinforced by steep slope avoidance by their seed dispersers. A direct environmental control mechanism remains to be identified to explain the consistent topographic associations, but our results show that this mechanism does not work at the seed germination stage.

  3. Offspring production in three freshwater crab species (Brachyura: Pseudothelphusidae from the Amazon region and Central America

    Directory of Open Access Journals (Sweden)

    Ingo S. Wehrtmann

    2010-01-01

    Full Text Available Freshwater crabs are an important component of the fauna of limnic environments, and out of the two true freshwater crab families present in the Neotropics, Pseudothelphusidae is the most diverse. Considering the lack of information regarding reproductive features of neotropical freshwater crabs, we studied, for the first time, the fecundity and the presence of juveniles carried by females of two pseudothelphusids from the Amazon region - Kingsleya latifrons (Randall, 1840 and Kingsleya ytupora Magalhães, 1986 - and one from Central America - Potamocarcinus magnus (Rathbun, 1896. The two Kingsleya species produced relatively few (56-114 and large eggs (1.9-3.7 mm, typical for species with an abbreviated or direct development. Recently produced eggs were substantially larger in K. latifrons (mean 2.83 mm when compared to those of K. ytupora (mean 1.87 mm; however, at the end of the embryogenesis, mean egg diameter was similar in both species. Therefore, it is assumed that hatchlings in both species should have a similar size. A brief description of attached juveniles of K. ytupora is provided. The number of juveniles varied between 30 (K. ytupora and 179 (P. magnus; two size groups of juveniles were found, which indicates that the offspring cling to their mother for a prolonged period of time. There was no significant loss of eggs and juveniles; it is assumed that parental care diminishes the loss of their offspring. We compiled the available information of reproductive aspects from freshwater crabs: egg diameter was in the range of 2-3 mm, independent of female size and fecundity, and reported egg number varied between 9 and 417 eggs.

  4. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon.

    Science.gov (United States)

    Röpke, Cristhiana P; Amadio, Sidinéia; Zuanon, Jansen; Ferreira, Efrem J G; Deus, Cláudia Pereira de; Pires, Tiago H S; Winemiller, Kirk O

    2017-01-10

    Combined effects of climate change and deforestation have altered precipitation patterns in the Amazon. This has led to changes in the frequency of extreme events of flood and drought in recent decades and in the magnitude of the annual flood pulse, a phenomenon that influences virtually all aspects of river-floodplain ecosystem dynamics. Analysis of long-term data revealed abrupt and synchronous changes in hydrology and fish assemblage structure of a floodplain lake near the confluence of Amazon and Negro rivers. After an intense drought in 2005, the assemblage assumed a different and fairly persistent taxonomic composition and functional structure. Declines in abundance after 2005 were more pronounced for species of all sizes having equilibrium life history strategy, large species with periodic life history strategy, and for all trophic levels except primary consumers. Our results suggest that the extreme drought triggered changes in the fish assemblage and subsequent anomalous hydrological conditions have hampered assemblage recovery. These findings stress the need to account for climatic-driven hydrological changes in conservation efforts addressing aquatic biodiversity and fishery resources in the central Amazon.

  5. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon

    Science.gov (United States)

    Röpke, Cristhiana P.; Amadio, Sidinéia; Zuanon, Jansen; Ferreira, Efrem J. G.; Deus, Cláudia Pereira de; Pires, Tiago H. S.; Winemiller, Kirk O.

    2017-01-01

    Combined effects of climate change and deforestation have altered precipitation patterns in the Amazon. This has led to changes in the frequency of extreme events of flood and drought in recent decades and in the magnitude of the annual flood pulse, a phenomenon that influences virtually all aspects of river-floodplain ecosystem dynamics. Analysis of long-term data revealed abrupt and synchronous changes in hydrology and fish assemblage structure of a floodplain lake near the confluence of Amazon and Negro rivers. After an intense drought in 2005, the assemblage assumed a different and fairly persistent taxonomic composition and functional structure. Declines in abundance after 2005 were more pronounced for species of all sizes having equilibrium life history strategy, large species with periodic life history strategy, and for all trophic levels except primary consumers. Our results suggest that the extreme drought triggered changes in the fish assemblage and subsequent anomalous hydrological conditions have hampered assemblage recovery. These findings stress the need to account for climatic-driven hydrological changes in conservation efforts addressing aquatic biodiversity and fishery resources in the central Amazon. PMID:28071701

  6. Floristic, edaphic and structural characteristics of flooded and unflooded forests in the lower Rio Purús region of central Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Haugaasen Torbjørn

    2006-01-01

    Full Text Available Despite a natural history interest in the early 1900s, relatively little ecological research has been carried out in the Rio Purús basin of central Amazonia, Brazil. Here we describe a new study area in the region of Lago Uauaçú with an emphasis on the climate, forest structure and composition, and soil characteristics between adjacent unflooded (terra firme and seasonally inundated forests; situated within both the white-water (várzea and black-water (igapó drainage systems that dominate the landscape. The climate was found to be typical of that of the central Amazon. Várzea forest soils had high concentrations of nutrients, while terra firme and igapó soils were comparatively nutrient-poor. Terra firme forests were the most floristically diverse forest type, whereas várzea was intermediate, and igapó the most species-poor. The Lecythidaceae was the most important family in terra firme while the Euphorbiaceae was the most important in both várzea and igapó. There were significant differences between forest types in terms of number of saplings, canopy cover and understorey density. In contrasting our results with other published information, we conclude that the Lago Uauaçú region consists of a typical central Amazonian forest macro-mosaic, but is a unique area with high conservation value due to the intimate juxtaposition of terra firme, várzea and igapó forests.

  7. Air pollution and forest decline in Central Europe.

    Science.gov (United States)

    Kandler, O; Innes, J L

    1995-01-01

    The term 'Waldsterben' was introduced in the early 1980s to describe the progressive death of forests that was believed to be occurring in Central Europe as a result of air pollution. Subsequent surveys and investigations have failed to confirm that forests are dying or are even declining over large areas of Central Europe, defined here as consisting of Germany, Switzerland, southeastern France (Alsace), the Czech Republic, northern Italy and Austria. Foliar injury by air pollutants, together with mortality, has occurred, but is generally restricted to specific locations in the Czech Republic and in eastern Germany, such as the Fichtelgebirge. Where foliar damage has been recorded, it can often be attributed to high concentrations of sulphur dioxide, often acting in combination with other stresses (e.g. frost or insects). Outside areas affected by local sources of pollution, there is little, if any, evidence that the crown condition of trees has been adversely affected by pollution over large areas. Instead, climate appears to have a major effect on the crown condition and growth of trees. Measurements and surveys have revealed a very different picture to that forecasted in the mid-1980s. Growth rates of trees and stands in Central Europe are currently higher than have been recorded at any time in the past; the reasons for this are uncertain, although increases in forest area have not substantially contributed to the observed trends. Although declines in individual species in specific areas have been recorded, past records indicate that these do not represent a new phenomenon. Consequently, the terms 'Waldsterben' (forest deaths) and 'neuartige Waldschäden' (novel type of forest damages) should not be used in the context of the phenomenon reported in Central Europe in the 1980s. Instead, different problems should be described separately and the term forest decline used only when there is clear evidence of a general deterioration in the condition of all tree

  8. Logistics at the Amazon forest: the challenge of Urucu-Manaus pipeline construction

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Ricardo Magalhaes; Araujo, Jorge Marques de; Barbosa, Gilberto Rodrigues; Campos, Marcos Zeferino Teixeira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The predominant difficulties and logistics complexities at the Amazon Region, required of the technical body responsible for the construction of the Undertaking Urucu-Manaus Pipeline, technological knowledge and a profound background of the regional particularities, qualities that were determinants for the execution of this significant work. The logistics solutions, supported on an accurate and adequate planning for people, equipment and material mobilization for several front services, were planned considering the constant climatic variables, river flood and dry periods and with the monitoring daily routines of the communities located around the pipeline construction influence area. (author)

  9. A Metagenomic Perspective on Changes to Nutrient-cycling Genes Following Forest-to-agriculture Conversion in the Amazon Basin

    Science.gov (United States)

    Meyer, K. M.; Womack, A. M.; Rodrigues, J.; Nüsslein, K.; Bohannan, B. J. M.

    2014-12-01

    Forest-to-agriculture conversion has been shown to alter nutrient cycling and the community composition of soil microorganisms. However, few studies have looked simultaneously at how the abundance, composition, and diversity of microbial genes involved in nutrient cycling change with conversion. We used shotgun metagenomic sequencing to analyze soil from primary rainforest and converted cattle pasture sampled at the Fazenda Nova Vida in Rondônia, Brazil. The diversity, richness, and evenness of nutrient cycling genes were significantly higher in the pasture, and the composition of nutrient cycling communities differed significantly between land use types. These results largely mirror taxonomic shifts following Amazon rainforest conversion, which tends to increase diversity, richness, and evenness of soil microbial communities. The abundance of genes related to N cycling and methane flux differed between land use types. Methanotrophy genes decreased in abundance in the pasture, whereas methanogenesis genes were not significantly different between land use types. These changes could underlie the commonly observed shift from methane sink to source following forest-to-agriculture conversion. Multiple genes in the nitrogen cycle also differed with land use, including genes related to N-fixation and ammonification. Metagenomics provides a unique perspective on the consequences of land use change on microbial community structure and function.

  10. GEOGRAPHICAL ANALYSIS OF FOREST FLORA OF THE CENTRAL CISCAUCASIA

    Directory of Open Access Journals (Sweden)

    I. L. Ivanov

    2014-01-01

    Full Text Available Abstract. Aim. Forest flora of the Central Ciscaucasia in General is a relict, geographically situated in the steppe zone. Composing flora elements have different types of habitats, concentrated in the natural physical-geographical unit where isolated from the main habitats. Comparative analysis of the geographic, ecological and systematic components of forest flora will provide data about the correlation of these parameters identify the leading group. Location. The Central CiscaucasiaMethods. We made the geographical and systematic ranges of forest flora of the Central Ciscaucasia and their comparative analysis is conducted.Results. Geographical analysis of forest flora of the Central Ciscaucasia revealed 16 geographical elements, grouped in 6 categories, among which is the predominant group of boreal geographical elements. It is established that the leading geographical elements are Euro-Caucasian, Caucasian and Sub-Caucasian, numbering 189 species, and are half of the flora. Comparison with ecological spectrum showed that the sequence geographical elements completely different, here leading positions are occupied Northern species as ecologically more conservative, and the Caucasian demonstrate ecological plasticity. In a systematic relation matched warheads geographical and systematic spectra. The scope of the results. The results may be used in comparative Floristics, in its theoretical part in adjusting themodels of the Genesis of the flora.Conclusions. Thus, half of the geographical elements of the forest flora of the Central Ciscaucasia are linked in their distribution of Caucasian floristic province (Euro-Caucasian, Caucasian and Sub-Caucasian. These same geographical elements to predominate in the head part of the spectrum families. Most geographical elements have low ecological plasticity species, their components, do not go beyond the forest plant association, but geographical elements head part of the geographical range

  11. Seasonality of reproduction of epiphytic bryophytes in flooded forests from the Caxiuanã National Forest, Eastern Amazon

    Directory of Open Access Journals (Sweden)

    GABRIELA R. CERQUEIRA

    2016-06-01

    Full Text Available This work aimed to recognize the reproductive biology of the epiphytic bryoflora of phorophytes of Virola surinamensis (Rol. ex. Rottb. Warb. in várzea and igapó forests in the Caxiuanã National Forest, to answer the following question: The reproductive period of the bryophyte species is influenced by the environment due the climatic seasonality present in flooded forests, being higher the occurrence of the sexual and asexual reproduction in the rainiest months? The bryophytes were identified and analyzed for the type of reproduction, sexual system and reproductive structures. In total, 502 samples of bryophytes were analyzed, resulting in 54 species, of which 34 were fertile. The comparison of the fertility of the species in different environmental conditions (dry or rainy, and igapó or várzea forest was assessed using the chi-square test. The fertility of the seven studied species could not be defined by a pattern, considering the forest type and the seasonality. However, two species were associated to the forest type and two further species to the seasonality, showing that, for some bryophyte species, invest in constant fertility may be favoring the maintenance of their populations in tropical forests.

  12. Characterizing peat palm forest degradation in the Peruvian Amazon from space and on the ground

    Science.gov (United States)

    Hergoualc'h, Kristell; Gutierrez-Velez, Victor Hugo; van Lent, Jeffrey; Verchot, Louis Vincent

    2016-04-01

    Peru has the second largest area of peatlands in the Tropics however little is known on how the biogeochemical cycle of its peat forests can be affected through anthropogenic intervention. The most representative land cover on peat is a Mauritia flexuosa-dominated palm swamp forest which has been under human pressure over decades due the high demand for the M. flexuosa fruit often collected by cutting down the entire palm. Degradation of these carbon-dense forests can severely affect emissions of greenhouse gases and contribute to climate change. The objectives of this research were to assess the impacts on soil trace gas fluxes and biomass carbon stocks of peat palm swamp forest degradation and to explore the potential of remote sensing methods combined with field measurements to map the distribution of peat palm swamp forest according degradation levels. Results suggest a shift in forest composition from palm- to woody-tree dominated forest following degradation. We also found that human intervention in peat palm swamp forest can translate into substantial reductions in tree carbon stocks with a decrease in initial biomass (above and below-ground) stocks (118.3 ± 1.1 Mg C ha-1) by 26 and 44% following medium and high degradation. Preliminary results suggest high and low soil CH4 and CO2 emission rates on average, as compared to Southeast Asian peat swamp forests whereas N2O emissions are of the same magnitude. Degradation seems to disrupt soil respiration mainly through micro-climatic changes induced by reduced canopy cover. The analysis indicates a good potential to discriminate areas of peat palm swamp forest with different levels of degradation from other land covers, suggesting the feasibility of monitoring peat palm swamp forest degradation using remote sensing analyses.

  13. Anthropogenic Land-use Change and the Dynamics of Amazon Forest Biomass

    Science.gov (United States)

    Laurance, William F.

    2004-01-01

    This project was focused on assessing the effects of prevailing land uses, such as habitat fragmentation, selective logging, and fire, on biomass and carbon storage in Amazonian forests, and on the dynamics of carbon sequestration in regenerating forests. Ancillary goals included developing GIs models to help predict the future condition of Amazonian forests, and assessing the effects of anthropogenic climate change and ENS0 droughts on intact and fragmented forests. Ground-based studies using networks of permanent plots were linked with remote-sensing data (including Landsat TM and AVHRR) at regional scales, and higher-resolution techniques (IKONOS imagery, videography, LIDAR, aerial photographs) at landscape and local scales. The project s specific goals were quite eclectic and included: Determining the effects of habitat fragmentation on forest dynamics, floristic composition, and the various components of above- and below-ground biomass. Assessing historical and physical factors that affect trajectories of forest regeneration and carbon sequestration on abandoned lands. Extrapolating results from local studies of biomass dynamics in fragmented and regenerating forests to landscape and regional scales in Amazonia, using remote sensing and GIS. Testing the hypothesis that intact Amazonian forests are functioning as a significant carbon sink. Examining destructive synergisms between forest fragmentation and fire. Assessing the short-term impacts of selective logging on aboveground biomass. Developing GIS models that integrate current spatial data on forest cover, deforestation, logging, mining, highway and roads, navigable rivers, vulnerability to wild fires, protected areas, and existing and planned infrastructure projects, in an effort to predict the future condition of Brazilian Amazonian forests over the next 20-25 years. Devising predictive spatial models to assess the influence of varied biophysical and anthropogenic predictors on Amazonian deforestation.

  14. Loss of secondary-forest resilience by land-use intensification in the Amazon

    NARCIS (Netherlands)

    Jakovac, A.C.; Pena Claros, M.; Kuijper, T.W.M.; Bongers, F.

    2015-01-01

    Understanding how land-use intensification affects forest resilience is a key for elucidating the mechanisms underlying regeneration processes and for planning more sustainable land-use systems. Here, we evaluate how the intensification of a swidden cultivation system affects secondary-forest resili

  15. Secondary succession and indigenous management in semideciduous forest fallows of the Amazon basin

    NARCIS (Netherlands)

    Toledo, M.; Salick, J.

    2006-01-01

    To the discussion on secondary succession in tropical forests, we bring data on three under-addressed issues: understory as well as overstory changes, continuous as opposed to phase changes, and integration of forest succession with indigenous fallow management and plant uses. Changes in vegetation

  16. Anti-Streptococcal activity of Brazilian Amazon Rain Forest plant extracts presents potential for preventive strategies against dental caries

    Directory of Open Access Journals (Sweden)

    Juliana Paola Corrêa da SILVA

    2014-04-01

    Full Text Available Caries is a global public health problem, whose control requires the introduction of low-cost treatments, such as strong prevention strategies, minimally invasive techniques and chemical prevention agents. Nature plays an important role as a source of new antibacterial substances that can be used in the prevention of caries, and Brazil is the richest country in terms of biodiversity. Objective: In this study, the disk diffusion method (DDM was used to screen over 2,000 Brazilian Amazon plant extracts against Streptococcus mutans. Material and Methods: Seventeen active plant extracts were identified and fractionated. Extracts and their fractions, obtained by liquid-liquid partition, were tested in the DDM assay and in the microdilution broth assay (MBA to determine their minimal inhibitory concentrations (MICs and minimal bactericidal concentrations (MBCs. The extracts were also subjected to antioxidant analysis by thin layer chromatography. Results: EB271, obtained from Casearia spruceana, showed significant activity against the bacterium in the DDM assay (20.67±0.52 mm, as did EB1129, obtained from Psychotria sp. (Rubiaceae (15.04±2.29 mm. EB1493, obtained from Ipomoea alba, was the only extract to show strong activity against Streptococcus mutans (0.08 mg/mLAmazon rain forest, show potential as sources of new antibacterial agents for use as chemical coadjuvants in prevention strategies to treat caries.

  17. Restoration of forests: environmental challenges in Central and Eastern Europe

    Energy Technology Data Exchange (ETDEWEB)

    Gutkowski, R.M.; Winnicki, T. [eds.] [Colorado State University, Fort Collins, CO (United States). Dept. of Civil Engineering

    1997-12-01

    The workshop examined the environmental factors contributing to the rapid depletion of the forests of central and eastern Europe with a goal of determining a research action plan to help abate the impact, while sustaining or expanding the forests, the economy and energy sufficiency of the region. The proceedings contain a total of 34 papers, under the headings: opening presentation, report of Joint Study Tour, situation papers, state-of-the art papers, and position papers from working groups 1. `Environmental factors in forest depletion`, 2. `Forest-growth, expansion and management`; 3. `Forest utilization of raw materials and value added products`; 4.`Socio-economic considerations for the forest resource, technical excursion to the Bavarian forests, and reports of Working Groups 1-4. Also included are 6 Joint Working Group reports, a report of the joint meeting of Working Group leaders, a final conference report, summary observations and conclusions and closing remarks. Two papers have been indexed separately for the IEA Coal Research CD-ROM.

  18. Seeing Central African forests through their largest trees

    Science.gov (United States)

    Bastin, J.-F.; Barbier, N.; Réjou-Méchain, M.; Fayolle, A.; Gourlet-Fleury, S.; Maniatis, D.; de Haulleville, T.; Baya, F.; Beeckman, H.; Beina, D.; Couteron, P.; Chuyong, G.; Dauby, G.; Doucet, J.-L.; Droissart, V.; Dufrêne, M.; Ewango, C.; Gillet, J. F.; Gonmadje, C. H.; Hart, T.; Kavali, T.; Kenfack, D.; Libalah, M.; Malhi, Y.; Makana, J.-R.; Pélissier, R.; Ploton, P.; Serckx, A.; Sonké, B.; Stevart, T.; Thomas, D. W.; de Cannière, C.; Bogaert, J.

    2015-08-01

    Large tropical trees and a few dominant species were recently identified as the main structuring elements of tropical forests. However, such result did not translate yet into quantitative approaches which are essential to understand, predict and monitor forest functions and composition over large, often poorly accessible territories. Here we show that the above-ground biomass (AGB) of the whole forest can be predicted from a few large trees and that the relationship is proved strikingly stable in 175 1-ha plots investigated across 8 sites spanning Central Africa. We designed a generic model predicting AGB with an error of 14% when based on only 5% of the stems, which points to universality in forest structural properties. For the first time in Africa, we identified some dominant species that disproportionally contribute to forest AGB with 1.5% of recorded species accounting for over 50% of the stock of AGB. Consequently, focusing on large trees and dominant species provides precise information on the whole forest stand. This offers new perspectives for understanding the functioning of tropical forests and opens new doors for the development of innovative monitoring strategies.

  19. Disturbance, diversity and distributions in Central African rain forest

    NARCIS (Netherlands)

    Gemerden, van B.S.

    2004-01-01

    The aim of this study is to gain insight in the impact of human land use on plant community composition, diversity and levels of endemism in Central African rain forest. Human disturbance in this region is causing large-scale habitat degradation. The two most widespread forms of land use are selecti

  20. Air pollution and forest decline in central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kandler, O.; Innes, J.L. [University of Munich, Munich (Germany). Institute of Botany

    1995-12-31

    The term `Waldsterben` was introduced in the early 1980s to describe the progressive death of forests that was believed to be occurring in Central Europe as a result of air pollution. Subsequent surveys and investigations have failed to confirm that forests are dying or are even declining over large areas of Central Europe. Foliar injury by air pollutants, together with mortality, has occurred, but is generally restricted to specific locations in the Czech Republic and in eastern Germany. Where foliar damage has been recorded, it can often be attributed to high concentrations of sulphur dioxide, often acting in combination with other stresses (e.g. frost or insects). Outside areas affected by local sources of pollution, there is little, if any, evidence that the crown condition of trees has been adversely affected by pollution over large areas. Instead, climate appears to have a major effect on the crown condition and growth of trees. Measurements and surveys have revealed a very different picture to that forecasted in the mid-1980s. Growth rates of trees and stands in Central Europe are currently higher than have been recorded at any time in the past. Although declines in individual species in specific areas have been recorded, past records indicate that these do not represent a new phenomenon. Consequently, the terms `Waldsterben` (forest deaths) and `neuartige Waldschaden` (novel type of forest damages) should not be used in the context of the phenomenon reported in Central Europe in the 1980s. Instead different problems should be described separately and the term forest decline used only when there is clear evidence of a general deterioration in the condition of all tree species within a forest.

  1. Neutrons, radiation and archaeology: a multi analytical case study of incised rim tradition ceramics in Central Amazon; Neutrons, radiacao e arqueologia: estudo de caso multianalitico de ceramicas da tradicao borda incisa na Amazonia Central

    Energy Technology Data Exchange (ETDEWEB)

    Hazenfratz-Marks, Roberto

    2014-07-01

    This thesis is an interdisciplinary archaeometric study involving archaeological ceramic material from two large archaeological sites in Central Amazon, namely Lago Grande and Osvaldo, on the confluence region of Negro and Solimoes rivers. It was tested a hypothesis about the existence of an exchange network between the former inhabitants of those sites, focusing on material and/or technological exchange. That hypothesis has implications for archaeological theories of human occupation of the pre-colonial Central Amazon, which try to relativise the role of ecological difficulties of the tropical forest as a limiting factor for the emergence of social complexity in the region. The physical-chemical characterization of potsherds and clay samples near the sites was carried out by: instrumental neutron activation analysis (INAA) to determine the elemental chemical composition; electron paramagnetic resonance (EPR) to determine the firing temperature; X-ray diffraction (XRD) to determine the mineralogical composition; and dating by optically stimulated luminescence (OSL). Previous studies showed that Osvaldo and Lago Grande were occupied by people which produced pottery classified in the Manacapuru and Paredao phases, subclasses of the Incised Rim Tradition, around the 5-10th and 7-12th centuries BC, respectively. INAA results were analyzed by multivariate statistical methods, whereby two chemical groups of pottery were defined for each archaeological site. Significant variation in firing temperatures and mineralogical composition were not identified for such groups. By integration of the results with archaeological data, the superposition between pairs of chemical groups was interpreted as a correlate of an ancient exchange network, although it was not possible to define if it existed exclusively between Lago Grande and Osvaldo. On the contrary, it was suggested that Lago Grande participated in a more extensive exchange network by comparison of two chemical groups

  2. New estimates of temperature response of leaf photosynthesis in Amazon forest trees, its acclimation to mean temperature change and consequences for modelling climate response to rain forests.

    Science.gov (United States)

    Kruijt, B.; Jans, W.; Vasconcelos, S.; Tribuzy, E. S.; Felsemburgh, C.; Eliane, M.; Rowland, L.; da Costa, A. C. L.; Meir, P.

    2014-12-01

    In many dynamic vegetation models, degradation of the tropical forests is induced because they assume that productivity falls rapidly when temperatures rise in the region of 30-40°C. Apart plant respiration, this is due to the assumptions on the temperature optima of photosynthetic capacity, which are low and can differ widely between models, where in fact hardly any empirical information is available for tropical forests. Even less is known about the possibility that photosynthesis will acclimate to changing temperatures. The objective of this study to is to provide better estimates for optima, as well as to determine whether any acclimation to temperature change is to be expected. We present both new and hitherto unpublished data on the temperature response of photosynthesis of Amazon rainforest trees, encompassing three sites, several species and five field campaigns. Leaf photosynthesis and its parameters were determined at a range of temperatures. To study the long-term (seasonal) acclimation of this response, this was combined with an artificial, in situ, multi-season leaf heating experiment. The data show that, on average for all non-heated cases, the photosynthetic parameter Vcmax weakly peaks between 35 and 40 ˚C, while heating does not have a clearly significant effect. Results for Jmax are slightly different, with sharper peaks. Scatter was relatively high, which could indicate weak overall temperature dependence. The combined results were used to fit new parameters to the various temperature response curve functions in a range of DGVMs. The figure shows a typical example: while the default Jules model assumes a temperature optimum for Vcmax at around 33 ˚C, the data suggest that Vcmax keeps rising up to at least 40 ˚C. Of course, calculated photosynthesis, obtained by applying this Vcmax in the Farquhar model, peaks at lower temperature. Finally, the implication of these new model parameters for modelled climate change impact on modelled Amazon

  3. Potential trajectories of the upcoming forest trading mechanism in Pará State, Brazilian Amazon.

    Science.gov (United States)

    Brito, Brenda

    2017-01-01

    In 2012, the Brazilian government revised the federal Forest Code that governs the use of forest resources on rural properties. The revisions included a forest trading mechanism whereby landowners who deforested more than what is legally allowed before 2008 could absolve their deforestation "debts" by purchasing Environmental Reserve Quotas (CRA) from landowners who conserved more forest than legally required. CRA holds promise as a tool to complement command-and-control initiatives to reduce deforestation and incentivize restoration. However, the success of this instrument depends on how its implementation is governed. This study builds on a few recent assessments of the potential of the CRA in Brazil-but that are focused on biophysical potential-by assessing how a few key implementation decisions may influence the CRA market development. Specifically, this study estimates how decisions on who can participate will likely influence the potential forest surplus and forest debt for the CRA market, and takes into account governance characteristics relevant to the State of Pará, eastern Amazonia. In particular, the study evaluates the effects in the CRA market eligibility after simulating a validation of properties in the environmental rural registry (CAR) and assessing different scenarios surrounding land tenure status of properties. Results show how regulatory decisions on CRA market eligibility will determine the extent to which CRA will serve as a tool to support forest conservation or as a low-cost path to help illegal deforesters to comply with legislation, but with limited additional environmental benefits. The study reviews regulatory options that would reduce the risk of forest oversupply, and thereby increase the additionality of the areas eligible for CRA. Overall, the study demonstrates the importance of including governance as well as biophysical characteristics in assessing the potential of forest trading tools to deliver additional environmental

  4. Monitoring Forest Dynamics in the Andean Amazon: The Applicability of Breakpoint Detection Methods Using Landsat Time-Series and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Fabián Santos

    2017-01-01

    Full Text Available The Andean Amazon is an endangered biodiversity hot spot but its forest dynamics are less studied than those of the Amazon lowland and forests from middle or high latitudes. This is because its landscape variability, complex topography and cloudy conditions constitute a challenging environment for any remote-sensing assessment. Breakpoint detection with Landsat time-series data is an established robust approach for monitoring forest dynamics around the globe but has not been properly evaluated for implementation in the Andean Amazon. We analyzed breakpoint detection-generated forest dynamics in order to determine its limitations when applied to three different study areas located along an altitude gradient in the Andean Amazon in Ecuador. Using all available Landsat imagery for the period 1997–2016, we evaluated different pre-processing approaches, noise reduction techniques, and breakpoint detection algorithms. These procedures were integrated into a complex function called the processing chain generator. Calibration was not straightforward since it required us to define values for 24 parameters. To solve this problem, we implemented a novel approach using genetic algorithms. We calibrated the processing chain generator by applying a stratified training sampling and a reference dataset based on high resolution imagery. After the best calibration solution was found and the processing chain generator executed, we assessed accuracy and found that data gaps, inaccurate co-registration, radiometric variability in sensor calibration, unmasked cloud, and shadows can drastically affect the results, compromising the application of breakpoint detection in mountainous areas of the Andean Amazon. Moreover, since breakpoint detection analysis of landscape variability in the Andean Amazon requires a unique calibration of algorithms, the time required to optimize analysis could complicate its proper implementation and undermine its application for large

  5. Soil carbon and nitrogen stocks following forest conversion to pasture in the Western Brazilian Amazon Basin

    OpenAIRE

    2008-01-01

    We examined two chronosequences of forest, 8-and 20-year-old pasture in Rondônia-Brazil, to investigate how land use change affects the soil carbon and nitrogen stocks and organic matter dynamics of surface soil (0 to 30 cm). Soil total carbon and nitrogen stocks increased in 20-year-old pasture compared with the original forest in one chronosequence but no changes were detected in the other chronosequence. Calculations of the contributions of forest - and pasture-derived carbon from soil &et...

  6. How livestock and flooding mediate the ecological integrity of working forests in Amazon River floodplains.

    Science.gov (United States)

    Lucas, Christine M; Sheikh, Pervaze; Gagnon, Paul R; Mcgrath, David G

    2016-01-01

    The contribution of working forests to tropical conservation and development depends upon the maintenance of ecological integrity under ongoing land use. Assessment of ecological integrity requires an understanding of the structure, composition, and function and major drivers that govern their variability. Working forests in tropical river floodplains provide many goods and services, yet the data on the ecological processes that sustain these services is scant. In flooded forests of riverside Amazonian communities, we established 46 0.1-ha plots varying in flood duration, use by cattle and water buffalo, and time since agricultural abandonment (30-90 yr). We monitored three aspects of ecological integrity (stand structure, species composition, and dynamics of trees and seedlings) to evaluate the impacts of different trajectories of livestock activity (alleviation, stasis, and intensification) over nine years. Negative effects of livestock intensification were solely evident in the forest understory, and plots alleviated from past heavy disturbance increased in seedling density but had higher abundance of thorny species than plots maintaining low activity. Stand structure, dynamics, and tree species composition were strongly influenced by the natural pulse of seasonal floods, such that the defining characteristics of integrity were dependent upon flood duration (3-200 d). Forests with prolonged floods ≥ 140 d had not only lower species richness but also lower rates of recruitment and species turnover relative to forests with short floods forest regeneration, but overall forest integrity was largely related to the hydrological regime and age. Given this disjunction between factors mediating canopy and understory integrity, we present a subset of metrics for regeneration and recruitment to distinguish forest condition by livestock trajectory. Although our study design includes confounded factors that preclude a definitive assessment of the major drivers of

  7. EXPANDING THE AREA OF DISTRIBUTION OF EUFRIESEA FRAGROCARA KIMSEY (HYMENOPTERA, APIDAE IN THE BRAZILIAN AMAZON FOREST

    Directory of Open Access Journals (Sweden)

    M. H. S. Souza

    2015-02-01

    Full Text Available The expansion of agriculture in the Arc of Deforestation causes deforestation and habitat loss. Euglossines sampling was done near Juruena River, Cotriguaçu municipality, northern Mato Grosso State. The bees were collected on understory and canopy using different baits. A total of 41 males of Eufriesea fragrocara Kimsey were collected. This is a rare species in collections and catalogued only in Huánuco (Peru, Napo (Ecuador, Ouro Preto D’Oeste and Ariquemes, Rondônia, Brazil. This new records increase the geographic distribution of E. fragrocara in 500 km to the western Amazon Basin, reducing the filling gaps in their distribution range in the Neotropics.

  8. Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought.

    Science.gov (United States)

    Powell, Thomas L; Galbraith, David R; Christoffersen, Bradley O; Harper, Anna; Imbuzeiro, Hewlley M A; Rowland, Lucy; Almeida, Samuel; Brando, Paulo M; da Costa, Antonio Carlos Lola; Costa, Marcos Heil; Levine, Naomi M; Malhi, Yadvinder; Saleska, Scott R; Sotta, Eleneide; Williams, Mathew; Meir, Patrick; Moorcroft, Paul R

    2013-10-01

    Considerable uncertainty surrounds the fate of Amazon rainforests in response to climate change. Here, carbon (C) flux predictions of five terrestrial biosphere models (Community Land Model version 3.5 (CLM3.5), Ecosystem Demography model version 2.1 (ED2), Integrated BIosphere Simulator version 2.6.4 (IBIS), Joint UK Land Environment Simulator version 2.1 (JULES) and Simple Biosphere model version 3 (SiB3)) and a hydrodynamic terrestrial ecosystem model (the Soil-Plant-Atmosphere (SPA) model) were evaluated against measurements from two large-scale Amazon drought experiments. Model predictions agreed with the observed C fluxes in the control plots of both experiments, but poorly replicated the responses to the drought treatments. Most notably, with the exception of ED2, the models predicted negligible reductions in aboveground biomass in response to the drought treatments, which was in contrast to an observed c. 20% reduction at both sites. For ED2, the timing of the decline in aboveground biomass was accurate, but the magnitude was too high for one site and too low for the other. Three key findings indicate critical areas for future research and model development. First, the models predicted declines in autotrophic respiration under prolonged drought in contrast to measured increases at one of the sites. Secondly, models lacking a phenological response to drought introduced bias in the sensitivity of canopy productivity and respiration to drought. Thirdly, the phenomenological water-stress functions used by the terrestrial biosphere models to represent the effects of soil moisture on stomatal conductance yielded unrealistic diurnal and seasonal responses to drought.

  9. Characteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region

    Directory of Open Access Journals (Sweden)

    Rômulo Oliveira

    2016-06-01

    Full Text Available Studies that investigate and evaluate the quality, limitations and uncertainties of satellite rainfall estimates are fundamental to assure the correct and successful use of these products in applications, such as climate studies, hydrological modeling and natural hazard monitoring. Over regions of the globe that lack in situ observations, such studies are only possible through intensive field measurement campaigns, which provide a range of high quality ground measurements, e.g., CHUVA (Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GlobAl Precipitation Measurement and GoAmazon (Observations and Modeling of the Green Ocean Amazon over the Brazilian Amazon during 2014/2015. This study aims to assess the characteristics of Global Precipitation Measurement (GPM satellite-based precipitation estimates in representing the diurnal cycle over the Brazilian Amazon. The Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG and the Goddard Profiling Algorithm—Version 2014 (GPROF2014 algorithms are evaluated against ground-based radar observations. Specifically, the S-band weather radar from the Amazon Protection National System (SIPAM, is first validated against the X-band CHUVA radar and then used as a reference to evaluate GPM precipitation. Results showed satisfactory agreement between S-band SIPAM radar and both IMERG and GPROF2014 algorithms. However, during the wet season, IMERG, which uses the GPROF2014 rainfall retrieval from the GPM Microwave Imager (GMI sensor, significantly overestimates the frequency of heavy rainfall volumes around 00:00–04:00 UTC and 15:00–18:00 UTC. This overestimation is particularly evident over the Negro, Solimões and Amazon rivers due to the poorly-calibrated algorithm over water surfaces. On the other hand, during the dry season, the IMERG product underestimates mean precipitation in comparison to the S-band SIPAM

  10. Mixed-forest species establishment in a monodominant forest in central Africa: implications for tropical forest invasibility.

    Directory of Open Access Journals (Sweden)

    Kelvin S-H Peh

    Full Text Available BACKGROUND: Traits of non-dominant mixed-forest tree species and their synergies for successful co-occurrence in monodominant Gilbertiodendron dewevrei forest have not yet been investigated. Here we compared the tree species diversity of the monodominant forest with its adjacent mixed forest and then determined which fitness proxies and life history traits of the mixed-forest tree species were most associated with successful co-existence in the monodominant forest. METHODOLOGY/PRINCIPAL FINDINGS: We sampled all trees (diameter in breast height [dbh]≥10 cm within 6×1 ha topographically homogenous areas of intact central African forest in SE Cameroon, three independent patches of G. dewevrei-dominated forest and three adjacent areas (450-800 m apart. Monodominant G. dewevrei forest had lower sample-controlled species richness, species density and population density than its adjacent mixed forest in terms of stems with dbh≥10 cm. Analysis of a suite of population-level characteristics, such as relative abundance and geographical distribution, and traits such as wood density, height, diameter at breast height, fruit/seed dispersal mechanism and light requirement-revealed after controlling for phylogeny, species that co-occur with G. dewevrei tend to have higher abundance in adjacent mixed forest, higher wood density and a lower light requirement. CONCLUSIONS/SIGNIFICANCE: Our results suggest that certain traits (wood density and light requirement and population-level characteristics (relative abundance may increase the invasibility of a tree species into a tropical closed-canopy system. Such knowledge may assist in the pre-emptive identification of invasive tree species.

  11. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    OpenAIRE

    JARDINE, KOLBY J.; CHAMBERS, JEFFREY Q.; Jennifer Holm; Angela B. Jardine; Clarissa G. Fontes; Zorzanelli, Raquel F.; Kimberly T. Meyers; Vinicius Fernadez de Souza; Sabrina Garcia; Gimenez,Bruno O.; Luani R. de O. Piva; Niro Higuchi; Paulo Artaxo; Scot Martin; Manzi, Antônio O.

    2015-01-01

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxid...

  12. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests.

    Science.gov (United States)

    Wu, Jin; Albert, Loren P; Lopes, Aline P; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T; Guan, Kaiyu; Stark, Scott C; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Mauricio L; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M; Dye, Dennis G; Huxman, Travis E; Huete, Alfredo R; Nelson, Bruce W; Saleska, Scott R

    2016-02-26

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  13. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests

    Science.gov (United States)

    Wu, Jin; Albert, Lauren; Lopes, Aline; Restrepo-Coupe, Natalia; Hayek, Matthew; Wiedemann, Kenia T.; Guan, Kaiyu; Stark, Scott C.; Christoffersen, Bradley; Prohaska, Neill; Tavares, Julia V.; Marostica, Suelen; Kobayashi, Hideki; Ferreira, Maurocio L.; Campos, Kleber Silva; da Silva, Rodrigo; Brando, Paulo M.; Dye, Dennis G.; Huxman, Travis E.; Huete, Alfredo; Nelson, Bruce; Saleska, Scott

    2016-01-01

    In evergreen tropical forests, the extent, magnitude, and controls on photosynthetic seasonality are poorly resolved and inadequately represented in Earth system models. Combining camera observations with ecosystem carbon dioxide fluxes at forests across rainfall gradients in Amazônia, we show that aggregate canopy phenology, not seasonality of climate drivers, is the primary cause of photosynthetic seasonality in these forests. Specifically, synchronization of new leaf growth with dry season litterfall shifts canopy composition toward younger, more light-use efficient leaves, explaining large seasonal increases (~27%) in ecosystem photosynthesis. Coordinated leaf development and demography thus reconcile seemingly disparate observations at different scales and indicate that accounting for leaf-level phenology is critical for accurately simulating ecosystem-scale responses to climate change.

  14. Surface Soil Preparetion for Leguminous Plants Growing in Degraded Areas by Mining Located in Amazon Forest-Brazil

    Science.gov (United States)

    Irio Ribeiro, Admilson; Hashimoto Fengler, Felipe; Araújo de Medeiros, Gerson; Márcia Longo, Regina; Frederici de Mello, Giovanna; José de Melo, Wanderley

    2015-04-01

    The revegetation of areas degraded by mining usually requires adequate mobilization of surface soil for the development of the species to be implemented. Unlike the traditional tillage, which has periodicity, the mobilization of degraded areas for revegetation can only occur at the beginning of the recovery stage. In this sense, the process of revegetation has as purpose the establishment of local native vegetation with least possible use of inputs and superficial tillage in order to catalyze the process of natural ecological succession, promoting the reintegration of areas and minimizing the negative impacts of mining activities in environmental. In this context, this work describes part of a study of land reclamation by tin exploitation in the Amazon ecosystem in the National Forest Jamari- Rondonia Brazil. So, studied the influence of surface soil mobilization in pit mine areas and tailings a view to the implementation of legumes. The results show that the surface has areas of mobilizing a significant effect on the growth of leguminous plants, areas for both mining and to tailings and pit mine areas.

  15. Monitoring nitrogen accumulation in mosses in central European forests

    Energy Technology Data Exchange (ETDEWEB)

    Pesch, Roland [Chair of Landscape Ecology, University of Vechta, PO 1553, D-49356 Vechta (Germany)], E-mail: rpesch@iuw.uni-vechta.de; Schroeder, Winfried [Chair of Landscape Ecology, University of Vechta, PO 1553, D-49356 Vechta (Germany)], E-mail: wschroeder@iuw.uni-vechta.de; Schmidt, Gunther [Chair of Landscape Ecology, University of Vechta, PO 1553, D-49356 Vechta (Germany)], E-mail: gschmidt@iuw.uni-vechta.de; Genssler, Lutz [North Rhine-Westphalia State Agency for Nature, Environment and Consumer Protection (Germany)], E-mail: lutz.genssler@lanuv.nrw.de

    2008-10-15

    In order to assess whether nitrogen (N) loads in mosses reflect different land uses, 143 sites in North Rhine-Westphalia, the Weser-Ems Region and the Euro Region Nissa were sampled between 2000 and 2005. The data were analysed statistically with available surface information on land use and forest conditions. N bioaccumulation in mosses in the Weser-Ems Region with high densities of agricultural land use and livestock exceeded the concentrations in the more industrialised Euro Region Nissa. In all three study areas agricultural and livestock spatial densities were found to be positively correlated with N bioaccumulation in mosses. In North Rhine-Westphalia, the N concentrations in mosses was also moderately correlated with N concentrations in leaves and needles of forest trees. The moss method proved useful to assess the spatial patterns of N bioaccumulation due to land use. - Nitrogen accumulation in mosses from forests in central Europe is spatially correlated with the density of agricultural land use.

