WorldWideScience

Sample records for center-of-mass system

  1. Approximated center-of-mass motion for systems of interacting particles with space- and velocity-dependent friction and anharmonic potential

    CERN Document Server

    Olivetti, Alain; Kaiser, Robin

    2014-01-01

    We study the center-of-mass motion in systems of trapped interacting particles with space- and velocity-dependent friction and anharmonic traps. Our approach, based on a dynamical ansatz assuming a fixed density profile, allows us to obtain information at once for a wide range of binary interactions and interaction strengths, at linear and nonlinear levels. Our findings are first tested on different simple models by comparison with direct numerical simulations. Then, we apply the method to characterize the motion of the center of mass of a magneto-optical trap and its dependence on the number of trapped atoms. Our predictions are compared with experiments performed on a large Rb85 magneto-optical trap.

  2. Statistical and evaporation models for the neutron emission energy spectrum in the center-of-mass system from fission fragments

    International Nuclear Information System (INIS)

    The neutron emission energy spectra in the CMS (center-of-mass) frame from two compound nuclei produced by fission are studied. The neutron spectra calculated with the Hauser–Feshbach statistical model are compared with the evaporation theory, and the definition of the temperature is revisited. Using the Monte Carlo technique we average the CMS neutron spectra from many fission fragments to construct the representative CMS spectrum from both the light and heavy fragments. The CMS spectra for each fission fragment pair are also converted into the laboratory frame to calculate the total prompt fission neutron spectrum that can be observed experimentally. This is compared to measured laboratory data for thermal neutron induced fission on 235U. We show that the Hauser–Feshbach calculation gives a different spectrum shape than the Madland–Nix model calculation

  3. Suppressing the spurious states of the center of mass

    International Nuclear Information System (INIS)

    Following Dirac's ideas concerning the quantization of constrained systems, we suggest to replace the free center of mass Hamiltonian HCM by another operator which commutes with all the elements of the algebra generated via the commutation relations by HCM and the constraints which fix the center of mass position. We show that the new Hamiltonian is a multiple of the identity operator and, as a result, its unique effect is to raise the internal energy levels by a constant amount. (authors)

  4. Automated Determination of a Package's Center of Mass

    Directory of Open Access Journals (Sweden)

    Ayaz Hemani

    2010-01-01

    Full Text Available In order to address the issue of increased efficiency and better planning for parcel shipments, an automated computer program was developed in Microsoft Excel that calculates center of mass and moments of mass with greater speed and reliability than currently implemented systems. This simple program requires only a variable density function and limits of integration for a given object as input within the spreadsheet system. Once the required input has been provided, a series of chain calculations, with the help of a Visual Basic for Applications (VBA script, is able to process the input, which is done through integration and a Riemann sum. Furthermore, the foundation of the program can also be used for calculating other physical quantities of interest such as the moment of inertia or surface area of an object.

  5. Symmetry comparison between sacrum and center of mass during walking.

    Science.gov (United States)

    Navvab Motlagh, Fateme; Arshi, Ahmed Reza

    2016-07-01

    Sacrum motion is used extensively in clinical research to represent movement of the entire body by replacing the center of mass. The primary objective of this article was to investigate the effect of this replacement on symmetry determination. The secondary objective was to assess the correlation between the symmetries of trajectories of center of mass and sacrum, and that of spatiotemporal parameters. Three-dimensional trajectories obtained from 37 markers placed on anatomical landmarks of 15 healthy subjects were recorded while walking at three speeds on the treadmill. Trajectory of center of mass was determined using segmental analysis method. The results indicated that two symmetries, one determined using sacrum marker and the other using segmental analysis method, were different and this difference was more pronounced in anterior-posterior direction. In other words, harmonic analysis of sacrum and center of mass trajectories revealed different results. Furthermore, low-to-moderate correlations were observed between spatiotemporal parameters symmetry and symmetries obtained from both center of mass and sacrum. In conclusion, the results indicated that it may not be analytically acceptable to substitute sacrum for center of mass in symmetry determination. PMID:27272201

  6. The effect of center-of-mass motion on photon statistics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang; Zhang, Jun; Wu, Shao-xiong; Yu, Chang-shui, E-mail: quaninformation@sina.com

    2015-10-15

    We analyze the photon statistics of a weakly driven cavity quantum electrodynamics system and discuss the effects of photon blockade and photon-induced tunneling by effectively utilizing instead of avoiding the center-of-mass motion of a two-level atom trapped in the cavity. With the resonant interaction between atom, photon and phonon, it is shown that the bunching and anti-bunching of photons can occur with properly driving frequency. Our study shows the influence of the imperfect cooling of atom on the blockade and provides an attempt to take advantage of the center-of-mass motion.

  7. Correction of Relativistic Center-of-Mass Vector on Electric Polarizability of Pion Meson

    Institute of Scientific and Technical Information of China (English)

    DONG Yu-Bing

    2005-01-01

    We estimate the correction of relativistic center-of-mass vector on electric polarizability of an equal-mass quark-antiquark system numerically. Effect on the system confined by different interactive potentials is analysed. A great improvement for the electric polarizability of pion meson is obtained.

  8. Locating center of mass of earth and geostationary satellites

    International Nuclear Information System (INIS)

    CoM (Center of Mass) of earth is a very important factor which can play a major role in satellite communication and related earth sciences. The CoM of earth is assumed to be around equator due to geometrical shape of earth. However, no technical method is available in the literature which can justify the presence of CoM of earth around equator. Therefore, in this research work the CoM of earth has been located theoretically with the help of mathematical relations. It also presents the mathematical justification against the assumption that equator is the CoM of earth. The effect of calculated CoM of earth on geostationary satellites has also been discussed. The CoM of earth has been found mathematically by using land to ocean ratios and the data is collected from the Google earth software. The final results are accurate with an approximate error of 1%. (author)

  9. Energy, momentum, and center of mass in general relativity

    CERN Document Server

    Wang, Mu-Tao

    2016-01-01

    These notions in the title are of fundamental importance in any branch of physics. However, there have been great difficulties in finding physically acceptable definitions of them in general relativity since Einstein's time. I shall explain these difficulties and progresses that have been made. In particular, I shall introduce new definitions of center of mass and angular momentum at both the quasi-local and total levels, which are derived from first principles in general relativity and by the method of geometric analysis. With these new definitions, the classical formula p=mv is shown to be consistent with Einstein's field equation for the first time. This paper is based on joint work [14][15] with Po-Ning Chen and Shing-Tung Yau.

  10. Estimation of Center of Mass Trajectory using Wearable Sensors during Golf Swing.

    Science.gov (United States)

    Najafi, Bijan; Lee-Eng, Jacqueline; Wrobel, James S; Goebel, Ruben

    2015-06-01

    This study suggests a wearable sensor technology to estimate center of mass (CoM) trajectory during a golf swing. Groups of 3, 4, and 18 participants were recruited, respectively, for the purpose of three validation studies. Study 1 examined the accuracy of the system to estimate a 3D body segment angle compared to a camera-based motion analyzer (Vicon®). Study 2 assessed the accuracy of three simplified CoM trajectory models. Finally, Study 3 assessed the accuracy of the proposed CoM model during multiple golf swings. A relatively high agreement was observed between wearable sensors and the reference (Vicon®) for angle measurement (r > 0.99, random error 0.93 v. r = 0.52, respectively). On the same note, the proposed two-link model estimated CoM trajectory during golf swing with relatively good accuracy (r > 0.9, A-P random error golf swing)This study suggests that two-link model of human body provides optimum tradeoff between accuracy and minimum number of sensor module for estimation of center of mass trajectory in particular during fast movements.Wearable technologies based on inertial sensors are viable option for assessing dynamic postural control in complex task outside of gait laboratory and constraints of cameras, surface, and base of support. PMID:25983585

  11. Taking Einstein seriously: Relativistic coupling of internal and center of mass dynamics

    CERN Document Server

    Krause, Dennis E

    2016-01-01

    Einstein's famous equation $E_{\\rm rest}=mc^2$ for the rest energy of a system with mass $m$ requires that the internal energy of the system be included in $m$. Pursuing this idea using Lagrangian and Hamiltonian dynamics yields a relativistic coupling between the center of mass motion and the internal dynamics of the system. Here we explore the consequences of this coupling, first classically, where we find that the dynamics of the system is time dilated when moving relative to another inertial frame. We then apply the dynamics to a quantum 2-level atom bound in a 1-dimensional infinite potential well, and show that the coupling produces collapses and revivals in quantum interference.

  12. Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES

    Science.gov (United States)

    Otsubo, Toshimichi; Sherwood, Robert A.; Appleby, Graham M.; Neubert, Reinhart

    2015-04-01

    To realize the full potential of satellite laser ranging for accurate geodesy, it is crucial that all systematic effects in the measurements are taken into account. This paper derives new values for the so-called center-of-mass corrections for three geodetic satellites that are regularly tracked and used in geodetic studies. Optical responses of the twin satellites, Starlette and Stella, and the LARES satellite are retrieved from kHz single-photon laser-ranging data observed at Herstmonceux and Potsdam. The detection timing inside single-photon systems, C-SPAD-based systems and photomultiplier-based systems is numerically simulated, and the center-of-mass corrections are derived to be in the range of 74 to 82 mm for Starlette and Stella, and 127-135 mm for LARES. The system dependence is below 1 cm, but should not be ignored for millimeter accuracy. The longtime standard center-of-mass correction 75 mm of Starlette and Stella is revealed to be too small for the current laser-ranging stations on average, which is considered to have resulted in a non-negligible systematic error in geodetic products.

  13. An alternative well founded way to treat the center-of-mass correlations: proposition of a local center-of-mass correlations potential

    CERN Document Server

    Messud, Jeremie

    2012-01-01

    The recently developped "internal" Density Functional Theory provides an existence theorem for a local potential that contains the center-of-mass correlations effects. The knowledge of the corresponding energy functional would provide a much cheaper way than projection techniques to treat those correlations. The aim of this article is to construct such a functional. We propose a well founded method, suitable for Fermions as well as for Bosons, which does not necessit to include any free parameter.

  14. Estimation of Center of Mass Trajectory using Wearable Sensors during Golf Swing

    Directory of Open Access Journals (Sweden)

    Bijan Najafi, Jacqueline Lee-Eng, James S. Wrobel, Ruben Goebel

    2015-06-01

    Full Text Available This study suggests a wearable sensor technology to estimate center of mass (CoM trajectory during a golf swing. Groups of 3, 4, and 18 participants were recruited, respectively, for the purpose of three validation studies. Study 1 examined the accuracy of the system to estimate a 3D body segment angle compared to a camera-based motion analyzer (Vicon®. Study 2 assessed the accuracy of three simplified CoM trajectory models. Finally, Study 3 assessed the accuracy of the proposed CoM model during multiple golf swings. A relatively high agreement was observed between wearable sensors and the reference (Vicon® for angle measurement (r > 0.99, random error 0.93 v. r = 0.52, respectively. On the same note, the proposed two-link model estimated CoM trajectory during golf swing with relatively good accuracy (r > 0.9, A-P random error <1cm (7.7% and <2cm (10.4% for M-L. The proposed system appears to accurately quantify the kinematics of CoM trajectory as a surrogate of dynamic postural control during an athlete’s movement and its portability, makes it feasible to fit the competitive environment without restricting surface type.

  15. Behavioral effect of knee joint motion on body's center of mass during human quiet standing.

    Science.gov (United States)

    Yamamoto, Akio; Sasagawa, Shun; Oba, Naoko; Nakazawa, Kimitaka

    2015-01-01

    The balance control mechanism during upright standing has often been investigated using single- or double-link inverted pendulum models, involving the ankle joint only or both the ankle and hip joints, respectively. Several studies, however, have reported that knee joint motion during quiet standing cannot be ignored. This study aimed to investigate the degree to which knee joint motion contributes to the center of mass (COM) kinematics during quiet standing. Eight healthy adults were asked to stand quietly for 30s on a force platform. Angular displacements and accelerations of the ankle, knee, and hip joints were calculated from kinematic data obtained by a motion capture system. We found that the amplitude of the angular acceleration was smallest in the ankle joint and largest in the hip joint (ankle < knee < hip). These angular accelerations were then substituted into three biomechanical models with or without the knee joint to estimate COM acceleration in the anterior-posterior direction. Although the "without-knee" models greatly overestimated the COM acceleration, the COM acceleration estimated by the "with-knee" model was similar to the actual acceleration obtained from force platform measurement. These results indicate substantial effects of knee joint motion on the COM kinematics during quiet standing. We suggest that investigations based on the multi-joint model, including the knee joint, are required to reveal the physiologically plausible balance control mechanism implemented by the central nervous system. PMID:25248799

  16. Macroscopic Center-of-mass Cooling using Whispering Gallery Mode Resonances

    CERN Document Server

    Li, Ying Lia; Barker, P F

    2015-01-01

    We demonstrate simultaneous center-of-mass cooling of two coupled oscillators, consisting of a microsphere-cantilever and a tapered optical fiber. Excitation of a whispering gallery mode (WGM) of the microsphere, via the evanescent field of the taper, provides a transduction signal that continuously monitors the relative motion between these two microgram objects with a sensitivity of 3\\,pm. The cavity enhanced optical dipole force is used to provide feedback damping on the motion of the micron-diameter taper, whereas a piezo stack is used to damp the motion of the much larger (up to $ 180\\,\\mu$m in diameter), heavier (up to $1.5\\times 10^{-7}\\,$kg) and stiffer microsphere-cantilever. In each feedback scheme multiple mechanical modes of each oscillator can be cooled, and mode temperatures below 10\\,K are reached for the dominant mode, consistent with limits determined by the measurement noise of our system. This indicates stabilization on the $10^{-12}$ m level and is the first demonstration of using WGM reso...

  17. Center of Mass Estimation for a Spinning Spacecraft Using Doppler Shift of the GPS Carrier Frequency

    Science.gov (United States)

    Sedlak, Joseph E.

    2016-01-01

    A sequential filter is presented for estimating the center of mass (CM) of a spinning spacecraft using Doppler shift data from a set of onboard Global Positioning System (GPS) receivers. The advantage of the proposed method is that it is passive and can be run continuously in the background without using commanded thruster firings to excite spacecraft dynamical motion for observability. The NASA Magnetospheric Multiscale (MMS) mission is used as a test case for the CM estimator. The four MMS spacecraft carry star cameras for accurate attitude and spin rate estimation. The angle between the spacecraft nominal spin axis (for MMS this is the geometric body Z-axis) and the major principal axis of inertia is called the coning angle. The transverse components of the estimated rate provide a direct measure of the coning angle. The coning angle has been seen to shift slightly after every orbit and attitude maneuver. This change is attributed to a small asymmetry in the fuel distribution that changes with each burn. This paper shows a correlation between the apparent mass asymmetry deduced from the variations in the coning angle and the CM estimates made using the GPS Doppler data. The consistency between the changes in the coning angle and the CM provides validation of the proposed GPS Doppler method for estimation of the CM on spinning spacecraft.

  18. Interacting electrons in a magnetic field in a center-of-mass free basis

    OpenAIRE

    Kramer, Peter; Kramer, Tobias

    2014-01-01

    We present an extension of the spin-adapted configuration-interaction method for the computation of four electrons in a quasi two-dimensional quantum dot. By a group-theoretical decomposition of the basis set and working with relative and center-of-mass coordinates we obtain an analytical identification of all spurious center-of-mass states of the Coulomb-interacting electrons. We find a substantial reduction in the basis set used for numerical computations. At the same time we increase the a...

  19. Quantum-State Engineering of Multiple Trapped Ions for Center-of-Mass Mode

    Institute of Scientific and Technical Information of China (English)

    ZENG Hao-Sheng; KUANG Le-Man; ZHU Xi-Wen; GAO Ke-Lin

    2001-01-01

    We propose a scheme to generate a superposition of coherent states with arbitrary coeffcients on a line in phase space for the center-of-mass vibrational mode of N ions by means of isolating all other spectator vibrational modes from the center-of-mass mode. It can be viewed as the generalization of previous methods for preparing motional states of one ion. For a large number of ions, only one cyclic operation enables one to generate such a superposition of many coherent states.``

  20. Center-of-mass corrections in the S+V potential model

    International Nuclear Information System (INIS)

    Center-of-mass corrections to the mass spectrum and static properties of low-lying S-wave baryons and mesons are discussed in the context of a relativistic, independent quark model, based on a Dirac equation, with equally mixed scalar (S) and vector (V) confining potential. (author)

  1. Kinematics of the Hip and Body Center of Mass in Front Crawl

    Science.gov (United States)

    Fernandes, Ricardo J.; Ribeiro, João; Figueiredo, Pedro; Seifert, Ludovic; Vilas-Boas, João Paulo

    2012-01-01

    The kinematic profiles of the hip and center of mass in front crawl swimming were compared to quantify the error of using a fixed body point to assess intracyclic velocity variations at moderate intensity exercise. The practical goal was to provide a useful tool, easy and fast to assess, and to use as feedback, for assessing swimming efficiency. Sixteen swimmers performed an intermittent incremental protocol that allowed assessing the individual anaerobic threshold velocity. One complete stroke cycle was analysed at the step intensity corresponding to each swimmer’s anaerobic threshold. The subjects were videotaped in the sagittal plane using a double camera set-up for two-dimensional kinematical analyses. The hip and the center of mass presented similar mean velocity and displacement values, being highly related to both parameters. However, the hip reflects the center of mass forward velocity and horizontal displacement with 7.54% and 3.24% associated error, respectively. Differences between hip and center of mass were observed for intracyclic velocity variations (0.19±0.05 and 0.25±0.08, respectively, for a p<0.001), and the negative mean error value found (−0.06) evidenced a tendency of the hip to overestimate the center of mass velocity variation. It is possible to conclude that the hips forward movements might provide a good estimate of the swimmer’s horizontal velocity and displacement that is relevant for diagnostic purposes, especially to assess swimming efficiency through the intracyclic velocity variations. Nevertheless, the hip point error magnitude should be taken into consideration in data interpretation. PMID:23486784

  2. Damping of electron center-of-mass oscillation in ultracold plasmas

    Science.gov (United States)

    Chen, Wei-Ting; Witte, Craig; Roberts, Jacob L.

    2016-05-01

    Applying a short electric field pulse to an ultracold plasma induces an electron plasma oscillation. This manifests itself as an oscillation of the electron center of mass around the ion center of mass in the ultracold plasma. In general, the oscillation can damp due to either collisionless or collisional mechanisms, or a combination of the both. To investigate the nature of oscillation damping in ultracold plasmas, we developed a molecular dynamics model of the ultracold plasma electrons. Through this model, we found that depending on the neutrality of the ultracold plasma and the size of an applied DC electric field, there are some parameter ranges where the damping is primarily collisional and some primarily collisionless. We conducted experiments to compare the measured damping rate with theory predictions and found them to be in good agreement. Extension of our measurements to different parameter ranges should enable studies for strong-coupling influence on electron-ion collision rates.

  3. STRUCTURE TENSOR IMAGE FILTERING USING RIEMANNIAN L1 AND L∞ CENTER-OF-MASS

    Directory of Open Access Journals (Sweden)

    Jesus Angulo

    2014-06-01

    Full Text Available Structure tensor images are obtained by a Gaussian smoothing of the dyadic product of gradient image. These images give at each pixel a n×n symmetric positive definite matrix SPD(n, representing the local orientation and the edge information. Processing such images requires appropriate algorithms working on the Riemannian manifold on the SPD(n matrices. This contribution deals with structure tensor image filtering based on Lp geometric averaging. In particular, L1 center-of-mass (Riemannian median or Fermat-Weber point and L∞ center-of-mass (Riemannian circumcenter can be obtained for structure tensors using recently proposed algorithms. Our contribution in this paper is to study the interest of L1 and L∞ Riemannian estimators for structure tensor image processing. In particular, we compare both for two image analysis tasks: (i structure tensor image denoising; (ii anomaly detection in structure tensor images.

  4. Foot Bone in Vivo: Its Center of Mass and Centroid of Shape

    CERN Document Server

    Fan, Yifang; Fan, Yubo; Lin, Zhiyu; Lv, Changsheng

    2010-01-01

    This paper studies foot bone geometrical shape and its mass distribution and establishes an assessment method of bone strength. Using spiral CT scanning, with an accuracy of sub-millimeter, we analyze the data of 384 pieces of foot bones in vivo and investigate the relationship between the bone's external shape and internal structure. This analysis is explored on the bases of the bone's center of mass and its centroid of shape. We observe the phenomenon of superposition of center of mass and centroid of shape fairly precisely, indicating a possible appearance of biomechanical organism. We investigate two aspects of the geometrical shape, (i) distance between compact bone's centroid of shape and that of the bone and (ii) the mean radius of the same density bone issue relative to the bone's centroid of shape. These quantities are used to interpret the influence of different physical exercises imposed on bone strength, thereby contributing to an alternate assessment technique to bone strength.

  5. Center of mass correction to an error-prone undergraduate centripetal force experiment

    Science.gov (United States)

    Ronhovde, Peter; Sirochman, Rudy

    2003-02-01

    In this undergraduate laboratory experiment we measure the centripetal force acting on a bob in uniform circular motion. As the experiment was originally designed, it consistently yielded large errors due to a subtle twist of the bob as the mass was increased incrementally. This error is due to the fact that the center of mass changes relative position as the mass is incremented; therefore, the spring that provides the centripetal force for the apparatus causes an unintended torque on the bob. A solution to the problem consists of positioning the incremental masses so that the center of mass does not change position. This simple correction provides a useful lesson on redesigning an undergraduate laboratory experiment to obtain better agreement with theory.

  6. Center-of-mass motion effects in static properties of baryons

    International Nuclear Information System (INIS)

    The center-of-mass motion effects in the statc properties of baryons (the Gsub(A)/Gsub(V) value, the proton magnetic moment and rms radius, and Asup((1)) and Ssup((2)) constants of the nonleptonic decays of baryons) are considered for some kinds of the potentials in the mean-field approximation. It is pointed out the potential form is rather essential for the values of the rms radius and Asup((1)) and Asup((2)) constants

  7. Macroscopic Center-of-mass Cooling using Whispering Gallery Mode Resonances

    OpenAIRE

    Li, Ying Lia; Millen, James; Barker, P. F.

    2015-01-01

    We demonstrate simultaneous center-of-mass cooling of two coupled oscillators, consisting of a microsphere-cantilever and a tapered optical fiber. Excitation of a whispering gallery mode (WGM) of the microsphere, via the evanescent field of the taper, provides a transduction signal that continuously monitors the relative motion between these two microgram objects with a sensitivity of 3\\,pm. The cavity enhanced optical dipole force is used to provide feedback damping on the motion of the micr...

  8. Fractal pattern growth simulation in electrodeposition and study of the shifting of center of mass

    International Nuclear Information System (INIS)

    We presented simulation of fractal pattern in electrodeposition (Diffusion limited aggregation) using concept of off lattice walk. It is seen that the growth patterns are based on a parameter called 'bias'. This parameter 'bias' controls the growth of patterns similar to that of electric field in electrodeposition technique. In present study the fractal patterns are grown for different values of 'bias'. Dendritic patterns grown at lower value of 'bias' comprises open structure and show limited branching. As the bias is increased the growth tends to be dense and show more crowded branching. Box counting was implemented to calculate fractal dimension. The structural and textural complexities and are compared with the experimental observations. It was also noted that in the evolution of DLA patterns, the center of mass of the growth is shifted slightly. We tracked the position of the center of mass of simulated electro deposits under different electric field conditions. The center of mass exhibit random walk like patterns and it wanders around the origin or the starting point of the growth.

  9. Fractal pattern growth simulation in electrodeposition and study of the shifting of center of mass

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, Yusuf H. [Shivaji Arts, Commerce and Science College, Kannad 431103 (India)], E-mail: yusufshaikh123@yahoo.com; Khan, A.R. [Dr. Rafiq Zakaria Centre for Higher Learning, Dr. Rafiq Zakaria marg, Rauza Bagh, Aurangabad 431001 (India); Pathan, J.M. [Dr. Rafiq Zakaria Campus, Dr. Rafiq Zakaria marg, Rauza Bagh, Aurangabad 431001 (India); Patil, Aruna [Viveakanand College, Aurangabad 431001 (India); Behere, S.H. [Departments of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004 (India)

    2009-12-15

    We presented simulation of fractal pattern in electrodeposition (Diffusion limited aggregation) using concept of off lattice walk. It is seen that the growth patterns are based on a parameter called 'bias'. This parameter 'bias' controls the growth of patterns similar to that of electric field in electrodeposition technique. In present study the fractal patterns are grown for different values of 'bias'. Dendritic patterns grown at lower value of 'bias' comprises open structure and show limited branching. As the bias is increased the growth tends to be dense and show more crowded branching. Box counting was implemented to calculate fractal dimension. The structural and textural complexities and are compared with the experimental observations. It was also noted that in the evolution of DLA patterns, the center of mass of the growth is shifted slightly. We tracked the position of the center of mass of simulated electro deposits under different electric field conditions. The center of mass exhibit random walk like patterns and it wanders around the origin or the starting point of the growth.

  10. Measurement of the Wigner Characteristic Function for the Center-of-Mass Motion of Two Trapped Ions

    Institute of Scientific and Technical Information of China (English)

    LIN Li-Hua; WANG Ling-Zhi; JIANG Yun-Kun

    2003-01-01

    We proposed a scheme for the reconstruction of the quantum states for the center-of-mass vibrationalmode of two trapped ions. In the scheme the ions are multichromatically excited by three lasers. Then measurementof the difference between probabilities of the ions being both in electronic ground and excited states directly yields theWigner characteristic function for the center-of-mass vibrational state. The scheme can also be used to prepare entangledcoherent states for the center-of-mass and relative vibrational modes.

  11. Measurements of the center-of-mass energies at BESIII via the di-muon process

    Science.gov (United States)

    Ablikim, M.; N. Achasov, M.; C. Ai, X.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Baldini, Ferroli R.; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Y. Deng, Z.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, X. L.; Gao, X. Y.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Q. Hao, X. Q.; Harris, F. A.; He, K. L.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, J. S.; Huang, X. T.; Huang Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. W.; Jiang, X. S.; Jiang, X. Y.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kiese, P.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kühn, W.; Kupsc, A.; Lange, J. S.; Lara, M.; Larin, P.; Leng, C.; Li, C.; Cheng, Li; Li, D. M.; Li, F.; Li, F. Y.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, X.; Liu, B. J.; Liu, C. X.; Liu, D.; Liu, F. H.; Fang, Liu; Feng, Liu; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. B.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J; Lu, J. G.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Mao, Y. Y.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Pan, Y.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Pettersson, J.; Ping, J. L.; Ping, R. G.; Poling, R.; Prasad, V.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ripka, M.; Rong, G.; Rosner, Ch.; Ruan, X. D.; Santoro, V.; Sarantsev, A. A.; Savrié, M.; Schoenning, B. K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, S. G.; Wang, W.; Wang, W. P.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, H.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. J.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, A. Y.; Zeng, Z.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. N.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Yu; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; , S. H.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII collaboration

    2016-06-01

    From 2011 to 2014, the BESIII experiment collected about 5 fb‑1 data at center-of-mass energies around 4 GeV for the studies of the charmonium-like and higher excited charmonium states. By analyzing the di-muon process e+e‑ → γISR/FSRμ+μ‑, the center-of-mass energies of the data samples are measured with a precision of 0.8 MeV. The center-of-mass energy is found to be stable for most of the time during data taking. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (11125525, 11235011, 11322544, 11335008, 11425524, Y61137005C), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS Center for Excellence in Particle Physics (CCEPP), Collaborative Innovation Center for Particles and Interactions (CICPI), Joint Large-Scale Scientific Facility Funds of NSFC and CAS (11179007, U1232201, U1332201), CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, National 1000 Talents Program of China, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), Swedish Research Council, U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0).

  12. Stability Control of Grasping Objects with Different Locations of Center of Mass and Rotational Inertia

    OpenAIRE

    Slota, Gregory P.; Suh, Moon Suk; Latash, Mark L.; Zatsiorsky, Vladimir M.

    2012-01-01

    The objective of this study was to observe how the digits of the hand adjust to varying location of the center of mass (CoM) above/below the grasp and rotational inertia (RI) of a hand held object. Such manipulations do not immediately affect the equilibrium equations while stability control is affected. Participants were instructed to hold a handle, instrumented with five force/torque transducers and a 3-D rotational tilt sensor, while either the location of the CoM or the RI values were adj...

  13. Photoassociative Cooling and Trapping of Center-of-Mass Motion of Atom-Pairs

    CERN Document Server

    Saha, Subrata; Deb, Bimalendu

    2015-01-01

    We show that it is possible to cool and trap the center-of-mass (COM) motion of atom-pairs by a lin$\\perp$lin Sisyphus-like method using counter-propagating photoassociation lasers. This method relies on the photoassociative coupling between an excited molecular bound state and a single-channel continuum of states of scattering between ground-state atoms. We demonstrate that one can generate molecular spin-dependent periodic potentials by this method for trapping the COM motion of pairs of ground-state atoms. We illustrate this with numerical calculations using fermionic $^{171}$Yb atoms as an example.

  14. Upper bound on the center-of-mass energy of the collisional Penrose process

    OpenAIRE

    Shahar Hod

    2016-01-01

    Following the interesting work of Bañados, Silk, and West (2009) [6], it is repeatedly stated in the physics literature that the center-of-mass energy, Ec.m, of two colliding particles in a maximally rotating black-hole spacetime can grow unboundedly. For this extreme scenario to happen, the particles have to collide at the black-hole horizon. In this paper we show that Thorne's famous hoop conjecture precludes this extreme scenario from occurring in realistic black-hole spacetimes. In partic...

  15. Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners.

    Science.gov (United States)

    Lin, Shun-Ping; Sung, Wen-Hsu; Kuo, Fon-Chu; Kuo, Terry B J; Chen, Jin-Jong

    2014-12-01

    Ultramarathon races are rapidly gaining popularity in several countries, raising interest for the improvement of training programs. The aim of this study was to use a triaxial accelerometer to compare the three-dimensional center-of-mass accelerations of two groups of ultramarathon runners with distinct performances during different running speeds and distances. Ten runners who participated in the 12-h Taipei International Ultramarathon Race underwent laboratory treadmill testing one month later. They were divided into an elite group (EG; n = 5) and a sub-elite group (SG; n = 5). The triaxial center-of-mass acceleration recorded during a level-surface progressive intensity running protocol (3, 6, 8, 9, 10, and 12 km/h; 5 min each) was used for correlation analyses with running distance during the ultramarathon. The EG showed negative correlations between mediolateral (ML) acceleration (r = -0.83 to -0.93, p cadence must be increased to reduce braking effects and enhance impetus. Consequently, the competition level of ultramarathons can be elevated. PMID:25713664

  16. Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners

    Directory of Open Access Journals (Sweden)

    Lin Shun-Ping

    2014-12-01

    Full Text Available Ultramarathon races are rapidly gaining popularity in several countries, raising interest for the improvement of training programs. The aim of this study was to use a triaxial accelerometer to compare the three-dimensional centerof- mass accelerations of two groups of ultramarathon runners with distinct performances during different running speeds and distances. Ten runners who participated in the 12-h Taipei International Ultramarathon Race underwent laboratory treadmill testing one month later. They were divided into an elite group (EG; n = 5 and a sub-elite group (SG; n = 5. The triaxial center-of-mass acceleration recorded during a level-surface progressive intensity running protocol (3, 6, 8, 9, 10, and 12 km/h; 5 min each was used for correlation analyses with running distance during the ultramarathon. The EG showed negative correlations between mediolateral (ML acceleration (r = −0.83 to −0.93, p < 0.05, and between anterior-posterior (AP acceleration and running distance (r = −0.8953 to −0.9653, p < 0.05, but not for vertical control of the center of mass. This study suggests that runners reduce stride length to minimize mediolateral sway and the effects of braking on the trunk; moreover, cadence must be increased to reduce braking effects and enhance impetus. Consequently, the competition level of ultramarathons can be elevated.

  17. Upper bound on the center-of-mass energy of the collisional Penrose process

    Science.gov (United States)

    Hod, Shahar

    2016-08-01

    Following the interesting work of Bañados, Silk, and West (2009) [6], it is repeatedly stated in the physics literature that the center-of-mass energy, Ec.m, of two colliding particles in a maximally rotating black-hole spacetime can grow unboundedly. For this extreme scenario to happen, the particles have to collide at the black-hole horizon. In this paper we show that Thorne's famous hoop conjecture precludes this extreme scenario from occurring in realistic black-hole spacetimes. In particular, it is shown that a new (and larger) horizon is formed before the infalling particles reach the horizon of the original black hole. As a consequence, the center-of-mass energy of the collisional Penrose process is bounded from above by the simple scaling relation Ec.mmax / 2 μ ∝(M / μ) 1 / 4, where M and μ are respectively the mass of the central black hole and the proper mass of the colliding particles.

  18. Shape coexistence and center-of-mass effects in N=Z medium mass nuclei

    CERN Document Server

    Petrovici, A; Faessler, A

    2002-01-01

    Results are presented concerning shape coexistence and shape transition at low and intermediate spins in the N=Z nuclei sup 7 sup 2 Kr, sup 7 sup 6 Sr and sup 8 sup 0 Zr obtained within the complex version of the Excited Vampir variational approach. The effects of possible contaminations due to the center-of-mass motion are discussed using a rough method to eliminate them at least approximately. The results indicate maximum influence on the observables depending on band mixing. Detailed illustration of the effects on the oblate-prolate mixing and the electromagnetic properties, as well as the alignments and particle occupations of the 0g sub 9 sub / sub 2 spherical orbital is presented for the sup 7 sup 2 Kr nucleus.

  19. On the Homology of Configuration Spaces Associated to Centers of Mass

    CERN Document Server

    Tamaki, Dai

    2010-01-01

    The aim of this paper is to make sample computations with the Salvetti complex of the "center of mass" arrangement introduced in [arXiv:math/0611732] by Cohen and Kamiyama. We compute the homology of the Salvetti complex of these arrangements with coefficients in the sign representation of symmetric groups on F_p in the case of four particles. We show, when p is an odd prime, the homology is isomorphic to the homology of the configuration space F(C,4) of distinct four points in the complex plane with the same coefficients. When p=2, we show the homology is different from that of F(C,4), hence obtain an alternative and more direct proof of a theorem of Cohen and Kamiyama in [arXiv:math/0611732].

  20. Longitudinal Form Factor for 12C Nucleus with Exact Center of Mass Correction

    International Nuclear Information System (INIS)

    The longitudinal electron scattering form factors of 12C are calculated for the ground state with JπT = 0+0 , and excited state with JπT = 2+0 (4.439 MeV) and JT= 2+1 (16.11 MeV) . The exact value of the center of mass correction in the translation invariant shell model (TISM) of Mihaila has been included and gives reasonable results. A higher 2p-shell configuration enhances the form factors for high q-values and resolves many discrepancies with the experiments. The data are well described when the core polarization (CP) effects are included through effective nucleon charge

  1. Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Goffeney, N.; Henestroza, E. [Lawrence Berkeley Lab., CA (United States)] [and others

    1995-02-22

    A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported.

  2. Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider

    International Nuclear Information System (INIS)

    A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported

  3. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    Science.gov (United States)

    Britavskiy, N.; Pancino, E.; Tsymbal, V.; Romano, D.; Cacciari, C.; Clementini, C.

    2016-05-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a least squares deconvolution (LSD) of the line profiles in order to an- alyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (+- 2 kms^-1) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 kms^-1 even with a low number of high- resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  4. Method of LSD profile asymmetry for estimating the center of mass velocities of pulsating stars

    Science.gov (United States)

    Britavskiy, Nikolay; Pancino, Elena; Romano, Donatella; Tsymbal, Vadim

    2015-08-01

    We present radial velocity analysis for 20 solar neighborhood RR Lyrae and 3 Population II Cepheids. High-resolution spectra were observed with either TNG/SARG or VLT/UVES over varying phases. To estimate the center of mass (barycentric) velocities of the program stars, we utilized two independent methods. First, the 'classic' method was employed, which is based on RR Lyrae radial velocity curve templates. Second, we provide the new method that used absorption line profile asymmetry to determine both the pulsation and the barycentric velocities even with a low number of high-resolution spectra and in cases where the phase of the observations is uncertain. This new method is based on a Least Squares Deconvolution (LSD) of the line profiles in order to analyze line asymmetry that occurs in the spectra of pulsating stars. By applying this method to our sample stars we attain accurate measurements (± 1 km/s) of the pulsation component of the radial velocity. This results in determination of the barycentric velocity to within 5 km/s even with a low number of high-resolution spectra. A detailed investigation of LSD profile asymmetry shows the variable nature of the project factor at different pulsation phases, which should be taken into account in the detailed spectroscopic analysis of pulsating stars.

  5. Entanglement of the Common Eigenvector of Two Particles' Center-of-Mass Coordinate and Mass-Weighted Relative Momentum

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi; SUN Ming-Zhai

    2002-01-01

    We reveal that the common eigenvector of two particles' center-of-mass coordinate and mass-weightedrelative momentum is an entangled state. Its Schmidt decomposition exhibits that the entanglement involves squeezingwhich depends on the ratio of two particles' masses. The corresponding entangling operators are derived.

  6. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.

    Science.gov (United States)

    Vlutters, M; van Asseldonk, E H F; van der Kooij, H

    2016-05-15

    In many simple walking models, foot placement dictates the center of pressure location and ground reaction force components, whereas humans can modulate these aspects after foot contact. Because of the differences, it is unclear to what extent predictions made by models are valid for human walking. Yet, both model simulations and human experimental data have previously indicated that the center of mass (COM) velocity plays an important role in regulating stable walking. Here, perturbed human walking was studied to determine the relationship of the horizontal COM velocity at heel strike and toe-off with the foot placement location relative to the COM, the forthcoming center of pressure location relative to the COM, and the ground reaction forces. Ten healthy subjects received mediolateral and anteroposterior pelvis perturbations of various magnitudes at toe-off, during 0.63 and 1.25 m s(-1) treadmill walking. At heel strike after the perturbation, recovery from mediolateral perturbations involved mediolateral foot placement adjustments proportional to the mediolateral COM velocity. In contrast, for anteroposterior perturbations, no significant anteroposterior foot placement adjustment occurred at this heel strike. However, in both directions the COM velocity at heel strike related linearly to the center of pressure location at the subsequent toe-off. This relationship was affected by the walking speed and was, for the slow speed, in line with a COM velocity-based control strategy previously applied by others in a linear inverted pendulum model. Finally, changes in gait phase durations suggest that the timing of actions could play an important role during the perturbation recovery. PMID:26994171

  7. Rotary and radial forcing effects on center-of-mass locomotion dynamics.

    Science.gov (United States)

    Shen, Z H; Larson, P L; Seipel, J E

    2014-09-01

    Rotary and radial forcing are two common actuation methods for legged robots. However, these two orthogonal methods of center-of-mass (CoM) forcing have not been compared as potentially alternative strategies of actuation. In this paper, we compare the CoM stability and energetics of running with rotary and radial actuation through the simulation of two models: the rotary-forced spring-loaded inverted pendulum (rotary-forced-SLIP), and the radially-forced-SLIP. We model both radial and rotary actuation in the simplest way, applying them as a constant force during the stance portion of the gait. A simple application of constant rotary forcing throughout stance is capable of producing fully-asymptotically stable motion; however, a similarly constant application of radial forcing throughout the stance is not capable of producing stable solutions. We then allow both the applied rotary and radial forcing functions to turn on or off based on the occurrence of the mid-stance event, which breaks the symmetry of actuation during stance towards a net forward propulsion. We find that both a rotary force applied in the first half of stance and a radial force applied in the second half of stance, are capable of stabilizing running. Interestingly, these two forcing methods improve the motion stability in different ways. Rotary forcing first reduces then greatly increases the size of the stable parameter region when gradually increased. Radial forcing expands the stable parameter region, but only in a moderate way. Also, it is found that parameter region stabilized by rotary and radial forcing are largely complementary. Overall, rotary forcing can better stabilize running for both constant and event-based forcing functions that were attempted. This indicates that rotary forcing has an inherent capability of stabilizing running, even when minimal time-or-event-or-state feedback is present. Radial forcing, however, tends to be more energy efficient when compared to rotary forcing

  8. Constructing a meaningful evolutionary average at the phylogenetic center of mass

    Directory of Open Access Journals (Sweden)

    Stone Eric A

    2007-06-01

    Full Text Available Abstract Background As a consequence of the evolutionary process, data collected from related species tend to be similar. This similarity by descent can obscure subtler signals in the data such as the evidence of constraint on variation due to shared selective pressures. In comparative sequence analysis, for example, sequence similarity is often used to illuminate important regions of the genome, but if the comparison is between closely related species, then similarity is the rule rather than the interesting exception. Furthermore, and perhaps worse yet, the contribution of a divergent third species may be masked by the strong similarity between the other two. Here we propose a remedy that weighs the contribution of each species according to its phylogenetic placement. Results We first solve the problem of summarizing data related by phylogeny, and we explain why an average should operate on the entire evolutionary trajectory that relates the data. This perspective leads to a new approach in which we define the average in terms of the phylogeny, using the data and a stochastic model to obtain a probability on evolutionary trajectories. With the assumption that the data evolve according to a Brownian motion process on the tree, we show that our evolutionary average can be computed as convex combination of the species data. Thus, our approach, called the BranchManager, defines both an average and a novel taxon weighting scheme. We compare the BranchManager to two other methods, demonstrating why it exhibits desirable properties. In doing so, we devise a framework for comparison and introduce the concept of a representative point at which the average is situated. Conclusion The BranchManager uses as its representative point the phylogenetic center of mass, a choice which has both intuitive and practical appeal. Because our average is intrinsic to both the dataset and to the phylogeny, we expect it and its corresponding weighting scheme to be useful

  9. Prediction of landslide run-out distance based on slope stability analysis and center of mass approach

    Science.gov (United States)

    Firmansyah; Feranie, S.; Tohari, Adrin; Latief, F. D. E.

    2016-01-01

    Mitigation of landslide hazard requires the knowledge of landslide run-out distance. This paper presents the application of slope stability analysis and center of mass approach to predict the run-out distance of a rotational landslide model with different soil types. The Morgenstern-Price method was used to estimate the potential sliding zone and volume of landslide material. The center of mass approach used a simple Coulomb friction model to determine the run-out distance. Results of the slope stability analysis showed that the soil unit weight can influence the depth of sliding zone, and the volume of unstable material. The slope model of silty sand and gravel would have the largest volume of unstable mass. From the Coulomb friction analysis, this slope model has higher run-out distance and velocity than other slope models. Thus, the run-out distance will be influenced by soil type and the dimension of unstable soil mass.

  10. Re-Examining the exact center of mass correction for longitudinal form factors of some 1p-Shell nuclei

    International Nuclear Information System (INIS)

    The longitudinal elastic electron scatting form factors are calculated for the ground stases of 6Li (Jn-T = 1 +0), 7Li (JnT=3/2 1/2), 9Be (JnT= 3/2 1/2) and 10B (JnT= 3+0) nuclei. The two-body interaction of Cohen-Kurath is used to generate the p-shell wave function. The effect of the exact center of mass correction on the longitudinal electron scattering from factors are re-examined. The inclusion of the exact value of the center of mass correction in the translation invariant shell model (TISM) gives good results. A higher 2p-shell configuration enhances the form factors for q-values and resolves many discrepancies with the experiments. The data are well described when the core polarization effects are included through effective nucleon charge. The results are compared with other theoretical models. (Author)

  11. Observation of antideuteron production in electron-positron annihilation at 10 GeV center of mass energy

    International Nuclear Information System (INIS)

    The production of antideuterons has been observed in electron-positron annihilations at center-of-mass energies around 10 GeV. Antideuterons have been identified unambiguously by their energy loss in the drift chamber, their time-of-flight and the pattern of their energy deposition in the shower counters of the ARGUS detector. The production rate in the momentum range (0.6-1.8)GeV/c is (1.6sub(-0.7)sup(+1.0))) X 10-5 per hadronic event. (orig.)

  12. Study of quark flow in exclusive reactions at 90 degrees in the center of mass (AGS E838)

    International Nuclear Information System (INIS)

    We report a study of quark flow in 20 exclusive reactions measured at Brookhaven National Laboratory's AGS with a beam momentum of 5.9 GeV/c at 90 degree in the center of mass. This experiment confirms the strong quark flow reaction mechanism dependence of two-body hadron scattering at large angles seen at 9.9 GeV/c. Large differences in cross sections for different reactions are consistent with the dominance of quark interchange in these 90 degree reactions, and indicate that pure gluon exchange and quark/antiquark annihilation diagrams are less important. copyright 1995 American Institute of Physics

  13. Lateral oscillations of the center of mass of bipeds as they walk. Inverted pendulum model with two degrees of freedom

    OpenAIRE

    Guillermo H Goldsztein

    2015-01-01

    The use of inverted pendulum models to study the bio-mechanics of biped walkers is a common practice. In its simplest form, the inverted pendulum consists of a point mass, which models the center of mass of the biped, attached to two straight mass-less legs. Most works using the simplest inverted pendulum model constrain the mass and the legs to the sagittal plane (the plane that contains the direction perpendicular to the ground and the direction toward the biped is walking). In this article...

  14. Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate

    International Nuclear Information System (INIS)

    We have performed a measurement of the Casimir-Polder force using a magnetically trapped 87Rb Bose-Einstein condensate. By detecting perturbations of the frequency of center-of-mass oscillations of the condensate perpendicular to the surface, we are able to detect this force at a distance ∼5 μm, significantly farther than has been previously achieved, and at a precision approaching that needed to detect the modification due to thermal radiation. Additionally, this technique provides a limit for the presence of non-Newtonian gravity forces in the ∼1 μm range

  15. Impact of the equivalent center of mass separating from the sliding surface on the isolation performance of friction pendulum bearings

    Science.gov (United States)

    Xia, Junyong; Ning, Xiangliang; Tan, Ping; Hao, Hongxiao; Chen, Guoping

    2015-12-01

    A new equivalent center of mass model of FPBs (friction pendulum bearings) is introduced, and based on this model, coefficient j of the equivalent center of mass separating from the sliding surface is defined. It is thought in theory that j has a significant impact on the isolation parameter of FPBs, since the equivalent post-yielding stiffness and friction coefficients are not simply determined by sliding radius and sliding friction pairs. The results of numerical simulation analysis using ABAQUS conducted on two groups of FPBs support this viewpoint. For FPBs with the same sliding radius and sliding friction pairs, the FPB modules of structural analysis software such as ETABS could only distinguish the equivalent transformation using j one by one. The seismic response data obtained in a base isolation calculation example of FPBs are very different, which reveals that j's impact on the isolation effectiveness of FPBs cannot be ignored. The introduction of j will help improve the classical structural theory of FPBs and the weak points of structural analysis software based on this theory, which is important in achieving more accurate analyses in structural design.

  16. Lateral oscillations of the center of mass of bipeds as they walk. Inverted pendulum model with two degrees of freedom

    Science.gov (United States)

    H Goldsztein, Guillermo

    2015-10-01

    The use of inverted pendulum models to study the bio-mechanics of biped walkers is a common practice. In its simplest form, the inverted pendulum consists of a point mass, which models the center of mass of the biped, attached to two straight mass-less legs. Most works using the simplest inverted pendulum model constrain the mass and the legs to the sagittal plane (the plane that contains the direction perpendicular to the ground and the direction toward the biped is walking). In this article, we remove this constrain and use this unconstrained inverted pendulum model to study the oscillations the mass experiences in the direction perpendicular to the sagittal plane as the biped walks. While small, these oscillations are unavoidable and of importance in the understanding of balance and stability of walkers, as well as walkers induced oscillations in pedestrian bridges.

  17. Lateral oscillations of the center of mass of bipeds as they walk. Inverted pendulum model with two degrees of freedom

    Directory of Open Access Journals (Sweden)

    Guillermo H Goldsztein

    2015-10-01

    Full Text Available The use of inverted pendulum models to study the bio-mechanics of biped walkers is a common practice. In its simplest form, the inverted pendulum consists of a point mass, which models the center of mass of the biped, attached to two straight mass-less legs. Most works using the simplest inverted pendulum model constrain the mass and the legs to the sagittal plane (the plane that contains the direction perpendicular to the ground and the direction toward the biped is walking. In this article, we remove this constrain and use this unconstrained inverted pendulum model to study the oscillations the mass experiences in the direction perpendicular to the sagittal plane as the biped walks. While small, these oscillations are unavoidable and of importance in the understanding of balance and stability of walkers, as well as walkers induced oscillations in pedestrian bridges.

  18. Measurement of total and partial photon proton cross sections at 180 GeV center of mass energy

    International Nuclear Information System (INIS)

    Photon proton cross sections for elastic light vector meson production, σelγp, inelastic diffractive production, σdγp, non-diffractive procution, σndγp, as well as the total cross section, σγptot, have been measured at an average γp center of mass energy of 180 GeV with the ZEUS detector at HERA. The resulting values are σelγp=18±7 μb, σdγp=33±8 μb, σndγp=91±11 μb, and σγptot=143±17 μb, where the errors include statistical and systematic errors added in quadrature. (orig.)

  19. Effect of Leg Dominance on The Center-of-Mass Kinematics During an Inside-of-the-Foot Kick in Amateur Soccer Players.

    Science.gov (United States)

    Zago, Matteo; Motta, Andrea Francesco; Mapelli, Andrea; Annoni, Isabella; Galvani, Christel; Sforza, Chiarella

    2014-09-29

    Soccer kicking kinematics has received wide interest in literature. However, while the instep-kick has been broadly studied, only few researchers investigated the inside-of-the-foot kick, which is one of the most frequently performed techniques during games. In particular, little knowledge is available about differences in kinematics when kicking with the preferred and non-preferred leg. A motion analysis system recorded the three-dimensional coordinates of reflective markers placed upon the body of nine amateur soccer players (23.0 ± 2.1 years, BMI 22.2 ± 2.6 kg/m2), who performed 30 pass-kicks each, 15 with the preferred and 15 with the non-preferred leg. We investigated skill kinematics while maintaining a perspective on the complete picture of movement, looking for laterality related differences. The main focus was laid on: anatomical angles, contribution of upper limbs in kick biomechanics, kinematics of the body Center of Mass (CoM), which describes the whole body movement and is related to balance and stability. When kicking with the preferred leg, CoM displacement during the ground-support phase was 13% higher (pkinematics. Coaches can use these results to provide effective instructions to players in the learning process, moving their focus on kicking speed and upper body behavior. PMID:25414739

  20. Is the center of mass (COM) a reliable parameter for the localization of brain function in fMRI?

    International Nuclear Information System (INIS)

    The center of mass (COM) in functional MRI studies is defined as the center of a cerebral activation cluster. Although the COM is a well-accepted parameter for exactly localizing brain function, the reliability of COMs has not received much attention until now. Our goal was to investigate COM reliability as a function of the thresholding technique, the threshold level, and the type of COM calculation. Therefore 15 subjects were examined repeatedly using simple hand and tongue movement paradigms. Postprocessing was performed with uncorrected, corrected, and proportional thresholding as well as different threshold levels. Geometric and T-weighted COMs of left-hemispheric primary hand and tongue motor clusters were calculated. The COM variation was evaluated within and between repeated sessions depending on the different postprocessing setups. Mean COM variations over three repeated sessions varied between 1.6 mm and 9.8 mm for the hand paradigm and between 7.0 mm and 14.4 mm for the tongue task. Stringent thresholding techniques and high threshold levels were required to assess reliable results, whereas the kind of COM calculation was of lesser relevance. Thus, COM reliability cannot be presupposed; it depends strongly on the individual postprocessing techniques. This should be considered when using COMs for localizing brain function. (orig.)

  1. Non-actively controlled double-inverted-pendulum-like dynamics can minimize center of mass acceleration during human quiet standing.

    Science.gov (United States)

    Suzuki, Yasuyuki; Morimoto, Hiroki; Kiyono, Ken; Morasso, Pietro; Nomura, Taishin

    2015-08-01

    Multiple joint movements during human quiet standing exhibit characteristic inter-joint coordination, shortly referred to as reciprocal relationship, in which angular acceleration of the hip joint is linearly and negatively correlated with that of the ankle joint (antiphase coordination) and, moreover, acceleration of the center of mass (CoM) of the double-inverted-pendulum (DIP) model of the human body is close to zero constantly. A question considered in this study is whether the reciprocal relationship is established by active neural control of the posture, or rather it is a biomechanical consequence of non-actively controlled body dynamics. To answer this question, we consider a DIP model of quiet standing, and show that the reciprocal relationship always holds by Newton's second law applied to the DIP model with human anthropometric dimensions, regardless of passive and active joint torque patterns acting on the ankle and hip joints. We then show that characteristic frequencies included in experimental sway trajectories with the reciprocal relationship match with harmonics of the eigenfrequency of the stable antiphase eigenmode of the non-actively controlled DIP-like unstable body dynamics. The results suggest that non-actively controlled DIP-like mechanical dynamics is a major cause of the minimization of the CoM acceleration during quiet standing, which is consistent with a type of control strategy that allows switching off active neural control intermittently for suitable periods of time during quiet standing. PMID:26736538

  2. Region of stability derived by center of mass acceleration better identifies individuals with difficulty in sit-to-stand movement.

    Science.gov (United States)

    Fujimoto, Masahiro; Chou, Li-Shan

    2014-04-01

    Poor performance of sit-to-stand (STS) has been identified as one of the predictors of fall risk among elderly adults. This study examined differences in the whole body center of mass (COM) kinematic variables in relation to the regions of stability between elderly adults with difficulty in STS and healthy individuals. Whole body motion data while performing STS were collected from 10 young, 10 elderly and 10 elderly subjects with difficulty in STS. Young subjects were also asked to stand up with their trunk purposely bent forward. The regions of stability were defined with COM position at seat-off and its instantaneous velocity (ROSv) or peak acceleration (ROSa), using a single-link-plus-foot inverted pendulum model. Peak COM accelerations prior to seat-off differed significantly among groups; however, no significant differences were detected in its velocities at seat-off. The ROSa demonstrated a better ability to discriminate elderly adults with difficulty from healthy individuals. Although a similar COM momentum was observed at seat-off, how the momentum was controlled differed between healthy individuals and individuals with difficulty in STS. ROSa could provide insight into how the COM momentum is controlled prior to seat-off, which could be used to differentiate individuals with functional limitations from healthy individuals. PMID:24259008

  3. Stable Walking of Humanoid Robots Using Vertical Center of Mass and Foot Motions by an Evolutionary Optimized Central Pattern Generator

    Directory of Open Access Journals (Sweden)

    Young-Dae Hong

    2016-02-01

    Full Text Available This paper proposes a method to produce the stable walking of humanoid robots by incorporating the vertical center of mass (COM and foot motions, which are generated by the evolutionary optimized central pattern generator (CPG, into the modifiable walking pattern generator (MWPG. The MWPG extends the conventional 3-D linear inverted pendulum model (3-D LIPM by allowing a zero moment point (ZMP variation. The disturbance caused by the vertical COM motion is compensated in real time by the sensory feedback in the CPG. In this paper, the vertical foot trajectory of the swinging leg, as well as the vertical COM trajectory of the 3-D LIPM, are generated by the CPG for the effective compensation of the disturbance. Consequently, using the proposed method, the humanoid robot is able to walk with a vertical COM and the foot motions generated by the CPG, while modifying its walking patterns by using the MWPG in real time. The CPG with the sensory feedback is optimized to obtain the desired output signals. The optimization of the CPG is formulated as a constrained optimization problem with equality constraints and is solved by two-phase evolutionary programming (TPEP. The validity of the proposed method is verified through walking experiments for the small-sized humanoid robot, HanSaRam-IX (HSR-IX.

  4. Precise measurement of Bhabha scattering at a center-of-mass energy of 57.77 GeV

    International Nuclear Information System (INIS)

    Bhabha scattering at a center-of-mass energy of 57.77 GeV has been measured using the VENUS detector at KEK TRISTAN. The precision is better than 1% in scattering angle regions of |cosθ|≤0.743 and 0.822≤cosθ≤0.968. A model-independent scattering-angle distribution is extracted from the measurement. The distribution is in good agreement with the prediction of the standard electroweak theory. The sensitivity to underlying theories is examined, after unfolding the photon-radiation effect. The q2 dependence of the photon vacuum polarization, frequently interpreted as a running of the QED fine-structure constant, is directly observed with a significance of three standard deviations. The Z0 exchange effect is clearly seen when the distribution is compared with the prediction from QED (photon exchanges only). The agreement with the standard theory leads us to constraints on extensions of the standard theory. In all quantitative discussions, correlations in the systematic error between angular bins are taken into account by employing an error matrix technique. copyright 1997 The American Physical Society

  5. Search for Lepton Flavor Violation in ep Collisions at 300 GeV Center of Mass Energy

    CERN Document Server

    Abbiendi, G; Acosta, D; Adamczyk, L; Adamus, M; Amelung, C; An Shiz Hong; Anselmo, F; Antonioli, P; Arneodo, M; Ayad, R; Bacon, Trevor C; Badgett, W F; Bailey, D C; Bailey, D S; Bamberger, A; Barbagli, G; Barberis, E; Bari, G; Barreiro, F; Bashindzhagian, G L; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Beier, H; Bellagamba, L; Bénard, F; Bertolin, A; Bhadra, S; Bienlein, J K; Biltzinger, J; Bogusz, W; Bornheim, A; Borzemski, P; Boscherini, D; Botje, M; Breitweg, J; Briskin, G; Brkic, M; Bromley, J T; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bruni, P; Bulmahn, J; Burow, B D; Bussey, P J; Butterworth, Ian; Butterworth, J M; Bylsma, B; Caldwell, A; Campbell-Robson, S; Capua, M; Cara Romeo, G; Cardy, M L; Carlin, R; Cartiglia, N; Cases, G; Cashmore, R J; Cassidy, A; Castellini, G; Catterall, C D; Chapin, D; Chiba, M; Chlebana, F; Cho, G H; Chwastowski, J; Ciborowski, J; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coldewey, C; Contin, A; Cooper-Sarkar, A M; Corradi, M; Corriveau, F; Costa, M; Cottingham, W N; Crittenden, J; Cross, R; D'Agostini, G; Dagan, S; Dal Corso, F; Dannemann, A; Dardo, M; Dasu, S; De Giorgi, M; De Pasquale, S; Deffner, R; Deppe, O; Derrick, M; Desler, K; Devenish, R C E; Doeker, T; Dolgoshein, B A; Dosselli, U; Doyle, A T; Drews, G; Dubbs, T; Dulinski, Z; Durkin, L S; Dyce, N; Eckert, M; Eisenberg, Y; Eisenhardt, S; Engelen, J; Ermolov, P F; Eskreys, Andrzej; Fagerstroem, C P; Feild, R G; Feld, L; Fernández, J P; Ferrero, M I; Filges, D; Flasinski, M; Fleck, J I; Foster, B; Foudas, C; Frey, A; Frisken, W R; Gajewski, J; Gallo, E; Garfagnini, A; Geerts, M; George, S; Gialas, I; Gilkinson, D J; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Glasman, C; Golubkov, Yu A; Göttlicher, P; Grabosch, H J; Graciani, R; Grosse-, J; Grothe, M; Grzelak, G; Haas, T; Hagge, L; Hain, W; Hamatsu, R; Hanna, D S; Harnew, N; Harris, V L; Hart, J C; Hartmann, H; Hartmann, J; Hartner, G F; Hasell, D; Hayes, M E; Heath, G P; Heath, H F; Heinloth, K; Heinz, L; Hernández, J M; Hervás, L; Hessling, H; Heusch, C A; Hilger, E; Hirose, T; Hochman, D; Holm, U; Homma, K; Horstmann, D; Howell, G; Hung, B H Y; Hung, L W; Iacobucci, G; Iannotti, L; Iga, Y; Inuzuka, M; Ishii, T; Jakob, H P; Jakubowski, Z; Jelen, K; Jing, Z; Johnson, K F; Jones, T W; Joo, K K; Joos, P; Karshon, U; Kartik, S; Kasemann, M; Kasprzak, M; Katz, U F; Kaziewicz, P B; Khakzad, M; Kim, C L; Kim, H J; Kisielewska, D; Kitamura, S; Klanner, Robert; Ko, B J; Kobrin, V D; Koch, W; Kooijman, P; Korzhavina, I A; Kotanski, A; Kötz, U; Kowalski, H; Kowalski, T; Krakauer, D; Kruse, A; Krzyzanowski, M; Kuze, M; Kuzmin, V A; Labarga, L; Labs, J; Ladage, A; Lamberti, L; Lancaster, M; Lane, J B; Laurenti, G; Lee, S B; Lev, G M; Levi, G; Levy, A; Li, C; Lim, J N; Limentani, S; Lindemann, L; Ling, T Y; Liu, W; Lockman, W; Löhr, B; Lohrmann, E; Long, K R; Loveless, R J; Loewe, M; Lu, B; Lüke, D; Lukina, O Yu; Maccarrone, G; Magill, S; Mainusch, J; Mallik, U; Manczak, O; Margotti, A; Mari, S M; Marini, G; Martin, J F; Martínez, M; Mas--, T; Maselli, S; Matsushita, T; Matthews, C G; Mattingly, M C K; Mattingly, S E K; McCubbin, N A; McFall, J D; McNeil, R R; Mengel, S; Metcalf, W; Meyer, A; Mikunas, D; Milewski, J; Miller, D B; Mine, S; Mo, L W; Monteiro, T; Morandin, M; Muchorowski, K; Mur, W N; Musgrave, B; Nadendla, V K; Nakao, M; Nam, S W; Nania, R; Nath, C; Ng, J S T; Nigro, A; Notz, D; Nowak, R J; Noyes, V A; Nylander, P; Ochs, A; Oh, B Y; Ohrenberg, K; Okrasinski, J R; Orr, R S; Palmonari, F; Park, H S; Park, I H; Park, S K; Parsons, J A; Patel, P M; Paul, E; Pavel, N; Pawlak, J M; Pelfer, Pier Giovanni; Peroni, C; Pesci, A; Pfeiffer, M; Piccioni, D; Piotrzkowski, K; Poelz, G; Polenz, S; Polini, A; Posocco, M; Prinias, A; Proskuryakov, A S; Przybycien, M B; Puga, J; Quadt, A; Rahn, J T; Reeder, D D; Rembser, C; Repond, J; Revel, D; Ritz, S; Riveline, M; Roco, M T; Roff, D G; Rohde, M; Roldán, J; Romanowsky, T A; Rulikowska-Zarebska, E; Sacchi, R; Sadrozinski, H F W; Sampson, C R; Sartorelli, G; Saunders, R L; Savin, A A; Saxon, D H; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schott, W; Schramm, D; Schulz, W; Schwarzer, O; Sciulli, F; Sedgbeer, J K; Seiden, A; Seifert, R J; Selonke, F; Shah, T P; Shche-, L M; Shulman, J; Sideris, D; Silverstein, S; Simmons, D; Sinclair, L E; Sinkus, R; Smith, W H; Solano, A; Solomin, A N; Saint-Laurent, M G; Staiano, A; Stairs, D G; Stamm, J; Stanco, L; Stanek, R; Stifutkin, A; Straub, P B; Strick, E; Stroili, R; Surrow, B; Susinno, G; Suszycki, L; Sutton, M R; Suzuki, I; Talaga, R L; Tapper, R J; Tassi, E; Terron, J; Teuscher, R; Tickner, J R; Tiecke, H G; Tokushuku, K; Trefzger, T; Tsurugai, T; Tymieniecka, T; Uijter--, H; Ullmann, R; Umemori, K; Utley, M L; Vaiciulis, A W; Van Hook, M; Verkerke, W; Voci, C; Voss, T; Vossebeld, Joost Herman; Votano, L; Vreeswijk, M; Wai, L; Walczak, R; Walenta, Albert H; Wang, M Z; Wang, S M; Waters, D S; Waugh, R; Wedemeyer, R; Westphal, D; Whitfield, A F; Whitmore, J J; Wick, K; Wiggers, L; Williams, D C; Wills, H H; Wilson, A S; Wilson, F F; Wodarczyk, M; Wolf, G; Wölfle, S; Wollmer, U; Wróblewski, A K; Wu, J T; Yamada, S; Yamauchi, K; Yamazaki, Y; Yang, S; Yip, T; Yoshida, R; Youngman, C; Za, J A; Zacek, G; Zachara, M; Zajac, J; Zamora Garcia, Y; Zawiejski, L; Zer-Zion, D; Zetsche, F; Zeuner, W; Zhang, H; Zhu, Q; Zichichi, Antonino; Zotov, N P; Zuin, F; De Kamps, M; De Trocóniz, J F; De Wolf, E; Del Peso, J; Van Sighem, A; Van Woudenberg, R

    1997-01-01

    Using the ZEUS detector at the HERA electron-proton collider, we have searched for lepton flavor violation in ep collisions at a center-of-mass energy s^1/2 of 300 GeV. Events of the type e + p -> lepton + X with a final-state lepton (mu or tau) of high transverse momentum, were sought. No evidence was found for lepton flavor violation in the combined 1993 and 1994 data samples, for which the integrated luminosities were 0.84 pb^-1 for e- p collisions and 2.94 pb^-1 for e+ p collisions. Limits on coupling vs. mass are provided for leptoquarks and R-parity violating squarks. For flavor violating couplings of electromagnetic strength, we set 95% confidence level lower limits on leptoquark masses between 207 GeV and 272 GeV, depending on the leptoquark species and final-state lepton. For leptoquark masses larger than 300 GeV, limits on flavor-changing couplings are determined, many of which supersede prior limits from rare decay processes.

  6. The gaits of primates: center of mass mechanics in walking, cantering and galloping ring-tailed lemurs, Lemur catta.

    Science.gov (United States)

    O'Neill, Matthew C; Schmitt, Daniel

    2012-05-15

    Most primates, including lemurs, have a broad range of locomotor capabilities, yet much of the time, they walk at slow speeds and amble, canter or gallop at intermediate and fast speeds. Although numerous studies have investigated limb function during primate quadrupedalism, how the center of mass (COM) moves is not well understood. Here, we examined COM energy, work and power during walking, cantering and galloping in ring-tailed lemurs, Lemur catta (N=5), over a broad speed range (0.43-2.91 m s(-1)). COM energy recoveries were substantial during walking (35-71%) but lower during canters and gallops (10-51%). COM work, power and collisional losses increased with speed. The positive COM works were 0.625 J kg(-1) m(-1) for walks and 1.661 J kg(-1) m(-1) for canters and gallops, which are in the middle range of published values for terrestrial animals. Although some discontinuities in COM mechanics were evident between walking and cantering, there was no apparent analog to the trot-gallop transition across the intermediate and fast speed range (dimensionless v>0.75, Fr>0.5). A phenomenological model of a lemur cantering and trotting at the same speed shows that canters ensure continuous contact of the body with the substrate while reducing peak vertical COM forces, COM stiffness and COM collisions. We suggest that cantering, rather than trotting, at intermediate speeds may be tied to the arboreal origins of the Order Primates. These data allow us to better understand the mechanics of primate gaits and shed new light on primate locomotor evolution. PMID:22539740

  7. Whole Body Center of Mass Estimation with Portable Sensors: Using the Statically Equivalent Serial Chain and a Kinect

    Directory of Open Access Journals (Sweden)

    Alejandro González

    2014-09-01

    Full Text Available The trajectory of the whole body center of mass (CoM is useful as a reliable metric of postural stability. If the evaluation of a subject-specific CoM were available outside of the laboratory environment, it would improve the assessment of the effects of physical rehabilitation. This paper develops a method that enables tracking CoM position using low-cost sensors that can be moved around by a therapist or easily installed inside a patient’s home. Here, we compare the accuracy of a personalized CoM estimation using the statically equivalent serial chain (SESC method and measurements obtained with the Kinect to the case of a SESC obtained with high-end equipment (Vicon. We also compare these estimates to literature-based ones for both sensors. The method was validated with seven able-bodied volunteers for whom the SESC was identified using 40 static postures. The literature-based estimation with Vicon measurements had a average error 24.9 ± 3.7 mm; this error was reduced to 12.8 ± 9.1 mm with the SESC identification. When using Kinect measurements, the literature-based estimate had an error of 118.4 ± 50.0 mm, while the SESC error was 26.6 ± 6.0 mm. The subject-specific SESC estimate using low-cost sensors has an equivalent performance as the literature-based one with high-end sensors. The SESC method can improve CoM estimation of elderly and neurologically impaired subjects by considering variations in their mass distribution.

  8. Whole Body Center of Mass Estimation with Portable Sensors: Using the Statically Equivalent Serial Chain and a Kinect

    Science.gov (United States)

    González, Alejandro; Hayashibe, Mitsuhiro; Bonnet, Vincent; Fraisse, Philippe

    2014-01-01

    The trajectory of the whole body center of mass (CoM) is useful as a reliable metric of postural stability. If the evaluation of a subject-specific CoM were available outside of the laboratory environment, it would improve the assessment of the effects of physical rehabilitation. This paper develops a method that enables tracking CoM position using low-cost sensors that can be moved around by a therapist or easily installed inside a patient's home. Here, we compare the accuracy of a personalized CoM estimation using the statically equivalent serial chain (SESC) method and measurements obtained with the Kinect to the case of a SESC obtained with high-end equipment (Vicon). We also compare these estimates to literature-based ones for both sensors. The method was validated with seven able-bodied volunteers for whom the SESC was identified using 40 static postures. The literature-based estimation with Vicon measurements had a average error 24.9 ± 3.7 mm; this error was reduced to 12.8 ± 9.1 mm with the SESC identification. When using Kinect measurements, the literature-based estimate had an error of 118.4 ± 50.0 mm, while the SESC error was 26.6 ± 6.0 mm. The subject-specific SESC estimate using low-cost sensors has an equivalent performance as the literature-based one with high-end sensors. The SESC method can improve CoM estimation of elderly and neurologically impaired subjects by considering variations in their mass distribution. PMID:25215943

  9. Effect of Leg Dominance on The Center-of-Mass Kinematics During an Inside-of-the-Foot Kick in Amateur Soccer Players

    Directory of Open Access Journals (Sweden)

    Zago Matteo

    2014-10-01

    Full Text Available Soccer kicking kinematics has received wide interest in literature. However, while the instep-kick has been broadly studied, only few researchers investigated the inside-of-the-foot kick, which is one of the most frequently performed techniques during games. In particular, little knowledge is available about differences in kinematics when kicking with the preferred and non-preferred leg. A motion analysis system recorded the three-dimensional coordinates of reflective markers placed upon the body of nine amateur soccer players (23.0 ± 2.1 years, BMI 22.2 ± 2.6 kg/m2, who performed 30 pass-kicks each, 15 with the preferred and 15 with the non-preferred leg. We investigated skill kinematics while maintaining a perspective on the complete picture of movement, looking for laterality related differences. The main focus was laid on: anatomical angles, contribution of upper limbs in kick biomechanics, kinematics of the body Center of Mass (CoM, which describes the whole body movement and is related to balance and stability. When kicking with the preferred leg, CoM displacement during the ground-support phase was 13% higher (p<0.001, normalized CoM height was 1.3% lower (p<0.001 and CoM velocity 10% higher (p<0.01; foot and shank velocities were about 5% higher (p<0.01; arms were more abducted (p<0.01; shoulders were rotated more towards the target (p<0.01, 6° mean orientation difference.

  10. Measurement of multi-jet cross sections in proton-proton collisions at a 7 TeV center-of-mass energy

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Föhlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniel Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanère, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafström, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmes, Alan; Holmgren, Sven-Olof; Holtsch, Anne; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebedev, Alexander; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Maß, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Øye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Markus; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sébastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2011-01-01

    Inclusive multi-jet production is studied in proton-proton collisions at a center-of-mass energy of 7 TeV, using the ATLAS detector. The data sample corresponds to an integrated luminosity of 2.4 pb-1. Results on multi-jet cross sections are presented and compared to both leading-order plus parton-shower Monte Carlo predictions and to next-to-leading-order QCD calculations.

  11. Center of Mass Compensation during Gait in Hip Arthroplasty Patients: Comparison between Large Diameter Head Total Hip Arthroplasty and Hip Resurfacing

    OpenAIRE

    Vicky Bouffard; Julie Nantel; Marc Therrien; Pascal-André Vendittoli; Martin Lavigne; François Prince

    2011-01-01

    Objective. To compare center of mass (COM) compensation in the frontal and sagittal plane during gait in patients with large diameter head total hip arthroplasty (LDH-THA) and hip resurfacing (HR). Design. Observational study. Setting. Outpatient biomechanical laboratory. Participants. Two groups of 12 patients with LDH-THA and HR recruited from a larger randomized study and 11 healthy controls. Interventions. Not applicable. Main Outcome Measures. To compare the distance between the hip pros...

  12. Measurements of the reaction e+e-→e+e- at center-of-mass energies of 7.0 and 7.4 GeV

    International Nuclear Information System (INIS)

    Measurements of the cross section for the reaction e+e-→e+e- (Bhabha scattering) at angles close to 90degree, relative to Bhabha scattering at 4degree, are reported at center-of-mass energies of 7.0 and 7.4 GeV. The results are in agreement with quantum electrodynamics, and new limits on cutoff parameters for the photon propagator are given

  13. Real time algorithms in the ATLAS tau trigger system at 7 TeV center of mass energy

    DEFF Research Database (Denmark)

    Kadlecik, Peter

    2012-01-01

    The ATLAS hadronic tau trigger plays an important role in many analyses. Among these analyses are searches for H 0 , H ± , W ' , and Z ' in the tau decay channel. In order to achieve the needed sensitivity in these measurement it is important to reduce the QCD background, but at the same time to ...... keep the signal efficiency high. Furthermore it is important to understand the trigger efficiency in real data. This paper summarizes the performance of the tau trigger in data collected by the ATLAS detector in 2011....

  14. Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

    Czech Academy of Sciences Publication Activity Database

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Anderson, B.D.; Arkhipkin, D.; Averichev, G. S.; Badyal, S. K.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Baumgart, S.; Beavis, D.R.; Bellwied, R.; Benedosso, F.; Betancourt, M.J.; Betts, R. R.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielčík, Jaroslav; Bielčíková, Jana; Biritz, B.; Bland, L.C.; Bnzarov, I.; Bombara, M.; Bonner, B.E.; Bouchet, J.; Braidot, E.; Brandin, A.V.; Bruna, E.; Bueltmann, S.; Burton, T.P.; Bysterský, Michal; Cai, X.Z.; Caines, H.; Calderon, M.; Catu, O.; Cebra, D.; Cendejas, R.; Cervantes, M.C.; Chajecki, Z.; Chaloupka, Petr; Chattopadhyay, S.; Chen, H.F.; Chen, J.H.; Chen, J.Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Choi, K.E.; Christie, W.; Clarke, R.F.; Codrington, M.J.M.; Corliss, R.; Cormier, T.M.; Cosentino, M.R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Dash, S.; Daugherity, M.; De Silva, L.C.; Dedovich, T. G.; DePhillips, M.; Derevschikov, A.A.; de Souza, R.D.; Didenko, L.; Djawotho, P.; Dogra, S.M.; Dong, X.; Drachenberg, J.L.; Draper, J. E.; Dunlop, J.C.; Mazumdar, M.R.D.; Efimov, L.G.; Elhalhuli, E.; Elnimr, M.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Eun, L. (ed.); Fachini, P.; Fatemi, R.; Fedorisin, J.; Feng, A.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Gagliardi, C. A.; Gaillard, L.; Gangaharan, D.R.; Ganti, M.S.; Garcia-Solis, E.J.; Geromitsos, A.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gorbunov, Y.N.; Gordon, A.; Grebenyuk, O.; Grosnick, D.; Grube, B.; Guertin, S.M.; Guimaraes, K.S.F.F.; Gupta, A.; Gupta, N.; Guryn, W.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Hofman, D.J.; Hollis, R.S.; Huang, H.Z.; Humanic, T.J.; Huo, L.; Igo, G..; Lordanova, A.; Jacobs, P.; Jacobs, W.W.; Jakl, Pavel; Jena, C.; Jin, F.; Jones, C.L.; Jones, P.G.; Joseph, J.; Judd, E.G.; Kabana, S.; Kajimoto, K.; Kang, K.; Kapitán, Jan; Kauder, K.; Keane, D.; Kechechyan, A.; Kettler, D.; Khodyrev, V.Yu.; Kikola, D.P.; Kiryluk, J.; Kisiel, A.; Klein, S.R.; Knospe, A.G.; Kocoloski, A.; Koetke, D.D.; Konzer, J.; Kopytine, M.; Koralt, I.; Korsch, W.; Kotchenda, L.; Kushpil, Vasilij; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Krus, M.; Kuhn, C.; Kumar, L.; Kurnadi, P.; Lamont, M.A.C.; Landgraf, J.M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednický, Richard; Lee, Ch.; Lee, J.H.; Leight, W.; LeVine, M.J.; Li, C.; Li, N.; Li, Y.; Lin, G.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Ljubicic, T.; Llope, W.J.; Longacre, R.S.; Love, W.A.; Lu, Y.; Ludlam, T.; Ma, G.L.; Ma, Y.G.; Mahapatra, D.P.; Majka, R.; Mall, O.I.; Mangotra, L.K.; Manweiler, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H.S.; Matulenko, Yu.A.; McDonald, D.; McShane, T.S.; Meschanin, A.; Millner, R.; Minaev, N.G.; Mioduszewski, S.; Mischke, A.; Mohanty, B.; Mondal, M.M.; Morozov, D.A.; Munhoz, M. G.; Nandi, B.K.; Nattrass, C.; Nayak, T. K.; Nelson, J.M.; Netrakanti, P.K.; Ng, M.J.; Nogach, L.V.; Nurushev, S.B.; Odyniec, G.; Ogawa, A.; Okada, H.; Okorokov, V.; Olson, D.; Pachr, M.; Page, B.S.; Pal, S.K.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S.C.; Pile, P.; Planinic, M.; Ploskon, M.A.; Pluta, J.; Plyku, D.; Poljak, N.; Poskanzer, A.M.; Potukuchi, B.V.K.S.; Prindle, D.; Pruneau, C.; Pruthi, N.K.; Pujahari, P.R.; Putschke, J.; Raniwala, R.; Raniwala, S.; Ray, R.L.; Redwine, R.; Reed, R.; Ridiger, A.; Ritter, H.G.; Roberts, J.B.; Rogachevskiy, O.V.; Romero, J.L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M.J.; Sahoo, R.; Sakai, S.; Sakrejda, I.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Schambach, J.; Scharenberg, R.P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shi, S.S.; Shi, X.H.; Sichtermann, E.P.; Simon, F.; Singaraju, R.N.; Skoby, M.J.; Smirnov, N.; Sorensen, P.; Sowinski, J.; Spinka, H.M.; Srivastava, B.; Stanislaus, T.D.S.; Staszak, D.; Strikhanov, M.; Stringfellow, B.; Suaide, A.A.P.; Suarez, M.C.; Subba, N.L.; Šumbera, Michal; Sun, X.M.; Sun, Y.; Sun, Z.; Surrow, B.; Symons, T.J.M.; de Toledo, A. S.; Takahashi, J.; Tang, A.H.; Tang, Z.; Tarini, L.H.; Tarnowsky, T.; Thein, D.; Thomas, J.H.; Tian, J.; Timmins, A.R.; Timoshenko, S.; Tlustý, David; Tokarev, M. V.; Trainor, T.A.; Tram, V.N.; Trattner, A.L.; Trentalange, S.; Tribble, R. E.; Tsai, O.D.; Ulery, J.; Ullrich, T.; Underwood, D.G.; Van Buren, G.; van Leeuwen, M.; van Nieuwenhuizen, G.; Vanfossen, J.A.; Varma, R.; Vasconcelos, G.M.S.; Vasiliev, A. N.; Videbaek, F.; Vigdor, S.E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S.A.; Wada, M.; Walker, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J.S.; Wang, Q.; Wang, X.; Wang, X.L.; Wang, Y.; Webb, G.; Westfall, G.D.; Whitten, C.; Wieman, H.; Wissink, S.W.; Witt, R.; Wu, Y.; Xie, W.; Xu, N.; Xu, Q.H.; Xu, Y.; Xu, Z.; Yang, Y.; Yepes, P.; Yip, K.; Yoo, K.-Y.; Yue, Q.; Zawisza, M.; Zbroszczyk, H.; Zhan, W.; Zhang, S.; Zhang, W.M.; Zhang, X.P.; Zhang, Y.; Zhang, Z.P.; Zhao, Y.; Zhong, C.; Zhou, J.; Zhu, X.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zuo, J.X.

    2010-01-01

    Roč. 832, 1-2 (2010), s. 134-147. ISSN 0375-9474 R&D Projects: GA ČR GA202/07/0079; GA MŠk LA09013 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100502 Keywords : particle production * photons * forward rapidity Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.986, year: 2010

  15. Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

    International Nuclear Information System (INIS)

    We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at √(sNN)=62.4 and 200 GeV. The photons are measured in the region -3.7NN)=62.4 and 200 GeV, respectively. The energy dependence of this ratio could reflect varying contributions from baryons to charged particles, while mesons are the dominant contributors to photon production in the given kinematic region. The photon pseudorapidity distributions normalized by average number of participating nucleon pairs, when plotted as a function of η-ybeam, are found to follow a longitudinal scaling independent of centrality and colliding ion species at both beam energies.

  16. Center of mass energy and system-size dependence of photon production at forward rapidity at RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Abelev, B.I. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Aggarwal, M.M. [Panjab University, Chandigarh 160014 (India); Ahammed, Z. [Variable Energy Cyclotron Centre, Kolkata 700064 (India); Alakhverdyants, A.V. [Joint Institute for Nuclear Research, Dubna 141 980 (Russian Federation); Anderson, B.D. [Kent State University, Kent, OH 44242 (United States); Arkhipkin, D. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Averichev, G.S. [Joint Institute for Nuclear Research, Dubna 141 980 (Russian Federation); Badyal, S.K. [University of Jammu, Jammu 180001 (India); Balewski, J. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Barannikova, O. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Barnby, L.S. [University of Birmingham, Birmingham (United Kingdom); Baudot, J. [Institut de Recherches Subatomiques, Strasbourg (France); Baumgart, S. [Yale University, New Haven, CT 06520 (United States); Beavis, D.R. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Bellwied, R. [Wayne State University, Detroit, MI 48201 (United States); Benedosso, F. [NIKHEF and Utrecht University, Amsterdam (Netherlands); Betancourt, M.J. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Betts, R.R. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Bhasin, A. [University of Jammu, Jammu 180001 (India); Bhati, A.K. [Panjab University, Chandigarh 160014 (India)

    2010-01-01

    We present the multiplicity and pseudorapidity distributions of photons produced in Au + Au and Cu + Cu collisions at sq root(s{sub NN})=62.4 and 200 GeV. The photons are measured in the region -3.7

  17. Measurement of the jet fragmentation function and transverse profile in proton-proton collisions at a center-of-mass energy of 7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Debbe, Ramiro; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grafström, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Irles Quiles, Adrian; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuze, Masahiro; Kuzhir, Polina; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin–Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2011-01-01

    The jet fragmentation function and transverse profile for jets with 25 GeV < ptJet < 500 GeV and etaJet<1.2 produced in proton-proton collisions with a center-of-mass energy of 7 TeV are presented. The measurement is performed using data with an integrated luminosity of 36 pb^-1. Jets are reconstructed and their momentum measured using calorimetric information. The momenta of the charged particle constituents are measured using the tracking system. The distributions corrected for detector effects are compared with various Monte Carlo event generators and generator tunes. Several of these choices show good agreement with the measured fragmentation function. None of these choices reproduce both the transverse profile and fragmentation function over the full kinematic range of the measurement.

  18. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Miller, D W; Schwartzman, Ariel

    2011-01-01

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of $sqrt{s}=7$ TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include t...

  19. Measurement of the photon-proton total cross section at a center-of-mass energy of 209 GeV at HERA

    International Nuclear Information System (INIS)

    The photon-proton total cross section has been measured in the process e+p→e+γp→e+X with the ZEUS detector at HERA. Events were collected with photon virtuality Q22 and average γp center-of-mass energy Wγp=209 GeV in a dedicated run, designed to control systematic effects, with an integrated luminosity of 49 nb-1. The measured total cross section is σtotγp=174±1 (stat.)±13 (syst.) μb. The energy dependence of the cross section is compatible with parameterizations of high-energy pp and pp-bar data

  20. Study of the pion electromagnetic form factor in the timelike region, from the production threshold to 900 MeV in the center of mass

    International Nuclear Information System (INIS)

    The pion form factor is measured in the reaction e+e-→π+π- for center of mass energies in the range 480-900 MeV. The results are first analysed in terms of the conventional Vector Meson Dominance formalism, and then taking into account the ωπ inelastic channel. The results of this later formalisms is a pion form factor (F) which fits quite well all the existing data on F both in the timelike and spacelike regions, and a pion mean square radius

  1. Measurements of the reaction e+e- → μ+μ- at center-of-mass energies in the range 6.2--7.4 GeV

    International Nuclear Information System (INIS)

    Measurements of the cross section for the muon-pair-annihilation reaction e+e- → μ+μ-, relative to Bhabha scattering at 40, are reported at center-of-mass energies in the range 6.2--7.4 GeV. These measurements provide a fundamental test of quantum electrodynamics (QED) for timelike values of the invariant four-momentum transfer q2 as high as 54.8 (GeV/c)2, which in this reaction is carried by the photon propagator. The results are in agreement with predictions of QED

  2. Effective mass distributions for protons, pions and kaons particle combinations (two and three hadrons) for Au-Au reactions at 200 AGeV center of mass energy

    International Nuclear Information System (INIS)

    A preliminary analysis of the effective mass distributions for two and three hadronic combinations including protons, pions and kaons is presented for a number of 798,000 Au-Au reactions at 200 AGeV center of mass energy collected by the BRAHMS Collaboration (RHIC-Brookhaven National Laboratory). Different procedures to detect the classical resonances inside the high level of background were used. Comparisons with simulations of experimental data using UrQMD code are given, too. The strong suppression of the hadronic resonances weights (delta resonance, N*, K*, rho, etc.) could suggest a possible quark-gluon state. (authors)

  3. Measurement of the photon proton total cross section at a center-of-mass energy of 209-GeV at HERA

    CERN Document Server

    Chekanov, S; Krakauer, D A; Magill, S; Musgrave, B; Pellegrino, A; Repond, J; Yoshida, R; Mattingly, M C K; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; Contin, A; Corradi, M; De Pasquale, S; Giusti, P; Iacobucci, G; Levi, G; Margotti, A; Massam, Thomas; Nania, R; Palmonari, F; Pesci, A; Sartorelli, G; Zichichi, A; Aghuzumtsyan, G; Bartsch, D; Brock, I; Crittenden, James Arthur; Goers, S; Hartmann, H; Hilger, E; Irrgang, P; Jakob, H P; Kappes, A; Katz, U F; Kerger, R; Kind, O; Paul, E; Rautenberg, J; Renner, R; Schnurbusch, H; Stifutkin, A; Tandler, J; Voss, K C; Weber, A; Wessoleck, H; Bailey, D S; Brook, N H; Cole, J E; Foster, B; Heath, G P; Heath, H F; Robins, S; Rodrigues, E; Scott, J; Tapper, R J; Wing, M; Capua, M; Mastroberardino, A; Schioppa, M; Susinno, G; Jeoung, H Y; Kim, J Y; Lee, J H; Lim, I T; Ma, K J; Pac, M Y; Caldwell, A; Helbich, M; Liu, X; Mellado, B; Paganis, S; Schmidke, W B; Sciulli, F; Chwastowski, J; Eskreys, Andrzej; Figiel, J; Olkiewicz, K; Przybycien, M B; Stopa, P; Zawiejski, L; Bednarek, B; Grabowska-Bold, I; Jelen, K; Kisielewska, D; Kowal, A M; Kowal, M; Kowal, T; Mindur, B; Rulikowska-Zarebska, E; Suszycki, L; Szuba, D; Szuba, J; Kotanski, Andrzej; Slominski, W; Bauerdick, L A T; Behrens, U; Borras, K; Chiochia, V; Dannheim, D; Desler, K; Drews, G; Fourletova, J; Fox-Murphy, A; Fricke, U; Geiser, A; Göbel, F; Göttlicher, P; Graciani, R; Haas, T; Hain, W; Hartner, G F; Hillert, S; Kötz, U; Kowalski, H; Labes, H; Lelas, D; Löhr, B; Mankel, R; Martens, J; Martínez, M; Moritz, M; Notz, D; Petrucci, M C; Polini, A; Schneekloth, U; Selonke, F; Stonjek, S; Surrow, B; Whitmore, J J; Wichmann, R; Wolf, G; Youngman, C; Zeuner, W; Coldewey, C; López-Duran-Viani, A; Meyer, A; Schlenstedt, S; Barbagli, G; Gallo, E; Genta, C; Pelfer, P G; Bamberger, Andreas; Benen, A; Coppola, N; Markun, P; Raach, H; Wölfle, S; Bell, M; Bussey, Peter J; Doyle, A T; Glasman, C; Hanlon, S; Lee, S W; Lupi, A; McCance, G J; Saxon, D H; Skillicorn, Ian O; Bodmann, B; Holm, U; Salehi, H; Wick, K; Ziegler, A; Carli, T; Gialas, I; Klimek, K; Lohrmann, E; Milite, M; Collins-Tooth, C; Foudas, C; Goncalo, R; Long, K R; Metlica, F; Miller, D B; Tapper, A D; Walker, R; Cloth, P; Filges, D; Kuze, M; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Pokrovskiy, N S; Zhautykov, B O; Ahn, S H; Lee, S B; Park, S K; Lim, H; Son, D; Barreiro, F; García, G; González, O; Labarga, L; Del Peso, J; Redondo, I; Terron, J; Vázquez, M; Barbi, M; Bertolin, A; Corriveau, F; Ochs, A; Padhi, S; Stairs, D G; Saint-Laurent, M G; Tsurugai, T; Antonov, A; Bashkirov, V; Danilov, P; Dolgoshein, B A; Gladkov, D; Sosnovtsev, V V; Suchkov, S; Dementiev, R K; Ermolov, P F; Golubkov, Yu A; Katkov, I I; Khein, L A; Korotkova, N A; Korzhavina, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Shche, L M; Solomin, A N; Vlasov, N N; Zotkin, S A; Bokel, C; Engelen, J; Grijpink, S; Koffeman, E; Kooijman, P; Maddox, E; Schagen, S; Tassi, E; Tiecke, H G; Tuning, N; Velthuis, J J; Wiggers, L; De Wolf, E; Brümmer, N; Bylsma, B; Durkin, L S; Gilmore, J; Ginsburg, C M; Kim, C L; Ling, T Y; Boogert, S; Cooper-Sarkar, A M; Devenish, R C E; Ferrando, J; Matsushita, T; Rigby, M; Ruske, O; Sutton, M R; Walczak, R; Brugnera, R; Carlin, R; Dal Corso, F; Dusini, S; Garfagnini, A; Limentani, S; Longhin, A; Parenti, A; Posocco, M; Stanco, L; Turcato, M; Adamczyk, L; Oh, B Y; Saull, P R B; Iga, Y; D'Agostini, Giulio; Marini, G; Nigro, A; Cormack, C; Hart, J C; McCubbin, N A; Heusch, C A; Park, I H; Pavel, N; Abramowicz, H; Dagan, S; Gabareen, A; Kananov, S; Kreisel, A; Levy, A; Abe, T; Fusayasu, T; Kohno, T; Umemori, K; Yamashita, T; Hamatsu, R; Hirose, T; Inuzuka, M; Kitamura, S; Matsuzawa, K; Nishimura, T; Arneodo, M; Cartiglia, N; Cirio, R; Costa, M; Ferrero, M I; Maselli, S; Monaco, V; Peroni, C; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Galea, R; Koop, T; Levman, G M; Martin, J F; Mirea, A; Sabetfakhri, A; Butterworth, J M; Gwenlan, C; Hall-Wilton, R; Hayes, M E; Heaphy, E A; Jones, T W; Lane, J B; Lightwood, M S; West, B J; Ciborowski, J; Ciesielski, R; Grzelak, G; Nowak, R J; Pawlak, J M; Smalska, B; Sztuk, J; Tymieniecka, T; Ukleja, A; Ukleja, J; Zakrzewski, J A; Adamus, M; Plucinsky, P P; Eisenberg, Y; Gladilin, L K; Hochman, D; Karshon, U; Breitweg, J; Chapin, D; Cross, R; Kcira, D; Lammers, S; Reeder, D D; Savin, A A; Smith, W H; Deshpande, A A; Dhawan, S; Hughes, V W; Straub, P B; Bhadra, S; Catterall, C D; Fourletov, S; Menary, S R; Soares, M; Standage, J

    2002-01-01

    The photon-proton total cross section has been measured in the process e+ p -> e+ gamma p -> e+ X with the ZEUS detector at HERA. Events were collected with photon virtuality Q^2 < 0.02 GeV^2 and average gamma-p center-of-mass energy W_{gamma p} = 209 GeV in a dedicated run, designed to control systematic effects, with an integrated luminosity of 49 nb^{-1}. The measured total cross section is sigma_{tot}^{gamma p} = 174 +- 1 (stat.) +- 13 (syst.) microbarns. The energy dependence of the cross section is compatible with parameterizations of high-energy p-p and p-pbar data.

  4. Classical states of an electric dipole in an external magnetic field: Complete solution for the center of mass and trapped states

    International Nuclear Information System (INIS)

    We study the classical behavior of an electric dipole in the presence of a uniform magnetic field. Using the Lagrangian formulation, we obtain the equations of motion, whose solutions are represented in terms of Jacobi functions. We also identify two constants of motion, namely, the energy E and a pseudomomentumC→. We obtain a relation between the constants that allows us to suggest the existence of a type of bound states without turning points, which are called trapped states. These results are consistent with and complementary to previous results. - Highlights: • Bound states without turning points. • Lagrangian Formulation for an electric dipole in a magnetic field. • Motion of the center of mass and trapped states. • Constants of motion: pseudomomentum and energy

  5. Study of direct photon production in proton-antiproton interactions at a center-of-mass of 630 GeV with UA2 detector

    International Nuclear Information System (INIS)

    A study of direct photon production in proton antiproton collisions performed at CERN using the UA2 detector is presented. Direct photon cross sections have been measured for two pseudo-rapidity values (0 and 1.4). The transverse momentum range extends from 12 to 50 GeV/c. Estimation of the signal/noise ratio is explained and sources of systematic uncertainties are summarized. The π0 production cross section is also determined for a pseudo-rapidity of 1.4. Six events containing two photons in the final state are observed. The photon/jet production ratio is determined and found to be in agreement with first order quantum chromodynamic based calculations. The photon/π0 production ratio is increasing with transverse momentum and is compared with a measurement performed at the ISR at a center of mass energy ten times smaller. Direct photon cross sections are well described by a second order quantum chromodynamic calculation

  6. A combined model for the pseudorapidity distributions in p-p collisions at center-of-mass energies from 23.6 to 7000 GeV

    CERN Document Server

    Jiang, Zhi-Jin; Wang, Jie

    2015-01-01

    In p-p collisions, the produced charge particles consist of two leading particles and those frozen out from the hot and dense matter created in collisions. The two leading particles are respectively in the projectile and target fragmentation region, which, in this paper, are conventionally supposed to have Gaussian rapidity distributions. The hot and dense matter is assumed to expand according to the unified hydrodynamics, a hydro model which unifies the features of Landau and Hwa-Bjorken model, and freeze out into charged particles from a space-like hypersurface with a fixed proper time of Tau_FO. The rapidity distribution of this part of charged particles can be derived out analytically. The combined contribution from both leading particles and unified hydrodynamics is then compared against the experimental data performed in a wide now available center-of-mass energy region from 23.6 to 7000 GeV. The model predictions are in well consistent with experimental measurements.