  16. Functional trophic composition of the ichthyofauna of forest streams in eastern Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Gabriel Lourenço Brejão

    Full Text Available This study aimed to describe the functional organization of the ichthyofauna of forest streams from northeastern Pará State, Brazil, based on behavioral observation of species' feeding tactics. Seven streams were sampled between June and November, 2010, during snorkeling sessions, totaling 91h 51min of visual censuses at day, dusk, and night periods. Seventy three species distributed in six orders, 26 families and 63 genera were observed, with dominance of Characiformes, followed by Siluriformes. From information gathered by ad libitum observations, each species was included in one of 18 functional trophic groups (FTGs, according to two main characteristics: (1 its most frequently observed feeding tactic; and (2 its spatial distribution in the stream environment, considering their horizontal (margins or main channel and vertical (water column dimensions. The most frequent FTGs observed were Nocturnal invertebrate pickers (9 species, Diurnal channel drift feeders (8 spp., Diurnal surface pickers (7 spp., and Ambush and stalking predators (6 spp.. The FTGs herein defined enable a comparative analysis of the structure and composition of ichthyofauna in different basins and environmental conditions, which presents an alternative approach to the use of taxonomic structure in ecological studies. The ichthyofauna classification based in FTGs proposed in this study is compared to three other classifications, proposed by Sazima (1986, Sabino & Zuanon (1998 and Casatti et al. (2001.Este estudo teve como objetivo descrever a organização funcional da fauna de peixes de riachos do nordeste do estado do Pará, Brasil, com base em observações comportamentais das táticas alimentares das espécies. Sete igarapés foram amostrados entre junho e novembro de 2010 por técnicas de observações diretas durante sessões de mergulho livre, totalizando 91h 51min de observação, nos períodos diurno, crepuscular vespertino e noturno. Foram observadas 73 esp

  17. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites

    NARCIS (Netherlands)

    Mitchard, Edward T. A.; Feldpausch, Ted R.; Brienen, Roel J. W.; Lopez-Gonzalez, Gabriela; Monteagudo, Abel; Baker, Timothy R.; Lewis, Simon L.; Lloyd, Jon; Quesada, Carlos A.; Gloor, Manuel; ter Steege, Hans; Meir, Patrick; Alvarez, Esteban; Araujo-Murakami, Alejandro; Aragao, Luiz E. O. C.; Arroyo, Luzmila; Aymard, Gerardo; Banki, Olaf; Bonal, Damien; Brown, Sandra; Brown, Foster I.; Ceron, Carlos E.; Chama Moscoso, Victor; Chave, Jerome; Comiskey, James A.; Cornejo, Fernando; Corrales Medina, Massiel; Da Costa, Lola; Costa, Flavia R. C.; Di Fiore, Anthony; Domingues, Tomas F.; Erwin, Terry L.; Frederickson, Todd; Higuchi, Niro; Honorio Coronado, Euridice N.; Levis, Carolina; Killeen, Tim J.; Laurance, William F.; Magnusson, William E.; Marimon, Beatriz S.; Marimon Junior, Ben Hur; Mendoza Polo, Irina; Mishra, Piyush; Nascimento, Marcelo T.; Neill, David; Nunez Vargas, Mario P.; Palacios, Walter A.; Parada, Alexander; Pardo Molina, Guido; Pena-Claros, Marielos; Pitman, Nigel; Peres, Carlos A.; Prieto, Adriana; Poorter, Lourens; Ramirez-Angulo, Hirma; Restrepo Correa, Zorayda; Roopsind, Anand; Roucoux, Katherine H.; Rudas, Agustin; Salomao, Rafael P.; Schietti, Juliana; Silveira, Marcos; de Souza, Priscila F.; Steininger, Marc K.; Stropp, Juliana; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van Andel, Tinde R.; van der Heijden, Geertje M. F.; Vieira, Ima C. G.; Vieira, Simone; Vilanova-Torre, Emilio; Vos, Vincent A.; Wang, Ophelia; Zartman, Charles E.; Malhi, Yadvinder; Phillips, Oliver L.; Cruz, A.P.; Cuenca, W.P.; Espejo, J.E.; Ferreira, L.; Germaine, A.; Penuela, M.C.; Silva, N.; Valenzuela Gamarra, L.

    2014-01-01

    Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directl

  18. Empty forests, empty stomachs? Bushmeat and livelihoods in the Congo and Amazon Basins

    DEFF Research Database (Denmark)

    Nasi, R.; Taber, A.; van Vliet, Nathalie

    2011-01-01

    Protein from forest wildlife is crucial to rural food security and livelihoods across the tropics. The harvest of animals such as tapir, duikers, deer, pigs, peccaries, primates and larger rodents, birds and reptiles provides benefits to local people worth millions of USS annually and represents...

  19. Palms versus trees: water use characteristics of native fruit-bearing plant species in the Central Amazon

    Science.gov (United States)

    Kunert, N.; Barros, P.; Higuchi, N.

    2012-12-01

    Native fruiting plants are widely cultivated in the Amazon but only little information on their water use characteristics can be found in the literature. Due to the growing local consumption and the increasing popularity for new "exotic" fruits all over Brazil and worldwide, additional new plantations cultivating such fruit-bearing species might be established in the Amazon in the future. These new plantations will affect the water table of the cultivated areas, however, the impact of these changes on the regional hydrology are not known. We, therefore, decided to study plant water use characteristics of two native fruit plants commonly occurring in the Amazon region, a tree species (Cupuaçu, Theobroma grandiflorum, (Willd. ex Spreng.) Schum., Malvaceae) and a palm species (Açai, Euterpe oleraceae Mart., Arecaceae). This study was conducted in a fruit plantation close to the city of Manaus, in the Central Amazon, Brazil. The objectives of our study were 1) to compare variables controlling plant water use and 2) to identify differences in water use between woody monocot and dicot plant species. We chose three representative individuals with well-sun-exposed crowns for each species, which were equipped with Granier-type thermal dissipation probes to measure sap flux density continuously for six weeks from August 1st 2011 until September 6th 2011. We used a simple sap flux model with two environmental variables, photosynthetic photon flux density and vapor pressure deficit, to compare sap flux densities between species. We achieved a good model fit and modeled sap flux densities corresponded very well with the actual measured values. No significant differences among species in sap flux densities were indicated by the model. Overall, palms had a 3.5 fold higher water consumption compared to trees with similar diameter. Water use scaled independent from species with the size of the conductive xylem area (r2 = 0.85), so that the higher water use of the palms was

  20. Central nervous system tumours profile at a referral center in the Brazilian Amazon region, 1997–2014

    Science.gov (United States)

    Semblano, Aluízio Augusto Pereira; Moreira, Matheus Acácio; de Lemos, Manuela Nascimento; de Mello, Vanessa Jóia; Hamoy, Moisés; Nazareth Junior, Mario Hermes; Paschoal Junior, Fernando Mendes; Adami, Fernando

    2017-01-01

    Tumours of the Central Nervous System (CNS) are an important cause of mortality from cancer. Epidemiological data on neoplams affecting the CNS are scarce in Brazil, especially in the Amazon region. The study aims at describing the histopathological profile of CNS tumours cases at a high-complexity referral cancer center. This study has described a 17-year-series profile of CNS tumours, registered at a high-complexity referral cancer center in Pará state, from January 1997 until July 2014 in the Brazilian Amazon Region. Data was gathered from histopathology reports kept in the hospital’s cancer registry and 949 cases of CNS tumours were analyzed. The most common histopathology were neuroepithelial tumours (approx. 40%) and meningioma was the most frequent especific tumor histologic subtype (22.2%). Neuroepithelial tumours were more frequent in patients with ages ranging from less than a year to 19 years, whereas metastatic tumours were prevalent in patients over 40 years of age. It was not found temporal trends during the studied period. The knowledge of these tumours profile is valuable for the understanding of cancer epidemiology in the region, since its prevalence is currently underreported and more awareness on the disease is needed. PMID:28369089

  1. Soil Carbon Stock and Particle Size Fractions in the Central Amazon Predicted from Remotely Sensed Relief, Multispectral and Radar Data

    Directory of Open Access Journals (Sweden)

    Marcos B. Ceddia

    2017-02-01

    Full Text Available Soils from the remote areas of the Amazon Rainforest in Brazil are poorly mapped due to the presence of dense forest and lack of access routes. The use of covariates derived from multispectral and radar remote sensors allows mapping large areas and has the potential to improve the accuracy of soil attribute maps. The objectives of this study were to: (a evaluate the addition of relief, and vegetation covariates derived from multispectral images with distinct spatial and spectral resolutions (Landsat 8 and RapidEye and L-band radar (ALOS PALSAR for the prediction of soil organic carbon stock (CS and particle size fractions; and (b evaluate the performance of four geostatistical methods to map these soil properties. Overall, the results show that, even under forest coverage, the Normalized Difference Vegetation Index (NDVI and ALOS PALSAR backscattering coefficient improved the accuracy of CS and subsurface clay content predictions. The NDVI derived from RapidEye sensor improved the prediction of CS using isotopic cokriging, while the NDVI derived from Landsat 8 and backscattering coefficient were selected to predict clay content at the subsurface using regression kriging (RK. The relative improvement of applying cokriging and RK over ordinary kriging were lower than 10%, indicating that further analyses are necessary to connect soil proxies (vegetation and relief types with soil attributes.

  2. Drought Legacy and the Impacts on the Amazon Forest Carbon Exchange

    Science.gov (United States)

    Saatchi, S. S.

    2015-12-01

    Sassan Saatchi1,2, Yifan Yu1, Xiang Xu2, Luiz Aragao3, Liana Anderson31Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA2Institute of Environment and Sustainability, University of California, Los Angeles, CA 90045. USA3 Remote Sensing Division, National Institute for Space Research, São José dos Campos, Brazil, 12227-010, BrazilRecent Amazonian droughts have drawn attention to the vulnerability of tropical forests to climate perturbations. Ground and satellite observations of 2005 and 2010 mega-droughts have shown an increase in fire occurrence and tree mortality during the period of drought. Here, we use a combination of satellite observations over a period of about 15 years to examine the legacy of the droughts in terms of impacts on the ecological structure and function of the forests in years following the droughts and the subsequent carbon exchange. Using data from microwave satellite sensors of rainfall, canopy backscatter (2000-2014) and GRACE and GOSAT, we show that the 2005 drought has a legacy of 2-5 years in western Amazonia, by increasing the disturbance in canopy trees and impacting the gross primary production of the forest significantly. Amazonian forests, particularly in the southern region were again impacted by the 2010 mega-drought, causing a legacy of 2-4 years with potential decrease in GPP and productivity observed by GOSAT fluorescence. The persistent of low canopy water content observed by a joint QSCAT and OceanSAT observations were linked to a delay in recharging of the hydrological system observed by GRACE over a period of 2-5 years. The results suggest that Amazonian forests with distinct dry seasons in southern and western regions of the basin are potentially more vulnerable to droughts compared to regions with less seasonality. The long recovery time from the 2005 and 2010 droughts suggests that the occurence of droughts in Amazonia at 5-10 year frequency may lead to long-term alteration of the

  3. Bacteria diversity and microbial biomass in forest, pasture and fallow soils in the southwestern Amazon basin Diversidade de bacteria e biomassa microbiana em solos sob floresta, pastagem e capoeira no sudoeste da Amazônia

    OpenAIRE

    Karina Cenciani; Marcio Rodrigues Lambais; Carlos Clemente Cerri; Lucas Carvalho Basílio de Azevedo; Brigitte Josefine Feigl

    2009-01-01

    It is well-known that Amazon tropical forest soils contain high microbial biodiversity. However, anthropogenic actions of slash and burn, mainly for pasture establishment, induce profound changes in the well-balanced biogeochemical cycles. After a few years the grass yield usually declines, the pasture is abandoned and is transformed into a secondary vegetation called "capoeira" or fallow. The aim of this study was to examine how the clearing of Amazon rainforest for pasture affects: (1) the ...

  4. Predicting biomass of hyperdiverse and structurally complex central Amazonian forests - a virtual approach using extensive field data

    Science.gov (United States)

    Magnabosco Marra, Daniel; Higuchi, Niro; Trumbore, Susan E.; Ribeiro, Gabriel H. P. M.; dos Santos, Joaquim; Carneiro, Vilany M. C.; Lima, Adriano J. N.; Chambers, Jeffrey Q.; Negrón-Juárez, Robinson I.; Holzwarth, Frederic; Reu, Björn; Wirth, Christian

    2016-03-01

    Old-growth forests are subject to substantial changes in structure and species composition due to the intensification of human activities, gradual climate change and extreme weather events. Trees store ca. 90 % of the total aboveground biomass (AGB) in tropical forests and precise tree biomass estimation models are crucial for management and conservation. In the central Amazon, predicting AGB at large spatial scales is a challenging task due to the heterogeneity of successional stages, high tree species diversity and inherent variations in tree allometry and architecture. We parameterized generic AGB estimation models applicable across species and a wide range of structural and compositional variation related to species sorting into height layers as well as frequent natural disturbances. We used 727 trees (diameter at breast height ≥ 5 cm) from 101 genera and at least 135 species harvested in a contiguous forest near Manaus, Brazil. Sampling from this data set we assembled six scenarios designed to span existing gradients in floristic composition and size distribution in order to select models that best predict AGB at the landscape level across successional gradients. We found that good individual tree model fits do not necessarily translate into reliable predictions of AGB at the landscape level. When predicting AGB (dry mass) over scenarios using our different models and an available pantropical model, we observed systematic biases ranging from -31 % (pantropical) to +39 %, with root-mean-square error (RMSE) values of up to 130 Mg ha-1 (pantropical). Our first and second best models had both low mean biases (0.8 and 3.9 %, respectively) and RMSE (9.4 and 18.6 Mg ha-1) when applied over scenarios. Predicting biomass correctly at the landscape level in hyperdiverse and structurally complex tropical forests, especially allowing good performance at the margins of data availability for model construction/calibration, requires the inclusion of predictors that express

  5. Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

    2006-01-10

    Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the

  6. Mortality of large trees and lianas following experimental drought in an Amazon forest.

    Science.gov (United States)

    Nepstad, Daniel C; Tohver, Ingrid Marisa; Ray, David; Moutinho, Paulo; Cardinot, Georgina

    2007-09-01

    Severe drought episodes such as those associated with El Niño Southern Oscillation (ENSO) events influence large areas of tropical forest and may become more frequent in the future. One of the most important forest responses to severe drought is tree mortality, which alters forest structure, composition, carbon content, and flammability, and which varies widely. This study tests the hypothesis that tree mortality increases abruptly during drought episodes when plant-available soil water (PAW) declines below a critical minimum threshold. It also examines the effect of tree size, plant life form (palm, liana, tree) and potential canopy position (understory, midcanopy, overstory) on drought-induced plant mortality. A severe, four-year drought episode was simulated by excluding 60% of incoming throughfall during each wet season using plastic panels installed in the understory of a 1-ha forest treatment plot, while a 1-ha control plot received normal rainfall. After 3.2 years, the treatment resulted in a 38% increase in mortality rates across all stems >2 cm dbh. Mortality rates increased 4.5-fold among large trees (>30 cm dbh) and twofold among medium trees (10-30 cm dbh) in response to the treatment, whereas the smallest stems were less responsive. Recruitment rates did not compensate for the elevated mortality of larger-diameter stems in the treatment plot. Overall, lianas proved more susceptible to drought-induced mortality than trees or palms, and potential overstory tree species were more vulnerable than midcanopy and understory species. Large stems contributed to 90% of the pretreatment live aboveground biomass in both plots. Large-tree mortality resulting from the treatment generated 3.4 times more dead biomass than the control plot. The dramatic mortality response suggests significant, adverse impacts on the global carbon cycle if climatic changes follow current trends.

  7. A new species of Atractus (Reptilia: Ophidia: Colubridae: Dipsadinae) from the Amazon forest region in Brazil

    NARCIS (Netherlands)

    Hoogmoed, M.S.; Prudente, A.L.C.

    2003-01-01

    Three specimens of Atractus natans were found during fieldwork in the “Reserva Mamirauá”, Amazonas and a fourth one in the “Estação Científica Ferreira Penna”, Floresta de Caxiuanã, Pará, Brazil. The specimens from Mamirauá were all collected in floating logs in várzea forest during the period of fl

  8. Community Essay: Sustainable development of the Amazon forest: a fine line between conservation and exploitation?

    OpenAIRE

    Christopher Reyer

    2009-01-01

    This essay constitutes a piece of boundary work between science and policy. It illustrates the conflicts, but also the opportunities, that natural resource management encounters in the twenty-first century. I have tried to provide a widely accessible document that argues why a more holistic approach to conservation and natural resource management is imperative. Inspired by the concept of “Integrated Forest Management,” I conceived the basics for an “Integrated Sustainable Development” strateg...

  9. Carbon emissions from deforestation in the Brazilian Amazon Region

    Directory of Open Access Journals (Sweden)

    V. Genovese

    2009-11-01

    Full Text Available A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000–2002. The NASA-CASA (Carnegie Ames Stanford Approach model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; g C m−2 for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006 were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazônia project were used to map deforested areas. Results show that net primary production (NPP sinks for carbon varied between 4.25 Pg C yr−1 (1 Pg=1015 g and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C yr−1 from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C yr−1 in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may

  10. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    Science.gov (United States)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  11. Forest Restoration Carbon Analysis of Baseline Carbon Emissions and Removal in Tropical Rainforest at La Selva Central, Peru

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Gonzalez; Benjamin Kroll; Carlos R. Vargas

    2006-01-10

    Conversion of tropical forest to agricultural land and pasture has reduced forest extent and the provision of ecosystem services, including watershed protection, biodiversity conservation, and carbon sequestration. Forest conservation and reforestation can restore those ecosystem services. We have assessed forest species patterns, quantified deforestation and reforestation rates, and projected future baseline carbon emissions and removal in Amazon tropical rainforest at La Selva Central, Peru. The research area is a 4800 km{sup 2} buffer zone around the Parque Nacional Yanachaga-Chemillen, Bosque de Proteccion San Matias-San Carlos, and the Reserva Comunal Yanesha. A planned project for the period 2006-2035 would conserve 4000 ha of forest in a proposed 7000 ha Area de Conservacion Municipale de Chontabamba and establish 5600 ha of natural regeneration and 1400 ha of native species plantations, laid out in fajas de enriquecimiento (contour plantings), to reforest 7000 ha of agricultural land. Forest inventories of seven sites covering 22.6 ha in primary forest and 17 sites covering 16.5 ha in secondary forest measured 17,073 trees of diameter {ge} 10 cm. The 24 sites host trees of 512 species, 267 genera, and 69 families. We could not identify the family of 7% of the trees or the scientific species of 21% of the trees. Species richness is 346 in primary forest and 257 in the secondary forest. In primary forest, 90% of aboveground biomass resides in old-growth species. Conversely, in secondary forest, 66% of aboveground biomass rests in successional species. The density of trees of diameter {ge} 10 cm is 366 trees ha{sup -1} in primary forest and 533 trees ha{sup -1} in secondary forest, although the average diameter is 24 {+-} 15 cm in primary forest and 17 {+-} 8 cm in secondary forest. Using Amazon forest biomass equations and wood densities for 117 species, aboveground biomass is 240 {+-} 30 t ha{sup -1} in the primary sites and 90 {+-} 10 t ha{sup -1} in the

  12. Impact of forested fallows on fertility and mercury content in soils of the Tapajós River region, Brazilian Amazon.

    Science.gov (United States)

    Patry, Cynthia; Davidson, Robert; Lucotte, Marc; Béliveau, Annie

    2013-08-01

    Recent research on slash-and-burn agriculture conducted in the Amazonian basin has suggested that soils must be left under forested fallows for at least 10 to 15 years to regain fertility levels comparable to non-disturbed forests in order to allow for short cycle crop cultivation. However, small scale farmers tend nowadays to re-burn secondary forests as soon as after 3 to 5 years, thus could contribute to further reduce soil fertility and could enhance the transfer of mercury (Hg) naturally present in soils of the region towards water courses. The present research project sets out to characterize the impact of forested fallows of differing age and land-use history on soils properties (fertility and Hg contents) in the region of the Tapajós River, an active pioneer front of the Brazilian Amazon. To do this, soil samples in forested fallows of variable age and in control primary forests were retrieved. In general, soil fertility of grouped forested fallows of different ages was similar to that of the primary forests. But when discriminating soils according to their texture, forested fallows on coarse grained soils still had much higher NH4/NO3 ratios, NH4 and Ca contents than primary forests, this even 15 years after burning. The impact of repeated burnings was also assessed. Fallows on coarse grained soils showed an impoverishment for all variables related to fertility when the number of burnings was 5 or more. For fallows on fine grained soils that underwent 5 or more burnings, NO3 contents were low although a cation enrichment was observed. Total soil Hg content was also sensitive to repeated burnings, showing similar losses for forested fallows established on both types of soil. However, Hg linked to coarse particles appeared to migrate back towards fine particles at the surface of coarse grained soils in fallows older than 7 years.

  13. Soil Organic Matter in Forest Ecosystems of the Forest-tundra zone of Central Siberia

    Science.gov (United States)

    Mukhortova, Liudmila

    2010-05-01

    Our study was conducted on 17 forest sample plots in the forest-tundra zone of Central Siberia, Krasnoyarsk region, Russia. They were covered by larch/feather moss/shrub and larch/grass forest types growing on cryozems and podburs (Cryosols). The investigation was aimed at estimating soil organic matter storage and structure in forest ecosystems growing along the northern tree line. Such ecosystems have low rates of exchange processes and biological productivity. Estimating soil carbon in these forest types is important for a deeper understanding of their role in biogeochemical cycles and forecasting consequences of climate changes. Soil organic matter was divided into pools by biodegradation resistance level and, hence, different roles of these pools in biological cycles. The soil organic matter was divided into an easily mineralizable (LMOM) fraction, which includes labile (insoluble) (LOM) and mobile (soluble) (MOM) organic compounds, and a stable organic matter fraction that is humus substances bound with soil matrix. The forest-tundra soil carbon was found to total 30.9 to 125.9 tons/ha. Plant residues were the main part of the soil easily mineralizable organic matter and contained from 13.3 to 62.4% of this carbon. Plant residue carbon was mainly allocated on the soil surface, in the forest litter. Plant residues in the soil (dead roots + other "mortmass") were calculated to contribute 10-30% of the plant residues carbon, or 2.5-15.1% of the total soil carbon. Soil surface and in-soil dead plant material included 60-95% of heavily decomposed residues that made up a forest litter fermentation subhorizon and an "other mortmass" fraction of the root detritus. Mobile organic matter (substances dissolved in water and 0.1N NaOH) of plant residues was found to allocate 15-25% of carbon. In soil humus, MOM contribution ranged 14 to 64%. Easily mineralizable organic matter carbon appeared to generally dominate forest-tundra soil carbon pool. It was measured to

  14. Impact of seasonal hydrological variation on the distributions of tetraether lipids along the Amazon River in the central Amazon basin: implications for the MBT/CBT paleothermometer and the BIT index.

    Science.gov (United States)

    Zell, Claudia; Kim, Jung-Hyun; Abril, Gwenaël; Sobrinho, Rodrigo Lima; Dorhout, Denise; Moreira-Turcq, Patricia; Sinninghe Damsté, Jaap S

    2013-01-01

    Suspended particulate matter (SPM) was collected along the Amazon River in the central Amazon basin and in three tributaries during the rising water (RW), high water (HW), falling water (FW) and low water (LW) season. Changes in the concentration and the distribution of branched glycerol dialkyl glycerol tetraethers (brGDGTs), i.e., the methylation index of branched tetraethers (MBT) and the cyclization of brGDGTs (CBT), were seen in the Amazon main stem. The highest concentration of core lipid (CL) brGDGTs normalized to particulate organic carbon (POC) was found during the HW season. During the HW season the MBT and CBT in the Amazon main stem was also most similar to that of lowland Amazon (terra firme) soils, indicating that the highest input of soil-derived brGDGTs occurred due to increased water runoff. During the other seasons the MBT and CBT indicated an increased influence of in situ production of brGDGTs even though soils remained the main source of brGDGTs. Our results reveal that the influence of seasonal variation is relatively small, but can be clearly detected. Crenarchaeol was mostly produced in the river. Its concentration was lower during the HW season compared to that of the other seasons. Hence, our study shows the complexity of processes that influence the GDGT distribution during the transport from land to ocean. It emphasizes the importance of a detailed study of a river basin to interpret the MBT/CBT and BIT records for paleo reconstructions in adjacent marine setting.

  15. Conversion from forests to pastures in the Colombian Amazon leads to differences in dead wood dynamics depending on land management practices.

    Science.gov (United States)

    Navarrete, Diego; Sitch, Stephen; Aragão, Luiz E O C; Pedroni, Lucio; Duque, Alvaro

    2016-04-15

    Dead wood, composed of coarse standing and fallen woody debris (CWD), is an important carbon (C) pool in tropical forests and its accounting is needed to reduce uncertainties within the strategies to mitigate climate change by reducing deforestation and forest degradation (REDD+). To date, information on CWD stocks in tropical forests is scarce and effects of land-cover conversion and land management practices on CWD dynamics remain largely unexplored. Here we present estimates on CWD stocks in primary forests in the Colombian Amazon and their dynamics along 20 years of forest-to-pasture conversion in two sub-regions with different management practices during pasture establishment: high-grazing intensity (HG) and low-grazing intensity (LG) sub-regions. Two 20-year-old chronosequences describing the forest-to-pasture conversion were identified in both sub-regions. The line-intersect and the plot-based methods were used to estimate fallen and standing CWD stocks, respectively. Total necromass in primary forests was similar between both sub-regions (35.6 ± 5.8 Mg ha(-1) in HG and 37.0 ± 7.4 Mg ha(-1) in LG). An increase of ∼124% in CWD stocks followed by a reduction to values close to those at the intact forests were registered after slash-and-burn practice was implemented in both sub-regions during the first two years of forest-to-pasture conversion. Implementation of machinery after using fire in HG pastures led to a reduction of 82% in CWD stocks during the second and fifth years of pasture establishment, compared to a decrease of 41% during the same period in LG where mechanization is not implemented. Finally, average necromass 20 years after forest-to-pasture conversion decreased to 3.5 ± 1.4 Mg ha(-1) in HG and 9.3 ± 3.5 Mg ha(-1) in LG, representing a total reduction of between 90% and 75% in each sub-region, respectively. These results highlight the importance of low-grazing intensity management practices during ranching activities in the Colombian

  16. Solute and sediment export from Amazon forest and soybean headwater streams.

    Science.gov (United States)

    Riskin, Shelby H; Neill, Christopher; Jankowski, KathiJo; Krusche, Alex V; McHorney, Richard; Elsenbeer, Helmut; Macedo, Marcia N; Nunes, Darlisson; Porder, Stephen

    2017-01-01

    Intensive cropland agriculture commonly increases streamwater solute concentrations and export from small watersheds. In recent decades, the lowland tropics have become the world's largest and most important region of cropland expansion. Although the effects of intensive cropland agriculture on streamwater chemistry and watershed export have been widely studied in temperate regions, their effects in tropical regions are poorly understood. We sampled seven headwater streams draining watersheds in forest (n = 3) or soybeans (n = 4) to examine the effects of soybean cropping on stream solute concentrations and watershed export in a region of rapid soybean expansion in the Brazilian state of Mato Grosso. We measured stream flows and concentrations of NO3(-) , PO4(3-) , SO4(2-) , Cl(-) , NH4(+) , Ca(2+) , Mg(2+) , Na(+) , K(+) , Al(3+) , Fe(3+) , and dissolved organic carbon (DOC) biweekly to monthly to determine solute export. We also measured stormflows and stormflow solute concentrations in a subset of watersheds (two forest, two soybean) during two/three storms, and solutes and δ(18) O in groundwater, rainwater, and throughfall to characterize watershed flowpaths. Concentrations of all solutes except K(+) varied seasonally in streamwater, but only Fe(3+) concentrations differed between land uses. The highest streamwater and rainwater solute concentrations occurred during the peak season of wildfires in Mato Grosso, suggesting that regional changes in atmospheric composition and deposition influence seasonal stream solute concentrations. Despite no concentration differences between forest and soybean land uses, annual export of NH4(+) , PO4(3-) , Ca(2+) , Fe(3+) , Na(+) , SO4(2-) , DOC, and TSS were significantly higher from soybean than forest watersheds (5.6-fold mean increase). This increase largely reflected a 4.3-fold increase in water export from soybean watersheds. Despite this increase, total solute export per unit watershed area (i.e., yield) remained

  17. Quinolone resistance in absence of selective pressure: the experience of a very remote community in the Amazon forest.

    Directory of Open Access Journals (Sweden)

    Lucia Pallecchi

    Full Text Available BACKGROUND: Quinolones are potent broad-spectrum bactericidal agents increasingly employed also in resource-limited countries. Resistance to quinolones is an increasing problem, known to be strongly associated with quinolone exposure. We report on the emergence of quinolone resistance in a very remote community in the Amazon forest, where quinolones have never been used and quinolone resistance was absent in 2002. METHODS: The community exhibited a considerable level of geographical isolation, limited contact with the exterior and minimal antibiotic use (not including quinolones. In December 2009, fecal carriage of antibiotic resistant Escherichia coli was investigated in 120 of the 140 inhabitants, and in 48 animals reared in the community. All fluoroquinolone-resistant isolates were genotyped and characterized for the mechanisms of plasmid- and chromosomal-mediated quinolone resistance. PRINCIPAL FINDINGS: Despite the characteristics of the community remained substantially unchanged during the period 2002-2009, carriage of quinolone-resistant E. coli was found to be common in 2009 both in humans (45% nalidixic acid, 14% ciprofloxacin and animals (54% nalidixic acid, 23% ciprofloxacin. Ciprofloxacin-resistant isolates of human and animal origin showed multidrug resistance phenotypes, a high level of genetic heterogeneity, and a combination of GyrA (Ser83Leu and Asp87Asn and ParC (Ser80Ile substitutions commonly observed in fluoroquinolone-resistant clinical isolates of E. coli. CONCLUSIONS: Remoteness and absence of antibiotic selective pressure did not protect the community from the remarkable emergence of quinolone resistance in E. coli. Introduction of the resistant strains from antibiotic-exposed settings is the most likely source, while persistence and dissemination in the absence of quinolone exposure is likely mostly related with poor sanitation. Interventions aimed at reducing the spreading of resistant isolates (by improving sanitation

  18. Highways and outposts: economic development and health threats in the central Brazilian Amazon region

    Directory of Open Access Journals (Sweden)

    Damacena Giseli N

    2010-06-01

    Full Text Available Abstract Background Economic development is often evoked as a driving force that has the capacity to improve the social and health conditions of remote areas. However, development projects produce uneven impacts on local communities, according to their different positions within society. This study examines the spatial distribution of three major health threats in the Brazilian Amazon region that may undergo changes through highway construction. Homicide mortality, AIDS incidence and malaria prevalence rates were calculated for 70 municipalities located within the areas of influence of the Cuiabá-Santarém highway (BR-163, i.e. in the western part of the state of Pará state and the northern part of Mato Grosso. Results The municipalities were characterized using social and economic indicators such as gross domestic product (GDP, urban and indigenous populations, and recent migration. The municipalities' connections to the region's main transportation routes (BR-163 and Trans-Amazonian highways, along with the Amazon and Tapajós rivers were identified by tagging the municipalities that have boundaries crossing these routes, using GIS overlay operations. Multiple regression was used to identify the major driving forces and constraints relating to the distribution of health threats. The main explanatory variables for higher malaria prevalence were: proximity to the Trans-Amazonian highway, high proportion of indigenous population and low proportion of migrants. High homicide rates were associated with high proportions of migrants, while connection to the Amazon River played a protective role. AIDS incidence was higher in municipalities with recent increases in GDP and high proportions of urban population. Conclusions Highways induce social and environmental changes and play different roles in spreading and maintaining diseases and health threats. The most remote areas are still protected against violence but are vulnerable to malaria. Rapid

  19. A forensic entomology case from the Amazon rain forest of Brazil.

    Science.gov (United States)

    Pujol-Luz, José R; Marques, Helder; Ururahy-Rodrigues, Alexandre; Rafael, José Albertino; Santana, Fernando H A; Arantes, Luciano C; Constantino, Reginaldo

    2006-09-01

    The first case of application of forensic entomology in the Brazilian Amazonia is described. The corpses of 26 men were found in the rainforest in Rondonia State, Brazil. Fly larvae collected on the bodies during autopsy were identified as Paralucilia fulvinota (Diptera, Calliphoridae). No data or specimens were collected at the crime scene. At the laboratory, the larvae developed into pupae in 58 h and into adults in 110.5 h. The total development time for P. fulvinota was measured in field experiments inside the forest. The age of the larvae when collected from the bodies was estimated as the difference between the time required for them to become adults and the total development time for this species. The estimated age of the maggots and the minimum postmortem interval was 5.7 days.

  20. Distribution and Numbers of Pygmies in Central African Forests.

    Science.gov (United States)

    Olivero, Jesús; Fa, John E; Farfán, Miguel A; Lewis, Jerome; Hewlett, Barry; Breuer, Thomas; Carpaneto, Giuseppe M; Fernández, María; Germi, Francesco; Hattori, Shiho; Head, Josephine; Ichikawa, Mitsuo; Kitanaishi, Koichi; Knights, Jessica; Matsuura, Naoki; Migliano, Andrea; Nese, Barbara; Noss, Andrew; Ekoumou, Dieudonné Ongbwa; Paulin, Pascale; Real, Raimundo; Riddell, Mike; Stevenson, Edward G J; Toda, Mikako; Vargas, J Mario; Yasuoka, Hirokazu; Nasi, Robert

    2016-01-01

    Pygmy populations occupy a vast territory extending west-to-east along the central African belt from the Congo Basin to Lake Victoria. However, their numbers and actual distribution is not known precisely. Here, we undertake this task by using locational data and population sizes for an unprecedented number of known Pygmy camps and settlements (n = 654) in five of the nine countries where currently distributed. With these data we develop spatial distribution models based on the favourability function, which distinguish areas with favourable environmental conditions from those less suitable for Pygmy presence. Highly favourable areas were significantly explained by presence of tropical forests, and by lower human pressure variables. For documented Pygmy settlements, we use the relationship between observed population sizes and predicted favourability values to estimate the total Pygmy population throughout Central Africa. We estimate that around 920,000 Pygmies (over 60% in DRC) is possible within favourable forest areas in Central Africa. We argue that fragmentation of the existing Pygmy populations, alongside pressure from extractive industries and sometimes conflict with conservation areas, endanger their future. There is an urgent need to inform policies that can mitigate against future external threats to these indigenous peoples' culture and lifestyles.

  1. Distribution and Numbers of Pygmies in Central African Forests.

    Directory of Open Access Journals (Sweden)

    Jesús Olivero

    Full Text Available Pygmy populations occupy a vast territory extending west-to-east along the central African belt from the Congo Basin to Lake Victoria. However, their numbers and actual distribution is not known precisely. Here, we undertake this task by using locational data and population sizes for an unprecedented number of known Pygmy camps and settlements (n = 654 in five of the nine countries where currently distributed. With these data we develop spatial distribution models based on the favourability function, which distinguish areas with favourable environmental conditions from those less suitable for Pygmy presence. Highly favourable areas were significantly explained by presence of tropical forests, and by lower human pressure variables. For documented Pygmy settlements, we use the relationship between observed population sizes and predicted favourability values to estimate the total Pygmy population throughout Central Africa. We estimate that around 920,000 Pygmies (over 60% in DRC is possible within favourable forest areas in Central Africa. We argue that fragmentation of the existing Pygmy populations, alongside pressure from extractive industries and sometimes conflict with conservation areas, endanger their future. There is an urgent need to inform policies that can mitigate against future external threats to these indigenous peoples' culture and lifestyles.

  2. An Intensive Study of Aerosol Optical Properties in the Outflow of the Manaus Urban Plume, in Central Amazon

    Science.gov (United States)

    Artaxo, P.; Cirino, G. G.; Brito, J.; Rizzo, L. V.; Barbosa, H. M.; Carbone, S.; Holanda, B. A.; Souza, R. A. F. D.; Tota, J.; Martin, S. T.

    2015-12-01

    In this study, one year of ground-based observations of aerosol optical properties from a site impacted by urban emissions in Central Amazon of Brazil are assessed as part of results from GoAmazon2014/5 experiment. The aerosol absorption (σa) and scattering (σs) coefficients, as well as single scattering albedo (SSA) are analyzed to aid in characterizing Manaus' urban aerosol at GoAmazon T2 site. There is a distinct diurnal variation for (σa) it was mainly attributed to the severe emission of particulate pollutants and black carbon during the morning and evening traffic rush hours. The decrease of (σa) nearly at noon (12:00-14:00 LT) was a result of strong atmospheric mixing and dilution due to the elevated height of atmospheric planetary boundary layer (PBL). After sunset (18:00 LT), the formation of stable nocturnal PBL even in atmospheric inversion led to a low atmospheric diffusion ability to aerosols and thus relatively high (σa) and (σs) throughout the night. Indeed, it was observed a strong dependence on local wind confirmed by simulated back trajectories in all two seasons. Overall, the wind dependence results provide valuable information about the locations of aerosol pollution sources and suggest that the air pollution in dry season is a regional problem but in the wet season it is mainly affected by local urban emissions. We have also seen an interesting difference in variability of (σs) and (σa) during 8:00-13:00 LT in wet season. A clear decrease was observed for (σa), while a smooth increase during 11:00-13:00 LT was presented for (σs). This is possibly a consequence of secondary aerosol production. (σa) is controlled to a large degree by primary aerosols such as black carbon that are emitted directly from pollution sources like vehicles, while (σs) is related to secondary aerosols such as sulfate and nitrate that contribute the most to light scattering. SSA was relatively low around 7:00-08:00 LT, which reflected that (σa) increased more

  3. Functional trophic composition of the ichthyofauna of forest streams in eastern Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Gabriel Lourenco Brejao

    2013-06-01

    Full Text Available This study aimed to describe the functional organization of the ichthyofauna of forest streams from northeastern Pará State, Brazil, based on behavioral observation of species' feeding tactics. Seven streams were sampled between June and November, 2010, during snorkeling sessions, totaling 91h 51min of visual censuses at day, dusk, and night periods. Seventy three species distributed in six orders, 26 families and 63 genera were observed, with dominance of Characiformes, followed by Siluriformes. From information gathered by ad libitum observations, each species was included in one of 18 functional trophic groups (FTGs, according to two main characteristics: (1 its most frequently observed feeding tactic; and (2 its spatial distribution in the stream environment, considering their horizontal (margins or main channel and vertical (water column dimensions. The most frequent FTGs observed were Nocturnal invertebrate pickers (9 species, Diurnal channel drift feeders (8 spp., Diurnal surface pickers (7 spp., and Ambush and stalking predators (6 spp.. The FTGs herein defined enable a comparative analysis of the structure and composition of ichthyofauna in different basins and environmental conditions, which presents an alternative approach to the use of taxonomic structure in ecological studies. The ichthyofauna classification based in FTGs proposed in this study is compared to three other classifications, proposed by Sazima (1986, Sabino & Zuanon (1998 and Casatti et al. (2001.

  4. Vegetation analyses of Sebangau peat swamp forest, Central Kalimantan

    Directory of Open Access Journals (Sweden)

    EDI MIRMANTO

    2010-04-01

    Full Text Available Mirmanto E (2010 Vegetation analyses of Sebangau peat swamp forest, Central Kalimantan. Biodiversitas 11: 82-88. The vegetation analysis study has been made in Sebangau peat-swamp forest, Central Kalimantan. Eight permanent plots of 50-m x 50-m were set-up distribute from close to the river with shallow peat-layer up to the inland with relatively deep peat-layer. Enumeration of trees (GBH > 15 cm was conducted in all of 8 plots. Overall there are 133 species (taxa were recorded within 8 plots belong to 34 families where Dipterocarpaceae, Clusiaceae, Myrtaceae and Sapotaceae were the most dominant family. Out of all species recorded, Combretocarpus rotundatus, Palaquium leiocarpum, Stemonurus scorpioides and Tristania whittiana were the most dominant species. Two community’s types namely Combretocarpus rotundatus-Shorea balangeran community and Palaquium leiocarpum-Eugenia densinervium community were recognized and they distributed in slightly different habitat condition. The sequence of these two communities’ shows significantly related to both distances to river and peat-depth. In addition there was indication the presence of habitat preference among tree species.

  5. Amazon forest ecosystem responses to elevated atmospheric CO2 and alterations in nutrient availability: filling the gaps with model-experiment integration

    Directory of Open Access Journals (Sweden)

    Florian eHofhansl

    2016-02-01

    Full Text Available The impacts of elevated CO2 (eCO2 and alterations in nutrient availability on the carbon (C storage capacity and resilience of the Amazon forest remain highly uncertain. Carbon dynamics are controlled by multiple eco-physiological processes responding to environmental change, but we lack solid experimental evidence, hampering theory development and thus representation in ecosystem models. Here, we present two ecosystem-scale manipulation experiments, to be carried out in the Amazon, that examine tropical ecosystem responses to eCO2 and nutrient addition and thus will elucidate the representation of crucial ecological processes by ecosystem models. We highlight current gaps in our understanding of tropical ecosystem responses to projected global changes in light of the eco-physiological assumptions considered by current ecosystem models. We conclude that a more detailed process-based representation of the spatial (e.g. soil type; plant functional type and temporal (seasonal and inter-annual variation diversity of tropical forests is needed to enhance model predictions of ecosystem responses to projected global environmental change.

  6. Seed size influence on germination responses to light and temperature of seven pioneer tree species from the Central Amazon

    Directory of Open Access Journals (Sweden)

    Fabiana F. Aud

    2012-09-01

    Full Text Available In Amazon secondary forests are dominated by pioneer species that typically produce large amounts of small and dormant seeds that are able to form a persistent soil seed bank. Seed dormancy in this group of species is overcome by environmental conditions found in open areas, such as high irradiation or alternating temperatures. Nevertheless, a variety of germination responses to environmental factors is known among pioneers; some of them may germinate in diffuse light or in darkness condition at constant temperature. Seed mass can be considered as one of the factors that promotes this variety. Regarding species with very small seeds, it seems that the trigger for germination is light and for larger seeds temperature alternation may be a more important stimulus. In this study we established a relationship between seed mass and germination response to light and alternating temperature for a group of seven woody pioneer species from the Amazon forest. We found that an increase in seed mass was followed by a decrease in the need for light and an increase in the tolerance to alternating temperatures. Understanding germination strategies may contribute with the knowledge of species coexistence in high diverse environments and also may assist those involved in forest management and restoration.Na Amazônia as florestas secundárias são dominadas por espécies pioneiras que, normalmente, produzem grandes quantidades de sementes pequenas, dormentes e capazes de formar bancos de sementes no solo. A dormência neste grupo de espécies é superada pelas condições ambientais de áreas abertas, como alta irradiação ou alternância de temperaturas. No entanto, uma variedade de respostas de germinação aos fatores ambientais é conhecida entre as pioneiras; algumas germinam em luz difusa ou no escuro sob temperatura constante. Um dos fatores promotores desta variedade é a massa das sementes. Parece que para as espécies com sementes muito pequenas, o est

  7. The biomass burning aerosol influence on precipitation over the Central Amazon: an observational study

    Directory of Open Access Journals (Sweden)

    W. A. Gonçalves

    2014-07-01

    Full Text Available Understanding the aerosol influence on clouds and precipitation is an important key to reduce uncertainties in simulations of climate change scenarios with regards to deforestation fires. Here, we associate rainfall characteristics obtained by an S-Band radar in the Amazon with in situ measurements of biomass burning aerosols for the entire year of 2009. The most important results were obtained during the dry semester (July–December. The results indicate that the aerosol influence on precipitating systems is modulated by the atmospheric instability degree. For stable atmospheres, the higher the aerosol concentration, the lower the precipitation over the region. On the other hand, for unstable cases, higher concentrations of particulate material are associated with more precipitation, elevated presence of ice and larger rain cells, which suggests an association with long lived systems. The results presented were statistically significant. However, due to the limitation imposed by the dataset used, some important features such as wet scavenging and droplet size distribution need further clarification. Regional climate model simulations in addition with new field campaigns could aggregate information to the aerosol/precipitation relationship.

  8. Coupled carbon-water exchange of the Amazon rain forest, I. Model description, parameterization and sensitivity analysis

    Directory of Open Access Journals (Sweden)

    E. Simon

    2005-04-01

    Full Text Available Detailed one-dimensional multilayer biosphere-atmosphere models, also referred to as CANVEG models, are used for more than a decade to describe coupled water-carbon exchange between the terrestrial vegetation and the lower atmosphere. Within the present study, a modified CANVEG scheme is described. A generic parameterization and characterization of biophysical properties of Amazon rain forest canopies is inferred using available field measurements of canopy structure, in-canopy profiles of horizontal wind speed and radiation, canopy albedo, soil heat flux and soil respiration, photosynthetic capacity and leaf nitrogen as well as leaf level enclosure measurements made on sunlit and shaded branches of several Amazonian tree species during the wet and dry season. The sensitivity of calculated canopy energy and CO2 fluxes to the uncertainty of individual parameter values is assessed. In the companion paper, the predicted seasonal exchange of energy, CO2, ozone and isoprene is compared to observations.

    A bi-modal distribution of leaf area density with a total leaf area index of 6 is inferred from several observations in Amazonia. Predicted light attenuation within the canopy agrees reasonably well with observations made at different field sites. A comparison of predicted and observed canopy albedo shows a high model sensitivity to the leaf optical parameters for near-infrared short-wave radiation (NIR. The predictions agree much better with observations when the leaf reflectance and transmission coefficients for NIR are reduced by 25–40%. Available vertical distributions of photosynthetic capacity and leaf nitrogen concentration suggest a low but significant light acclimation of the rain forest canopy that scales nearly linearly with accumulated leaf area.

    Evaluation of the biochemical leaf model, using the enclosure measurements, showed that recommended parameter

  9. Distribution of Aboveground Live Biomass in the Amazon Basin

    Science.gov (United States)

    Saatchi, S. S.; Houghton, R. A.; DosSantos Alvala, R. C.; Soares, J. V.; Yu, Y.

    2007-01-01

    The amount and spatial distribution of forest biomass in the Amazon basin is a major source of uncertainty in estimating the flux of carbon released from land-cover and land-use change. Direct measurements of aboveground live biomass (AGLB) are limited to small areas of forest inventory plots and site-specific allometric equations that cannot be readily generalized for the entire basin. Furthermore, there is no spaceborne remote sensing instrument that can measure tropical forest biomass directly. To determine the spatial distribution of forest biomass of the Amazon basin, we report a method based on remote sensing metrics representing various forest structural parameters and environmental variables, and more than 500 plot measurements of forest biomass distributed over the basin. A decision tree approach was used to develop the spatial distribution of AGLB for seven distinct biomass classes of lowland old-growth forests with more than 80% accuracy. AGLB for other vegetation types, such as the woody and herbaceous savanna and secondary forests, was directly estimated with a regression based on satellite data. Results show that AGLB is highest in Central Amazonia and in regions to the east and north, including the Guyanas. Biomass is generally above 300Mgha(sup 1) here except in areas of intense logging or open floodplains. In Western Amazonia, from the lowlands of Peru, Ecuador, and Colombia to the Andean mountains, biomass ranges from 150 to 300Mgha(sup 1). Most transitional and seasonal forests at the southern and northwestern edges of the basin have biomass ranging from 100 to 200Mgha(sup 1). The AGLB distribution has a significant correlation with the length of the dry season. We estimate that the total carbon in forest biomass of the Amazon basin, including the dead and below ground biomass, is 86 PgC with +/- 20% uncertainty.

  10. Impact of seasonal hydrological variation on the distributions of branched and isoprenoid tetraether lipids along the Amazon River in the central Amazon basin: Implications for the MBT/CBT paleothermometer and the BIT index

    Science.gov (United States)

    Zell, Claudia; Kim, Jung-Hyun; Lima Sobrinho, Rodrigo; Moreira-Turcq, Patricia; Abril Abril, Gwenaël; Sinninghe Damsté, Jaap S.

    2013-04-01

    We assessed the effects of hydrodynamical variations on the distributions and sources of branched and isoprenoid glycerol dialkyl glycerol tetraethers (brGDGTs and isoGDGTs, respectively) transported by the Amazon River in the central Amazon basin. Particulate suspended matter was collected in the Amazonian rivers and floodplain lakes at four different seasons (rising water, high water, falling water, and low water) at 6 stations along the main stem of the Amazon River, 3 tributaries (Negro, Madeira, and Tapajós) and 5 floodplain lakes (Manacapuru, Janauacá, Mirituba, Canaçari and Curuai). The concentration and distribution of brGDGTs of both core lipid (CL) and intact polar lipid (IPL)-derived fractions were investigated applying IPL-derived brGDGTs as an indicator of brGDGTs derived from recently-living cells. The organic carbon (OC)-normalized concentrations of CL brGDGTs mimicked the trend of the hydrological variation with highest concentrations during the high water season. The CL brGDGT distributions were most alike those of lowland Amazon (terra firme) soils during the high water season, indicating that input of soil-derived, allochthonous brGDGTs to the Amazon River was highest at that period. Accordingly, the methylation index of branched tetraethers (MBT) and the cyclization ratio of branched tetraethers (CBT) varied corresponding to the hydrological changes, with the increasing influence of in situ produced brGDGTs in rivers and floodplain lakes during the low water season. The concentrations of CL crenarchaeol were highest during the low water season, due to increased autochthonous production. The concentration changes of both brGDGTs and crenarchaeol lead to a variation of the branched and isoprenoid tetraether (BIT) index between 0.4 (low water) and 0.9 (high water). Hence, our study hints at the effect of hydrodynamical variations on the source of brGDGTs and isoGDGTs transported by rivers to the ocean and emphasized the importance of a detailed

  11. Environmental changes during the last millennium based on multi-proxy palaeoecological records in a savanna-forest mosaic from the northernmost Brazilian Amazon region.

    Science.gov (United States)

    Meneses, Maria Ecilene N S; Costa, Marcondes L; Enters, Dirk; Behling, Hermann

    2015-09-01

    The environmental changes and the dynamics of the savanna-forest mosaic, over the last 1050 years, have been reconstructed by pollen, charcoal, radiocarbon dating mineralogical and geochemical analyses of sediment cores taken from three different Mauritia flexuosapalm swamps in the northernmost part of the Brazilian Amazon region (northern state of Roraima). Studies on the relationship between the modern pollen rain and the regional vegetation provide additional information for the interpretation of the fossil pollen records. The fossil pollen assemblages and geochemical results indicate relatively wet climatic conditions throughout the recorded period. Despite these moist conditions, fires were frequent and are one of the reasons for the dominance of a grassy savanna instead of forest expansion in the study area. Considering the generally wet climatic conditions, these fires were most likely caused by human activities. Even today, fires hinder forest expansion into savanna areas. Sandy hydromorphic soils may also act as an edaphic control to maintain the current sharp boundary between forest and savanna ecosystems.

  12. Modelling basin-wide variations in Amazon forest productivity – Part 1: Model calibration, evaluation and upscaling functions for canopy photosynthesis

    Directory of Open Access Journals (Sweden)

    L. M. Mercado

    2009-03-01

    Full Text Available Given the importance of Amazon rainforest in the global carbon and hydrological cycles, there is a need to parameterize and validate ecosystem gas exchange and vegetation models for this region in order to adequately simulate present and future carbon and water balances. In this study, a sun and shade canopy gas exchange model is calibrated and evaluated at five rainforest sites using eddy correlation measurements of carbon and energy fluxes.

    Results from the model-data evaluation suggest that with adequate parameterisation, photosynthesis models taking into account the separation of diffuse and direct irradiance and the dynamics of sunlit and shaded leaves can accurately represent photosynthesis in these forests. Also, stomatal conductance formulations that only take into account atmospheric demand fail to correctly simulate moisture and CO2 fluxes in forests with a pronounced dry season, particularly during afternoon conditions. Nevertheless, it is also the case that large uncertainties are associated not only with the eddy correlation data, but also with the estimates of ecosystem respiration required for model validation. To accurately simulate Gross Primary Productivity (GPP and energy partitioning the most critical parameters and model processes are the quantum yield of photosynthetic uptake, the maximum carboxylation capacity of Rubisco, and simulation of stomatal conductance.

    Using this model-data synergy, we developed scaling functions to provide estimates of canopy photosynthetic parameters for a~range of diverse forests across the Amazon region, utilising the best fitted parameter for maximum carboxylation capacity of Rubisco, and foliar nutrients (N and P for all sites.

  13. Arbuscular mycorrhizal fungal communities along a pedo-hydrological gradient in a Central Amazonian terra firme forest.

    Science.gov (United States)

    de Oliveira Freitas, Rejane; Buscardo, Erika; Nagy, Laszlo; dos Santos Maciel, Alex Bruno; Carrenho, Rosilaine; Luizão, Regina C C

    2014-01-01

    Little attention has been paid to plant mutualistic interactions in the Amazon rainforest, and the general pattern of occurrence and diversity of arbuscular mycorrhizal fungi (AMF) in these ecosystems is largely unknown. This study investigated AMF communities through their spores in soil in a 'terra firme forest' in Central Amazonia. The contribution played by abiotic factors and plant host species identity in regulating the composition, abundance and diversity of such communities along a topographic gradient with different soils and hydrology was also evaluated. Forty-one spore morphotypes were observed with species belonging to the genera Glomus and Acaulospora, representing 44 % of the total taxa. Soil texture and moisture, together with host identity, were predominant factors responsible for shaping AMF communities along the pedo-hydrological gradient. However, the variability within AMF communities was largely associated with shifts in the relative abundance of spores rather than changes in species composition, confirming that common AMF species are widely distributed in plant communities and all plants recruited into the forest are likely to be exposed to the dominant sporulating AMF species.

  14. The Net Carbon Flux due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis using a Process-Based Model

    Science.gov (United States)

    Hirsch, A. I.; Little, W. S.; Houghton, R. A.; Scott, N. A.; White, J. D.

    2004-01-01

    We developed a process-based model of forest growth, carbon cycling, and land cover dynamics named CARLUC (for CARbon and Land Use Change) to estimate the size of terrestrial carbon pools in terra firme (non-flooded) forests across the Brazilian Legal Amazon and the net flux of carbon resulting from forest disturbance and forest recovery from disturbance. Our goal in building the model was to construct a relatively simple ecosystem model that would respond to soil and climatic heterogeneity that allows us to study of the impact of Amazonian deforestation, selective logging, and accidental fire on the global carbon cycle. This paper focuses on the net flux caused by deforestation and forest re-growth over the period from 1970-1998. We calculate that the net flux to the atmosphere during this period reached a maximum of approx. 0.35 PgC/yr (1PgC = 1 x 10(exp I5) gC) in 1990, with a cumulative release of approx. 7 PgC from 1970- 1998. The net flux is higher than predicted by an earlier study by a total of 1 PgC over the period 1989-1 998 mainly because CARLUC predicts relatively high mature forest carbon storage compared to the datasets used in the earlier study. Incorporating the dynamics of litter and soil carbon pools into the model increases the cumulative net flux by approx. 1 PgC from 1970-1998, while different assumptions about land cover dynamics only caused small changes. The uncertainty of the net flux, calculated with a Monte-Carlo approach, is roughly 35% of the mean value (1 SD).

  15. Potential change in forest types and stand heights in central Siberia in a warming climate

    Science.gov (United States)

    Tchebakova, N. M.; Parfenova, E. I.; Korets, M. A.; Conard, S. G.

    2016-03-01

    Previous regional studies in Siberia have demonstrated climate warming and associated changes in distribution of vegetation and forest types, starting at the end of the 20th century. In this study we used two regional bioclimatic envelope models to simulate potential changes in forest types distribution and developed new regression models to simulate changes in stand height in tablelands and southern mountains of central Siberia under warming 21st century climate. Stand height models were based on forest inventory data (2850 plots). The forest type and stand height maps were superimposed to identify how heights would change in different forest types in future climates. Climate projections from the general circulation model Hadley HadCM3 for emission scenarios B1 and A2 for 2080s were paired with the regional bioclimatic models. Under the harsh A2 scenario, simulated changes included: a 80%-90% decrease in forest-tundra and tundra, a 30% decrease in forest area, a ˜400% increase in forest-steppe, and a 2200% increase in steppe, forest-steppe and steppe would cover 55% of central Siberia. Under sufficiently moist conditions, the southern and middle taiga were simulated to benefit from 21st century climate warming. Habitats suitable for highly-productive forests (≥30-40 m stand height) were simulated to increase at the expense of less productive forests (10-20 m). In response to the more extreme A2 climate the area of these highly-productive forests would increase 10%-25%. Stand height increases of 10 m were simulated over 35%-50% of the current forest area in central Siberia. In the extremely warm A2 climate scenario, the tall trees (25-30 m) would occur over 8%-12% of area in all forest types except forest-tundra by the end of the century. In forest-steppe, trees of 30-40 m may cover some 15% of the area under sufficient moisture.

  16. Microbiological assessment of technogenicaly disturbed forest ecosystems in Central Siberia

    Directory of Open Access Journals (Sweden)

    A. V. Bogorodskaya

    2016-04-01

    Full Text Available The state of soil microbial complexes of forest ecosystems of Central Siberia, disturbed by cutting, fires, emissions of pollutants and mining was investigated. The most appropriate indicators for early diagnosis of the condition and sustainability assessment of soils were the contents of microbial biomass, the intensity of the basal respiration and microbial metabolic quotient. Recorded time quantitative and structural-taxonomic restructuring of ecological trophic groups of microorganisms exhibited orientation of the elementary soil-biological processes and allowed detail to assess the state of soils of disturbed forest ecosystems. Successions of soil microorganisms reflected stages of plant succession after cutting. Structural and functional changes in the microbial soil complexes marked by only one-two years after cutting of coniferous forests. For the grassy stage in deciduous young stands, there was an increase in soil microbial activity that accompanied the development of the sod process. Microbiological processes were balanced and comparable to the control at the stage of closed 30-year-old stands. Post-fire recovery of the microbial soil complexes was determined by fire severity and by the properties of soils and vegetation succession. Functional activity of microbial soil complexes were recovered in one or two years after a low-intensity fires, whereas after high-intensity fires – was not recovered in eight years. Indicative responses of soil microorganisms in the sustainable impact of aggressive pollutants tundra zone of the Norilsk industrial region were registered at the functional and at the structural level. In areas of moderate and weak disturbances of vegetation, there were quantitative changes, whereas strong disturbances and constant exposure to pollutants marked structural and taxonomic adjustment of microbial soil complexes, disturbed dynamic processes of synthesis-mineralization and reduced adaptive capacity saprophytic

  17. Mass balance of total mercury (Hg) in two small stream catchments in the Central Amazon, Brazil

    OpenAIRE

    Peleja,José Reinaldo Pacheco

    2007-01-01

    O efeito da podzolização do solo no ciclo biogeoquímico do mercúrio (Hg) foi investigado na Amazônia Central através de um estudo de balanço de massas de Hg total em duas microbacias naturais próximas à cidade de Manaus, no Estado do Amazonas, Brasil. A primeira microbacia drena o igarapé de água clara Barro Branco na Reserva Florestal Adolfo Ducke e drena Latossolos amarelos em processo leve de podzolização. A segunda microbacia drena o igarapé da Campina localizado na Reserva Florestal da C...

  18. Perceptions of environmental change and use of traditional knowledge to plan riparian forest restoration with relocated communities in Alcântara, Eastern Amazon

    Science.gov (United States)

    2014-01-01

    . Conclusions Slash-and-burn agriculture is the main source of livelihood but also the main driver of forest degradation. Effective restoration approaches must transform problems into solutions by empowering local people. Successional agroforestry combining annual crops and trees may be a suitable transitional phase for restoration. The model must be designed collectively and include species of ecological, cultural, and socioeconomic value. In deprived communities of the Amazon, forest restoration must be a process that combines environmental and social gains. PMID:24468421

  19. O Crescimento de duas espécies florestais pioneiras, pau-de-balsa (Ochroma lagopus Sw. e caroba (Jacaranda copaia D. Don, usadas para recuperação de áreas degradadas pela agricultura na Amazônia Central, Brasil Growth of two forest pioneer species, pau-de-balsa (Ochroma lagopus Sw. e caroba (Jacaranda copaia D. Don, used for rehabilitation of degraded areas from agriculture in Central Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    Antenor Pereira Barbosa

    2003-01-01

    Full Text Available O objetivo deste trabalho foi estudar o crescimento das espécies florestais pioneiras pau-de-balsa (Ochroma lagopus Sw. e caroba (Jacaranda copaia D. Don para a recuperação de áreas degradadas pela agricultura. Na área, situada no km 120 da BR-174, tinha sido plantado mandioca e banana e abandonada há 8 anos, formando uma capoeira de porte baixo e rala. O experimento foi instalado em maio/98, com e sem gradagem da área. O espaçamento foi de 3x3m, em covas de 20 cm (diâmetro x 30 cm (profundidade, com adubação de 150g/cova de NPK (4-16-8 e calcário dolomítico na proporção de 3:1. Para a avaliação do crescimento, foram medidas a altura e o diâmetro das plantas aos 2 meses (julho/98 e a cada ano aproximadamente (junho/99, setembro/00 e maio/01. Os dados foram analisados através do delineamento inteiramente casualisado. A sobrevivência do pau-de-balsa foi maior em área gradeada (97,1% do que em area não gradeada (92,5%, após o primeiro ano do plantio; da caroba, foi cerca de 90% e sem diferenças entre as areas. A altura e diâmetro do pau-de-balsa, foram maiores em área gradeada, a partir do primeiro ano, chegando no terceiro ano a 11,85 m de altura e 11,42 cm de diâmetro. Na caroba, a diferença ocorreu a partir do segundo ano e no terceiro chegou a 8,37 m de altura e 11,18 cm de diâmetro. Além de outros fatores inerentes às espécies, o solo mais friável das áreas gradeadas, possibilitou um maior crescimento em altura e diâmetro das duas espécies estudadas.The objective of experiment was study the growth of pioneer forest species pau-de-balsa (Ochroma lagopus and caroba (Jacaranda copaia to rehabilitate degraded areas from agriculture. The experiment carried out at Br-174, km 120. After the use for cassava and banana plantations the area was abandoned for 8 years. The secondary forest that took place was of low height and sparse trees. The experiment was installed at may/98 and composed by harrowed and no harrowed

  20. Food resource partitioning in a fish community of the central Amazon floodplain

    Directory of Open Access Journals (Sweden)

    Bernard de Mérona

    Full Text Available Diets of most of fish species inhabiting a floodplain lake in central Amazonia were studied over a two years and half period. Based on the percentage of relative occurrence of 11 major food categories a classification of species in 11 feeding guilds is proposed. Many species were found to be specialized feeders. Fish, detritus and insects were the most important food resources supporting the fish community in both seasons, but the proportions of fruits, invertebrates and fish were reduced during the low water season. At the community level mean diet overlap between species was low, suggesting efficient resource partitioning within the community. However mean overlap between unspecialized feeders was high. Based on the 23 most abundant species belonging to the different feeding guilds, there was no difference in mean overlap between seasons. Whereas individual species exhibited diet changes between high water and low water seasons, there was no general pattern of seasonal change within feeding guilds.

  1. Food resource partitioning in a fish community of the central Amazon floodplain

    Directory of Open Access Journals (Sweden)

    Bernard de Mérona

    2004-06-01

    Full Text Available Diets of most of fish species inhabiting a floodplain lake in central Amazonia were studied over a two years and half period. Based on the percentage of relative occurrence of 11 major food categories a classification of species in 11 feeding guilds is proposed. Many species were found to be specialized feeders. Fish, detritus and insects were the most important food resources supporting the fish community in both seasons, but the proportions of fruits, invertebrates and fish were reduced during the low water season. At the community level mean diet overlap between species was low, suggesting efficient resource partitioning within the community. However mean overlap between unspecialized feeders was high. Based on the 23 most abundant species belonging to the different feeding guilds, there was no difference in mean overlap between seasons. Whereas individual species exhibited diet changes between high water and low water seasons, there was no general pattern of seasonal change within feeding guilds.Os regimes alimentares da maioria das espécies de peixes de um lago de várzea da Amazônia central foram estudados durante dois anos e meio. Baseada nas percentagens de ocorrência relativa de 11 maiores categorias alimentares, uma classificação das espécies em 11 guildas alimentares é proposta. Muitas espécies foram consideradas especializadas em relação aos seus comportamentos alimentares. Peixes, detritos e insetos foram os recursos alimentares mais importantes ao longo do ano, mas as proporções relativas de frutos, invertebrados e peixes foram reduzidas durante a época de águas baixas. A nível de comunidade a sobreposição média entre espécies foi baixa, sugerindo uma partição eficiente dos recursos alimentares. Entretanto, para espécies não especializadas, os valores de sobreposição foram elevados. Baseado em 23 espécies abundantes, pertencentes a diferentes guildas alimentares, não foi observada diferença na sobreposi

  2. First Medicolegal Forensic Entomology Case of Central Amazon: A Suicide by Hanging with Incomplete Suspension

    Directory of Open Access Journals (Sweden)

    Eduardo Souza

    2014-04-01

    Resumo. Este relato descreve o primeiro caso de entomologia forense médico-legal na Amazônia Central. Um suicídio por enforcamento ocorrido em um platô de “terra firme” em floresta primária. A estimativa de intervalo pós-morte foi calculada com base na biologia da mosca varejeira Hemilucilia segmentaria (Fabricius e também pelo padrão de sucessão ecológica do besouro silfídeo Oxelytrum cayennense (Sturm. Este é o primeiro caso onde as informações ecológicas de um besouro foram usadas como indicador forense no Brasil. Estudos preliminares realizados em área urbana na cidade de Manaus e em hábitat semelhante em floresta primária, na Reserva Florestal Adolpho Ducke, próximo do local onde o caso ocorreu, foram fundamentais para ajudar para a estimativa do intervalo pós-morte.

  3. Leaf traits and gas exchange in saplings of native tree species in the Central Amazon Características foliares e trocas gasosas em arvoretas de espécies nativas da Amazônia Central

    Directory of Open Access Journals (Sweden)

    Keila Rego Mendes

    2010-12-01

    Full Text Available Global climate models predict changes on the length of the dry season in the Amazon which may affect tree physiology. The aims of this work were to determine the effect of the rainfall regime and fraction of sky visible (FSV at the forest understory on leaf traits and gas exchange of ten rainforest tree species in the Central Amazon, Brazil. We also examined the relationship between specific leaf area (SLA, leaf thickness (LT, and leaf nitrogen content on photosynthetic parameters. Data were collected in January (rainy season and August (dry season of 2008. A diurnal pattern was observed for light saturated photosynthesis (Amax and stomatal conductance (g s, and irrespective of species, Amax was lower in the dry season. However, no effect of the rainfall regime was observed on g s nor on the photosynthetic capacity (Apot, measured at saturating [CO2]. Apot and leaf thickness increased with FSV, the converse was true for the FSV-SLA relationship. Also, a positive relationship was observed between Apot per unit leaf area and leaf nitrogen content, and between Apot per unit mass and SLA. Although the rainfall regime only slightly affects soil moisture, photosynthetic traits seem to be responsive to rainfall-related environmental factors, which eventually lead to an effect on Amax. Finally, we report that little variation in FSV seems to affect leaf physiology (Apot and leaf anatomy (leaf thickness.Os modelos climáticos globais prevêem mudanças na extensão da época seca na Amazônia, o que pode afetar a fisiologia das árvores. Os objetivos deste trabalho foram determinar o efeito da sazonalidade da precipitação e fração de céu visível (FSV no sub-bosque da floresta nas características foliares e trocas gasosas de 10 espécies florestais da Amazônia Central. Também examinou-se a relação entre área foliar específica (SLA, espessura da folha (LT e nitrogênio foliar em parâmetros fotossintéticos. Os resultados foram coletados nos

  4. Devastating decline of forest elephants in Central Africa

    NARCIS (Netherlands)

    F. Maisels; S. Strindberg; S. Blake; G. Wittemyer; J. Hart; E.A. Williamson; R.G. Aba'a; F. Amsini; R.D. Ambahe; P.C. Bakabana; T.C. Hicks; R.E. Bayogo; M. Bechem; R.L. Beyers; A.N. Bezangoye; P. Boundja; N. Bout; M.E. Akou; L.E. Bene; B. Fosso; E. Greengrass; F. Grossmann; C. Ikamba-Nkulu; O. Ilambu; B.I. Inogwabini; F. Iyenguet; F. Kiminou; M. Kokangoye; D. Kujirakwinja; S. Latour; I. Liengola; Q. Mackaya; J. Madidi; B. Madzoke; C. Makoumbou; G.A. Malanda; R. Malonga; O. Mbani; V.A. Mbendzo; E. Ambassa; A. Ekinde; Y. Mihindou; B.J. Morgan; P. Motsaba; G. Moukala; A. Mounguengui; B.S. Mowawa; C. Ndzai; S. Nixon; P. Nkumu; F. Nzolani; L. Pintea; A. Plumptre; H. Rainey; B.B. de Semboli; A. Serckx; E. Stokes; A. Turkalo; H. Vanleeuwe; A. Vosper; Y. Warren

    2013-01-01

    African forest elephants- taxonomically and functionally unique-are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fie

  5. Carbon Stock Potential of Oak and Pine Forests in Garhwal Region in Indian Central Himalayas

    Directory of Open Access Journals (Sweden)

    Nanda Nautiyal

    2013-05-01

    Full Text Available Oak (Quercus leucotichophora and pine (Pinus roxburghii are the two most dominant forest types occurring in Indian Central Himalayas. CO2 mitigation potential of these two forest types was observed in the present study. Carbon stock densities for AGTB, BB, LHG, DWS, AGSB and SOC were estimated and higher values were recorded in oak forest stands. Total carbon density estimated was 2420.54 Mg/ha for oak forest of Gopeshwar and 986.93 Mg/ha for pine forest of Nandprayag. CO2 mitigation potential of oak forest of Gopeshwar was recorded to be 8,713.94 CO2e and of pine forests 3552.95 CO2e.

  6. Impacts of continual and periodic disturbances on a Central Amazonian forest: lessons from a gap model for future model improvement

    Science.gov (United States)

    Holm, J. A.; Chambers, J. Q.; Collins, W.

    2013-12-01

    Uncertainties surrounding vegetation and carbon responses to increased disturbance rates associated with climate change remains a major global change issue for Amazon forests. To help quantify the impacts of increased disturbances on climate and the earth system, the fidelity of tree mortality and disturbance algorithms in global land surface models (here the Community Land Model, CLM) warrant critical evaluation. In order to address this issue, we parameterized and calibrated ZELIG-TROP, a dynamic vegetation gap model, to simulate a complex Central Amazon forest toward improving disturbance-recovery processes in CLM. To evaluate the long-term consequences of increased disturbance rates in ZELIG-TROP and CLM for a Central Amazon rainforest, we 1) doubled background tree mortality rates (i.e., high disturbance treatment), and 2) applied a periodic disturbance treatment of removing 20% of stems every 50 years (i.e., periodic treatment) and compared model results. For the high disturbance treatment, ZELIG-TROP predicted that AGB and ANPP decreased by an average of 110 Mg ha-1 and 0.48 Mg C ha-1 yr-1 respectively (41.9% and 7.7%). The net carbon loss due to the periodic treatment, with four large-scale disturbances, was not as extreme as the loss from the high disturbance treatment, due to recovery dynamics. AGB only decreased by 15.9% (vs. 41.9%), however ANPP decreased by 19% (vs. 7.7%). For the high disturbance treatment in ZELIG-TROP, there were a higher proportion of smaller stems and a decrease in larger stems. This resulted in a decrease in coarse litter (trunks and large branches >10 cm in diameter) production rates (Mg C ha-1 yr-1) by 11.5%. For the periodic disturbance the average coarse litter production rates increased by 11.2% due to the four large-scale disturbance events. A comparison of the biomass response of ZELIG-TROP and CLM from simulated disturbance and recovery events displayed the same pattern between the two models, and for both disturbance

  7. Future forest aboveground carbon dynamics in the central United States: the importance of forest demographic processes

    Science.gov (United States)

    Jin, Wenchi; He, Hong S.; Thompson, Frank R.; Wang, Wen J.; Fraser, Jacob S.; Shifley, Stephen R.; Hanberry, Brice B.; Dijak, William D.

    2017-01-01

    The Central Hardwood Forest (CHF) in the United States is currently a major carbon sink, there are uncertainties in how long the current carbon sink will persist and if the CHF will eventually become a carbon source. We used a multi-model ensemble to investigate aboveground carbon density of the CHF from 2010 to 2300 under current climate. Simulations were done using one representative model for each of the simple, intermediate, and complex demographic approaches (ED2, LANDIS PRO, and LINKAGES, respectively). All approaches agreed that the current carbon sink would persist at least to 2100. However, carbon dynamics after current carbon sink diminishes to zero differ for different demographic modelling approaches. Both the simple and the complex demographic approaches predicted prolonged periods of relatively stable carbon densities after 2100, with minor declines, until the end of simulations in 2300. In contrast, the intermediate demographic approach predicted the CHF would become a carbon source between 2110 and 2260, followed by another carbon sink period. The disagreement between these patterns can be partly explained by differences in the capacity of models to simulate gross growth (both birth and subsequent growth) and mortality of short-lived, relatively shade-intolerant tree species. PMID:28165483

  8. Central African biomes and forest succession stages derived from modern pollen data and plant functional types

    Directory of Open Access Journals (Sweden)

    J. Lebamba

    2009-07-01

    Full Text Available New detailed vegetation reconstructions are proposed in Atlantic Central Africa from a modern pollen data set derived from 199 sites (Cameroon, Gabon and Congo including 131 new sites. In this study, the concept of plant functional classification is improved with new and more detailed plant functional types (PFTs and new aggregations of pollen taxa. Using the biomisation method, we reconstructed (1 modern potential biomes and (2 potential succession stages of forest regeneration, a new approach in Atlantic Central African vegetation dynamics and ecosystem functioning reconstruction. When compared to local vegetation, potential biomes are correctly reconstructed (97.5% of the sites and tropical rain forest (TRFO biome is well identified from tropical seasonal forest (TSFO biome. When the potential biomes are superimposed on the White's vegetation map, only 76.4% of the sites are correctly reconstructed. But using botanical data, correspondence and cluster analyses, the 43 sites from Congo (Mayombe evidence more affinities with those of central Gabon and so they can also be considered as correctly reconstructed as TRFO biome and White's map should be revised. In terms of potential succession stages of forest regeneration, the mature forest (TMFO is well differentiated from the secondary forest (TSFE, but inside this latter group, the young and the pioneer stages are not clearly identified due probably to their low sampling representation. Moreover, linked to their progressive and mosaic character, the boundaries between two forest biomes or two forest stages are not clearly detected and need also a more intensive sampling in such transitions.

  9. Proximate analysis for amazon biomass

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Antonio Geraldo de Paula; Feitosa Netto, Genesio Batista; Nogueira, Manoel Fernandes Martins; Coutinho, Manoel Fernandes Martins; Coutinho, Hebert Willian Martins; Rendeiro, Goncalo [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Lab. de Engenharia Mecanica (LABGAS)], e-mail: ageraldo@ufpa.br, e-mail: mfmn@ufpa.br, e-mail: rendeiro@ufpa.br

    2006-07-01

    In order to asses the potentiality of Amazon biomass to generate power, either to supply electric energy to the grid or as fuel to plants supplying power for off-grid location, data for their proximate analysis must be available. A literature review on the subject indicated a lack of information and data concerning typical Amazon rain forest species. This work aimed to characterize (proximate analysis) 80 Amazon species in order to evaluate the energy resource from woody biomass wastes in Amazon region. Higher Heating Value, Carbon, Volatile and Ash contents were measured in a dry basis. The measurements were performed obeying the following Brazilian standards, NBR 6923, NBR 8112, NBR 8633, NBR 6922. (author)

  10. Valuation of consumption and sale of forest goods from a Central American rain forest

    Science.gov (United States)

    Godoy; Wilkie; Overman; Cubas; Cubas; Demmer; McSweeney; Brokaw

    2000-07-01

    Researchers recognize that society needs accurate and comprehensive estimates of the economic value of rain forests to assess conservation and management options. Valuation of forests can help us to decide whether to implement policies that reconcile the value different groups attach to forests. Here we have measured the value of the rain forest to local populations by monitoring the foods, construction and craft materials, and medicines consumed or sold from the forest by 32 Indian households in two villages in Honduras over 2.5 years. We have directly measured the detailed, comprehensive consumption patterns of rain forest products by an indigenous population and the value of that consumption in local markets. The combined value of consumption and sale of forest goods ranged from US$17.79 to US$23.72 per hectare per year, at the lower end of previous estimates (between US$49 and US$1,089 (mean US$347) per hectare per year). Although outsiders value the rain forest for its high-use and non-use values, local people receive a small share of the total value. Unless rural people are paid for the non-local values of rain forests, they may be easily persuaded to deforest.

  11. Macromycetes of oak forests in the Łagiewnicki Forest (Central Poland - monitoring studies

    Directory of Open Access Journals (Sweden)

    Maria Ławrynowicz

    2014-08-01

    Full Text Available Mycological observations were carried out in the years 1994- 1996 in two permanent plots in a ca. 90-year-old oak forest (Calamagrostio-Quercetum petraeae in the Las Łagiewnicki Forest, a large forest complex within the borders of the city of Łódź. The study was conducted in the frame of the international project "Mycological monitoring in European oak forests". During the 3 years (15 observations 124 species of macromycetes were identified: 50 mycorrhizal, 72 saprobic and 2 parasitic species. Among them, 7 species inscribed on the Red List of threatened macromycetes in Poland (Wojewoda and Ławrynowicz 1992 were found.

  12. A Framework for Evaluating Forest Conservation Implications of Community-based Capacity Building: Experiences from the Northern Bolivian Amazon

    Directory of Open Access Journals (Sweden)

    Kelly Biedenweg

    2012-01-01

    Full Text Available Capacity-building projects in forest-based communities are implemented by governments, cooperatives, and non-government organisations to encourage sustainable management of community forests. While such projects are regularly evaluated on a case-by-case basis, they are rarely subjected to a landscape-level examination to explore conservation implications. To understand how environmental capacity-building projects address regional conservation goals, an interdisciplinary framework was developed to highlight the thematic focus, the geographic distribution, and the degree of community participation in environmental capacity-building projects. We demonstrate how the framework can be used by characterising projects in campesino communities in the Amazonian department of Pando, Bolivia, that were active during 2006-2008. While projects were too recent to affect forest cover, we describe how the framework elucidates three project themes (timber, Brazil nut, and agroforestry management; that project distribution was largely related to land tenure security, proximity to town, historical relationships, and motorised access; and that capacity-building strategies varied in participation, depending on thematic content and federal requirements for specific resources. We then discuss how the framework can be used to analyse forest cover implications over many years. Understanding the combination of thematic focus, geographic distribution, and degree of participation in project strategies offers a foundation for understanding how capacity-building initiatives can influence forest landscapes.

  13. Isoprene photochemistry over the Amazon rainforest

    Science.gov (United States)

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; Rivera-Rios, Jean C.; Seco, Roger; Bates, Kelvin H.; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N.; Kim, Saewung; Goldstein, Allen H.; Guenther, Alex B.; Manzi, Antonio O.; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; McKinney, Karena A.; Martin, Scot T.

    2016-05-01

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (rainforest.

  14. Devastating decline of forest elephants in central Africa.

    Science.gov (United States)

    Maisels, Fiona; Strindberg, Samantha; Blake, Stephen; Wittemyer, George; Hart, John; Williamson, Elizabeth A; Aba'a, Rostand; Abitsi, Gaspard; Ambahe, Ruffin D; Amsini, Fidèl; Bakabana, Parfait C; Hicks, Thurston Cleveland; Bayogo, Rosine E; Bechem, Martha; Beyers, Rene L; Bezangoye, Anicet N; Boundja, Patrick; Bout, Nicolas; Akou, Marc Ella; Bene, Lambert Bene; Fosso, Bernard; Greengrass, Elizabeth; Grossmann, Falk; Ikamba-Nkulu, Clement; Ilambu, Omari; Inogwabini, Bila-Isia; Iyenguet, Fortune; Kiminou, Franck; Kokangoye, Max; Kujirakwinja, Deo; Latour, Stephanie; Liengola, Innocent; Mackaya, Quevain; Madidi, Jacob; Madzoke, Bola; Makoumbou, Calixte; Malanda, Guy-Aimé; Malonga, Richard; Mbani, Olivier; Mbendzo, Valentin A; Ambassa, Edgar; Ekinde, Albert; Mihindou, Yves; Morgan, Bethan J; Motsaba, Prosper; Moukala, Gabin; Mounguengui, Anselme; Mowawa, Brice S; Ndzai, Christian; Nixon, Stuart; Nkumu, Pele; Nzolani, Fabian; Pintea, Lilian; Plumptre, Andrew; Rainey, Hugo; de Semboli, Bruno Bokoto; Serckx, Adeline; Stokes, Emma; Turkalo, Andrea; Vanleeuwe, Hilde; Vosper, Ashley; Warren, Ymke

    2013-01-01

    African forest elephants- taxonomically and functionally unique-are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork) revealed that population size declined by ca. 62% between 2002-2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced.

  15. Devastating decline of forest elephants in central Africa.

    Directory of Open Access Journals (Sweden)

    Fiona Maisels

    Full Text Available African forest elephants- taxonomically and functionally unique-are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork revealed that population size declined by ca. 62% between 2002-2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced.

  16. Fragmentation patterns and systematic transitions of the forested land-scape in the upper Amazon region, Ecuador 1990-2008

    Institute of Scientific and Technical Information of China (English)

    Santiago Bonilla-Bedoya; Juan R. Molina; José E. Macedo-Pezzopane; Miguel A. Herrera-Machuca

    2014-01-01

    The analysis of the systeTatic transitions in the forested landscape and the study of the forest fragTentation patterns allow us to deepen our understanding of the changes in the vegetation ground cover. The iTportance of knowing the intricate patterns of the land usage of the upper basin of the ATazon region is widely recognized. This zone is one of the Tost diverse biological areas in the world, is hoTe to large areas of Tature tropical cloud forest and deTonstrates high probabilities of stable cliTatic conditions in light of global warTing. The research quan-tified systeTatic transitions through the"loss"and"gain"of the different categories of landscape during the eighteen-year study period of the Ecuadorian ATazon Region (EAR), the forest fragTentation patterns were also analyzed based on a set of indicators. Therefore, with respect to the entirety of the landscape, the results registered for the ground coverage in forested areas during the first period (1990-2000), show a decrease of 6.99% and an increase of 0.68%; and during the second period (2000-2008), show a decrease of 3.99%and an increase of 2.14%. It deTonstrated that forest and agricultural areas tended to replace or be replaced by herbaceous vegetation faster than expected fortuitously. Finally, the indices of fragTentation signaled intense changes during the 1990-2000 period with a reduction during the period 2000-2008. Per-centages registered in the Largest Patch Index (LPI) were between 79.58%;52.39%and 49.99%respectively;while the Patch Density (PD) varied between 0.04;0.06 and 0.07. This suggests the propensity of for-est cover to reTain intact. The results of this investigation suggest a tendency towards stability in Ecuador’s ATazon landscape. Within the fraTework for developTent and TanageTent of this area, the tendency is natural regeneration. This perTits a consolidation of the conservation, reforestation, forestation and agricultural forestry plans, prograTs and systeTs for the protected

  17. Edaphic, structural and physiological contrasts across Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function

    Directory of Open Access Journals (Sweden)

    J. Lloyd

    2015-05-01

    C/N ratios than nearby forest plots. These soil differences were also reflected in canopy averaged leaf traits with savanna trees typically having higher leaf mass per unit area but lower mass-based nitrogen (Nm and potassium (Km. Both Nm and Km also increased with declining mean annual precipitation (PA, but most area-based leaf traits such as leaf photosynthetic capacity showed no systematic variation with PA or vegetation type. Despite this invariance, when taken in conjunction with other measures such mean canopy height, area-based soil exchangeable potassium content, [K]sa, proved to be an excellent predictor of several photosynthetic properties (including 13C isotope discrimination. Moreover, when considered in a multivariate context with PA and soil plant available water storage capacity (θP as covariates, [K]sa also proved to be an excellent predictor of stand-level canopy area, providing drastically improved fits as compared to models considering just PA and/or θP. Neither calcium, magnesium nor soil pH could substitute for potassium when tested as alternative model predictors (ΔAIC > 10. Nor for any model could simple soil texture metrics such as sand or clay content substitute for either [K]sa or θP. Taken in conjunction with recent work in Africa and the forests of the Amazon Basin this suggests – in combination with some newly conceptualised interacting effects of PA and θP also presented here – a critical role for potassium as a modulator of tropical vegetation structure and function.

  18. Edaphic, structural and physiological contrasts across Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function

    Science.gov (United States)

    Lloyd, J.; Domingues, T. F.; Schrodt, F.; Ishida, F. Y.; Feldpausch, T. R.; Saiz, G.; Quesada, C. A.; Schwarz, M.; Torello-Raventos, M.; Gilpin, M.; Marimon, B. S.; Marimon-Junior, B. H.; Ratter, J. A.; Grace, J.; Nardoto, G. B.; Veenendaal, E.; Arroyo, L.; Villarroel, D.; Killeen, T. J.; Steininger, M.; Phillips, O. L.