  7. Relativistic center-of-mass variables and the harmonic oscillator quark model calculation of the nucleon magnetic moment and the axial-vector coupling constant

    Energy Technology Data Exchange (ETDEWEB)

    Ilakovac, A.; Tadic-acute-accent, D.D.; Coutinho, F.A.B.; Krmpotic-acute-accent, F.

    1986-04-15

    We study the introduction of the internal dynamical variables for consituent quarks. These variables are related to the center-of-mass of a nucleon. The problem is connected with the description of spinorial properties of the quarks. The spinors must be artificially introduced in a harmonic oscillator (HO) model. Experimental values of the magnetic moment and the axial-vector coupling constant of a nucleon can be easily reproduced. The theoretical results are not sensitive to the theoretical details; they follow from the general properties of the quark structure of baryons. The connections with the relativistic HO models are also discussed. The case of a very small confinement radius is explored in the Appendix.

  8. Relativistic center-of-mass variables and the harmonic oscillator quark model calculation of the nucleon magnetic moment and the axial-vector coupling constant

    International Nuclear Information System (INIS)

    We study the introduction of the internal dynamical variables for consituent quarks. These variables are related to the center-of-mass of a nucleon. The problem is connected with the description of spinorial properties of the quarks. The spinors must be artificially introduced in a harmonic oscillator (HO) model. Experimental values of the magnetic moment and the axial-vector coupling constant of a nucleon can be easily reproduced. The theoretical results are not sensitive to the theoretical details; they follow from the general properties of the quark structure of baryons. The connections with the relativistic HO models are also discussed. The case of a very small confinement radius is explored in the Appendix

  9. J/Ψ production in proton-proton and deuteron-gold collisions at 200 GeV in the nucleon-nucleon center of mass

    International Nuclear Information System (INIS)

    To understand the quark-gluon plasma formed in heavy-ion collisions, we have to understand the cold nuclear matter behavior. In this aim we studied deuteron-gold collisions at 200 GeV in the nucleon-nucleon center of mass at the collider RHIC. The J/Ψ was suggested to probe the plasma. We studied its production via its muon decay measured in the muon spectrometers of the PHENIX experiment. We developed a Kalman fit method for tracks and vertex, for the muon spectrometers data analysis. The J/Ψ production was analyzed in function of kinematic and geometric variables. Comparison between proton-proton and deuterium-gold data allowed a better understanding of shadowing and absorption phenomena present in collisions without any dense matter. (author)

  10. Search for the Higgs boson at center-of-mass energies between 161 and 184 GeV in the 4-jet channel with OPAL

    International Nuclear Information System (INIS)

    A search for the Standard Model Higgs boson using data from e+e- collisions collected at center-of-mass energies from 161 to 184 GeV with the OPAL detector at LEP is presented. The search is applied to events in the four-jet-channel, in which the Higgs boson decays into a bb pair and the associated Z0 decays into quark and anti-quark. The data analyzed corresponds to an integrated luminosity of 75.0 pb-1. Five candidate events are observed, in agreement with the Standard Model background expectation of 6.61±0.42 (stat.) ±1.72 (syst.) events. A lower limit of 74.0 GeV is derived for the mass of the Standard Model Higgs boson at the 95% confidence level. In combination with OPAL searches in other channels a limit of 86.9 GeV is obtained. (orig.)

  11. Measurements of the reaction e+e- → γγ at center-of-mass energies in the range 6.2--7.4 GeV

    International Nuclear Information System (INIS)

    Measurements of the cross section for the pair-annihilation reaction e+e- → γγ at angles close to 90degree, relative to Bhabha scattering at 4degree, are reported at center-of-mass energies in the range 6.2--7.4 GeV. These measurements provide a fundamental test of quantum electrodynamics (QED) for spacelike values of the invariant four-momentum transfer q2 as high at -40 (GeV/c)2, which in this reaction is carried by the lepton propagator. A principal feature of the detection apparatus is the use of large NaI(Tl) total-absorption spectrometers. The results are in agreement with the predictions of QED

  12. Stability of fragments and study of participant-spectator matter at peak center-of-mass energy

    CERN Document Server

    Kaur, Sukhjit

    2011-01-01

    We simulate the central reactions of nearly symmetric, and asymmetric systems, for the energies at which the maximum production of IMFs occurs (E$_{c.m.}^{peak}$).This study is carried out by using hard EOS along with cugnon cross section and employing MSTB method for clusterization. We study the various properties of fragments. The stability of fragments is checked through persistence coefficient, gain term and binding energy. The information about the thermalization and stopping in heavy-ion collisions is obtained via relative momentum, anisotropy ratio, and rapidity distribution. We find that for a complete stopping of incoming nuclei very heavy systems are required. The mass dependence of various quantities (such as average and maximum central density, collision dynamics as well as the time zone for hot and dense nuclear matter) is also presented. In all cases (i.e., average and maximum central density, collision dynamics as well as the time zone for hot and dense nuclear matter) a power law dependence is...

  13. Modeling the Impact of Space Suit Components and Anthropometry on the Center of Mass of a Seated Crewmember

    Science.gov (United States)

    Blackledge, Christopher; Margerum, Sarah; Ferrer, Mike; Morency, Richard; Rajulu, Sudhakar

    2010-01-01

    The Crew Impact Attenuation System (CIAS) is the energy-absorbing strut concept that dampens Orion Crew Exploration Vehicle (CEV) landing loads to levels sustainable by the crew. Significant COM variations across suited crew configurations would amplify the inertial effects of the pallet and potentially create unacceptable crew loading during launch and landing. The objective of this study was to obtain data needed for dynamic simulation models by quantifying the effects of posture, suit components, and the expected range of anthropometry on the COM of a seated individual. Several elements are required for the COM calculation of a suited human in a seated position: anthropometry, body segment mass, suit component mass, suit component location relative to the body, and joint angles defining the seated posture. Three-dimensional (3D) human body models, suit mass data, and vector calculus were utilized to compute the COM positions for 12 boundary manikins in two different seated postures. The analysis focused on two objectives: (1) quantify how much the wholebody COM varied from the smallest to largest subject and (2) quantify the effects of the suit components on the overall COM in each seat configuration. The location of the anterior-posterior COM varied across all boundary manikins by about 7 cm, and the vertical COM varied by approximately 9 to 10 cm. The mediolateral COM varied by 1.2 cm from the midline sagittal plane for both seat configurations. The suit components caused an anterior shift of the total COM by approximately 2 cm and a shift to the right along the mediolateral axis of 0.4 cm for both seat configurations. When the seat configuration was in the standard posture the suited vertical COM shifted inferiorly by as much as 1 cm, whereas in the CEV posture the vertical COM had no appreciable change. These general differences were due to the high proportion of suit mass located in the boots and lower legs and their corresponding distance from the body COM

  14. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David Wilkins

    2012-03-20

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.

  15. A calorimetric measurement of the strong coupling constant in electron-positron annihilation at a center-of-mass energy of 91.6 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Martirena, S.G.

    1994-04-01

    In this work, a measurement of the strong coupling constant {alpha}{sub s} in e{sup +}e{sup {minus}} annihilation at a center-of-mass energy of 91.6 GeV is presented. The measurement was performed with the SLD at the Stanford Linear Collider facility located at the Stanford Linear Accelerator Center in California. The procedure used consisted of measuring the rate of hard gluon radiation from the primary quarks in a sample of 9,878 hadronic events. After defining the asymptotic manifestation of partons as `jets`, various phenomenological models were used to correct for the hadronization process. A value for the QCD scale parameter {Lambda}{sub bar MS}, defined in the {sub bar MS} renormalization convention with 5 active quark flavors, was then obtained by a direct fit to O({alpha}{sub s}{sup 2}) calculations. The value of {alpha}{sub s} obtained was {alpha}{sub s}(M{sub z0}) = 0.122 {plus_minus} 0.004 {sub {minus}0.007} {sup +0.008} where the uncertainties are experimental (combined statistical and systematic) and theoretical (systematic) respectively. Equivalently, {Lambda}{sub bar MS} = 0.28 {sub {minus}0.10}{sup +0.16} GeV where the experimental and theoretical uncertainties have been combined.

  16. Search for new particles and new phenomena in e+e- collisions at 44 GeV/c2 in the center of mass with the CELLO detector

    International Nuclear Information System (INIS)

    The subject of this thesis is the search of new particles and new phenomena in e+e- collisions at an average energy of 44 GeV/c2 in the center of mass. The experimental set-up used was the CELLO detector located at the PETRA e+e-collider. After a theoretical introduction of these new particles in the framework of the electroweak standard model, a search of new charged and neutral heavy leptons has been carried out. No evidence has been found for such objects. This has led to the setting new limits of the mass of these new particles. However this analysis has led to the discovery of a very peculiar event. In order to investigate further the origin of this event, study of the quantum electrodynamic at the order α4 has been made. A very poor agreement of the data with the theory has been observed. However the limited statistics did not allow to a definitive conclusion. Finally, we have searched for new particles beyond the standard model. This new particles might reveale the existence of new forces. No evidence has been found and new limits for the mass of these objects have been set

  17. And yet it moves: The dangers of artificially fixing the Milky Way center of mass in the presence of a massive Large Magellanic Cloud

    CERN Document Server

    Gómez, Facundo A; Carpintero, Daniel D; Villalobos, Álvaro; O'Shea, Brian W; Bell, Eric F

    2014-01-01

    Motivated by recent studies suggesting that the Large Magellanic Cloud (LMC) could be significantly more massive than previously thought, we explore whether the approximation of an inertial Galactocentric reference frame is still valid in the presence of such a massive LMC. We find that previous estimates of the LMC's orbital period and apocentric distance derived assuming a fixed Milky Way are significantly shortened for models where the Milky Way is allowed to move freely in response to the gravitational pull of the LMC. Holding other parameters fixed, the fraction of models favoring first infall is reduced. Due to this interaction, the Milky Way center of mass within the inner 50 kpc can be significantly displaced in phase-space in a very short period of time that ranges from 0.3 to 0.5 Gyr by as much as 20 kpc and 75 km/s. Furthermore, we show that the gravitational pull of the LMC and response of the Milky Way are likely to significantly affect the orbit and phase space distribution of tidal debris from ...

  18. Search for Scalar Bottom Quarks from Gluino Decays in Proton - Anti-proton Collisions at a Center-of-Mass Energy of 1.96-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Rott, Carsten

    2004-12-01

    The authors have performed a search for the scalar bottom quark ({tilde b}{sub 1}) from gluino ({tilde g}) decays in an R-parity conserving SUSY scenario with m{sub {tilde g}} > m{sub {tilde b}{sub 1}}, by investigating a final state of large missing transverse energy, with three or more jets, and some of them from the hadronization of b-quarks. A data sample of 156 pb{sup -1} collected by the Collider Detector at Fermilab at a center-of-mass energy of {radical}s = 1.96 TeV was used. For the final selection, jets containing secondary displaced vertices were required. This analysis has been performed ''blind'', in that the inspection of the signal region was only made after the Standard Model prediction was finalized. Comparing data with SUSY predictions, they can exclude masses of the gluino and sbottom of up to 280 and 240 GeV/c{sup 2} respectively.

  19. A calorimetric measurement of the strong coupling constant in electron-positron annihilation at a center-of-mass energy of 91.6 GeV

    International Nuclear Information System (INIS)

    In this work, a measurement of the strong coupling constant αs in e+e- annihilation at a center-of-mass energy of 91.6 GeV is presented. The measurement was performed with the SLD at the Stanford Linear Collider facility located at the Stanford Linear Accelerator Center in California. The procedure used consisted of measuring the rate of hard gluon radiation from the primary quarks in a sample of 9,878 hadronic events. After defining the asymptotic manifestation of partons as 'jets', various phenomenological models were used to correct for the hadronization process. A value for the QCD scale parameter ΛbarMS, defined in the barMS renormalization convention with 5 active quark flavors, was then obtained by a direct fit to O(αs2) calculations. The value of αs obtained was αs(Mz0) = 0.122 ± 0.004 -0.007+0.008 where the uncertainties are experimental (combined statistical and systematic) and theoretical (systematic) respectively. Equivalently, ΛbarMS = 0.28 -0.10+0.16 GeV where the experimental and theoretical uncertainties have been combined

  20. Measurements of the charged underlying event with the ATLAS detector at 7TeV & 900 GeV center of mass energies

    Science.gov (United States)

    Hare, Gabriel Archacki

    Proton collisions simultaneously access very high energies through parton scattering and low energy effects through parton correlations. While the interactions of partons at high energies are well described by perturbative parton calculations, simulations of low energy interactions of the quark and gluon partons are based on models rather than well-defined approximations from first principles. In proton collisions that are selected for high energy physics studies one pair of partons carries a large fraction of the energy of the colliding protons. In addition to this primary parton scattering it is expected that there will be secondary interactions of additional parton pairs yielding an "Underlying Event." Measuring correlations between the primary and secondary scattering provides some insight into the modeling of low-energy QCD. The first measurements of the Underlying Event by the ATLAS detector at 900 GeV and 7 TeV center of mass energies are presented. For these measurements the highest transverse momentum reconstructed track is used to characterize the energy and orientation of the primary scattering of partons. The results of these measurements indicate a higher mean multiplicity of particles arising from secondary interactions than was predicted by models tuned to measurements made at lower energies. In the context of a Negative Binomial distribution for particle multiplicities these results indicate that the measured Negative Binomial distribution is more Exponential than was predicted by any contemporaneous model of hadron production.

  1. Measurement of Dijet Cross Sections in Proton-Proton Collisions at 7 TeV Center-of-Mass Energy Using the ATLAS Detector

    CERN Document Server

    Meyer, Christopher

    Dijet production is measured in proton-proton collisions with a center-of-mass energy of 7 TeV at the LHC. Double-differential dijet cross sections are presented as functions of the dijet mass and rapidity separation of the two highest-transverse-momentum jets in an event. The data sample collected in 2011 by the ATLAS detector is considered, corresponding to an integrated luminosity of 4.5 fb-1. Jets are defined using the anti-kt algorithm, with two choices of the jet radius parameter, R=0.4 and R=0.6. The results are compared with next-to-leading-order (NLO) perturbative calculations, as well as NLO Monte Carlo generator predictions. In both cases, electroweak effects are accounted for. A method for the quantitative comparison of theory predictions with data is presented, employing a frequentist technique. This allows for strong statements on which sets of parton distribution functions best describe the data. A theory of quark compositeness modeled by contact interactions is confronted by the unfolded data ...

  2. On Saturn's rotation relative to a center of mass under the action of the gravitational moments of the Sun and Jupiter

    Science.gov (United States)

    Krasilnikov, P. S.; Amelin, R. N.

    2016-03-01

    Saturn's rotation relative to a center of mass is considered within an elliptic restricted three-body problem. It is assumed that Saturn is a solid under the action of gravity of the Sun and Jupiter. The motions of Saturn and Jupiter are considered elliptic with small eccentricities e S and e J , respectively; the mean motion of Jupiter n J is also small. We obtain the averaged Hamiltonian function for a small parameter of ɛ = n J and integrals of evolution equations. The main effects of the influence of Jupiter on Saturn's rotation are described: (α) the evolution of the constant parameters of regular precession for the angular momentum vector I2; (β) the occurrence of new libration zones of oscillations I2 near the plane of the celestial equator parallel to the plane of the Jupiter's orbit; (γ) the occurrence of additional unstable equilibria of vector I2 at the points of the north and south poles of the celestial sphere and, as a result, the existence of homoclinic trajectories; and (δ) the existence of periodic trajectories with arbitrarily large periods near the homoclinic trajectory. It is shown that the effects of (β), (γ), and (δ) are caused by the eccentricity e of the Jupiter's orbit and are practically independent of Jupiter's mass (within satellite approximation).

  3. Search for neutral Higgs bosons in $e^{+}e^{-}$ interactions at center-of-mass energies between 130 GeV and 183 GeV

    CERN Document Server

    Matzner-Dominguez, David Aaron

    1998-01-01

    We have implemented precision tracking algorithms and developed novel techniques to efficiently identify the production of b quarks with a high purity. These techniques would allow us to discover the Higgs boson through its decay into b quark pairs. The search for the Higgs boson was carried out within the framework of the Standard Model and a restricted version of the Minimal Supersymmetric Standard Model using the four-jets channel in the data from e$\\sp+$e$\\sp-$ interactions with center-of-mass energies 130 $\\rm GeV \\le \\sqrt{s} \\le 183$ GeV collected by the L3 detector. After combining the results of the search in the four-jets channel with the other decay modes, no evidence of the production of a Higgs signal is observed. Lower limits are set on the mass of the Standard Model Higgs and on the Minimal Supersymmetric Standard Model Higgs as a function of tan $\\beta.$ The mass of the Standard Model Higgs boson, h, is restricted to be

  4. Search for Supersymmetry Using Diphoton Events in p anti-p Collisions at a center of mass energy of 1.96-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sin [Texas A & M Univ., College Station, TX (United States)

    2010-05-01

    This dissertation presents the results of a search for supersymmetry in protonantiproton collisions with a center of mass energy of 1.96 TeV studied with the Collider Detector at Fermilab. Our strategy is to select collisions with two photons in the nal state that have the properties of being the decays of very massive supersymmetric particles. This includes looking for large total energy from the decayed particles as well as for the presence of particles that leave the detector without interacting. We nd no events using 2.6 fb-1 of data collected during the 2004-2008 collider run of the Fermilab Tevatron which is consistent with the background estimate of 1.4 0.4 events. Since there is no evidence of new particles we set cross section limits in a gaugemediated supersymmetry model with X$\\tilde{o}$1→ eG, where the X$\\tilde{o}$1 and eG are the lightest neutralino and the gravitino (the lightest supersymmetric particle), respectively. We set limits on models as a function of the X$\\tilde{o}$1 mass and lifetime, producing the world's most sensitive search for X$\\tilde{o}$1 by excluding masses up to 149 GeV=c2 for X$\\tilde{o}$1 lifetimes much less than 1 ns.

  5. Similar muscles contribute to horizontal and vertical acceleration of center of mass in forward and backward walking: implications for neural control.

    Science.gov (United States)

    Jansen, Karen; De Groote, Friedl; Massaad, Firas; Meyns, Pieter; Duysens, Jacques; Jonkers, Ilse

    2012-06-01

    Leg kinematics during backward walking (BW) are very similar to the time-reversed kinematics during forward walking (FW). This suggests that the underlying muscle activation pattern could originate from a simple time reversal, as well. Experimental electromyography studies have confirmed that this is the case for some muscles. Furthermore, it has been hypothesized that muscles showing a time reversal should also exhibit a reversal in function [from accelerating the body center of mass (COM) to decelerating]. However, this has not yet been verified in simulation studies. In the present study, forward simulations were used to study the effects of muscles on the acceleration of COM in FW and BW. We found that a reversal in function was indeed present in the muscle control of the horizontal movement of COM (e.g., tibialis anterior and gastrocnemius). In contrast, muscles' antigravity contributions maintained their function for both directions of movement. An important outcome of the present study is therefore that similar muscles can be used to achieve opposite functional demands at the level of control of the COM when walking direction is reversed. However, some muscles showed direction-specific contributions (i.e., dorsiflexors). We concluded that the changes in muscle contributions imply that a simple time reversal would be insufficient to produce BW from FW. We therefore propose that BW utilizes extra elements, presumably supraspinal, in addition to a common spinal drive. These additions are needed for propulsion and require a partial reconfiguration of lower level common networks. PMID:22423005

  6. Properties of jets measured from tracks in proton-proton collisions at center-of-mass energy $\\sqrt{s}$ = 7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafström, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Mathieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin dit Latour, Bertrand; Martin–Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2011-01-01

    Jets are identified and their properties studied in center-of-mass energy sqrt(s) = 7 TeV proton-proton collisions at the Large Hadron Collider using charged particles measured by the ATLAS inner detector. Events are selected using a minimum bias trigger, allowing jets at very low transverse momentum to be observed and their characteristics in the transition to high-momentum fully perturbative jets to be studied. Jets are reconstructed using the anti-kt algorithm applied to charged particles with two radius parameter choices, 0.4 and 0.6. An inclusive charged jet transverse momentum cross section measurement from 4 GeV to 100 GeV is shown for four ranges in rapidity extending to 1.9 and corrected to charged particle-level truth jets. The transverse momenta and longitudinal momentum fractions of charged particles within jets are measured, along with the charged particle multiplicity and the particle density as a function of radial distance from the jet axis. Comparison of the data with the theoretical models i...

  7. Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2011-08-01

    Jet production in PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV was studied with the CMS detector at the LHC, using a data sample corresponding to an integrated luminosity of 6.7 inverse microbarns. Jets are reconstructed using the energy deposited in the CMS calorimeters and studied as a function of collision centrality. With increasing collision centrality, a striking imbalance in dijet transverse momentum is observed, consistent with jet quenching. The observed effect extends from the lower cut-off used in this study (jet transverse momentum = 120 GeV/c) up to the statistical limit of the available data sample (jet transverse momentum approximately 210 GeV/c). Correlations of charged particle tracks with jets indicate that the momentum imbalance is accompanied by a softening of the fragmentation pattern of the second most energetic, away-side jet. The dijet momentum balance is recovered when integrating low transverse momentum particles distributed over a wide angular range relative to the direction of the away-side jet.

  8. Search for New Physics in a Final State with Same-Sign Dileptons, Jets, and Missing Transverse Energy at 7 TeV Center of Mass Energy

    CERN Document Server

    Golf, Frank

    2012-01-01

    We report on a search for new physics in a final state with two same sign leptons, missing transverse energy, and significant hadronic activity at a center of mass energy $sqrt{s}$ = 7 TeV. The data were collected with the CMS detector at the CERN LHC and correspond to an integrated luminosity of 0.98 $mathrm{fb}^{-1}$. Data--driven methods are developed to estimate the dominant Standard Model backgrounds. No evidence for new physics is observed. The dominant background to the analysis comes from failures of lepton identification in Standard Model $tar{t}$ events. The $tar{t}$ production cross section in the dilepton final state is measured using 3.1 $mathrm{fb}^{-1}$ of data. The cross section is measured to be 194 $pm$ 72 (stat) $pm$ 24 (syst) $pm$ 21 (lumi) pb. An algorithm is developed that uses tracking information to improve the reconstruction of missing transverse energy. The reconstruction of missing transverse energy is commissioned using the first collisio ns recorded at 0.9, 2.36 and 7 TeV data. E...

  9. Inclusive hadron production and two particle correlations in e+e- annihilation at 29 GeV center-of-mass energy

    International Nuclear Information System (INIS)

    We have studied hadron production in e+e- annihilation at 29 GeV center-of-mass energy using the PEP-4 Time Projection Chamber Detector. The inclusive cross sections and mean multiplicities for π+-, K+- and (p + anti p) production have been measured using ionization energy loss to separate particle species. We find on average 10.7 +- 0.6 π+-, 1.35 +- .13 K+- and 0.60 +- 0.08 (p + anti p) per multihadron event. The differential cross section is well described by a number of Monte Carlo hadronization models. In addition, we have observed correlations in rapidity space for identified pions and kaons. Short-range KK correlations provide evidence for local flavor compensation during hadronization. Long-range ππ and KK correlations indicate that the initial partons carry flavor. We also observe significant long-range πK correlations as a result of heavy quark decays. 85 references, 67 figures, 11 tables

  10. Search for Supersymmetry Using Diphoton Events in p anti-p Collisions at a center of mass energy of 1.96-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Sin; /Texas A-M

    2010-05-01

    This dissertation presents the results of a search for supersymmetry in proton-antiproton collisions with a center of mass energy of 1.96 TeV studied with the Collider Detector at Fermilab. Our strategy is to select collisions with two photons in the final state that have the properties of being the decays of very massive supersymmetric particles. This includes looking for large total energy from the decayed particles as well as for the presence of particles that leave the detector without interacting. We find no events using 2.6 fb{sup -1} of data collected during the 2004-2008 collider run of the Fermilab Tevatron which is consistent with the background estimate of 1.4 {+-} 0.4 events. Since there is no evidence of new particles we set cross section limits in a gauge-mediated supersymmetry model with {tilde {chi}}{sub 1}{sup 0} {yields} {gamma}{tilde G}, where the {tilde {chi}}{sub 1}{sup 0} and {tilde G} are the lightest neutralino and the gravitino (the lightest supersymmetric particle), respectively. We set limits on models as a function of the {tilde {chi}}{sub 1}{sup 0} mass and lifetime, producing the world's most sensitive search for {tilde {chi}}{sub 1}{sup 0} by excluding masses up to 149 GeV/c{sup 2} for {tilde {chi}}{sub 1}{sup 0} lifetimes much less than 1 ns.

  11. Using The Balance Function To Search For Late Hadronization In Gold+gold Collisions At A Center Of Mass Energy Of 130 Gev Per Nucleon Pair

    CERN Document Server

    Tonjes, M B

    2002-01-01

    Relativistic heavy ion physics is the study of nuclear matter interacting at high energies and densities. The collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) provide a source of high density matter for the study and creation of a novel state of matter, the Quark-Gluon Plasma (QGP). The data set studied in this dissertation is taken from Au+Au interactions at a center of mass energy of 130 GeV, measured in summer 2000. This is the first such data produced at RHIC. The analysis presented here focuses upon the measurement of balance functions, which are new observables in the field of heavy ion physics. The balance function for heavy ion physics is introduced in Bass, Danielewicz, and Pratt, Phys. Rev. Lett. 85, 2689 (2000). The data were taken with the STAR (Solenoidal Tracker At RHIC) detector, with analysis performed on charged particles in a pseudorapidity region of |η| < 1.3. The balance function measured for conserving charge/anti- charge pion pairs as a function of r...

  12. Observation of the intermediate vector bosons W+- and Z0 in proton-antiproton collisions at 546 GeV center of mass energy. UA2 experiment

    International Nuclear Information System (INIS)

    The Standard Model of electromagnetic and weak interactions predicts the existence of the intermediate vector bosons W+- and Z0 and gives precise predictions for their masses. Antiproton accumulation by stochastic cooling and the operation of the CERN SPS accelerator in collider mode made accessible pantip at 546 GeV center of mass energy. This thesis presents the observation of the intermediate vector bosons through their decays Z0 → e+e-, W → eν. During running periods 1982 and 1983, 8 decays Z0 → e+e- and 32 decays W → eν with an electron of Psub(T) > 25 GeV/c were observed in UA2 experiment. Cross sections of W+- and Z0 production and the weak interaction parameters: Msub(W), Msub(Z), sin2thetasub(W) and rho are determined. These results are in agreement with Standard Model predictions, thus confirming theory in a spectacular way. An upper limit to the total width of the Z0 is given. An upper limit to the number of additional neutrinos is inferred. Radiative decays of the intermediate vector bosons are discussed

  13. Measurement of the inclusive jet cross section in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Voutilainen, Mikko Antero; /Helsinki Inst. of Phys. /Helsinki U. of Tech. /Nebraska U. /Saclay

    2008-07-01

    This thesis studies the high-energy collisions of protons and antiprotons. The data used in the measurement were collected during 2004-2005 with the D0 detector at the Tevatron Collider of the Fermi National Accelerator Laboratory and correspond to 0.7 fb{sup -1} of integrated luminosity. High energy hadron collisions usually produce collimated sprays of particles called jets. The energy of the jets is measured using a liquid Argon-Uranium calorimeter and the production angle is determined with the help of silicon microstrip and scintillating fiber trackers. The inclusive jet cross section in proton-antiproton collisions is measured as a function of jet transverse momentum p{sub T} in six bins of jet rapidity at the center-of-mass energy {radical}s = 1.96 TeV. The measurement covers jet transerve momenta from 50 GeV up to 600 GeV and jet rapidities up to |y| = 2.4. The data are collected using a set of seven single jet triggers. Event and jet cuts are applied to remove non-physical backgrounds and cosmic-ray interactions. The data are corrected for jet energy calibration, cut and trigger efficiencies and finite jet p{sub T} resolution. The corrections are determined from data and the methods are tested with Monte Carlo simulation. The main experimental challenges in the measurement are the calibration of jet energies and the determination of the jet p{sub T} resolution. New methods are developed for the jet energy calibration that take into account physical differences between the {gamma}+jet and dijet calibration samples arising from quark and gluon jet differences. The uncertainty correlations are studied and provided as a set of uncertainty sources. The production of particle jets in hadron collisions is described by the theory of quantum chromodynamics (QCD). When the transverse jet momentum is large, the contributions from long-distance physics processes are small and the production rates of jets can be predicted by perturbative QCD. The inclusive jet cross

  14. Measurement of the inclusive jet cross section in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Voutilainen, Mikko Antero [Univ. of Helsinki (Finland)

    2008-07-01

    This thesis studies the high-energy collisions of protons and antiprotons. The data used in the measurement were collected during 2004-2005 with the D0 detector at the Tevatron Collider of the Fermi National Accelerator Laboratory and correspond to 0.7 fb-1 of integrated luminosity. High energy hadron collisions usually produce collimated sprays of particles called jets. The energy of the jets is measured using a liquid Argon-Uranium calorimeter and the production angle is determined with the help of silicon microstrip and scintillating fiber trackers. The inclusive jet cross section in proton-antiproton collisions is measured as a function of jet transverse momentum pT in six bins of jet rapidity at the center-of-mass energy √s = 1.96 TeV. The measurement covers jet transerve momenta from 50 GeV up to 600 GeV and jet rapidities up to |y| = 2.4. The data are collected using a set of seven single jet triggers. Event and jet cuts are applied to remove non-physical backgrounds and cosmic-ray interactions. The data are corrected for jet energy calibration, cut and trigger efficiencies and finite jet pT resolution. The corrections are determined from data and the methods are tested with Monte Carlo simulation. The main experimental challenges in the measurement are the calibration of jet energies and the determination of the jet pT resolution. New methods are developed for the jet energy calibration that take into account physical differences between the {gamma}+jet and dijet calibration samples arising from quark and gluon jet differences. The uncertainty correlations are studied and provided as a set of uncertainty sources. The production of particle jets in hadron collisions is described by the theory of quantum chromodynamics (QCD). When the transverse jet momentum is large, the contributions from long-distance physics processes are small and the production rates of jets can be predicted by perturbative QCD. The

  15. Evidence for e+e− →γχc1,2 at center-of-mass energies from 4.009 to 4.360 GeV

    International Nuclear Information System (INIS)

    Using data samples collected at center-of-mass energies of √s=4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPCII collider, we perform a search for the process e+e− → γχcJ (J=0, 1, 2) and find evidence for e+e− → γχc1 and e+e− → γχc2 with statistical significances of 3.0σ and 3.4σ, respectively. The Born cross sections σB(e+e− → γχcJ), as well as their upper limits at the 90% confidence level (C.L.) are determined at each center-of-mass energy

  16. Precision measurement of the integrated luminosity of the data taken by BESIII at center-of-mass energies between 3.810 GeV and 4.600 GeV

    International Nuclear Information System (INIS)

    From December 2011 to May 2014, about 5 fb−1 of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like states and higher excited charmonium states. The time-integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing events produced by the large-angle Bhabha scattering process

  17. Study of the process $e^+ e^- \\to K\\overline{K}$ in the center-of-mass energy range 1004--1060 MeV with the CMD-3 detector at $e^+ e^-$ VEPP-2000 collider

    CERN Document Server

    Kozyrev, E A

    2016-01-01

    The $e^+ e^- \\to K^0_{S}K^0_{L}$ and $e^+ e^- \\to K^{-}K^{+}$ cross sections have been measured in the center-of-mass energy range 1004--1060 MeV for 25 energy points with about 2$\\div$3\\% systematic uncertainties. The analysis is based on 5.5 pb$^{-1}$ of integrated luminosity collected with the CMD-3 detector at the VEPP-2000 $e^+ e^-$ collider. The measured cross section is approximated according to Vector Meson Dominance model as a sum of $\\phi, \\omega, \\rho$-like amplitudes and their excitations, and $\\phi(1020)$ meson parameters have been obtained.

  18. Study of the process e+e- → KS0 KL0 in the center-of-mass energy range 1004-1060 MeV with the CMD-3 detector at the VEPP-2000 e+e- collider

    Science.gov (United States)

    Kozyrev, E. A.; Solodov, E. P.; Amirkhanov, A. N.; Anisenkov, A. V.; Aulchenko, V. M.; Banzarov, V. S.; Bashtovoy, N. S.; Berkaev, D. E.; Bondar, A. E.; Bragin, A. V.; Eidelman, S. I.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Fedotovich, G. V.; Gayazov, S. E.; Grebenuk, A. A.; Gribanov, S. S.; Grigoriev, D. N.; Ignatov, F. V.; Ivanov, V. L.; Karpov, S. V.; Kasaev, A. S.; Kazanin, V. F.; Kirpotin, A. N.; Korobov, A. A.; Kovalenko, O. A.; Kozyrev, A. N.; Koop, I. A.; Krokovny, P. P.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Lukin, P. A.; Mikhailov, K. Yu.; Okhapkin, V. S.; Otboev, A. V.; Pestov, Yu. N.; Popov, A. S.; Razuvaev, G. P.; Ruban, A. A.; Ryskulov, N. M.; Ryzhenenkov, A. E.; Senchenko, A. I.; Shebalin, V. E.; Shemyakin, D. N.; Shwartz, B. A.; Shwartz, D. B.; Sibidanov, A. L.; Shatunov, P. Yu.; Shatunov, Yu. M.; Titov, V. M.; Talyshev, A. A.; Vorobiov, A. I.; Yudin, Yu. V.

    2016-09-01

    The e+e- → KS0 KL0 cross section has been measured in the center-of-mass energy range 1004-1060 MeV at 25 energy points using 6.1 ×105 events with KS0 →π+π- decay. The analysis is based on 5.9 pb-1 of an integrated luminosity collected with the CMD-3 detector at the VEPP-2000 e+e- collider. To obtain ϕ (1020) meson parameters the measured cross section is approximated according to the Vector Meson Dominance model as a sum of the ρ, ω, ϕ-like amplitudes and their excitations. This is the most precise measurement of the e+e- → KS0 KL0 cross section with a 1.8% systematic uncertainty.

  19. Measurement of the Higgs boson production cross section at 7, 8 and 13 TeV center-of-mass energies in the $H\\rightarrow\\gamma\\gamma$ channel with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2015-01-01

    Measurements of the fiducial cross section performed in the $H\\rightarrow\\gamma\\gamma$ decay channel are presented for Higgs boson production in proton-proton collisions at center-of-mass energies of 7, 8 and 13 TeV at the ATLAS experiment. Values for the measured total production cross section for a Standard Model Higgs boson are also given. The signal is extracted using a fit to the diphoton invariant-mass spectrum assuming that the natural width of the resonance is much smaller than the experimental resolution. The signal yield is corrected for the effects of detector efficiency and resolution. The measured cross sections, statistically limited, are in agreement with Standard Model expectation.

  20. Observation of $e^{+}e^{-} \\to \\eta^{\\prime} J/\\psi$ at center-of-mass energies between 4.189 and 4.600 GeV

    CERN Document Server

    Ablikim, M; Ahmed, S; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Ferroli, R Baldini; Ban, Y; Bennett, D W; Bennett, J V; Berger, N; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Heinsius, F H; Held, T; Heng, Y K; Holtmann, T; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leithoff, H; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Y Y; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Mezzadri, G; Min, J; Mitchell, R E; Mo, X H; Mo, Y J; Morales, C Morales; Muchnoi, N Yu; Muramatsu, H; Musiol, P; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savri, M; Schnier, C; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-01-01

    The process $e^{+}e^{-}\\to \\eta^{\\prime} J/\\psi$ is observed for the first time with a statistical significance of $8.6\\sigma$ at center-of-mass energy $\\sqrt{s} = 4.226$ GeV and $7.3\\sigma$ at $\\sqrt{s} = 4.258$ GeV using data samples collected with the BESIII detector. The Born cross sections are measured to be $(3.7 \\pm 0.7 \\pm 0.3)$ and $(3.9 \\pm 0.8 \\pm 0.3)$ pb at $\\sqrt{s} = 4.226$ and $4.258$ GeV, respectively, where the first errors are statistical and the second systematic. Upper limits at the 90% confidence level of the Born cross sections are also reported at other 12 energy points.

  1. Study of the process e+e- → KS0 KL0 in the center-of-mass energy range 1004-1060 MeV with the CMD-3 detector at the VEPP-2000 e+e- collider

    Science.gov (United States)

    Kozyrev, E. A.; Solodov, E. P.; Amirkhanov, A. N.; Anisenkov, A. V.; Aulchenko, V. M.; Banzarov, V. S.; Bashtovoy, N. S.; Berkaev, D. E.; Bondar, A. E.; Bragin, A. V.; Eidelman, S. I.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Fedotovich, G. V.; Gayazov, S. E.; Grebenuk, A. A.; Gribanov, S. S.; Grigoriev, D. N.; Ignatov, F. V.; Ivanov, V. L.; Karpov, S. V.; Kasaev, A. S.; Kazanin, V. F.; Kirpotin, A. N.; Korobov, A. A.; Kovalenko, O. A.; Kozyrev, A. N.; Koop, I. A.; Krokovny, P. P.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Lukin, P. A.; Mikhailov, K. Yu.; Okhapkin, V. S.; Otboev, A. V.; Pestov, Yu. N.; Popov, A. S.; Razuvaev, G. P.; Ruban, A. A.; Ryskulov, N. M.; Ryzhenenkov, A. E.; Senchenko, A. I.; Shebalin, V. E.; Shemyakin, D. N.; Shwartz, B. A.; Shwartz, D. B.; Sibidanov, A. L.; Shatunov, P. Yu.; Shatunov, Yu. M.; Titov, V. M.; Talyshev, A. A.; Vorobiov, A. I.; Yudin, Yu. V.

    2016-09-01

    The e+e- → KS0 KL0 cross section has been measured in the center-of-mass energy range 1004-1060 MeV at 25 energy points using 6.1 ×105 events with KS0 →π+π- decay. The analysis is based on 5.9 pb-1 of an integrated luminosity collected with the CMD-3 detector at the VEPP-2000 e+e- collider. To obtain ϕ (1020) meson parameters the measured cross section is approximated according to the Vector Meson Dominance model as a sum of the ρ , ω , ϕ-like amplitudes and their excitations. This is the most precise measurement of the e+e- → KS0 KL0 cross section with a 1.8% systematic uncertainty.

  2. Study of the process $e^+ e^- \\to K^0_{S}K^0_{L}$ in the center-of-mass energy range 1004--1060 MeV with the CMD-3 detector at the VEPP-2000 $e^+ e^-$ collider

    CERN Document Server

    Kozyrev, E A

    2016-01-01

    The $e^+ e^- \\to K^0_{S}K^0_{L}$ cross section has been measured in the center-of-mass energy range 1004--1060 MeV at 25 energy points using $6.1 \\times 10^5$ events with $K^0_{S}\\to \\pi^+\\pi^-$ decay. The analysis is based on 5.9 pb$^{-1}$ of an integrated luminosity collected with the CMD-3 detector at the VEPP-2000 $e^+ e^-$ collider. To obtain $\\phi(1020)$ meson parameters the measured cross section is approximated according to the Vector Meson Dominance model as a sum of the $\\rho, \\omega, \\phi$-like amplitudes and their excitations. This is the most precise measurement of the $e^+ e^- \\to K^0_{S}K^0_{L}$ cross section with a 1.8\\% systematic uncertainty.

  3. Evidence for e+e- →γχc1,2 at center-of-mass energies from 4.009 to 4.360 GeV

    Science.gov (United States)

    Ablikim, M.; N. Achasov, M.; Ai, X. C.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; R. Baldini, Ferroli; Ban, Y.; W. Bennett, D.; V. Bennett, J.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; A. Briere, R.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; A. Cetin, S.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; F. De, Mori; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, T.; Guo, Y.; P. Guo, Y.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; A. Harris, F.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; C. Ke, B.; Kliemt, R.; Kloss, B.; B. Kolcu, O.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; S. Lange, J.; M., Lara; Larin, P.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; X. Lin(Lin, D.; Liu, B. J.; L. Liu, C.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Zhiqing, Liu; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; E. Maas, F.; Maggiora, M.; A. Malik, Q.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; G. Messchendorp, J.; Min, J.; Min, T. J.; E. Mitchell, R.; Mo, X. H.; Mo, Y. J.; C. Morales, Morales; Moriya, K.; Yu. Muchnoi, N.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; B. Nikolaev, I.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; H. Rashid, K.; F. Redmer, C.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; R. Shepherd, M.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Spruck, B.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; H. Thorndike, E.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; S. Varner, G.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; D. Wang(Yadi, Y.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; A. Zafar, A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2015-04-01

    Using data samples collected at center-of-mass energies of √s = 4.009, 4.230, 4.260, and 4.360 GeV with the BESIII detector operating at the BEPCII collider, we perform a search for the process e+e- → γχcJ (J=0, 1, 2) and find evidence for e+e- → γχc1 and e+e- → γχc2 with statistical significances of 3.0σ and 3.4σ, respectively. The Born cross sections σB(e+e- → γχcJ), as well as their upper limits at the 90% confidence level (C.L.) are determined at each center-of-mass energy. Supported by National Key Basic Research Program of China (2015CB856700), Joint Funds of National Natural Science Foundation of China (11079008, 11179007, U1232201, U1332201, U1232107), National Natural Science Foundation of China (NSFC) (10935007, 11121092, 11125525, 11235011, 11322544, 11335008), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy, Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U. S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt, WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  4. A study of particles produced in e+e- annihilation at a center-of-mass energy of around 10 GeV, using ionization loss measurements

    International Nuclear Information System (INIS)

    Using the particle identification system of the ARGUS detector at the DORIS II storage ring, operating at a centre of mass energy of around 10 GeV, a search has been made for particles with unexpected ionization produced in e+e-. The production of antideutrons has been observed for the first time in e+e- annihilation. No other unexpected ionizing particles were found in 84.5 pb-1 of collected data. Upper limits are established for the production cross section of fractionally charged particles with masses up to 4 GeV/c2, improving on previously obtained limits. Also the observation and analysis of D, F and Fsup(*) mesons relied to a large extent on the particle identification system. (author)

  5. Search for the standard model Higgs boson in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV

    International Nuclear Information System (INIS)

    A scientifically accurate description of matter interpreted as a substance made up of corpuscular constituents was established during the course of the 19th century. In this description, atoms - the building blocks of the matter - form molecules. The properties of the molecules were described by chemistry or thermodynamics depending on what characteristics of the matter were investigated. In both theories, the molecules can dissociate to atoms when the kinetic energies of the atoms exceed the strength of the chemical bonds. The number of atoms is always preserved in a closed system. This is not true, however, when the matter takes up much higher energies at relativistic scales. New particles can be produced at the expense of the kinetic energy. The number of particles is no longer preserved. There are other conserved quantities, however, these quantities, the charge, baryon number, lepton number, are associated with particles that are considered elementary today. The properties and behavior of these elementary particles are the subject of Particle Physics or High Energy Physics

  6. Search for the standard model Higgs boson in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Veszpremi, Viktor; /Purdue U.

    2007-08-01

    A scientifically accurate description of matter interpreted as a substance made up of corpuscular constituents was established during the course of the 19th century. In this description, atoms - the building blocks of the matter - form molecules. The properties of the molecules were described by chemistry or thermodynamics depending on what characteristics of the matter were investigated. In both theories, the molecules can dissociate to atoms when the kinetic energies of the atoms exceed the strength of the chemical bonds. The number of atoms is always preserved in a closed system. This is not true, however, when the matter takes up much higher energies at relativistic scales. New particles can be produced at the expense of the kinetic energy. The number of particles is no longer preserved. There are other conserved quantities, however, these quantities, the charge, baryon number, lepton number, are associated with particles that are considered elementary today. The properties and behavior of these elementary particles are the subject of Particle Physics or High Energy Physics.

  7. J/psi production via initial state radiation in e+ e- --> mu+ mu- gamma at an e+e- center-of-mass energy near 10.6 GeV

    CERN Document Server

    Aubert, Bernard; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; Kukartsev, G; Le Clerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, Michael T; Shelkov, V G; Telnov, A V; Wenzel, W A; Ford, K; Harrison, T J; Hawkes, C M; Knowles, D J; Morgan, S E; Penny, R C; Watson, A T; Watson, N K; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmücker, H; Steinke, M; Barlow, N R; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; MacKay, C; Wilson, F F; Abe, K; Çuhadar-Dönszelmann, T; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Shen, B C; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Beringer, J; Eisner, A M; Heusch, C A; Lockman, W S; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Clark, P J; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Grenier, P; Thiebaux, C; Vasileiadis, G; Verderi, M; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Biasini, M; Calcaterra, A; De Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Pioppi, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Won, E; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gaillard, J R; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Grenier, G J; Lee, S J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Brigljevic, V; Cheng, C H; Lange, D J; Wright, D M; Bevan, A J; Coleman, J P; Fry, J R; Gabathuler, Erwin; Gamet, R; Kay, M; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Shorthouse, H W; Strother, P; Vidal, P B; Brown, C L; Cowan, G; Flack, R L; Flächer, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, R J; Forti, A C; Hart, P A; Hodgkinson, M C; Jackson, F; Lafferty, G D; Lyon, A J; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Mangeol, D J J; Patel, P M; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Cote-Ahern, D; Hast, C; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; LoSecco, J M; Gabriel, T A; Brau, B; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Wong, Q K; Brau, J E; Frey, R; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Ocariz, J; Pivk, M; Roos, L; Stark, J; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Del Gamba, V; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Tanaka, H A; Varnes, E W; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, Witold; Langer, M; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graugès-Pous, E; Hadig, T; Halyo, V; Hrynóva, T; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Robertson, S H; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Borean, C; Bosisio, L; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Johnson, J R; Kutter, P E; Li, H; Liu, R; Di Lodovico, F; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; Von Wimmersperg-Töller, J H; Wu, J; Wu Sau Lan; Yu, Z; Neal, H

    2004-01-01

    We have used a study of the process e+e- --> mu+ mu- gamma at a center-of-mass energy near the Y(4S) resonance for a mu+ mu- invariant mass range near the J/psi mass to extract the cross section sigma(e+e- --> J/psi gamma --> mu+ mu- gamma). The data set, corresponding to an integrated luminosity of 88.4 fb-1, was collected using the BaBar detector at the PEP-II collider. We measure the product Gamma(J/psi --> e+e-)B(J/psi --> mu+ mu-) to be 0.330 +/- 0.008(stat) +/- 0.007(syst) keV. Using the world averages for B(J/psi --> mu+ mu-) and B(J/psi --> e+e-), we derive the J/psi electronic and total widths: Gamma(J/psi --> e+e-)=5.61+/-0.20 keV and Gamma=94.7+/-4.4 keV.

  8. Universality of nucleon-nucleon short-range correlations: the factorization property of the nuclear wave function, the relative and center-of-mass momentum distributions, and the nuclear contacts

    CERN Document Server

    Alvioli, Massimiliano; Morita, Hiko

    2016-01-01

    The two-nucleon momentum distributions have been calculated for nuclei up to A=40 and various values of the relative and center-of-mass momenta and angle between them. For complex nuclei a parameter-free linked-cluster expansion, based upon a realistic local two-nucleon interaction of the Argonne family and variational wave function featuring central, tensor, spin and iso-spin correlations, has been used. The obtained results show that: 1) independently of the mass number A, at values of the relative momentum k_rel> 2 fm^{-1} the proton-neutron momentum distributions for back-to-back (BB) nucleons (K_cm=0) exhibit the factorization property n_A^{pn}(k_rel,K_cm=0)=C_A^{pn} n_D(k_rel) n_{cm}^{pn}(K_cm=0), where n_D is the deuteron momentum distribution, n_{cm}^{pn}(K_{cm}=0) the momentum distribution of the c.m. motion of the pair and C_A^{pn} the nuclear contact measuring the number of BB pn pairs with deuteron-like momenta; 2) the values of the proton-neutron nuclear contact C_A^{pn} are obtained in a model-i...