    2015-11-01

    Sampling along a precipitation gradient in tropical South America extending from ca. 0.8 to 2.0 m a-1, savanna soils had consistently lower exchangeable cation concentrations and higher C / N ratios than nearby forest plots. These soil differences were also reflected in canopy averaged leaf traits with savanna trees typically having higher leaf mass per unit area but lower mass-based nitrogen (Nm) and potassium (Km). Both Nm and Km also increased with declining mean annual precipitation (PA), but most area-based leaf traits such as leaf photosynthetic capacity showed no systematic variation with PA or vegetation type. Despite this invariance, when taken in conjunction with other measures such as mean canopy height, area-based soil exchangeable potassium content, [K]sa , proved to be an excellent predictor of several photosynthetic properties (including 13C isotope discrimination). Moreover, when considered in a multivariate context with PA and soil plant available water storage capacity (θP) as covariates, [K]sa also proved to be an excellent predictor of stand-level canopy area, providing drastically improved fits as compared to models considering just PA and/or θP. Neither calcium, nor magnesium, nor soil pH could substitute for potassium when tested as alternative model predictors (ΔAIC > 10). Nor for any model could simple soil texture metrics such as sand or clay content substitute for either [K]sa or θP. Taken in conjunction with recent work in Africa and the forests of the Amazon Basin, this suggests - in combination with some newly conceptualised interacting effects of PA and θP also presented here - a critical role for potassium as a modulator of tropical vegetation structure and function.

  19. Challenges and difficulties in service to legal requirements applicable to a pipeline works at the Amazon rain forest, Brazil; Os desafios e dificuldades no atendimento aos requisitos legais aplicaveis a uma obra na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Wanderleia I.P. de [Universidade do Estado do Amazonas (UEA), Manaus, AM (Brazil); Freitas, Jaluza G.M.R. de; Teixeira, Ivan J.L. [Concremat Engenharia e Tecnologia, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This work brings together the difficulties and results generated in response to Brazilian Environmental Law applicable to a work of pipelines in the Amazon. We are a country that has the most extensive and rich environmental legislation in the world, and Engineering at PETROBRAS, through the Implementation of Enterprise for the North, responsible for the deployment of this pipeline, has ISO 14001:2004 certification, taking as the minimum requirement attending the applicable legal requirements, and serve them in if there are difficulties elsewhere in the country, here in the Amazon it is increased meet the logistical difficulties, the distances from major centres, the needs of technology, information and access to basic resources. This article discusses topics such as: transport of hazardous waste in an environmentally safe way in one of the largest rivers in the world, installing devices sewage treatment in regional boats, and teach the riparian preserve the historic and archaeological findings, these are just examples found. We know that all eyes of the world is impressive return to the Amazon rain forest, and that cross, or rather 'rip' their 383 km of primary forest, virgin land, almost untouched even by the people native of the region, in itself constitutes a great challenge. (author)

  20. From forest floor to the canopy: life history of secondary hemiepiphytes (Heteropsis species) in the Colombian Amazon

    NARCIS (Netherlands)

    Balcazar Vargas, M.P.

    2013-01-01

    The ecology of hemiepiphytes is very poorly understood. More appalling is the lack of information on hemiepiphyte vital rates and demography. Such information is essential to understand the ecology, management and conservation of this group that is an important component of tropical forest. In this

  1. Composition, structure and floristic diversity in dense rain forest in the Eastern Amazon, Amapá, Brazil

    Directory of Open Access Journals (Sweden)

    Marcelo de Jesus Veiga Carim

    2015-10-01

    Full Text Available This study aims to evaluate the phytosociology and floristic composition of tree species in the eastern Amazon, at the Iratapuru River Sustainable Development Reserve (RDS, State of Amapá. Fouteen quarters with dimensions of 100 m x 100 m were randomly inventoried, and 50 sub-plots of 10 m x 20 m were established. In each sub-plot all living individuals were sampled, being taken from the height data and DAP (breast height diameter for tree species ≥ 10 cm. A total of 5,233 individuals belonging to 33 families and 184 species were registered. The families with the largest number of species were Fabaceae (32, Lauraceae (17, Sapotaceae (12, Moraceae (10, Lecythidaceae (8 and Annonaceae (8. The six most abundant families (18.18% of total families in the present study were responsible for more than half (57.92% of the total number of species. The floristic structure of the area studied was diverse, with species of varied interests, including: medicinal, timber and oil-producing.

  2. Restoration Effects of the Riparian Forest on the Intertidal Fish Fauna in an Urban Area of the Amazon River

    Science.gov (United States)

    Ferrari, Stephen F.; Vasconcelos, Huann C. G.; Mendes-Junior, Raimundo N. G.; Araújo, Andrea S.; Costa-Campos, Carlos Eduardo; Nascimento, Walace S.; Isaac, Victoria J.

    2016-01-01

    Urbanization causes environmental impacts that threaten the health of aquatic communities and alter their recovery patterns. In this study, we evaluated the diversity of intertidal fish in six areas affected by urbanization (areas with native vegetation, deforested areas, and areas in process of restoration of vegetation) along an urban waterfront in the Amazon River. 20 species were identified, representing 17 genera, 14 families, and 8 orders. The different degrees of habitat degradation had a major effect on the composition of the fish fauna; the two least affected sectors were the only ones in that all 20 species were found. Eight species were recorded in the most degraded areas. The analysis revealed two well-defined groups, coinciding with the sectors in better ecological quality and degraded areas, respectively. The native vegetation has been identified as the crucial factor to the recovery and homeostasis of the studied ecosystem, justifying its legal protection and its use in the restoration and conservation of altered and threatened environments. These results reinforce the importance of maintaining the native vegetation as well as its restoration in order to benefit of the fish populations in intertidal zones impacted by alterations resulting from inadequate urbanization. PMID:27699201

  3. Restoration Effects of the Riparian Forest on the Intertidal Fish Fauna in an Urban Area of the Amazon River

    Directory of Open Access Journals (Sweden)

    Júlio C. Sá-Oliveira

    2016-01-01

    Full Text Available Urbanization causes environmental impacts that threaten the health of aquatic communities and alter their recovery patterns. In this study, we evaluated the diversity of intertidal fish in six areas affected by urbanization (areas with native vegetation, deforested areas, and areas in process of restoration of vegetation along an urban waterfront in the Amazon River. 20 species were identified, representing 17 genera, 14 families, and 8 orders. The different degrees of habitat degradation had a major effect on the composition of the fish fauna; the two least affected sectors were the only ones in that all 20 species were found. Eight species were recorded in the most degraded areas. The analysis revealed two well-defined groups, coinciding with the sectors in better ecological quality and degraded areas, respectively. The native vegetation has been identified as the crucial factor to the recovery and homeostasis of the studied ecosystem, justifying its legal protection and its use in the restoration and conservation of altered and threatened environments. These results reinforce the importance of maintaining the native vegetation as well as its restoration in order to benefit of the fish populations in intertidal zones impacted by alterations resulting from inadequate urbanization.

  4. Multi-Sensor Remote Sensing of Forest Dynamics in Central Siberia

    Science.gov (United States)

    Ransom, K. J.; Sun, G.; Kharuk, V. I.; Howl, J.

    2011-01-01

    The forested regions of Siberia, Russia are vast and contain about a quarter of the world's forests that have not experienced harvesting. However, many Siberian forests are facing twin pressures of rapidly changing climate and increasing timber harvest activity. Monitoring the dynamics and mapping the structural parameters of the forest is important for understanding the causes and consequences of changes observed in these areas. Because of the inaccessibility and large extent of this forest, remote sensing data can play an important role for observing forest state and change. In Central Siberia, multi-sensor remote sensing data have been used to monitor forest disturbances and to map above-ground biomass from the Sayan Mountains in the south to the taiga-tundra boundaries in the north. Radar images from the Shuttle Imaging Radar-C (SIR-C)/XSAR mission were used for forest biomass estimation in the Sayan Mountains. Radar images from the Japanese Earth Resources Satellite-1 (JERS-1), European Remote Sensing Satellite-1 (ERS-1) and Canada's RADARSAT-1, and data from ETM+ on-board Landsat-7 were used to characterize forest disturbances from logging, fire, and insect damage in Boguchany and Priangare areas.

  5. Carbon emissions from deforestation in the Brazilian Amazon region predicted from satellite data and ecosystem modeling

    Directory of Open Access Journals (Sweden)

    C. Potter

    2009-03-01

    Full Text Available A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000–2002. The NASA-CASA (Carnegie Ames Stanford Approach model estimates of annual forest production were used as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; g C m−2 for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006 were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazônia project were used to map deforested areas. Results show that net primary production (NPP sinks for carbon are highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris are more rapid and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C yr−1 from the Brazilian Amazon. When direct carbon emissions from forest burning of between 0.2 and 0.6−1 in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from year to year during the period 2000

  6. Monitoring nitrogen accumulation in mosses in central European forests.

    Science.gov (United States)

    Pesch, Roland; Schröder, Winfried; Schmidt, Gunther; Genssler, Lutz

    2008-10-01

    In order to assess whether nitrogen (N) loads in mosses reflect different land uses, 143 sites in North Rhine-Westphalia, the Weser-Ems Region and the Euro Region Nissa were sampled between 2000 and 2005. The data were analysed statistically with available surface information on land use and forest conditions. N bioaccumulation in mosses in the Weser-Ems Region with high densities of agricultural land use and livestock exceeded the concentrations in the more industrialised Euro Region Nissa. In all three study areas agricultural and livestock spatial densities were found to be positively correlated with N bioaccumulation in mosses. In North Rhine-Westphalia, the N concentrations in mosses was also moderately correlated with N concentrations in leaves and needles of forest trees. The moss method proved useful to assess the spatial patterns of N bioaccumulation due to land use.

  7. soil carbon pools within oak forest is endangered by global climate change in central mexico

    Science.gov (United States)

    García-Oliva, Felipe; Merino, Agustín; González-Rodriguez, Antonio; Chávez-Vergara, Bruno; Tapia-Torres, Yunuen; Oyama, Ken

    2016-04-01

    Forest soil represents the main C pool in terrestrial ecosystems. In particular, temperate forest ecosystems play an important role in the C budget among tropical countries, such as Mexico. For example, the temperate forest ecosystem contains higher C contents on average (295 Mg C ha-1) than the soil C associated with other ecosystems in Mexico (between 56 to 287 Mg C ha-1). At a regional scale, oak forest has the highest C content (460 Mg C ha-1) among the forest ecosystem in Michoacán State at Central Mexico. At the local scale, the soil C content is strongly affected by the composition of organic matter produced by the plant species. The oak species are very diverse in Mexico, distributed within two sections: Quercus sensu stricto and Lobatae. The oak species from Quercus s.s. section produced litterfall with lower concentrations of recalcitrant and thermostable compounds than oak species from Lobatae section, therefore the soil under the former species had higher microbial activity and nutrient availability than the soil under the later species. However, the forest fragment with higher amount of oak species from Quercus s.s. section increases the amount of soil C contents. Unfortunately, Quercus species distribution models for the central western region of Mexico predict a decrease of distribution area of the majority of oak species by the year 2080, as a consequence of higher temperatures and lower precipitation expected under climate change scenarios. Additionally to these scenarios, the remnant oak forest fragments suffer strong degradation due to uncontrolled wood extraction and deforestation. For this reason, the conservation of oak forest fragments is a priority to mitigate the greenhouse gases emission to the atmosphere. In order to enhance the protection of these forest fragments it is required that the society identify the ecosystem services that are provided by these forest fragments.

  8. Forest energy project in Central Finland; Keski-Suomen metsaeenergia -projekti

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, M. [Association of Central Finland, Jyvaeskylae (Finland); Kuitto, P.J. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    The Forest Energy Project of Central Finland is one of the topleading regional demonstration project in Finland for testing and studying of the complete energy wood delivery chains and energy wood utilization. It is a large development and technology transfer venture concentrated primarily on practical needs. Total delivery chains are formed of the best machine and method alternatives, and they are also demonstrated. The project offers hence a wide test field for regional and national techno/economical wood fuel development. The target of this provincial project is to collect and demonstrate the most promising energy wood procurement technologies and methods for utilization of energy producers, forest industry and small and medium sized industries co-operating with forest owners, contractors and forest organizations. An essential target of the project is to direct the know-how, concentrated in the project, to development of the energy field. The project is directed to international information delivery, to concrete widening of cooperation, on transfer of testing and training activities and utilization experiences in the field of wood energy. The Forest Energy Project of Central Finland is a demonstration project supervised by the Regional Council of Central Finland. The project is a part of the national Bioenergy Research Programme. A large number of provincial partners interested in wood fuels, e.g. energy wood suppliers, energy producers, communes, forest industry, forestry boards, forestry associations, wood delivery contractors, and equipment producers, take part in the project

  9. Shifts in indigenous culture relate to forest tree diversity: a case study from the Tsimane’, Bolivian Amazon

    Science.gov (United States)

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J.; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2015-01-01

    Understanding how indigenous peoples’ management practices relate to biological diversity requires addressing contemporary changes in indigenous peoples’ way of life. This study explores the association between cultural change among a Bolivian Amazonian indigenous group, the Tsimane’, and tree diversity in forests surrounding their villages. We interviewed 86 informants in six villages about their level of attachment to traditional Tsimane’ values, our proxy for cultural change. We estimated tree diversity (Fisher’s Alpha index) by inventorying trees in 48 0.1-ha plots in old-growth forests distributed in the territory of the same villages. We used multivariate models to assess the relation between cultural change and alpha tree diversity. Cultural change was associated with alpha tree diversity and the relation showed an inverted U-shape, thus suggesting that tree alpha diversity peaked in villages undergoing intermediate cultural change. Although the results do not allow for testing the direction of the relation, we propose that cultural change relates to tree diversity through the changes in practices and behaviors that affect the traditional ecological knowledge of Tsimane’ communities; further research is needed to determine the causality. Our results also find support in the intermediate disturbance hypothesis, and suggest that indigenous management can be seen as an intermediate form of anthropogenic disturbance affecting forest communities in a subtle, non-destructive way. PMID:26097240

  10. Shifts in indigenous culture relate to forest tree diversity: a case study from the Tsimane', Bolivian Amazon.

    Science.gov (United States)

    Guèze, Maximilien; Luz, Ana Catarina; Paneque-Gálvez, Jaime; Macía, Manuel J; Orta-Martínez, Martí; Pino, Joan; Reyes-García, Victoria

    2015-06-01

    Understanding how indigenous peoples' management practices relate to biological diversity requires addressing contemporary changes in indigenous peoples' way of life. This study explores the association between cultural change among a Bolivian Amazonian indigenous group, the Tsimane', and tree diversity in forests surrounding their villages. We interviewed 86 informants in six villages about their level of attachment to traditional Tsimane' values, our proxy for cultural change. We estimated tree diversity (Fisher's Alpha index) by inventorying trees in 48 0.1-ha plots in old-growth forests distributed in the territory of the same villages. We used multivariate models to assess the relation between cultural change and alpha tree diversity. Cultural change was associated with alpha tree diversity and the relation showed an inverted U-shape, thus suggesting that tree alpha diversity peaked in villages undergoing intermediate cultural change. Although the results do not allow for testing the direction of the relation, we propose that cultural change relates to tree diversity through the changes in practices and behaviors that affect the traditional ecological knowledge of Tsimane' communities; further research is needed to determine the causality. Our results also find support in the intermediate disturbance hypothesis, and suggest that indigenous management can be seen as an intermediate form of anthropogenic disturbance affecting forest communities in a subtle, non-destructive way.

  11. Amazon Forests’ Response to Droughts: A Perspective from the MAIAC Product

    Directory of Open Access Journals (Sweden)

    Jian Bi

    2016-04-01

    Full Text Available Amazon forests experienced two severe droughts at the beginning of the 21st century: one in 2005 and the other in 2010. How Amazon forests responded to these droughts is critical for the future of the Earth’s climate system. It is only possible to assess Amazon forests’ response to the droughts in large areal extent through satellite remote sensing. Here, we used the Multi-Angle Implementation of Atmospheric Correction (MAIAC Moderate Resolution Imaging Spectroradiometer (MODIS vegetation index (VI data to assess Amazon forests’ response to droughts, and compared the results with those from the standard (Collection 5 and Collection 6 MODIS VI data. Overall, the MAIAC data reveal more realistic Amazon forests inter-annual greenness dynamics than the standard MODIS data. Our results from the MAIAC data suggest that: (1 the droughts decreased the greenness (i.e., photosynthetic activity of Amazon forests; (2 the Amazon wet season precipitation reduction induced by El Niño events could also lead to reduced photosynthetic activity of Amazon forests; and (3 in the subsequent year after the water stresses, the greenness of Amazon forests recovered from the preceding decreases. However, as previous research shows droughts cause Amazon forests to reduce investment in tissue maintenance and defense, it is not clear whether the photosynthesis of Amazon forests will continue to recover after future water stresses, because of the accumulated damages caused by the droughts.

  12. The spatial distribution of Hymenoptera parasitoids in a forest reserve in Central Amazonia, Manaus, AM, Brazil

    Directory of Open Access Journals (Sweden)

    RB. Querino

    Full Text Available Parasitoids are of great importance to forest ecosystems due to their ecological role in the regulation of the population of other insects. The species richness and abundance of parasitoids in the forest canopy and understory, both on the borders and in the interior of a tropical forest reserve in Central Amazonia were investigated. For a 12-month period, specimen collections were made every 15 days from suspended traps placed in the forest canopy and in the understory strata, both on the border and in the interior of forest areas. A total of 12,835 Hymenoptera parasitoids from 23 families were acquired. Braconidae, Diapriidae, Mymaridae, Eulophidae, and Scelionidae were the most represented in the area and strata samples. The results indicate that there were no significant differences in the species richness or abundance of Hymenoptera between the forest borders and the inner forest. The data does show that the presence of Hymenoptera is significantly greater in the understory in both the border and interior areas than in the canopy (vertical stratification. Aphelinidae and Ceraphronidae were significantly associated with the inner forest, while the other seven families with the border of the reserve. The abundance of Hymenoptera parasitoids presented seasonal variations during the year related to the rainy and dry seasons.

  13. Evaluating regional differences in macroinvertebrate communities from forested depressional wetlands across eastern and central North America.

    Energy Technology Data Exchange (ETDEWEB)

    Batzer, Darold, P.; Dietz-Brantley, Susan E.; Taylor, Barbera E.; DeBiase, Adrienne E.

    2005-02-12

    Batzer, Darold, P., Susan E. Dietz-Brantley, Barbera E. Taylor, and Adrienne E. DeBiase. 2005. Evaluating regional differences in macroinvertebrate communities from forested depressional wetlands across eastern and central North America. J. N. Am. Benthol. Soc. 24(2):403-414. Abstract. Forested depressional wetlands are an important seasonal wetland type across eastern and central North America. Macroinvertebrates are crucial ecosystem components of most forested depressional wetlands, but community compositions can vary widely across the region. We evaluated variation in macroinvertebrate faunas across eastern and central North America using 5 published taxa lists from forested depressional wetlands in Michigan, Ontario, Wisconsin, Florida, and Georgia. We supplemented those data with quantitative community descriptions generated from 17 forested depressional wetlands in South Carolina and 74 of these wetlands in Minnesota. Cluster analysis of presence/absence data from these 7 locations indicated that distinct macroinvertebrate communities existed in northern and southern areas. Taxa characteristic of northern forested depressionalwetlands included Sphaeriidae, Lumbriculidae, Lymnaeidae, Physidae, Limnephilidae, Chirocephalidae, and Hirudinea (Glossophoniidae and/or Erpodbellidae) and taxa characteristic of southern sites included Asellidae, Crangonyctidae, Noteridae, and Cambaridae. Quantitative sampling in South Carolina and Minnesota indicated that regionally characteristic taxa included some of the most abundant organisms, with Sphaeriidae being the 2nd most abundant macroinvertebrate in Minnesota wetlands and Asellidae being the 2nd most abundant macroinvertebrate in South Carolina wetlands. Mollusks, in general, were restricted to forested depressional wetlands of northern latitudes, a pattern that may reflect a lack of Ca needed for shell formation in acidic southern sites. Differences in community composition probably translate into region

  14. The Amazon basin in transition.

    Science.gov (United States)

    Davidson, Eric A; de Araújo, Alessandro C; Artaxo, Paulo; Balch, Jennifer K; Brown, I Foster; C Bustamante, Mercedes M; Coe, Michael T; DeFries, Ruth S; Keller, Michael; Longo, Marcos; Munger, J William; Schroeder, Wilfrid; Soares-Filho, Britaldo S; Souza, Carlos M; Wofsy, Steven C

    2012-01-18

    Agricultural expansion and climate variability have become important agents of disturbance in the Amazon basin. Recent studies have demonstrated considerable resilience of Amazonian forests to moderate annual drought, but they also show that interactions between deforestation, fire and drought potentially lead to losses of carbon storage and changes in regional precipitation patterns and river discharge. Although the basin-wide impacts of land use and drought may not yet surpass the magnitude of natural variability of hydrologic and biogeochemical cycles, there are some signs of a transition to a disturbance-dominated regime. These signs include changing energy and water cycles in the southern and eastern portions of the Amazon basin.

  15. Phenology of the multi-use tree species Carapa guianensis in a floodplain forest of the Amazon Estuary

    Directory of Open Access Journals (Sweden)

    Adelson R. Dantas

    Full Text Available ABSTRACT Carapa guianensis is a multi-use tree species that is used for the production of timber and non-timber forest products (NTFPs that are used and sold by rural Amazonian populations. Here we aimed to evaluate the phenophases of C. guianensis in várzea forest and relate them to climatic seasonality. Phenophases of flowering (flower buds and open flowers, fruiting (unripe and ripe fruits, and leaf flush and leaf fall were recorded for 30 individual trees during a 25 month period. Relationships between rainfall and the proportion of trees in each phenophase were tested using Generalised Linear Models with quasi-binomial errors. Flowering was found to peak in the driest months of the year (September to December, while fruiting peaked during the wettest months of the year when river levels are at their highest (January to May. Leaf flush and leaf fall occurred simultaneously throughout the year, regardless of seasonality. Strong seasonality in flowering and fruiting of C. guianensis likely represents a reproductive strategy that maximizes pollination and hydrochorous seed dispersal. This study has the potential to aid in planning the timing of seed collection and oil extraction activities, thus contributing to the sustainable exploitation of this tree.

  16. The spread of Impatiens parviflora DC. in Central European oak forests – another stage of invasion?

    Directory of Open Access Journals (Sweden)

    Kamila Reczyńska

    2015-12-01

    Full Text Available In this study, we examine the pattern of occurrence of Impatiens parviflora in Central European oak forests over time and its ecological requirements within these types of communities. Research was based on phytosociological data collected in 3776 relevés. A modified TWINSPAN algorithm were used to distinguish the groups of oak forests. The ecological preferences of the I. parviflora and studied communities as well as differences between invaded and non-invaded vegetation plots were analyzed using mean weighted Ellenberg indicator values (EIVs. Finally, both the temporal pattern of I. parviflora participation and changes in its coverage in the studied communities were analyzed. Our study confirmed a high adaptability of this species with respect to temperature, moisture, soil reaction and nutrients and determined its broad ecological optimum in oak forests. However, it also revealed both a greater sensitivity of some communities within Central European oak forests to the invasion of I. parviflora and differences in habitat conditions between invaded and non-invaded vegetation plots. This suggests that the habitat niche of I. parviflora within oak forests is not accidental. The analysis of temporal changes in the frequency of I. parviflora confirmed a 20% increase in relevés over the last 50 years. However, we did not identify any statistically significant rise in the coverage of I. parviflora in oak forests specifically during the studied period.

  17. Soc stock in different forest-related land-uses in central Stara planina mountain, Bulgaria

    Directory of Open Access Journals (Sweden)

    Zhiyanski Miglena

    2009-01-01

    Full Text Available Forest conversions may lead to an accumulation of carbon in vegetation, but little is known about changes in soil C storage with establishment of plantation forests. Understanding these effects is important to addressing issues relevant to ecosystem function and productivity, and to global balance of carbon. The study investigated the effects of the created coniferous plantations on former beech and pasture sites on the soil organic carbon storage. The major forest-related land-uses in the high mountainous regions of central Stara Planina Mountain were investigated: mountainous pasture, coniferous plantations (planted on previous pasture and beech forests between four and five decades ago and natural beech forests. The experimental data of soil properties, conducted in 2005, 2006 and 2007, were used in determining the variations in organic carbon storage in forest litter and in mineral soil under different land-use patterns. At each site five representative soil profiles were opened and described giving a total 75 soil samples from the soil layers respectively at 0-10, 10-30 and 30-50 cm depth. A total of 55 samples from forest floor layers (Aol, Aof, Aoh and greensward were collected with 25:25 cm plastic frame. The main soil properties were determined in accordance with the standardized methods in the Laboratory of soil science at the Forest Research Institute - BAS. The IPCC Good Practice Guidance for Land Use, Land Use Change and Forestry was used to estimate the soil organic carbon stock in soil and litter. The results obtained showed that the SOC stock was quite similar among forest land-uses. The conversion of natural beech forests to coniferous plantations in studied region is related with slightly expressed decrease in soil carbon storage. The values of SOC stocks in 0-50 cm soil layer in these sites were 8.5 (±2.1 tones/ha for pine and 11.0 (±1.4 tones/ha for spruce, while under the natural beech forest it was 14.8 (±1.0 tones

  18. Epidemiology of forest malaria in central Vietnam: a large scale cross-sectional survey.

    Science.gov (United States)

    Erhart, Annette; Ngo, Duc Thang; Phan, Van Ky; Ta, Thi Tinh; Van Overmeir, Chantal; Speybroeck, Niko; Obsomer, Valerie; Le, Xuan Hung; Le, Khanh Thuan; Coosemans, Marc; D'alessandro, Umberto

    2005-01-01

    In Vietnam, a large proportion of all malaria cases and deaths occurs in the central mountainous and forested part of the country. Indeed, forest malaria, despite intensive control activities, is still a major problem which raises several questions about its dynamics.A large-scale malaria morbidity survey to measure malaria endemicity and identify important risk factors was carried out in 43 villages situated in a forested area of Ninh Thuan province, south central Vietnam. Four thousand three hundred and six randomly selected individuals, aged 10-60 years, participated in the survey. Rag Lays (86%), traditionally living in the forest and practising "slash and burn" cultivation represented the most common ethnic group. The overall parasite rate was 13.3% (range [0-42.3] while Plasmodium falciparum seroprevalence was 25.5% (range [2.1-75.6]). Mapping of these two variables showed a patchy distribution, suggesting that risk factors other than remoteness and forest proximity modulated the human-vector interactions. This was confirmed by the results of the multivariate-adjusted analysis, showing that forest work was a significant risk factor for malaria infection, further increased by staying in the forest overnight (OR= 2.86; 95%CI [1.62; 5.07]). Rag Lays had a higher risk of malaria infection, which inversely related to education level and socio-economic status. Women were less at risk than men (OR = 0.71; 95%CI [0.59; 0.86]), a possible consequence of different behaviour. This study confirms that malaria endemicity is still relatively high in this area and that the dynamics of transmission is constantly modulated by the behaviour of both humans and vectors. A well-targeted intervention reducing the "vector/forest worker" interaction, based on long-lasting insecticidal material, could be appropriate in this environment.

  19. Epidemiology of forest malaria in central Vietnam: a large scale cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Hung Le

    2005-12-01

    Full Text Available Abstract In Vietnam, a large proportion of all malaria cases and deaths occurs in the central mountainous and forested part of the country. Indeed, forest malaria, despite intensive control activities, is still a major problem which raises several questions about its dynamics. A large-scale malaria morbidity survey to measure malaria endemicity and identify important risk factors was carried out in 43 villages situated in a forested area of Ninh Thuan province, south central Vietnam. Four thousand three hundred and six randomly selected individuals, aged 10–60 years, participated in the survey. Rag Lays (86%, traditionally living in the forest and practising "slash and burn" cultivation represented the most common ethnic group. The overall parasite rate was 13.3% (range [0–42.3] while Plasmodium falciparum seroprevalence was 25.5% (range [2.1–75.6]. Mapping of these two variables showed a patchy distribution, suggesting that risk factors other than remoteness and forest proximity modulated the human-vector interactions. This was confirmed by the results of the multivariate-adjusted analysis, showing that forest work was a significant risk factor for malaria infection, further increased by staying in the forest overnight (OR= 2.86; 95%CI [1.62; 5.07]. Rag Lays had a higher risk of malaria infection, which inversely related to education level and socio-economic status. Women were less at risk than men (OR = 0.71; 95%CI [0.59; 0.86], a possible consequence of different behaviour. This study confirms that malaria endemicity is still relatively high in this area and that the dynamics of transmission is constantly modulated by the behaviour of both humans and vectors. A well-targeted intervention reducing the "vector/forest worker" interaction, based on long-lasting insecticidal material, could be appropriate in this environment.

  20. Influence of forest fires on climate change studies in the central boreal forest of Canada

    Science.gov (United States)

    Valeo, C.; Beaty, K.; Hesslein, R.

    2003-09-01

    This brief paper indicates that forest fires may have short and longer term effects on runoff and thus, can influence trend studies on the response of watersheds to climate change. Twenty-two watersheds at the Experimental Lakes Area in northwestern Ontario were studied to view the impacts of climatic variability and forest fires on runoff. A roughly 30 year database demonstrated few trends in climatological variables and even fewer trends in runoff data at the 5% significance level. Daily maximum temperature increased by 0.053 °C per year, while precipitation in the months of February and March showed significant decreases. Total snow showed a significant decrease over a 30 year period at the 8% significance level. The Mann Kendall test for trend was applied to the runoff indices of 19 watersheds and it was revealed that only six exhibited trends. Of these, five had been burned during the test period. Virtually all burned watersheds showed initial increases in runoff, however, long term runoff trended lower in the burned watersheds, while the one watershed that was not burned showed an increasing trend. Forest fires alter the age distribution of trees with subsequent impacts on water yields in the short and longer term.

  1. Epífitas vasculares como indicadores de regeneración en bosques intervenidos de la Amazonía colombiana Vascular Epiphytes as Regeneration Indicators of Disturbed Forests of theColombian Amazon Region

    Directory of Open Access Journals (Sweden)

    Triana-Moreno Luz Amparo

    2003-12-01

    Full Text Available Con el propósito de comparar cómo varía la distribución y composición de epífitas vasculares en tres bosques intervenidos con diferentes tiempos de recuperación y de com-probar si estos factores pueden ser indicadores del estado de regeneración, se seleccio-naron tres rastrojos o chagras abandonadas con 12, 18 y 22 años de edad cerca de la ciudad de Leticia (Amazonas, Colombia. En cada rastrojo se seleccionaron siete forófitos de la especie Cecropia sciadophylla (Cecropiaceae y en ellos se realizó un muestreo de las epífitas encontradas en los primeros 3 m. El número de especies, su abundancia yco-bertura se usaron como criterios de comparación entre los tres rastrojos, ya que en estas variables se manifiesta la sensibilidad de las epífitas a las condiciones del entorno. Los resultados muestran que los factores evaluados son útiles para la caracterización de los rastrojos de chagra en diferentes etapas de regeneración. Aunque el número de especies en los tres rastrojos fue similar, la composición varió de modo que cerca de la mitad de las especies de cada rastrojo eran exclusivas. En los tres rastrojos fue evidente la dominancia de Monstera oblicua (Araceae que constituyó más del 80% de la cobertura epifítica de todo el muestreo. El rastrojo más joven presentó una alta cobertura y un alto índice de diversidad, mientras que en los rastrojos más viejos estos valores disminuyeron drásticamente, lo que sugiere que en los estados de regeneración más avanzados hay un menor establecimiento de epífitas en los estratos bajos por cambios en las condiciones del entorno, tales como la baja incidencia lumínica.In order to compare how the distribution and composition of vascular epiphytes varies, in three disturbed forests with different recovery times, and to verify whether these factors can
    indicate the regeneration state, three stubbles that had been abandoned during 12, 18 and 22 years were selected in the

  2. Present-day central African forest is a legacy of the 19th century human history

    Science.gov (United States)

    Morin-Rivat, Julie; Fayolle, Adeline; Favier, Charly; Bremond, Laurent; Gourlet-Fleury, Sylvie; Bayol, Nicolas; Lejeune, Philippe; Beeckman, Hans; Doucet, Jean-Louis

    2017-01-01

    The populations of light-demanding trees that dominate the canopy of central African forests are now aging. Here, we show that the lack of regeneration of these populations began ca. 165 ya (around 1850) after major anthropogenic disturbances ceased. Since 1885, less itinerancy and disturbance in the forest has occurred because the colonial administrations concentrated people and villages along the primary communication axes. Local populations formerly gardened the forest by creating scattered openings, which were sufficiently large for the establishment of light-demanding trees. Currently, common logging operations do not create suitable openings for the regeneration of these species, whereas deforestation degrades landscapes. Using an interdisciplinary approach, which included paleoecological, archaeological, historical, and dendrological data, we highlight the long-term history of human activities across central African forests and assess the contribution of these activities to present-day forest structure and composition. The conclusions of this sobering analysis present challenges to current silvicultural practices and to those of the future. DOI: http://dx.doi.org/10.7554/eLife.20343.001 PMID:28093097

  3. 500 years of coppice-with-standards management in Meerdaal Forest (Central Belgium

    Directory of Open Access Journals (Sweden)

    Vandekerkhove K

    2016-08-01

    Full Text Available For centuries, coppice and coppice-with-standards were the main forest management systems in the northern and central parts of present Belgium. A high population density and a low forest cover in the whole region resulted in a high demand for wood, therefore strict regulations and management regimes were necessary to prevent overexploitation. We illustrate this with a well-documented case, that of Meerdaal Forest in Central Belgium, with reference to other sites in the region. Meerdaal Forest is a woodland 30 km east of Brussels. For centuries its high quality timber stands, especially oak, were managed as coppice-with-standards, with a gradually increasing share of standard trees. Using archive documents and ancient maps, we have reconstructed how this coppice-with-standard management has been developed and optimized over a period of about 500 years. Changes in cutting cycles and configurations were discerned, with a gradual increase of the importance of the standard layer over time. The analysis also showed how wood production could be successfully combined with other sources of income like grazing and pannage. We conclude that former managers of Meerdaal Forest, notwithstanding their lack of scholarship and reference works, developed a state-of-the-art sustainable and flexible management regime that allowed to provide high revenues during many centuries.

  4. The impact of forest thinning on the reliability of water supply in central Arizona.

    Directory of Open Access Journals (Sweden)

    Silvio Simonit

    Full Text Available Economic growth in Central Arizona, as in other semiarid systems characterized by low and variable rainfall, has historically depended on the effectiveness of strategies to manage water supply risks. Traditionally, the management of supply risks includes three elements: hard infrastructures, landscape management within the watershed, and a supporting set of institutions of which water markets are frequently the most important. In this paper we model the interactions between these elements. A forest restoration initiative in Central Arizona (the Four Forest Restoration Initiative, or 4FRI will result in thinning of ponderosa pine forests in the upper watershed, with potential implications for both sedimentation rates and water delivery to reservoirs. Specifically, we model the net effect of ponderosa pine forest thinning across the Salt and Verde River watersheds on the reliability and cost of water supply to the Phoenix metropolitan area. We conclude that the sediment impacts of forest thinning (up to 50% of canopy cover are unlikely to compromise the reliability of the reservoir system while thinning has the potential to increase annual water supply by 8%. This represents an estimated net present value of surface water storage of $104 million, considering both water consumption and hydropower generation.

  5. Raccoon spatial requirements and multi-scale habitat selection within an intensively managed central Appalachian forest

    Science.gov (United States)

    Owen, Sheldon F.; Berl, Jacob L.; Edwards, John W.; Ford, W. Mark; Wood, Petra Bohall

    2015-01-01

    We studied a raccoon (Procyon lotor) population within a managed central Appalachian hardwood forest in West Virginia to investigate the effects of intensive forest management on raccoon spatial requirements and habitat selection. Raccoon home-range (95% utilization distribution) and core-area (50% utilization distribution) size differed between sexes with males maintaining larger (2×) home ranges and core areas than females. Home-range and core-area size did not differ between seasons for either sex. We used compositional analysis to quantify raccoon selection of six different habitat types at multiple spatial scales. Raccoons selected riparian corridors (riparian management zones [RMZ]) and intact forests (> 70 y old) at the core-area spatial scale. RMZs likely were used by raccoons because they provided abundant denning resources (i.e., large-diameter trees) as well as access to water. Habitat composition associated with raccoon foraging locations indicated selection for intact forests, riparian areas, and regenerating harvest (stands managed forests in the central Appalachians.

  6. Ecological Function Value of Tropical Forests in the Central Mountainous Areas of Hainan Island

    Institute of Scientific and Technical Information of China (English)

    Jing; GAO; Zuguang; ZHOU

    2013-01-01

    The integrated value of the ecological function of tropical forests in the central mountainous areas of Hainan Island was 33.064 8 billion yuan/a in 2010(soil improvement,soil consolidation,soil nutrient maintenance,water storage and moisture regulation,water purification,carbon sequestration,oxygen releasing,air purification,biodiversity conservation,eco-tourism),equivalent to 16.1%of GDP in Hainan Province this year(205.212 billion yuan).The tropical forests in the central mountainous areas of Hainan Island make great contribution to Hainan Island’s ecology,and play an important role in maintaining the stability of the ecological environment in Hainan Island.Through the understanding of major ecological function value of tropical forests,it is necessary to make people cherish the tropical forests in the central ecological function conservation areas of Hainan Province,and spontaneously throw themselves into the ecological environment protection and construction,to promote the rapid and sustainable development of construction in Hainan Province as an international tourism island.

  7. Plant biodiversity of beech forests in central-northern Italy: a methodological approach for conservation purposes

    Directory of Open Access Journals (Sweden)

    Marcantonio M

    2012-07-01

    Full Text Available Forests are reckoned essentials as biodiversity reservoirs and carbon sinks. Current threats to forest ecosystems (e.g., climate changes, habitat loss and fragmentation, management changes call for monitoring their biodiversity and preserving their ecological functions. In this study, we characterized plants diversity of five beech forests located in central and north Apennines mountain chain, using results by a probabilistic sampling. In order to achieve our goals, we have considered species richness and abundance, taxonomic distinctness and species composition, using both old and new analytical approaches. Results have shown how: (1 the forest type dominated by Fagus sylvatica is characterized by high complexity, with marked compositional, structural and biodiversity differences; (2 beech forests of Pigelleto di Piancastagnaio and Valle della Corte show the highest plants diversity values. The ecological characteristics of these areas, which sustain high diversity values, are unique and of great conservation interest; (3 the use of species richness as the only diversity measure have not allowed an efficient differentiation between studied areas. Indeed, the use of different indexes and analytical methods is required to detect multiple characteristics of biological diversity, as well as to carry out efficient biodiversity surveys aimed to develop optimal conservation strategies. In the future, we plan to apply the sampling methodology and the analytical approach used in this paper to characterize plants diversity of similar forest types.

  8. Spruce forest bryophytes in central Norway and their relationship to environmental factors including modern forestry

    Energy Technology Data Exchange (ETDEWEB)

    Frisvoll, A.A. [Norwegian Inst. for Nature Research, Trondheim (Norway); Prestoe, T. [Norwegian Univ. of Science and Technology, Museum of Natural History and Archaeology, Dept. of Botany, Trondheim (Norway)

    1997-02-01

    In this study of bryophyte diversity in 110 patches of spruce forests of bilberry, small fern, low herb, tall fern and tall herb type in Soer-Troendelag, central Norway, each patch (from 0.24 to 9.33 ha) was classified as one main vegetation type and one successional stage or cutting class. The bryophytes in each patch were censured in randomly established squares of 10 x 10 m, supplemented by complete sampling in the rest of the patch. A number of environmental variables was sampled, and the data sets treated with DCA and CCA. Altogether 210 bryophytes (71 liverworts and 139 mosses) were found in the squares, and 285 (96 liverworts and 189 mosses) in the forest patches. The average number of liverworts, mosses and bryophytes in forest patches increased gradually from the dry and poor to the moist and rich forest types. Several red listed and other interesting spruce forest species had their only or main occurrence in the rich and humid forest, and in old cutting classes. (au) 45 refs.

  9. Effects of forest fires in southern and central of Zabaykal region

    Directory of Open Access Journals (Sweden)

    L. V. Buryak

    2016-12-01

    Full Text Available The fire frequency situation in Zabaykal region from 1964 to 2015 is evaluated and discussed in the paper. The main reasons of decadal increase of fire numbers and the area burned are revealed. The main reasons of high fire frequency and the increase of fire activity in the last decades are shown. The characteristics of the weather conditions in the years of high fire frequency are presented. Fire activity was found to increase not only because of the droughts in the last decades but also due to forest disturbances in Zabaykalsky Krai by illegal logging. Based on the data from 170 sample sites laid out with the use of satellite images, forest inventory data and results of ground sample transects, the impact of the wildfires of different type, form and severity on tree mortality in the light-coniferous forests was estimated, as well as the amount of tree regeneration in the forest areas disturbed by fires, logged sites (both burned and unburned, and sites burned repeatedly was evaluated. Wildfires in the Zabaykal region were found to be strong ecological factor influencing on the probability of existence of many forest ecosystems. In case of further climate warming and repeated fires, the part of the forests may transform to the non forest areas. The steppification of the burned sites in the southern forest-steppe regions and in the low parts of the southern slopes at the border with steppe landscapes as well as desertification in the central parts of the region and swamping of burned sites located in the wet soils are observed. Wind and water soil erosion happens at the large burned sites.

  10. Drought Sensitivity of the Amazon Rainforest

    OpenAIRE

    Phillips, Oliver L.; Aragao, Luiz; Lewis, Simon L.; Fisher, Joshua B; Lloyd, J.; Lopez Gonzalez, G.; Malhi, Y; A. Monteagudo; J. Peacock; Quesada, C.A.; Van Der Heijden, Geertje; Almeida, S; Amaral, Ieda; Arroyo, L.; Aymard, Gerardo

    2009-01-01

    Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed wh...