  9. Search for Physics Beyond the Standard Model in Multi-jet Events Recorded with the ATLAS Detector in p-p collisions at center of Mass Energy = 8 TeV using the Large Hadron Collider

    CERN Document Server

    Wang, Kuhan

    A search for physics beyond the Standard Model with multi-jet signatures is presented using 20.3 inverse fb of proton-proton collision data recorded using the ATLAS detector at the Large Hadron Collider at a center-of-mass energy of 8 TeV. An original fit and extrapolation technique is used to estimate the QCD multi-jet background. No statistically significant deviations from Standard Model predic- tions are observed. The results are interpreted in terms of model-independent lim- its on the fiducial production cross section of multi-jet events and model-dependent limits in the context of TeV-scale gravity. The fiducial limits at 95% confidence level on multi-jet production are as low as 0.16 fb and the exclusion power in threshold mass for black hole and string ball production varies from 4.6 to 6.2 TeV for par- ticular models. These results are amongst the most stringent limits on TeV-scale gravity to date.

  10. Evidence and cross section measurement of the process $pp\\rightarrow t\\bar{t}\\gamma$ at a center-of-mass energy of 7 TeV with the ATLAS experiment

    CERN Document Server

    Rosenthal, Oliver

    The cross section measurement of top quark pair production with an additional prompt photon in the final state ($t\\bar{t}\\gamma$) is presented. The total 2011 dataset of 4.7\\,fb$^{-1}$ has been analyzed in this thesis, recorded by the ATLAS detector in proton-proton collisions at the LHC with a center-of-mass energy of $\\sqrt{s}=7\\,$TeV. \\\\ A event selection has been developed for the single electron and single muon channels, following closely the selection used in \\ttbar\\ cross section measurements published by the \\\\ ATLAS collaboration, with the addition of photon selection cuts, identifying a total of 414 \\ttg\\ event candidates in the dataset. Various background contributions have been estimated, which can be categorized in three classes according to the true type of the selected photon. Besides true prompt photons, electrons and hadrons from jet fragmentation can be misidentified as a photon. A signifcant difference has been found in the photon distribution shape of the track isolation variable \\ptcone\\ ...

  11. Search for high-mass resonances decaying to dilepton final states in pp collisions at a center-of-mass energy of 7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Å kesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Å sman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste

    2012-01-01

    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Z' gauge bosons, Randall-Sundrum gravitons, Z* bosons, techni-mesons, Kaluza-Klein Z/gamma bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9/fb in the dielectron channel and 5.0/fb in the dimuon channel. A Z' boson with Standard Model-like couplings is excluded at 95 percent confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/Mbar = 0.1 is excluded at 95 percent confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Z' Models.

  12. Long-range and short-range dihadron angular correlations in central PbPb collisions at a nucleon-nucleon center of mass energy of 2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2011-07-01

    First measurements of dihadron correlations for charged particles are presented for central PbPb collisions at a nucleon-nucleon center-of-mass energy of 2.76 TeV over a broad range in relative pseudorapidity, Delta(eta), and the full range of relative azimuthal angle, Delta(phi). The data were collected with the CMS detector, at the LHC. A broadening of the away-side (Delta(phi) approximately pi) azimuthal correlation is observed at all Delta(eta), as compared to the measurements in pp collisions. Furthermore, long-range dihadron correlations in Delta(eta) are observed for particles with similar phi values. This phenomenon, also known as the "ridge", persists up to at least |Delta(eta)| = 4. For particles with transverse momenta (pt) of 2-4 GeV/c, the ridge is found to be most prominent when these particles are correlated with particles of pt = 2-6 GeV/c, and to be much reduced when paired with particles of pt = 10-12 GeV/c.

  13. The Relationships Between the Center of Mass Position and the Trunk, Hip, and Knee Kinematics in the Sagittal Plane: A Pilot Study on Field-Based Video Analysis for Female Soccer Players

    Directory of Open Access Journals (Sweden)

    Sasaki Shogo

    2015-03-01

    Full Text Available Athletes with non-contact anterior cruciate ligament tears have common features in the sagittal plane; namely, the body’s center of mass (COM is located posterior to the base of support, the trunk and knee joints are extended, and the hip angle is flexed. However, the relationships among these variables have not been assessed in field-based movements. This study sought to determine relationships between distances from the COM to the base of support and the trunk, hip, and knee positions in women while playing soccer. Sixty events (29 single-leg landing and 31 single-leg stopping events were analyzed using two-dimensional video analysis. The relationships among the measurement variables were determined using the Pearson’s product-moment correlation coefficient, and stepwise multiple linear regression models were used to explore the relationships between the COM position and the kinematic variables. The distance from the COM to the base of support displayed a moderate negative relationship with the trunk angle (r = - 0.623, p < .0001, r2 = 0.388 and a strong positive relationship with the limb angle (r = 0.869, p < .0001, r2 = 0.755. The limb, knee, and trunk angles were selected in the best regression model (adjusted r2 = 0.953, p < .0001, f2 = 20.277. These findings suggest that an increased trunk angle and a decreased limb angle at initial contact are associated with a safer COM position. Neuromuscular training may be useful for controlling the trunk and lower limb positions during dynamic activities.

  14. The relationships between the center of mass position and the trunk, hip, and knee kinematics in the sagittal plane: a pilot study on field-based video analysis for female soccer players.

    Science.gov (United States)

    Sasaki, Shogo; Nagano, Yasuharu; Kaneko, Satoshi; Imamura, Shoichiro; Koabayshi, Takuma; Fukubayashi, Toru

    2015-03-29

    Athletes with non-contact anterior cruciate ligament tears have common features in the sagittal plane; namely, the body's center of mass (COM) is located posterior to the base of support, the trunk and knee joints are extended, and the hip angle is flexed. However, the relationships among these variables have not been assessed in field-based movements. This study sought to determine relationships between distances from the COM to the base of support and the trunk, hip, and knee positions in women while playing soccer. Sixty events (29 single-leg landing and 31 single-leg stopping events) were analyzed using two-dimensional video analysis. The relationships among the measurement variables were determined using the Pearson's product-moment correlation coefficient, and stepwise multiple linear regression models were used to explore the relationships between the COM position and the kinematic variables. The distance from the COM to the base of support displayed a moderate negative relationship with the trunk angle (r = -0.623, p < .0001, r(2) = 0.388) and a strong positive relationship with the limb angle (r = 0.869, p < .0001, r(2) = 0.755). The limb, knee, and trunk angles were selected in the best regression model (adjusted r(2) = 0.953, p < .0001, f(2) = 20.277). These findings suggest that an increased trunk angle and a decreased limb angle at initial contact are associated with a safer COM position. Neuromuscular training may be useful for controlling the trunk and lower limb positions during dynamic activities. PMID:25964811

  15. Precision measurement of the integrated luminosity of the data taken by BESIII at center-of-mass energies between 3.810 GeV and 4.600 GeV

    Science.gov (United States)

    Ablikim, M.; N. Achasov, M.; Ai, X. C.; Albayrak, O.; Albrecht, M.; J. Ambrose, D.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; R. Baldini, Ferroli; Ban, Y.; W. Bennett, D.; V. Bennett, J.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; A. Briere, R.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; A. Cetin, S.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dbeyssi, A.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; F. De, Mori; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fritsch, M.; Fu, C. D.; Gao, Q.; Gao, Y.; Gao, Z.; Garzia, I.; Geng, C.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, Y.; P. Guo, Y.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Hao, X. Q.; A. Harris, F.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; C. Ke, B.; Kliemt, R.; Kloss, B.; B. Kolcu, O.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; S. Lange, J.; M., Lara; Larin, P.; Leng, C.; Li, C. H.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Lei; Li, P. R.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; X. Lin(Lin, D.; Liu, B. J.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, P. L.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Zhiqing, Liu; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, L. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; E. Maas, F.; Maggiora, M.; A. Malik, Q.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; G. Messchendorp, J.; Min, J.; Min, T. J.; E. Mitchell, R.; Mo, X. H.; Mo, Y. J.; C. Morales, Morales; Moriya, K.; Yu. Muchnoi, N.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; B. Nikolaev, I.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; H. Rashid, K.; F. Redmer, C.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrié, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; H. Thorndike, E.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; S. Varner, G.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Yadi, Wang; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Weber, T.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; A. Zafar, A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Y. T.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, W. J.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zotti, L.; Zou, B. S.; Zou, J. H.; BESIII Collaboration

    2015-09-01

    From December 2011 to May 2014, about 5 fb-1 of data were taken with the BESIII detector at center-of-mass energies between 3.810 GeV and 4.600 GeV to study the charmonium-like states and higher excited charmonium states. The time-integrated luminosity of the collected data sample is measured to a precision of 1% by analyzing events produced by the large-angle Bhabha scattering process. Supported by National Key Basic Research Program of China (2015CB856700), National Natural Science Foundation of China (NSFC) (11125525, 11235011, 11322544, 11335008, 11425524), Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program, Joint Large-Scale Scientific Facility Funds of the NSFC and CAS (11179007, U1232201, U1332201) CAS (KJCX2-YW-N29, KJCX2-YW-N45), 100 Talents Program of CAS, INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology, German Research Foundation DFG (Collaborative Research Center CRC-1044), Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey (DPT2006K-120470), Russian Foundation for Basic Research (14-07-91152), U.S. Department of Energy (DE-FG02-04ER41291, DE-FG02-05ER41374, DE-FG02-94ER40823, DESC0010118), U.S. National Science Foundation, University of Groningen (RuG) and the Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt and WCU Program of National Research Foundation of Korea (R32-2008-000-10155-0)

  16. Experimental tests of quantum electrodynamics through the measurement of the reactions e+e- → e+e-, e+e- → γγ, and e+e- → μ+μ- at a center-of-mass energy of 5.2 GeV

    International Nuclear Information System (INIS)

    We report measurements of the reactions e+e- → e+e-, e+e- → γγ, and e+e- → μ+μ- at angles close to 900, relative to Bhabha scattering, at a center-of-mass energy of 5.2 GeV. The results are found to be in agreement with the predictions of quantum electrodynamics

  17. Measurement of the W and Z cross sections in the electron channel for proton-antiproton collisions at center of mass energy = 1.96 TeV and extraction of the W total width from the ratio

    Science.gov (United States)

    Gardner, John Michael

    This dissertation presents measurements of the inclusive production cross sections for W and Z gauge bosons decaying through the electron channel with pp¯ collisions at a center-of-mass energy of 1.96 TeV. The ratio of these cross sections is then used to extract the W total width. The Standard Model (SM) of electroweak and strong interactions is a collection of theories which together encompass what is currently known about the elementary particles that make up matter and the forces through which they interact. Experimentalists are constantly searching for violations of the Standard Model by making precision measurements of predicted interactions. The decay of the W boson is one such interaction. The rate of its decay is reflected in its width which is predicted to high precision using Standard Model-based calculations. Therefore, a high precision experimental width measurement would be very sensitive to any such violation. In principle the W and Z boson production cross sections could also be good Standard Model tests. However, a precise knowledge of integrated luminosity is required which is unfortunately difficult to obtain at the Tevatron. In fact, the W and Z cross section results can be used to obtain a more precise luminosity measurement. The data set consists of a total integrated luminosity of 177 pb -1 collected from September 2002 to September 2003 using the DO detector at Fermilab. From this, 97757 W → enu and 7928 Z → ee candidates are found where at least one electron having a matched track is present within the central region of the detector (|etadet| pdf+/-190 lumipb , s ZxBZ→e+e- =267.7+/-3.0 stat+/-4.8 sys+4.0-3.3 pdf+/-17.4 lumipb , and R≡ sWxBW→e +/-ns ZxBZ→e+ e-=10.94+/- 0.13stat +/-0.16sys +0.12-0.08 pdf. Sources of uncertainty arise from limited statistics (stat), systematic effects (sys), parton distribution function parameters (pdf) and integrated luminosity (lumi). Indirect measurements of the branching ratio, Br( W → e

  18. Hadron production by e+e annihilation at center-of-mass energies between 2.6 and 7.8 GeV. I. Total cross section, multiplicities, and inclusive momentum distributions

    Energy Technology Data Exchange (ETDEWEB)

    Siegrist, James L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Schwitters, R. F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Alam, M. S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Boyarski, A. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Breidenbach, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bulos, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dakin, J. T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Dorfan, J. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Feldman, G. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fryberger, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hanson, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Jaros, J. A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Jean-Marie, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Larsen, R. R. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lüth, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lynch, H. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lyon, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Morehouse, C. C. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Perl, M. L. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Peruzzi, I. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Piccolo, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Pun, T. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Rapidis, P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Richter, B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Schindler, R. H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Tanenbaum, W. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Vannucci, F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Chinowsky, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Abrams, G. S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Briggs, D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carithers, W. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cooper, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeVoe, R. G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Friedberg, C. E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldhaber, G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hollebeek, R. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Johnson, A. D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kadyk, J. A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Litke, A. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Madaras, R. J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nguyen, H. K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pierre, F. M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sadoulet, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trilling, G. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Whitaker, J. S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiss, J. E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1982-09-01

    Measurements of multihadron production in e⁺e⁻ annihilation at center-of-mass energies between 2.6 and 7.8 GeV are presented. Aside from the narrow resonances ψ(3095) and ψ(3684), the total hadronic cross section is found to be approximately 2.7 times the cross section for the production of muon pairs at c.m. energies below 3.7 GeV and 4.3 times the muon-pair cross section at c.m. energies above 5.5 GeV. Complicated structure is found at intermediate energies. Charged-particle multiplicities and inclusive momentum distributions are presented.

  19. The e+ e- --> 3(pi+pi-), 2(pi+pi-pi0) and K+K- 2(pi+pi-) Cross Sections at Center-of-Mass Energies from Production Threshold to 4.5 GeV Measured with Initial-State Radiation

    OpenAIRE

    The BABAR Collaboration; Aubert, B.

    2006-01-01

    We study the processes e+ e- --> 3(pi+pi-)gamma, 2(pi+pi-pi0)gamma and K+ K- 2(pi+pi-)gamma, with the photon radiated from the initial state. About 20,000, 33,000 and 4,000 fully reconstructed events, respectively, have been selected from 232 fb-1 of BaBar data. The invariant mass of the hadronic final state defines the effective e+e- center-of-mass energy, so that these data can be compared with the corresponding direct e+e- measurements. From the 3(pi+pi-), 2(pi+pi-pi0) and K+ K- 2(pi+pi-) ...

  20. Hyperon production in proton-nucleus collisions at a center-of-mass energy of √(sNN) = 41.6 GeV at HERA-B and design of silicon microstrip detectors for tracking at LHCb

    International Nuclear Information System (INIS)

    The topics of this thesis are the measurements of hyperon production in protonnucleus collisions at √(s)=41.6 GeV with the Hera-B detector located at DESY, Hamburg (Germany), and the design of silicon microstrip sensors for the LHCb experiment at CERN, Geneva (Switzerland). Λ, Ξ and Ω hyperons and their antiparticles were reconstructed from 113.5 . 106 inelastic collisions of protons with fixed carbon, titanium and tungsten targets. With these samples, antiparticle-to-particle ratios, cross sections integrated for the accessible kinematic region of Hera-B and single differential cross sections as function of transverse momentum, dσ/dpT2 (for Λ and Ξ) and rapidity, dσ/dy (for Λ only), have been been measured as well as the dependence of these quantities on the atomic number of the target nucleus, as parameterized using the Glauber model. The obtained ratios follow the same trend as found for the energy dependence of measurements from nucleus-nucleus collisions. Silicon microstrip sensors have been designed for the tracking system of the LHCb detector. Evaluating the performance in beam tests at CERN, the strip geometry and sensor thickness were varied optimizing for a large signal-to-noise ratio, a small number of read-out channels and a low occupancy. The detector is currently being built to be operational for first proton-proton collisions in autumn 2007. (orig.)

  1. Hyperon production in proton-nucleus collisions at a center-of-mass energy of {radical}(s{sub NN}) = 41.6 GeV at HERA-B and design of silicon microstrip detectors for tracking at LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Agari, Michaela

    2006-07-01

    The topics of this thesis are the measurements of hyperon production in protonnucleus collisions at {radical}(s)=41.6 GeV with the Hera-B detector located at DESY, Hamburg (Germany), and the design of silicon microstrip sensors for the LHCb experiment at CERN, Geneva (Switzerland). {lambda}, {xi} and {omega} hyperons and their antiparticles were reconstructed from 113.5 . 10{sup 6} inelastic collisions of protons with fixed carbon, titanium and tungsten targets. With these samples, antiparticle-to-particle ratios, cross sections integrated for the accessible kinematic region of Hera-B and single differential cross sections as function of transverse momentum, d{sigma}/dp{sub T}{sup 2} (for {lambda} and {xi}) and rapidity, d{sigma}/dy (for {lambda} only), have been been measured as well as the dependence of these quantities on the atomic number of the target nucleus, as parameterized using the Glauber model. The obtained ratios follow the same trend as found for the energy dependence of measurements from nucleus-nucleus collisions. Silicon microstrip sensors have been designed for the tracking system of the LHCb detector. Evaluating the performance in beam tests at CERN, the strip geometry and sensor thickness were varied optimizing for a large signal-to-noise ratio, a small number of read-out channels and a low occupancy. The detector is currently being built to be operational for first proton-proton collisions in autumn 2007. (orig.)

  2. Center-of-mass tomographic approach to quantum dynamics

    International Nuclear Information System (INIS)

    In the tomography representation we propose a new approach, which describes the dynamics of quantum particles by the Kolmogorov equations for non-negative propagators. To solve the Kolmogorov equations we use a diffusive Markovian random processes described by the related nonlinear stochastic Langevin equations. As a result the dynamics of quantum particles is described by the proposed numerical scheme combining both Langevin dynamics and Monte Carlo methods. We test the developed approach by applying it to the wave packet dynamics in harmonic potentials and to particle tunneling through a barrier

  3. Method to Compute CT System MTF

    Energy Technology Data Exchange (ETDEWEB)

    Kallman, Jeffrey S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-03

    The modulation transfer function (MTF) is the normalized spatial frequency representation of the point spread function (PSF) of the system. Point objects are hard to come by, so typically the PSF is determined by taking the numerical derivative of the system's response to an edge. This is the method we use, and we typically use it with cylindrical objects. Given a cylindrical object, we first put an active contour around it, as shown in Figure 1(a). The active contour lets us know where the boundary of the test object is. We next set a threshold (Figure 1(b)) and determine the center of mass of the above threshold voxels. For the purposes of determining the center of mass, each voxel is weighted identically (not by voxel value).

  4. Management system compliance regime equilibrium anthropomorphic walking machine

    OpenAIRE

    Ткач, Михайло Мартинович

    2014-01-01

    The paper provides a solution to the problem of the control system compliance regime equilibrium anthropomorphic walking machine on any solid surface by applying the principle of tracking the movement of the point of the center of mass system and the reaction force supporting surface. Used the concept of a distributed control system with the optimal criterion of balancing and adjusting the current position AKA by solving the inverse kinematics problem using adaptive neuro-fuzzy network foreca...

  5. Noise, Bifurcations, and Modeling of Interacting Particle Systems

    OpenAIRE

    Mier-y-Teran-Romero, Luis; Forgoston, Eric; Schwartz, Ira B.

    2011-01-01

    We consider the stochastic patterns of a system of communicating, or coupled, self-propelled particles in the presence of noise and communication time delay. For sufficiently large environmental noise, there exists a transition between a translating state and a rotating state with stationary center of mass. Time delayed communication creates a bifurcation pattern dependent on the coupling amplitude between particles. Using a mean field model in the large number limit, we show how the complete...

  6. Reconstruction and study of the multi-strange baryons in ultra-relativistic heavy ion collisions at a center-of-mass energy of 200 GeV, with the Star experiment at RHIC; Reconstruction et etude des baryons multi-etranges dans les collisions d'ions lourds ultra-relativistes a {radical}S{sub NN} = 200 GeV avec l'experience STAR au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Faivre, J

    2004-10-15

    The study of strangeness production is essential for the understanding of processes occurring in ultra-relativistic heavy ion collisions. Strangeness production is directly linked to the phase of deconfined partons that followed these collisions: the quark and gluon plasma. STAR, one of the 4 experiments at RHIC collider, is a perfect tool for studying the multi-strange {xi} and {omega} particles. We have devised a {xi} and {omega} reconstruction program using signals from the STAR time projection chamber. We have worked out a multi-variable selection method for extracting the signals from the combinative background: the linear discriminant analysis. We have applied it to Au-Au collisions at 200 GeV (in the center of mass frame) to improve the accuracy of previous results. The {omega} and anti-{omega} production rates have been obtained for 3 ranges of centrality as well as their radial flow and their kinetic uncoupling temperatures. The gain on the relative uncertainty is between 15 and 30% according to the variable. The average speed of the radial flow is 0.50 {+-} 0.02 and the kinetic uncoupling temperature is 132 {+-} 20 MeV which indicates that multi-strange baryons uncouple in hadronic medium earlier that lighter particles like pions, kaons and protons. However, uncertainty intervals remain too broad to draw strong conclusions. (A.C.)

  7. Cargo-Positioning System for Next-Generation Spacecraft

    Science.gov (United States)

    Holladay, Jon; Colton, Jonathan

    2006-01-01

    A report discusses a proposed system for mounting loaded pallets in the cargo bay of a next-generation space-shuttle-like spacecraft, such that the center of mass of the cargo would lie within a 1-in. (2.54-cm) cube that would also contain the center of mass of the spacecraft. The system would include (1) an algorithm for planning the locations of the pallets, given the geometric and weight properties of the pallets, and the geometric restrictions of the cargo bay; (2) quick-connect/quick-disconnect mounting mechanisms similar to those now used on air hoses; (3) other mounting mechanisms, comprising mostly spring-loaded pins, in a locking subsystem that would prevent shifting of the pallets under load; and (4) mechanisms for performing fine position adjustments to satisfy the center-of-mass requirement. The position- adjusting mechanisms would be motor-driven lead-screw mechanisms in groups of three - one for positioning each pin of the locking subsystem along each of three mutually perpendicular coordinate axes. The system also would include a triple-threaded screw that would provide compensation for thermal expansion or contraction of the spacecraft.

  8. Magnetospheric Multiscale (MMS) Mission Attitude Ground System Design

    Science.gov (United States)

    Sedlak, Joseph E.; Superfin, Emil; Raymond, Juan C.

    2011-01-01

    This paper presents an overview of the attitude ground system (AGS) currently under development for the Magnetospheric Multiscale (MMS) mission. The primary responsibilities for the MMS AGS are definitive attitude determination, validation of the onboard attitude filter, and computation of certain parameters needed to improve maneuver performance. For these purposes, the ground support utilities include attitude and rate estimation for validation of the onboard estimates, sensor calibration, inertia tensor calibration, accelerometer bias estimation, center of mass estimation, and production of a definitive attitude history for use by the science teams. Much of the AGS functionality already exists in utilities used at NASA's Goddard Space Flight Center with support heritage from many other missions, but new utilities are being created specifically for the MMS mission, such as for the inertia tensor, accelerometer bias, and center of mass estimation. Algorithms and test results for all the major AGS subsystems are presented here.

  9. Two-particle system in noncommutative space with preserved rotational symmetry

    CERN Document Server

    Gnatenko, Kh P

    2016-01-01

    We consider a system of two particles in noncommutative space which is rotationally invariant. It is shown that the coordinates of the center-of-mass position and the coordinates of relative motion satisfy noncommutative algebra with corresponding effective tensors of noncommutativity. The hydrogen atom is studied as a two-particle system. We find the corrections to the energy levels of the hydrogen atom up to the second order over the parameter of noncommutativity.

  10. Challenges in calculating molecular systems with Coulomb interactions

    Science.gov (United States)

    Kirnosov, Nikita; Sharkey, Keeper; Adamowicz, Ludwik

    2014-03-01

    The highly accurate quantum mechanical calculations are not only crucial for high-resolution experimental data verification, but may also serve as a guide in the field of exotic systems exploration. Including all non-relativistic effects in a single-step variational approach and rigorously separating out the center of mass motion allows us to build a reliable model for calculating bound states of molecular systems with Coulomb interactions. In these calculations the wave function of the system is expanded in terms of explicitly correlated Gaussian (ECG) basis functions. Examples of calculations of energies and other properties of some molecular systems will be presented.

  11. Hyperon production in e+e--annihilation at 10 GeV center of mass energy

    International Nuclear Information System (INIS)

    The production cross sections for the Λ, Σ0, Ξ-, Σ± (1385), Ξ0 (1530) and Ω- hyperons have been measured, both in the continuum and in direct Υ decays. Baryon rates in direct Υ decays are enhanced by a factor of 2.5 or more compared to the continuum. Such a large baryon enhancement cannot be explained by standard fragmentation models. The strangeness suppression for baryons and mesons turns out to be the same. A strong suppression of spin 3/2 states is observed. (orig.)

  12. Analysis on motion of Earth’s center of mass observed with CHAMP mission

    Institute of Scientific and Technical Information of China (English)

    HWANG; CheinWay

    2008-01-01

    Geocenter motion (GCM) is one important topic for constructing and maintaining the terrestrial reference frame and its applications. GCM is studied from CHAMP with the multi-step approach in this paper. Geometric orbits of CHAMP in 2001-2006 are precisely determined with the kinematic method only from the satel-lite-borne GPS zero-difference data. Then a GCM time series is estimated from the precise kinematic orbits based on the theory of satellite dynamics to fit the CHAMP’s real geometric orbits. We compare the series with the geocenter series used in ITRF2005. Then the GCM series are analyzed with Fourier transform and wavelet transformation. The mean motions within 6 years in TX, TY and TZ direc-tions are respectively 0.8 mm, 2.2 mm, and 7.9 mm. The trends of GCM in the three directions are 0.495 mm/a, -0.004 mm/a, and 1.309 mm/a, respectively. The long-term movement (2001-2006) indicates that the crustal figure is changing. The seasonal variations are the main component which may be excitated by the mass redistribution of Earth’s fluid layer, e.g. ocean, atmosphere and continental water. The inter-annual variations are also found in the GCM series measured with CHAMP.

  13. Improved method for eliminating center-of-mass coordinates from matrix elements in oscillator basis

    International Nuclear Information System (INIS)

    This paper presents a concise, efficient method of reducing potential energy matrix elements to relative coordinates, when one is using an oscillator basis. It is especially suited to computer calculations. One nice feature of the method is its modular form, which allows a wide range of calculations. Separate FORTRAN subroutines have been written which calculate and store tables of the one-dimensional brackets of an equation that is presented and the single particle brackets from the isotropic to the axially symmetric oscillator equations. The tables are used by other subroutines which calculate the modified brackets and the brackets with spin. The methods developed here are a substantial improvement over what has been done heretofore, and open up new possibilities for performing nuclear structure calculations

  14. Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners

    OpenAIRE

    Lin Shun-Ping; Sung Wen-Hsu; Kuo Fon-Chu; Kuo Terry B J; Chen Jin-Jong

    2014-01-01

    Ultramarathon races are rapidly gaining popularity in several countries, raising interest for the improvement of training programs. The aim of this study was to use a triaxial accelerometer to compare the three-dimensional centerof- mass accelerations of two groups of ultramarathon runners with distinct performances during different running speeds and distances. Ten runners who participated in the 12-h Taipei International Ultramarathon Race underwent laboratory treadmill testing one month la...

  15. Elliptic Flow In Gold-gold Collisions At Center Of Mass Energy = 130 Gev

    CERN Document Server

    Tang, A

    2002-01-01

    Elliptic flow holds much promise for studying the early- time thermalization attained in ultrarel-ativistic nuclear collisions. A related open issue is the extent to which hydrodynamic models and calculations which approach the low density (dilute gas) limit can describe the data. Among the effects that can complicate the interpretation of elliptic flow measurements are azimuthal correlations that are unrelated to the reaction plane (non-flow correlations). This study presents data from the STAR experiment at Brookhaven's Relativistic Heavy Ion Collider (RHIC) and contrasts two- and four-particle correlation results in order to estimate and eliminate these non-flow effects. It is found that four-particle correlation analyses can reliably separate flow and non- flow correlation signals, and the latter account for on average about 15% of the observed second-harmonic azimuthal correlation, with the largest relative contribution for the most peripheral and the most central collisions. The results are also correct...

  16. Relative and center-of-mass motion in the attractive Bose-Hubbard model

    DEFF Research Database (Denmark)

    Sørensen, Ole Søe; Gammelmark, Søren; Mølmer, Klaus

    2012-01-01

    We present first-principles numerical calculations for few-particle solutions of the attractive Bose-Hubbard model with periodic boundary conditions. We show that the low-energy many-body states found by numerical diagonalization can be written as translational superposition states of compact...

  17. Experimental Investigation of Hadron Collisions at the Highest Center-of-Mass Energies

    Energy Technology Data Exchange (ETDEWEB)

    Marc, Baarmand [Florida Institute of Technology; Hohlmann, Marcus [Florida Institute of Technology

    2012-05-31

    In this report, we summarize the research in physics of elementary particles conducted by the Florida Tech DOE supported group at the CMS experiment at CERN, during the last 3-year cycle under this grant.

  18. Thousand TeV in the center of mass: introduction to high-energy storage rings

    International Nuclear Information System (INIS)

    The lecture discusses, in a pedagogic way, a hypothetical 500 TeV proton storage ring accelerator. It gives machine parameters, discusses linear optics and betatron motions, surveys questions of errors, tolerances and nonlinear resonances, and discusses some of the demands on the detection apparatus, especially the apparent inevitability of multiple interactions per bunch crossing

  19. Cold atoms as a coolant for levitated optomechanical systems

    CERN Document Server

    Ranjit, Gambhir; Geraci, Andrew A

    2014-01-01

    Optically trapped dielectric objects are well suited for reaching the quantum regime of their center of mass motion in an ultra-high vacuum environment. We show that ground state cooling of an optically trapped nanosphere is achievable when starting at room temperature, by sympathetic cooling of a cold atomic gas optically coupled to the nanoparticle. Unlike cavity cooling in the resolved sideband limit, this system requires only a modest cavity finesse and it allows the cooling to be turned off, permitting subsequent observation of strongly-coupled dynamics between the atoms and sphere. Nanospheres cooled to their quantum ground state could have applications in quantum information science or in precision sensing.

  20. Rotor health monitoring and damage detection utilizing a disk spin simulation system

    Science.gov (United States)

    Gyekenyesi, Andrew L.; Baaklini, George Y.

    2001-08-01

    This paper describes a unique, disk spin simulation system currently being utilized at NASA Glenn Research Center. The system allows for precision controlled spin tests that can facilitate the application of various sensing technologies for in-situ detection of rotor damage. In addition, the disk spin simulation system has the capability for elevated temperatures up to 540°C (1000°F). The current rotor used to simulate a bladed disk consists of a 46 cm(18 in.) diameter, titanium disk with 30 machined gear teeth. The gear design imitates the blades of a compressor or turbine disk. Operating speeds for the system can reach 1000 revolutions per minute. This allows the system to achieve circumferential velocities paralleling those seen in actual aircraft engines. For this study, a new, innovative capacitive sensing system was used to monitor blade tip clearance (i.e., gear tooth clearance). In turn, the sensor information was employed to calculate the change in the center of mass of the rotor system. T he capacitive sensor and corresponding software were analyzed by attaching a localized weight at numerous positions on the disk. Upon calculating the change in the center of mass, the sensitivities of the sensor and software were established. In the end, it is hoped that by studying the motion and position of blades as well as the change in the center of mass of a rotor system, it may be feasible to identify alterations due to damage (e.g., cracks) eitehr in the blades or the disk itself.

  1. Elastic scattering for the system {sup 6}Li+p at near barrier energies with MAGNEX

    Energy Technology Data Exchange (ETDEWEB)

    Soukeras, V.; Pakou, A.; Sgouros, O. [Department of Physics and HINP, The University of Ioannina, 45110 Ioannina (Greece); Cappuzzello, F.; Bondi, M.; Nicolosi, D. [INFN Laboratory Nazionali del Sud, via S. Sofia 62, 95125, Catania, Italy and Dipartimento di Fisica e Astronomia, Universita di Catania, via S. Sofia 64, 95125, Catania (Italy); Acosta, L.; Marquinez-Duran, G.; Martel, I. [Departamento di Fisica Aplicada, Universidad de Huelva, E-21071, Huelva (Spain); Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; Di Pietro, A.; Fernández-García, J. P.; Figuera, P.; Fisichella, M. [INFN Laboratory Nazionali del Sud, via S. Sofia 62, 95125, Catania (Italy); Alamanos, N. [CEA-Saclay, DAPNIA-SPhN, 91191, Gif-sur-Yvette (France); De Napoli, M. [INFN - Sezione di Catania, via S. Sofia 64, 95125, Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, via S. Sofia 64, 95125, Catania, Italy and INFN - Sezione di Catania, via S. Sofia 64, 95125, Catania (Italy); and others

    2015-02-24

    Elastic scattering measurements have been performed for the {sup 6}Li+p system in inverse kinematics at the energies of 16, 20, 25 and 29 MeV. The heavy ejectile was detected by the large acceptance MAGNEX spectrometer at the Laboratori Nazionali del Sud (LNS) in Catania, in the angular range between ∼2{sup 0} and 12{sup 0} in the laboratory system, giving us the possibility to span almost a full angular range in the center of mass system. Results will be presented and discussed for one of the energies.

  2. Maximal temperature in a simple thermodynamical system

    Science.gov (United States)

    Dai, De-Chang; Stojkovic, Dejan

    2016-06-01

    Temperature in a simple thermodynamical system is not limited from above. It is also widely believed that it does not make sense talking about temperatures higher than the Planck temperature in the absence of the full theory of quantum gravity. Here, we demonstrate that there exist a maximal achievable temperature in a system where particles obey the laws of quantum mechanics and classical gravity before we reach the realm of quantum gravity. Namely, if two particles with a given center of mass energy come at the distance shorter than the Schwarzschild diameter apart, according to classical gravity they will form a black hole. It is possible to calculate that a simple thermodynamical system will be dominated by black holes at a critical temperature which is about three times lower than the Planck temperature. That represents the maximal achievable temperature in a simple thermodynamical system.

  3. Maximal temperature in a simple thermodynamical system

    CERN Document Server

    Dai, De-Chang

    2016-01-01

    Temperature in a simple thermodynamical system is not limited from above. It is also widely believed that it does not make sense talking about temperatures higher than the Planck temperature in the absence of the full theory of quantum gravity. Here, we demonstrate that there exist a maximal achievable temperature in a system where particles obey the laws of quantum mechanics and classical gravity before we reach the realm of quantum gravity. Namely, if two particles with a given center of mass energy come at the distance shorter than the Schwarzschild diameter apart, according to classical gravity they will form a black hole. It is possible to calculate that a simple thermodynamical system will be dominated by black holes at a critical temperature which is about three times lower than the Planck temperature. That represents the maximal achievable temperature in a simple thermodynamical system.

  4. Analysis of the Reference Systems of Modern Selenographic Systems

    Science.gov (United States)

    Nefedyev, Yuri; Petrova, Natalia; Andreev, Alexey; Demina, Natalya

    2016-07-01

    In this work analysis of the reference systems of modern selenographic systems was made. The center of the Moon's mass position relative to its center of figure was determined from the data of "Clementine" and "Kaguya" missions and "ULCN" and "KSC-1162" catalogues. The knowledge of the Moon's center of mass position relative to its center of figure is important for researches of the lunar origin, structure and evolution and in terms of precision solutions circumlunar navigation tasks. At the present this task is the most relevant and demanded for cosmic lunar missions.The expansions by spherical harmonics N=5 degree and order of the lunar function h (λ, β) using the package ASNI USTU were executed. Module of the expansion of the local area to surfaces to full sphere was used. The parameters of cosmic missions are given for comparison (SAI; Bills, Ferrari). The normalized coefficients from expansions for eight sources of hypsometric information are obtained: "Clementine" (N=40), "KSC-1162" (N=5), "Kiev" (N=5), "SAI" (N=10; Chuikova (1975)), "Bills, Ferrari", "Kaguya" (Selena, Japan mission), "ULCN" (The Unified Lunar Control Network 2005). The displacements of the lunar center of figure relative to the lunar center of the mass were defined from equations (Chuikova (1975)): Δ ξ = C_{11} √{3}, Δ η= S_{11} √{3}, Δ ζ = C_{10} √{3}, where ξ is the axis directed towards the Earth, η is equatorial axis directed perpendicularly to ξ , ζ is rotation axis of the Moon, C_{11} , S_{11} , C_{10} are the normalized amplitudes of the harmonics of the first order expansion of the relief. After that we considered: - mathematical models in the form of expansions in spherical functions - methods for estimating the model parameters; - information technology data processing. As a model describing the behavior of the relief on the lunar sphere is used the expansion of the height in a series of spherical harmonics (Sagitov (1979)) in the form of a regression model

  5. Charge symmetry breaking in the neutron proton system

    International Nuclear Information System (INIS)

    Two consequences of charge symmetry breaking (CSB) in the n-p system are examined. In n-p elastic scattering, CSB nuclear forces cause a difference between the polarizations of the neutron and the proton scattered in opposite directions in the center of mass system. The expected differences in polarizations due to one boson exchanges, particularly a photon exchange, isospin mixed mesons, and a pion (with the n-p mass difference taken into account), are computed. The calculated polarization difference is typically of the order of several tenths of a percent. In np → dπ0, the CSB of nuclear forces can be tested by measuring the asymmetry of the angular distribution of deuterons about 900 in the center of mass frame. The expected asymmetry is calculated for one boson exchange CSB mechanisms, as in the elastic scattering. The asymmetry caused by the mixed n-π0 exchange is dominant, but all of the mechanisms contribute asymmetries with similar angular dependences. The maximum assymmetry is about 0.8% at 0; the average is about 0.2%

  6. Charge symmetry breaking in the neutron-proton system

    International Nuclear Information System (INIS)

    Two consequences of charge symmetry breaking (CSB) in the n-p system are examined. In n-p elastic scattering, CSB nuclear forces cause a difference between the polarizations of the neutron and the proton scattered in opposite directions in the center of mass system. The expected differences in polarizations due to one-boson exchanges, particulary a photon exchange, isospin mixed mesons, and a pion (with the n-p mass difference taken into account), are computed. The calculated polarization difference is typically of the order of several tenths of a percent. In np → dπ0, the CSB of nuclear forces can be tested by measuring the asymmetry of the angular distribution of deuterons about 900 in the center of mass frame. The expected asymmetry is calculated for one-boson exchange CSB mechanisms, as in the elstic scattering. The asymmetry caused by the mixed eta-π0 exchange is dominant, but all of the mechanisms contribute asymmetries with similar angular dependences. The maximum asymmetry is about 0.8% at 00; the average is about 0.2%. (orig.)

  7. An Integrated X-Ray/Optical Tomography System for Pre-clinical Radiation Research

    OpenAIRE

    Eslami, S.; Yang, Y.; Wong, J; Patterson, M S; Iordachita, I.

    2013-01-01

    The current Small Animal Radiation Research Platform (SARRP) is poor for localizing small soft tissue targets for irradiation or tumor models growing in a soft tissue environment. Therefore, an imaging method complementary to x-ray CT is required to localize the soft tissue target’s Center of Mass (CoM) to within 1 mm. In this paper, we report the development of an integrated x-ray/bioluminescence imaging/tomography (BLI/BLT) system to provide a pre-clinical, high resolution irradiation syste...

  8. Solving Schrodinger Equation for Three-Electron Quantum Systems by the Use of The Hyperspherical Function Method

    CERN Document Server

    Margolin, Lia Leon

    2007-01-01

    A new mathematical model for the description of three electron quantum dots in 2D space is created, and ground states of this system in external magnetic field is investigated. The Schrodinger equation for three two-dimensional electrons is solved by the use of the Hyperspherical Function Method (HFM) It is shown that the HFM allows us to separate the center of mass movement and solve Schrodinger Equation with the use of the logarithmic potential of electron-electron interactions. Ground state energy levels as function of the magnetic field frequency is obtained.

  9. Assessment of alternate procedures for the seismic analysis of multiply supported piping systems

    International Nuclear Information System (INIS)

    When response spectrum methods are used in the seismic analysis of piping systems the response due to inertial action, the dynamic response, and the response due to the time varying differential motions of the support points (the pseudo-static response) must be determined. In this study the adequacy and the degree of conservatism associated with the uniform response spectrum method, the center of mass response spectrum method and fourteen variants of the independent response spectrum method to compute the dynamic response and five different methods to compute the pseudo-static response were evaluated. For this purpose a sample of six piping systems, two of which were subjected to thirty-three earthquakes, were studied. For each system and seismic excitation a multiple independent support excitation time history analysis was developed and used to provide a best estimate of true response and to form the basis for comparison. A combination procedure to calculate the total responses is considered as well. Results are presented and compared to the corresponding responses evaluated using the current uniform response spectrum method and the center of mass response spectra approach. Based on the results, recommendations concerning the use of the methods were developed

  10. The ATLAS Trigger System: Ready for Run 2

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2015-01-01

    The ATLAS trigger system has been used successfully for data collection in the 2009-2013 Run 1 operation cycle of the CERN Large Hadron Collider (LHC) at center-of-mass energies of up to 8 TeV. With the restart of the LHC for the new Run 2 data-taking period at 13 TeV, the trigger rates are expected to rise by approximately a factor of 5. This presentation gave a brief overview of the upgrades to the ATLAS trigger system that have been implemented during the LHC shutdown period in order to deal with the increased trigger rates while efficiently selecting the physics processes of interest. These upgrades include changes to the L1 calorimeter trigger, the introduction of a new L1 topological trigger module, improvements in the L1 muon system, and the merging of the previously two-level HLT system into a single processing farm.

  11. Inner tracking system of the ALICE experiment. Overview

    International Nuclear Information System (INIS)

    The ALICE experiment, one of the four LHC experiments, is dedicated to study Heavy Ion collisions at the center-of-mass energy of the 5.5 TeV per nucleon pair. The ALICE detector is designed as a general purpose detector capable of measuring most phenomena related to the Quark Gluon Plasma (QGP) state of matter. A set of high granularity detectors is used for tracking and includes an Inner Tracking System, a large-volume Time-Projection Chamber and a Transition-Radiation Detector. The Inner Tracking System is designed for high precision reconstruction of the primary and secondary vertices and tracking and identification of low momentum particles. Motivations and requirements for the ITS tracking system are presented and specifics of the design and performance are discussed

  12. Rigid multibody system dynamics with uncertain rigid bodies

    International Nuclear Information System (INIS)

    This paper is devoted to the construction of a probabilistic model of uncertain rigid bodies for multibody system dynamics. We first construct a stochastic model of an uncertain rigid body by replacing the mass, the center of mass, and the tensor of inertia by random variables. The prior probability distributions of the stochastic model are constructed using the maximum entropy principle under the constraints defined by the available information. The generators of independent realizations corresponding to the prior probability distribution of these random quantities are further developed. Then several uncertain rigid bodies can be linked to each other in order to calculate the random response of a multibody dynamical system. An application is proposed to illustrate the theoretical development.

  13. Forward hadronic calorimeter of the European Hybrid Spectrometer. The monitoring system

    International Nuclear Information System (INIS)

    The forward hadronic calorimeter (FHC) of the European Hybrid Spectrometer (EHS) is a component of the calorimetric detector system that ensures recording the neutral component of the secondary particles directed forward in the center-of-mass system in the 10-400 GeV/s pulse range. The monitoring system for FHC of the EHS is described. The general block-diagram of the system functional interconnection of the modules and the software organization are presented. The light monitoring system realized for FHC permits to continuously control each detector counter operation. Following the stability of all stages of the light conversion path enables to localize failures quickly and unambiguously and to determine their reasons. One of the advantages of the described in the paper technique of rapid sensitivity control of the counters is its fitness for adjusting the detector to a mode corresponding to any of previously performed calibrations to an accuracy of about 5%

  14. Transverse momentum and pseudorapidity distributions of final-state particles and spatial structure pictures of an interacting system in p-Pb collisions at √(sNN) = 5.02 TeV

    International Nuclear Information System (INIS)

    The transverse momentum and pseudorapidity distributions of final-state particles produced in proton-lead (p-Pb) collisions at center-of-mass energy per nucleon pair √(sNN) = 5.02 TeV are studied in the framework of a multisource thermal model. Experimental results measured by the ALICE and CMS Collaborations are described by the Tsallis transverse momentum distribution and the two-cylinder pseudorapidity distribution. Based on the parameter values extracted from the transverse momentum and pseudorapidity distributions, some other quantities are extracted. Then, the structure pictures of the interacting system at the stage of kinetic freeze-out in some spaces are obtained. (orig.)

  15. Multivariate Methods For Hadronic Final States In Electron-positron Collisions At Center Of Mass Energy = 500 Gev

    CERN Document Server

    Pathak, S

    2005-01-01

    We approach the hadronic final state events in a future linear collider at s = 500 GeV from the knowledge discovery (data mining) point of view. We present FastCal, a fast configurable calorimeter Monte Carlo simulator for linear collider detector simulations that produces data at a rate that is 3000 times that of full simulation. Neural networks based on earlystopping are designed for the jet- combinatorial problem. CJNN, a neural network package is presented for use in the linear collider analysis environment. Neural network performances are optimized by implementing an ensemble of neural networks. A binary tree is used to obtain novel automatic cuts on physics variables. Data visualization is introduced as a crucial component of data analysis, and principal component analysis is used to understand data distributions and structures in multiple dimensions. Finally, cluster analyses with fuzzy c-means and demographic clustering are used to partition data automatically in an unsupervised regime, and we sho...

  16. $K^+\\Lambda$ and $K^+\\Sigma^0$ photoproduction with fine center-of-mass energy resolution

    CERN Document Server

    Jude, T C; Watts, D P; Aguar-Bartolome, P; Akasoy, L K; Annand, J R M; Arends, H J; Bantawa, K; Beck, R; Bekrenev, V S; Berghauser, H; Braghieri, A; Branford, D; Briscoe, W J; Brudvik, J; Cherepnya, S; Demissie, B T; Dieterle, M; Downie, E J; Fil'kov, L V; Gregor, R; Heid, E; Hornidge, D; Jaegle, I; Jahn, O; Kashevarov, V L; Keshelashvili, I; Kondratiev, R; Korolija, M; Koulbardis, A A; Kruglov, S P; Krusche, B; Lisin, V; Livingston, K; MacGregor, I J D; Maghrbi, Y; Manley, D M; Marinides, Z; Mart, T; Martinez, M; McGeorge, J C; McNicoll, E F; Middleton, D G; Mushkarenkov, A; Nefkens, B M K; Nikolaev, A; Nikonov, V A; Oberle, M; Ostrick, M; Otte, P B; Oussena, B; Pedroni, P; Pheron, F; Polonski, A; Prakhov, S; Robinson, J; Rosner, G; Rostomyan, T; Sarantsev, A V; Schumann, S; Sikora, M H; Sober, D I; Starostin, A; Strakovsky, I; Suarez, I M; Supek, I; Thiel, M; Thomas, A; Unverzagt, M; Werthmueller, D; Witthauer, L; Zehr, F

    2013-01-01

    Precision measurements of $\\gamma p \\rightarrow K^{+} \\Lambda$ and $\\gamma p \\rightarrow K^{+} \\Sigma^0$ cross-sections have been obtained with the photon tagging facility and the Crystal Ball calorimeter at MAMI-C. The measurement uses a novel $K^+$ meson identification technique in which the weak decay products are characterized using the energy and timing characteristics of the energy deposit in the calorimeter, a method that has the potential to be applied at many other facilities. The fine centre-of-mass energy ($W$) resolution and statistical accuracy of the new data results in a major impact on partial wave analyses aiming to better establish the excitation spectrum of the nucleon. The new analyses disfavor a strong role for quark-diquark dynamics in the nucleon.

  17. High Transverse Momentum Charged Kaon Production in Center of Mass Energies = 200 GeV Au - Au Collisons at RHIC

    CERN Document Server

    Norman, B E

    2003-01-01

    Relativistic heavy-ion collisions compress nuclei to states of extremely high temperature and density. Under these conditions, phenomenological models as well as Lattice QCD calculations predict a phase transition in nuclear matter, in which quarks and gluons are no longer bound in hadrons but instead can move freely inside the interaction volume. This transition would be accompanied by a restoration of chiral symmetry, and the resulting state is called Quark Gluon Plasma (QGP). The observation of this phase transition and the study of the dynamics and properties of the deconfined phase have important consequences, both for the understanding of QCD and for cosmology, as it recreates conditions that existed for the universe as a whole some 10 μs after the Big Bang. Charged Kaons can provide signals of the formation of a QGP. First, they carry a large fraction of the strange quark content of the hadrons produced in the collision. The amount of strangeness can probe the degree of chemical equilibrium in t...

  18. Neutral Kaon Correlations In Gold-gold Collisions At Center Of Mass Energy Of 200 Gev Per Nucleon Pair

    CERN Document Server

    Bekele, S

    2004-01-01

    A few microseconds after the Big Bang, the universe is believed to have existed in the form of a plasma composed of strongly interacting particles known as quarks and gluons. Although the quarks and gluons behave as asymptotically free particles in a Quark Gluon Plasma (QGP), free quarks and gluons have never been discovered in the laboratory. Experiments at the Relativistic Heavy Ion Collider (RHIC) aim to create conditions similar to the early universe by colliding heavy ions at the highest energies possible in the hope of observing a phase transition from a QGP into hadronic degrees of freedom. The response of the space time structure of the hot reaction zone created in a heavy ion collision to a phase transition is one of the many observables being studied at RHIC. Making use of the techniques of two particle intensity interferometry, also known as the HBT effect, the RHIC experiments are studying the space-time structure and dynamical properties of the region from which particles are emitted. A large spa...

  19. Deformation Effect on the Center-of-Mass Correction Energy in Nuclei Ranging from Oxygen to Calcium

    Institute of Scientific and Technical Information of China (English)

    ZHAO Peng-Wei; SUN Bao-Yuan; MENG Jie

    2009-01-01

    The microscopic c.m. correction energies for nuclei ranging from oxygen to calcium are systematically calculated by both spherical and axially deformed relativistic mean-field (RMF) models with the effective interaction PK1. The microscopic c.m. correction energies strongly depend on the isospin as well as deformation and deviate from the phenomenological ones. The deformation effect is discussed in detail by comparing the deformed with the spherical RMF calculation. It is found that the direct and exchange terms of the c.m. correction energies are strongly correlated with the density distribution of nuclei and are suppressed in the deformed case.

  20. Influence of the velocity vector base relocation to the center of mass of the interrogation area on PIV accuracy

    Directory of Open Access Journals (Sweden)

    Kouba Jan

    2014-03-01

    Full Text Available This paper is aimed at modification of calculation algorithm used in data processing from PIV (Particle Image Velocimetry method. The modification of standard Multi-step correlation algorithm is based on imaging the centre of mass of the interrogation area to define the initial point of the respective vector, instead of the geometrical centre. This paper describes the principle of initial point-vector assignment, the corresponding data processing methodology including the test track analysis. Both approaches are compared within the framework of accuracy in the conclusion. The accuracy test is performed using synthetic and real data.

  1. Measurement Of The Center-of-mass Energy Dependence Of Isolated Direct Photon Production In Proton-antiproton Collisions

    CERN Document Server

    Partos, D S

    2001-01-01

    We present a measurement of the s dependence of isolated prompt photon production in hadronic collisions. Prompt photon samples from 1.8 TeV and 0.63 TeV pp¯ collisions were recorded with the Collider Detector at Fermilab. Two independent background subtraction methods, shower shape and conversion rates, were calibrated and used to calculate the photon cross sections. The shapes of the measured cross sections as a function of photon transverse momentum were not adequately predicted by current calculations of perturbative Quantum Chromodynamics (QCD). One possible explanation for the disagreement between data and theory, an incorrect parameterization of the proton's parton distribution function, is excluded by a comparison of the cross sections as a function of photon xT, the fraction of the proton's momentum carried by the photon.

  2. Four-body model of the four-nucleon system

    International Nuclear Information System (INIS)

    Using a nonrelativistic field theoretic formalism a soluble model of the four-nucleon system is developed and solved numerically. Two- and three-body scattering proceeds through intermediate quasiparticles and the resulting T-matrices are separable in momentum space and satisfy two- and three-body unitarity. The 2+2 subamplitudes are treated exactly by the convolution method. The resulting four-body equations reduce to single variable integral equations following partial wave decomposition and can be solved numerically by rotation of contour together with matrix inversion. A complete phase shift calculation is performed for the isospin triplet interaction. The differential cross sections for all two-to-two processes initiated by p + 3He, n + 3H and d + d are compared with experiment for energies up to 25 MeV in the center of mass. Total elastic and reaction cross sections for the processes initiated by n + 3H are also calculated and compared with experimental data

  3. The LUCID detector ATLAS luminosity monitor and its electronic system

    Science.gov (United States)

    Manghi, F. Lasagni

    2016-07-01

    In 2015 LHC is starting a new run, at higher center of mass energy (13 TeV) and with 25 ns bunch-spacing. The ATLAS luminosity monitor LUCID has been completely rebuilt, both the detector and the electronics, in order to cope with the new running conditions. The new detector electronics features a new read-out board (LUCROD) for signal acquisition and digitization, PMT-charge integration and single-side luminosity measurements, and a revisited LUMAT board for combination of signals from the two detectors. This note describes the new board design, the firmware and software developments, the implementation of luminosity algorithms, the optical communication between boards and the integration into the ATLAS TDAQ system.

  4. User‘s Friendly Interface to the CDF Data Handling System

    Institute of Scientific and Technical Information of China (English)

    F.Ratnikov

    2001-01-01

    The CDF collaboration at the Fermilab Tevatron analyses proton-antiproton interactions at a center-of=mass energy of 2 TeV.during the the collider run starting this year the experiment expects to record 1 Petabyte of data and associated data samples,The Data Handling(DH) system has online and offline components.The DH offline component provides access to the stored data,to stored reconstruction output,to stored Monte-Carlo data samples,and user owned data samples.It serves more than 450 physicists of the collaboration.The extra requirements to the offline component of the Data Handling system are simplicity and convenience for users.More than 50 million events of the CDF Run II data have been already processed using this system.

  5. Trigonometric and elliptic Ruijsenaars-Schneider systems on the complex projective space

    CERN Document Server

    Feher, L

    2016-01-01

    We present a direct construction of compact real forms of the trigonometric and elliptic $n$-particle Ruijsenaars-Schneider systems whose completed center-of-mass phase space is the complex projective space $\\mathbb{CP}^{n-1}$ with the Fubini-Study symplectic structure. These systems are labelled by an integer $p\\in\\{1,\\dots,n-1\\}$ relative prime to $n$ and a coupling parameter $y$ varying in a certain punctured interval around $p\\pi/n$. Our work extends Ruijsenaars's pioneering study of compactifications that imposed the restriction $0systems by Hamiltonian reduction.

  6. The ATLAS FTK system: how to improve the physics potential with a tracking trigger

    CERN Document Server

    Iizawa, T; The ATLAS collaboration

    2014-01-01

    After a very successful data taking run, the ATLAS experiment is being upgraded to cope with the higher luminosity and higher center of mass energy that the Large Hadron Collider will provide in the next years. The Fast Tracker (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to operate at the level-1 trigger output rate. FTK is a dedicated processor based on a mixture of advanced technologies. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the large level of computing power required for pattern recognition is provided by incorporating standard-cell ASICs named Associative Memories (AM). FTK provides global track reconstruction in the full inner silicon detector, with resolution comparable to the offline algorithms, in approximately 100 microseconds, allowing a fast and precise detection of the primary and secondary vertex information. The track and vertex information is then used by t...

  7. COLLI-PTB, Neutron Fluence Spectra for 3-D Collimator System by Monte-Carlo

    International Nuclear Information System (INIS)

    1 - Description of program or function: For optimizing collimator systems (shieldings) for fast neutrons with energies between 10 KeV and 20 MeV. Only elastic and inelastic neutron scattering processes are involved. Isotropic angular distribution for inelastic scattering in the center of mass system is assumed. 2 - Method of solution: The Monte Carlo method with importance sampling technique, splitting and Russian Roulette is used. The neutron attenuation and scattering kinematics is taken into account. 3 - Restrictions on the complexity of the problem: Energy range from 10 KeV to 20 MeV. For the output spectra any bin width is possible. The output spectra are confined to 40 equidistant channels

  8. Cross sections for ion-molecular reactions in hydrogen systems and for charge transfer reactions of slow multiply charged ions

    International Nuclear Information System (INIS)

    Cross sections of ion-molecular reactions in hydrogen systems of H+-H2, H2+-H2 and H3+-H2 and charge transfer cross sections of multiply charged ions in atomic and molecular targets are presented in graphs and tables of the part A, B and C. All data presented for 99 collision systems have been measured systematically using an octo-pole ion beam guide (OPIG) technique till now since 1985. The part A is for ion-molecular reactions in hydrogen systems. In the lower energy region below few eV in center-of-mass systems, it is seen obviously at a glance that the ion-molecular reaction in hydrogen systems is dominated by H3+ formation process. In the energy region from few eV to few hundred eV in center-of-mass systems, many reaction channels of decay processes from intermediate molecular states seem to be opened resonantly. Some of cross section data in the part B for charge transfer reactions of low-charged ions produced by a conventional electron impact type (Nier type) ion source should be noted to strongly depend on the electron impact energy due to contamination of low lying metastable states in projectile ions. The part C is for charge transfer reactions of multiply charged ions extracted from a small type of electron beam ion source (Mini-EBIS). In measurements using the mini-EBIS, no evidence of metastable ions existing in the primary ion beam has been found except for doubly charged ion beam. The higher energy end of the present cross sections are connected with previous data in fairly good

  9. Macroscopic quantum systems and gravitational phenomena

    International Nuclear Information System (INIS)

    Low-energy quantum systems are studied theoretically in light of possible experiments to test the interplay between quantum theory and general relativity. The research focus in this thesis is on quantum systems which can be controlled with very high precision and which allow for tests of quantum theory at novel scales in terms of mass and size. The pulsed regime of opto-mechanics is explored and it is shown how short optical pulses can be used to prepare and characterize quantum states of a massive mechanical resonator, and how some phenomenological models of quantum gravity can be probed. In addition, quantum interferometry with photons and matter-waves in the presence of gravitational time dilation is considered. It is shown that time dilation causes entanglement between internal states and the center-of-mass position and that it leads to decoherence of all composite quantum systems. The results of the thesis show that the interplay between quantum theory and general relativity affects even low-energy quantum systems and that it offers novel phenomena which can be probed in experiments. (author)

  10. New results related to QGP-like effects in small systems with ALICE

    CERN Document Server

    ,

    2016-01-01

    Results on the production of $\\pi^{\\pm}$, $\\textrm{K}^{\\pm}$, $\\textrm{p}(\\bar{\\textrm{p}})$, $\\Lambda(\\bar{\\Lambda})$, $\\Xi^{-} \\left(\\bar{\\Xi}^{+}\\right)$ and $\\Omega^{-} \\left(\\bar{\\Omega}^{+}\\right)$ at midrapidity (${|y|<0.5}$) as a function of multiplicity in $\\sqrt{s}~=~7~\\textrm{TeV}$ pp collisions are reported. Transverse momentum distributions and integrated yields are compared to expectations from statistical hadronization models along with results from different colliding systems and center-of-mass energies. The evolution of spectral shapes with multiplicity show similar patterns to those seen in p-Pb and Pb-Pb collisions. The $p_{\\textrm{T}}$-integrated baryon yields relative to pions exhibit a significant strangeness-related enhancement in both pp and p-Pb collisions.

  11. Dynamics and control of the tether elevator/crawler system

    Science.gov (United States)

    Lorenzini, E. C.; Cosmo, M.; Vetrella, S.; Moccia, A.

    1989-01-01

    This paper investigates the dynamics and acceleration levels of a new tethered system for micro- and variable-gravity applications. The system consists of two platforms tethered on opposite sides to the Space Station. A fourth platform, the elevator, is placed in between the Space Station and the upper platform. Variable-g levels on board the elevator are obtained by moving this facility along the upper tether, while microgravity experiments are carried out on board the Space Station. By controlling the length of the lower tether the position of the system center of mass can be maintained on board the Space Station despite variations of the system's distribution of mass. The paper illustrates the mathematical model, the environmental perturbations and the control techniques which have been adopted for the simulation and control of the system dynamics. Two sets of results from two different simulation runs are shown. The first set shows the system dynamics and the acceleration spectra on board the Space Station and the elevator during station-keeping. The second set of results demonstrates the capability of the elevator to attain a preselected g-level.

  12. systems

    Directory of Open Access Journals (Sweden)

    Alexander Leonessa

    2000-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  13. Effect of Traction Angle on the External Work Performed During Running in Weightlessness on a Treadmill Equipped with a Subject Loading System

    Science.gov (United States)

    Gosseye, T. P.; Willems, P. A.; Heglund, N. C.

    2008-06-01

    During long duration spaceflight, astronauts regularly run on a treadmill-gravity simulator to mitigate bone and muscle loss. This study compares the biomechanics of running on a treadmill-gravity simulator during parabolic flights with the biomechanics of running on Earth. We designed a treadmill equipped with a gravity-like subject pull-down system (SLS) and transducers that measure ground reaction forces and pull-down forces. From these signals we calculate the external work (Wext) to sustain the movements of the center of mass (COM) of the body. In weightlessness, most subjects spontaneously tilt backwards while running. This posture imitates running down a ~2° slope on Earth. Consequently, the Wext is ~15% smaller on the simulator than during level running on Earth. This effect can be avoided by mounting the SLS on mobile chariots that maintain the pull-down force vertical (as in gravity).

  14. Test of post-newtonian conservation laws in the binary system PSR 1913+16

    International Nuclear Information System (INIS)

    Observations that set upper limits on secular changes in the pulsar period and orbital period in the binary system PSR 1913+16 may provide a test of post-Newtonian conservation laws. According to some metric theories of gravitation, the center of mass of a binary system may be accelerated in the direction of the periastron of the orbit because of a violation of post-Newtonian momentum conservation. In the binary system PSR 1913+16, this effect could produce secular changes in both pulsar and orbital periods (changing overall Doppler shift) as large as two parts in 106 per year. The size of the effect is proportional to the sine of the angle of periastron, to the difference in the masses of the components of the binary system, and to the combination of parametrized post-Newtonian parameters α3+zeta2 -zeta/subw/. This combination is zero in any theory that predicts conserved total momentum for isolated systems (including general relativity and Brans-Dicke theory). Although solar-system experiments constrain α3 and zeta/subw/ to be small, no decent direct limit has been placed on zeta2. Other possible sources of secular period changes in PSR 1913+16 are discussed and compared with this effect. It is also shown that a breakdown in the equality of active and passive gravitational masses (violation of ''Newton's third law'') leads only to periodic, unobservable orbital effects in a system like PSR 1913+16

  15. Critical Technologies for the Development of Future Space Elevator Systems

    Science.gov (United States)

    Smitherman, David V., Jr.

    2005-01-01

    A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.

  16. The CDF vertex time projection chamber system

    International Nuclear Information System (INIS)

    The vertex time projection chamber (VTPC) system is one of the major components of the charged particle tracking system for the Collider Detector at Fermilab (CDF). The chambers cover about seven units of pseudorapidity (η) and must be capable of handling substantially more than the 30-35 charged particle tracks produced by typical anti pp collisions at center-of-mass energies of 1.8 TeV. The chambers are optimized to provide the good pattern recognition in the r-z view required to locate the event vertex, measure the overall event topology, and to complement the r-φ tracking in the large axial wire drift chamber that surrounds them. The chambers provide r-z information using TDC data from sense wire signals. Information on the φ of tracks is obtained from cathode pad signals on a subset of chambers read out by a FADC system. A similar system measures dE/dx of tracks in the forward cones surrounding the exiting beams. Because of the large number of photons that pass through the detector during each collision, novel techniques are required to reduce the amount of material in the chamber. These techniques include a custom surface mount integrated circuit preamplifier, epoxy-graphite and Kapton covered foam structural members, and miniature coaxial signal cables. The mechanical construction of the chamber, radiation length vs angle, and details of the electronics are described. The event reconstruction, corrections, and preliminary performance results for 1.8 TeV anti pp collisions are also discussed. (orig.)

  17. Search for the Higgs Boson Decaying to Two Tau Leptons in $p\\bar{p}$ Collisions at a Center of Mass Energy of 1.96 Tev

    Energy Technology Data Exchange (ETDEWEB)

    Elagin, Andrey Lvovich [Texas A & M Univ., College Station, TX (United States)

    2011-12-01

    A search for the Higgs boson decaying to $\\tau\\tau$ using 7.8~fb$^{-1}$ of $p\\bar{p}$ collisions at 1.96~TeV collected with CDF II detector is presented. The search is sensitive to four production mechanisms of the Higgs boson: ggH, WH, ZH and VBF. Modes where one tau decay leptonically, and another decay, hadronically, are considered. Two novel techniques are developed and used in the search. A Probabilistic Particle Flow Algorithm is used for energy measurements of the hadronic tau candidates. The signal is discriminated from backgrounds by the Missing Mass Calculator, which allows for full invariant mass reconstruction of $\\tau\\tau$ pair. The data are found to be consistent with the background only hypothesis. Therefore a 95\\% confidence level upper limit on the Standard Model Higgs boson cross section was set. At $M_H$$=$120~GeV/$c^2$ observed limit is 14.9$\\times\\sigma_{SM}\\times Br (H → ττ)$.

  18. Study of pp and ΛΛ production in e+e- annihilation at 10 GeV center of mass energy

    International Nuclear Information System (INIS)

    A study of the pp and ΛΛ production in direct Υ decays and in continuum e+e- annihilation is reported, based on data collected using the ARGUS detector at the e+e- storage ring DORIS II. The production rates for events containing two protons with momenta between 0.4 and 1.2 GeV/c in the continuum and in direct Υ decays have been measured to be nconpp=(4.5±0.4±0.2)x10-4 and ndirpp=(2.00±0.07±0.10)x10-3, respectively. The corresponding rates for ΛΛ production were found to be (5.1±3.6±0.8)x10-4 and (1.81±0.41±0.27)x10-3 respectively. (orig.)

  19. Center of Mass of Two or More Celestial Bodies as a Basis of Comets and «Black Holes» Mechanism

    OpenAIRE

    Eugeny F. Orlov

    2012-01-01

    The article considers the questions, arising during rendezvous of two celestial bodies with equal mass, one of which is the Earth and the consequences of such rendezvous to modern civilization, suggests the idea of centers of galaxies mass with anomalously large values of the gravitational fields, which allows to divide them into two types – material filled and hollow.

  20. Study of the e+e- → μ+μ-γ reaction at center-of-mass energies between 54 and 64 GeV

    International Nuclear Information System (INIS)

    The cross section and forward-backward muon charge asymmetry for the e+e-→μ+μ-γ reaction were measured to be σ = 2.82 ± 0.35 pb and A = 0.34 ± 0.10 with the VENUS detector at TRISTAN at = 59.2 GeV for an integrated luminosity of 53.5 pb-1. The measured cross section agrees with the theoretical prediction. The asymmetry result is consistent with the electroweak prediction but not with the QED prediction at the level of 2σ. (orig.)

  1. Center of Mass of Two or More Celestial Bodies as a Basis of Comets and «Black Holes» Mechanism

    Directory of Open Access Journals (Sweden)

    Eugeny F. Orlov

    2012-04-01

    Full Text Available The article considers the questions, arising during rendezvous of two celestial bodies with equal mass, one of which is the Earth and the consequences of such rendezvous to modern civilization, suggests the idea of centers of galaxies mass with anomalously large values of the gravitational fields, which allows to divide them into two types – material filled and hollow.

  2. Production of intermediate vector bosons W and Z in proton and anti-protons interactions at 540 GeV in the center of mass

    International Nuclear Information System (INIS)

    The most important and the most expected result of the s = 540 GeV pantip collider at CERN is the proof of the existence of the weak intermediate bosons W+- and Z0, and the study of their properties. This study in the UA1 experiment is presented. 52W+(W-)→e+(e-)νsub(e)(antiνsub(e)) and 4 Z0 → e+e- have been produced. Their measured masses are Msub(W) = 80.9sub(-1.4)sup(+0.6) GeV/c2 et Msub(Z) = 95.6 +- 1.4 GeV/c2. Their properties are entirely consistent with the ''standard model'' and their characteristics of production are consistent with QCD expectations. The relative numbers of W → eνsub(e) and Z → e+e-, as well as the width of the Z, give an upper limit of the number of ''generations''

  3. The Charge asymmetry in W bosons produced in p anti-p collisions at center of mass energy - 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Torborg, Julie M

    2005-07-01

    The primary mode of production of W{sup +} bosons in a p{bar p} collider is u + {bar d} {yields} W{sup +}. The u quark generally carries more momentum than the {bar d} and the resultant W{sup +} tends to be boosted in the proton direction. Similarly, W bosons are boosted in the anti-proton direction. This is observed as an asymmetry in the rapidity distributions of positive and negative W bosons. Measurement of this asymmetry serves as a probe of the momentum distribution of partons within the proton. These distributions are required as input to the calculation of every p{bar p} production cross section. This thesis presents the first measurement at D0 of the charge asymmetry of the W boson production cross section as measured in W {yields} ev decays in 0.3 fb{sup -1} of p{bar p} collisions collected with the D0 Detector. Theoretical predictions made using the CTEQ6.1M and MRST(2004) parton distribution functions are compared with the measurement.

  4. Interaction and dephasing of center-of-mass quantized excitons in wide ZnSe/Zn0.94Mg0.06Se quantum wells

    DEFF Research Database (Denmark)

    Wagner, Hans Peter; Schätz, A.; Maier, R.;

    1998-01-01

    -of-mass quantized heavy and light hole excitons are observed, showing binding energies of 3.5 meV. We determine the exciton scattering cross sections with incoherent and coherent excitons. The coherent cross section is found to be larger than the incoherent cross section, which is attributed to a stronger Pauli...

  5. Reaction plane dependence of neutral pion production in center-of-mass energy of 200 GeV Au+Au collisions at RHIC-PHENIX

    OpenAIRE

    Aramaki, Yoki; Collaboration, for the PHENIX

    2009-01-01

    It has been observed in central Au+Au collisions at Relativistic Heavy Ion Collider (RHIC) that the yield of neutral pions at high transverse momentum (pT> 5 GeV/c) is strongly suppressed compared to the one expected from p+p collisions scaled by the number of binary collisions. This suppression is considered to be due to the energy lost by hard scattered partons in the medium (jet quenching), which results in a decrease of the yield at a given pT. The magnitude of the suppression depends on ...

  6. Measurement of the $W$ Boson Mass in Proton-Antiproton Collisions at a Center of Mass Energy of 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Yacoob, Sahal [Northwestern Univ., Evanston, IL (United States)

    2010-06-01

    I present the measurement of the mass of the W Boson in the electron channel using 4.4 fb-1 of p $\\bar{p}$ collisions at √s = 1:96 TeV recorded by the D0 detector operating at the Fermilab Tevatron Collider.

  7. Search for Supersymmetry with R-parity violation in leptonic final states with the ATLAS detector at 13 TeV center-of-mass energy

    CERN Document Server

    AUTHOR|(CDS)2093982; Flowerdew, Michael

    Supersymmetry with R-parity violation, where the lightest supersymmetric particle can decay into Standard Model particles is an attractive target for collider-based searches for physics beyond the Standard Model. In this thesis, four-lepton events are studied as a possible signature of R-parity-violating supersymmetry, using proton- proton collision events collected by the ATLAS experiment at $\\sqrt{s}$ = 13 TeV. The event selection is optimized for events with low-mass collimated lepton pairs, and the viability of estimating the important $t\\bar{t}Z$ background process from $t\\bar{t}\\gamma$ events is shown. Using the optimized selection, it is found that pair-produced charginos with masses above 1 TeV can be discovered with $3\\sigma$ significance in $10~\\text{fb}^{-1}$ of data.

  8. $\\Sigma$ Resonances from $K^- N\\rightarrow \\pi\\Lambda$ reactions with the center of mass energy from 1550 to 1676 MeV

    OpenAIRE

    Gao, Puze; Shi, Jun; Zou, B. S.

    2012-01-01

    For the study of the $\\Sigma$ resonances, we analyze the differential cross sections and $\\Lambda$ polarizations for the reactions $K^-n\\to\\pi^-\\Lambda$ and $K^-p\\to\\pi^0\\Lambda$ with an effective Lagrangian approach. Data of an early experiment and the recent Crystal Ball experiment at BNL are included in the analysis with the c.m. energy from 1550 to 1676 MeV. Our results clearly support the existence of a $\\Sigma$ resonance with $J^P={1\\over 2}^+$, mass near 1633 MeV, and width about 120 M...

  9. Theoretical coarse-graining approach to bridge length scales in diblock copolymer liquids

    OpenAIRE

    Sambriski, E. J.; Guenza, M. G.

    2007-01-01

    A microscopic theory for coarse graining diblock copolymers into dumbbells of interacting soft colloidal particles has been developed, based on the solution of liquid-state integral equations. The Ornstein-Zernike equation is solved to provide a mesoscopic description of the diblock copolymer system at the level of block centers of mass, and at the level of polymer centers of mass. Analytical forms of the total correlation functions for block-block, block-monomer, and center-of-mass pairs are...

  10. A Fast Hardware Tracker for the ATLAS Trigger System

    CERN Document Server

    Neubauer, M; The ATLAS collaboration

    2011-01-01

    In hadron collider experiments, triggering the detector to store interesting events for offline analysis is a challenge due to the high rates and multiplicities of particles produced. The LHC will soon operate at a center-of-mass energy of 14 TeV and at high instantaneous luminosities of the order of $10^{34}$ to $10^{35}$ cm$^{-2}$ s$^{-1}$. A multi-level trigger strategy is used in ATLAS, with the first level (LVL1) implemented in hardware and the second and third levels (LVL2 and EF) implemented in a large computer farm. Maintaining high trigger efficiency for the physics we are most interested in while at the same time suppressing high rate physics from inclusive QCD processes is a difficult but important problem. It is essential that the trigger system be flexible and robust, with sufficient redundancy and operating margin. Providing high quality track reconstruction over the full ATLAS detector by the start of processing at LVL2 is an important element to achieve these needs. As the instantaneous lumino...

  11. Assembly and Testing of a Radioisotope Power System for the New Horizons Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth E. Rosenberg; Stephen G. Johnson

    2006-06-01

    The Idaho National Laboratory (INL) recently fueled and assembled a radioisotope power system (RPS) that was used upon the New Horizons spacecraft which was launched in January 2006. New Horizons is the first mission to the last planet - the initial reconnaissance of Pluto-Charon and the Kuiper Belt, exploring the mysterious worlds at the edge of our solar system. The RPS otherwise known as a "space battery" converts thermal heat into electrical energy. The thermal heat source contains plutonium dioxide in the form of ceramic pellets encapsulated in iridium metal. The space battery was assembled in a new facility at the Idaho National Laboratory site near Idaho Falls, Idaho. The new facility has all the fueling and testing capabilities including the following: the ability to handle all the shipping containers currently certified to ship Pu-238, the ability to fuel a variety of RPS designs, the ability to perform vibrational testing to simulate transportation and launch environments, welding systems, a center of mass determination device, and various other support systems.

  12. A stepwise validation of a wearable system for estimating energy expenditure in field-based research

    International Nuclear Information System (INIS)

    Regular physical activity (PA) is an important contributor to a healthy lifestyle. Currently, standard sensor-based methods to assess PA in field-based research rely on a single accelerometer mounted near the body's center of mass. This paper introduces a wearable system that estimates energy expenditure (EE) based on seven recognized activity types. The system was developed with data from 32 healthy subjects and consists of a chest mounted heart rate belt and two accelerometers attached to a thigh and dominant upper arm. The system was validated with 12 other subjects under restricted lab conditions and simulated free-living conditions against indirect calorimetry, as well as in subjects' habitual environments for 2 weeks against the doubly labeled water method. Our stepwise validation methodology gradually trades reference information from the lab against realistic data from the field. The average accuracy for EE estimation was 88% for restricted lab conditions, 55% for simulated free-living conditions and 87% and 91% for the estimation of average daily EE over the period of 1 and 2 weeks

  13. Adaptive Morphological Feature-Based Object Classifier for a Color Imaging System

    Science.gov (United States)

    McDowell, Mark; Gray, Elizabeth

    2009-01-01

    Utilizing a Compact Color Microscope Imaging System (CCMIS), a unique algorithm has been developed that combines human intelligence along with machine vision techniques to produce an autonomous microscope tool for biomedical, industrial, and space applications. This technique is based on an adaptive, morphological, feature-based mapping function comprising 24 mutually inclusive feature metrics that are used to determine the metrics for complex cell/objects derived from color image analysis. Some of the features include: Area (total numbers of non-background pixels inside and including the perimeter), Bounding Box (smallest rectangle that bounds and object), centerX (x-coordinate of intensity-weighted, center-of-mass of an entire object or multi-object blob), centerY (y-coordinate of intensity-weighted, center-of-mass, of an entire object or multi-object blob), Circumference (a measure of circumference that takes into account whether neighboring pixels are diagonal, which is a longer distance than horizontally or vertically joined pixels), . Elongation (measure of particle elongation given as a number between 0 and 1. If equal to 1, the particle bounding box is square. As the elongation decreases from 1, the particle becomes more elongated), . Ext_vector (extremal vector), . Major Axis (the length of a major axis of a smallest ellipse encompassing an object), . Minor Axis (the length of a minor axis of a smallest ellipse encompassing an object), . Partial (indicates if the particle extends beyond the field of view), . Perimeter Points (points that make up a particle perimeter), . Roundness [(4(pi) x area)/perimeter(squared)) the result is a measure of object roundness, or compactness, given as a value between 0 and 1. The greater the ratio, the rounder the object.], . Thin in center (determines if an object becomes thin in the center, (figure-eight-shaped), . Theta (orientation of the major axis), . Smoothness and color metrics for each component (red, green, blue

  14. Integrated Orbit, Attitude, and Structural Control System Design for Space Solar Power Satellites

    Science.gov (United States)

    Woods-Vedeler, Jessica (Technical Monitor); Moore, Chris (Technical Monitor); Wie, Bong; Roithmayr, Carlos

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control system architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control system architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an o.set of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  15. Integrated Orbit, Attitude, and Structural Control Systems Design for Space Solar Power Satellites

    Science.gov (United States)

    Wie, Bong; Roithmayr, Carlos M.

    2001-01-01

    The major objective of this study is to develop an integrated orbit, attitude, and structural control systems architecture for very large Space Solar Power Satellites (SSPS) in geosynchronous orbit. This study focuses on the 1.2-GW Abacus SSPS concept characterized by a 3.2 x 3.2 km solar-array platform, a 500-m diameter microwave beam transmitting antenna, and a 500 x 700 m earth-tracking reflector. For this baseline Abacus SSPS configuration, we derive and analyze a complete set of mathematical models, including external disturbances such as solar radiation pressure, microwave radiation, gravity-gradient torque, and other orbit perturbation effects. The proposed control systems architecture utilizes a minimum of 500 1-N electric thrusters to counter, simultaneously, the cyclic pitch gravity-gradient torque, the secular roll torque caused by an offset of the center-of-mass and center-of-pressure, the cyclic roll/yaw microwave radiation torque, and the solar radiation pressure force whose average value is about 60 N.

  16. Alignment of the inner detector and of the muon system of the ATLAS experiment

    CERN Document Server

    Potrap, I; The ATLAS collaboration

    2010-01-01

    Alignment of the ATLAS inner detector tracking system Large Hadron Collider (LHC) at CERN is the world's largest particle accelerator. After a successful start run at 900 GeV in 2009, during 2010, LHC will collide two proton beams at an unprecedented center of mass energy of 7 TeV. ATLAS is one of the four multipurpose experiments that will record the products of the LHC proton-proton collisions. ATLAS is equipped, along others, with a charged particle tracking system built on two different technologies: silicon sensors and drift-tube based detectors constituting the ATLAS Inner Detector (ID). In order to achieve its scientific goals, ATLAS has quite exigent tracking performance requirements. Thus, the goal of the alignment is set such that the limited knowledge of the sensors location should not deteriorate the resolution of the track parameters by more than 20% with respect to the intrinsic tracker resolution. In this manner the required precision for the alignment of the silicon sensors in its most sensiti...

  17. Reducing Pointing Errors During Cassini Reaction Control System Orbit Trim Maneuvers

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    The effect of altering a gain parameter in the Cassini reaction control system (RCS) delta-V controller on the maneuver execution errors during orbit trim maneuvers (OTMs) is explored. Cassini consists of two reaction control thruster branches (A & B) each with eight thrusters. Currently, the B-branch is operational while the A-branch serves as a back-up. The four Z-thrusters control the X and Y-axes, while the four Y-thrusters control the Z-axis. During an OTM, the Z-thrusters fire to maintain the X and Y-axes pointing within an attitude control dead-zone (-10 to 10 milliradians). The errors do not remain at zero due to pointing error sources such as spacecraft center of mass offset from the geometric center of the Z-facing thrusters, and variability in the thruster forces due to the thruster hardware differences. The delta-V reaction control system (RCS) controller ensures that the attitude error remains within this dead-zone. Gain parameters within the RCS delta-V controller affect the maneuver execution errors. Different parameter values are used to explore effect on these errors. It is found that pointing error decreases and magnitude error increases rapidly for gain parameters 10 times greater than the current parameter values used in the flight software.

  18. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion.

    Science.gov (United States)

    Talbot, Jared A; Currie, Ko W; Pearson, Bret J; Collins, Eva-Maria S

    2014-01-01

    Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior. PMID:24950970

  19. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion

    Directory of Open Access Journals (Sweden)

    Jared A. Talbot

    2014-06-01

    Full Text Available Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior.

  20. Intrinsic decoherence and classical-quantum correspondence in two coupled delta-kicked rotors

    OpenAIRE

    Park, Hwa-Kyun; Kim, Sang Wook

    2002-01-01

    We show that classical-quantum correspondence of center of mass motion in two coupled delta-kicked rotors can be obtained from intrinsic decoherence of the system itself which occurs due to the entanglement of the center of mass motion to the internal degree of freedom without coupling to external environment.

  1. Final focus system for a muon collider: a test model

    International Nuclear Information System (INIS)

    The present scenario for a high luminosity 4 TeV on center of mass muon collider required a beta function β* ∼ 3mm at the interaction point. We discuss a test model of a basic layout which satisfies the requirements although it is not fully realistic

  2. Orientation Control Method and System for Object in Motion

    Science.gov (United States)

    Whorton, Mark Stephen (Inventor); Redmon, Jr., John W. (Inventor); Cox, Mark D. (Inventor)

    2012-01-01

    An object in motion has a force applied thereto at a point of application. By moving the point of application such that the distance between the object's center-of-mass and the point of application is changed, the object's orientation can be changed/adjusted.

  3. Satellite Attitude Control System Design Taking into Account the Fuel Slosh and Flexible Dynamics

    Directory of Open Access Journals (Sweden)

    Alain G. de Souza

    2014-01-01

    Full Text Available The design of the spacecraft Attitude Control System (ACS becomes more complex when the spacecraft has different type of components like, flexible solar panels, antennas, mechanical manipulators and tanks with fuel. The interaction between the fuel slosh motion, the panel’s flexible motion and the satellite rigid motion during translational and/or rotational manoeuvre can change the spacecraft center of mass position damaging the ACS pointing accuracy. This type of problem can be considered as a Fluid-Structure Interaction (FSI where some movable or deformable structure interacts with an internal fluid. This paper develops a mathematical model for a rigid-flexible satellite with tank with fuel. The slosh dynamics is modelled using a common pendulum model and it is considered to be unactuated. The control inputs are defined by a transverse body fixed force and a moment about the centre of mass. A comparative investigation designing the satellite ACS by the Linear Quadratic Regulator (LQR and Linear Quadratic Gaussian (LQG methods is done. One has obtained a significant improvement in the satellite ACS performance and robustness of what has been done previously, since it controls the rigid-flexible satellite and the fuel slosh motion, simultaneously.

  4. Towards Relativistic Atomic Physics. I. The Rest-Frame Instant Form of Dynamics and a Canonical Transformation for a System of Charged Particles plus the Electro-Magnetic Field

    CERN Document Server

    Alba, David; Lusanna, Luca

    2008-01-01

    A complete exposition of the rest-frame instant form of dynamics for arbitrary isolated systems (particles, fields, strings, fluids)admitting a Lagrangian description is given. The starting point is the parametrized Minkowski theory describing the system in arbitrary admissible non-inertial frames in Minkowski space-time, which allows one to define the energy-momentum tensor of the system and to show the independence of the description from the clock synchronization convention and from the choice of the 3-coordinates. In the inertial rest frame the isolated system is seen as a decoupled non-covariant canonical external center of mass carrying a pole-dipole structure (the invariant mass $M$ and the rest spin ${\\vec {\\bar S}}$ of the system) and an external realization of the Poincare' group. Then an isolated system of positive-energy charged scalar articles plus an arbitrary electro-magnetic field in the radiation gauge is investigated as a classical background for defining relativistic atomic physics. The ele...

  5. Search for critical point indications in long-range correlations by energy and system size scanning in string fusion approach

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, V. N.; Vechernin, V. V. [Saint Petersburg State University (Russian Federation)

    2016-01-22

    The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity. In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data.

  6. Investigation of Control System and Display Variations on Spacecraft Handling Qualities for Docking with Stationary and Rotating Targets

    Science.gov (United States)

    Jackson, E. Bruce; Goodrich, Kenneth H.; Bailey, Randall E.; Barnes, James R.; Ragsdale, William A.; Neuhaus, Jason R.

    2010-01-01

    This paper documents the investigation into the manual docking of a preliminary version of the Crew Exploration Vehicle with stationary and rotating targets in Low Earth Orbit. The investigation was conducted at NASA Langley Research Center in the summer of 2008 in a repurposed fixed-base transport aircraft cockpit and involved nine evaluation astronauts and research pilots. The investigation quantified the benefits of a feed-forward reaction control system thruster mixing scheme to reduce translation-into-rotation coupling, despite unmodeled variations in individual thruster force levels and off-axis center of mass locations up to 12 inches. A reduced rate dead-band in the phase-plane attitude controller also showed some promise. Candidate predictive symbology overlaid on a docking ring centerline camera image did not improve handling qualities, but an innovative attitude status indicator symbol was beneficial. The investigation also showed high workload and handling quality problems when manual dockings were performed with a rotating target. These concerns indicate achieving satisfactory handling quality ratings with a vehicle configuration similar to the nominal Crew Exploration Vehicle may require additional automation.

  7. Search for critical point indications in long-range correlations by energy and system size scanning in string fusion approach

    International Nuclear Information System (INIS)

    The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity. In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data

  8. Next-Generation Maneuvering System with Control-Moment Gyroscopes for Extravehicular Activities Near Low-Gravity Objects

    Science.gov (United States)

    Carpenter, Michele; Jackson, Kimberly; Cohanim, Babak; Duda, Kevin R.; Rize, Jared; Dopart, Celena; Hoffman, Jeffrey; Curiel, Pedro; Studak, Joseph; Ponica, Dina; RochlisZumbado, Jennifer

    2013-01-01

    Looking ahead to the human exploration of Mars, NASA is planning for exploration of near-Earth asteroids and the Martian moons. Performing tasks near the surface of such low-gravity objects will likely require the use of an updated version of the Manned Maneuvering Unit (MMU) since the surface gravity is not high enough to allow astronauts to walk, or have sufficient resistance to counter reaction forces and torques during movements. The extravehicular activity (EVA) Jetpack device currently under development is based on the Simplified Aid for EVA Rescue (SAFER) unit and has maneuvering capabilities to assist EVA astronauts with their tasks. This maneuvering unit has gas thrusters for attitude control and translation. When EVA astronauts are performing tasks that require ne motor control such as sample collection and equipment placement, the current control system will re thrusters to compensate for the resulting changes in center-of-mass location and moments of inertia, adversely affecting task performance. The proposed design of a next-generation maneuvering and stability system incorporates control concepts optimized to support astronaut tasks and adds control-moment gyroscopes (CMGs) to the current Jetpack system. This design aims to reduce fuel consumption, as well as improve task performance for astronauts by providing a sti er work platform. The high-level control architecture for an EVA maneuvering system using both thrusters and CMGs considers an initial assessment of tasks to be performed by an astronaut and an evaluation of the corresponding human-system dynamics. For a scenario in which the astronaut orbits an asteroid, simulation results from the current EVA maneuvering system are compared to those from a simulation of the same system augmented with CMGs, demonstrating that the forces and torques on an astronaut can be significantly reduced with the new control system actuation while conserving onboard fuel.

  9. SU-E-T-20: A Novel Hybrid CBCT, Bioluminescence and Fluorescence Tomography System for Preclinical Radiation Research

    International Nuclear Information System (INIS)

    Purpose: A novel standalone bioluminescence and fluorescence tomography (BLT and FT) system equipped with high resolution CBCT has been built in our group. In this work, we present the system calibration method and validate our system in both phantom and in vivo environment. Methods: The CBCT is acquired by rotating the animal stage while keeping the x-ray source and detector panel static. The optical signal is reflected by the 3-mirror system to a multispectral filter set and then delivered to the CCD camera with f/1.4 lens mounted. Nine fibers passing through the stage and in contact with the mouse skin serve as the light sources for diffuse optical tomography (DOT) and FT. The anatomical information and optical properties acquired from the CBCT and DOT, respectively, are used as the priori information to improve the BLT/FT reconstruction accuracy. Flat field correction for the optical system was acquired at multiple wavelengths. A home-built phantom is used to register the optical and CBCT coordinates. An absolute calibration relating the CCD photon counts rate to the light fluence rate emitted at animal surface was developed to quantify the bioluminescence power or fluorophore concentration. Results: An optical inhomogeneous phantom with 2 light sources (3mm separation) imbedded is used to test the system. The optical signal is mapped onto the mesh generated from CBCT for optical reconstruction. Our preliminary results show that the center of mass can be reconstructed within 2.8mm accuracy. A live mouse with the light source imbedded is also used to validate our system. Liver or lung metastatic luminescence tumor model will be used for further testing. Conclusion: This hybrid system transforms preclinical research to a level that even sub-palpable volume of cells can be imaged rapidly and non-invasively, which largely extends the scope of radiobiological research. The research is supported by the NCI grant R01CA158100-01

  10. SU-E-T-20: A Novel Hybrid CBCT, Bioluminescence and Fluorescence Tomography System for Preclinical Radiation Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B; Eslami, S; Iordachita, I [Johns Hopkins University, Baltimore, Maryland (United States); Yang, Y [University of Miami School of Medicine, Miami, FL (United States); Patterson, M [Hamilton Regional Cancer Ctr., Hamilton, ON (Canada); Wong, J [Johns Hopkins University, Baltimore, MD (United States); Wang, K [Johns Hopkins Hospital, Baltimore, MD (United States)

    2014-06-01

    Purpose: A novel standalone bioluminescence and fluorescence tomography (BLT and FT) system equipped with high resolution CBCT has been built in our group. In this work, we present the system calibration method and validate our system in both phantom and in vivo environment. Methods: The CBCT is acquired by rotating the animal stage while keeping the x-ray source and detector panel static. The optical signal is reflected by the 3-mirror system to a multispectral filter set and then delivered to the CCD camera with f/1.4 lens mounted. Nine fibers passing through the stage and in contact with the mouse skin serve as the light sources for diffuse optical tomography (DOT) and FT. The anatomical information and optical properties acquired from the CBCT and DOT, respectively, are used as the priori information to improve the BLT/FT reconstruction accuracy. Flat field correction for the optical system was acquired at multiple wavelengths. A home-built phantom is used to register the optical and CBCT coordinates. An absolute calibration relating the CCD photon counts rate to the light fluence rate emitted at animal surface was developed to quantify the bioluminescence power or fluorophore concentration. Results: An optical inhomogeneous phantom with 2 light sources (3mm separation) imbedded is used to test the system. The optical signal is mapped onto the mesh generated from CBCT for optical reconstruction. Our preliminary results show that the center of mass can be reconstructed within 2.8mm accuracy. A live mouse with the light source imbedded is also used to validate our system. Liver or lung metastatic luminescence tumor model will be used for further testing. Conclusion: This hybrid system transforms preclinical research to a level that even sub-palpable volume of cells can be imaged rapidly and non-invasively, which largely extends the scope of radiobiological research. The research is supported by the NCI grant R01CA158100-01.

  11. THERMAL: A routine designed to calculate neutron thermal scattering

    International Nuclear Information System (INIS)

    THERMAL is designed to calculate neutron thermal scattering that is isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the center of mass system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy

  12. THERMAL: A routine designed to calculate neutron thermal scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, D.E.

    1995-02-24

    THERMAL is designed to calculate neutron thermal scattering that is isotropic in the center of mass system. At low energy thermal motion will be included. At high energies the target nuclei are assumed to be stationary. The point of transition between low and high energies has been defined to insure a smooth transition. It is assumed that at low energy the elastic cross section is constant in the center of mass system. At high energy the cross section can be of any form. You can use this routine for all energies where the elastic scattering is isotropic in the center of mass system. In most materials this will be a fairly high energy.

  13. The dependence of scattering length on van der Waals interaction and on the reduced-mass of the system in two-atomic collision at cold energies

    CERN Document Server

    Ray, Hasi

    2015-01-01

    The static-exchange model (SEM) and the modified static-exchange model (MSEM) recently introduced by Ray [1] is applied to study the elastic collision between two hydrogen-like atoms when both are in ground states considering the system as a four-body Coulomb problem in the center of mass frame, in which all the Coulomb interaction terms in direct and exchange channels are treated exactly. The SEM includes the non-adiabatic short-range effect due to electron-exchange. The MSEM added in it, the long-range effect due to induced dynamic dipole polarizabilities between the atoms e.g. the Van der Waals interaction. Applying the SEM code in different H-like two-atomic systems, a reduced mass dependence on scattering length is observed. Again applying the MSEM code on H(1s)-H(1s) elastic scattering and varying the minimum values of interatomic distance, the dependence of scattering length on the effective interatomic potential consistent with the existing physics are observed. Both these basic findings in low and co...

  14. Effect of coulomb interaction on Anderson localization; Effet de l'interaction coulombienne sur la localisation d'Anderson dans des systemes de basses dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Waintal, X

    1999-09-10

    We study the quantum mechanics of interacting particles in a disordered system, and in particular, what happens to Anderson localisation when interaction is taken into account. In the first part,one looks at the excited states of two particles in one dimension. For this model, it has been shown (Shepelyansky 1994) that a local repulsive interaction can partially destroy Anderson localisation. Here, we show that this model has similarities with the three-dimensional Anderson model at the metal-insulator transition. In particular, the maximum of rigidity obtained in the spectral statistics correspond to some intermediary statistics that cannot be described by random matrix theory neither by a Poisson statistics. The wave functions show a multifractal behaviour and the spreading of the center of mass of a wave packet is logarithmic in time. The second part deals with the ground state of a finite density of spinless fermions in two dimensions. After the scaling theory of localisation, it was commonly accepted that there was no metal in two dimensions. This idea has been challenged by the observation of a metal-insulator transition in low density electron gas (Kravchenko et al. 1994). We propose a scenario in which a metallic phase occurs between the Anderson insulator and the pinned Wigner crystal. This intermediate phase is characterized by an alignment of the local currents flowing in the system. (author)

  15. The dependence of scattering length on van der Waals interaction and reduced mass of the system in two-atomic collision at cold energies

    Science.gov (United States)

    RAY, HASI

    2016-06-01

    The static-exchange model (SEM) and the modified static-exchange model (MSEM) recently introduced by Ray [1] is applied to study the elastic collision between two hydrogen-like atoms when both are in ground states considering the system as a four-body Coulomb problem in the center of mass frame, in which all the Coulomb interaction terms in direct and exchange channels are treated exactly. The SEM includes the non-adiabatic short-range effect due to electron-exchange. The MSEM added in it, the long-range effect due to induced dynamic dipole polarizabilities between the atoms e.g. the Van der Waals interaction. Applying the SEM code in different H-like two-atomic systems, a reduced mass dependence on scattering length is observed. Again applying the MSEM code on H(1s)-H(1s) elastic scattering and varying the minimum values of interatomic distance, the dependence of scattering length on the effective interatomic potential consistent with the existing physics are observed. Both these basic findings in low and cold energy atomic collision physics are quite useful and are being reported for the first time.