  11. Combining moving inlets for measuring gradients of reactive trace gases and thoron measurements for the determination of near surface fluxes -first results from the Amazon rain forest-

    Science.gov (United States)

    Sörgel, Matthias; Artaxo, Paulo; Kesselmeier, Jürgen; Quesada, Carlos Alberto; Ferreira de Souza, Rodrigo Augusto; Trebs, Ivonne; Vega, Oscar; Yañez-Serrano, Ana Maria

    2016-04-01

    For many compounds of interest no fast response sensors for the determination of eddy covariance fluxes are available. Therefore, flux-gradient relationships are used. The most common are the aerodynamic gradient method and the modified Bowen ratio method. For those approaches some assumptions have to be made which restrict their use. An alternative approach to calculate these fluxes might be given by the "thoron clock" method. The radon isotope Thoron (220Rn) is exhaled from the soil and has a half life time of 56 seconds. Therefore, it exists in measureable amounts only close to the ground and is hardly advected. Its only source is the radioactive decay of Thorium in soil. As it is a noble gas Thoron is not influenced by biochemical processes in air. Consequently, its concentration profile only depends on vertical mixing and the radioactive decay which is a physical constant. According to Lehmann et al. (1999) and Plake and Trebs (2013) a transport-time can be directly calculated from two heights thoron concentration/activity for the layer in-between without further assumptions. From this transport time the transfer velocity is derived which is then applied to calculate the fluxes of other (reactive) trace gases. A major advantage of the method is that the transport-time is known and using the measured concentration profile the chemical loss of a compound can be directly calculated and corrected for. We have applied this method for a first time in the Amazon rainforest during a field campaign at the ATTO site 150 km North East of Manaus in the dry season of 2014. We measured gradients of NO, NO2, O3, HONO and VOCs by using a movable inlet on a lift system close to the forest floor (0.19 m, 0.52 m and 1.59 m). A Thoron profile was measure in parallel at the lower two heights. First results of the gradients, the transport times and some preliminary flux values will be presented. References: Lehmann, B.E., Lehmann, M., Neftel, A .: 220 Radon calibration of near

  12. Eco-efficiency in oil and gas exploration and production in regions of humid tropical forests: the PETROBRAS case in the Amazon region; Eco-eficiencia na exploracao e producao de petroleo e gas em regioes de florestas tropicais umidas: o caso da PETROBRAS na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    Leyen, Bianca de Castro

    2008-09-15

    This dissertation discourses about the application of eco-efficiency concepts to the case of PETROBRAS oil and gas exploration and production activities in the Amazon Forest, proposing the use of indicators as a systematization tool for this application. First there is a description about the concepts concerning corporate sustainability, corporate social responsibility and eco-efficiency, considering their application to the oil and gas industry. The main exploration and production projects in rainforest regions are described next, with distinction to PETROBRAS case in the Amazon Forest. Finally there is a description about the process of alignment of PETROBRAS Amazon activities management to the eco-efficiency and corporate sustainability, followed by a proposal of a body of indicators to the case study. (author)

  13. Floristic composition and community structure of epiphytic angiosperms in a terra firme forest in central Amazonia

    Directory of Open Access Journals (Sweden)

    Mariana Victória Irume

    2013-06-01

    Full Text Available This survey aimed to describe the floristic composition and structure of the epiphytic community occurring in a terra firme forest in the city of Coari, Brazil, in the Amazon region. Data collection was performed with a 1.5 ha plot method, with which upland, slope and lowland habitats were sampled. All angiosperm epiphytes and their host plants (diameter at breast height > 10 cm were sampled. We recorded 3.528 individuals in 13 families, 48 genera and 164 species. Araceae was the most prevalent family with regard to the importance value and stood out in all related parameters, followed by Bromeliaceae, Cyclanthaceae and Orchidaceae. The species with the highest epiphytic importance values were Guzmania lingulata (L. Mez. and Philodendron linnaei Kunth. The predominant life form was hemiepiphytic. Estimated floristic diversity was 3.2 (H'. The studied epiphytic community was distributed among 727 host plants belonging to 40 families, 123 genera and 324 species. One individual of Guarea convergens T.D. Penn. was the host with the highest richness and abundance of epiphytes. Stems/trunks of host plants were the most colonized segments, and the most favorable habitat for epiphytism was the lowlands, where 84.1% of species and 48.2% of epiphytic specimens were observed.

  14. Development Plan for Under- forest Economy of Henan Province Based on Central Plains Economic Region

    Institute of Scientific and Technical Information of China (English)

    Xiaodong ZHAO; Yimin ZHAO

    2016-01-01

    Firstly,this paper analyzed current situations,major practice and existing problems of under-forest economy in Henan Province.Then,it made an in-depth discussion of guiding thought,principle and objectives,construction task and safeguarding measures of the underforest economic development plan. Besides,it analyzed benefits of the under-forest economic development plan. By 2017,the area of underforest economic land will reach 1. 60 million hm2,create output value of 155. 2 billion yuan( accounting for more than 20% of forest output value),provide 3. 27 million jobs,and will greatly increase ecological carrying capacity of construction and development of the Central Plains Economic Region( CPER).

  15. Types of Structure and Sustainability of Forest Shelter Belts in the Southern Part of Central Siberia

    Directory of Open Access Journals (Sweden)

    G. S. Varaksin

    2014-06-01

    Full Text Available The series of tree stem diameter distributions has been basis for study tree stand structure in forest shelter belts. The measurements were carried out in forest shelter belts of the southern part of the Central Siberia. Experimental sample plots have been established in the Republic of Khakassia (Ust-Abakan, Beisk, and Shira districts, Krasnoyarsk Territory (Shushenskoe and Minusinsk districts, and the Republic of Tuva (Kyzyl district. The analysis of tree stem diameter distributions series allowed making reference table in determining the shape of distributions in the forest shelter belts. The evaluation involves allocation of six types of the tree stem diameter series: symmetric, left asymmetric, right asymmetric, peak, flat, and pectinate. Comparing agro-technical features of creating tree stands and distributions series of the tree stem diameters, the optimal parameters in terms of sustainability for different tree species has been determined.

  16. How Socio-Economic Conditions Influence Forest Policy Development in Central and South-East Europe

    Science.gov (United States)

    Vuletić, Dijana; Potočić, Nenad; Krajter, Silvija; Seletković, Ivan; Fürst, Christine; Makeschin, Franz; Galić, Zoran; Lorz, Carsten; Matijašič, Dragan; Zupanič, Matjaž; Simončič, Primož; Vacik, Harald

    2010-12-01

    In this article, several findings on socio-economic conditions derived from national reports and a web-based questionnaire are discussed and related to the changing role of forestry and the future forest policy development. A number of Central and South-eastern European countries taking part in a SEE-ERA-NET project ReForMan project ( www.reforman.de ) participated in data acquisition: Austria, Bosnia and Herzegovina, Croatia, Germany, Serbia and Slovenia. The aim of the research was to illustrate the present structure of forestry sector, as well as investigate newly emerging topics in forestry of Central and South-eastern Europe. The results indicated certain patterns in attitudes and perceptions among stakeholders that can be related to socio-economic conditions defined for each country. Clear differences between member and non-member countries exist only in level of implementation of EU legislation. Results showed consensus on main threats to the forests among all countries, but also some country specifics in perceptions of factors influencing forestry, their importance and professional competencies. These results could be additionally explained by influence of historical conditions which shaped development of forest sector in SEE region especially in its organizational dimension as well as in perceived role of forestry expressed through recognition of main forest functions. The influence of European forest policy processes in the region is evident through adaptation of EU legislation and perceived implications of international processes on national levels. Based on this observation, two possible options for future development of the forestry sector can be foreseen: (i) focusing on the productive function of forests and fostering its' sustainable use; or (ii) putting an emphasis on environmental and social issues. In both cases supporting public participation in decision-making processes is recommendable. Another conclusion based on perceived medium to low

  17. Ambient ozone in forests of the Central and Eastern European mountains

    Energy Technology Data Exchange (ETDEWEB)

    Bytnerowicz, A.; Godzik, B.; Grodzinska, K.; Fraczek, W.; Musselman, R.; Manning, W.; Badea, O.; Popescu, F.; Fleischer, P

    2004-07-01

    Ambient ozone (O{sub 3}) concentrations in the forested areas of the Central and Eastern European (CEE) mountains measured on passive sampler networks and in several locations equipped with active monitors are reviewed. Some areas of the Carpathian Mountains, especially in Romania and parts of Poland, as well as the Sumava and Brdy Mountains in the Czech Republic are characterized by low European background concentrations of the pollutant (summer season means {approx}30 ppb). Other parts of the Carpathians, especially the western part of the range (Slovakia, the Czech Republic and Poland), some of the Eastern (Ukraine) and Southern (Romania) Carpathians and the Jizerske Mountains have high O{sub 3} levels with peak values >100 ppb and seasonal means {approx}50 ppb. Large portions of the CEE mountain forests experience O{sub 3} exposures that are above levels recommended for protection of forest and natural vegetation. Continuation of monitoring efforts with a combination of active monitors and passive samplers is needed for developing risk assessment scenarios for forests and other natural areas of the CEE Region. - Ozone concentrations in Central and Eastern European mountain ranges are elevated and phytotoxic to sensitive vegetation.

  18. Vegetation history of the walnut forests in Kyrgyzstan (Central Asia): natural or anthropogenic origin?

    Science.gov (United States)

    Beer, Ruth; Kaiser, Franziska; Schmidt, Kaspar; Ammann, Brigitta; Carraro, Gabriele; Grisa, Ennio; Tinner, Willy

    2008-03-01

    Extensive forests of common walnut ( Juglans regia L.) occur in the mountains of the Fergana and the Chatkal Ranges of Kyrgyzstan (Central Asia), where they form a rich cultural landscape with a mosaic of natural and planted forest stands, fields, pastures, and drier open areas. These remote forests are likely to be an important genetic resource for J. regia, not only for in situ conservation but also as a resource for tree breeding. Pollen and charcoal analyses of the sediments of four lakes and two peat bogs in the core regions of the walnut forests provide new data to infer the vegetation history of the last 6800 years in the Fergana and Chatkal Ranges in Kyrgyzstan. Our results suggest that the potential natural forests or woods in the modern walnut forest region were dominated by Juniperus together with trees of Betula, Fraxinus, Rosaceae, and possibly Acer. A special focus was put on the vegetation history of J. regia, as it has been suggested that the walnut forests of Kyrgyzstan might be a refuge for this tree. However, our results suggest that the stands of J. regia are at the most 2000 years old, most of them even only about 1000 years old and probably of anthropogenic origin, confirming an old legend that is still orally transmitted in Kyrgyzstan. As with other old and widespread cultivated plants, it is not easy to reconstruct the original distribution and determine the borders of the past natural ranges. A review of paleoecological data points to refugia in southern Europe, Syria, Kyrgyzstan, China, and the Himalaya, where Juglans possibly outlived the last glaciation.

  19. Susceptible conditions for debarking by deer in subalpine coniferous forests in central Japan

    Institute of Scientific and Technical Information of China (English)

    Hayato Iijima; Takuo Nagaike

    2016-01-01

    Background:Recently, deer have expanded their distribution to higher altitude ranges including subalpine forests. However, culling deer and construction of deer fence in subalpine forests are difficult because of steep slopes and complex topography. Thus it is necessary to clarify the factors which are associated with debarking by deer for the effective protection of subalpine forests. In this study, we examined which factors are associated with debarking by sika deer (Cervus nippon) in subalpine coniferous forests. Methods:We conducted our survey in Minami-Alps National Park, central Japan. We established 24 10 m × 40 m plots and surveyed the occurrence of debarking on saplings>30 cm in height and3 cm in DBH, as well as sapling density within each plot. Minimum distances to nearest grassland of plots were calculated (tentatively assuming grassland would attract deer and would cause high debarking pressure in the surrounding subalpine forests). Results:The mean percentage of debarked live saplings was higher than that of live trees. The mean percentage of debarked saplings which had already died was 81.6 %. Debarking of saplings increased with lower elevation, taller sapling size, and marginally increased near grassland. Sapling density was lower in plots with low basal area of conspecific trees near grassland and differed among species. Sapling density marginally decreased with decreasing elevation and increasing stand tree density. Debarking of trees was positively related to small DBH and low elevation, and marginally increased near grassland and differed among species. Conclusions:Our results suggest that tall saplings in subalpine forests of low elevation or near subalpine grassland were susceptible to debarking by deer and monitoring of these areas may permit the early detection of the impacts of deer in subalpine coniferous forests.

  20. A millennium of Mediterranean climate change and forest history in central Italy

    Science.gov (United States)

    Mensing, S. A.; Tunno, I.; Piovesan, G.

    2010-12-01

    A 1100 year sedimentary sequence from a lake in central Italy near Rome (Lago Lungo, Lazio, 379 m a.s.l.) was sampled for pollen and charcoal at an average interval of 26 years providing a high-resolution reconstruction of vegetation from 885 AD to the present. Pollen percentages support historical documents that describe periodic deforestation and agricultural expansion during the Medieval Climate Anomaly (MCA). Forests recovered about 1400 AD following depopulation associated with the black plague and socio-economic instability and a shift to cool wet climate during the Little Ice Age (LIA). Mixed deciduous forest reached a maximum in 1550 AD, approximately one century later than many sites across Western Europe. A less diverse less dense forest emerged after 1650 AD following the plague of 1656 AD. There is no evidence that excessive cutting, burning and erosion during the medieval period caused permanent degradation of the landscape. Forests appear to have recovered rapidly when land use declined and climate became favorable. Comparison of the pollen data with reconstructed Palmer Drought Severity Index (PDSI) of Morocco and North Atlantic Oscillation (NAO) indicate periods of deforestation and woodland regeneration coincide with climate change. During warm dry climate, deforestation accelerated and agriculture expanded, and during extended cool wet climate, conditions for cereal cultivation deteriorated, forests and wetland expanded, and the local agricultural system collapsed. These results show that in the Mediterranean, collapse of local agricultural systems may also occur during extended periods of cool/wet climate.

  1. Factors associated with long-term species composition in dry tropical forests of Central India

    Science.gov (United States)

    Agarwala, M.; DeFries, R. S.; Qureshi, Q.; Jhala, Y. V.

    2016-10-01

    The long-term future of species composition in forests depends on regeneration. Many factors can affect regeneration, including human use, environmental conditions, and species’ traits. This study examines the influence of these factors in a tropical deciduous forest of Central India, which is heavily used by local, forest-dependent residents for livestock grazing, fuel-wood extraction, construction and other livelihood needs. We measure size-class proportions (the ratio of abundance of a species at a site in a higher size class to total abundance in both lower and higher size classes) for 39 tree species across 20 transects at different intensities of human use. The size-class proportions for medium to large trees and for small to medium-sized trees were negatively associated with species that are used for local construction, while size class proportions for saplings to small trees were positively associated with those species that are fire resistant and negatively associated with livestock density. Results indicate that grazing and fire prevent non-fire resistant species from reaching reproductive age, which can alter the long term composition and future availability of species that are important for local use and ecosystem services. Management efforts to reduce fire and forest grazing could reverse these impacts on long-term forest composition.

  2. Exploratory analysis of atmospheric pollution in a coastal forest ecosystem in central Italy

    Directory of Open Access Journals (Sweden)

    Rita Aromolo

    2015-02-01

    Full Text Available Exploratory analysis of atmospheric pollution in a coastal forest ecosystem in central Italy - The study of spatial and temporal distribution of heavy metals in the atmosphere through the continuous assessment of deposition is of great interest for the analysis of anthropogenic pressure on the environment and the potential toxicity to humans and other living organisms. Information based on reliable estimates of heavy metals is therefore crucial for the evaluation of environmental quality. Trends in heavy metal concentration in atmospheric depositions on a coastal forest ecosystem (Castelporziano, Rome are analyzed in the present study based on a three-year monitoring field survey over three sites representative of different woodland characteristics in the area. Our results highlight both the influence of transportation processes in the short and medium distance based on the human pressure reflecting urban expansion and infrastructure development on the fringe of Castelporziano pristine forest. Further studies investigating the latent correlation with meteorological variables at various temporal scales are needed to provide a comprehensive picture of environmental conditions in a forest ecosystem subjected to increasing human pressure. Analysis of runoff water quality and the determination of other heavy metals, such as arsenic, may identify additional sources of pollution impacting soil and forest ecosystem.

  3. Mapping fire events in the transition of Amazon and Cerrado biome using remote sensing

    Science.gov (United States)

    Antunes Daldegan, G.; Roberts, D. A.; Peterson, S.; Ribeiro, F.

    2015-12-01

    Abstract to AGU Fire is considered one of the determinant factors that have shaped Cerrado biome, the Brazilian Savanna, considered the most biodiverse savanna in the world. At the same time, fire has not acted a major role during the evolution of the Amazon Forest due to the strong capacity it has to resist burning. Recently, with the expansion of the agricultural activities in the central Brazil, about 49% of the Cerrado has been converted to other uses and as deforestation vector runs towards the Amazon Forest it modifies the natural moist microclimate in the edges of the forest, increasing the likelihood of wildfires. Every year these ecosystems suffer with several fire events responsible for large burned areas, causing losses of biomass, biodiversity, soil nutrients, and releasing tons of CO2 that help climate change. The occurrence of fires has a direct relationship with the climate of the central portion of the south american continent, charaterized by a two seasons regime, wet and dry, each one lasting around 6 months. In this region is located the ecotone of these two majors Brazilians ecosystems. In the Cerrado biome fire is often used to manage pasture, stimulating the regrowth of natural grasses used as pasture and also to open new areas for agriculture. There are researches showing that people have been traditionally using fire as a lower cost way to manage their lands for different purposes. In the Amazon forest the cycle of deforestation started around the 60's with incentives from the federal government to populate the region in the middle of the last century, and most recently by the progress of the commodities prices, such as soybean and sugar-cane, that has occupied vast areas of the Cerrado and is marching towards the forest. In the Amazon, fire is frequently used to further open the areas that were previously logged selectively and then converted to agricultural uses.Given the ecological importance of the Amazon Forest and Cerrado biome and the

  4. Comparison of coniferous forest carbon stocks between old-growth and young second-growth forests on two soil types in central British Columbia, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Fredeen, A.L.; Bois, C.H.; Janzen, D.T.; Sanborn, P.T. [Northern British Columbia Univ., Prince George, BC (Canada). Faculty of Natural Resources and Environmental Studies

    2005-06-01

    More than half of the world's terrestrial organic soil and vegetation carbon (C) currently resides in forests, with one half of this in boreal forests alone. Forests therefore represent significant reservoirs of carbon. A study was conducted at the Aleza Lake Research Forest (ALRF) near Prince George, British Columbia to compare the C stocks in 4 old-growth sub-boreal spruce (SBS) forests with 4 corresponding young, planted second-growth stands in soils of contrasting textures. The 2 dominant soil textures were coarse and fine grained soils over a total of 16 plots. The C stocks were assessed for hybrid interior spruce-dominated upland forests within the ALRF. For each plot, the carbon content of tree biomass was estimated using the measured values of Lamlom and Savidge. All woody debris stocks including tree stumps were also evaluated and soil C stocks were sampled according to modified National Forest Inventory Sampling Guidelines. C stocks were also tested for mineral soil texture, age-class and their interaction effects. The average total C stocks for old-growth stands ranged from 423 Mg C per hectare to 324 Mg C per hectare, between Pacific Northwest temperate forest and upland boreal forests. It was concluded that sub-boreal forests of central British Columbia are intermediate in terms of aboveground and total carbon stocks between the wetter and more productive coastal forests to the south and west and the less productive boreal stands to the north and east. It was concluded that conservation of non-biomass C stocks in old-growth forests is important in minimizing greenhouse gas emissions resulting from sub-boreal forest management activities. 60 refs., 2 tabs., 4 figs.

  5. Spatiotemporal patterns of tropical deforestation and forest degradation in response to the operation of the Tucuruí hydroelectricdam in the Amazon basin

    NARCIS (Netherlands)

    Chen, Gang; Powers, Ryan P.; Carvalho, de Luis M.T.; Mora, Brice

    2015-01-01

    The planned construction of hundreds of hydroelectric dams in the Amazon basin has the potential to provide invaluable ‘clean’ energy resources for aiding in securing future regional energy needs and continued economic growth. These mega-structures, however, directly and indirectly interfere with na

  6. The Influence of Typical Forest Types on Soil Erosion Resistance in the Water Source Areas of Central Yunnan

    Institute of Scientific and Technical Information of China (English)

    Yangyi; ZHAO; Xu; DUAN; Shumiao; SHU

    2015-01-01

    In order to clarify the influence of different forest types on soil erosion resistance in water source area of Central Yunnan,with the soils under three different kinds of typical forest in Yizhe watershed as the research object,this paper uses field simulation method and principal component analysis to analyze the soil erosion resistance of three kinds of soils. The results show that there is a significant difference in the shear strength of soil among three types of typical forest,and the size of soil shear strength is in the order of Pinus yunnanensis forest land >mixed broadleaf-conifer forest land > eucalyptus forest land. The difference in the soil erosion coefficient among different forests is not significant,and the soil erosion resistance is highest in mixed broadleaf-conifer forest land( 39. 0%),followed by eucalyptus woodland( 37. 0%)and Pinus yunnanensis forest land( 24. 0%). Under heavy rain intensity and long duration of rainfall,the ability of soil under eucalyptus ×Pinus yunnanensis mixed forests to resist disintegration is more obvious. Using principal component analysis to analyze soil erosion resistance of soils under three different forests,we get the comprehensive evaluation model for soil erosion resistance: Y = 0. 763Y1+ 0. 236Y2. The soil erosion resistance is in the order of mixed broadleaf-conifer forest land( 0. 150) > eucalyptus forest land( 0. 127) > Pinus yunnanensis forest land(-0. 079),indicating that the mixed forests have better water loss and soil erosion control effect than pure forests.

  7. Niños de la Amazonía. Una experiencia de trabajo conjunto por una mejor educación para los niños y las niñas asháninkas de la selva central del Perú

    Directory of Open Access Journals (Sweden)

    Regina Moromizato Izu

    2011-12-01

    Full Text Available Children of the Amazon. A cooperative work experience to improve the quality of early childhood education in the Amazon of PerúThis article describes and analyzes the experience of three years of implementation of the Amazon Children Project, which promoted the formation and strengthening of a social platform, formed by allies who energized the actions of the project.This collective effort had as main objective to contribute in the development and learning for children from 3 to 8 years, who live in Ashaninka´s communities in the central jungle from the improvement in the quality of education, facilitatingthe process of transition between educational levels.

  8. Permanent sample plots for natural tropical forests: a rationale with special emphasis on Central Africa.

    Science.gov (United States)

    Picard, Nicolas; Magnussen, Steen; Banak, Ludovic Ngok; Namkosserena, Salomon; Yalibanda, Yves

    2010-05-01

    Permanent sample plots (PSP), where trees are individually and permanently marked, have received increased interest in Central Africa as a tool to monitor vegetation changes. Although techniques for mounting PSP in tropical forests are well known, their planning still deserves attention. This study aims at defining a rationale for determining the size and number of replicates for setting up PSP in mixed tropical forests. It considers PSP as a sampling plan to estimate a target quantity with its associated margin of error. The target quantity considered here is the stock recovery rate, which is a key parameter for forest management in Central Africa. It is computed separately for each commercial species. The number of trees to monitor for each species defines the margin of error on the stock recovery rate. The size and number of replicated plots is obtained as the solution of an optimization problem that consists in minimizing the margin of error for every species while ensuring that the mounting cost remains below a given threshold. This rationale was applied using the data from the M'Baïki experimental site in the Central African Republic. It showed that the stock recovery rate is a highly variable quantity, and that the typical cost that forest managers are prone to devote to PSP leads to high margins of error. It also showed that the size and number of replicated plots is related to the spatial pattern of trees: clustered or spatially heterogeneous patterns favor many small plots, whereas regular or spatially homogeneous patterns favor few large plots.

  9. Modeling the Effects of Harvest Alternatives on Mitigating Oak Decline in a Central Hardwood Forest Landscape.

    Directory of Open Access Journals (Sweden)

    Wen J Wang

    Full Text Available Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest vulnerability to oak decline by removing susceptible species and declining trees. However, the long-term, landscape-scale effects of these different harvest alternatives are not well studied because of the limited availability of experimental data. In this study, we applied a forest landscape model in combination with field studies to evaluate the effects of the three harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape. Results showed that the potential oak decline in high risk sites decreased strongly in the next five decades irrespective of harvest alternatives. This is because oak decline is a natural process and forest succession (e.g., high tree mortality resulting from intense competition would eventually lead to the decrease in oak decline in this area. However, forest harvesting did play a role in mitigating oak decline and the effectiveness varied among the three harvest alternatives. The group selection and clearcutting alternatives were most effective in mitigating oak decline in the short and medium terms, respectively. The long-term effects of the three harvest alternatives on mitigating oak decline became less discernible as the role of succession increased. The thinning alternative had the highest biomass retention over time, followed by the group selection and clearcutting alternatives. The group selection alternative that balanced treatment effects and retaining biomass was the most viable alternative for managing oak decline. Insights from this study may be useful in developing effective and informed forest harvesting plans for managing oak

  10. Emerging deforestation trends in tropical dry forests ecoregions of Mexico and Central America

    Science.gov (United States)

    Portillo, C. A.; Cao, G.; Smith, V.

    2015-12-01

    Neotropical dry forests (TDF) have experienced an unprecedented deforestation that is leading to the loss of tropical biodiversity at a rapid pace, but information on deforestation dynamics in TDF is scarce. In this study, we present a sub-continental and national level assessment of TDF loss patterns in Mexico and Central America at high spatial and temporal resolution using remote sensing and GIS technologies. We used the Global Forest Change (GFC) dataset published by Hansen et al. (2013) which shows results from time-series analysis of Landsat images in characterizing global forest extent and change from 2000 through 2013. We analyzed forest loss within and around mapped TDF cover mapped by Portillo-Quintero et al. 2010. In order to minimize errors in source data, we overlaid a 25 x 25 km grid on top of the regional dataset and conducted a cell by cell and country by country inspection at multiple scales using high resolution ancillary data. We identified trends in the clustering of space-time TDF deforestation data using ArcGIS, categorizing trends in: new, consecutive, intensifying, persistent, diminishing, sporadic, oscillating and historical hotspots (high frequency of deforestation events) and cold spots (low frequency of deforestation). In general, the region is experiencing less frequent deforestation events with a higher number of intensifying and new cold spots across TDF landscapes. However, an important number of intensifying and persistent hotspots exist so no general trend in forest loss was detected for the period 2001-2013, except for El Salvador which shows a significant decreasing trend in forest loss. Mexico, Nicaragua, Honduras and Guatemala are the major sources of intensifying, persistent and new deforestation hot spots. These were identified in the southern pacific coast and the Yucatan Peninsula in Mexico, northwestern Guatemala, both western and eastern Honduras and around Lake Nicaragua in Nicaragua.

  11. Modeling the Effects of Harvest Alternatives on Mitigating Oak Decline in a Central Hardwood Forest Landscape.

    Science.gov (United States)

    Wang, Wen J; He, Hong S; Spetich, Martin A; Shifley, Stephen R; Thompson Iii, Frank R; Fraser, Jacob S

    2013-01-01

    Oak decline is a process induced by complex interactions of predisposing factors, inciting factors, and contributing factors operating at tree, stand, and landscape scales. It has greatly altered species composition and stand structure in affected areas. Thinning, clearcutting, and group selection are widely adopted harvest alternatives for reducing forest vulnerability to oak decline by removing susceptible species and declining trees. However, the long-term, landscape-scale effects of these different harvest alternatives are not well studied because of the limited availability of experimental data. In this study, we applied a forest landscape model in combination with field studies to evaluate the effects of the three harvest alternatives on mitigating oak decline in a Central Hardwood Forest landscape. Results showed that the potential oak decline in high risk sites decreased strongly in the next five decades irrespective of harvest alternatives. This is because oak decline is a natural process and forest succession (e.g., high tree mortality resulting from intense competition) would eventually lead to the decrease in oak decline in this area. However, forest harvesting did play a role in mitigating oak decline and the effectiveness varied among the three harvest alternatives. The group selection and clearcutting alternatives were most effective in mitigating oak decline in the short and medium terms, respectively. The long-term effects of the three harvest alternatives on mitigating oak decline became less discernible as the role of succession increased. The thinning alternative had the highest biomass retention over time, followed by the group selection and clearcutting alternatives. The group selection alternative that balanced treatment effects and retaining biomass was the most viable alternative for managing oak decline. Insights from this study may be useful in developing effective and informed forest harvesting plans for managing oak decline.

  12. Thinning intensity influences on soil microbial and inorganic nitrogen in Pinus densiflora forests, central Korea

    Science.gov (United States)

    Kim, S.; Li, G.; Yun, H. M.; Han, S. H.; Lee, J.; Kim, C.; Lee, S. T.; Son, Y.

    2015-12-01

    With growing considerations for sustainable forest management, examining thinning effects on forest ecosystems becomes one of the principal research focuses. Soil microbial biomass and inorganic nitrogen (N) have, particularly, received increasing attentions, as they are the relevant indices for N availability in forests. Here, we investigated the influences of thinning on soil microbial biomass N (MBN) and inorganic N (NH4+ and NO3-) in two Pinus densiflora forests, central Korea. The thinning from below with different intensities based on stand density (site 1: control, 20%, and 30% thinning; site 2: control, 39%, and 74% thinning) was applied in 2008, and MBN, NH4+, and NO3- at 0-10 cm depth were measured seven years after thinning. The MBN, NH4+, and NO3- concentrations (mg kg-1) of the site 1 were 69.8, 9.8, and 6.3 in the control, 94.6, 9.3, and 4.0 in the 20% thinning plot, and 97.2, 8.4, and 5.2 in the 30% thinning plot, respectively. On the other hand, those of the site 2 were 34.5, 5.4, and 6.3 in the control, 37.3, 4.7, and 7.8 in the 39% thinning plot, and 44.4, 4.4, and 9.2 in the 74% thinning plot, respectively. The MBN of the thinning plots tended to be higher compared to those of the controls, although the analysis of variance reported the significant difference only for the MBN in the site 1 (P0.05). The results of the present study show that the application of thinning could differently affect MBN and inorganic N; accordingly, this difference might alter N availability of the study sites. This study was supported by Forest Practice Research Center, Korea Forest Research Institute.

  13. Typology of the supply chains of non-wood forest products in central Serbia

    Directory of Open Access Journals (Sweden)

    Nonić Dragan

    2013-01-01

    Full Text Available Modern economies are characterized by a growing importance of cooperation and the creation of networks of enterprises, organizations and institutions, which are all part of a supply chain, in order to achieve competitive advantage in a market. The aim of this study was to determine the structure of the supply chains of non-wood forest products in selected forest areas of Central Serbia (Golijsko, Podrinjsko-kolubarsko, Posavsko-podunavsko, Rasinsko and Tarsko-zlatiborsko FAs. The comparative method was applied in this paper, along with the method of specialization (classification, the method of structural partial analysis (supply chain analysis and the statistical method (analysis of frequencies and two-step cluster. The data collection was conducted in 2011, by using the technique of door-to-door survey. The analysis of the basic types of the supply chains of non-wood forest products and their main stages (purchasing, processing and placement was conducted in the selected areas. A cluster analysis showed that there were six basic types of supply chains in the selected forest areas and one dominant type. [Projekat Ministarstva nauke Republike Srbije, br. 443007/16 –III: Istraživanja klimatskih promena i njihovog uticaja na životnu sredinu -praćenje uticaja, adaptacija i ublažavanje, podprojekat: Socio-ekonomski razvoj, ublažavanje i adaptacija na klimatske promene

  14. Forest Owners’ Organizations in North and Central Portugal – Assessment of Success

    Directory of Open Access Journals (Sweden)

    Diana Feliciano

    2011-06-01

    Full Text Available Background and Purpose: The emergence of forest owners’ organizations (FOOs in Portugal occurred in the 1990s. Fifteen years later there were 173 FOOs providing services to the private forest owners and also to the whole of society. This study aims to evaluate the success of FOOs in increasing their membership and the quantity of services provided. Material and Methods: Eight FOOs from the North and Central Portugal were chosen as case studies. Quantitative data on membership numbers and number of services provided by the eight case studies were collected from the archives of FORESTIS or directly at the FOOs headquarters. Qualitative data from newsletters, annual reports, local newspapers and letters were also collected to be further analysed. Secondary data collected cover a period of ten years (1994-2005. In addition, eight interviews to members of staff or FOOs directors were conducted in 2005. It was hypothesised that the number of members and the quantity of services provided may be interrelated and that the turnover of staff and their productivity influence the success of FOOs in increasing their membership and providing technical advice services. Results and Conclusion: The study showed that although most FOOs were successful in making their membership grow, there were big differences in the number of members, in the forest area covered by them and in the quantity of services provided. It was concluded that human capital, financial capital and path dependence were the factors that most constrained the success FOOs in North and Central Portugal.

  15. Emission of Nitrous Oxide in Temperate Forests with Different Stages of Nitrogen Saturation in Central Japan

    Science.gov (United States)

    Shaoyan, F.

    2015-12-01

    Long-term nitrogen deposition has caused a problem called nitrogen saturation in forest ecosystems globally. Aber et al. (1989) suggested that nitrogen saturation activate soil nitrification in forest systems, which is the main process of N2O production in aerobic condition. Thus, nitrogen saturation may affect significantly the N2O emission from forests, while the impact on flux has not been quantitatively evaluated yet. In the present study, 3-year monitoring of N2O emission was performed in an N-saturated forests (Tama Hill, Tokyo): the emission rate of N2O was measured monthly by a closed chamber method at 12 plots along a slope, and the net nitrification rate of surface soil (0-10 cm) was measured 4 times in situ. In addition, a comparative research was conducted in summer in eight temperate forests with different stages of nitrogen saturation in central Japan; the N2O flux, soil moisture, nitrogen availability and stream water NO3- concentration were measured at each site. In an N-saturated forests, the annual N2O emission was estimated to be 0.88 kg N ha-1year-1 , showing a typical seasonal variation . The seasonal patterns of N2O emission were significantly related to soil moisture and ambient temperature. We also found high spatial variation of N2O flux among 12 plots along the slope, which was generally higher at the bottom. Moreover, a positive correlation was found between the rate of N2O emission and the net nitrification rate with WFPS60% , probably due to the effect of denitrification. In comparison sites, the N2O emission rate ranged nearly 16-fold from 0.13-2.11 g N ha-1day-1 was linearly related to the stream water NO3- concentration ranged 10-fold from 0.14 to 1.4 mg N/L. Our results revealed N enrichment in forest obviously stimulate soil N2O emission. Keywords: Nitrous oxide, nitrogen saturation, nitrification, temperate forest

  16. Behaviour of {sup 137}Cs in the Boreal forest ecosystem of central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Fawaris, B.H.

    1995-12-31

    Behaviour of Chernobyl fallout 1{sup 37}Cs in a coniferous forest ecosystem in central Sweden was investigated between 1990 and 1994. Results demonstrated that forest soil belongs to nutrient deficient type, and deposited fallout 1{sup 37}Cs from Chernobyl nuclear accident (CNA) was retained in the upper 5 cm of humic forest soil layer, with a venial migration deeper into soil profile. No correlation between forest soil exchangeable and total potassium (K{sup +}) and 1{sup 37}Cs transfer parameters was observed. However, addition of K{sup +}, found to efficiently reduce 1{sup 37}Cs uptake by sheep`s fescue and the addition of stable caesium (1{sup 33}Cs{sup +}) enhanced it. The addition of ammonium (NH{sub 4}{sup +}) was slightly stimulating the uptake of 1{sup 37}Cs by sheep`s fescue in the first cut only. Field plants showed a considerably reduction in their 1{sup 37}Cs activity concentrations. Relative to their 1{sup 37}Cs levels of 1986-89, a little reduction in heather occurred eight years after CNA. In contrast the reductions in lingonberry and bilberry were 87% and 68%, respectively. Three fractions of forest soil bound 1{sup 37}Cs were observed due to sequential extraction procedure (SEP). The first, is easily extractable 1{sup 37}Cs fraction, it comprises 22% of total forest soil 1{sup 37}Cs inventory in the upper 5 cm layer. The second, is soil organically and biologically bound 1{sup 37}Cs comprises about 30% of soil bound 1{sup 37}Cs. This fraction might be accounted for long-term soil available 1{sup 37}Cs for plant uptake after bio-degradation processes by soil microorganisms. The third, is the residual fraction, it comprises more than 35% of total forest soil 1{sup 37}Cs inventory, and may be associated with soil components which are probably of organic nature. Sorption of 1{sup 37}Cs by zeolite (Mordenite) revealed that soil bound 1{sup 37}Cs is to some extent more mobile in forest soils with high OM% and low pH than those with low OM%.

  17. Feeding habits of giant otters Pteronura brasiliensis (Carnivora: Mustelidae in the Balbina hydroelectric reservoir, Central Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Márcia M. M. Cabral

    2010-02-01

    Full Text Available This study aimed to identify the diet of giant otters, Pteronura brasiliensis (Zimmermann, 1780 in the Balbina reservoir (01º55'S, 59º29'W, to compare it with literature data on the diet of giant otters from non-dammed areas, and to verify the effects of the seasonal changes in water levels on the feeding habits of Balbina otters. A total of 254 feces samples were collected and identified according to the lowest possible taxonomic level. Teleostei fish were present in 100% of the samples; two samples also presented monkey fur (n = 1 and sloth fur (n = 1, suggesting that the diet of P. brasiliensis, in the reservoir, is almost exclusively based on fish. Ten fish families were identified in our samples, six of which were exclusive to the Balbina Lake (not present in the diet of giant otters from non-dammed areas. These six fish families, however, were present in less than 3% of the samples. The fish families with highest representation in the diet of giant otters from non-dammed areas also appeared with higher frequencies in the Balbina Lake, suggesting that the otters have not changed their diet substantially after the implementation of the reservoir. During the high-water period, when the fish are dispersed into the flooded forest and are not very easy to catch, the otters seem to have an opportunistic feeding habit. By contrast, during the low-water period, when prey items are widely available and easier to catch in the reservoir, their feeding habits are more selective.

  18. Enhancing voluntary participation in community collaborative forest management: a case of Central Java, Indonesia.

    Science.gov (United States)

    Lestari, Sri; Kotani, Koji; Kakinaka, Makoto

    2015-03-01

    This paper examines voluntary participation in community forest management, and characterizes how more participation may be induced. We implemented a survey of 571 respondents and conducted a case study in Central Java, Indonesia. The study's novelty lies in categorizing the degrees of participation into three levels and in identifying how socio-economic factors affect people's participation at each level. The analysis finds that voluntary participation responds to key determinants, such as education and income, in a different direction, depending on each of the three levels. However, the publicly organized programs, such as information provision of benefit sharing, are effective, irrespective of the levels of participation. Overall, the results suggest a possibility of further success and corrective measures to enhance the participation in community forest management.

  19. Modelling rainfall interception in unlogged and logged forest areas of Central Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    C. Asdak

    1998-01-01

    Full Text Available Rainfall interception losses were monitored for twelve months and related to vegetation and rainfall characteristics at the Wanariset Sangai on the upper reaches of the Mentaya river, Central Kalimantan. The rainfall interception losses were quantified for one hectare each of unlogged and logged humid tropical rainforests. The results show that interception loss is higher in the unlogged forest (11% of total gross rainfall than in the logged forest (6%. Interception loss was also simulated by the modified Rutter model and Gash's original and revised models. Both the Rutter and revised Gash models predicted total interception loss over a long period adequately, and resulted in estimates of the interception loss that deviated by 6 to 14% of the measured values, for both the unlogged and logged plots.

  20. Analysis of marketing mix elements of non-wood forest products in central Serbia

    Directory of Open Access Journals (Sweden)

    Nedeljković Jelena

    2010-01-01

    Full Text Available Demand for high-quality products of biological origin has been increasing, in accordance with changes in objectives of forest management, which are caused by socio-economic development. Although non-wood forest products (NW­FPs have been collected and used for generations, only in recent decades their importance has been recognized. The aim of this paper is to analyze marketing strategies of companies involved in processing and distribution of NWFPs. Due to the specificity and comprehensiveness of the problem, the various general and specific methods and techniques, which are used in the study of marketing elements, have been applied. A’WOT analysis was applied in order to better interpret results of SWOT analysis. The survey was conducted among small and medium enterprises dealing with NWFPs in central Serbia. Conducted research determined the most important final products, prices, types of promotion and structure of distribution channel.

  1. Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: Succession of carrion fauna.

    Science.gov (United States)

    Matuszewski, Szymon; Bajerlein, Daria; Konwerski, Szymon; Szpila, Krzysztof

    2011-04-15

    The succession of insects on pig carrion was monitored in spring, summer and autumn, in three forest types and 2 years in Western Poland (Central Europe). In most forensically useful taxa, significant differences between seasons, forests and years in time of appearance on carrion were found. The lowest values of appearance time were recorded in summer and the highest in spring. In alder forest insects appeared on carcasses significantly earlier than in pine-oak forest and hornbeam-oak forest. In summer periods of insect presence on carrion were significantly shorter than in spring and autumn. In most taxa no significant effect of forest type or year on length of the presence period was found. In all seasons assemblages of adult taxa were clearly more aggregated than assemblages of larval taxa. Sequence of insects' appearance on carcasses was very similar in different seasons, forests and years. General seasonal models of insect succession on carrion are proposed for forests of Central Europe. Data on appearance time and length of the presence period in particular seasons, forests and years are presented for forensically useful taxa. Implications for methods of PMI estimation (particularly the succession-based method) are discussed.

  2. GoAmazon – Scaling Amazon Carbon Water Couplings

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Manvendra Krishna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-06

    Forests soak up 25% of the carbon dioxide (CO2) emitted by anthropogenic fossil energy use (10 Gt C y-1) moderating its atmospheric accumulation. How this terrestrial CO2 uptake will evolve with climate change in the 21st century is largely unknown. Rainforests are the most active ecosystems with the Amazon basin storing 120 Gt C as biomass and exchanging 18 Gt C y-1 of CO2 via photosynthesis and respiration and fixing carbon at 2-3 kg C m-2 y-1. Furthermore, the intense hydrologic and carbon cycles are tightly coupled in the Amazon where about half of the water is recycled by evapotranspiration and the other half imported from the ocean by Northeasterly trade winds. Climate models predict a drying in the Amazon with reduced carbon uptake while observationally guided assessments indicate sustained uptake. We will resolve this huge discrepancy in the size and sign of the future Amazon carbon cycle by performing the first simultaneous regional scale high frequency measurements of atmospheric CO2, H2O, HOD, CH4, N2O and CO at the T3 site in Manacupuru, Brazil as part of DOE's GoAmazon project. Our data will be used to inform and develop DOE's CLM on the tropical carbon-water couplings at the appropriate grid scale (10-50km). Our measurements will also validate the CO2 data from Japan's GOSAT and NASA's imminent OCO-2 satellite (launch date July 2014).

  3. Erosion of particulate organic material from an Andean river and its delivery to the Amazon Basin

    Science.gov (United States)

    Clark, Kathryn; Hilton, Robert; West, A. Joshua; Robles Caceres, Arturo; Grocke, Darren; Marthews, Toby; Asner, Greg; New, Mark; Mahli, Yadvinder

    2016-04-01

    Organic carbon and nutrients discharged by mountainous rivers can play an important role in biogeochemical cycles from regional to global scales. The eastern Andes host productive forests on steep, rapidly eroding slopes, a combination that is primed to deliver sediment, carbon and nutrients to the lowland Amazon River. We quantify clastic sediment and particulate organic carbon (POC) discharge for the Kosñipata River, Peru, an Andean tributary of the Madre de Dios River, using suspended sediment samples and discharge measurements over one year at two gauging stations. Calculations of sediment yield on the basis of this data suggest that the Madre de Dios basin may have erosion rates ˜10 times greater than the Amazon Basin average. The total POC yield over the sampling period was up to five times higher than the yield in the lowland Amazon Basin, with most POC (70-80%) exported between December and March in the wet season. We use radiocarbon, stable C isotopes and C/N ratios to distinguish between the erosion and discharge of POC from sedimentary rocks (petrogenic POC) and POC eroded from the modern terrestrial biosphere, from vegetation and soil (biospheric POC). We find that biospheric POC discharge was significantly enhanced during flood events, over that of clastic sediment and petrogenic POC. The ultimate fate of the eroded POC may play a central role in the net carbon budget of Andean forest. In these forests, net productivity minus heterotrophic respiration is close to zero at the scale of forest plots, and the erosion of biospheric POC by this Andean river is sufficiently rapid that its fate downstream (sedimentary burial/preservation versus oxidation/degradation) may determine whether the mountain forest is a carbon sink or source to the atmosphere. In addition, the measured discharge of petrogenic POC suggests that fluxes from the Andes may be considerably higher than measured downstream in the Madeira River. If this petrogenic POC is oxidised rather

  4. SPATIAL DEFORESTATION MODELILNG USING CELLULAR AUTOMATA (CASE STUDY: CENTRAL ZAGROS FORESTS

    Directory of Open Access Journals (Sweden)

    M. Naghdizadegan

    2013-09-01

    Full Text Available Forests have been highly exploited in recent decades in Iran and deforestation is going to be the major environmental concern due to its role in destruction of natural ecosystem and soil cover. Therefore, finding the effective parameters in deforestation and simulation of this process can help the management and preservation of forests. It helps predicting areas of deforestation in near future which is a useful tool for making socioeconomic disciplines in order to prevent deforestation in the area. Recently, GIS technologies are widely employed to support public policies in order to preserve ecosystems from undesirable human activities. The aim of this study is modelling the distribution of forest destruction in part of Central Zagros Mountains and predicting its process in future. In this paper we developed a Cellular Automata (CA model for deforestation process due to its high performance in spatial modelling, land cover change prediction and its compatibility with GIS. This model is going to determine areas with deforestation risk in the future. Land cover maps were explored using high spatial resolution satellite imageries and the forest land cover was extracted. In order to investigate the deforestation modelling, major elements of forest destruction relating to human activity and also physiographic parameters was explored and the suitability map was produced. Then the suitability map in combination with neighbourhood parameter was used to develop the CA model. Moreover, neighbourhood, suitability and stochastic disturbance term were calibrated in order to improve the simulation results. Regarding this, several neighbourhood configurations and different temporal intervals were tested. The accuracy of model was evaluated using satellite image. The results showed that the developed CA model in this research has proper performance in simulation of deforestation process. This model also predicted the areas with high potential for future

  5. Responses of Montane Forest to Climate Variability in the Central Himalayas of Nepal

    Directory of Open Access Journals (Sweden)

    Janardan Mainali

    2015-02-01

    Full Text Available Climate changes are having dramatic ecological impacts in mid- to high-latitude mountain ranges where growth conditions are limited by climatic variables such as duration of growing season, moisture, and ambient temperature. We document patterns of forest vegetative response for 5 major alpine forest communities to current climate variability in the central Himalayas of Nepal to provide a baseline for assessment of future changes, as well as offer some insight into the trajectory of these changes over time. We used mean monthly surface air temperature and rainfall and the monthly averaged normalized difference vegetation index (NDVI to compare relative vegetation productivity among forest types and in relation to both climatic variables. Because changes in temperature and precipitation are directly manifested as changes in phenology, we examined current vegetative responses to climate variability in an effort to determine which climate variable is most critical for different alpine forest types. Our results show that correlations differ according to vegetation type and confirm that both precipitation and temperature affect monthly NDVI values, though more significant correlations were found with temperature data. The temperature response was more consistent because at the maximum increased temperatures, there was still an ongoing increase in vegetative vigor. This indicates that temperature is still the major limiting factor for plant growth at higher-elevation sites. This part of the Himalayas has abundant moisture, and some forest types are already saturated in terms of growth in relation to precipitation. Clear increases in productivity are documented on the upper treeline ecotones, and these systems are likely to continue to have increasing growth rates.

  6. Remote Sensing Based Biophysical Characterization of Tropical Deciduous Forest in Central India

    Science.gov (United States)

    Singh, R. P.; Goroshi, S.; Sharma, N. K.; Bairagi, G. D.; Sharma, R.; Jalil, P.; Jain, A.; Sonakia, A.; Parihar, J. S.

    2011-09-01

    The paper reports the measurements of biophysical parameters using field and satellite data over a tropical deciduous forest Kanha National Park (KNP), central India. Field measurement (GBH, LAI, litter, soil moisture) was carried out over ten quadrates of 0.1ha in KNP for characterization of biophysical parameters with specified measurement protocol and sampling. Satellite based remote sensing analysis (LAI, Phenology, and NPP) was carried out using multi date observations of IRS-LISS-III, IMS-1MX, SPOT-VEGETATION and EOS-MODIS instruments. Rank correlation analysis using field data collected in the selected quadrates at KNP showed Sal (Shorea robusta) is dominant forest species followed by Lendia, Jamun (Syzygium cumini), Saja, Harra and Dhawda etc. Field measurement of Sal showed GBH range from 20 cm to 170 cm. Different forest classes such as Sal; Sal mixed with Jamun, Bamboo (Dendrocalamus strictus) etc, including grasslands/scrubland were classified with overall accuracy of 85.56 percent using March, May and October multi spectral data. Sal has distinct growth characteristics (low vegetation growth/ leaf fall in March instead of May) as compared to other vegetation species. As per the Leaf Area Index (LAI) measurement using hemispherical photographs, Sal showed the highest LAI (6.95 m2/m2) during September and lowest LAI (2.63 m2/m2) during March. Overall good agreement (r= 0.79) was found between the LAI generated from LISS-III and MODIS data product. It was observed from SPOT-VEGETATION analysis that NPP varied from 8.4 tC/ha/year (dry deciduous forest) to 14.25 tC/ha/year (Moist deciduous forest) in KNP.

  7. Governance of private forests in Eastern and Central Europe: An analysis of forest harvesting and management rights

    Directory of Open Access Journals (Sweden)

    Laura Bouriaud

    2013-07-01

    Full Text Available A property rights-based approach is proposed in the paper to underline the common characteristics of the forest property rights specification in ten ECE countries, the specific patterns governing the harvesting of timber in private forestry and the role of the forest management planning in determining the content of the property rights. The analysis deals with the private forests of the individuals (non industrial ownership from ten countries, covering 7.3 million ha and producing yearly some 25 million m3 timber. The study shows that the forest management rights in private forests belong to the State and that the withdrawal rights on timber, yet recognised in the forest management plans, are in reality strongly restricted from an economic viewpoint. The forest management planning is the key instrument of the current forest governance system, based on top-down, hierarchically imposed and enforced set of compulsory rules on timber harvesting. With few exceptions, the forest owners’ have little influence in the forest planning and harvesting. The rational and State-lead approach of the private forest management has serious implications not only on the economic content of the property rights, but also on the learning and adaptive capacity of private forestry to cope with current challenges such the climate change, the increased industry needs for wood as raw material, or the marketing of innovative non wood forest products and services. The study highlights that understanding and comparing the regime of the forest ownership require a special analysis of the economic rights attached to each forest attribute; and that the evolution towards more participatory decision-making in the local forest governance can not be accurately assessed in ECE region without a proper understanding of the forest management planning process. 

  8. Dragonflies and Damselflies (Odonata: Insecta of Tropical Forest Research Institute, Jabalpur, Madhya Pradesh, central India

    Directory of Open Access Journals (Sweden)

    A.D. Tiple

    2012-04-01

    Full Text Available Dragonfly and damselfly (Odonata species diversity and status were studied in the 1.09sq.km campus of the Tropical Forest Research Institute, Jabalpur, Madhya Pradesh (Central India. A total of 48 species of odonates belonging to 32 genera of two Sub-orders and 9 families viz., Coenagrionidae, Protoneuridae, Platycnemididae, Lestidae, Chlorocyphidae, Aeshnidae, Gomphidae, Libellulidae and Macromiidae were recorded. Six species previously unrecorded from Madhya Pradesh were added to the checklist. Of the total 48 species, 15 were very common, 15 were common, 16 rare and two very rare. The observations support the value of the TFRI campus in providing valuable resources for Odonata fauna.

  9. Novas perspectivas para a gestão sustentável da Floresta Amazônica: explorando novos caminhos New perspectives for the sustainable management of the Amazon forest: exploring new avenues

    Directory of Open Access Journals (Sweden)

    Mirjam Ros-Tonen

    2007-06-01

    Full Text Available Com foco na indústria madeireira na região Amazônica do Brasil e com base numa comparação de resultados de uma pesquisa sobre o setor florestal realizada no início dos anos 90 e estudos realizados dez anos depois, este artigo explora várias tendências atuais com potência de mudar a gestão de florestas tropicais na região amazônica. Essas mudanças são relacionadas à a mudanças no suprimento de matéria prima, b globalização e abertura de mercados externos para madeira e outros produtos como a soja, c crescente escassez da madeira, d novos mercados e incentivos para o manejo florestal sustentável e manejo florestal comunitário, e e mudanças nos padrões de posse da terra, incluindo a descentralização da governança florestal e devolução de terras florestais. Concluímos que as mudanças apontam em direções diferentes. Enquanto a expansão dos mercados externos provoca o aumento do desmatamento, a descentralização e democratização da governança florestal e a preocupação global com a perda de serviços ambientais da floresta e de meios de vida para as populações locais criam novos incentivos para a gestão florestal sustentável. O maior desafio é encontrar meios para que a exploração florestal de base familiar e comunitária e as operações das serrarias nas áreas de assentamento sejam mais sustentáveis, por exemplo através de parcerias inovadoras do tipo empresa-comunidade.With a focus on the timber industry in the Brazilian Amazon region and based on a comparison of results of a study of the forestry sector carried out in the early 1990s and studies carried out about ten years later, this article explores various recent tendencies which have the potential to change tropical forest management in the Amazon region. These changes are related to a changes in the supply of roundwood, b globalisation and the opening of external markets for timber and other products like soy, c increasing scarcity of timber, d

  10. New evidence for hybrid zones of forest and savanna elephants in Central and West Africa.

    Science.gov (United States)

    Mondol, Samrat; Moltke, Ida; Hart, John; Keigwin, Michael; Brown, Lisa; Stephens, Matthew; Wasser, Samuel K

    2015-12-01

    The African elephant consists of forest and savanna subspecies. Both subspecies are highly endangered due to severe poaching and habitat loss, and knowledge of their population structure is vital to their conservation. Previous studies have demonstrated marked genetic and morphological differences between forest and savanna elephants, and despite extensive sampling, genetic evidence of hybridization between them has been restricted largely to a few hybrids in the Garamba region of northeastern Democratic Republic of Congo (DRC). Here, we present new genetic data on hybridization from previously unsampled areas of Africa. Novel statistical methods applied to these data identify 46 hybrid samples--many more than have been previously identified--only two of which are from the Garamba region. The remaining 44 are from three other geographically distinct locations: a major hybrid zone along the border of the DRC and Uganda, a second potential hybrid zone in Central African Republic and a smaller fraction of hybrids in the Pendjari-Arli complex of West Africa. Most of the hybrids show evidence of interbreeding over more than one generation, demonstrating that hybrids are fertile. Mitochondrial and Y chromosome data demonstrate that the hybridization is bidirectional, involving males and females from both subspecies. We hypothesize that the hybrid zones may have been facilitated by poaching and habitat modification. The localized geography and rarity of hybrid zones, their possible facilitation from human pressures, and the high divergence and genetic distinctness of forest and savanna elephants throughout their ranges, are consistent with calls for separate species classification.

  11. Late Holocene climate-induced forest transformation and peatland establishment in the central Appalachians

    Science.gov (United States)

    Booth, Robert K.; Ireland, Alex W.; LeBoeuf, Katharine; Hessl, Amy

    2016-03-01

    Understanding the potential for ecosystem transformation and community change in response to climate variability is central to anticipating future ecological changes, and long-term records provide a primary source of information on these dynamics. We investigated the late Holocene history of upland forest and peatland development at Cranesville Swamp, a peatland located along the West Virginia-Maryland border in the USA. Our primary goal was to determine whether establishment of peatland was triggered by moisture variability, similar to recent developmental models derived from depressional peatlands in glaciated regions. Results indicate that the peatland established at about 1200 cal yr BP, and was associated with a dramatic and persistent change in upland forest composition. Furthermore, timing of these upland and wetland ecological changes corresponded with evidence for multidecadal drought and enhanced moisture variability from nearby tree-ring and speleothem climatic reconstructions. Our results add to a growing body of research highlighting the sensitivity of both peatland development and upland forest communities to transient drought and enhanced moisture variability, and suggest that enhanced moisture variability in the future could increase the probability of similarly abrupt and persistent ecological change, even in humid regions like eastern North America.

  12. [Wood transformation in dead-standing trees in the forest-tundra of Central Siberia].

    Science.gov (United States)

    Mukhortova, L V; Kirdianov, A V; Myglan, V S; Guggenberger, G

    2009-01-01

    Changes in the composition of wood organic matter in dead-standing spruce and larch trees depending on the period after their death have been studied in the north of Central Siberia. The period after tree death has been estimated by means of cross-dating. The results show that changes in the composition of wood organic matter in 63% of cases are contingent on tree species. Wood decomposition in dead-standing trees is accompanied by an increase in the contents of alkali-soluble organic compounds. Lignin oxidation in larch begins approximately 80 years after tree death, whereas its transformation in spruce begins not earlier than after 100 years. In the forest-tundra of Central Siberia, the rate of wood organic matter transformation in dead-standing trees is one to two orders of magnitude lower than in fallen wood, which accounts for their role as a long-term store of carbon and mineral elements in these ecosystems.

  13. Post-fire succession of ground vegetation of central Siberia in Scots pine forests

    Science.gov (United States)

    Kovaleva, N.; Ivanova, G. A.; Conard, S. G.

    2012-04-01

    Extensive wildfires have affected the Russian region in the last decade. Scots pine forests (Pinus sylvestris L.) are widespread in central Siberia and fire occurrence is high in these forests, whose dominant fire regime is one of frequent surface fires. We studied post- fire succession of ground vegetation has been studied on nine experimental fires of varying severity (from 620 to 5220 kW/m) in middle taiga Scots pine forests of central Siberia (Russia). It proved from our study that all species of the succession process are present from initial stages. We did not find any trend of ground vegetation diversity with the time during 8 years after the fire. Our investigation showed that post- fire recovery of the ground vegetation is determined by initial forest type, fire severity and litter burning depth. Fire severity had a clear effect in initial succession in study area and it clearly had an impact on percentage cover, biomass and structure of ground vegetation. In a lesser degree the small shrubs are damaged during ground fires. The dominating species (Vaccinium vitis-idaea and V. myrtillus) regained the cover values above or close to 6—8 years. The post- fire biomass of ground vegetation 93—100% consists of species (Vaccinium vitis-idaea and V. myrtillus) that survived after the fire and increased in the cover with the time. In pine forests mosses and lichens suffer to a greater degree after ground fires. Lichen layer was completely lost after the fires of any severity. Decrease of mosses species diversity takes place after ground fires. The post- fire cover and species diversity of the green mosses were progressively lower with increasing the fire severity during the observation period. Maximum changes are discovered in the post- fire structure of plant microgroups after the high- severity fire which resulted in intensive invasion by the post- fire mosses (Polytrichum strictum and P. commune). There is a positive trend of green moss microgroups recovery

  14. [Floristic composition and structure of a premontane moist forest in Central Valley of Costa Rica].

    Science.gov (United States)

    Cascante, A; Estrada, A

    2001-03-01

    The floristic composition and structure of a premontane moist forest remnant were studied in the El Rodeo Protected Zone, Central Valley of Costa Rica. Three one-hectare plots were established in the non-disturbed forest, and all trees with a diameter at breast height (dbh) of 10 cm or greater were marked, measured and identified. The plots were located within a radius of 500 m from each other. A total of 106 tree species were recorded in the three plots. Average values: species richness 69.6 species ha-1, abundance 509 individuals ha-1, basal area 36.35 m2 ha-1. Total diversity was 3.54 (Shannon Index, H'), and the species similarity among the plots ranged between S = 0.68 and 0.70 (Sørensen Similarity Index). Most tree species are represented by few individuals (five or less). There is a lack of emergent trees and arborescent palms in the forest canopy. According to the Familial Importance Value, Moraceae, followed by Fabaceae, Lauraceae, and Sapotaceae, largely dominates this forest. Pseudolmedia oxyphillaria (Moraceae) is the dominant species (Importance Value Index), accounting for 25% of all the marked trees in the plots, followed by Clarisia racemosa (Moraceae), Heisteria concinna (Olacaceae), and Brosimum alicastrum (Moraceae). The size class distributions were similar among plots, and in general followed the expected J-inverted shape. Differences in tree abundance, floristic composition, and spatial distribution of some species among the plots suggest heterogeneity of this ecosystem's arborescent vegetation. Moreover, it is an important natural reservoir for the conservation of rare and endangered tree species in a national level. Using these results as a baseline, this study should start a long term monitoring of the structure and composition of this very reduced and fragmented ecosystem.

  15. Deforestation projections for carbon-rich peat swamp forests of Central Kalimantan, Indonesia.

    Science.gov (United States)

    Fuller, Douglas O; Hardiono, Martin; Meijaard, Erik

    2011-09-01

    We evaluated three spatially explicit land use and cover change (LUCC) models to project deforestation from 2005-2020 in the carbon-rich peat swamp forests (PSF) of Central Kalimantan, Indonesia. Such models are increasingly used to evaluate the impact of deforestation on carbon fluxes between the biosphere and the atmosphere. We considered both business-as-usual (BAU) and a forest protection scenario to evaluate each model's accuracy, sensitivity, and total projected deforestation and landscape-level fragmentation patterns. The three models, Dinamica EGO (DE), GEOMOD and the Land Change Modeler (LCM), projected similar total deforestation amounts by 2020 with a mean of 1.01 million ha (Mha) and standard deviation of 0.17 Mha. The inclusion of a 0.54 Mha strict protected area in the LCM simulations reduced projected loss to 0.77 Mha over 15 years. Calibrated parameterizations of the models using nearly identical input drivers produced very different landscape properties, as measured by the number of forest patches, mean patch area, contagion, and Euclidean nearest neighbor determined using Fragstats software. The average BAU outputs of the models suggests that Central Kalimantan may lose slightly less than half (45.1%) of its 2005 PSF by 2020 if measures are not taken to reduce deforestation there. The relatively small reduction of 0.24 Mha in deforestation found in the 0.54 Mha protection scenario suggests that these models can identify potential leakage effects in which deforestation is forced to occur elsewhere in response to a policy intervention.

  16. The Amazon Tall Tower Observatory (ATTO in the remote Amazon Basin: overview of first results from ecosystem ecology, meteorology, trace gas, and aerosol measurements

    Directory of Open Access Journals (Sweden)

    M. O. Andreae

    2015-04-01

    Full Text Available The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It already has been changed significantly by human activities, and more pervasive change is expected to occur in the next decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at 5 to 8 different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity. Aerosol optical, microphysical, and chemical measurements are made above the canopy as well as in the canopy space. They include light scattering and absorption, aerosol fluorescence, number and volume size distributions, chemical

  17. Species Turnover across Different Life Stages from Seedlings to Canopy Trees in Swamp Forests of Central Brazil

    OpenAIRE

    Fontes, Clarissa G.; Bruno M. T. Walter; José Roberto R. Pinto; Gabriel Damasco

    2015-01-01

    Processes driving the assembly of swamp forest communities have been poorly explored. We analyzed natural regeneration and adult tree communities data of a swamp gallery forest in Central Brazil to discuss the role of ecological filters in shaping plant species turnover in a successional gradient. Species data of 120 plots were used to assess species turnover between natural regeneration and adult tree communities. Our analyses were based on 4995 individuals belonging to 72 species. Community...

  18. Estudos etnoictiológicos sobre o pirarucu Arapaima gigas na Amazônia Central Ethnoictiology studies on Pirarucu (Arapaima mock-ups in Central Amazon

    Directory of Open Access Journals (Sweden)

    Liane Galvão de Lima

    2012-09-01

    Full Text Available O presente estudo visou identificar saberes comuns entre o conhecimento científico e o conhecimento local sobre a ecologia e biologia do pirarucu (Arapaima gigas, contribuindo com informações úteis para a implementação e consolidação de projetos de manejo participativo pesqueiro na região. Foram realizadas 57 entrevistas semi-estruturadas, com pescadores profissionais de Manaus e pescadores de subsistência de Manacapuru durante o período de junho a dezembro do ano de 2002. Foi observado que os pescadores profissionais possuem informações igualmente precisas e abrangentes em relação aos saberes dos pescadores ribeirinhos de subsistência nos aspectos de reprodução, predação, migração, crescimento e mortalidade. Os aspectos que não são equivalentes entre os pescadores profissionais comerciais citadinos e ribeirinhos de subsistência são nos aspectos de tipo de alimentação e no tamanho de recrutamento pesqueiro. Concluímos que os pescadores da Amazônia central possuem os conhecimentos necessários que possibilitam o manejo participativo do pirarucu, como um profundo saber nos aspectos comportamentais, biológicos e ecológicos desta espécie, podendo assim contribuir de fato com a participação de gestão nos recursos pesqueiros locais.Present study it aimed at to identify to know common between scientific knowledge and local knowledge on ecology and biology of pirarucu (Arapaima mock-ups, contributing with useful information for implementation and consolidation of projects of participative handling fishing boat in region. 57 half-structuralized interviews had been carried through, with fishing of Manaus and Manacapuru during period of June to December of year 2002. It was observed that professional fishermen also have accurate and comprehensive information in relation to knowledge of subsistence fishermen in coastal aspects of reproduction, predation, migration, growth and mortality. Aspects that are not equivalent

  19. Integrating Stand and Soil Properties to Understand Foliar Nutrient Dynamics during Forest Succession Following Slash-and-Burn Agriculture in the Bolivian Amazon

    NARCIS (Netherlands)

    Broadbent, E.N.; Zambrano, A.M.A.; Asner, G.P.; Soriano, M.; Field, C.B.; Souza, de H.R.; Pena Claros, M.; Adams, R.I.; Dirzo, R.; Giles, L.

    2014-01-01

    Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories bas

  20. Water balances of old-growth and regenerating montane cloud forests in central Veracruz, Mexico

    Science.gov (United States)

    Muñoz-Villers, L. E.; Holwerda, F.; Gómez-Cárdenas, M.; Equihua, M.; Asbjornsen, H.; Bruijnzeel, L. A.; Marín-Castro, B. E.; Tobón, C.

    2012-09-01

    SummaryThis paper compares the water budgets of two adjacent micro-catchments covered by mature (MAT) and 20-year-old secondary (SEC) lower montane cloud forests, respectively, in central Veracruz, Mexico over a 2-year period. Rainfall (P) and streamflow (Q) were measured continuously, whereas dry canopy evaporation (transpiration Et), wet canopy evaporation (rainfall interception I), and cloud water interception (CWI) were quantified using a combination of field measurements and modeling. Mean annual P was 3467 mm, of which typically 80% fell during the wet season (May-October). Fog interception occurred exclusively during the dry season (November-April), and was ⩽2% of annual P for both forests. Rainfall interception loss was dominated by post-event evaporation of intercepted water rather than by within-event evaporation. Therefore, the higher overall I (i.e. including CWI) by the MAT (16% of P vs. 8% for the SEC) reflects a higher canopy storage capacity, related in turn to higher leaf area index and greater epiphyte biomass. Annual Et totals derived from sapflow measurements were nearly equal for the MAT and SEC (˜790 mm each). Total annual water yield calculated as P minus (Et + I) was somewhat higher for the SEC (2441 mm) than for the MAT (2077 mm), and mainly reflects the difference in I. Mean annual Q was also higher for the SEC (1527 mm) than for the MAT (1338 mm), and consisted mostly of baseflow (˜90%). Baseflow recession rates were nearly equal between the two forests, as were stormflow coefficients (4% and 5% for MAT and SEC, respectively). The very low runoff response to rainfall is attributed to the high infiltration and water retention capacities of the volcanic soils throughout the ˜2 m deep profile. The water budget results indicate that ˜875 and 700 mm year-1 leave the SEC and MAT as deep groundwater leakage, which is considered plausible given the fractured geology in the study area. It is concluded that 20 years of natural regeneration

  1. Overland flow connectivity in a forest plantation before and after tree thinning (Tochigi Prefecture, central Japan)

    Science.gov (United States)

    López-Vicente, Manuel; Onda, Yuichi; Sun, Xinchao; Kato, Hiroaki; Gomi, Takashi; Hiraoka, Marino

    2016-04-01

    Overland flow connectivity is a key factor to understand the redistribution dynamics of sediments, nutrients, radiotracers, etc., in the different compartments at channel, hillslope and catchment scales. Human organization of landscape elements has a significant control on runoff and soil redistribution processes. Construction of trails, forest roads and firewalls influence runoff connectivity (RC) in forested catchments. In this study we simulated RC in two forested catchments, called K2 (19.3 ha) and K3 (13.6 ha), located on the Mount Karasawa, in the Tochigi Prefecture in central Japan. Forest plantation includes Japanese cypress and cedar and covers 59% of the total area. Native broad-leaved trees (28%) and mixed forest occupy the rest of the study area. We selected the Index of runoff and sediment Connectivity (IC) of Borselli et al. (2008) to simulate three temporal scenarios: i) Sc-2011, before tree thinning (TT); ii) Sc-2012 after TT in most part of the forest plantation in K2 (32% of the total area); and iii) Sc-2013 after TT in some areas of the K3 catchment, affecting 38% of the total area. The study areas were defined from the coalescence point (139⁰ 36' 04" E, 36⁰ 22' 03" N) of both catchments upslope. Elevation ranges from 75 to 287 m a.s.l. and the mean slope steepness is of 67 and 65% in K2 and K3. Three different high resolution DEM-LiDAR maps at 0.5 x 0.5 m of cell size were used to run the IC model in each scenario. The permanent streams in the study area have a total length of 2123 m. The mean C-RUSLE factor was of 0.0225 in Sc-2011 and 21% and 25% higher in Sc-2012 and Sc-2013. The total length of the landscape linear elements incremented from 2482 m in Sc-2011 to 3151 m in Sc-2012 and Sc-2013 due to the construction of new skid trails in K2. The mean RC in the study area was of -4.536 in Sc-2011 and increased 7.4% and 8.9% in the Sc-2012 and Sc-2013, respectively, due to the tree thinning operations and the construction of new skid trails

  2. What Are the Impacts of Deforestation on the Harvest of Non-Timber Forest Products in Central Africa?

    Directory of Open Access Journals (Sweden)

    Pauline Gillet

    2016-05-01

    Full Text Available The objective of the study is to evaluate the impact of forest transition on non-timber forest product (NTFP harvesting in Central Africa. We analyze the evolution of several parameters, including distance from NTFP harvest site to road, proportion of dietary intake and villagers’ incomes. The research is based on field surveys, participatory mapping and the geolocation of activities in three study sites representing different stages along the Mather’s forest transition curve: (i intact forest; (ii partially degraded forest; and (iii small areas of degraded forest with plantations of useful trees. The results show that the maximum distance from harvest site to road is higher in Site 2 compared to Site 1 as a consequence of a lower availability of NTFPs; and that this distance is significantly lower in Site 3 due to a drastically smaller village territory. The diversity of bushmeat decreases as game evolves from large to small species, commensurate with the progression of forest transition. As a consequence, there is also a reduction in the proportion of these products represented both in household dietary intake and cash income. This analysis establishes a strong link between the Mather’s forest transition curve and a decline in the importance of NTFPs in village production and livelihoods.

  3. Reshaping institutions : bricolage processes in smallholder forestry in the Amazon

    NARCIS (Netherlands)

    Koning, de J.

    2011-01-01

    This thesis aims at identifying the different kinds of institutional influences on forest practices of small farmers in the Amazon region of Ecuador and Bolivia and how small farmers respond to them. It departs from the perspective that institutions affecting forest practices are subject to processe

  4. A reconstruction of Atlantic Central African biomes and forest succession stages derived from modern pollen data and plant functional types

    Directory of Open Access Journals (Sweden)

    J. Lebamba

    2009-01-01

    Full Text Available New detailed vegetation reconstructions are proposed in Atlantic Central Africa from a modern pollen data set derived from 199 sites (Cameroon, Gabon and Congo including 131 new sites. In this study, the concept of plant functional classification is improved with new and more detailed plant functional types (PFTs and new aggregations of pollen taxa. Using the biomisation method, we reconstructed (1 modern potential biomes and (2 potential succession stages of forest regeneration, a new approach in Atlantic Central African vegetation dynamics and ecosystem functioning reconstruction. When compared to local vegetation, potential biomes are correctly reconstructed (97.5% of the sites and tropical evergreen to semi-evergreen forest (TRFO biome is well identified from semi-deciduous forest (TSFO biome. When the potential biomes are superimposed on the White's vegetation map, only 76.4% of the sites are correctly reconstructed. But using botanical data, correspondence and cluster analyses, the 43 sites from Congo (Mayombe evidence more affinities with those of central Gabon and so they can also be considered as correctly reconstructed as TRFO biome and White's map must be revised. In terms of potential succession stages of forest regeneration, the mature forest (TMFO is well differentiated from the secondary forest (TSFE, but inside this latter group, the young and the pioneer stages are not clearly identified due probably to their low sampling representation. Moreover, linked to their progressive and mosaic character, the boundaries between two forest biomes or two forest stages are not clearly detected and need also a more intensive sampling in such transitions.

  5. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India.

    Science.gov (United States)

    Sharma, Sandeep; Dutta, Trishna; Maldonado, Jesús E; Wood, Thomas C; Panwar, Hemendra Singh; Seidensticker, John

    2013-09-22

    Understanding the patterns of gene flow of an endangered species metapopulation occupying a fragmented habitat is crucial for landscape-level conservation planning and devising effective conservation strategies. Tigers (Panthera tigris) are globally endangered and their populations are highly fragmented and exist in a few isolated metapopulations across their range. We used multi-locus genotypic data from 273 individual tigers (Panthera tigris tigris) from four tiger populations of the Satpura-Maikal landscape of central India to determine whether the corridors in this landscape are functional. This 45 000 km(2) landscape contains 17% of India's tiger population and 12% of its tiger habitat. We applied Bayesian and coalescent-based analyses to estimate contemporary and historical gene flow among these populations and to infer their evolutionary history. We found that the tiger metapopulation in central India has high rates of historical and contemporary gene flow. The tests for population history reveal that tigers populated central India about 10 000 years ago. Their population subdivision began about 1000 years ago and accelerated about 200 years ago owing to habitat fragmentation, leading to four spatially separated populations. These four populations have been in migration-drift equilibrium maintained by high gene flow. We found the highest rates of contemporary gene flow in populations that are connected by forest corridors. This information is highly relevant to conservation practitioners and policy makers, because deforestation, road widening and mining are imminent threats to these corridors.

  6. Disruption of hydroecological equilibrium in southwest Amazon mediated by drought

    Science.gov (United States)

    Maeda, Eduardo Eiji; Kim, Hyungjun; Aragão, Luiz E. O. C.; Famiglietti, James S.; Oki, Taikan

    2015-09-01

    The impacts of droughts on the Amazon ecosystem have been broadly discussed in recent years, but a comprehensive understanding of the consequences is still missing. In this study, we show evidence of a fragile hydrological equilibrium in the western Amazon. While drainage systems located near the equator and the western Amazon do not show water deficit in years with average climate conditions, this equilibrium can be broken during drought events. More importantly, we show that this effect is persistent, taking years until the normal hydrological patterns are reestablished. We show clear links between persistent changes in forest canopy structure and changes in hydrological patterns, revealing physical evidence of hydrological mechanisms that may lead to permanent changes in parts of the Amazon ecosystem. If prospects of increasing drought frequency are confirmed, a change in the current hydroecological patterns in the western Amazon could take place in less than a decade.

  7. Phylogeography of the genus Podococcus (Palmae/Arecaceae) in Central African rain forests: Climate stability predicts unique genetic diversity.

    Science.gov (United States)

    Faye, A; Deblauwe, V; Mariac, C; Richard, D; Sonké, B; Vigouroux, Y; Couvreur, T L P

    2016-12-01

    The tropical rain forests of Central Africa contain high levels of species diversity. Paleovegetation or biodiversity patterns suggested successive contraction/expansion phases on this rain forest cover during the last glacial maximum (LGM). Consequently, the hypothesis of the existence of refugia e.g. habitat stability that harbored populations during adverse climatic periods has been proposed. Understory species are tightly associated to forest cover and consequently are ideal markers of forest dynamics. Here, we used two central African rain forest understory species of the palm genus, Podococcus, to assess the role of past climate variation on their distribution and genetic diversity. Species distribution modeling in the present and at the LGM was used to estimate areas of climatic stability. Genetic diversity and phylogeography were estimated by sequencing near complete plastomes for over 120 individuals. Areas of climatic stability were mainly located in mountainous areas like the Monts de Cristal and Monts Doudou in Gabon, but also lowland coastal forests in southeast Cameroon and northeast Gabon. Genetic diversity analyses shows a clear North-South structure of genetic diversity within one species. This divide was estimated to have originated some 500,000years ago. We show that, in Central Africa, high and unique genetic diversity is strongly correlated with inferred areas of climatic stability since the LGM. Our results further highlight the importance of coastal lowland rain forests in Central Africa as harboring not only high species diversity but also important high levels of unique genetic diversity. In the context of strong human pressure on coastal land use and destruction, such unique diversity hotspots need to be considered in future conservation planning.

  8. AVAILABLE SOIL WATER CAPACITY AS A DISCRIMINANT FACTOR IN MIXED OAK FOREST OF CENTRAL ITALY

    Directory of Open Access Journals (Sweden)

    A. TESTI

    2004-05-01

    Full Text Available Soil water content is a critical factor in Mediterranean forest vegetation, especially in areas subjected to prolonged summer drought where winter and autumn rainfall are the main sources of water. Available soil water capacity (AWC is the maximum amount of water available for plants that a soil could possibly contain. Each soil has a specific available water capacity, however, most of the published literature on AWC refers 10 agricultural settings, although the interaction between the soil and the vegetation dynamics has long been recognized. The aim of this study was to investigate whether this edaphic factor could be discriminant in species assemblage of communities belonging to the thermophylous oak forest (order Quercetalia pubescentis. Thirty-two vegetation relevés and soil profiles were carried out in five different sites, with a similar pluvio-thermic regime, located in the sub-coastal belt of Latium, Central Italy. From the physical\\-chemical analyses of soil profiles, the AWC values, of the related relevés, were calculated. Multivariate statistical analysis was applied to the vegetation surveys, using Cluster Analysis from which a classification in three different clusters was obtained; subsequently the AWC values were grouped according to the c1assification obtained. Analysis of variance was used to test similarity and the output pointed out a significant difference among the three clusters (F=6.35; P

  9. AVAILABLE SOIL WATER CAPACITY AS A DISCRIMINANT FACTOR IN MIXED OAK FOREST OF CENTRAL ITALY

    Directory of Open Access Journals (Sweden)

    A. SERAFINI SAULI

    2004-01-01

    Full Text Available Soil water content is a critical factor in Mediterranean forest vegetation, especially in areas subjected to prolonged summer drought where winter and autumn rainfall are the main sources of water. Available soil water capacity (AWC is the maximum amount of water available for plants that a soil could possibly contain. Each soil has a specific available water capacity, however, most of the published literature on AWC refers 10 agricultural settings, although the interaction between the soil and the vegetation dynamics has long been recognized. The aim of this study was to investigate whether this edaphic factor could be discriminant in species assemblage of communities belonging to the thermophylous oak forest (order Quercetalia pubescentis. Thirty-two vegetation relevés and soil profiles were carried out in five different sites, with a similar pluvio-thermic regime, located in the sub-coastal belt of Latium, Central Italy. From the physical-chemical analyses of soil profiles, the AWC values, of the related relevés, were calculated. Multivariate statistical analysis was applied to the vegetation surveys, using Cluster Analysis from which a classification in three different clusters was obtained; subsequently the AWC values were grouped according to the c1assification obtained. Analysis of variance was used to test similarity and the output pointed out a significant difference among the three clusters (F=6.35; P

  10. Effects on water chemistry, benthic invertebrates and brown trout following forest fertilization in central Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Goethe, L.; Soederberg, H.; Sjoelander, E. (County Administrative Board of Vaesternorrland, Haernoesand (Sweden). Environmental Unit); Nohrstedt, H.Oe. (Inst. for Forest Improvement, Uppsala (Sweden))

    1993-01-01

    Two coniferous forest drainage areas in central Sweden were partially fertilized with ammonium nitrate and calcium ammonium nitrate respectively, both at a dose of 150 kg N per ha. During the following years observations were made on stream water chemistry, invertebrates and brown trout (Salmo trutta L.). Upstream stations were used as controls. Very high concentrations of inorganic N (up to 45 mg l[sup -1]) were recorded immediately after the fertilization. Thereafter, concentration decreased rapidly but remained elevated during the whole study period. Acidity conditions (pH, alkalinity, aluminium) were unaffected by both treatments. The only registered effect on the benthic fauna was a three- to five-fold increase of drifting invertebrates during the first four-five days after the treatment. However, this did not reduce the population density at the treated stations. No effects on population of trout were recorded. (22 refs., 6 figs., 3 tabs.).

  11. Evidence of Apeu Virus Infection in Wild Monkeys, Brazilian Amazon.

    Science.gov (United States)

    Oliveira, Danilo B; Luiz, Ana Paula Moreira Franco; Fagundes, Alexandre; Pinto, Carla Amaral; Bonjardim, Cláudio A; Trindade, Giliane S; Kroon, Erna G; Abrahão, Jônatas S; Ferreira, Paulo C P

    2016-03-01

    Orthobunyaviruses are arboviruses in which at least 30 members are human pathogens. The members of group C orthobunyaviruses were first isolated in the Brazilian Amazon in 1950, since that time little information is accumulated about ecology and the medical impact of these virus groups in Brazil. Herein, we describe the evidence of Apeu virus (APEUV; an Orthobunyavirus member) infection in wild monkeys from the Brazilian Amazon forest. APEUV was detected by using a neutralizing antibody in serum and its RNA, suggesting past and acute infection of Amazonian monkeys by this virus. These results altogether represent an important contribution of orthobunyavirus ecology in the Amazon and an update about recent circulation and risk for humans with expansion of the cities to Amazon forest.

  12. Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa.

    Science.gov (United States)

    Gourlet-Fleury, Sylvie; Mortier, Frédéric; Fayolle, Adeline; Baya, Fidèle; Ouédraogo, Dakis; Bénédet, Fabrice; Picard, Nicolas

    2013-01-01

    Large areas of African moist forests are being logged in the context of supposedly sustainable management plans. It remains however controversial whether harvesting a few trees per hectare can be maintained in the long term while preserving other forest services as well. We used a unique 24 year silvicultural experiment, encompassing 10 4 ha plots established in the Central African Republic, to assess the effect of disturbance linked to logging (two to nine trees ha⁻¹ greater than or equal to 80 cm DBH) and thinning (11-41 trees ha⁻¹ greater than or equal to 50 cm DBH) on the structure and dynamics of the forest. Before silvicultural treatments, above-ground biomass (AGB) and timber stock (i.e. the volume of commercial trees greater than or equal to 80 cm DBH) in the plots amounted 374.5 ± 58.2 Mg ha⁻¹ and 79.7 ± 45.9 m³ ha⁻¹, respectively. We found that (i) natural control forest was increasing in AGB (2.58 ± 1.73 Mg dry mass ha⁻¹ yr⁻¹) and decreasing in timber stock (-0.33 ± 1.57 m³ ha⁻¹ yr⁻¹); (ii) the AGB recovered very quickly after logging and thinning, at a rate proportional to the disturbance intensity (mean recovery after 24 years: 144%). Compared with controls, the gain almost doubled in the logged plots (4.82 ± 1.22 Mg ha⁻¹ yr⁻¹) and tripled in the logged + thinned plots (8.03 ± 1.41 Mg ha⁻¹ yr⁻¹); (iii) the timber stock recovered slowly (mean recovery after 24 years: 41%), at a rate of 0.75 ± 0.51 m³ ha⁻¹ yr⁻¹ in the logged plots, and 0.81 ± 0.74 m³ ha⁻¹ yr⁻¹ in the logged + thinned plots. Although thinning significantly increased the gain in biomass, it had no effect on the gain in timber stock. However, thinning did foster the growth and survival of small- and medium-sized timber trees and should have a positive effect over the next felling cycle.

  13. Understanding Colombian Amazonian white sand forests

    NARCIS (Netherlands)

    Peñuela-Mora, M.C.

    2014-01-01

    Although progress has been made in studies on white sand forests in the Amazon, there is still a considerable gap in our knowledge of the unique species composition of white sand forests and their structure and dynamics, especially in Western Amazon. This thesis aims to fill this gap by addressing t

  14. A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability

    Science.gov (United States)

    Koweek, David A.; Nickols, Kerry J.; Leary, Paul R.; Litvin, Steve Y.; Bell, Tom W.; Luthin, Timothy; Lummis, Sarah; Mucciarone, David A.; Dunbar, Robert B.

    2017-01-01

    Kelp forests are among the world's most productive marine ecosystems, yet little is known about their biogeochemistry. This study presents a 14-month time series (July 2013-August 2014) of surface and benthic dissolved inorganic carbon and total alkalinity measurements, along with accompanying hydrographic measurements, from six locations within a central California kelp forest. We present ranges and patterns of variability in carbonate chemistry, including pH (7.70-8.33), pCO2 (172-952 µatm), and the aragonite saturation state, ΩAr (0.94-3.91). Surface-to-bottom gradients in CO2 system chemistry were as large as the spatial gradients throughout the bottom of the kelp forest. Dissolved inorganic carbon variability was the main driver of the observed CO2 system variability. The majority of spatial variability in the kelp forest can be explained by advection of cold, dense high-CO2 waters into the bottom of the kelp forest, with deeper sites experiencing high-CO2 conditions more frequently. Despite the strong imprint of advection on the biogeochemical variability of the kelp forest, surface waters were undersaturated with CO2 in the spring through fall, indicative of the strong role of photosynthesis on biogeochemical variability. We emphasize the importance of spatially distributed measurements for developing a process-based understanding of kelp forest ecosystem function in a changing climate.