  16. Exact non-Born-Oppenheimer wave functions for three-particle Hookean systems with arbitrary masses

    International Nuclear Information System (INIS)

    A Hookean model of a three-body problem for particles with arbitrary masses and charges where two of them interact with each other through a Coulomb potential and with the third through a harmonic potential is presented. It is shown that a condition relating the masses to the harmonic coupling constants must be satisfied in order to render this problem separable. A general exact analytic solution written in terms of the relative interparticle coordinates is given as well as general expressions for the total and binding energies of this three-body system. We apply these results to examine electronic, muonic, antiprotonic, and pionic families of non-Born-Oppenheimer Hookean systems. The first contains the atoms or atomic ions: Ps-(e+e-e-), H-(p+e-e-), D-(d+e-e-), T-(p+e-e-), 4He(he+2e-e-), and the following molecular ions: Ps2+(e-e+e+), H2+(e-p+p+), HD+(e-d+p+), HT+(e-t+p+), DT+(e-d+t+), D2+(e-d+d+), T2+(e-t+t+). The muonic and antiprotonic families are similar to the electronic ones except that the species are formed replacing e- by μ- or p-. The pionic family comprises exotic atoms containing at least one pion. We also apply these results to two-electron three-dimensional spherical quantum dots and for these systems we examine the effect of electronic correlation, particularly on the singlet-triplet transitions and on the collective motion of the electrons and center of mass leading to ''floppy''dynamics

  17. Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at √{s_{NN}}=2.76 TeV

    Science.gov (United States)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fasanella, G.; Favart, L.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; El Sawy, M.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Sieber, G.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Boletti, A.; Branca, A.; Dall'Osso, M.; Dorigo, T.; Fanzago, F.; Gonella, F.; Gozzelino, A.; Kanishchev, K.; Margoni, M.; Maron, G.; Meneguzzo, A. T.; Michelotto, M.; Montecassiano, F.; Passaseo, M.; Pazzini, J.; Pegoraro, M.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Ventura, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Abdullah, W. A. T. Wan; Yusli, M. N.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Bylinkin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Yu, S. S.; Kumar, Arun; Bartek, R.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Futyan, D.; Hall, G.; Iles, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Weber, H. A.; Whitbeck, A.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Gleyzer, S. V.; Hugon, J.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Trauger, H.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Osherson, M.; Roskes, J.; Sady, A.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Salfeldnebgen, J.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Saka, H.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Tan, P.; Verzetti, M.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2016-01-01

    An analysis of dijet events in PbPb and pp collisions is performed to explore the properties of energy loss by partons traveling in a quark-gluon plasma. Data are collected at a nucleon-nucleon center-of-mass energy of 2.76 TeV at the LHC. The distribution of transverse momentum ( p T) surrounding dijet systems is measured by selecting charged particles in different ranges of p T and at different angular cones of pseudorapidity and azimuth. The measurement is performed as a function of centrality of the PbPb collisions, the p T asymmetry of the jets in the dijet pair, and the distance parameter R used in the anti- k T jet clustering algorithm. In events with unbalanced dijets, PbPb collisions show an enhanced multiplicity in the hemisphere of the subleading jet, with the p T imbalance compensated by an excess of low- p T particles at large angles from the jet axes. [Figure not available: see fulltext.

  18. Measurement of transverse momentum relative to dijet systems in PbPb and pp collisions at $\\sqrt{s_{\\mathrm{NN}}} = $ 2.76 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Fasanella, Giuseppe; Favart, Laurent; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hamer, Matthias; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Awad, Adel; El Sawy, Mai; Mahrous, Ayman; Radi, Amr; Calpas, Betty

    2016-01-01

    An analysis of dijet events in PbPb and pp collisions is performed to explore the properties of energy loss by partons traveling in a quark-gluon plasma. Data are collected at a nucleon-nucleon center-of-mass energy of 2.76 TeV at the LHC. The distribution of transverse momentum ($p_{\\mathrm{T}}$) surrounding dijet systems is measured by selecting charged particles in different ranges of $p_{\\mathrm{T}}$ and at different angular cones of pseudorapidity and azimuth. The measurement is performed as a function of centrality of the PbPb collisions, the $p_{\\mathrm{T}}$ asymmetry of the jets in the dijet pair, and the distance parameter R used in the anti-$k_t$ jet clustering algorithm. In events with unbalanced dijets, PbPb collisions show an enhanced multiplicity in the hemisphere of the subleading jet, with the $p_{\\mathrm{T}}$ imbalance compensated by an excess of low-$p_{\\mathrm{T}}$ particles at large angles from the jet axes.

  19. Four-body model of the four-nucleon system. [Phase shift total and differential cross sections, up to 25 MeV, scattering amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, A. C.

    1978-06-01

    Using a nonrelativistic field theoretic formalism a soluble model of the four-nucleon system is developed and solved numerically. Two- and three-body scattering proceeds through intermediate quasiparticles and the resulting T-matrices are separable in momentum space and satisfy two- and three-body unitarity. The 2+2 subamplitudes are treated exactly by the convolution method. The resulting four-body equations reduce to single variable integral equations following partial wave decomposition and can be solved numerically by rotation of contour together with matrix inversion. A complete phase shift calculation is performed for the isospin triplet interaction. The differential cross sections for all two-to-two processes initiated by p + /sup 3/He, n + /sup 3/H and d + d are compared with experiment for energies up to 25 MeV in the center of mass. Total elastic and reaction cross sections for the processes initiated by n + /sup 3/H are also calculated and compared with experimental data.

  20. A multi-frequency study of the peculiar interacting system Arp 206

    International Nuclear Information System (INIS)

    Arp 206 is a nearby, relatively large, and bright interacting system comprising unequal members: NGC 3432 and UGC 5983. A third anonymous galaxy, Arp 206c, is visible in the field. The CCD images show a well-developed bridge between NGC 3432 and UGC 5983. On the other hand, the complex H I tails are not visible in the optical. In the total H I map, the bridge is lost in a general envelope encompassing both galaxies. The bridge also appears to have some radio emission. On the Total H I map the system is rather edge-on, far more than it would appear in optical wavelengths. UGC 5983 falls exactly in line with NGC 3432. The velocity of the centers of mass of NGC 3432 and UGC 5983 are 530 km s(exp -1) and 630 km s(exp -1), respectively. In view of the considerable damage sustained by NGC 3432 and the apparent low mass of UGC 5983, it appears that the passage must have been at near parabolic speed, with a small pericentric distance and a very low inclination with rspect to the disk of NGC 3432. The apparent distribution of H I along the z axis of the galaxy could be accounted for by projection effects. The tidal appendage found at higher velocities, which rises at a P.A. approx. equal to 25 degrees west of the main body of the galaxy is probably the tail, the part of the tidal damage away from the perturbing companion. The bridge may be rising north-east from the galaxy and then continue under to the south of the galaxy. The relative sizes of the appendages would indicate that the pericenter was crossed recently. Any further inferences about the collision parameters will need to await the results of detailed computational modelling of the interaction. The authors also summarize the observational characteristics of NGC 3432, UGC 5983, and Arp 206c

  1. The multiple system ADS 9626: A quadruple star or an encounter of two binaries?

    Science.gov (United States)

    Kiyaeva, O. V.; Zhuchkov, R. Ya.; Malogolovets, E. V.; Orlov, V. V.; Glukhova, A. V.; Balega, Yu. Yu.; Bikmaev, I. F.

    2014-11-01

    The parameters of the quadruple system ADS 9626 (µ Boo) are analyzed. The system consists of two double stars: the Aa pair with an angular separation of ρ = 0.08″ and the BC pair with an angular separation of ρ = 2.2″, separated by ρ = 107″ and having the same parallaxes and proper motions. Position observations with the Pulkovo 26″ refractor have yielded from direct astrometric measurements the difference in the apparent magnitudes and the component-mass ratio for the BC subsystem: Δ m = 0.59 ± 0.06, M(B)/ M(C) = 1.18 ± 0.02. Spectroscopy with the Russian-Turkish 1.5-m telescope has yielded the radial velocities and physical parameters of the Aa, B, and C components. Speckle-interferometric observations with the 6-m telescope of the Special Astrophysical Observatory have provided the first measurements of the magnitude difference in the close Aa subsystem: Δ m = 0.46 ± 0.03 ( λ = 5500 Å) and Δ m = 0.41 ± 0.03 ( λ = 8000 Å). The new observations are consistent with the known orbits, which were used to find the radial velocities for the centers of mass of the inner subsystems. Themotion of the outer pair, Aa-BC, is studied using the apparent motion parameters (AMP) method. It is not possible to derive an elliptical orbit for this pair; the elements of a hyperbolic orbit have been estimated. The difference of the heavy-element abundances for the Aa and BC subsystems of 0.5 dex confirms that these pairs have a different origin. This suggests that we are observing here a close encounter of two binary stars.

  2. Atmosphere model on the area of GBAS system for real-time GNSS and meteorological applications

    Science.gov (United States)

    Bosy, J.; Rohm, W.; Kaplon, J.; Sierny, J.; IGG WUE & LS; GNSS Meteorology Team

    2011-12-01

    Satellite altimetry over the last two decades has measured variations in geocentric sea level (GSL), relative to the Earth system center of mass, providing valuable data to test models of physical oceanography and the effects of global climate change. The societal impacts of sea level change however relate to variations in local sea level (LSL), relative to the land at the coast. Therefore, assessing the impacts of sea level change requires coastal measurements of vertical land motion (VLM). Indeed, ΔLSL = ΔGSL - ΔVLM, with subsidence mapping 1:1 into LSL. Measurements of secular coastal VLM also allow tide-gauge data to test models of GSL over the last century in some locations, which cannot be provided by satellite data. Here we use GPS geodetic data within 15 km of the US west coast to infer regional, secular VLM. A total of 89 GPS stations met the criteria that time series span >4.5 yr, and do not have obvious non-linear variation, as may be caused by local instability. VLM rates for the GPS stations are derived in the secular reference frame ITRF2008, which aligns with the Earth system center of mass to ×0.5 mm/yr. We find that regional VLM has different behavior north and south of the Mendocino Triple Junction (MTJ). The California coast has a coherent regional pattern of subsidence averaging 0.5 mm/yr, with an increasing trend to the north. This trend generally matches GIA model predictions. Around San Francisco Bay, the observed coastal subsidence of 1.0 mm/yr coherently decreases moving away from the Pacific Ocean to very small subsidence on the east shores of the bay. This gradient is likely caused by San Andreas-Hayward Fault tectonics, and possibly by differential surface loading across the bay and Sacramento-San Joachim River Delta. Thus in addition to the trend in subsidence from GIA going northward along the California coast, tectonics may also play a role where the plate boundary fault system approaches the coast. In contrast, we find that VLM

  3. Dynamics and control of orbiting flexible systems: A formulation with applications

    Science.gov (United States)

    Ng, Chun-Ki Alfred

    1992-06-01

    A relatively general formulation for studying the nonlinear dynamics and control of spacecraft with interconnected flexible members in a tree-type topology is developed. The distinctive features of the formulation include the following: (1) It is applicable to a large class of present and future spacecraft with flexible beam and plate type appendages, arbitrary in number and orientation. (2) The members are free to undergo predefined slewing maneuvers to facilitate modelling of sun tracking solar panels and large angle maneuvers of space based robots. (3) Solar radiation induced thermal deformations of flexible members are incorporated in the study. (4) The governing equations of motion are highly nonlinear, nonautonomous and coupled. They are programmed in a modular fashion to help isolate the effects of flexibility, librational motion, thermal deformations, slewing maneuvers, shifting center of mass, higher modes, initial conditions, etc. The first chapter of the thesis presents a general background to the subject and a brief review of the relevant literature on multibody dynamics. This is followed by the kinematics and kinetics of the problem leading to the Lagrangian equations of motion. The third chapter focuses on methodology and development of the computer code suitable for parametric dynamical study and control. Next versatility of the general formulation is illustrated through the analysis of five spacecraft configurations of contemporary interest the next generation of multi-purpose communications spacecraft represented by the INdian SATellite II (IN-SAT II): the First Element Launch (FEL) and the Permanently Manned Configuration (PMC) of the proposed Space Station Freedom; the Mobile Servicing System (MSS) to be developed by Canada for operation on the Space Station; and the Space Flyer Unit (SFU) to be launched by Japan in mid-nineties. In the FEL study, the attention is directed towards interactions between the librational and vibrational dynamics

  4. CHAWS user`s guide: System description and standard operating procedures, Lexington-Blue Grass Army Depot

    Energy Technology Data Exchange (ETDEWEB)

    Martins, S.A.; Shinn, J.H. [eds.

    1993-05-01

    The Chemical Hazard Warning System (CHAWS) is designed to collect meteorological data and to display, in real time, the dispersion of hazardous chemicals that may result from an accidental release. Meteorological sensors have been placed strategically around the Lexington-Blue Grass Army Depot and are used to calculate direction and hazard distance for the release. Based on these data, arrows depicting the release direction and distance traveled are graphically displayed on a computer screen showing a site map of the facility. The objectives of CHAWS are as follows: To determine the trajectory of the center of mass of released material from the measured wind field; to calculate the dispersion of the released material based on the measured lateral turbulence intensity (sigma theta); to determine the height of the mixing zone by measurement of the inversion height and wind profiles up to an altitude of about 1 km at sites that have SODAR units installed; to archive meteorological data for potential use in climatological descriptions for emergency planning; to archive air-quality data for preparation of compliance reports; and to provide access to the data for near real time hazard analysis purposes. CHAWS sites are located at the Pine Bluff Arsenal, Arkansas, Edgewood area of Aberdeen Proving Ground, Maryland, Tooele Depot, Utah, Lexington-Blue Grass Depot, Kentucky, and Johnston Island in the Pacific. The systems vary between sites with different features and various types of hardware. The basic system, however, is the same. Nonetheless, we have tailored the manuals to the equipment found at each site.

  5. Search for first-generation leptoquarks in the jets and missing transverse energy topology in proton-antiproton collisions at center-of-mass energy 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Tsybychev, Dmitri

    2004-03-01

    The authors performed a search for the pair production of first-generation leptoquarks using 191 pb{sup -1} of proton-antiproton collision data recorded by the CDF experiment during Run II of the Tevatron. The leptoquarks are sought via their decay into a neutrino and quark, which yields missing transverse energy and several high-E{sub T} jets. Several control regions were studied to check the background estimation from Standard Model sources, with good agreement observed in data. In the leptoquark signal region, 124 events were observed with 118.3 {+-} 14.5 expected from background. Therefore, no evidence for leptoquark production was observed, and limits were set on the cross section times the squared branching ratio. Using the next-to-leading order cross section for leptoquark production, they excluded the mass interval 78 to 117 GeV/c{sup 2} at the 95% confidence level for 100% branching ratio into neutrino plus quark.

  6. Measurement of the top-antitop quark pair differential cross section with respect to the invariant mass of the pair in proton-antiproton collisions at a center of mass energy of 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Bridgeman, Alice; /Illinois U., Urbana

    2008-10-01

    I present a measurement of the t{bar t} differential cross section, d{sigma}/dM{sub t{bar t}}, in p{bar p} collisions at {radical}s = 1.96 TeV using 2.7 fb{sup -1} of CDF II data. I find that d{sigma}/dM{sub t{bar t}} is consistent with the Standard Model expectation, as modeled by PYTHIA with CTEQ5L parton distribution functions. I set limits on the ratio {kappa}/M{sub Pl} in the Randall-Sundrum model by looking for Kaluza Klein gravitons which decay to top quarks. I find {kappa}/M{sub Pl} > 0.16 at the 95% confidence level.

  7. Search for the Standard Model Higgs Boson in the Missing Transverse Energy and b-jet signature in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Apresyan, Artur; /Purdue U.

    2009-05-01

    We report on the results of a search for the standard model Higgs boson produced in association with a W or Z boson in p{bar p} collisions at {radical}s = 1.96 TeV recorded by the CDF II experiment at the Tevatron in a data sample corresponding to an integrated luminosity of 2.1 fb{sup -1}. We consider events having no identified charged leptons, a large imbalance in transverse momentum, and two or three jets where at least one jet contains a secondary vertex consistent with the decay of a b hadron. The main backgrounds are modeled with innovative techniques using data. The sensitivity of the search is optimized using multivariate discriminant techniques. We find good agreement between data and the standard model predictions. We place 95% confidence level upper limits on production cross section times branching ratio for several Higgs boson masses ranging from 110 GeV=c{sup 2} to 150 GeV=c{sup 2}. For a mass of 115 GeV=c{sup 2} the observed (expected) limit is 6.9 (5.6) times the standard model prediction.

  8. A Measurement of the production cross section of top-antitop pairs in proton-antiproton collisions at a center of mass of 1.96 TeV using secondary vertex b-tagging.

    Energy Technology Data Exchange (ETDEWEB)

    Bachacou, Henri

    2004-12-01

    A measurement of the t{bar t} pair production cross section is presented using 162 pb{sup -1} of data collected by the CDF experiment during Run II at the Tevatron. t{bar t} events in the lepton+jets channel are isolated by identifying electrons and muons, reconstructing jets and transverse missing energy, and identifying b jets with a secondary vertex tagging algorithm. The efficiency of the algorithm is measured in a control sample using a novel technique that is less dependent on the simulation. For a top quark mass of 175 GeV/c{sup 2}, a cross section of {sigma}{sub t{bar t}} = 5.6{sub -1.1}{sup +1.2}(stat.){sub -0.6}{sup +0.9}(syst.)pb is measured.

  9. Measurement of the Z{yields}{tau}{sup +}{tau}{sup -} production cross section in proton-proton collisions at 7 TeV center-of-mass energy with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Capriotti, Daniele

    2012-06-11

    The subject of this thesis is the measurement of the Z{yields}{tau}{tau} production cross section in protonproton collisions at a centre-of-mass energy of 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). The study of this process is important for several reasons. First, the measurement of the Z boson production in the {tau}{tau} final state confirms the measurements in the electron and muon pair final states providing information about the parton density functions at the energy of the Large Hadron Collider. In addition, the search for a low mass Higgs boson decaying into {tau} lepton pairs requires knowledge of the inclusive Z{yields}{tau}{tau} production cross section. Z{yields}{tau}{tau} production is an important benchmark process for the validation of {tau} lepton reconstruction and identification which is very difficult at a hadron collider. The reconstruction of Z{yields}{tau}{tau} events can be performed in several final states depending on the decay modes of the {tau} leptons. The semi-leptonic final state, where one {tau} lepton decays into an electron or muon and neutrinos and the other one into hadrons plus neutrino, has been investigated in this thesis. The production cross section has been determined for data collected in 2011 corresponding to an integrated luminosity of 1.5 fb{sup -1}. This involved the determination of the muon trigger and reconstruction efficiencies from data and the estimation of the multi-jet background with a data driven technique. The results using the semileptonic final states, {sigma}(pp{yields}Z+X, Z{yields}{tau}{tau})=998.1{+-}23.7(stat){+-}131.9(syst){+-}36.9(lumi) pb ({tau}{sub e}{tau} h channel), {sigma}(pp{yields}Z+X, Z{yields}{tau}{tau})=912.4{+-}15.0(stat){+-}94.7(syst){+-}33.7(lumi) pb ({tau}{sub {mu}}{tau} h channel), can be combined with the measurement in the {tau}{sub e}{tau}{sub {mu}} channel to {sigma}(pp {yields}Z+X, Z{yields}{tau}{tau})=920.6 {+-}16.7(stat){+-}78.1(syst){+-}34.0(lumi) pb (combined) and are in a good agreement with the theoretical expectation at NNLO.

  10. Measurement of the Single Top Quark Cross Section in the Lepton Plus Jets Final State in Proton-Antiproton Collisions at a Center of Mass Energy of 1.96 TeV Using the CDF II Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zhenbin [Baylor Univ., Waco, TX (United States)

    2012-01-01

    We present a measurement of the single top quark cross section in the lepton plus jets final state using an integrated luminosity corresponding to 7.5 fb-1 of p\\bar p collision data collected by the Collider Detector at Fermilab. The single top candidate events are identified by the signature of a charged lepton, large missing transverse energy, and two or three jets with at least one of them identified as originating from a bottom quark. A new Monte Carlo generator POWHEG is used to model the single top quark production processes, which include s-channel, t-channel, and Wt-channel. A neural network multivariate method is exploited to discriminate the single top quark signal from the comparatively large backgrounds. We measure a single top production cross section of $3.04^{+0.57}_{-0.53} (\\mathrm{stat.~+~syst.})$ pb assuming $m_{\\rm top}=172.5$~GeV/$c^2$. In addition, we extract the CKM matrix element value $|V_{tb}|=0.96\\pm 0.09~(\\mathrm{stat.~+~syst.})\\ ± 0.05~(\\mathrm{theory})$ and set a lower limit of $|V_{tb}|>0.78$ at the 95% credibility level.

  11. Measurement of Higgs boson production in the diphoton decay channel in $pp$ collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; do Vale, Maria Aline Barros; Do Valle Wemans, André; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire, Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2014-01-01

    A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 5.4 fb$^{-1}$ of proton-proton collisions data at $\\sqrt{s}=7$ TeV and 20.3 fb$^{-1}$ at $\\sqrt{s}=8$ TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be $\\mu = 1.17 \\pm 0.27$ at the value of the Higgs boson mass measured by ATLAS, $m_{H}$ = 125.4 GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of $m_{H}$. They are found to be $\\mu_{\\mathrm{ggF}} = 1.32 \\pm 0.38$, $\\mu_{\\mathrm{VBF}} = 0.8 \\pm 0.7$, $\\mu_{\\mathrm{WH}} = 1.0 \\pm 1.6 $, $\\mu_{\\mathrm{ZH}} = 0.1 ^{+3.7}_{-0.1} $, $\\mu_{\\mathrm{t\\bar{t}H}} = 1.6 ^{+2.7}_{-1.8} $, for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a $W$ or $Z$ boson or a...

  12. A Measurement of the production cross section of top-antitop pairs in proton-antiproton collisions at a center of mass of 1.96 TeV using secondary vertex b-tagging

    International Nuclear Information System (INIS)

    This thesis presents a measurement of the t(bar t) production cross section at CDF using the 162 pb-1 of data taken at the Tevatron between February 2002 and September 2003. It is organized as follows: Chapter 2 is a brief introduction to quantum field theory, the Standard Model, and top quark physics, as well as an overview of the analysis, and the motivation for it. Chapter 3 describes the experimental setup: the chain of accelerators, the Tevatron collider, and the Collider Detector at Fermilab (CDF). Chapter 4 describes the event reconstruction, the data samples, and the event selection. Chapter 5 goes into the details of the secondary vertex b-tagging algorithm. Chapter 6 describes the measurement of the b-tagging algorithm efficiency and fake rate. Chapter 7 describes the estimation of the heavy flavor composition of the W + Jets sample, necessary to understand the background due to W + Heavy Flavor production. Chapter 8 describes the estimate of the various backgrounds. Chapter 10 shows Z0 + Jets and W + Jets data samples used for this analysis and gives the result of the measurement. Chapter 11 discusses the result and concludes on the prospects of top quark physics. A derivation of the method used to measure the b-tagging algorithm efficiency is given in Appendix A. A list of the candidate events together with some of their characteristics is given in Appendix B. Appendix C presents a study of a jet algorithm that combines both tracking and calorimeter information in an attempt to improve the jet energy measurement resolution. Appendix D presents the SvxMon software dedicated to monitoring the silicon vertex detector

  13. Upper Limit For Electron-positron Decaying To Neutral Lambda(baryon)-antineutral Lamba(baryon) Cross Section And R In The Center-of-mass Energy Range From 11.230 To 11.382 Gev

    CERN Document Server

    Dorjkhaidav, O

    2004-01-01

    We have searched for LobLo b resonance production using data taking by CLEO III detector and set an upper limit for such a cross section to be on the order of 0.05–0.10 units of R in 95% confidence level in the scanning range at Center Mass of Energies from 11.230 to 11.382 GeV. The measurement of R = σ(e+e − → hadrons)/σ(e+ e− → μ+μ− ) has been made in this scan range as well. The measured R value near Λb threshold is R = 4.01 ± 0.15

  14. Measurement of the top quark pair production cross section in proton-proton collisions at center-of-mass energies of 7 TeV in final states with a $\\tau$ lepton with the ATLAS detector

    CERN Document Server

    Pérez García-Estañ, Teresa

    The top quark is the heaviest elementary particle and has the largest coupling to the Standard Model Higgs boson. Top quark decays with a tau lepton in the final state play an important role in the search for SM and BSM Higgs bosons. In particular, if a charged Higgs boson exists as predicted by the MSSM, and its mass is lower than the top quark mass minus the bottom quark mass, the top quark predominantly decays into a charged Higgs boson and a $b$-quark: $t \\rightarrow H^{+}b$. A heavy charged Higgs can also be produced associated with a top quark: tH$^{+}$. In some scenarios, the charged Higgs would decay predominantly to a tau lepton and a neutrino, producing then an excess in the $\\ell + \\tau$ channel over the other dilepton channels which, if observed, would constitute experimental evidence of the the existence of a charged Higgs boson. The $t\\bar{t}$ production cross section in the lepton plus tau channel ($pp \\rightarrow t\\bar{t} \\rightarrow\\ell + \\tau$) measurement presented in this thesis has been ...

  15. Measurement of the Z→τ+τ- production cross section in proton-proton collisions at 7 TeV center-of-mass energy with the ATLAS detector

    International Nuclear Information System (INIS)

    The subject of this thesis is the measurement of the Z→ττ production cross section in protonproton collisions at a centre-of-mass energy of 7 TeV with the ATLAS detector at the Large Hadron Collider (LHC). The study of this process is important for several reasons. First, the measurement of the Z boson production in the ττ final state confirms the measurements in the electron and muon pair final states providing information about the parton density functions at the energy of the Large Hadron Collider. In addition, the search for a low mass Higgs boson decaying into τ lepton pairs requires knowledge of the inclusive Z→ττ production cross section. Z→ττ production is an important benchmark process for the validation of τ lepton reconstruction and identification which is very difficult at a hadron collider. The reconstruction of Z→ττ events can be performed in several final states depending on the decay modes of the τ leptons. The semi-leptonic final state, where one τ lepton decays into an electron or muon and neutrinos and the other one into hadrons plus neutrino, has been investigated in this thesis. The production cross section has been determined for data collected in 2011 corresponding to an integrated luminosity of 1.5 fb-1. This involved the determination of the muon trigger and reconstruction efficiencies from data and the estimation of the multi-jet background with a data driven technique. The results using the semileptonic final states, σ(pp→Z+X, Z→ττ)=998.1±23.7(stat)±131.9(syst)±36.9(lumi) pb (τeτ h channel), σ(pp→Z+X, Z→ττ)=912.4±15.0(stat)±94.7(syst)±33.7(lumi) pb (τμτ h channel), can be combined with the measurement in the τeτμ channel to σ(pp →Z+X, Z→ττ)=920.6 ±16.7(stat)±78.1(syst)±34.0(lumi) pb (combined) and are in a good agreement with the theoretical expectation at NNLO.

  16. Measurement of the top quark pair production cross section in proton-antiproton collisions at a center of mass energy of 1.96 TeV, hadronic top decays with the D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Hegeman, Jeroen Guido [Univ. of Twente, Enschede (Netherlands)

    2009-01-16

    Of the six quarks in the standard model the top quark is by far the heaviest: 35 times more massive than its partner the bottom quark and more than 130 times heavier than the average of the other five quarks. Its correspondingly small decay width means it tends to decay before forming a bound state. Of all quarks, therefore, the top is the least affected by quark confinement, behaving almost as a free quark. Its large mass also makes the top quark a key player in the realm of the postulated Higgs boson, whose coupling strengths to particles are proportional to their masses. Precision measurements of particle masses for e.g. the top quark and the W boson can hereby provide indirect constraints on the Higgs boson mass. Since in the standard model top quarks couple almost exclusively to bottom quarks (t → Wb), top quark decays provide a window on the standard model through the direct measurement of the Cabibbo-Kobayashi-Maskawa quark mixing matrix element Vtb. In the same way any lack of top quark decays into W bosons could imply the existence of decay channels beyond the standard model, for example charged Higgs bosons as expected in two-doublet Higgs models: t → H+b. Within the standard model top quark decays can be classified by the (lepton or quark) W boson decay products. Depending on the decay of each of the W bosons, t$\\bar{t}$ pair decays can involve either no leptons at all, or one or two isolated leptons from direct W → e$\\bar{v}${sub e} and W → μ$\\bar{v}$μ decays. Cascade decays like b → Wc → e$\\bar{v}$ec can lead to additional non-isolated leptons. The fully hadronic decay channel, in which both Ws decay into a quark-antiquark pair, has the largest branching fraction of all t$\\bar{t}$ decay channels and is the only kinematically complete (i.e. neutrino-less) channel. It lacks, however, the clear isolated lepton signature and is therefore hard to distinguish from the multi-jet QCD background. It is important to measure the cross section (or branching fraction) in each channel independently to fully verify the standard model. Top quark pair production proceeds through the strong interaction, placing the scene for top quark physics at hadron colliders. This adds an additional challenge: the huge background from multi-jet QCD processes. At the Tevatron, for example, t$\\bar{t}$ production is completely hidden in light q$\\bar{q}$ pair production. The light (i.e. not bottom or top) quark pair production cross section is six orders of magnitude larger than that for t$\\bar{t}$ production. Even including the full signature of hadronic t$\\bar{t}$ decays, two b-jets and four additional jets, the QCD cross section for processes with similar signature is more than five times larger than for t$\\bar{t}$ production. The presence of isolated leptons in the (semi)leptonic t$\\bar{t}$ decay channels provides a clear characteristic to distinguish the t$\\bar{t}$ signal from QCD background but introduces a multitude of W- and Z-related backgrounds.

  17. Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 90, č. 11 (2014), "112015-1"-"112015-32". ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : gluon * fusion * top * pair production * ATLAS * mass resolution * CERN LHC Coll * experimental results * Monte Carlo Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  18. Measurement of the Higgs boson mass from the H -> gamma gamma and H -> ZZ* -> 4l channels in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abbott, B.; Abdallah, J.; Böhm, Jan; Chudoba, Jiří; Havránek, Miroslav; Hejbal, Jiří; Jakoubek, Tomáš; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Lysák, Roman; Marčišovský, Michal; Mikeštíková, Marcela; Němeček, Stanislav; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Vrba, Václav

    2014-01-01

    Roč. 90, č. 5 (2014), "052004-1"-"052004-10". ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13009 Institutional support: RVO:68378271 Keywords : Higgs particle * width * ATLAS * mass spectrum * CERN LHC Coll * calibration * CERN Lab * electron * photon Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  19. Search for the production of the standard model z boson in association with W± boson in proton anti-p collisions at 1.96 TeV center of mass energy

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Justin Kien [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2010-01-01

    The search for the production of the Standard Model Z boson in association with a W boson is motivated and discussed. This is performed using 4.3 fb-1 of Tevatron Run II data collected with the CDF detector in √s = 1.96 TeV proton anti-proton collisions. This is a signature-based analysis where the W boson decays semileptonically into a high-PT electron or muon plus a neutrino, and where the Z boson decays into two b quark jets (b-jets). We increase the signal-to-background ratio by identifying the b-quarks in the jets with a new neural network-based algorithm. Another neural network then uses kinematic information to distinguish WZ to further increase the signal-to-background ratio. Since our sensitivity is still not enough to achieve an observation, we set a 95% Confidence Level upper limit on the product of the WZ production cross section and its branching fraction to the decay products specified above, and express it as a ratio to the theoretical Standard Model prediction. The resulting limit is 3.9 x SM (3.9 x SM expected).

  20. First search at CDF for the Higgs boson decaying to a W-boson pair in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Shan-Huei S.; /Wisconsin U., Madison

    2006-12-01

    By way of retaining the gauge invariance of the Standard Model (SM) and giving masses to the W{sup {+-}} and Z{sup 0} bosons and the fermions, the Higgs mechanism predicts the existence of a neutral scalar bosonic particle, whose mass is not exactly known. The Higgs boson is the only experimentally unconfirmed SM particle to date. This thesis documents a search for the Higgs boson in p{bar p} collisions at {radical}s = 1.96 TeV at the Tevatron, using 360 {+-} pb {sup -1} data collected by the Run II Collider Detector at Fermilab (CDF II), as part of the most important quest for contemporary particle physicists. The search was for a Higgs boson decaying to a pair of W{sup {+-}} bosons, where each W boson decays to an electron, a muon or a tau that further decays to an electron or a muon with associated neutrinos. Events with two charged leptons plus large missing energy were selected in data triggered on a high p{sub t} lepton and compared to the signal and backgrounds modeled using Monte Carlo and jet data. No signal-like excess was observed in data. Therefore, upper limits on the HWW production cross-section in the analyzed mass range were extracted using the binned likelihood maximum from distributions of dilepton azimuthal angle at 95% Bayesian credibility level (CL), as shown in the table below.

  1. Inclusive jet cross sections in proton-proton collisions at 7.0 TeV center-of-mass energy with the ATLAS detector at the Large Hadron Collider

    Science.gov (United States)

    Park-Martinez, Jayne Irene

    The purpose of this study was to assess the effects of node-link mapping on students' meaningful learning and conceptual change in a 1-semester introductory life-science course. This study used node-link mapping to integrate and apply the National Research Council's (NRC, 2005) three principles of human learning: engaging students' prior knowledge, fostering their metacognition, and supporting their formulation of a scientific conceptual framework. The study was a quasi-experimental, pretest-posttest, control group design. The sample consisted of 68 primarily freshmen non-science majors enrolled in two intact sections of the targeted course. Both groups received the same teacher-centered instruction and student-centered activities designed to promote meaningful learning and conceptual change; however, the activity format differed. Control group activities were written; treatment group activities were node-link mapped. Prior to instruction, both groups demonstrated equivalent knowledge and misconceptions associated with genetics and evolution (GE), and ecology and environmental science (EE). Mean differences, pre-to-post instruction, on the GE and EE meaningful learning exam scores and the EE conceptual change inventory scores between the writing group (control) and the node-link mapping group (treatment) were analyzed using repeated measures MANOVAs. There were no significant mean pre-to-post differences between groups with respect to meaningful learning in the GE or EE units, or conceptual change in the EE unit. However, independent of group membership, the overall mean pre-to-post increases in meaningful learning and conceptual change were significant. These findings suggest that both node-link mapping and writing, when used in conjunction with the National Research Council's (NRC, 2005) three principles of human learning, can promote meaningful learning and conceptual change. The only significant interaction found with respect to meaningful learning, conceptual change, and learning styles (Kolb, 2005) was a positive effect of node-link mapping on converger's meaningful learning. However, that result was probably an artifact of small sample size rather than a true treatment effect. No other significant interactions were found. These results suggest that all students, regardless of their learning style, can benefit from either node-link mapping or writing to promote meaningful learning and conceptual change in general life-science courses.

  2. Search for the production of the standard model z boson in association with w boson in p - anti-p collisions at 1.96 TeV center of mass energy

    Energy Technology Data Exchange (ETDEWEB)

    Keung, Justin Kien; /Pennsylvania U.

    2010-05-01

    The search for the production of the Standard Model Z boson in association with a W boson is motivated and discussed. This is performed using 4.3 fb{sup -1} of Tevatron Run II data collected with the CDF detector in {radical}s = 1.96 TeV proton anti-proton collisions. This is a signature-based analysis where the W boson decays semileptonically into a high-P{sub T} electron or muon plus a neutrino, and where the Z boson decays into two b quark jets (b-jets). We increase the signal-to-background ratio by identifying the b-quarks in the jets with a new neural network-based algorithm. Another neural network then uses kinematic information to distinguish WZ to further increase the signal-to-background ratio. Since our sensitivity is still not enough to achieve an observation, we set a 95% Confidence Level upper limit on the product of the WZ production cross section and its branching fraction to the decay products specified above, and express it as a ratio to the theoretical Standard Model prediction. The resulting limit is 3.9 x SM (3.9 x SM expected).

  3. Measurement of the top quark pair production cross section in proton-proton collisions at center-of-mass energies of 7 TeV in final states with a tau lepton with the ATLAS detector

    OpenAIRE

    Pérez García-Estañ, María Teresa

    2014-01-01

    El Modelo Estándar (SM) de la Física de Partículas es una teoría cuántica de campos desarrollada en los años 60 para explicar el comportamiento de las partículas elementales y las fuerzas fundamentales que gobiernan sus interacciones. El Modelo Estándar ha sido comprobado experimentalmente, ha pronosticado con gran precisión una amplia variedad de fenómenos y ha explicado con éxito numerosos resultados experimentales. Para la exploración de fenómenos de nueva Física, la Organización Europe...

  4. SU-E-I-56: Scan Angle Reduction for a Limited-Angle Intrafraction Verification (LIVE) System

    International Nuclear Information System (INIS)

    Purpose: To develop a novel adaptive reconstruction strategy to further reduce the scanning angle required by the limited-angle intrafraction verification (LIVE) system for intrafraction verification. Methods: LIVE acquires limited angle MV projections from the exit fluence of the arc treatment beam or during gantry rotation between static beams. Orthogonal limited-angle kV projections are also acquired simultaneously to provide additional information. LIVE considers the on-board 4D-CBCT images as a deformation of the prior 4D-CT images, and solves the deformation field based on deformation models and data fidelity constraint. LIVE reaches a checkpoint after a limited-angle scan, and reconstructs 4D-CBCT for intrafraction verification at the checkpoint. In adaptive reconstruction strategy, a larger scanning angle of 30° is used for the first checkpoint, and smaller scanning angles of 15° are used for subsequent checkpoints. The onboard images reconstructed at the previous adjacent checkpoint are used as the prior images for reconstruction at the current checkpoint. As the algorithm only needs to reconstruct the small deformation occurred between adjacent checkpoints, projections from a smaller scan angle provide enough information for the reconstruction. XCAT was used to simulate tumor motion baseline drift of 2mm along sup-inf direction at every subsequent checkpoint, which are 15° apart. Adaptive reconstruction strategy was used to reconstruct the images at each checkpoint using orthogonal 15° kV and MV projections. Results: Results showed that LIVE reconstructed the tumor volumes accurately using orthogonal 15° kV-MV projections. Volume percentage differences (VPDs) were within 5% and center of mass shifts (COMS) were within 1mm for reconstruction at all checkpoints. Conclusion: It's feasible to use an adaptive reconstruction strategy to further reduce the scan angle needed by LIVE to allow faster and more frequent intrafraction verification to minimize the

  5. QCD results from LEP above and below the Z peak

    International Nuclear Information System (INIS)

    Results of recent QCD studies at LEP for energies different from the Z pole are presented. In a first part on the analyses of events produced at a center of mass energy between 130 and 136 GeV which were recorded in 1995. In the second part we review the LEP1 QCD results obtained using the process e+e- → qqy to obtain hadronic systems with a reduced center of mass energy. (author)

  6. Delta robot

    OpenAIRE

    J. L. Herder; Van der Wijk, V.

    2010-01-01

    The invention relates to a delta robot comprising a stationary base (2) and a movable platform (3) that is connected to the base with three chains of links (4,5,6), and comprising a balancing system incorporating at least one pantograph (7) for balancing the robot's center of mass, wherein the at least one pantograph has a first free extremity (10) at which it supports a countermass (13) which is arranged to balance the center of mass of the robot.

  7. van der Waals interaction of finite metallic systems: A study of cluster-atom scattering

    International Nuclear Information System (INIS)

    Absolute integral cross sections for elastic collisions of neutral sodium clusters Nan (n=2--20) with sodium atoms have been measured and the van der Waals interaction constants determined. The center-of-mass cross sections are very large (up to thousands of square angstroms), reflecting high cluster polarizabilities. It is found that the dispersion theory based on measured response parameters of alkali-metal clusters tends to overestimate the interaction strength

  8. SU-C-303-04: Evaluation of On- and Off-Line Bioluminescence Tomography System for Focal Irradiation Guidance

    International Nuclear Information System (INIS)

    Purpose: We have developed offline and on-board bioluminescence tomography(BLT) systems for the small animal radiation research platform(SARRP) for radiation guidance of soft tissue targets. We investigated the effectiveness of offline BLT guidance. Methods: CBCT is equipped on both the offline BLT system and SARRP that are 10 ft. apart. To evaluate the setup error during animal transport between the two systems, we implanted a luminescence source in the abdomen of anesthetized mice. Five mice were studied. After CBCT was acquired on both systems, source centers and correlation coefficients were calculated. CBCT was also used to generate object mesh for BLT reconstruction. To assess target localization, we compared the localization of the luminescence source based on (1)on-board SARRP BLT and CBCT, (2)offline BLT and CBCT, and (3)offline BLT and SARRP CBCT. The 3rd comparison examines if an offline BLT system can be used to guide radiation when there is minimal target contrast in CBCT. Results: Our CBCT results show the offset of the light source center can be maintained within 0.2 mm during animal transport. The center of mass(CoM) of the light source reconstructed by the offline BLT has an offset of 1.0 ± 0.4 mm from the ‘true’ CoM as derived from the SARRP CBCT. The results compare well with the offset of 1.0 ± 0.2 mm using on-line BLT. Conclusion: With CBCT information provided by the SARRP and effective animal immobilization during transport, these findings support the use of offline BLT in close vicinity for accurate soft tissue target localization for irradiation. However, the disadvantage of the off-line system is reduced efficiency as care is required to maintain stable animal transport. We envisage a dual use system where the on-board arrangement allows convenient access to CBCT and avoids disturbance of animal setup. The off-line capability would support standalone longitudinal imaging studies. The work is supported by NIH R01CA158100 and Xstrahl

  9. SU-C-303-04: Evaluation of On- and Off-Line Bioluminescence Tomography System for Focal Irradiation Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B; Wang, K; Reyes, J; Tran, P; Wong, J [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD (United States); Iordachita, I [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: We have developed offline and on-board bioluminescence tomography(BLT) systems for the small animal radiation research platform(SARRP) for radiation guidance of soft tissue targets. We investigated the effectiveness of offline BLT guidance. Methods: CBCT is equipped on both the offline BLT system and SARRP that are 10 ft. apart. To evaluate the setup error during animal transport between the two systems, we implanted a luminescence source in the abdomen of anesthetized mice. Five mice were studied. After CBCT was acquired on both systems, source centers and correlation coefficients were calculated. CBCT was also used to generate object mesh for BLT reconstruction. To assess target localization, we compared the localization of the luminescence source based on (1)on-board SARRP BLT and CBCT, (2)offline BLT and CBCT, and (3)offline BLT and SARRP CBCT. The 3rd comparison examines if an offline BLT system can be used to guide radiation when there is minimal target contrast in CBCT. Results: Our CBCT results show the offset of the light source center can be maintained within 0.2 mm during animal transport. The center of mass(CoM) of the light source reconstructed by the offline BLT has an offset of 1.0 ± 0.4 mm from the ‘true’ CoM as derived from the SARRP CBCT. The results compare well with the offset of 1.0 ± 0.2 mm using on-line BLT. Conclusion: With CBCT information provided by the SARRP and effective animal immobilization during transport, these findings support the use of offline BLT in close vicinity for accurate soft tissue target localization for irradiation. However, the disadvantage of the off-line system is reduced efficiency as care is required to maintain stable animal transport. We envisage a dual use system where the on-board arrangement allows convenient access to CBCT and avoids disturbance of animal setup. The off-line capability would support standalone longitudinal imaging studies. The work is supported by NIH R01CA158100 and Xstrahl

  10. Higher harmonic control analysis for vibration reduction of helicopter rotor systems

    Science.gov (United States)

    Nguyen, Khanh Q.

    1994-01-01

    operating in a transition flight regime and for an articulated rotor operating at the level-flight boundary (high speed and high thrust conditions) indicate that blade parameters including flap, lag, torsion stiffness distributions, linear pretwist, chordwise offset of center-of-mass from elastic axis and chordwise offset of elastic axis from aerodynamic center can be selected to minimize the actuator power requirements for HHC.

  11. System Budgets

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1996-01-01

    The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers.......The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers....

  12. EDITORIAL: Focus on Mechanical Systems at the Quantum Limit FOCUS ON MECHANICAL SYSTEMS AT THE QUANTUM LIMIT

    Science.gov (United States)

    Aspelmeyer, Markus; Schwab, Keith

    2008-09-01

    diverse backgrounds and approaches of the researchers. As diverse as the approaches are the manifold of goals and perspectives for operating mechanical systems close to or within the quantum regime. Already now, nanomechanical sensors achieve single-molecule mass detection and magnetic resonance force detection from single-electron spins although they are operated far from quantum. Quantum-limited mechanical devices promise a new technology with hitherto unachieved performance for high-resolution sensing. This is also of high relevance for macroscopic mechanical resonators used in gravitational wave detectors. Furthermore, the increasing capability to couple mechanical modes to individual quantum systems raises the interesting question of whether mechanics can serve as a quantum bus in hybrid implementations of quantum information processing. Finally, the possibility of generating quantum superposition states that involve displacements of a massive macroscopic object (such as the center of mass of a mechanical beam) provides a completely new parameter regime for testing quantum theory over the amazing range from nanomechanical objects of several picograms up to gram-scale mirrors used in gravitational wave interferometers. We are looking forward to these fascinating developments! This Focus Issue is intended to highlight the present status of the field and to provide both introduction and motivation for students and researchers who want to get familiar with this exciting area or even want to join it. It also complements the conference activities of our community during the last year, where a series of dedicated invited sessions at several international conferences (APS March Meeting 2008, CLEO/QELS 2008, OSA Frontiers in Optics 2008, PQE 2008/2009 etc) culminated in the first Gordon Conference on 'Mechanical Systems at the Quantum Limit'. Given the fast development of the field it was not surprising to see that during the collection of the following contributions new

  13. System Identification

    NARCIS (Netherlands)

    Keesman, K.J.

    2011-01-01

    Summary System Identification Introduction.- Part I: Data-based Identification.- System Response Methods.- Frequency Response Methods.- Correlation Methods.- Part II: Time-invariant Systems Identification.- Static Systems Identification.- Dynamic Systems Identification.- Part III: Time-varying Syste

  14. Systems autonomy

    Science.gov (United States)

    Lum, Henry, Jr.

    1988-01-01

    Information on systems autonomy is given in viewgraph form. Information is given on space systems integration, intelligent autonomous systems, automated systems for in-flight mission operations, the Systems Autonomy Demonstration Project on the Space Station Thermal Control System, the architecture of an autonomous intelligent system, artificial intelligence research issues, machine learning, and real-time image processing.