  15. The impact of acid deposition and forest harvesting on lakes and their forested catchments in south central Ontario: a critical loads approach

    Directory of Open Access Journals (Sweden)

    S. A. Watmough

    2002-01-01

    Full Text Available The impact of acid deposition and tree harvesting on three lakes and their representative sub-catchments in the Muskoka-Haliburton region of south-central Ontario was assessed using a critical loads approach. As nitrogen dynamics in forest soils are complex and poorly understood, for simplicity and to allow comparison among lakes and their catchments, CLs (A for both lakes and forest soils were calculated assuming that nitrate leaching from catchments will not change over time (i.e. a best case scenario. In addition, because soils in the region are shallow, base cation weathering rates for the representative sub-catchments were calculated for the entire soil profile and these estimates were also used to calculate critical loads for the lakes. These results were compared with critical loads obtained by the Steady State Water Chemistry (SSWC model. Using the SSWC model, critical loads for lakes were between 7 and 19 meq m-2yr-1 higher than those obtained from soil measurements. Lakes and forests are much more sensitive to acid deposition if forests are harvested, but two acid-sensitive lakes had much lower critical loads than their respective forested sub-catchments implying that acceptable acid deposition levels should be dictated by the most acid-sensitive lakes in the region. Under conditions that assume harvesting, the CL (A is exceeded at two of the three lakes and five of the six sub-catchments assessed in this study. However, sulphate export from catchments greatly exceeds input in bulk deposition and, to prevent lakes from falling below the critical chemical limit, sulphate inputs to lakes must be reduced by between 37% and 92% if forests are harvested. Similarly, sulphate leaching from forested catchments that are harvested must be reduced by between 16 and 79% to prevent the ANC of water draining the rooting zone from falling below 0 μeq l-1. These calculations assume that extremely low calcium leaching losses (9–27 μeq l-1 from

  16. Determinação de idade e crescimento do mapará (Hypophthalmus marginatus na Amazônia Central Age and growth of mapará (Hypophthalmus marginatus in the Central Amazon

    Directory of Open Access Journals (Sweden)

    Leocy Cutrim

    2005-01-01

    Full Text Available O presente trabalho visa contribuir para a conservação e manejo do mapará (Hypophthalmus marginatus, um importante recurso pesqueiro de exportação do Amazonas para o qual é necessário conhecer informações essenciais de sua dinâmica de populações. Para contribuir à esta finalidade, o presente trabalho estabeleceu como objetivo identificar o par de otólito mais adequado para leitura de anéis etários, determinar os parâmetros de crescimento do mapará (H. marginatus, Amazônia Central, Amazonas - Brasil. O trabalho foi efetuado através da análise de otólitos coletados no período de dezembro de 1996 á agosto de 1997. Os otólitos escolhidos foram os asteriscus, sendo a leitura efetuada em lupa estereoscópica com monitor acoplado. As marcas de crescimento foram validadas por meio da análise do incremento marginal relativo, sendo encontrado dois anéis/ano. Os valores estimados para os parâmetros no período foram L¥ = 52,63 cm; k = 0,555 ano; to = -0,029 e M = 0,552. O ciclo hidrológico e comportamento reprodutivo estão relacionados com a marcação de anéis etários.The present work seeks to contribute for the conservation and management of the mapará(Hypophthalmus marginatus, an important export fishing resource of Amazonas for which is necessary to know essential information of its population dynamics. To contribute to this purpose, the present work established as objective to identify a structure for reading of age rings, to determine the parameters of growth of the mapará (H. marginatus, Central Amazon, Amazonas - Brazil. The work was made through the otoliths analysis collected in the period of December of 1996 to August of 1997. The otolith chosen for reading was the asteriscus, being the reading made in a stereomicroscope with coupled monitor. The mark structures were validated by means of the analysis of the relative marginal increment, being found two rings. The values estimated for the parameters in the

  17. Commercialization and marketing of non-wood forest products in Central Serbia

    Directory of Open Access Journals (Sweden)

    Keča Ljiljana

    2013-01-01

    Full Text Available The phenomenon of return to nature and its original values is increasingly common worldwide in accordance with the principles of sustainable development. In this context, it is particularly important to pay attention to organic products, as well as the increased demand for healthy food. In these circumstances non-wood forest products (NWFPs emerge as forestry products that meet the criteria of organic farming and as such are placed on the market. The aim of this research was to acquire knowledge about the behavior of the marketing mix elements of NWFPs in Central Serbia in the period from 2007 to 2011. The purpose of this paper was to point to the opportunities for the development of enterprises, and the overall potential of Serbia for the development of companies engaged in purchasing, processing and placement of NWFPs. The research object were the quantities of products purchased and placed on both domestic and foreign markets, the types of promotional activities, the prices of final products and distribution of the products among the enterprises engaged in purchasing, processing and placement of NWFPs in Central Serbia. [Projekat Ministarstva nauke Republike Srbije, br. 37008: Održivo gazdovanje ukupnim potencijalima šuma u Republici Srbiji

  18. Integrating stand and soil properties to understand foliar nutrient dynamics during forest succession following slash-and-burn agriculture in the Bolivian Amazon.

    Directory of Open Access Journals (Sweden)

    Eben N Broadbent

    Full Text Available Secondary forests cover large areas of the tropics and play an important role in the global carbon cycle. During secondary forest succession, simultaneous changes occur among stand structural attributes, soil properties, and species composition. Most studies classify tree species into categories based on their regeneration requirements. We use a high-resolution secondary forest chronosequence to assign trees to a continuous gradient in species successional status assigned according to their distribution across the chronosequence. Species successional status, not stand age or differences in stand structure or soil properties, was found to be the best predictor of leaf trait variation. Foliar δ(13C had a significant positive relationship with species successional status, indicating changes in foliar physiology related to growth and competitive strategy, but was not correlated with stand age, whereas soil δ(13C dynamics were largely constrained by plant species composition. Foliar δ(15N had a significant negative correlation with both stand age and species successional status, - most likely resulting from a large initial biomass-burning enrichment in soil (15N and (13C and not closure of the nitrogen cycle. Foliar %C was neither correlated with stand age nor species successional status but was found to display significant phylogenetic signal. Results from this study are relevant to understanding the dynamics of tree species growth and competition during forest succession and highlight possibilities of, and potentially confounding signals affecting, the utility of leaf traits to understand community and species dynamics during secondary forest succession.

  19. Post-fire dynamics of the woody vegetation of a savanna forest (Cerradão in the Cerrado-Amazon transition zone

    Directory of Open Access Journals (Sweden)

    Simone Matias Reis

    2015-09-01

    Full Text Available ABSTRACTFire can change the species composition, diversity, and structure of savanna vegetation, thus altering growth and mortality rates. Such changes in the woody vegetation of burned savanna forest were evaluated over four years in comparison to unburned savanna forest. All woody plants with a diameter at breast height > 10 cm were measured in 100 permanent plots. Six months later, 38 of these plots were burned. Three and a half years later, all surviving individuals were re-sampled. Species richness, diversity, and the number of individuals did not change in the burned plots, although they had significantly higher (p < 0.05 increases in basal area and mortality rates (5.1% year-1 than the unburned plots (3.0% year-1.Tachigali vulgarishad the greatest post-fire increase in basal area (53%. The results indicate that fire alters the dynamics and structure of the savanna forest, excluding the less fire-tolerant species and smaller individuals (? 15cm. Tachigali vulgaris is a key species for the recovery of savanna forest biomass due to its considerable post-fire gains in basal area, at least over the short term due to its short life cycle. It follows that frequent burning of savanna forest would result in a marked change in the species composition and structure of its woody vegetation.

  20. Patchiness of forest landscape can predict species distribution better than abundance: the case of a forest-dwelling passerine, the short-toed treecreeper, in central Italy

    Directory of Open Access Journals (Sweden)

    Marco Basile

    2016-09-01

    Full Text Available Environmental heterogeneity affects not only the distribution of a species but also its local abundance. High heterogeneity due to habitat alteration and fragmentation can influence the realized niche of a species, lowering habitat suitability as well as reducing local abundance. We investigate whether a relationship exists between habitat suitability and abundance and whether both are affected by fragmentation. Our aim was to assess the predictive power of such a relationship to derive advice for environmental management. As a model species we used a forest specialist, the short-toed treecreeper (Family: Certhiidae; Certhia brachydactyla Brehm, 1820, and sampled it in central Italy. Species distribution was modelled as a function of forest structure, productivity and fragmentation, while abundance was directly estimated in two central Italian forest stands. Different algorithms were implemented to model species distribution, employing 170 occurrence points provided mostly by the MITO2000 database: an artificial neural network, classification tree analysis, flexible discriminant analysis, generalized boosting models, generalized linear models, multivariate additive regression splines, maximum entropy and random forests. Abundance was estimated also considering detectability, through N-mixture models. Differences between forest stands in both abundance and habitat suitability were assessed as well as the existence of a relationship. Simpler algorithms resulted in higher goodness of fit than complex ones. Fragmentation was highly influential in determining potential distribution. Local abundance and habitat suitability differed significantly between the two forest stands, which were also significantly different in the degree of fragmentation. Regression showed that suitability has a weak significant effect in explaining increasing value of abundance. In particular, local abundances varied both at low and high suitability values. The study lends

  1. Soil and water related forest ecosystem services and resilience of social ecological system in the Central Highlands of Ethiopia

    Science.gov (United States)

    Tekalign, Meron; Muys, Bart; Nyssen, Jan; Poesen, Jean

    2014-05-01

    In the central highlands of Ethiopia, deforestation and forest degradation are occurring and accelerating during the last century. The high population pressure is the most repeatedly mentioned reason. However, in the past 30 years researchers agreed that the absence of institutions, which could define the access rights to particular forest resources, is another underlying cause of forest depletion and loss. Changing forest areas into different land use types is affecting the biodiversity, which is manifested through not proper functioning of ecosystem services. Menagesha Suba forest, the focus of this study has been explored from various perspectives. However the social dimension and its interaction with the ecology have been addressed rarely. This research uses a combined theoretical framework of Ecosystem Services and that of Resilience thinking for understanding the complex social-ecological interactions in the forest and its influence on ecosystem services. For understanding the history and extent of land use land cover changes, in-depth literature review and a GIS and remote sensing analysis will be made. The effect of forest conversion into plantation and agricultural lands on soil and above ground carbon sequestration, fuel wood and timber products delivery will be analyzed with the accounting of the services on five land use types. The four ecosystem services to be considered are Supporting, Provisioning, Regulating, and Cultural services as set by the Millennium Ecosystem Assessment. A resilience based participatory framework approach will be used to analyze how the social and ecological systems responded towards the drivers of change that occurred in the past. The framework also will be applied to predict future uncertainties. Finally this study will focus on the possible interventions that could contribute to the sustainable management and conservation of the forest. An ecosystem services trade-off analysis and an environmental valuation of the water

  2. Biomass production and essential oil yield from leaves, fine stems and resprouts using pruning the crown of Aniba canelilla (H.B.K.) (Lauraceae) in the Central Amazon

    OpenAIRE

    2012-01-01

    Aniba canelilla (H.B.K.) Mez. is a tree species from Amazon that produces essential oil. The oil extraction from its leaves and stems can be an alternative way to avoid the tree cutting for production of essential oil. The aim of this study was to analyse factors that may influence the essential oil production and the biomass of resprouts after pruning the leaves and stems of A. canelilla trees. The tree crowns were pruned in the wet season and after nine months the leaves and stems of the re...

  3. Forest age stands affect soil respiration and litterfall in a Black pine forest managed by a shelterwood system in the Central Spain?

    Science.gov (United States)

    Hedo de Santiago, Javier; Borja, Manuel Esteban Lucas; Candel, David; Viñegla Pérez, Benjamin

    2016-04-01

    This study aims to investigate the effects that stand age and forest structure generates on soil respiration and litterfall quantity. The effect of stand age on these variables was studied in a shelterwood system Spanish Black pine chronosequence in central Iberian Peninsula composed of 0-20, 20-40, 40-60, 60-80, 80-100-year-old. For each stand age, six forest stands with similar characteristics of soil type and site preparation were used. Also, a forest area ranging 80-120 years old and without forest intervention was selected and used as control. We also measured organic matter, C:N ratio, soil moisture and pH in the top 10 mineral soil at each compartment. Soil respiration measurements were carried out in three time points (3, 8 and 12 days). Results showed a clear trend in soil respiration, comparing all the experimental areas. Soil respiration showed the same trend in all stands. It initially showed higher rates, reaching stability in the middle of the measurement process and finally lightly increasing the respiration rate. The older stands had significantly higher soil respiration than the younger stands. Soil organic matter values were also higher in the more mature stands. C:N ratio showed the opposite trend, showing lower values in the less mature stands. More mature stands clearly showed more quantity of litterfall than the younger ones and there was a positive correlation between soil respiration and litterfall. Finally, the multivariate PCA analysis clearly clustered three differenced groups: Control plot; from 100 to 40 years old and from 39 to 1 years old, taking into account both soil respiration and litterfall quantity, also separately. Our results suggest that the control plot has a better soil quality and that extreme forest stand ages (100-80 and 19-1 years old) and the associated forest structure generates differences in soil respiration.

  4. Effect of Forest Harvesting on Hydrogeomorphic Processes in Steep Terrain of Central Japan

    Science.gov (United States)

    Forest harvesting activities affect various hydrogeomorphic processes in forest terrain, including increases in occurrence of mass movements (i.e., landslides and debris flows), and changes in sediment transport rate in channels. Thus, the influence of harvesting on these process...

  5. Edaphic, structural and physiological contrasts across Amazon Basin forest-savanna ecotones suggest a role for potassium as a key modulator of tropical woody vegetation structure and function

    NARCIS (Netherlands)

    Lloyd, J.; Domingues, T.F.; Schrodt, F.; Ishida, F.Y.; Feldpausch, T.R.; Saiz, G.; Quesada, C.A.; Schwarz, M.; Torello-Raventos, M.; Gilpin, M.; Marimon, B.S.; Marimon-Junior, B.H.; Ratter, J.A.; Grace, J.; Nardoto, G.B.; Veenendaal, E.; Arroyo, L.; Villarroel, D.; Killeen, T.J.; Steininger, M.; Phillips, O.L.

    2015-01-01

    Sampling along a precipitation gradient in tropical South America extending from ca. 0.8 to 2.0 m ag-1, savanna soils had consistently lower exchangeable cation concentrations and higher C/N ratios than nearby forest plots. These soil differences were also reflected in canopy averaged

  6. Herpetofauna of the Northwest Amazon forest in the state of Maranhão, Brazil, with remarks on the Gurupi Biological Reserve

    Science.gov (United States)

    de Freitas, Marco Antonio; Vieira, Ruhan Saldanha; Entiauspe-Neto, Omar Machado; Sousa, Samantha Oliveira e; Farias, Tayse; Sousa, Alanna Grazieli; de Moura, Geraldo Jorge Barbosa

    2017-01-01

    Abstract Understanding the biodiversity of an area is the first step for establishing effective interventions for conservation, especially when it comes to herpetofauna, since 4.1% and 9.2%, respectively, of Brazilian amphibians and reptiles are endangered. The aim of this study is to identify the composition of the herpetofauna occurring in the Northwest Amazonian state of Maranhão, with a focus on the Gurupi Biological Reserve and surrounding areas. Samples were collected between May 2012 and October 2013 (18 months), through pitfall traps, time constrained active search, and opportunistic encounters, and these records were supplemented by specimens collected by third parties and by bibliographic records. A total of 131 species were recorded: 31 species of amphibians and 100 species of reptiles (six testudines, 30 lizards, two amphisbaenas, 60 snakes and two alligators), including some species new to the state of Maranhão and the northeast region of Brazil. This inventory contributes to the knowledge of the herpetofauna for the Belém Endemism Center, the most devastated region of the Brazilian Amazon, and considered poorly sampled. PMID:28144181

  7. Resilience of Amazonian forests

    NARCIS (Netherlands)

    Monteiro Flores, B.

    2016-01-01

    The Amazon has recently been portrayed as a resilient forest system based on quick recovery of biomass after human disturbance. Yet with climate change, the frequency of droughts and wildfires may increase, implying that parts of this massive forest may shift into a savanna state. Although the Amazo

  8. Species Turnover across Different Life Stages from Seedlings to Canopy Trees in Swamp Forests of Central Brazil

    Directory of Open Access Journals (Sweden)

    Clarissa G. Fontes

    2015-01-01

    Full Text Available Processes driving the assembly of swamp forest communities have been poorly explored. We analyzed natural regeneration and adult tree communities data of a swamp gallery forest in Central Brazil to discuss the role of ecological filters in shaping plant species turnover in a successional gradient. Species data of 120 plots were used to assess species turnover between natural regeneration and adult tree communities. Our analyses were based on 4995 individuals belonging to 72 species. Community patterns were discerned using ordination analyses. A clear floristic turnover among plant life stages was distinguished. Regeneration community of swamp forests was richer in species composition than the adult community. Tree species commonly found in nonflooded gallery forests were present in the regeneration plots but not in the adult community. Differences in the floristic composition of these two strata suggest that not all species in the seedling stage can stand permanent flooding conditions and only a few tolerant species survive to become adult trees. We propose that natural disturbances play an important role by altering limiting resources, allowing seeds of nonflooded forest species to germinate. This paper elucidates the turnover between plant life stages in swamp forests and suggests mechanisms that may shape these communities.

  9. Atmospheric particulate mercury at the urban and forest sites in central Poland.

    Science.gov (United States)

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2016-02-01

    Particulate mercury concentrations were investigated during intensive field campaigns at the urban and forest sites in central Poland, between April 2013 and October 2014. For the first time, quantitative determination of total particulate mercury in coarse (PHg2.2) and fine (PHg0.7) aerosol samples was conducted in Poznań and Jeziory. The concentrations in urban fine and coarse aerosol fractions amounted to mercury concentrations. A strong impact of meteorological conditions (wind velocity, air mass direction, air temperature, and precipitation amount) on particulate mercury concentrations was also observed. In particular, higher variation and concentration range of PHg0.7 and PHg2.2 was reported for wintertime measurements. An increase in atmospheric particulate mercury during the cold season in the study region indicated that coal combustion, i.e., residential and industrial heating, is the main contribution factor for the selected particle size modes. Coarse particulate Hg at the urban site during summer was mainly attributed to anthropogenic sources, with significant contribution from resuspension processes and long-range transport. The highest values of PHg0.7 and PHg2.2 were found during westerly and southerly wind events, reflecting local emission from highly polluted areas. The period from late fall to spring showed that advection from the southern part of Poland was the main factor responsible for elevated Hg concentrations in fine and coarse particles in the investigated region. Moreover, September 2013 could be given as an example of the influence of additional urban activities which occurred approx. 10 m from the sampling site-construction works connected with replacement of the road surface, asphalting, etc. The concentrations of particulate Hg (>600.0 pg m(-3)) were much higher than during the following months when any similar situation did not occur. Our investigations confirmed that Hg in urban aerosol samples was predominantly related to local

  10. Impacts of climate and land-use changes on mountain forests in Central Apennines

    Science.gov (United States)

    Calderaro, Chiara; Palombo, Caterina; Tognetti, Roberto; Marchetti, Marco

    2016-04-01

    The present study aims to analyze the vegetation dynamics of Pinus mugo Turra subsp. mugo and Fagus sylvatica (L.) at the treeline ecotone between the closed beech forest and the mountain pine krummholz vegetation. This transitional ecosystem zone dominates the high altitudes of the Majella massif, (Central Appennines) and represents the exception on the Apennines chain being treeline dominated by krummholz with mountain pine. This species in the Majella National Park is re-colonizing open areas both upward, to the alpine meadows, and downward, to areas potentially suitable by beech expansion. On the Apennine chain, Central Italy, global change could cause a negative impact on the spatial distribution of rare or endemic species, thus influencing the appearance, structure and productivity of the tree-line ecotone. Mountain pine, growing over the treeline, represents a very sensitive species to the effects of climate change acting in Mediterranean basin. In four sampling site a circular area of 40 m in diameter was established between beech forest and mountain pine krhummolz. For both species, dendrometric parameters were collected and woody cores were extracted. During sampling, basic information, to define the growth dynamics and competition between the two species, were also recorded. A landscape analysis from aerial photographs provided information to better understand the development dynamics of the two plant communities. The dendrochronological analysis, supported by dendrometric parameters, defined the population age, as well as the time of settlement. Climate-growth relationships was analized and showed responses, in terms of plant growth, to the current climate trend. The influence of temperature and precipitation on tree growth during the vegetation season was demonstrated by significant correlation coefficients, particularly for spring and summer temperatures and summer precipitation, in both species. An interesting result is the negative correlation of

  11. Ecosystem disturbances in Central European spruce forests: a multi-proxy integration of dendroecology and sedimentary records

    Science.gov (United States)

    Clear, Jennifer; Chiverrell, Richard; Kunes, Petr; Svoboda, Miroslav; Boyle, John

    2016-04-01

    Disturbance dynamics in forest ecosystems shows signs of perturbation in the light of changing climate regimes with the frequency and intensity of events (e.g. pathogens in North America and Central Europe) amplified, becoming more frequent and severe. The montane Norway spruce (Picea abies) dominated forests of Central Europe are a niche habitat and environment; situated outside their natural boreal distribution (e.g. Fenno-Scandinavia). These communities are at or near their ecological limits and are vulnerable to both short term disturbances (e.g. fire, windstorm and pathogens) and longer-term environmental change (e.g. climate induced stress and changing disturbance patterns). Researches have linked negative impacts on spruce forest with both wind disturbance (wind-throw) and outbreaks of spruce bark beetle (Ips typographus), and there is growing evidence for co-association with wind damage enhancing pathogenic outbreaks. Examples include: in the Bohemian Forest (Czech Republic) the mid-1990s spruce bark beetle outbreak and the 2007 windstorm and subsequent bark beetle outbreak. In the High Tatra Mountains (Slovakia) there is a further co-association of forest disturbance with windstorms (2004 and 2014) and an ongoing bark beetle outbreak. The scale and severity of these recent outbreaks of spruce bark beetle are unprecedented in the historical forest records. Here, findings from ongoing research developing and integrating data from dendroecological, sedimentary palaeoecological and geochemical time series to develop a longer-term perspective on forest dynamics in these regions. Tree-ring series from plots or forest stands (>500) are used alongside lake (5) and forest hollow (3) sediments from the Czech and Slovak Republics to explore the local, regional and biogeographical scale of forest disturbances. Dendroecological data showing tree-ring gap recruitment and post-suppression growth release highlight frequent disturbance events focused on tree or forest

  12. A Slippery Slope: Children's Perceptions of Their Role in Environmental Preservation in the Peruvian Amazon

    Science.gov (United States)

    Galeano, Rebecca

    2013-01-01

    Despite international attention and attempts to preserve the environmental diversity of the Amazon, it is an accepted fact that those who inhabit the forest must be the ones who preserve it. This article presents an analysis of how children in small rural riverine communities along the Amazon understand the importance of environmental preservation…

  13. Transforming Data: An Ethnography of Scientific Data from the Brazilian Amazon

    DEFF Research Database (Denmark)

    Walford, Antonia Caitlin

    This thesis is an ethnography of scientific data produced by a Brazil-led scientific project in the Brazilian Amazon. It describes how the researchers and technicians make data about the Amazon forest, and how this data in turn generates different scientific communities, scientific subjectivities...

  14. The effects of cumulative forest disturbance on streamflow in a large watershed in the central interior of British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2012-07-01

    Full Text Available The Baker Creek watershed (1570 km2, situated in the central interior of British Columbia, Canada, has been severely disturbed by both logging and natural disturbance, particularly by a recent large-scale mountain pine beetle (MPB infestation (up to 2009, 70.2% of the watershed area had been attacked by MPB and subsequent salvage logging. The concept of equivalent clear-cut area (ECA was used to indicate the magnitude of forest disturbance, with consideration of hydrological recovery following various types of disturbance (wildfire, logging and MPB infestation, cumulated over space and time in the watershed. The cumulative ECA peaked at 62.2% in 2009. A combined approach of statistical analysis (i.e. time series analysis and graphic method (modified double mass curve was employed to evaluate the impacts of forest disturbance on hydrology. Our results showed that severe forest disturbance significantly increased annual mean flow. The average increment in annual mean flow caused by forest disturbance was 48.4 mm yr−1, while the average decrease in annual mean flow caused by climatic variability during the same disturbance period was 35.5 mm yr−1. The opposite changes in directions and magnitudes clearly suggest an offsetting effect between forest disturbance and climatic variability, with the absolute influential strength of forest disturbance (57.7% overriding that from climate variability (42.3%. Forest disturbance also produced significant positive effects on low flow and dry season (fall and winter mean flow. Implications of our findings for future forest and water resources management are discussed in the context of long-term watershed sustainability.

  15. The cumulative effects of forest disturbance on streamflow in a large watershed in the central interior of British Columbia, Canada

    Science.gov (United States)

    Zhang, M.; Wei, X.

    2012-03-01

    The Baker Creek watershed (1570 km2) situated in the central interior of British Columbia, Canada has been severely disturbed by both human-being logging and natural disturbance, particularly by a recent large-scale mountain pine beetle (MPB) infestation (up to 2009, 70.2% of the watershed area was attacked by MPB) and subsequent salvage logging. The concept of equivalent clear-cut area (ECA) was used to indicate the magnitude of forest disturbance with consideration of hydrological recovery following various types of disturbances (wildfire, logging and MPB infestation) cumulated over space and time in the studied watershed. The cumulative ECA was up to 62.2% in 2009. A combined approach of statistical analysis (time series analysis) with modified double mass curve was employed to evaluate the impacts of forest disturbance on hydrology. Our results showed that severe forest disturbance significantly increased annual mean flow. The average increment in annual mean flow caused by forest disturbance was 48.4 mm yr-1, while the average decrease in annual mean flow caused by climatic variability during the same disturbance period was -35.5 mm yr-1. The opposite change directions and magnitudes clearly suggest offsetting effect between forest disturbance and climatic variability, with the absolute influential strength of forest disturbance (57.7%) overriding that from climate variability (42.3%). Forest disturbances also produced significant positive effect on low flow and dry season (fall and winter) mean flow. Implications of our findings for future forest and water resources management are discussed in the context of long-term watershed sustainability.

  16. The cumulative effects of forest disturbance on streamflow in a large watershed in the central interior of British Columbia, Canada

    Directory of Open Access Journals (Sweden)

    M. Zhang

    2012-03-01

    Full Text Available The Baker Creek watershed (1570 km2 situated in the central interior of British Columbia, Canada has been severely disturbed by both human-being logging and natural disturbance, particularly by a recent large-scale mountain pine beetle (MPB infestation (up to 2009, 70.2% of the watershed area was attacked by MPB and subsequent salvage logging. The concept of equivalent clear-cut area (ECA was used to indicate the magnitude of forest disturbance with consideration of hydrological recovery following various types of disturbances (wildfire, logging and MPB infestation cumulated over space and time in the studied watershed. The cumulative ECA was up to 62.2% in 2009. A combined approach of statistical analysis (time series analysis with modified double mass curve was employed to evaluate the impacts of forest disturbance on hydrology. Our results showed that severe forest disturbance significantly increased annual mean flow. The average increment in annual mean flow caused by forest disturbance was 48.4 mm yr−1, while the average decrease in annual mean flow caused by climatic variability during the same disturbance period was −35.5 mm yr−1. The opposite change directions and magnitudes clearly suggest offsetting effect between forest disturbance and climatic variability, with the absolute influential strength of forest disturbance (57.7% overriding that from climate variability (42.3%. Forest disturbances also produced significant positive effect on low flow and dry season (fall and winter mean flow. Implications of our findings for future forest and water resources management are discussed in the context of long-term watershed sustainability.

  17. The effects of cumulative forest disturbance on streamflow in a large watershed in the central interior of British Columbia, Canada

    Science.gov (United States)

    Zhang, M.; Wei, X.

    2012-07-01

    The Baker Creek watershed (1570 km2), situated in the central interior of British Columbia, Canada, has been severely disturbed by both logging and natural disturbance, particularly by a recent large-scale mountain pine beetle (MPB) infestation (up to 2009, 70.2% of the watershed area had been attacked by MPB) and subsequent salvage logging. The concept of equivalent clear-cut area (ECA) was used to indicate the magnitude of forest disturbance, with consideration of hydrological recovery following various types of disturbance (wildfire, logging and MPB infestation), cumulated over space and time in the watershed. The cumulative ECA peaked at 62.2% in 2009. A combined approach of statistical analysis (i.e. time series analysis) and graphic method (modified double mass curve) was employed to evaluate the impacts of forest disturbance on hydrology. Our results showed that severe forest disturbance significantly increased annual mean flow. The average increment in annual mean flow caused by forest disturbance was 48.4 mm yr-1, while the average decrease in annual mean flow caused by climatic variability during the same disturbance period was 35.5 mm yr-1. The opposite changes in directions and magnitudes clearly suggest an offsetting effect between forest disturbance and climatic variability, with the absolute influential strength of forest disturbance (57.7%) overriding that from climate variability (42.3%). Forest disturbance also produced significant positive effects on low flow and dry season (fall and winter) mean flow. Implications of our findings for future forest and water resources management are discussed in the context of long-term watershed sustainability.

  18. Spatio-Temporal Assessment and Mapping of the Landuse Landcover Dynamics in The Central Forest Belt of Southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    R.O. Oyinloye

    2012-07-01

    Full Text Available The study examined the Landuse and Landcover (LULC dynamics of the central cocoa cultivation area of southwestern Nigeria between 1972 and 2002 using remotely sensed multi-temporal datasets. The datasets are Landsat 1972, 1986, 1991 and 2002 imageries. The datasets were each subjected to supervised classification techniques employing the maximum likelihood classifier using ILWIS software. This implies that field observation for identification and completion of ambiguous features and other details supported by GPS locations was carried out. Seven dominant classes of feature: agro-forest/light forest, built-up area, exposed rock surfaces/bare land, forest reserve, shrub and arable land, ridge forest and water body were identified. A time series analysis of the LULC changes was carried out to provide the necessary understanding of the changes required for policy formulation and decision-making with respect to cocoa production, forest reserve management and landuse planning, control, coordination and budgeting while being mindful of environmental conservation. This indispensable geo-information is yet lacking in the cocoa growing belt of southwestern Nigeria. ArcView software was used to prepare the corresponding time series LULC maps of the study area. The study showed that the forest reserves within the study area reduced at an average rate of 2.78% per year while agro-forest/light forest reduced to 46.39% (i.e., at an average rate of 1.55% per year and, shrub and arable land increased by 323.06% (i.e., at an average rate of 10.77% per year for food production farming to feed the rapidly increasing population between 1972 and 2002.

  19. Changes in determinants of deforestation and forest degradation in Popa Mountain Park, Central Myanmar.

    Science.gov (United States)

    Htun, Naing Zaw; Mizoue, Nobuya; Yoshida, Shigejiro

    2013-02-01

    Implementing effective conservation requires an understanding of factors affecting deforestation and forest degradation. Previous studies have investigated factors affecting deforestation, while few studies have examined the determinants of both of deforestation and forest degradation for more than one period. To address this gap, this study examined factors influencing deforestation and forest degradation during 1989-2000 and 2000-2005 in the Popa Mountain Park, Myanmar. We applied multinomial logistic regression (MNL) using land cover maps derived from Landsat images as the dependent variables as well as spatial and biophysical factors as the independent variables. The MNL models revealed influences of the determinants on deforestation and forest degradation changes over time. For example, during 1989-2000, deforestation from closed forest was positively correlated to the distance from the park boundary and was negatively correlated with distance from villages, roads, the park circular road, slope, western aspect and elevation. On the other hand, during 2000-2005, deforestation of closed forest was positively correlated with distance from villages, roads, the park circular road, slope and western aspect, and negatively correlated with distance from the park boundary and elevation. Similar scenarios were observed for the deforestation of open forest and forest degradation of closed forest. The study also found most of the determinants influenced deforestation and forest degradation differently. The changes in determinants of deforestation and forest degradation over time might be attributable to the general decrease in resource availability and to the effect of conservation measures conducted by the park.

  20. Forest cover changes due to hydrocarbon extraction disturbance in central Pennsylvania (2004–2010)

    Science.gov (United States)

    Roig-Silva, Coral; Slonecker, Terry; Milheim, Lesley; Ballew, Jesse R.; Winters, S. Gail

    2016-01-01

    The state of Pennsylvania has a long history of oil and gas extraction. In recent years with advances in technology such as hydraulic fracturing, hydrocarbon sources that were not profitable in the past are now being exploited. Here, we present an assessment of the cumulative impact of oil and gas extraction activities on the forests of 35 counties in Pennsylvania and their intersecting sub-watersheds between 2004 and 2010. The assessment categorizes counties and sub-watersheds based on the estimated amount of change to forest cover in the area. From the data collected we recognize that although forest cover has not been greatly impacted (with an average loss of percent forest coverage of 0.16% at the county level), landscape structure is affected. Increase in edge forest and decrease in interior forest is evident in many of the counties and sub-watersheds examined. These changes can have a detrimental effect on forest biodiversity and dynamics.

  1. Bedload exports in a forest catchment following wildfire and terracing, north-central Portugal

    Science.gov (United States)

    Martins, Martinho A. S.; Machado, Ana I.; Serpa, Dalila; Prats, Sergio A.; Faria, Sílvia R.; Varela, María E. T.; González-Pelayo, Óscar; Keizer, J. Jacob

    2014-05-01

    In Portugal, the occurrences of wildfires are frequently, on average, affects some 100.000 ha of rural lands each year, but in extreme years such as 2003 and 2005 the burnt areas can go over 300.000 ha. Studies in various parts of the world, including Portugal, have well-documented a strong and sometimes extreme response in overland flow generation and associated soil losses following wildfire. Over the last two decades, the construction of terraces in preparation of a new eucalypt plantation has become increasingly common in the mountain areas of north-central Portugal, including in recently burnt areas. Terraces are traditionally viewed as a soil conservation technique, however, the present authors have measured high splash and inter-rill erosion on recent terraces and have frequently observed gully formation connecting the terraces over the full hill slope length, as well as within the adjacent unsealed roads. The present study was carried out in a forest catchment in the north-central Portugal that was burnt by a wildfire during the summer of 2010 and logged and then terraced with a bulldozer during the winter 2010. The burnt catchment of roughly 25 ha was instrumented with two subsequent flumes with maximum discharge capacities of 120 and 1700 l sec-1. The bed load that deposited in the smallest flume was removed and weighted in the field at regular intervals during the subsequent three years. The records are being now analyzed, nonetheless preliminary results suggested that, besides the wildfire effects, also post-fire land management played an important role on bedload exports.

  2. A review of ozone-induced effects on the forests of central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Maria de Lourdes de [Instituto de Recursos Naturales, Colegio de Postgraduados, Carretera Los Reyes-Texcoco, 56230 Montecillo, Edo. Mexico (Mexico)]. E-mail: libauer@colpos.mx; Hernandez-Tejeda, Tomas [Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias, Mexico, Col. Viveros de Coyoacan, 04110 Mexico, D.F. (Mexico)

    2007-06-15

    The first report on oxidant-induced plant damage in the Valley of Mexico was presented over 30 years ago. Ozone is known to occur in the Mexico City Metropolitan Area and elsewhere as the cause of chlorotic mottling on pine needles that are 2 years old or older as observed in 1976 on Pinus hartwegii and Pinus leiophylla. Visible evidences for the negative effects of ozone on the vegetation of central Mexico include foliar injury expressed as chlorotic mottling and premature defoliation on pines, a general decline of sacred fir, visible symptoms on native forest broadleaved species (e.g. Mexican black cherry). Recent investigations have also indicated that indirect effects are occurring such as limited root colonization by symbiotic fungi on ozone-damaged P. hartwegii trees and a negative influence of the pollutant on the natural regeneration of this species. The negative ozone-induced effects on the vegetation will most likely continue to increase. - Ozone induced symptoms, poor tree regeneration and limited root colonization by mycorrhiza fungi observed in the valley of Mexico.

  3. Bacterial community in sclerotia of Cenococcum species and soil in sub-alpine forest, central Japan

    Science.gov (United States)

    Nonoyama, Y.; Narisawa, K.; Ohta, H.; Watanabe, M.

    2009-04-01

    Species of Cenococcum, ectomycorrhizal fungi, may be particularly abundant in cold- or nutrient-stressed habitats. The fungus is easily recognized by its jet-black hyphae, and distinct compact masses of fungal mycelium called sclerotia. They are hard, black, comparatively smooth and mostly spherical. Sclerotia are formed in rhizosphere and can provide sufficient inoculums for several years. The purpose of this study is to investigate bacterial community inside sclerotia, with an interest on contribution of sclerotia to microbial diversity in rhizosphere. To investigate bacterial community inside of the fungal sclerotia by 16S rDNA gene clone library, several hundred of sclerotia (ca. 1g) were collected from sub-alpine forest soil in central Japan. Furthermore, three sclerotium grains were applied to investigate internal bacteria community by culture method. The isolated bacterial strains were then proceeded to determine their 16S rDNA partial sequences. The predominant group determined by clone library analysis of 16S ribosomal RNA genes with DNA from the sclerotia was Acidobacteria in both sclerotia and soil. Bacterial community of sclerotia showed higher diversity compared to soil. On the contrary, bacterial flora isolated from single sclerotium differed each other. Additionally, the bacterial community was composed by limited species of related genus.

  4. Discursive barriers and cross-scale forest governance in Central Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    Caleb T. Gallemore

    2014-06-01

    Full Text Available Students of social-ecological systems have emphasized the need for effective cross-scale governance. We theorized that discursive barriers, particularly between technical and traditional practices, can act as a barrier to cross-scale collaboration. We analyzed the effects of discursive divides on collaboration on Reducing Emissions from Deforestation and Forest Degradation (REDD+ policy development in Central Kalimantan, an Indonesian province on the island of Borneo selected in 2010 to pilot subnational REDD+ policy. We argue that the complexities of bridging local land management practices and technical approaches to greenhouse gas emissions reduction and carbon offsetting create barriers to cross-scale collaboration. We tested these hypotheses using an exponential random graph model of collaboration among 36 organizations active in REDD+ policy in the province. We found that discursive divides were associated with a decreased probability of collaboration between organizations and that organizations headquartered outside the province were less likely to collaborate with organizations headquartered in the province. We conclude that bridging discursive communities presents a chicken-and-egg problem for cross-scale governance of social-ecological systems. In precisely the situations where it is most important, when bridging transnational standards with local knowledge and land management practices, it is the most difficult.

  5. New Particle Formation Above a Loblolly Pine Forest at a New Tower Site in Central Virginia

    Science.gov (United States)

    Joerger, V.; O'Halloran, T. L.; Barr, J. G.

    2014-12-01

    We present initial results investigating the environmental controls on new particle formation events at a new research site in central Virginia. The Sweet Briar College Land-Atmosphere Research Station (SBC-LARS) became operational in July, 2014 and features a 37-meter tower within a ~30 year-old loblolly pine plantation that is surrounded by mixed deciduous forest at the eastern edge of the Blue Ridge Mountains. The tower supports meteorological instruments at three different heights (2, 26, and 37 meters) and two air sampling inlets located above the canopy. The inlets draw air samples into a climate-controlled shed where precursor gas concentrations (ozone, sulfur dioxide, and nitrogen oxides) are determined by gas analyzers. Aerosol size distributions between 10 and 470 nm are measured every 3 minutes by a Scanning Mobility Particle Sizer (SMPS). For this study, aerosol size distributions from July through November 2014 were analyzed along with HYSPLIT backwards trajectories, meteorological measurements, gas concentrations, and the condensational sink, to investigate controls on new particle formation. This station and corresponding dataset will contribute to a better understanding of the contribution of biogenic and anthropogenic emissions to aerosol formation in the southeastern United States.

  6. A new 500-m resolution map of canopy height for Amazon forest using spaceborne LiDAR and cloud-free MODIS imagery

    Science.gov (United States)

    Sawada, Yoshito; Suwa, Rempei; Jindo, Keiji; Endo, Takahiro; Oki, Kazuo; Sawada, Haruo; Arai, Egidio; Shimabukuro, Yosio Edemir; Celes, Carlos Henrique Souza; Campos, Moacir Alberto Assis; Higuchi, Francisco Gasparetto; Lima, Adriano José Nogueira; Higuchi, Niro; Kajimoto, Takuya; Ishizuka, Moriyoshi

    2015-12-01

    In the present study, we aimed to map canopy heights in the Brazilian Amazon mainly on the basis of spaceborne LiDAR and cloud-free MODIS imagery with a new method (the Self-Organizing Relationships method) for spatial modeling of the LiDAR footprint. To evaluate the general versatility, we compared the created canopy height map with two different canopy height estimates on the basis of our original field study plots (799 plots located in eight study sites) and a previously developed canopy height map. The compared canopy height estimates were obtained by: (1) a stem diameter at breast height (D) - tree height (H) relationship specific to each site on the basis of our original field study, (2) a previously developed D-H model involving environmental and structural factors as explanatory variables (Feldpausch et al., 2011), and (3) a previously developed canopy height map derived from the spaceborne LiDAR data with different spatial modeling method and explanatory variables (Simard et al., 2011). As a result, our canopy height map successfully detected a spatial distribution pattern in canopy height estimates based on our original field study data (r = 0.845, p = 8.31 × 10-3) though our canopy height map showed a poor correlation (r = 0.563, p = 0.146) with the canopy height estimate based on a previously developed model by Feldpausch et al. (2011). We also confirmed that the created canopy height map showed a similar pattern with the previously developed canopy height map by Simard et al. (2011). It was concluded that the use of the spaceborne LiDAR data provides a sufficient accuracy in estimating the canopy height at regional scale.

  7. Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost in Central Siberia during a growing season

    Science.gov (United States)

    Nakai, Y.; Matsuura, Y.; Kajimoto, T.; Abaimov, A. P.; Yamamoto, S.; Zyryanova, O. A.

    2008-08-01

    Gmelin larch ( Larix gmelinii) forests are representative vegetation in the continuous permafrost region of Central Siberia. Information on the carbon budget is still limited for this Siberian larch taiga in comparison to boreal forests in other regions, while the larch forests are expected to play a key role in the global carbon balance due to their wide distribution over North-East Eurasia. The authors reported results of eddy covariance CO2 flux measurements at a mature Gmelin larch stand in Central Siberia, Russia (64°16'N, 100°12'E, 250 m a.s.l.). The measurements were conducted during one growing season (June-early September in 2004). CO2 uptake was initiated in early June and increased sharply until late June, which was closely related to the phenology of the larch trees (i.e., bud-break and needle flush). Maximum half-hourly net CO2 uptake was ˜6 µmol m-2 s-1. Maximum daily net uptake of ˜2 g C m-2 day-1 occurred at the end of June and in mid-July. Cumulative net uptake was 76-78 g C m-2, indicating that the mature larch forest acted as a net sink for CO2 during the growing season (91 days). In comparison with other boreal forests, however, the magnitude of net CO2 uptake and night-time release of the forest, and cumulative net CO2 uptake were lower. We suggest that lower net ecosystem CO2 uptake of the study stand was primarily associated with low leaf area index.

  8. Impacts of climatic changes on carbon and water balance components of boreal forest ecosystems in central part of European Russia

    Science.gov (United States)

    Olchev, A.; Novenko, E.; Desherevskaya, O.; Kurbatova, J.

    2009-04-01

    Within the framework of the study the possible impacts of climatic changes on carbon and water balances of boreal forest ecosystems of the central part of European Russia for period up to 2100 was estimated using results of model simulations and field measurements. The boreal forests of the Central Forest State Natural Biosphere Reserve (CFSNBR) were selected for the study. They are located at the southern boundary of south taiga zone in the European part of Russia (Tver region) and it can be expected that they will be very sensitive to modern climate warming. Expected future pattern of climatic parameters in the study area was derived using the global climatic model ECHAM5 (MPI Hamburg, Germany) and climatic scenarios B1, A1B and A2 (IPCC 2007). The possible scenarios of species composition changes of the boreal forests were developed using reconstructions of Holocene vegetation cover and climatic conditions on the base of pollen and plant macrofossil analysis of peat profiles in CFSNBR. The annual future pattern of CO2 and H2O fluxes of the forests were simulated using a process-based Mixfor-SVAT model (Olchev et al. 2002, 2008). The main advantage of Mixfor-SVAT is that it allows us to describe CO2 and H2O fluxes both in mono-specific and mixed forest stands. It is able to quantify both total ecosystem fluxes and flux partitioning among different tree species and canopy layers. It is obvious that it can be very helpful to describe accurately effects of species composition changes on structure of dynamics of carbon and water balance of forest ecosystems. Results of modeling experiments show that expected climatic and vegetation changes can have significant impact on evapotranspiration, transpiration, Net Ecosystem Exchange (NEE), Gross (GPP) and Net (NPP) Primary Productivities of boreal forest ecosystems. These changes have a clear seasonal trend and they are depended on species composition of a forest stand. This study was supported by the Russian Foundation

  9. Quantifying the Role of Bottomland Hardwood Forest Flood Attenuation in the Central U.S

    Science.gov (United States)

    Hubbart, J. A.; Bulliner, E. A.; Freeman, G. W.; Scollan, D. P.; Romine, J.; Chinnasamy, P.; Huang, D.; Schulz, J.

    2010-12-01

    Contemporary floodplain management is a growing concern, particularly in regions where climate change predictions include increased precipitation such as the central U.S. and Missouri. Historically, bottomland hardwood forests (BHF) played a significant role in runoff and flood attenuation. However, most of the floodplain BHF in Missouri was removed in the 19th and 20th centuries to cultivate the rich underlying soils. In many instances, BHF conversion required the installation of drainage and flood control structures, such as drainage tiles, ditches, levees, and dams. Many stream and river channels were straightened and enlarged to further reduce flooding. Structural changes, coupled with changes in vegetation and soils, drastically altered the hydrology of streams, floodplains, and the remnant BHF. Today, century-old management practices are coming under scrutiny in the Midwest in terms of management efficacy in contemporary urbanizing watersheds. Therefore, work is being conducted in central Missouri to quantify current floodplain flow attenuation of a 303(d) listed impaired urban stream. Instrumentation was installed in lower reaches of the Hinkson Creek Watershed (230km2) in the spring of 2010 in a case study comparing a remnant BHF and an abandoned agricultural floodplain site using replicated study designs. Instrumentation includes two 80 m2 grids of nine equally spaced four meter deep piezometers to monitor groundwater flow and volumetric water content (VWC) sensor profiles that monitor VWC at 15, 30, 50, 75 and 100 cm depth. Grids were enlarged to 120 m2 to measure leaf area index (LAI), surface infiltration capacity with double ring infiltrometers, and soil characteristics. Soil characteristics were quantified by extracting soil cores at soil depths of 0, 15, 30, 50, 75 and 100 cm (n = 302). LAI in the BHF was on average 3.06 (SD = 0.65, min = 1.31, max = 4.38, n = 42). Preliminary analysis indicates that average infiltration capacity is 44 cm/hr (SD = 38

  10. Challenges to managing ecosystems sustainably for poverty alleviation: Securing well-being in the Andes/Amazon

    OpenAIRE

    ESPA-AA (Ecosystem Services and Poverty Alleviation Program)

    2008-01-01

    This report focuses on the Amazon basin and the eastern Andean slopes (herein referred to as the Andes/Amazon ecosystem or region). The Amazon is the largest fresh water system and tropical forest in the world. Large portions of the region are still covered by relatively intact primary forests that provide substantial locally and globally valuable ecosystem services (ES). Rural population densities in the region are among the lowest in the world. As such, the Andes/Amazon is a contrast to oth...

  11. Comparison of CO2 fluxes in a larch forest on permafrost and a pine forest on non-permafrost soils in Central Siberia

    Science.gov (United States)

    Zyryanov, V.; Tchebakova, N. M.; Nakai, Y.; Zyryanova, O.; Parfenova, E. I.; Matsuura, Y.; Vygodskaya, N.

    2013-12-01

    Inter-annual and seasonal variations of energy, water and carbon fluxes and associated climate variables in a middle taiga pine (Pinus sylvestris) forest on warm sandy soils and a northern taiga larch (Larix gmelini) forest on permafrost in Central Siberia were studied from eddy covariance measurements obtained during growing seasons of 1998-2000 and 2004-2008 (except 2006) respectively. Both naturally regenerated after fire forests grew in different environments and differed by their tree stand characteristics. The pure Gmelin larch stand was 105 yr old, stem density of living trees was about 5480 trees/ha, LAI was 0.6 m2/m2, biomass (dry weight) was 0.0044 kg/m2, with average diameter of the trees at breast height 7.1 cm and mean tree height 6.8 m. The pure Scots pine stand was 215 yr old, stand structure was relatively homogenous with a stem density of 468 living trees/ha, LAI was 1.5 m2/m2, biomass (dry weight) was 10.7 kg/m2, with average diameter of the trees at breast height 28 cm and mean tree height 23 m. The climatic and soil conditions of these ecosystems were very distinctive. The habitat of the larch forest was much colder and dryer than that of the pine forest: the growing season was 1 month shorter and growing-degree days 200°C less and winters were about one month longer and colder with January temperature -37°C versus -23°C; annual precipitation was 400 mm in the larch versus 650 mm in the pine forest and maximal snow pack was 40 cm vs 70 cm. The soils were Gelisols with permafrost table within the upper 1 m in the larch stand and Pergelic Cryochrept, alluvial sandy soil with no underlying permafrost. Average daily net ecosystem exchange (NEE) was significantly smaller in the larch ecosystem - (-3-6) μmol/m2s compared to that in the pine forest (-7-8) μmol/m2s, however daily maximal NEE was about the same. Seasonal NEE in the larch forest on continuous permafrost varied from -53 to -107 and in the pine forest on non-permafrost from -180 to

  12. Drought sensitivity of the Amazon rainforest.

    Science.gov (United States)

    Phillips, Oliver L; Aragão, Luiz E O C; Lewis, Simon L; Fisher, Joshua B; Lloyd, Jon; López-González, Gabriela; Malhi, Yadvinder; Monteagudo, Abel; Peacock, Julie; Quesada, Carlos A; van der Heijden, Geertje; Almeida, Samuel; Amaral, Iêda; Arroyo, Luzmila; Aymard, Gerardo; Baker, Tim R; Bánki, Olaf; Blanc, Lilian; Bonal, Damien; Brando, Paulo; Chave, Jerome; de Oliveira, Atila Cristina Alves; Cardozo, Nallaret Dávila; Czimczik, Claudia I; Feldpausch, Ted R; Freitas, Maria Aparecida; Gloor, Emanuel; Higuchi, Niro; Jiménez, Eliana; Lloyd, Gareth; Meir, Patrick; Mendoza, Casimiro; Morel, Alexandra; Neill, David A; Nepstad, Daniel; Patiño, Sandra; Peñuela, Maria Cristina; Prieto, Adriana; Ramírez, Fredy; Schwarz, Michael; Silva, Javier; Silveira, Marcos; Thomas, Anne Sota; Steege, Hans Ter; Stropp, Juliana; Vásquez, Rodolfo; Zelazowski, Przemyslaw; Alvarez Dávila, Esteban; Andelman, Sandy; Andrade, Ana; Chao, Kuo-Jung; Erwin, Terry; Di Fiore, Anthony; Honorio C, Eurídice; Keeling, Helen; Killeen, Tim J; Laurance, William F; Peña Cruz, Antonio; Pitman, Nigel C A; Núñez Vargas, Percy; Ramírez-Angulo, Hirma; Rudas, Agustín; Salamão, Rafael; Silva, Natalino; Terborgh, John; Torres-Lezama, Armando

    2009-03-06

    Amazon forests are a key but poorly understood component of the global carbon cycle. If, as anticipated, they dry this century, they might accelerate climate change through carbon losses and changed surface energy balances. We used records from multiple long-term monitoring plots across Amazonia to assess forest responses to the intense 2005 drought, a possible analog of future events. Affected forest lost biomass, reversing a large long-term carbon sink, with the greatest impacts observed where the dry season was unusually intense. Relative to pre-2005 conditions, forest subjected to a 100-millimeter increase in water deficit lost 5.3 megagrams of aboveground biomass of carbon per hectare. The drought had a total biomass carbon impact of 1.2 to 1.6 petagrams (1.2 x 10(15) to 1.6 x 10(15) grams). Amazon forests therefore appear vulnerable to increasing moisture stress, with the potential for large carbon losses to exert feedback on climate change.

  13. Sampling effort and fish species richness in small terra firme forest streams of central Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Maeda Batista dos Anjos

    Full Text Available Small streams are important components of the landscape in terra firme forests in central Amazonia and harbor a large number of fish species. Nevertheless, the lack of a common sampling protocol in studies of this ichthyofauna hinders comparisons among available results. This study evaluates how the length of stream reach sampled affects estimates of local fish species density in 1st, 2nd, and 3rd order streams, and proposes a mean minimum sampling length that best approximates the absolute number of species in a given stream segment. We sampled three streams in the Biological Dynamics of Forest Fragments Project's study sites, between May and August 2004. At each stream, one 1st order, one 2nd order, and one 3rd order segment was sampled. We sampled five 20-m reaches in each stream segment. Three to four people collected along each reach for 45 to 60 minutes. We used Jaccard's coefficient to estimate the similarity of species composition among stream reaches and segments. Estimates of species richness were obtained with Jackknife 1 and Bootstrap algorithms and species accumulation curves. We used simple linear regressions to look for relationships between species density and fish abundance and between species density and the volume of 100-m stream segments. Species density in 1st order stream reaches was slightly higher than in 2nd and 3rd order stream reaches, whereas fish abundance was apparently higher in 3rd order reaches. Similarity in fish species composition between 20-m reaches was low for all studied streams. Species density values in pooled 100-m stream segments represented 71.4% to 94.1% of the estimated values for these streams. Species density showed a direct relationship both with volume of the sampled stream segment and fish abundance. It seems plausible that larger streams contain a higher number of microhabitat types, which allow for the presence of more fish species per stream length. Based on the values of asymptotes and

  14. Perception of local inhabitants regarding the socioeconomic impact of tourism focused on provisioning wild dolphins in Novo Airão, Central Amazon, Brazil.

    Science.gov (United States)

    Alves, Luiz C P S; Zappes, Camilah A; Oliveira, Rafael G; Andriolo, Artur; Azevedo, Alexandre de F

    2013-01-01

    Botos (Inia geoffrensis) are currently provisioned for use in tourist attractions in five sites in the Brazilian Amazon. Despite the known negative effects associated with human-wild dolphin interactions, this activity has been regulated and licensed in the Anavilhanas National Park in Novo Airão, Amazonas State, Brazil. We present an updated evaluation of the perception of the local community concerning the possible socioeconomic impacts of this tourism in Novo Airão. In April 2011, 45 interviews were conducted with inhabitants. A small segment of Novo Airão perceives currently itself as being economically dependent on the botos feeding tourism. Despite that, the economic benefits of this controversial activity apparently are not shared among most inhabitants, and botos feeding tourism is perceived as generating diverse negative effects. We conclude that if the activity was banned or modified into a less impacting tourist activity, this action would probably not majorly affect the lives of the general population.

  15. Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 2, Greenhouse gas emissions from deforestration in the Brazilian Amazon

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, W.; Sathaye, J. [eds.] [Lawrence Berkeley Lab., CA (United States); Fearnside, P.M. [Instituto Nacional de Pesquisas da Amazonia (INPA), Manaus, AM (Brazil). Departmento de Ecologia

    1992-08-01

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  16. The cumulative effects of forest disturbance on streamflow in a large watershed in the central interior of British Columbia, Canada

    OpenAIRE

    Zhang, M.; X Wei

    2012-01-01

    The Baker Creek watershed (1570 km2) situated in the central interior of British Columbia, Canada has been severely disturbed by both human-being logging and natural disturbance, particularly by a recent large-scale mountain pine beetle (MPB) infestation (up to 2009, 70.2% of the watershed area was attacked by MPB) and subsequent salvage logging. The concept of equivalent clear-cut area (ECA) was used to indicate the magnitude of forest disturbance with consideration of...

  17. The effects of cumulative forest disturbance on streamflow in a large watershed in the central interior of British Columbia, Canada

    OpenAIRE

    Zhang, M.; X Wei

    2012-01-01

    The Baker Creek watershed (1570 km2), situated in the central interior of British Columbia, Canada, has been severely disturbed by both logging and natural disturbance, particularly by a recent large-scale mountain pine beetle (MPB) infestation (up to 2009, 70.2% of the watershed area had been attacked by MPB) and subsequent salvage logging. The concept of equivalent clear-cut area (ECA) was used to indicate the magnitude of forest disturbance, with consideration of hyd...

  18. Behavioral modifications in northern bearded saki monkeys (Chiropotes satanas chiropotes) in forest fragments of central Amazonia.

    Science.gov (United States)

    Boyle, Sarah Ann; Smith, Andrew T

    2010-01-01

    We investigated behavioral differences among seven groups of northern bearded saki monkeys (Chiropotes satanas chiropotes) living in five forest fragments and two areas of continuous forest at the Biological Dynamics of Forest Fragments Project study area, located approximately 80 km north of Manaus, Brazil. We collected data in six research cycles from July-August 2003 to January 2005-April 2006. When bearded saki monkeys were present in a study area, we followed the group from dawn until dusk for three consecutive days. Every 5 min, we conducted behavioral scans of all visible individuals. There was a positive relationship between forest size and group size, but animals in the small forest fragments lived at greater densities. Bearded saki monkeys in the smaller fragments spent more time resting, less time traveling, and less time vocalizing, but there was no relationship between forest size and the amount of time spent feeding. Our results indicate that the main behavioral differences among the groups are related to the amount of forest resources (e.g., fruit trees, space) available to the monkeys in the smaller fragments, as well as the resulting smaller group sizes. We stress the need to preserve large tracts of forest and provide connectivity between forest patches.

  19. Neogene origins and implied warmth tolerance of Amazon tree species.

    Science.gov (United States)

    Dick, Christopher W; Lewis, Simon L; Maslin, Mark; Bermingham, Eldredge

    2012-01-01

    Tropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long-term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm-adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6-5 Ma) and late-Miocene (8-10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near-term high temperature-induced mass species extinction is unlikely.

  20. Achieving zero deforestation in the Brazilian Amazon: What is missing?

    Directory of Open Access Journals (Sweden)

    Paulo Moutinho

    2016-09-01

    Full Text Available Abstract Amazon deforestation causes severe climatic and ecological disruptions, with negative consequences for the livelihood of forest-dependent peoples. To avoid further disruptions, Brazil will need to take bold steps to eliminate both illegal and legal Amazon deforestation over the short term. Amazon deforestation declined by 70% between 2005 and 2014 due to drops in commodity prices and interventions by federal and state governments, such as law enforcement campaigns and credit restrictions for landowners who deforest illegally. Despite these impressive achievements, Brazil still deforests 5,000 km2 of Amazonian forests each year. How then will Brazil eliminate Amazon deforestation altogether if the country is only committed to cut illegal deforestation by 2030—as stated in its Intended Nationally Determined Contributions (iNDC to the 2015 climate change treaty meeting in Paris? Here we provide an analysis of the major socio-economic-political threats that could constrain Brazil from achieving its current goals. We then propose six fundamental strategies to help Brazil achieve a more ambitious goal to eliminate all major legal and illegal Amazon deforestation. These strategies involve bringing social and environmental safeguards to the infrastructure plans in the region, consolidating and expanding positive incentives for the production of sustainable commodities, establishing a new policy to guarantee the social and environmental sustainability of rural settlements, fully implementing the national legislation protecting forests (the Forest Code, protecting the land rights of indigenous people and traditional communities, and expanding the existing network of protected areas, allocating the 80 million hectares of not designated public forests as protected areas or areas for sustainable use of timber and non-timber forest products. The implementation of these strategies however depends on the formulation of a new development paradigm that

  1. Programming Amazon EC2

    CERN Document Server

    Vliet, Jurg

    2011-01-01

    If you plan to use Amazon Web Services to run applications in the cloud, the end-to-end approach in this book will save you needless trial and error. You'll find practical guidelines for designing and building applications with Amazon Elastic Compute Cloud (EC2) and a host of supporting AWS tools, with a focus on critical issues such as load balancing, monitoring, and automation. How do you move an existing application to AWS, or design your application so that it scales effectively? How much storage will you require? Programming Amazon EC2 not only helps you get started, it will also keep y

  2. Technical and Institutional Innovation in Agroforestry for Protected Areas Management in the Brazilian Amazon: Opportunities and Limitations

    Science.gov (United States)

    Schroth, Götz; da Mota, Maria do Socorro S.

    2013-08-01

    Tropical forest countries are struggling with the partially conflicting policy objectives of socioeconomic development, forest conservation, and safeguarding the livelihoods of local forest-dependent people. We worked with communities in the lower Tapajós region of the central Brazilian Amazon for over 10 years to understand their traditional and present land use practices, the constraints, and decision making processes imposed by their biophysical, socioeconomic, and political environment, and to facilitate development trajectories to improve the livelihoods of forest communities while conserving the forest on the farms and in the larger landscape. The work focused on riverine communities initially in the Tapajós National Forest and then in the Tapajós-Arapiuns Extractive Reserve. These communities have a century-old tradition of planting rubber agroforests which despite their abandonment during the 1990s still widely characterize the vegetation of the river banks, especially in the two protected areas where they are safe from the recent expansion of mechanized rice and soybean agriculture. The project evolved from the capacity-building of communities in techniques to increase the productivity of the rubber agroforests without breaking their low-input and low-risk logic, to the establishment of a community enterprise that allowed reserve inhabitants to reforest their own land with tree species of their choice and sell reforestation (not carbon) credits to local timber companies while retaining the ownership of the trees. By making land use practices economically more viable and ecologically more appropriate for protected areas, the project shows ways to strengthen the system of extractive and sustainable development reserves that protects millions of hectares of Amazon forest with the consent of the communities that inhabit them.

  3. Restoring State Control Over Forest Resources Through Administrative Procedures: Evidence From a Community Forestry Programme in Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Ahmad Maryudi

    2012-01-01

    Full Text Available In recent years, community forestry has emerged as a means to reform power constellations with regard to forest governance. Through community forestry, the central state promised to devolve several forest rights to local communities and encouraged them to get involved in decision making processes and the implementation of forest activities. However, experience in some countries indicates that the implementation of community forestry programmes is rarely followed by genuine power devolution to local forest users. Instead, these programmes may even serve as a means to retain or restore the central state’s control over forests. Using a case study of a community forestry programme implemented in Java, Indonesia, by a state forest company, this paper argues that the implementation of community forestry is also driven by the state’s interests to regain control over the forests. Research in eight villages in Central Java province reveals that the community forestry programmes are carefully structured according to numerous administrative procedures and estab- lish a mode of control through a bureaucratic design. ----- In den letzten Jahren hat sich community forestry als Mittel zur Reform von Machtkonstellationen in Bezug auf die Verwaltung von Wäldern herausgebildet. Der Zentralstaat versprach durch community forestry bestimmte Waldrechte an lokale Communities abzugeben und ermutigte sie, sich an Entscheidungsprozessen und der Implementierung von Forstaktivitäten zu beteiligen. Erfahrungen in einigen Ländern zeigen jedoch, dass die Implementierung von community forestry-Programmen selten mit einem tatsächlichen Machttransfer an lokale ForstnutzerInnen einhergeht, sondern diese Programme sogar als Mittel zur Rückgewinnung von zentralstaatlicher Kontrolle über Wälder dienen können. Anhand eines Fallbeispiels eines community forestry-Programms, das in Java, Indonesien, von einem staatlichen Forstunternehmen implementiert wird, argumentiere ich

  4. Bacteria diversity and microbial biomass in forest, pasture and fallow soils in the southwestern Amazon basin Diversidade de bacteria e biomassa microbiana em solos sob floresta, pastagem e capoeira no sudoeste da Amazônia

    Directory of Open Access Journals (Sweden)

    Karina Cenciani

    2009-08-01

    Full Text Available It is well-known that Amazon tropical forest soils contain high microbial biodiversity. However, anthropogenic actions of slash and burn, mainly for pasture establishment, induce profound changes in the well-balanced biogeochemical cycles. After a few years the grass yield usually declines, the pasture is abandoned and is transformed into a secondary vegetation called "capoeira" or fallow. The aim of this study was to examine how the clearing of Amazon rainforest for pasture affects: (1 the diversity of the Bacteria domain evaluated by Polymerase Chain Reaction and Denaturing Gradient Gel Electrophoresis (PCR-DGGE, (2 microbial biomass and some soil chemical properties (pH, moisture, P, K, Ca, Mg, Al, H + Al, and BS, and (3 the influence of environmental variables on the genetic structure of bacterial community. In the pasture soil, total carbon (C was between 30 to 42 % higher than in the fallow, and almost 47 % higher than in the forest soil over a year. The same pattern was observed for N. Microbial biomass in the pasture was about 38 and 26 % higher than at fallow and forest sites, respectively, in the rainy season. DGGE profiling revealed a lower number of bands per area in the dry season, but differences in the structure of bacterial communities among sites were better defined than in the wet season. The bacterial DNA fingerprints in the forest were stronger related to Al content and the Cmic:Ctot and Nmic:Ntot ratios. For pasture and fallow sites, the structure of the Bacteria domain was more associated with pH, sum of bases, moisture, total C and N and the microbial biomass. In general microbial biomass in the soils was influenced by total C and N, which were associated with the Bacteria domain, since the bacterial community is a component and active fraction of the microbial biomass. Results show that the genetic composition of bacterial communities in Amazonian soils changed along the sequence forest-pasture-fallow.Os solos da floresta

  5. Boundary layer ozone - An airborne survey above the Amazon Basin

    Science.gov (United States)

    Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.

    1988-01-01

    Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.

  6. Ocorrência do molusco asiático Corbicula fluminea (Müller, 1774 (Bivalvia, Corbiculidae no baixo rio Negro, Amazônia central Occurrence of the Asian mollusc Corbicula fluminea (Müller, 1774 (Bivalvia, Corbiculidae in the lower Rio Negro, Central Amazon Region, Brazil

    Directory of Open Access Journals (Sweden)

    Daniel Mansur Pimpão

    2008-01-01

    Full Text Available O rio Negro é um dos maiores afluentes do rio Amazonas, mas poucos moluscos foram registrados até o momento para aquele rio, representados apenas por gastrópodes. Foi registrada a presença do molusco bivalve exótico Corbicula fluminea na margem esquerda do baixo rio Negro, no lago do Tupé e no Catalão - margem direita do rio Negro, todas localidades no município de Manaus, Brasil. O registro foi realizado por meio da coleta de conchas e espécimes vivos. É o primeiro registro de C. fluminea para o estado do Amazonas e Amazônia central.The Rio Negro is one of the biggest Rio Amazonas tributaries. Few molluscs have been registered to that river yet, represented only by gastropods. It is reported the occurrence of the exotic bivalve mollusc Corbicula fluminea in left bank margin of Rio Negro, Lago do Tupé and Catalão - right bank margin of Rio Negro, all localities in the municipality of Manaus, Brazil. The species is recorded by a collection of shells and specimens alive. This is the first occurrence of C. fluminea in the Amazon State and Central Amazon.

  7. Twenty years of ecosystem response after clearcutting and slashburning in conifer forests of central British Columbia, Canada

    Science.gov (United States)

    Feller, Michael; Bradfield, Gary

    2017-01-01

    Forests are being clearcut over extensive areas of western North America, but plant community response to harvesting and slashburning under varying climatic conditions in central British Columbia, Canada is still largely unknown. Evaluation of resilience is hampered by the short history of logging, lack of long-term experiments and methodological limitations. To test the effect of clearcut logging, prescribed burning and reforestation on forest resilience, we recorded vascular plant cover repeatedly after treatment between 1981 and 2008 in 16 permanent research installations in three biogeoclimatic zones: Engelmann Spruce-Subalpine Fir, Interior Cedar-Hemlock and Sub-Boreal Spruce. We created a plant-trait dataset for the 181 recorded species to define plant functional types representing groups of plants that behave in similar ways and/or produce similar ecological outcomes. These plant functional types, along with taxonomic analysis of diagnostic and indicator species, were then used to evaluate plant community response to disturbance. Twenty years post-treatment, species diversity increased in all zones and plant abundance was greatest in the Interior Cedar-Hemlock. Cover of understory plant functional types associated with mature conifer forests increased in all zones, constituting a significant proportion (> 40%) of the vegetation community by year 20. Response patterns varied by zone and with time. Understory species diagnostic of mature forests were present in all zones by year 20, but we identified indicator species sensitive to slashburning or requiring more time for recovery, including white-flowered rhododendron (Rhododendron albiflorum) and devil's club (Oplopanax horridus). Overall, loss of compositional or functional diversity following harvest and site remediation was not detected, suggesting that montane and subalpine forests in British Columbia are resilient to this treatment. However, because these forests can be slow to recover from disturbance

  8. Carbon Emission from Forest Fires on Scots Pine Logging Sites in the Angara Region of Central Siberia

    Science.gov (United States)

    Ivanova, G. A.; Conard, S. G.; McRae, D. J.; Kukavskaya, E. A.; Bogorodskaya, A. V.; Kovaleva, N. M.

    2010-12-01

    Wildfire and large-scale forest harvesting are the two major disturbances in the Russian boreal forests. Non-recovered logged sites total about a million hectares in Siberia. Logged sites are characterized by higher fire hazard than forest sites due to the presence of generally untreated logging slash (i.e., available fuel) which dries out much more rapidly compared to understory fuels. Moreover, most logging sites can be easily accessed by local population; this increases the risk for fire ignition. Fire impacts on the overstory trees, subcanopy woody layer, and ground vegetation biomass were estimated on 14 logged and unlogged comparison sites in the Lower Angara Region in 2009-2010 as part of the NASA-funded NEESPI project, The Influence of Changing Forestry Practices on the Effects of Wildfire and on Interactions Between Fire and Changing Climate in Central Siberia. Based on calculated fuel consumption, we estimated carbon emission from fires on both logged and unlogged burned sites. Carbon emission from fires on logged sites appeared to be twice that on unlogged sites. Soil respiration decreased on both site types after fires. This reduction may partially offset fire-produced carbon emissions. Carbon emissions from fire and post-fire ecosystem damage on logged sites are expected to increase under changing climate conditions and as a result of anticipated increases in future forest harvesting in Siberia.

  9. Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture-recapture sampling

    Science.gov (United States)

    Karanth, K.Ullas; Chundawat, Raghunandan S.; Nichols, James D.; Kumar, N. Samba

    2004-01-01

    Tropical dry-deciduous forests comprise more than 45% of the tiger (Panthera tigris) habitat in India. However, in the absence of rigorously derived estimates of ecological densities of tigers in dry forests, critical baseline data for managing tiger populations are lacking. In this study tiger densities were estimated using photographic capture–recapture sampling in the dry forests of Panna Tiger Reserve in Central India. Over a 45-day survey period, 60 camera trap sites were sampled in a well-protected part of the 542-km2 reserve during 2002. A total sampling effort of 914 camera-trap-days yielded photo-captures of 11 individual tigers over 15 sampling occasions that effectively covered a 418-km2 area. The closed capture–recapture model Mh, which incorporates individual heterogeneity in capture probabilities, fitted these photographic capture history data well. The estimated capture probability/sample, p̂= 0.04, resulted in an estimated tiger population size and standard error (N̂(SÊN̂)) of 29 (9.65), and a density (D̂(SÊD̂)) of 6.94 (3.23) tigers/100 km2. The estimated tiger density matched predictions based on prey abundance. Our results suggest that, if managed appropriately, the available dry forest habitat in India has the potential to support a population size of about 9000 wild tigers.

  10. Social Networks and Adaptation to Environmental Change: The Case of Central Oregon's Fire-Prone Forest Landscape

    Science.gov (United States)

    Fischer, A.

    2012-12-01

    Social networks are the patterned interactions among individuals and organizations through which people refine their beliefs and values, negotiate meanings for things and develop behavioral intentions. The structure of social networks has bearing on how people communicate information, generate and retain knowledge, make decisions and act collectively. Thus, social network structure is important for how people perceive, shape and adapt to the environment. We investigated the relationship between social network structure and human adaptation to wildfire risk in the fire-prone forested landscape of Central Oregon. We conducted descriptive and non-parametric social network analysis on data gathered through interviews to 1) characterize the structure of the network of organizations involved in forest and wildfire issues and 2) determine whether network structure is associated with organizations' beliefs, values and behaviors regarding fire and forest management. Preliminary findings indicate that fire protection and forest-related organizations do not frequently communicate or cooperate, suggesting that opportunities for joint problem-solving, innovation and collective action are limited. Preliminary findings also suggest that organizations with diverse partners are more likely to hold adaptive beliefs about wildfire and work cooperatively. We discuss the implications of social network structure for adaptation to changing environmental conditions such as wildfire risk.

  11. Perception of local inhabitants regarding the socioeconomic impact of tourism focused on provisioning wild dolphins in Novo Airao, Central Amazon, Brazil

    Directory of Open Access Journals (Sweden)

    LUIZ C.P.S. ALVES

    2013-11-01

    Full Text Available Botos (Inia geoffrensis are currently provisioned for use in tourist attractions in five sites in the Brazilian Amazon. Despite the known negative effects associated with human-wild dolphin interactions, this activity has been regulated and licensed in the Anavilhanas National Park in Novo Airão, Amazonas State, Brazil. We present an updated evaluation of the perception of the local community concerning the possible socioeconomic impacts of this tourism in Novo Airão. In April 2011, 45 interviews were conducted with inhabitants. A small segment of Novo Airão perceives currently itself as being economically dependent on the botos feeding tourism. Despite that, the economic benefits of this controversial activity apparently are not shared among most inhabitants, and botos feeding tourism is perceived as generating diverse negative effects. We conclude that if the activity was banned or modified into a less impacting tourist activity, this action would probably not majorly affect the lives of the general population.

  12. Caracterização do uso de malhadeiras pela frota pesqueira que desembarca em Manaus e Manacapuru, Amazonas Characterization of gillnet fisheries landed in Manaus and Manacapuru, Central Amazon

    Directory of Open Access Journals (Sweden)

    Valdelira Lia Araújo Fernandes

    2009-01-01

    Full Text Available A malhadeira é um apetrecho de pesca frequentemente utilizado na pesca regional. O presente estudo visa verificar características das malhadeiras utilizadas nos diversos subsistemas da Amazônia Central, seu uso e a aplicação de normas legais relacionadas. Os dados foram obtidos por meio de entrevistas com pescadores em Manaus entre 1994 e 2004 e em Manacapuru entre 2001 e 2004. Os resultados indicaram que o apetrecho responde em média a 14% da produção pesqueira de Manaus, com tendência a diminuição e a 24,5% de Manacapuru, com estabilidade interanual. As freqüências modais recentes do tamanho de malha estiveram entre 50-60 mm no desembarque em Manaus, mas em Manacapuru foram mais diversas, entre 20 mm e 90 mm. A moda do comprimento das redes foi de 100 m em ambos portos, mas se em Manaus correspondem a cerca de 90% das registradas, em Manacapuru não são nem 50% do total. Quanto à freqüência de ocorrência de uso da malhadeira nos subsistemas da Amazônia Central que desembarcaram em Manaus, destaca-se o rio Purus (47,8%, enquanto que para Manacapuru predominou explotação no Baixo Solimões (94,3%. A composição das capturas variou entre os anos analisados, destacando cinco principais pescados que compõem mais de 70% das capturas: tambaqui, aruanã, tucunaré, curimatá, pirapitinga. Com relação às restrições no tamanho de malha, a maioria dos apetrechos têm tamanho de malha passível de uso ilegal, similarmente aos comprimentos das mesmas. Concluiu-se que há grande diversidade de formas de uso do apetrecho, sendo necessário gerar normas legais mais efetivas e compatíveis com a realidade pesqueira, cultural e sócio-econômica da Amazônia.The gillnet is frequently used in Amazon commercial and artisanal fishing. The present study aims to verify characteristics of the gill-nets of gillnets found in various Central Amazon subsystems, their use, and compliance with related legal norms. Daily Interviews were made from

  13. Commons management and ecotourism: Ethnographic evidence from the Amazon

    NARCIS (Netherlands)

    Stronza, Amanda Lee

    2010-01-01

    TThe paper evaluates the relationship between ecotourism and commons management. Social and economic impacts of ecotourism in an indigenous village in the Peruvian Amazon are considered in relation to opportunities for collective action to manage common pool resources, including wildlife, forests, a

  14. Culicoides latreille (Diptera, Ceratopogonidae in brazilian amazon. V: efficiency of traps and baits and vertical stratification in the forest reserve adolpho ducke

    Directory of Open Access Journals (Sweden)

    Rosana S. Veras

    1998-01-01

    Full Text Available Monthly catches were carried out during five days/month in the Adolpho Ducke Forest Reserve (Manaus, Amazonas, from February 1990 to January 1991 in order to assess the sandfly fauna of that region, evaluate the atractivity of these insects with regard to different kinds of traps and baits and to know vertical stratification of these insects. The traps and baits used in catches were: Disney traps with baits: Didelphis sp., Gallus sp. and Mesocricetus sp.; CDC light traps at three vertical levels (1m, 5m and 10m; Suspended trap (5m and Malaise trap (1m and catches on bases of tree-trunks. The most efficient type was the CDC. Malaise and Suspended did not collect specimens of Culicoides Latreille, 1809. The Disney traps with baits only attracted specimens of C. fusipalpis Wirth & Blanton, 1973. In vertical stratification, the CDC trap placed at 1m caught 898 specimens of nine species; at 5m 895 specimens were collected which belonged to 13 species; and at 10m 224 specimens of 14 species were collected. Two thousand and forty-six specimens of Culicoides were captured, being about 5,66% males and 94,34% females, which belonged to 17 different species; the most frequent were C. fusipalpis (43,05%, followed by C. pseudodiabolicus Fox, 1946 (32,79%, C. hylas Macfie, 1940 (12,31% and C. foxi Ortiz, 1950 (3,71%. The other 13 species totalized 8,15%.

  15. ASSESSMENT OF MANGROVE FOREST DEGRADATION THROUGH CANOPY FRACTIONAL COVER IN KARIMUNJAWA ISLAND, CENTRAL JAVA, INDONESIA

    Directory of Open Access Journals (Sweden)

    Muhammad Kamal

    2016-10-01

    Full Text Available The Karimunjawa Islands mangrove forest has been subjected to various direct and indirect human disturbances in the recent years. If not properly managed, this disturbance will lead to the degradation of mangrove habitat health. Assessing forest canopy fractional cover (fc using remote sensing data is one way of measuring mangrove forest degradation. This study aims to (1 estimate the forest canopy fc using a semi-empirical method, (2 assess the accuracy of the fc estimation and (3 create mangrove forest degradation from the canopy fc results. A sample set of in-situ fc was collected using the hemispherical camera for model development and accuracy assessment purposes. We developed semi-empirical relationship models between pixel values of ALOS AVNIR-2 image (10m pixel size and field fc, using Enhanced Vegetation Index (EVI as a proxy of the image spectral response. The results show that the EVI provides reasonable estimation accuracy of mangrove canopy fc in Karimunjawa Island with the values ranged from 0.17 to 0.96 (n = 69. The low fc values correspond to vegetation opening and gaps caused by human activities or mangrove dieback. The high fc values correspond to the healthy and dense mangrove stands, especially the Rhizophora sp formation at the seafront. The results of this research justify the use of simple canopy fractional cover model for assessing the mangrove forest degradation status in the study area. Further research is needed to test the applicability of this approach at different sites.

  16. Richness of ferns and lycophytes in a gallery forest in the central region of Mato Grosso do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Rodrigo Lehn

    2013-03-01

    Full Text Available This paper presents the floristic survey of ferns and lycophytes occurring in a gallery forest in the central region of Mato Grosso do Sul, Brazil. In the study area, 29 species and 2 varieties were recorded. Dryopteridaceae and Pteridaceae were the richest families (8 and 5 species, respectively and Elaphoglossum and Blechnum were the richest genera (3 species each one. Preferably, the listed species occur within the forest (68%, they occupy the terrestrial substrate (77.4%, and they are hemicryptophyte (77.4% and rosulate (64.5%. We observed four species still not mentioned for Mato Grosso do Sul, which are Blechnum lanceola L., Elaphoglossum pachydermum (Fée T. Moore, Lindsaea lancea (L. Bedd var lancea, and Mickelia nicotianifolia (Sw. R. C. Moran et al., which has its southern limit of distribution in Brazil, in the study area.

  17. Changes in the carbon cycle of Amazon ecosystems during the 2010 drought

    Energy Technology Data Exchange (ETDEWEB)

    Potter, Christopher [NASA Ames Research Center, Moffett Field, CA (United States); Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa [California State University Monterey Bay, Seaside, CA (United States); Castilla-Rubio, Juan Carlos, E-mail: chris.potter@nasa.gov [Planetary Skin Institute, Silicon Valley, CA (United States)

    2011-07-15

    Satellite remote sensing was combined with the NASA-CASA (Carnegie Ames Stanford Approach) carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO{sub 2} uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon river basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO{sub 2} to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to those for forests outside the main river floodplains.

  18. Changes in the Carbon Cycle of Amazon Ecosystems During the 2010 Drought

    Science.gov (United States)

    Potter, Christophera; Klooster, Steven; Hiatt, Cyrus; Genovese, Vanessa; Castilla-Rubino, Juan Carlos

    2011-01-01

    Satellite remote sensing was combined with the NASA-CASA carbon cycle simulation model to evaluate the impact of the 2010 drought (July through September) throughout tropical South America. Results indicated that net primary production (NPP) in Amazon forest areas declined by an average of 7% in 2010 compared to 2008. This represented a loss of vegetation CO2 uptake and potential Amazon rainforest growth of nearly 0.5 Pg C in 2010. The largest overall decline in ecosystem carbon gains by land cover type was predicted for closed broadleaf forest areas of the Amazon River basin, including a large fraction of regularly flooded forest areas. Model results support the hypothesis that soil and dead wood carbon decomposition fluxes of CO2 to the atmosphere were elevated during the drought period of 2010 in periodically flooded forest areas, compared to forests outside the main river floodplains.

  19. Fitossociologia de uma Floresta Ombrófila Densa na Amazônia Setentrional, Roraima, Brasil Phytosociology of a dense ombrophilous forest in the northern Amazon, Roraima, Brazil

    Directory of Open Access Journals (Sweden)

    Tiago Monteiro Condé

    2013-09-01

    ha-1 and climax species (113 trees ha-1. However, species of secondary group had the highest species richness (95, followed by the climax (44 and the pioneer (26. The Shannon diversity index (H' = 3.27 and the value of Pielou equability (J = 0.64 were lower than those obtained in other floristic inventories in the Amazon, because of the high occurrence of Pentaclethra macroloba. The importance values (VI were higher for Pentaclethra macroloba (52.1, Eschweilera bracteosa (23.7 and Pouteria caimito (8.1. The importance values of these three species alone accounted for 28% of the total VI across species. Most of the individuals (71.3% = 374 trees ha-1 were recorded in the middle stratum (12.4 m ≤ height < 26.5 m of forest. The forest community can be considered well-structured, mature and diverse, and so it is in good state of conservation.

  20. New international long-term ecological research on air pollution effects on the Carpathian Mountain forests, Central Europe.

    Science.gov (United States)

    Bytnerowicz, Andrzej; Badea, Ovidiu; Barbu, Ion; Fleischer, Peter; Fraczek, Witold; Gancz, Vladimir; Godzik, Barbara; Grodzińska, Krystyna; Grodzki, Wojciech; Karnosky, David; Koren, Milan; Krywult, Marek; Krzan, Zbigniew; Longauer, Roman; Mankovska, Blanka; Manning, William J; McManus, Michael; Musselman, Robert C; Novotny, Julius; Popescu, Flaviu; Postelnicu, Daniela; Prus-Głowacki, Wiesław; Skawiński, Paweł; Skiba, Stefan; Szaro, Robert; Tamas, Stefan; Vasile, Cristian

    2003-06-01

    An international cooperative project on distribution of ozone in the Carpathian Mountains, Central Europe was conducted from 1997 to 1999. Results of that project indicated that in large parts of the Carpathian Mountains, concentrations of ozone were elevated and potentially phytotoxic to forest vegetation. That study led to the establishment of new long-term studies on ecological changes in forests and other ecosystems caused by air pollution in the Retezat Mountains, Southern Carpathians, Romania and in the Tatra Mountains, Western Carpathians on the Polish-Slovak border. Both of these important mountain ranges have the status of national parks and are Man & the Biosphere Reserves. In the Retezat Mountains, the primary research objective was to evaluate how air pollution may affect forest health and biodiversity. The main research objective in the Tatra Mountains was to evaluate responses of natural and managed Norway spruce forests to air pollution and other stresses. Ambient concentrations of ozone (O(3)), sulfur dioxide (SO(2)), nitrogen oxides (NO(x)) as well as forest health and biodiversity changes were monitored on densely distributed research sites. Initial monitoring of pollutants indicated low levels of O(3), SO(2), and NO(x) in the Retezat Mountains, while elevated levels of O(3) and high deposition of atmospheric sulfur (S) and nitrogen (N) have characterized the Tatra Mountains. In the Retezat Mountains, air pollution seems to have little effect on forest health; however, there was concern that over a long time, even low levels of pollution may affect biodiversity of this important ecosystem. In contrast, severe decline of Norway spruce has been observed in the Tatra Mountains. Although bark beetle seems to be the immediate cause of that decline, long-term elevated levels of atmospheric N and S depositions and elevated O(3) could predispose trees to insect attacks and other stresses. European and US scientists studied pollution deposition, soil and

  1. A Slippery Slope: Children's Perceptions of Their Role in Environmental Preservation in the Peruvian Amazon

    Science.gov (United States)

    Galeano, Rebecca

    2013-01-01

    Despite international attention and attempts to preserve the environmental diversity of the Amazon, it is an