  15. The fusion excitation function for a positive Q-value system at near and deep sub-barrier energies using Skyrme energy density formalism

    International Nuclear Information System (INIS)

    In this paper, without any adjustment, the nuclear interaction potential is obtained in semiclassical extended Thomas-Fermi approach of the Skyrme energy density formalism, where the potential is expressed as the sum of (i) spin-orbit density independent part (attractive) and (ii) the spin-orbit density dependent potential part (repulsive), following our earlier work for arbitrarily chosen Skyrme force SIV over the center of mass energy range 20 to 30 MeV. The total interaction potential is obtained by adding Coulomb potential directly to the nuclear potential. The characteristics of the said interaction potential are used in Wong's formula to calculate the fusion cross-section as a function of center of mass energies

  16. Immune System

    Science.gov (United States)

    ... Can I Help a Friend Who Cuts? Immune System KidsHealth > For Teens > Immune System Print A A ... put us out of commission. What the Immune System Does The immune (pronounced: ih-MYOON) system, which ...

  17. Thermal systems; Systemes thermiques

    Energy Technology Data Exchange (ETDEWEB)

    Lalot, S. [Valenciennes Univ. et du Hainaut Cambresis, LME, 59 (France); Lecoeuche, S. [Ecole des Mines de Douai, Dept. GIP, 59 - Douai (France)]|[Lille Univ. des Sciences et Technologies, 59 - Villeneuve d' Ascq (France); Ahmad, M.; Sallee, H.; Quenard, D. [CSTB, 38 - Saint Martin d' Heres (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Gascoin, N.; Gillard, P.; Bernard, S. [Laboratoire d' Energetique, Explosion, Structure, 18 - Bourges (France); Gascoin, N.; Toure, Y. [Laboratoire Vision et Robotique, 18 - Bourges (France); Daniau, E.; Bouchez, M. [MBDA, 18 - Bourges (France); Dobrovicescu, A.; Stanciu, D. [Bucarest Univ. Polytechnique, Faculte de Genie Mecanique (Romania); Stoian, M. [Reims Univ. Champagne Ardenne, Faculte des Sciences, UTAP/LTM, 51 (France); Bruch, A.; Fourmigue, J.F.; Colasson, S. [CEA Grenoble, Lab. Greth, 38 (France); Bontemps, A. [Universite Joseph Fourier, LEGI/GRETh, 38 - Grenoble (France); Voicu, I.; Mare, T.; Miriel, J. [Institut National des Sciences Appliquees (INSA), LGCGM, IUT, 35 - Rennes (France); Galanis, N. [Sherbrooke Univ., Genie Mecanique, QC (Canada); Nemer, M.; Clodic, D. [Ecole des Mines de Paris, Centre Energetique et Procedes, 75 (France); Lasbet, Y.; Auvity, B.; Castelain, C.; Peerhossaini, H. [Nantes Univ., Ecole Polytechnique, Lab. de Thermocinetiquede Nantes, UMR-CNRS 6607, 44 (France)

    2005-07-01

    This session about thermal systems gathers 26 articles dealing with: neural model of a compact heat exchanger; experimental study and numerical simulation of the thermal behaviour of test-cells with walls made of a combination of phase change materials and super-insulating materials; hydraulic and thermal modeling of a supercritical fluid with pyrolysis inside a heated channel: pre-dimensioning of an experimental study; energy analysis of the heat recovery devices of a cryogenic system; numerical simulation of the thermo-hydraulic behaviour of a supercritical CO{sub 2} flow inside a vertical tube; mixed convection inside dual-tube exchangers; development of a nodal approach with homogenization for the simulation of the brazing cycle of a heat exchanger; chaotic exchanger for the cooling of low temperature fuel cells; structural optimization of the internal fins of a cylindrical generator; a new experimental approach for the study of the local boiling inside the channels of exchangers with plates and fins; experimental study of the flow regimes of boiling hydrocarbons on a bundle of staggered tubes; energy study of heat recovery exchangers used in Claude-type refrigerating systems; general model of Carnot engine submitted to various operating constraints; the free pistons Stirling cogeneration system; natural gas supplied cogeneration system with polymer membrane fuel cell; influence of the CRN coating on the heat flux inside the tool during the wood unrolling process; transport and mixture of a passive scalar injected inside the wake of a Ahmed body; control of a laser welding-brazing process by infrared thermography; 2D self-adaptative method for contours detection: application to the images of an aniso-thermal jet; exergy and exergy-economical study of an 'Ericsson' engine-based micro-cogeneration system; simplified air-conditioning of telephone switching equipments; parametric study of the 'low-energy' individual dwelling; brief synthesis of

  18. Data Systems vs. Information Systems

    OpenAIRE

    Amatayakul, Margret K.

    1982-01-01

    This paper examines the current status of “hospital information systems” with respect to the distinction between data systems and information systems. It is proposed that the systems currently existing are incomplete data dystems resulting in ineffective information systems.

  19. Harbor systems; Kowan system

    Energy Technology Data Exchange (ETDEWEB)

    Yasumoto, K.; Mitsuhashi, M. [Fuji Electric Co. Ltd., Tokyo (Japan)

    1997-03-10

    Container terminals these days are required to be enlarged, automated in operation, and enhanced in reliability so that they can properly deal with ships growing larger in size and containers increasing in number. Stable supply of electric power and efficient monitor and control of the related equipment are very important in securing stabilized, continuous operation for such container terminals. Outlined in this report are the electrical equipment of a modern container terminal and the large-capacity voltage fluctuation compensation unit delivered by Fuji Electric Co., Ltd., to West 5 Container Terminal, Nagoya Harbor. The electrical equipment of a terminal is a special high voltage reception/transformation facility capable of loop reception at 66kV. The 66kV cubicle type gas-insulated switch is provided with a current transformer for a sectionalized protection relay, current transformer for bus protection, and VCT bypass disconnector. The main transformer is a gas-insulated transformer, and a molded transformer is adopted for the special high voltage reception/transformation facility. The equipment monitor and control system employs a UNIX-base computer as the central processing system, and the information LAN is so designed as to be connectable to the Ethernet and P-link. 6 figs.

  20. Multibody Systems

    DEFF Research Database (Denmark)

    Wagner, Falko Jens

    1999-01-01

    Multibody Systems is one area, in which methods for solving DAEs are of special interst. This chapter is about multibody systems, why they result in DAE systems and what kind of problems that can arise when dealing with multibody systems and formulating their corresponding DAE system....

  1. Digestive System

    Science.gov (United States)

    ... 5 Things to Know About Zika & Pregnancy Digestive System KidsHealth > For Parents > Digestive System Print A A ... body can absorb and use. About the Digestive System Almost all animals have a tube-type digestive ...

  2. Respiratory System

    Science.gov (United States)

    ... page from the NHLBI on Twitter. The Respiratory System The respiratory system is made up of organs ... and the muscles that enable breathing. The Respiratory System Figure A shows the location of the respiratory ...

  3. Conceiving systems

    OpenAIRE

    Hitchins, D.K.

    1990-01-01

    The thesis is concerned with the development of innovative, robust design concepts for a class of systems called Information Decision Action (IDA) Systems. IDA systems are typified by Command and Control (C2) and Command, Control, Communications and Intelligence (C3I) systems as used by police, emergency services and the military - the two titles refer respectively to the human activity and the technological systems. The class of systems is much wider, however, and includes, financial, traffi...

  4. System dynamics

    International Nuclear Information System (INIS)

    This book introduces systems thinking and conceptual tool and modeling tool of dynamics system such as tragedy of single thinking, accessible way of system dynamics, feedback structure and causal loop diagram analysis, basic of system dynamics modeling, causal loop diagram and system dynamics modeling, information delay modeling, discovery and application for policy, modeling of crisis of agricultural and stock breeding products, dynamic model and lesson in ecosystem, development and decadence of cites and innovation of education forward system thinking.

  5. Radiation Load Optimization in the Final Focus System of FCC-hh

    CERN Document Server

    Martin, Roman; Cerutti, Francesco; Tomás, Rogelio

    2016-01-01

    With a center-of-mass energy of up to 100 TeV, FCC-hh will produce highly energetic collision debris at the Interaction Point (IP). Protecting the final focus quadrupoles from this radiation is challenging, since the required amount of shielding placed inside the magnets will reduce the free aperture, thereby limiting the β^{*} reach and luminosity. Hence, radiation mitigation strategies that make best use of the available aperture are required. In this paper, we study the possibility to split the first quadrupole Q1 into two quadrupoles with individual apertures, in order to distribute the radiation load more evenly and reduce the peak dose.

  6. Symmetry and Asymmetry in Bouncing Gaits

    OpenAIRE

    Giovanni A. Cavagna

    2010-01-01

    In running, hopping and trotting gaits, the center of mass of the body oscillates each step below and above an equilibrium position where the vertical force on the ground equals body weight. In trotting and low speed human running, the average vertical acceleration of the center of mass during the lower part of the oscillation equals that of the upper part, the duration of the lower part equals that of the upper part and the step frequency equals the resonant frequency of the bouncing system:...

  7. Average Angular Velocity

    CERN Document Server

    Essén, H

    2003-01-01

    This paper addresses the problem of the separation of rotational and internal motion. It introduces the concept of average angular velocity as the moment of inertia weighted average of particle angular velocities. It extends and elucidates the concept of Jellinek and Li (1989) of separation of the energy of overall rotation in an arbitrary (non-linear) $N$-particle system. It generalizes the so called Koenig's theorem on the two parts of the kinetic energy (center of mass plus internal) to three parts: center of mass, rotational, plus the remaining internal energy relative to an optimally translating and rotating frame.

  8. SLAC-Linac-Collider (SLC) Project

    International Nuclear Information System (INIS)

    The proposed SLAC Linear Collider Project (SLC) and its features are described in this paper. In times of ever increasing costs for energy the electron storage ring principle is about to reach its practical limit. A new class of colliding beam beam facilities, the Linear Colliders, are getting more and more attractive and affordable at very high center-of-mass energies. The SLC is designed to be a poineer of this new class of colliding beam facilities and at the same time will serve as a valuable tool to explore the high energy physics at the level of 100 GeV in the center-of-mass system

  9. Systems effectiveness

    CERN Document Server

    Habayeb, A R

    1987-01-01

    Highlights three principal applications of system effectiveness: hardware system evaluation, organizational development and evaluation, and conflict analysis. The text emphasizes the commonality of the system effectiveness discipline. The first part of the work presents a framework for system effectiveness, partitioning and hierarchy of hardware systems. The second part covers the structure, hierarchy, states, functions and activities of organizations. Contains an extended Appendix on mathematical concepts and also several project suggestions.

  10. Auxiliary systems

    International Nuclear Information System (INIS)

    Systems included under the heading ''Reactor Auxillary Systems'' are those immediately involved with the reactor operation. These include the systems for dosing and letdown of reactor coolant, as well as for the chemical dosing, purification and treatment of the reactor coolant and the cooling system in the controlled area. The ancillary systems are mainly responsible for liquid and gaseous treatment and the waste treatment for final storage. (orig.)

  11. Existence of a ground state for the confined hydrogen atom in non-relativistic QED

    DEFF Research Database (Denmark)

    Amour, Laurent; Faupin, Jeremy

    2008-01-01

    We consider a system of a hydrogen atom interacting with the quantized electromagnetic field. Instead of fixing the nucleus, we assume that the system is confined by its center of mass. This model is used in theoretical physics to explain the Lamb-Dicke effect. After a brief review of the...

  12. Degeneracy of Multi-Component Quantum Hall States Satisfying Periodic Boundary Conditions

    OpenAIRE

    McDonald, I. A.

    1994-01-01

    In systems subject to periodic boundary conditions, Haldane has shown that states at arbitrary filling fraction possess a degeneracy with respect to center of mass translations. An analysis is carried out for multi-component electron systems and extra degeneracies are shown to exist. Their application to numerical studies is discussed.

  13. Existence of oscillatory solutions in longitudinal flight dynamics

    OpenAIRE

    Kaslik, Eva; Balint, Stefan

    2010-01-01

    Abstract By means of coincidence degree theory and Mawhin?s continuation theorem, a theoretical proof is given for the existence of oscillatory solutions of the simplified dynamical system which governs the motion around the center of mass in a longitudinal flight with constant forward velocity of a rigid aircraft, when the automatic flight control system is decoupled.

  14. Tracking POG plot results on 2015 data

    CERN Document Server

    CMS Collaboration

    2016-01-01

    The new conditions of Run II with respect to Run I (center of mass energy and bunch spacing) call for a complete characterization of the detectors from the beginning, in order re-calibrate the whole system and verify its performances. The plots shown below focus on the performance analysis of the CMS tracking system from both direct and indirect measurements.

  15. Stem system

    Directory of Open Access Journals (Sweden)

    Shajmardanova L.R.

    2008-01-01

    Full Text Available The article shows the stem cells from the point of view of systemic anatomy, where they are united into an entire stem system. This integration shows various advantages for better understanding the stem cells role in the body. Authors, considering functions and action mechanism of stem cells, phylogeny, ontogeny, regulation of functions, explain the base for stem cells system existance. The definition and terminology, age peculiarities, relationship with other systems of organs and differences are offered. The theoretical proof of primary-integrative role of stem system is provided for all other systems in body. Of particular importance is the role of stem system as a link between neural and endocrine systems. The work helps to sistematize data on investigations of stem cells, their entire-system perception, that will ease the goals determining for further research and their clinical use.

  16. Auxiliary systems

    International Nuclear Information System (INIS)

    For a undisturbed reactor operation, the various Auxiliary and Ancillary Systems must function perfectly with the Reactor Coolant System together. While the Auxiliary Systems are directly connected to the Reactor Coolant System and therefore have contact with the Reactor Coolant, the Ancillary Systems perform tasks which do not directly influence reactor operation and in part are necessary exclusively for environment protection. The design criteria of the individual systems are a result of these tasks, especially in relation to availability, operational readiness and probability of failure. (orig.)

  17. Feasibility of small animal cranial irradiation with the microRT system

    International Nuclear Information System (INIS)

    Purpose: To develop and validate methods for small-animal CNS radiotherapy using the microRT system. Materials and Methods: A custom head immobilizer was designed and built to integrate with a pre-existing microRT animal couch. The Delrin couch-immobilizer assembly, compatible with multiple imaging modalities (CT, microCT, microMR, microPET, microSPECT, optical), was first imaged via CT in order to verify the safety and reproducibility of the immobilization method. Once verified, the subject animals were CT-scanned while positioned within the couch-immobilizer assembly for treatment planning purposes. The resultant images were then imported into CERR, an in-house-developed research treatment planning system, and registered to the microRTP treatment planning space using rigid registration. The targeted brain was then contoured and conformal radiotherapy plans were constructed for two separate studies: (1) a whole-brain irradiation comprised of two lateral beams at the 90 degree sign and 270 degree sign microRT treatment positions and (2) a hemispheric (left-brain) irradiation comprised of a single A-P vertex beam at the 0 degree sign microRT treatment position. During treatment, subject animals (n=48) were positioned to the CERR-generated treatment coordinates using the three-axis microRT motor positioning system and were irradiated using a clinical Ir-192 high-dose-rate remote after-loading system. The radiation treatment course consisted of 5 Gy fractions, 3 days per week. 90% of the subjects received a total dose of 30 Gy and 10% received a dose of 60 Gy. Results: Image analysis verified the safety and reproducibility of the immobilizer. CT scans generated from repeated reloading and repositioning of the same subject animal in the couch-immobilizer assembly were fused to a baseline CT. The resultant analysis revealed a 0.09 mm average, center-of-mass translocation and negligible volumetric error in the contoured, murine brain. The experimental use of the head

  18. Operational GPS Imaging System at Multiple Scales for Earth Science and Monitoring of Geohazards

    Science.gov (United States)

    Blewitt, Geoffrey; Hammond, William; Kreemer, Corné

    2016-04-01

    Toward scientific targets that range from slow deep Earth processes to geohazard rapid response, our operational GPS data analysis system produces smooth, yet detailed maps of 3-dimensional land motion with respect to our Earth's center of mass at multiple spatio-temporal scales with various latencies. "GPS Imaging" is implemented operationally as a back-end processor to our GPS data processing facility, which uses JPL's GIPSY OASIS II software to produce positions from 14,000 GPS stations in ITRF every 5 minutes, with coordinate precision that gradually improves as latency increases upward from 1 hour to 2 weeks. Our GPS Imaging system then applies sophisticated signal processing and image filtering techniques to generate images of land motion covering our Earth's continents with high levels of robustness, accuracy, spatial resolution, and temporal resolution. Techniques employed by our GPS Imaging system include: (1) similarity transformation of polyhedron coordinates to ITRF with optional common-mode filtering to enhance local transient signal to noise ratio, (2) a comprehensive database of ~100,000 potential step events based on earthquake catalogs and equipment logs, (3) an automatic, robust, and accurate non-parametric estimator of station velocity that is insensitive to prevalent step discontinuities, outliers, seasonality, and heteroscedasticity; (4) a realistic estimator of velocity error bars based on subsampling statistics; (5) image processing to create a map of land motion that is based on median spatial filtering on the Delauney triangulation, which is effective at despeckling the data while faithfully preserving edge features; (6) a velocity time series estimator to assist identification of transient behavior, such as unloading caused by drought, and (7) a method of integrating InSAR and GPS for fine-scale seamless imaging in ITRF. Our system is being used to address three main scientific focus areas, including (1) deep Earth processes, (2

  19. Lymph system

    Science.gov (United States)

    The lymph system is a network of organs, lymph nodes, lymph ducts, and lymph vessels that make and move lymph from tissues to the bloodstream. The lymph system is a major part of the body's immune ...

  20. Intelligent Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The autonomous systems (AS) project, led by NASA Ames, is developing software for system operation automation. AS technology will help astronauts make more...

  1. Retrofitting Systems

    DEFF Research Database (Denmark)

    Rose, Jørgen

    1997-01-01

    This report gives an overview of the different retrofitting possibilities that are available today. The report looks at both external and internal systems for external wall constructions, roof constructions, floor constructions and foundations. All systems are described in detail in respect to use...... and methods, and the efficiency of the different systems are discussed....

  2. Systems Engineering

    Science.gov (United States)

    Pellerano, Fernando

    2015-01-01

    This short course provides information on what systems engineering is and how the systems engineer guides requirements, interfaces with the discipline leads, and resolves technical issues. There are many system-wide issues that either impact or are impacted by the thermal subsystem. This course will introduce these issues and illustrate them with real life examples.

  3. Multifunction system

    International Nuclear Information System (INIS)

    The development, the characteristics and the applications of a multifunction system are presented. The system is used on the RBES laboratory pipes, at Marcoule. The system was developed in order to allow, without time loss, the modification of the circuit function by replacing only one component. The following elements form the multifunction system: a fixed base, which is part of the tube, a removable piece, which is inserted into the base, a cover plate and its locking system. The material, chosen among commercial trade marks, required small modifications in order to be used in the circuit

  4. Operating systems

    CERN Document Server

    Tsichritzis, Dionysios C; Rheinboldt, Werner

    1974-01-01

    Operating Systems deals with the fundamental concepts and principles that govern the behavior of operating systems. Many issues regarding the structure of operating systems, including the problems of managing processes, processors, and memory, are examined. Various aspects of operating systems are also discussed, from input-output and files to security, protection, reliability, design methods, performance evaluation, and implementation methods.Comprised of 10 chapters, this volume begins with an overview of what constitutes an operating system, followed by a discussion on the definition and pr

  5. Cryogenic Systems

    Science.gov (United States)

    Hosoyama, Kenji

    2002-02-01

    In this lecture we discuss the principle of method of cooling to a very low temperature, i.e. cryogenic. The "gas molecular model" will be introduced to explain the mechanism cooling by the expansion engine and the Joule-Thomson expansion valve. These two expansion processes are normally used in helium refrigeration systems to cool the process gas to cryogenic temperature. The reverse Carnot cycle will be discussed in detail as an ideal refrigeration cycle. First the fundamental process of liquefaction and refrigeration cycles will be discussed, and then the practical helium refrigeration system. The process flow of the system and the key components; -compressor, expander, and heat exchanger- will be discussed. As an example of an actual refrigeration system, we will use the cryogenic system for the KEKB superconducting RF cavity. We will also discuss the liquid helium distribution system, which is very important, especially for the cryogenic systems used in accelerator applications. 1 Principles of Cooling and Fundamental Cooling Cycle 2 Expansion engine, Joule-Thomson expansion, kinetic molecular theory, and enthalpy 3 Liquefaction Systems 4 Refrigeration Systems 5 Practical helium liquefier/refrigeration system 6 Cryogenic System for TRISTAN Superconducting RF Cavity

  6. A systemic risk warning system

    OpenAIRE

    Sibert, Anne

    2010-01-01

    Economists largely neglected systemic risk in the financial sector. This column discusses how governments should gather data about systemic risk and assess its implications. It says the new European Systemic Risk Board is far from the ideal – it is too big, too homogeneous, and lacks independence.

  7. Development of the digital read-out system for the CERN Alice pixel detector

    CERN Document Server

    Grassi, Tullio

    In order to gain new experimental insight at the TeV energy scale, CERN (Geneva) will build the Large Hadron Collider (LHC), a new collider machine operating at a maximum center-of-mass energy of 14 TeV (in the p+/p+ interactions). The accelerator can operate in a heavy ion collision mode achieving a center-of-mass energy of ~5.5 TeV. The experimental environment at LHC is characterized by a high crossing rate of the particle bunches (one every 25 ns for p+/p+) and high levels of radiation. Therefore stringent requirements are imposed on the performance of detectors at LHC. Such a particle physics environment calls for dedicated hardware/software solutions with specific constraints, such as radiation tolerance, limited amount of material and limited power dissipation. One of the particle physics experiments carried out in LHC is ALICE (A Large Ion Collider Experiment). The ALICE detector will face a very high density of tracks of particles (a multiplicity of 8000 charged particles per unit of rapidity, that i...

  8. Material Systems

    DEFF Research Database (Denmark)

    Jensen, Mads Brath; Mortensen, Henrik Rubæk; Mullins, Michael;

    2009-01-01

    This paper describes and reflects upon the results of an investigative project which explores the setting up of a material system - a parametric and generative assembly consisting of and taking into consideration material properties, manufacturing constraints and geometric behavior. The project...... approaches the subject through the construction of a logic-driven system aiming to explore the possibilities of a material system that fulfills spatial, structural and performative requirements concurrently and how these are negotiated in situations where they might be conflicting....

  9. Cognitive Systems

    OpenAIRE

    Larsen, Jan

    2008-01-01

    The tutorial will discuss the definition of cognitive systems as the possibilities to extend the current systems engineering paradigm in order to perceive, learn, reason and interact robustly in open-ended changing environments. I will also address cognitive systems in a historical perspective and its relation and potential over current artificial intelligence architectures. Machine learning models that learn from data and previous knowledge will play an increasingly important role in all lev...

  10. Recommender systems

    CERN Document Server

    Kembellec, Gérald; Saleh, Imad

    2014-01-01

    Acclaimed by various content platforms (books, music, movies) and auction sites online, recommendation systems are key elements of digital strategies. If development was originally intended for the performance of information systems, the issues are now massively moved on logical optimization of the customer relationship, with the main objective to maximize potential sales. On the transdisciplinary approach, engines and recommender systems brings together contributions linking information science and communications, marketing, sociology, mathematics and computing. It deals with the understan

  11. Geothermal systems

    Science.gov (United States)

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  12. Intelligent systems

    CERN Document Server

    Irwin, J David

    2011-01-01

    Technology has now progressed to the point that intelligent systems are replacing humans in the decision making processes as well as aiding in the solution of very complex problems. In many cases intelligent systems are already outperforming human activities. Artificial neural networks are not only capable of learning how to classify patterns, such images or sequence of events, but they can also effectively model complex nonlinear systems. Their ability to classify sequences of events is probably more popular in industrial applications where there is an inherent need to model nonlinear system

  13. Energetic Systems

    Data.gov (United States)

    Federal Laboratory Consortium — The Energetic Systems Division provides full-spectrum energetic engineering services (project management, design, analysis, production support, in-service support,...

  14. Laboratory Density Functionals

    OpenAIRE

    Giraud, B. G.

    2007-01-01

    We compare several definitions of the density of a self-bound system, such as a nucleus, in relation with its center-of-mass zero-point motion. A trivial deconvolution relates the internal density to the density defined in the laboratory frame. This result is useful for the practical definition of density functionals.

  15. Computer program /P1-GAS/ calculates the P-0 and P-1 transfer matrices for neutron moderation in a monatomic gas

    Science.gov (United States)

    Collier, G.; Gibson, G.

    1968-01-01

    FORTRAN 4 program /P1-GAS/ calculates the P-O and P-1 transfer matrices for neutron moderation in a monatomic gas. The equations used are based on the conditions that there is isotropic scattering in the center-of-mass coordinate system, the scattering cross section is constant, and the target nuclear velocities satisfy a Maxwellian distribution.

  16. Estimate of motion effect on space dimensions of interaction range in π-p reactions of multiple production

    International Nuclear Information System (INIS)

    By the method of interference of identical pions space dimensions of interaction range in π-p-collisions at 4.91 GeV/c in different reference frames are determined. The indication of the increase of longitudinal dimension of interaction range at the transition from the center-of-mass system of ineratia to laboratory reference frame is obtained

  17. Photonic analogue of Zitterbewegung in binary waveguide arrays

    OpenAIRE

    Longhi, S.

    2009-01-01

    An optical analogue of Zitterbewegung (ZB), i.e. of the trembling motion of Dirac electrons caused by the interference between positive and negative energy states, is proposed for spatial beam propagation in binary waveguide arrays. In this optical system ZB is simply observable as a quiver spatial oscillatory motion of the beam center of mass around its mean trajectory.

  18. Vibration Based Crack Detection in a Rotating Disk. Part 1; An Analytical Study

    Science.gov (United States)

    Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Baaklini, George Y.

    2003-01-01

    This paper describes the analytical results concerning the detection of a crack in a rotating disk. The concept of the approach is based on the fact that the development of a disk crack results in a distorted strain field within the component. As a result, a minute deformation in the disk's geometry as well as a change in the system s center of mass occurs. Finite element analyses were conducted concerning a notched disk in order to define the sensitivity of the method. The notch was used to simulate an actual crack and will be the method utilized for upcoming experiments. Various notch sizes were studied. The geometric deformations and shifts of center of mass were documented as a function of rotational speed. In addition, a rotordynamic analysis of a 2-bearing, disk and shaft system was conducted. The overall response of the system was required in order to design the experimental system for operation beyond the first critical. The results of the FE analyses of the disk indicated that the overall changes in the disk s geometry and center of mass were rather small. The difference between the maximum centrifugal radial displacements between the undamaged and damaged disks at 8000 RPM was 0.00014 in. for a 0.963 in. notch length. The shift in center of mass was also of this magnitude. The next step involves running experiments to verify the analysis.

  19. On calculations of dipole moments of HCl+ and DCl+ molecular ions

    CERN Document Server

    Gurin, V S

    2015-01-01

    Dipole moment functions of isotopomeric molecular ions, HCl+ and DCl+, are considered in the two coordinate systems, center of mass of nuclei and center of nuclear charges, both through simple analytical derivations and ab initio calculations of electronic structure at various interatomic separations. An origin of the different values for dipole moments of the isotopomers is discussed and demonstrated by the calculation data.

  20. Effect of deuteron density distribution on the deduction of screening potential from the D(d,p)T reaction in Be metals%Effect of deuteron density distribution on the deduction of screening potential from the D(d,p)T reaction in Be metals

    Institute of Scientific and Technical Information of China (English)

    吕会议; 王铁山; 韩运成; 方开洪; 蒙萱; 何庆华; 关兴彩; 兰明聪

    2011-01-01

    The D(d,p)T reaction in Be metal environments has been measured to investigate the electron screening effect in metals in an energy region of from 5.5 keV to 10 keV in a center of mass system (CMS) at a temperature of 121 K. The depth distribution of deut

  1. Accuracy of the International Terrestrial Reference Frame origin and Earth expansion

    NARCIS (Netherlands)

    Wu, X.; Collilieux, X.; Altamimi, Z.; Vermeersen, L.L.A.; Gross, R.S.; Fukumori, I.

    2011-01-01

    The International Terrestrial Reference Frame (ITRF) is a fundamental datum for high‐precision orbit tracking, navigation, and global change monitoring. Accurately realizing and maintaining ITRF origin at the mean Earth system center of mass (CM) is critical to surface and spacecraft based geodetic

  2. Archimedes' balance and Bianchi's Backlund transformation for quadrics

    OpenAIRE

    Ion DINCA

    2007-01-01

    We establish a link between Archimedes' method of integration for calculating areas, volumes and centers of mass of segments of parabolas and quadrics of revolution by factorization via the moments of a balance and an integration technique for a particular integrable system, namely Bianchi's B\\"{a}cklund transformation for quadrics.

  3. Monitoring system

    International Nuclear Information System (INIS)

    The patent relates to monitoring systems for, and a method of monitoring, industrial process plants or apparatus. The system monitors a plurality of data signals representing a number of parameters of a plant or apparatus. One application of the invention is in nuclear reactors for the detection of fault conditions. (U.K.)

  4. cardiovascular system

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    6.1 Cardiac arrhythmias 2006037 Electroanatomical systems guided circumferential pulmonary veins ablation for atrial fibrillation: initial experience from comparison between the EnSite -NavX and CARTO system LIU Xu(刘旭 ), et al. Dept Cardiol, Shanghai Chest Hosp, Shanghai, 200030, China. Chin J Cardiol 2005; 33 (22): 975 -978.

  5. Detecting triple systems with gravitational wave observations

    CERN Document Server

    Meiron, Yohai; Loeb, Abraham

    2016-01-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) has recently discovered gravitational waves (GWs) emitted by merging black hole binaries. We examine whether future GW detections may identify triple companions of merging binaries. Such a triple companion causes variations in the GW signal due to (1) the varying path length along the line of sight during the orbit around the center of mass, (2) relativistic beaming, Doppler, and gravitational redshift, and (3) the variation of the "light"-travel time in the gravitational field of the triple companion, known respectively as Roemer-, Einstein-, and Shapiro-delays in pulsar binaries. We find that the prospects for detecting the triple companion are the highest for low-mass compact object binaries which spend the longest time in the LIGO frequency band with circular orbits. In particular, for merging neutron star binaries, LIGO may detect a white dwarf or M-dwarf perturber at signal to noise ratio of 8, if it is within 0.4 solar radius distance from ...

  6. Creative Systems

    DEFF Research Database (Denmark)

    Manelius, Anne-Mette; Beim, Anne

    2007-01-01

    Opsamling af diskussioner på konferencen og udstillingen Creative Systems i september/oktober 2007. Konferencen og Udstillingen Creative Systems sætter fokus på systemer som en positiv drivkraft i den kreative skabelsesproces. CINARK inviterede fire internationale kapaciteter, som indenfor hver...... deres felt har beskæftiget sig med udviklingen af systemer. Kieran Timberlake, markant amerikansk tegnestue; Mark West, Professor på University of Manitoba, Canada, og pioner indenfor anvendelse af tekstilforskalling til betonstøbninger; Matilda McQuaid, Arkitekturhistoriker og kurator på udstillingen...... om Extreme Textiles på amerikanske Cooper Hewit Design Museum, samt Professor Ludger Hovestadt, ved ETH, Zürich der fokuserer på udvikling og anvendelse af logaritmiske systemtilgange. Udstillingen diskuterede ud fra deres meget forskellige arbejder, det kreative potentiale i anvendelsen af systemer...

  7. Power system

    Science.gov (United States)

    Hickam, Christopher Dale

    2008-03-18

    A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

  8. Reactive Systems

    DEFF Research Database (Denmark)

    Aceto, Luca; Ingolfsdottir, Anna; Larsen, Kim Guldstrand;

    A reactive system comprises networks of computing components, achieving their goals through interaction among themselves and their environment. Thus even relatively small systems may exhibit unexpectedly complex behaviours. As moreover reactive systems are often used in safety critical systems......, the need for mathematically based formal methodology is increasingly important. There are many books that look at particular methodologies for such systems. This book offers a more balanced introduction for graduate students and describes the various approaches, their strengths and weaknesses, and when...... they are best used. Milner's CCS and its operational semantics are introduced, together with the notions of behavioural equivalences based on bisimulation techniques and with recursive extensions of Hennessy-Milner logic. In the second part of the book, the presented theories are extended to take timing issues...

  9. Upgraded RECOVER system - CASDAC system

    International Nuclear Information System (INIS)

    The CASDAC (Containment And Surveillance Data Authenticated Communication) system has been developed by JAERI for nuclear safeguards and physical protection of nuclear material. This system was designed and constructed as an upgraded RECOVER system, design concept of which was based on the original RECOVER system and also the TRANSEAVER system. Both of them were developed several years ago as a remote monitoring system for continual verification of security and safeguards status of nuclear material. The system consists of two subsystems, one of them is a Grand Command Center (GCC) subsystem and the other is a facility subsystem. Communication between the two subsystems is controlled through the international telephone line network. Therefore all communication data are encrypted to prevent access by an unauthorized person who may intend to make a falsification, or tapping. The facility subsystem has an appropriate measure that ensure data security and reliable operation under unattended mode of operator. The software of this system is designed so as to be easily used in other different types of computers. This report describes the outline of the CASDAC system and the results of its performance test. This work has been carried out in the framework of Japan Support Programme for Agency Safeguards (JASPAS) as a project, JA-1. (author)

  10. Water systems

    International Nuclear Information System (INIS)

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  11. Water systems

    International Nuclear Information System (INIS)

    The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

  12. Dynamical systems

    CERN Document Server

    Sternberg, Shlomo

    2010-01-01

    Celebrated mathematician Shlomo Sternberg, a pioneer in the field of dynamical systems, created this modern one-semester introduction to the subject for his classes at Harvard University. Its wide-ranging treatment covers one-dimensional dynamics, differential equations, random walks, iterated function systems, symbolic dynamics, and Markov chains. Supplementary materials offer a variety of online components, including PowerPoint lecture slides for professors and MATLAB exercises.""Even though there are many dynamical systems books on the market, this book is bound to become a classic. The the

  13. Physical Systems

    CERN Document Server

    Belkind, Ori

    2012-01-01

    Based on the concept of a physical system, this book offers a new philosophical interpretation of classical mechanics and the Special Theory of Relativity. According to Belkind's view the role of physical theory is to describe the motions of the parts of a physical system in relation to the motions of the whole. This approach provides a new perspective into the foundations of physical theory, where motions of parts and wholes of physical systems are taken to be fundamental, prior to spacetime, material properties and laws of motion. He defends this claim with a constructive project, deriving b

  14. Creative systems

    DEFF Research Database (Denmark)

    Beim, Anne

    2007-01-01

    At udvikle systemer har altid været et væsentligt element i den arkitektoniske skabelsesproces. Systemer er ikke nødvendigvis begrænsninger, men kan ses som positive faktorer i skabelses og fremstillinsprocessen. Center for Industriel Arkitektur, Cinark, har afholdt en international konference, en...... workshop og en udstilling under overskriften; Creative Systems. Artiklen præsenterer de fire oplægsholdere Matilda McQuaid, Mark West, Stephen Kieran og Ludger Hovestadt og en række diskussionstemaer....

  15. The systems integration modeling system

    International Nuclear Information System (INIS)

    This paper discusses the systems integration modeling system (SIMS), an analysis tool for the detailed evaluation of the structure and related performance of the Federal Waste Management System (FWMS) and its interface with waste generators. It's use for evaluations in support of system-level decisions as to FWMS configurations, the allocation, sizing, balancing and integration of functions among elements, and the establishment of system-preferred waste selection and sequencing methods and other operating strategies is presented. SIMS includes major analysis submodels which quantify the detailed characteristics of individual waste items, loaded casks and waste packages, simulate the detailed logistics of handling and processing discrete waste items and packages, and perform detailed cost evaluations

  16. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  17. Avionics Systems

    Directory of Open Access Journals (Sweden)

    P.M. Soundar Rajan

    2013-03-01

    Full Text Available ‘Avionics’ systems, over the decades, have grown from simple communication radios and navigation equipments to complex integrated equipments primarily infiuenced by dominance of digital technology. Continuous growth in integrated circuit technology, functional integration of complete system on chip, very high speed communication channels and fault tolerant communication protocols have brought remarkable advancements in avionics systems. Further Mechanical and Pneumatic functional blocks are being replaced by digital systems progressively and decisively. New generation aircraft are being built around powerful avionics assets to provide stress free cockpit to the pilot.Defence Science Journal, 2013, 63(2, pp.129-130, DOI:http://dx.doi.org/10.14429/dsj.63.4269

  18. Cognitive Systems

    DEFF Research Database (Denmark)

    The tutorial will discuss the definition of cognitive systems as the possibilities to extend the current systems engineering paradigm in order to perceive, learn, reason and interact robustly in open-ended changing environments. I will also address cognitive systems in a historical perspective and...... its relation and potential over current artificial intelligence architectures. Machine learning models that learn from data and previous knowledge will play an increasingly important role in all levels of cognition as large real world digital environments (such as the Internet) usually are too complex...... to be modeled within a limited set of predefined specifications. There will inevitably be a need for robust decisions and behaviors in novel situations that include handling of conflicts and ambiguities based on the capability and knowledge of the artificial cognitive system. Further, there is a need...

  19. AEG System

    Data.gov (United States)

    Department of Transportation — The AEG System is used to create, revise, approve, and distribute text of the AEGS and Flight Standard Board (FSB)/Type Rating Report. The MMEL specifies under what...

  20. System zeros

    OpenAIRE

    Smagina, Ye. M.

    2006-01-01

    The present book is the first publication in English considered the modern problems of control theory and analysis connected with a concept of system zeros. The previous book by Ye.M. Smagina (1990) had been written in Russian and it is inaccessible to English speaking researchers. The purpose of the offered book is to systematize and consistently to state basic theoretical results connected with properties of multivariable system zeros. Different zeros definitions and different types of zero...

  1. Expert Systems

    OpenAIRE

    Lucas, P.J.F.

    2005-01-01

    Expert systems mimic the problem-solving activity of human experts in specialized domains by capturing and representing expert knowledge. Expert systems include a knowledge base, an inference engine that derives conclusions from the knowledge, and a user interface. Knowledge may be stored as if-then rules, orusing other formalisms such as frames and predicate logic. Uncertain knowledge may be represented using certainty factors, Bayesian networks, Dempster-Shafer belief functions, or fuzzy se...

  2. Systems Thinkers

    OpenAIRE

    Ramage, Magnus; Shipp, Karen

    2009-01-01

    Systems Thinkers presents a biographical history of the field of systems thinking, by examining the life and work of thirty of its major thinkers. It discusses each thinker's key contributions, the way this contribution was expressed in practice and the relationship between their life and ideas. This discussion is supported by an extract from the thinker's own writing, to give a flavour of their work and to give readers a sense of which thinkers are most relevant to their own interests. ...

  3. Preliminary DELPHI measurement of the Michel parameters in the Z0 → τ+τ- → (anti-ντ νe e+) (ντ anti-νe e-) channel at 91.2 GeV center of mass energy

    International Nuclear Information System (INIS)

    A preliminary result of the Michel Parameters in the Z0 → τ+τ- → (anti-ντ νe e+) ( ντ anti-νe e-) decays selected from the DELPHI data in the LEP 1994 run with the nominal energy setted at 92 GeV is presented. (author)

  4. Fluctuation phenomena for dissipative processes in 19 F + 27 Al system

    International Nuclear Information System (INIS)

    Non-statistical fluctuations in the excitation functions (EF) of dissipative heavy ion collisions (DHIC) were rather unexpected, the cross sections being always obtained on a 'coarse cell' of total kinetic energy and center of mass angle (θcm). Since the experimental fluctuations in the EF for DHIC have been evidenced, the time evolution of dinuclear system (DNS) with different mass asymmetries and total mass ≤108 has been investigated only by statistical analysis. Although many theoretical interpretations of excitation function fluctuations ground their assumptions on the observed large angular correlation, the experimental angular correlation data are rather scarce. We already reported preliminary results concerning angular correlation for DHIC in the 19 F + 27 Al interaction. In the present work the angular correlation analysis was realized for Elab = 116.75 - 129.75 MeV with a 2 angle binning in the angular distributions and total kinetic energy loss (TKEL) windows of 20±2.5, 30±2.5 and 40±2.5 MeV. Pronounced oscillations in the angular distributions, at some incident energies, were observed. These oscillations are nicely evidenced in the autocorrelation angular functions (AAF) as determined for fragments with atomic number Z = 8 at an incident energy 124.75 MeV. A decreasing number of the oscillations with increasing TKEL value could be observed. The AAFs were calculated using for the average cross section the value obtained from the fit of the angular distributions with formula: sigma/dθcm ∝ [exp(-θcm/ω·τ) + exp(-(2π-θcm)/ω·τ)], where ω and τ are the angular velocity and lifetime of DNS, respectively. The moving Gaussian procedure was used for calculating the angular cross correlation coefficients C(θ,θ') for the energy averaged cross section . The results are presented. Large values for C(θ,θ') with an oscillating pattern were obtained for all studied fragments (Z = 6-8, 10). An increasing trend of C(θ,θ') values with TKEL could be

  5. Multi-Discipline Analytical Modeling of a Cracked Disk in a Turbine Engine: Applied to TF41 Experiment at China Lake

    Science.gov (United States)

    Sawicki, Jerzy T.

    2003-01-01

    The investigated crack detection method is based on the fact that the development of a disk crack results in a distorted strain field within the component. As a result, a minute deformation in the disk's geometry as well as a change in the system's center of mass occurs. Finite element analyses were conducted concerning a notched disk in order to define the sensitivity of the method. The notch was used to simulate an actual crack and will be the method utilized for upcoming experiments. Various notch sizes were studied and the geometric deformations and shifts of center of mass were documented as a function of rotational speed. In addition, a rotordynamic analysis of a two-bearing, disk and shaft system was conducted. The results of the FE analyses of the disk indicated that the overall changes in the disk's geometry and center of mass were rather small. Comparing the 9.25 in. disk's maximum radial displacements due centrifugal forces at 8000 RPM between an un-notched and a 0.962 in. notched disk, the difference was on the order of 0.00014 in. The shift in center of mass was also of this magnitude. The next step involves running experiments to verify the analysis.

  6. On relativistic quantum mechanics in the rest-frame instant form of dynamics

    International Nuclear Information System (INIS)

    A review is given of a new relativistic classical mechanics for N-particle systems compatible with relativistic bound states. It is formulated in global non-inertial frames in Minkowski space-time by means of parametrized Minkowski theories and then restricted to the intrinsic inertial rest frame of the isolated system. There is a complete control on the relativistic collective variables (Newton-Wigner center of mass, Fokker-Pryce center of inertia, M/oller center of energy) and on the realization of the Poincare' algebra (with the explicit form of the interaction-dependent Lorentz boosts). The particle world-lines are found to correspond to the ones of predictive mechanics and localization problems are clarified. The model can be consistently quantized avoiding the instantaneous spreading of the center-of-mass wave packets (Hegerfeldt theorem), because the non-local non-covariant center of mass is a non-measurable quantity. This implies that the Hilbert space must be the tensor product of the center-of-mass Hilbert space with the one of relative motions. This spatial non-separability (due to the Lorentz signature of space-time) makes relativistic entanglement much more involved than the non-relativistic one.

  7. Systems studies

    International Nuclear Information System (INIS)

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity, the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the U.S.A. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated Bioenergy Systems (IBS) Activity of IEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the U.S.A. and the U.K. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modelling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from techno-economic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the U.S.A. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review 8 refs, 10 tabs

  8. Systems Studies

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.

    1998-03-17

    The Systems Studies Activity had two objectives: (1) to investigate nontechnical barriers to the deployment of biomass production and supply systems and (2) to enhance and extend existing systems models of bioenergy supply and use. For the first objective, the Activity focused on existing bioenergy markets. Four projects were undertaken: a comparative analysis of bioenergy in Sweden and Austria; a one-day workshop on nontechnical barriers jointly supported by the Production Systems Activity; the development and testing of a framework for analyzing barriers and drivers to bioenergy markets; and surveys of wood pellet users in Sweden, Austria and the US. For the second objective, two projects were undertaken. First, the Activity worked with the Integrated BioEnergy Systems (TBS) Activity of TEA Bioenergy Task XIII to enhance the BioEnergy Assessment Model (BEAM). This model is documented in the final report of the IBS Activity. The Systems Studies Activity contributed to enhancing the feedstock portion of the model by developing a coherent set of willow, poplar, and switchgrass production modules relevant to both the US and the UK. The Activity also developed a pretreatment module for switchgrass. Second, the Activity sponsored a three-day workshop on modeling bioenergy systems with the objectives of providing an overview of the types of models used to evaluate bioenergy and promoting communication among bioenergy modelers. There were nine guest speakers addressing different types of models used to evaluate different aspects of bioenergy, ranging from technoeconomic models based on the ASPEN software to linear programming models to develop feedstock supply curves for the US. The papers from this workshop have been submitted to Biomass and Bioenergy and are under editorial review.

  9. Fiscal system analysis - contractual systems

    International Nuclear Information System (INIS)

    Production sharing contracts are one of the most popular forms of contractual system used in petroleum agreements around the world, but the manner in which the fiscal terms and contract parameters impact system measures is complicated and not well understood. The purpose of this paper is to quantify the influence of private and market uncertainty in contractual fiscal systems. A meta-modelling approach is employed that couples the results of a simulation model with regression analysis to construct numerical functionals that quantify the fiscal regime. Relationships are derived that specify how the present value, rate of return, and take statistics vary as a function of the system parameters. The deepwater Girassol field development in Angola is taken as a case study. (author)

  10. Systemic trauma.

    Science.gov (United States)

    Goldsmith, Rachel E; Martin, Christina Gamache; Smith, Carly Parnitzke

    2014-01-01

    Substantial theoretical, empirical, and clinical work examines trauma as it relates to individual victims and perpetrators. As trauma professionals, it is necessary to acknowledge facets of institutions, cultures, and communities that contribute to trauma and subsequent outcomes. Systemic trauma-contextual features of environments and institutions that give rise to trauma, maintain it, and impact posttraumatic responses-provides a framework for considering the full range of traumatic phenomena. The current issue of the Journal of Trauma & Dissociation is composed of articles that incorporate systemic approaches to trauma. This perspective extends conceptualizations of trauma to consider the influence of environments such as schools and universities, churches and other religious institutions, the military, workplace settings, hospitals, jails, and prisons; agencies and systems such as police, foster care, immigration, federal assistance, disaster management, and the media; conflicts involving war, torture, terrorism, and refugees; dynamics of racism, sexism, discrimination, bullying, and homophobia; and issues pertaining to conceptualizations, measurement, methodology, teaching, and intervention. Although it may be challenging to expand psychological and psychiatric paradigms of trauma, a systemic trauma perspective is necessary on both scientific and ethical grounds. Furthermore, a systemic trauma perspective reflects current approaches in the fields of global health, nursing, social work, and human rights. Empirical investigations and intervention science informed by this paradigm have the potential to advance scientific inquiry, lower the incidence of a broader range of traumatic experiences, and help to alleviate personal and societal suffering. PMID:24617751

  11. Memory systems.

    Science.gov (United States)

    Wolk, David A; Budson, Andrew E

    2010-08-01

    Converging evidence from patient and neuroimaging studies suggests that memory is a collection of abilities that use different neuroanatomic systems. Neurologic injury may impair one or more of these memory systems. Episodic memory allows us to mentally travel back in time and relive an episode of our life. Episodic memory depends on the hippocampus, other medial temporal lobe structures, the limbic system, and the frontal lobes, as well as several other brain regions. Semantic memory provides our general knowledge about the world and is unconnected to any specific episode of our life. Although semantic memory likely involves much of the neocortex, the inferolateral temporal lobes (particularly the left) are most important. Procedural memory enables us to learn cognitive and behavioral skills and algorithms that operate at an automatic, unconscious level. Damage to the basal ganglia, cerebellum, and supplementary motor area often impair procedural memory. PMID:22810510

  12. Turbine system

    Energy Technology Data Exchange (ETDEWEB)

    McMahan, Kevin Weston; Dillard, Daniel Jackson

    2016-05-03

    A turbine system is disclosed. The turbine system includes a transition duct having an inlet, an outlet, and a passage extending between the inlet and the outlet and defining a longitudinal axis, a radial axis, and a tangential axis. The outlet of the transition duct is offset from the inlet along the longitudinal axis and the tangential axis. The turbine system further includes a turbine section connected to the transition duct. The turbine section includes a plurality of shroud blocks at least partially defining a hot gas path, a plurality of buckets at least partially disposed in the hot gas path, and a plurality of nozzles at least partially disposed in the hot gas path. At least one of a shroud block, a bucket, or a nozzle includes means for withstanding high temperatures.

  13. System Description:

    DEFF Research Database (Denmark)

    Schürmann, Carsten; Poswolsky, Adam

    2009-01-01

    Delphin is a functional programming language [Adam Poswolsky and Carsten Schürmann. Practical programming with higher-order encodings and dependent types. In European Symposium on Programming (ESOP), 2008] utilizing dependent higher-order datatypes. Delphin's two-level type-system cleanly separates...... data from computation, allowing for decidable type checking. The data level is LF [Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of the Association for Computing Machinery, 40(1):143-184, January 1993], which allows for the specification of deductive systems...

  14. Kreative systemer

    DEFF Research Database (Denmark)

    Manelius, Anne-Mette

    2007-01-01

    Artikel med eksempler på armerede teglhvælv produceret i hængende tekstiler ud fra kædebueprincipper og inspireret af Eladio Dieste. Beskriver desuden konferencen og udstillingen Creative Systems på KA september 2007......Artikel med eksempler på armerede teglhvælv produceret i hængende tekstiler ud fra kædebueprincipper og inspireret af Eladio Dieste. Beskriver desuden konferencen og udstillingen Creative Systems på KA september 2007...

  15. Computer systems

    Science.gov (United States)

    Olsen, Lola

    1992-01-01

    In addition to the discussions, Ocean Climate Data Workshop hosts gave participants an opportunity to hear about, see, and test for themselves some of the latest computer tools now available for those studying climate change and the oceans. Six speakers described computer systems and their functions. The introductory talks were followed by demonstrations to small groups of participants and some opportunities for participants to get hands-on experience. After this familiarization period, attendees were invited to return during the course of the Workshop and have one-on-one discussions and further hands-on experience with these systems. Brief summaries or abstracts of introductory presentations are addressed.

  16. Communication systems

    International Nuclear Information System (INIS)

    This paper gives a survey of the field of data communication. The topics covered are: Types of communication, protocols, communication control systems, communication equipment and techniques, and types of data nets. Further, some of the data nets in use today, and the techniques applied in their implementation, are described. The intent of the paper is not to give an in-depth analysis of the various data communication techniques; rather, to describe the principles and problems involved in the construction of a state-of-the-art communication system. (Auth.)

  17. Lindenmayer Systems

    Science.gov (United States)

    Honkala, Juha

    The theory of Lindenmayer systems studies free monoid morphisms, free monoid substitutions and their iterations. In this chapter, we discuss similar ideas in a more general framework. Instead of a free monoid, we consider the free semi-algebra S consisting of polynomials with non-commuting variables in Σ and coefficients in a semiring S and we study the iteration of endomorphisms of S. We allow various modes of iteration and we consider various classes of morphisms. Classical L systems are obtained as special cases by taking S to be the Boolean semiring. Our approach also generalizes the theory of algebraic series in noncommuting variables.

  18. Microbiology System

    Science.gov (United States)

    1992-01-01

    Technology originating in a NASA-sponsored study of the measurement of microbial growth in zero gravity led to the development of Biomerieux Vitek, Inc.'s VITEK system. VITEK provides a physician with accurate diagnostic information and identifies the most effective medication. Test cards are employed to identify organisms and determine susceptibility to antibiotics. A photo-optical scanner scans the card and monitors changes in the growth of cells contained within the card. There are two configurations - VITEK and VITEK JR as well as VIDAS, a companion system that detects bacteria, viruses, etc. from patient specimens. The company was originally created by McDonnell Douglas, the NASA contractor.

  19. Neuromodulatory Systems

    Directory of Open Access Journals (Sweden)

    Gerhard eWerner

    2013-03-01

    Full Text Available Abstract We examine the interactions and interdependencies between Neuroglia, the Brain-Cell Microenvironment, and the processes commonly subsumed under Neuromodulation. The interactions of the component processes covering a wide spectrum of frequencies are designated as Neuromodulatory Systems (NMS. This implies NMS's scale-invariance as the capacity of linking actions across many time scales, and self-similarity at any scale. These features endow NMS with the ability to respond adaptively to neural impulse traffic of an unpredictably wide frequency spectrum. In this preliminary perspective, the components of NMS are only outlined based on concepts of Complex Systems Dynamics. However, their interactions must be formally elaborated in further investigations.

  20. Dynamics and Control of a Disordered System in Space

    Science.gov (United States)

    Quadrelli, Marco B.

    2013-01-01

    , each grain is considered to be a highly miniaturized spacecraft which has limited size and mass, hence it has limited actuation, limited propulsive capability, limited power, limited sensing, limited communication, limited computational resources, limited range of motion, limited lifetime, and may be expendable. The modeling and dynamics of clouds of vehicles is more challenging than with conventional vehicles because we are faced with a probabilistic vehicle composed of a large number of physically disconnected vehicles. First, different scales of motion occur simultaneously in a cloud: translations and rotations of the cloud as a whole (macro-dynamics), relative rotation and translation of one cloud member with respect to another (meso-dynamics), and individual cloud member dynamics (micro-dynamics). Second, the control design needs to be tolerant of the system complexity, of the system architecture (centralized vs. decentralized large scale system control) as well as robust to un-modeled dynamics and noise sources. Figure 1, top left, shows the kinematic parameters of a 1000 element cloud in orbit. The motion of the system is described with respect to a local vertical-local horizontal (LV-LH) orbiting reference frame (x,y,z)=F(sub ORF) of origin O(sub ORF) which rotates with mean motion omega and orbital semi-major axis R(sub 0). The orbital geometry at the initial time is defined in terms of its six orbital elements, and the orbital dynamics equation for point O(sub ORF) is propagated forward in time under the influence of the gravitational field of the primary and other external perturbations, described below. The origin of this frame coincides with the initial position of the center of mass of the system, and the coordinate axes are z along the local vertical, x toward the flight direction, and y in the orbit normal direction. The assumptions we used to model the dynamics are as follows: 1) The inertial frame is fixed at Earth's center. 2) The orbiting Frame ORF

  1. Universality of nucleon-nucleon short-range correlations: two-nucleon momentum distributions in few-body systems

    CERN Document Server

    Alvioli, M; Kaptari, L P; Mezzetti, C B; Morita, H; Scopetta, S

    2011-01-01

    Using realistic wave functions, the proton-neutron and proton-proton momentum distributions in $^3He$ and $^4He$ are calculated as a function of the relative, $k_{rel}$, and center of mass, $K_{CM}$, momenta, and the angle between them. For large values of ${k}_{rel}\\gtrsim 2\\,\\,fm^{-1}$ and small values of ${K}_{CM} \\lesssim 1.0\\,\\,fm^{-1}$, both distributions are angle independent and decrease with increasing $K_{CM}$, with the $pn$ distribution factorizing into the deuteron momentum distribution times a rapidly decreasing function of $K_{CM}$, in agreement with the two-nucleon (2N) short range correlation (SRC) picture. When $K_{CM}$ and $k_{rel}$ are both large, the distributions exhibit a strong angle dependence, which is evidence of three-nucleon (3N) SRC. The predicted center-of-mass and angular dependence of 2N and 3N SRC should be observable in two-nucleon knock-out processes $A(e,e'pN)X$.

  2. Irrigation System

    Science.gov (United States)

    1984-01-01

    Under contract with Marshall Space Flight Center, Midwest Research Institute compiled a Lubrication Handbook intended as a reference source for designers and manufacturers of aerospace hardware and crews responsible for maintenance of such equipment. Engineers of Lindsay Manufacturing Company learned of this handbook through NASA Tech Briefs and used it for supplemental information in redesigning gear boxes for their center pivot agricultural irrigation system.

  3. Systemic Planning

    DEFF Research Database (Denmark)

    Leleur, Steen

    This book presents principles and methodology for planning in a complex world. It sets out a so-called systemic approach to planning, among other things, by applying “hard” and “soft” methodologies and methods in combination. The book is written for Ph.D and graduate students in engineering...

  4. Superpave System

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    The Superpave is the acronym for 'SUperior PERforming Asphalt PAVEments' system. It was developed by Strategic Highway Research Program (SHRP) to give highway engineers and contractors the tools they need to design asphalt pavements that will perform better under extremes of temperature and heavy traffic loads.

  5. Solar system

    CERN Document Server

    Homer, Charlene

    2007-01-01

    Thrill young astronomers with a journey through our Solar System. Find out all about the Inner and Outer Planets, the Moon, Stars, Constellations, Asteroids, Meteors and Comets. Using simplified language and vocabulary, concepts such as planetary orbits, the asteroid belt, the lunar cycle and phases of the moon, and shooting stars are all explored.

  6. Immune System

    Science.gov (United States)

    A properly functioning immune system is essential to good health. It defends the body against infectious agents and in some cases tumor cells. Individuals with immune deficiencies resulting from genetic defects, diseases (e.g., AIDS, leukemia), or drug therapies are more suscepti...

  7. Hierarchical systems

    NARCIS (Netherlands)

    Hamers, A.S.

    2016-01-01

    The thesis addresses the long-term dynamical evolution of hierarchical multiple systems. First, we consider the evolution of orbits of stars orbiting a supermassive black hole (SBH). We study the long-term evolution and compute tidal disruption rates of stars by the SBH. Such disruption events revea

  8. Energy systems

    International Nuclear Information System (INIS)

    Up to the present the production, transmission and distribution of energy has been considered mostly as a fragmented problem; at best only subsystems have been considered. Today the scale of energy utilization is increasing rapidly, and correspondingly, the reliance of societies on energy. Such strong quantitative increases influence the qualitative nature of energy utilization in most of its aspects. Resources, reserves, reliability and environment are among the key words that may characterize the change in the nature of the energy utilization problem. Energy can no longer be considered an isolated technical and economical problem, rather it is embedded in the ecosphere and the society-technology complex. Restraints and boundary conditions have to be taken into account with the same degree of attention as in traditional technical problems, for example a steam turbine. This results in a strong degree of interweaving. Further, the purpose of providing energy becomes more visible, that is, to make survival possible in a civilized and highly populated world on a finite globe. Because of such interweaving and finiteness it is felt that energy should be considered as a system and therefore the term 'energy systems' is used. The production of energy is only one component of such a system; the handling of energy and the embedding of energy into the global and social complex in terms of ecology, economy, risks and resources are of similar importance. he systems approach to the energy problem needs more explanation. This paper is meant to give an outline of the underlying problems and it is hoped that by so doing the wide range of sometimes confusing voices about energy can be better understood. Such confusion starts already with the term 'energy crisis'. Is there an energy crisis or not? Much future work is required to tackle the problems of energy systems. This paper can only marginally help in that respect. But it is hoped that it will help understand the scope of the

  9. Impact response of US Army and National Football League helmet pad systems

    Energy Technology Data Exchange (ETDEWEB)

    Moss, W C; King, M J

    2011-02-18

    experimental helmet impact certification tests performed by USAARL, who provided data for comparison. The goal of this set of simulations was to demonstrate the overall validity of LLNL's computational analyses and methods and understand the general physics of helmet impacts. In these tests and the corresponding simulations, an inverted ACH containing pads and a head-form are dropped onto a hemispherical anvil, at 10 and 14.14 ft/s impact velocities. The simulations predicted peak accelerations (the metric used by USAARL for comparing the performance of pad systems), rebound velocities, and impact durations consistent with the experimental data, thus demonstrating the validity and relevance of the simulation methods. Because the NFL pad systems are approximately double the thickness of the U.S. Army pads, they do not fit into the ACH. As a result, the NFL pads could not be simply placed into an ACH shell in either a simulation or an experiment without modifying their size and shape. Since impact mitigation depends critically on the available stopping distance and the area over which the stopping force is applied, it is important to consider identically shaped pads in order to compare their performance in a fair and meaningful manner. Consequently, the second set of simulations utilized a simplified simulation geometry consisting of a 5 kg cylindrical impactor (equal in mass to a head) striking equally sized pads from each manufacturer. The simulated bilayer foam pads had the same proportions of hard and soft foam as the actual pad systems, while the Xenith pads were simulated as a bilayer foam pad with material properties adjusted to give the same response as the actual Xenith pads. The effects of trapped air were included in the simulations of the Team Wendy and Oregon Aero pads. All simulations used material properties derived from the experiments conducted at LLNL. The acceleration history of the center of mass of the impactor was used to calculate the Head Injury

  10. Systemic Architecture

    DEFF Research Database (Denmark)

    Poletto, Marco; Pasquero, Claudia

    2012-01-01

    This is a manual investigating the subject of urban ecology and systemic development from the perspective of architectural design. It sets out to explore two main goals: to discuss the contemporary relevance of a systemic practice to architectural design, and to share a toolbox of informational...... design protocols developed to describe the city as a territory of self-organization. Collecting together nearly a decade of design experiments by the authors and their practice, ecoLogicStudio, the book discusses key disciplinary definitions such as ecologic urbanism, algorithmic architecture, bottom......-up or tactical design, behavioural space and the boundary of the natural and the artificial realms within the city and architecture. A new kind of "real-time world-city" is illustrated in the form of an operational design manual for the assemblage of proto-architectures, the incubation of proto...

  11. TUBO system

    International Nuclear Information System (INIS)

    Proceedings recently incorporated to TUBO system like the seismic analysis and the stress verification acccording to ASME-Boiler Rule and Pressure Vessel Code-section III are presented. The seismic analysis comprehend the consideration of uniform motion of the support, its multiple excitation, and the attainment of the spectral response for both cases. The module for stress verification uses stresses resulting fromthe combination of the loads specified by the user, in the automatic verification of permissible stresses for the pipings class 1 and 2, based on criteria NB-3650 and NC-3650 of ASME. The implementation of these proceedings in the TUBO system are discussed and a numerical example that covers the different phases of a stress analysis in a piping is presented

  12. Bilateral system. The ABACC system

    International Nuclear Information System (INIS)

    After relating the antecedents of the creation of the Brazilian-Argentine Agency for the Accounting and Control of Nuclear Materials (ABACC), the paper describes the common system of accounting and control set up by Argentina and Brazil. The organization of ABACC is also outlined

  13. Navigation systems

    OpenAIRE

    Ocepek, Marjan

    2013-01-01

    In this thesis we present different navigation systems which may be used also in surveying. Map as a basis of navigation is described at the beginning. Next, we focus on navigation based on celestial bodies. We present basic terms such as navigation and orientation and describe some primitive methods, which had been used for orientation without compass. We present two important time keeping instruments that facilitated the process of position determination, the chronometer and chronograph, an...

  14. Security system

    Science.gov (United States)

    Baumann, Mark J.; Kuca, Michal; Aragon, Mona L.

    2016-02-02

    A security system includes a structure having a structural surface. The structure is sized to contain an asset therein and configured to provide a forceful breaching delay. The structure has an opening formed therein to permit predetermined access to the asset contained within the structure. The structure includes intrusion detection features within or associated with the structure that are activated in response to at least a partial breach of the structure.

  15. Systems paleobiology

    OpenAIRE

    Knoll, Andrew Herbert

    2013-01-01

    Systems paleobiology seeks to interpret the history of life within the framework of Earth’s environmental history, using physiology as the conceptual bridge between paleontological and geochemical data sets. In some cases, physiological performance can be estimated directly and quantitatively from fossils—this is commonly the case for vascular plant remains. In other instances, statistical inferences about physiology can be made on the basis of phylogenetic relationships. Examples from resear...

  16. Italgrip System

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    The ever increasing number of registered vehicles has resulted in, up until the present time, a parallel increase in the number of road accidents. One of the reasons for this is that the quality of the road surface has not adequately kept pace with the increased volume of traffic. The Italgrip System increases skid resistance, reduces hydroplaning risk, reduces noise, and reduces salt consumption and can be applied to asphalt, concrete, or steel surfaces. It has been applied to several roadwa...

  17. Neuromodulatory systems

    OpenAIRE

    Werner, Gerhard; Mitterauer, Bernhard J.

    2013-01-01

    We examine the interactions and interdependencies between Neuroglia, the Brain-Cell Microenvironment, and the processes commonly subsumed under Neuromodulation. The interactions of the component processes covering a wide spectrum of frequencies are designated as Neuromodulatory Systems (NMS). This implies NMS's scale-invariance as the capacity of linking actions across many time scales, and self-similarity at any scale. These features endow NMS with the ability to respond adaptively to neural...

  18. Neuromodulatory Systems

    OpenAIRE

    Gerhard eWerner; Mitterauer, Bernhard J.

    2013-01-01

    Abstract We examine the interactions and interdependencies between Neuroglia, the Brain-Cell Microenvironment, and the processes commonly subsumed under Neuromodulation. The interactions of the component processes covering a wide spectrum of frequencies are designated as Neuromodulatory Systems (NMS). This implies NMS's scale-invariance as the capacity of linking actions across many time scales, and self-similarity at any scale. These features endow NMS with the ability to respond adaptively ...

  19. Organizational Systems

    OpenAIRE

    2004-01-01

    Kirk A. Astroth: So...You Want to Serve on The NAE4-HA Board! Marilyn Corbin: Diversity in Action: Promising Practices of CASD. Teresa Hogue: Can Extension Programs Afford Not to Invest in Business Plans? Dallas L. Holmes: FOCIS an Extension Web-Based Accountability in Action Reporting System. Maureen Hosty: 4-H Wildlife Stewards- Unleashing the Force and Vitality of Communities. Beverly Kelbaugh: Identifying Professional Development Needs of Extension Personnel. Jane E. Keyser: Property Tax ...

  20. Modular system

    International Nuclear Information System (INIS)

    Members of the Earth and Planetary Sciences community plan to use the APS facility for a variety of applications. Each type of beam line described in the previous chapter offers a set of properties that are valuable for several applications. Therefore, each beam line will need to serve several different experiments. In addition many of the experiments will need more than one type of radiation. As a result, flexibility will be extremely important to the success of the program. In order to provide the required flexibility, we propose a system consisting of modules. Each module will be a rack on which there will be mounted all of the necessary instrumentation for a particular type of experiment. It will be designed so that it can be moved by crane from one beam line hutch to another or from staging area to beam line hutch and back. Each beam line, in turn, will be equipped to receive any of the various modules. There will be a simple arrangement for indexing each module on each beam line so that a minimum of alignment will be necessary when a module is installed. An example of a module would be an energy dispersive x-ray diffraction system consisting of adjustable fine slits, a sample mounting system with computer-driven translational and orientational alignment capabilities, telescopes for alignment, solid state detector, multichannel analyzer, computer, and the associated power supplies and electronics. Such a module would be suitable for high pressure-temperature diamond cell studies

  1. Complex Systems

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2012-01-01

    Full Text Available Quantum instanton (QI approximation is recently proposed for the evaluations of the chemical reaction rate constants with use of full dimensional potential energy surfaces. Its strategy is to use the instanton mechanism and to approximate time-dependent quantum dynamics to the imaginary time propagation of the quantities of partition function. It thus incorporates the properties of the instanton idea and the quantum effect of partition function and can be applied to chemical reactions of complex systems. In this paper, we present the QI approach and its applications to several complex systems mainly done by us. The concrete systems include, (1 the reaction of H+CH4→H2+CH3, (2 the reaction of H+SiH4→H2+SiH3, (3 H diffusion on Ni(100 surface; and (4 surface-subsurface transport and interior migration for H/Ni. Available experimental and other theoretical data are also presented for the purpose of comparison.

  2. Systemic amyloidosis.

    Science.gov (United States)

    Wechalekar, Ashutosh D; Gillmore, Julian D; Hawkins, Philip N

    2016-06-25

    Tissue deposition of protein fibrils causes a group of rare diseases called systemic amyloidoses. This Seminar focuses on changes in their epidemiology, the current approach to diagnosis, and advances in treatment. Systemic light chain (AL) amyloidosis is the most common of these conditions, but wild-type transthyretin cardiac amyloidosis (ATTRwt) is increasingly being diagnosed. Typing of amyloid fibrils, a critical determinant of therapy, has improved with the wide availability of laser capture and mass spectrometry from fixed histological tissue sections. Specific and accurate evaluation of cardiac amyloidosis is now possible using cardiac magnetic resonance imaging and cardiac repurposing of bone scintigraphy tracers. Survival in AL amyloidosis has improved markedly as novel chemotherapy agents have become available, but challenges remain in advanced disease. Early diagnosis, a key to better outcomes, still remains elusive. Broadening the amyloid-specific therapeutic landscape to include RNA inhibitors, fibril formation stabilisers and inhibitors, and immunotherapeutic targeting of amyloid deposits holds promise to transform outcomes in systemic amyloidoses. PMID:26719234

  3. Ration System

    OpenAIRE

    Vymazalova, Hana

    2016-01-01

    The distribution of rations can be found in documents from different period of the Egyptian history but the general features of the ration system is not easy to trace. Most of the sources are the more or less fragmentary lists of wages/payments that reflect various conditions, such as status of the recipients, period to which the payment corresponds etc, that are not always known to us. Other documents provide us with categories of allowances ascribed to the workmen and officials who particip...

  4. Nuclear systems

    CERN Document Server

    Todreas, Neil E

    2011-01-01

    Principal Characteristics of Power ReactorsIntroductionPower CyclesPrimary Coolant SystemsReactor CoresFuel AssembliesAdvanced Water- and Gas-Cooled Reactors (Generation III And III+)Advanced Thermal and Fast Neutron Spectrum Reactors (Generation IV)ReferencesProblemsThermal Design Principles and ApplicationIntroductionOverall Plant Characteristics Influenced by Thermal Hydraulic ConsiderationsEnergy Production and Transfer ParametersThermal Design LimitsThermal Design MarginFigures of Merit for Core Thermal PerformanceThe Inverted Fuel ArrayThe Equivalent Annulus ApproximationReferencesProble

  5. Balance System

    Science.gov (United States)

    1988-01-01

    TherEx Inc.'s AT-1 Computerized Ataxiameter precisely evaluates posture and balance disturbances that commonly accompany neurological and musculoskeletal disorders. Complete system includes two-strain gauged footplates, signal conditioning circuitry, a computer monitor, printer and a stand-alone tiltable balance platform. AT-1 serves as assessment tool, treatment monitor, and rehabilitation training device. It allows clinician to document quantitatively the outcome of treatment and analyze data over time to develop outcome standards for several classifications of patients. It can evaluate specifically the effects of surgery, drug treatment, physical therapy or prosthetic devices.

  6. Scanning system

    International Nuclear Information System (INIS)

    An improved transversally cutting radionuclide scanning system is described which can be used for medical diagnosis and medical treatment of men, particularly, for brain investingations. 99mTc43 is named as a radionuclide. The device described is more sensitive, and displays results in a shorter period of time than devices known until now. By means of laser emitting diodes a continuous transmission and collection of signals is obtained, due to a rotating picture framework of offset and meshing detectors surrounding completely the scanning field around a single rotation axis - coaxialy with the axis of the head. Signals are processed and displayed by a connected computer. Description in detail, 7 figures. (UWI)

  7. Sterilization System

    Science.gov (United States)

    1990-01-01

    Cox Sterile Products, Inc.'s Rapid Heat Transfer Sterilizer employs a heat exchange process that induces rapid air movement; the air becomes the heat transfer medium, maintaining a uniform temperature of 375 degrees Fahrenheit. It features pushbutton controls for three timing cycles for different instrument loads, a six-minute cycle for standard unpackaged instruments, eight minutes for certain specialized dental/medical instruments and 12 minutes for packaged instruments which can then be stored in a drawer in sterile condition. System will stay at 375 degrees all day. Continuous operation is not expensive because of the sterilizer's very low power requirements.

  8. Linear systems

    CERN Document Server

    Bourlès, Henri

    2013-01-01

    Linear systems have all the necessary elements (modeling, identification, analysis and control), from an educational point of view, to help us understand the discipline of automation and apply it efficiently. This book is progressive and organized in such a way that different levels of readership are possible. It is addressed both to beginners and those with a good understanding of automation wishing to enhance their knowledge on the subject. The theory is rigorously developed and illustrated by numerous examples which can be reproduced with the help of appropriate computation software. 60 exe

  9. Radiographic system

    International Nuclear Information System (INIS)

    This invention discloses a radiographic system comprising an X-ray source disposed to direct an X-ray beam through an adjustable shutter aperture in an aligned collimator and onto an image receptor in a holder located at a preselected distance from the source; and automatic means for preventing an X-ray exposure until prescribed operating conditions have been satisfied, the automatic means including a readily interchangeable read-only-memory module for storing the prescribed conditions therein and ascertaining whether or not the prescribed conditions have been met

  10. System update

    International Nuclear Information System (INIS)

    The Laser Experiments Analysis Facility consists of two DEC computers - PDP-11/34 and a VAX/VMS-11/780; and a Perkin-Elmer 1010GM microdensitometer - a photodigitizing system (PDS). The PDP-11/34 is a dedicated machine used to control the PDS, and the VAX is used for storage and analysis of ICF data and for general purpose computing. A one-way, fiber-optic link connects the LEAF VAX to the Nova VAX for transfer of shot data. Over the past year, major improvements were made in the hardware, system software, and applications codes. The VAX hardware was modernized by the addition of two high-speed tape drives and four Winchester disks. The disks have a combined capacity of over 4 gigabytes. A number of special peripherals were also added: an array processor, an IBM Personal Computer (PC), a Versatec Random Element Processor (REP), a high-resolution color monitor, and two 1000-line-per-minute Versatec printer/plotters. Currently on order is an upgrade to the VAX central processing unit (CPU) that will increase its computing speed by about 50%

  11. System analysis and design

    International Nuclear Information System (INIS)

    This book deals with information technology and business process, information system architecture, methods of system development, plan on system development like problem analysis and feasibility analysis, cases for system development, comprehension of analysis of users demands, analysis of users demands using traditional analysis, users demands analysis using integrated information system architecture, system design using integrated information system architecture, system implementation, and system maintenance.

  12. Nuva - System (**)

    OpenAIRE

    BAYIRLI, Gündüz

    2013-01-01

    «Nuva-fil», «Nuva-seal» ve «Nuva-lite» dan oluşan maddeler ve apareye fabrika tarafından «Nuva-system» adı verilmiştir.«Nuva-seal» bir fissür koruyucusudur; «Nuva-fil» bir kompozit dolgu maddesidir; «Nuva-lite» ultraviyole ışını sağlayan bir apareydir."Nuva-seal» ve «Nuva-fil» bu güne kadar kullanılan dolgu maddelerinden şu nokta da ayrılırlar : Her ikisi de yalnız ultraviyole ışığı etkisiyle sertleşmektedir. «Nuva-seal» asit etkisinde kalan mineye bağlanır; «Nuva-fil» «Nuva-seal» in üzerinde...

  13. Quantum systems as classical systems

    CERN Document Server

    Cassa, A

    2001-01-01

    A characteristical property of a classical physical theory is that the observables are real functions taking an exact outcome on every (pure) state; in a quantum theory, at the contrary, a given observable on a given state can take several values with only a predictable probability. However, even in the classical case, when an observer is intrinsically unable to distinguish between some distinct states he can convince himself that the measure of its ''observables'' can have several values in a random way with a statistical character. What kind of statistical theory is obtainable in this way? It is possible, for example, to obtain exactly the statistical previsions of quantum mechanics? Or, in other words, can a physical system showing a classical behaviour appear to be a quantum system to a confusing observer? We show that from a mathematical viewpoint it is not difficult to produce a theory with hidden variables having this property. We don't even try to justify in physical terms the artificial construction ...

  14. Binding energies and scattering observables in the $^{4}He_{3}$ atomic system

    CERN Document Server

    Motovilov, A K; Sofianos, S A; Kolganova, E A

    2001-01-01

    The $^4$He$_3$ bound states and the scattering of a $^4$He atom off a $^4$He dimer at ultra-low energies are investigated using a hard-core version of the Faddeev differential equations. Various realistic $^4$He-$^4$He interactions were employed, amomg them the LM2M2 potential by Aziz and Slaman and the recent TTY potential by Tang, Toennies and Yiu. The ground state and the excited (Efimov) state obtained are compared with other results. The scattering lengths and the atom-diatom phase shifts were calculated for center of mass energies up to 2.45 mK. It was found that the LM2M2 and TTY potentials, although of quite different structure, give practically the same bound-state and scattering results.

  15. Study of the Exclusive Initial-State-Radiation Production of the DDbar System

    CERN Document Server

    Aubert, B; Boutigny, D; Karyotakis, Yu; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Graugès-Pous, E; López, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes-Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabé, T; Wenzel, W A; Del Amo-Sánchez, P; Hawkes, C M; Watson, A T; Koch, H; Schröder, T; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Panduro-Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Bequilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Bailey, D; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, Gallieno; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; De La Vaissière, C; Hamon, O; Leruste, P; Malcles, J; Ocariz, J; Pérez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Biesiada, J; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Röthel, W; Wilson, F F; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martínez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Neal, H

    2007-01-01

    A search for charmonium and other new states is performed in a study of exclusive initial-state-radiation production of D Dbar events from electron-positron annihilations at a center-of-mass energy of 10.58 GeV. The data sample corresponds to an integrated luminosity of 384 fb-1 and was recorded by the BABAR experiment at the PEP-II storage ring. The D Dbar mass spectrum shows clear evidence of the psi(3770) plus other structures near 3.9, 4.1, and 4.4 GeV/c^2. No evidence for Y(4260) -> D Dbar is observed, leading to an upper limit of B(Y(4260) -> D Dbar)/B(Y(4260) -> J/psi pi+ pi-) < 1.0 at 90 % confidence level.

  16. Systems engineering simplified

    CERN Document Server

    Cloutier, Robert; Bone, Mary Alice

    2015-01-01

    IntroductionOverviewDiscussion of Common TerminologyThe Case for Systems EngineeringA Brief History of Systems EngineeringSystem ExamplesSummaryThe System Life CycleManaging System Development-The Vee ModelSystem ProductionSystem Utilization and SupportSystem Retirement and DisposalOther Systems Engineering Development ModelsSpiral ModelAgile Model for Systems EngineeringSystem of InterestAbstraction and DecompositionIntegrationDeveloping and Managing RequirementsCyclone Requiremen

  17. Chem systems

    International Nuclear Information System (INIS)

    This paper reports that world styrene demand, paced by a near doubling of combined requirements in East Asia and Oceania, could reach 19.3 million metric tons by 2000, an average growth rate of 3.7%/year. So concludes Chem Systems Inc., Tarrytown, N.Y., in a study of world styrene markets through the end of the century. Pacific Rim styrene production and consumption throughout the 1990s are predicted to make up increasingly larger shares of world markets, while demand and production lag in the U.S. and western Europe. Demand and capacity in other parts of the world will grow in real terms, increasing combined market shares only slightly. Most of the increase will be driven by demand in East Asia and Oceania, where consumption by century's end is expected to increase 4.48 million metric tons from 2.25 million tons in 1991. Meantime, Japan's styrene demand in 2000 is projected at 2.64 million tons, a 500,000 ton increase from 1991 demand but a net market loss of 1.9%

  18. [Systemic sclerosis].

    Science.gov (United States)

    Tamborrini, Giorgio; Distler, Meike; Distler, Oliver

    2008-05-01

    Systemic sclerosis (SSc) is a severe fibrotic multiorgan connective tissue disease. Vascular abnormalities such as fingertip ulcers and Raynaud's syndrome as well as involvement of organs including the lungs, heart, kidney and the gastrointestinal tract are prominent features of the disease. There are currently no disease modifying drugs available that can modify the course of the disease. In this review we will discuss medications that have been found to be effective in improving specific organ involvement due to SSc. For the treatment of gastroesophageal reflux disease (GERD), proton pump inhibitors are effective agents. In the setting of clinically significant gastrointestinal dysmotility, metoclopramide, erythromycin and octreotide may be beneficial. Small bowel bacterial overgrowth should be treated with oral antibiotics. Angiotensin converting enzyme inhibitors are the first-line agents for acute renal crisis. A variety of treatment options are available for Raynaud's phenomenon and include calcium channel blockers, iloprost (i. v.), losartan, fluoxetine and sildenafil. Fingertip ulcers can be prevented by using the endothelin receptor antagonist bosentan. The therapeutic options for treatment of pulmonary hypertension associated with SSc include bosentan, sildenafil and various prostacyclin analogs (eg, epoprostenol, treprostinil, iloprost). Sitaxentan, ambrisentan and new phosphodiesterase-5 inhibitors could be new options for therapy as well. Therapeutic options for interstitial lung fibrosis include cyclophosphamide, however, clinical effects are mild to moderate. Methotrexate has been used to treat skin fibrosis and can be beneficial when arthritis is present. PMID:18552072

  19. Endocrine System (For Teens)

    Science.gov (United States)

    ... Can I Help a Friend Who Cuts? Endocrine System KidsHealth > For Teens > Endocrine System Print A A ... called the endocrine system . What Is the Endocrine System? Although we rarely think about the endocrine system, ...

  20. Prosthetic Knee Systems

    Science.gov (United States)

    ... of fluid control systems — pneumatic (using air) and hydraulic (using fluid). Pneumatic control. These systems: compress air ... control than friction systems are less effective than hydraulic systems. Hydraulic control. These systems: use liquid (usually ...

  1. System safety education focused on system management

    Science.gov (United States)

    Grose, V. L.

    1971-01-01

    System safety is defined and characteristics of the system are outlined. Some of the principle characteristics include role of humans in hazard analysis, clear language for input and output, system interdependence, self containment, and parallel analysis of elements.

  2. Symmetries, Groups, Groupoids and Systems of Systems

    OpenAIRE

    Alonso, E.; Karcanias, N.; Hessami, A. G.

    2013-01-01

    In this paper we propose an algebraic model of systems based on the concept of symmetry that can be instrumental in representing Systems of Systems two main characteristics, namely complexity and (hierarchical) emergence.

  3. Respiratory System

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    8.1 Respiratory failure2007204 Comparison of the effects of BiPAP ventilation combined with lung recruitment maneuvers and low tidal volume A/C ventilation in patients with acute respiratory distress syndrome. WANG Xiaozhi(王晓芝),et al. Dept Respir & Intensive Care Unit, Binzhou Med Coll, Binzhou 256603. Chin J Tuberc Respir Dis 2007;30(1):44-47. Objective To compare the effects of BiPAP ventilation combined with lung recruitment maneuvers(LRM) with low tidal volume A/C ventilation in patients with acute respiratory distress syndrome (ARDS). Methods A prospective, randomized comparison of BiPAP mechanical ventilation combined with lung recruitment maneuvers(test group) with low tidal volume A/C ventilation (control group) was conducted in 28 patients with ARDS. FiO2/PaO2 ratio, respiratory system compliance(Cs), central venous pressure (CVP), duration of ventilation support were recorded at 0 h, 48 h and 72 h separately. The ventilation associated lung injury and mortality at 28 d were also recorded. Results The FiO2/PaO2 ratio were (298±16) and (309±16) cm H2O, Cs were (38.4±2.2) and (42.0±1.3) ml/cm H2O, CVP were (13.8±0.8) and (11.6±0.7) cm H2O in the test group at 48 h and 72 h separately. In the control group, FiO2/PaO2 ratio were (212±12) and (246±17) cm H2O, Cs were (29.5±1.3) and (29.0±1.0) ml/cm H2O, CVP were 18.6±1.1 and (16.8±1.0) cm H2O. The results were better in the test group as compared with the control group (t=10.03-29. 68, all P<0.01). The duration of ventilation support in the test group was shorter than the control group [(14±3) d vs (19±3)d, t=4.80, P<0.01]. The mortality in 28 d and ventilation associated lung injury were similar in the two groups. Conclusion The results show that combination of LRM with BiPAP mode ventilation, as compared with the control group, contributes to the improved FiO2/PaO2 ratio, pulmonary compliance, stable homodynamic and shorter duration of ventilation support in patients with ARDs.

  4. Paradigms of Intelligent Systems

    OpenAIRE

    Dana Ramona ANDRISESCU

    2007-01-01

    This paper approaches the subject of paradigms for the categories of intelligent systems. First we can look at the term paradigm in its scientific meaning and then we make acquaintance with the main categories of intelligent systems (expert systems, intelligent systems based on genetic algorithms, artificial neuronal systems, fuzzy systems, hybrid intelligent systems). We will see that every system has one or more paradigms, but hybrid intelligent systems combine paradigms because they are ma...

  5. Feasibility study of multipoint based laser alignment system for CLIC

    CERN Document Server

    Stern, G; Mainaud-Durand, H; Piedigrossi, D; Geiger, A

    2012-01-01

    CLIC (Compact LInear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities oftoday’s particle accelerators. Alignment is one of the major challenges within the CLIC study in order to achieve the high requirement of a multi-TeV center of mass colliding beam energy range (nominal 3 TeV). To reach this energy in a realistic and cost efficient scenario all accelerator components have to be aligned with an accuracy of 10 μm over a sliding window of 200 m. The demand for a straight line reference is so far based on stretched wires coupled with Wire Positioning Sensors (WPS). These solutions are currently further developed inorder to reduce the drawbacks which are mainly given by their costs and difficult implementation. However, it should be validated through inter-comparison with a solution ideally based on a different physical principle. Therefore, a new metrological approach is proposed using a laser beam as straight lin...

  6. Information Systems in the Polish Payment System

    OpenAIRE

    Murowaniecki, Łukasz; Woźniacki, Konrad

    2007-01-01

    The paper focuses on computerised information systems responsible for payment information exchange in Polish payment system. Firstly some terms, connected with the topic of funds transfer system, are ordered. Then, relying on the taxonomy, the paper presents a comprehensive view of domestic payment system.

  7. Geoinformation Systems as Automated Management System

    OpenAIRE

    Andrey Pavlov

    2013-01-01

    The article analyzes geoinformation systems (GIS) development as management systems, highlights the basic principles of decision-making in GIS, describes GIS storage systems and decision-making systems, discloses the use of GIS for the territory management and briefly describes the use of GIS for transport management and monitoring.

  8. Geoinformation Systems as Automated Management System

    Directory of Open Access Journals (Sweden)

    Andrey Pavlov

    2013-01-01

    Full Text Available The article analyzes geoinformation systems (GIS development as management systems, highlights the basic principles of decision-making in GIS, describes GIS storage systems and decision-making systems, discloses the use of GIS for the territory management and briefly describes the use of GIS for transport management and monitoring.

  9. Understanding Patterns for System of Systems Integration

    DEFF Research Database (Denmark)

    Kazman, Rick; Schmid, Klaus; Nielsen, Claus Ballegård;

    2013-01-01

    Architecting systems of systems is well known to be a formidable challenge. A major aspect in this is defining the integration among the systems that constitute the system of systems. In this paper, we aim to support the SoS architect by systematically developing a way to characterize system of...... systems integration patterns. These characteristics at the same time support the architecting process by highlighting important issues a SoS architect needs to consider. We discuss the consolidated template and illustrate it with an example pattern. We also discuss the integration of this novel pattern...

  10. Networked control of microgrid system of systems

    Science.gov (United States)

    Mahmoud, Magdi S.; Rahman, Mohamed Saif Ur; AL-Sunni, Fouad M.

    2016-08-01

    The microgrid has made its mark in distributed generation and has attracted widespread research. However, microgrid is a complex system which needs to be viewed from an intelligent system of systems perspective. In this paper, a network control system of systems is designed for the islanded microgrid system consisting of three distributed generation units as three subsystems supplying a load. The controller stabilises the microgrid system in the presence of communication infractions such as packet dropouts and delays. Simulation results are included to elucidate the effectiveness of the proposed control strategy.

  11. Concept and System of Personification Control System

    Institute of Scientific and Technical Information of China (English)

    Bai,Fengshuang; Yin,Yixin; Tu,Xuyan; Zhang,Ying

    2006-01-01

    This paper provides the system and conception of the Personification Control System (PCS) on the basis of Intelligent Control System based on Artificial life (ICS/AL), Artificial Emotion, Humanoid Control, and Intelligent Control System based on Field bus. According to system science and deciding of organize of biology, the Pyramid System of PCS are created. Then Pyramid System of PCS which is made up of PCS1/H, PCS1/S, PCS1/O, PCS1/C and PCS1/G is described.

  12. D0 Cryo System Control System Autodialer

    Energy Technology Data Exchange (ETDEWEB)

    Urbin, J.; /Fermilab

    1990-04-17

    The DO cryogenic system is controlled by a TI565-PLC based control system. This allows the system to be unmanned when in steady state operation. System experts will need to be contacted when system parameters exceed normal operating points and reach alarm setpoints. The labwide FIRUS system provides one alarm monitor and communication link. An autodialer provides a second and more flexible alarm monitor and communication link. The autodialer monitors contact points in the control system and after receiving indication of an alarm accesses a list of experts which it calls until it receives an acknowledgement. There are several manufacturers and distributors of autodialer systems. This EN explains the search process the DO cryo group used to fmd an autodialer system that fit the cryo system's needs and includes information and specs for the unit we chose.

  13. Systems design of long-life systems

    Science.gov (United States)

    Miles, R. F., Jr.

    1974-01-01

    A long-life system is defined as a system which cannot be life-tested in its operational environment. Another restriction is that preventive maintenance and repair shall be either impossible or economically disadvantageous. Examples of such systems include planetary spacecraft, communication satellites, undersea telephone cables, and nuclear power plants. The questions discussed are related to the implementation of system functions, approaches to determine the required level of system reliability, and aspects of tradeoffs between requirements and reliability.

  14. Port contact systems for irreversible thermodynamical systems

    OpenAIRE

    Eberard, D.; Maschke, B. M.; Schaft, A.J. van der

    2005-01-01

    In this paper we propose a definition of control contact systems, generalizing input-output Hainiltonian systems, to cope with models arising from irreversible Thermodynamics. We exhibit a particular subclass of these systems, called conservative, that leaves invariant some Legendre submanifold (the geometric structures associated with thermodynamic properties). These systems, both energy-preserving and irreversible, are then used to analyze the loss-lessness of these systems with respect to ...

  15. PERIODIC MOTIONS OF SPINNING RIGID SPACECRAFT UNDER INFLUENCE OF GRAVITATIONAL AND MAGNETIC FIELDS

    Institute of Scientific and Technical Information of China (English)

    Yehia A. Abdel-aziz; M.H. Yehia; F. A. Abd El-Salam; M. Radwan

    2006-01-01

    The motion of a magnetized axisymmetric spacecraft about its center of mass in a circular orbit is considered, taking the gravitational and magnetic effects of the central body into account. Equations of motion of the reduced system are transformed to equations of plane motion of a charged particle under the action of electric and magnetic fields. Stationary motions of the system are determined and periodic motions near to them are constructed using the Lyapounoff theorem of the holomorphic integral.

  16. Accuracy of the International Terrestrial Reference Frame origin and Earth expansion

    OpenAIRE

    Wu, X; Collilieux, X.; Altamimi, Z.; L. L. A. Vermeersen; Gross, R.S.; Fukumori, I.

    2011-01-01

    The International Terrestrial Reference Frame (ITRF) is a fundamental datum for high‐precision orbit tracking, navigation, and global change monitoring. Accurately realizing and maintaining ITRF origin at the mean Earth system center of mass (CM) is critical to surface and spacecraft based geodetic measurements including those of sea level rise and its sources. Although ITRF combines data from satellite laser ranging (SLR), Very Long Baseline Interferometry (VLBI), Global Positioning System (...

  17. Your Digestive System

    Science.gov (United States)

    ... Here's Help White House Lunch Recipes Your Digestive System KidsHealth > For Kids > Your Digestive System Print A ... flush we were talking about! Dig That Digestive System You can help your digestive system by drinking ...

  18. Male Reproductive System

    Science.gov (United States)

    ... I Help a Friend Who Cuts? Male Reproductive System KidsHealth > For Teens > Male Reproductive System Print A ... reproductive systems. continue What Is the Male Reproductive System? Most species have two sexes: male and female. ...

  19. Multiple System Atrophy

    Science.gov (United States)

    ... Enhancing Diversity Find People About NINDS NINDS Multiple System Atrophy Information Page Condensed from Multiple System Atrophy ... Trials Organizations Publicaciones en Español What is Multiple System Atrophy? Multiple system atrophy (MSA) is a progressive ...

  20. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-14

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined.

  1. System design specification Brayton Isotope Power System (BIPS) Flight System (FS), and Ground Demonstration System (GDS)

    International Nuclear Information System (INIS)

    The system design specification for ground demonstration, development, and flight qualification of a Brayton Isotope Power System (BIPS) is presented. The requirements for both a BIPS conceptual Flight System (FS) and a Ground Demonstration System (GDS) are defined

  2. Integrated library systems.

    OpenAIRE

    Goldstein, C M

    1983-01-01

    The development of integrated library systems is discussed. The four major discussion points are (1) initial efforts; (2) network resources; (3) minicomputer-based systems; and (4) beyond library automation. Four existing systems are cited as examples of current systems.

  3. On the peak mass production of different fragments in intermediate-energy heavy-ion collisions

    International Nuclear Information System (INIS)

    Using the isospin-dependent quantum molecular dynamics (IQMD) model, we study the system mass dependence of the peak center-of-mass energy (Ec.m. max) and maximal production (left angle N right angle max) of various mass fragments at their corresponding Ec.m. max. We studied, in particular, light clusters (LCs), medium-mass fragments (MMFs) and heavy-mass fragments (HMFs) produced in various reactions ranging from 40Ca + 40Ca to 197Au + 197Au. Our findings show that the Ec.m. max and left angle N right angle max increase with the system mass for all mass fragments except for HMFs where the peak center-of-mass energy decreases and corresponding multiplicity remains constant with the system mass. This happens due to the dominant role of Coulomb interactions in heavier colliding nuclei. Experiments are called for to verify this prediction. (orig.)

  4. Situation awareness with systems of systems

    CERN Document Server

    Tretmans, Jan; Borth, Michael

    2013-01-01

    This book discusses various aspects, challenges, and solutions for developing systems-of-systems for situation awareness, using applications in the domain of maritime safety and security.  Topics include advanced, multi-objective visualization methods for situation awareness, stochastic outlier selection, rule-based anomaly detection, an ontology-based event model for semantic reasoning, new methods for semi-automatic generation of adapters bridging communication gaps, security policies for systems-of-systems, trust assessment, and methods to deal with the dynamics of systems-of-systems in run-time monitoring, testing, and diagnosis. Architectural considerations for designing information-centric systems-of-systems such as situation awareness systems, and an integrated demonstrator implementing many of the investigated aspects, complete the book.

  5. System of systems modeling and analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, James E.; Anderson, Dennis James; Longsine, Dennis E. (Intera, Inc., Austin, TX); Shirah, Donald N.

    2005-01-01

    This report documents the results of an LDRD program entitled 'System of Systems Modeling and Analysis' that was conducted during FY 2003 and FY 2004. Systems that themselves consist of multiple systems (referred to here as System of Systems or SoS) introduce a level of complexity to systems performance analysis and optimization that is not readily addressable by existing capabilities. The objective of the 'System of Systems Modeling and Analysis' project was to develop an integrated modeling and simulation environment that addresses the complex SoS modeling and analysis needs. The approach to meeting this objective involved two key efforts. First, a static analysis approach, called state modeling, has been developed that is useful for analyzing the average performance of systems over defined use conditions. The state modeling capability supports analysis and optimization of multiple systems and multiple performance measures or measures of effectiveness. The second effort involves time simulation which represents every system in the simulation using an encapsulated state model (State Model Object or SMO). The time simulation can analyze any number of systems including cross-platform dependencies and a detailed treatment of the logistics required to support the systems in a defined mission.

  6. The MAST data acquisition system - system architecture

    International Nuclear Information System (INIS)

    A new data acquisition (DA) system has been developed for the MAST experiment at Culham. It has also been implemented on the COMPASS experiment as a replacement for the old PDP-11 based data acquisition system and as a test bed for MAST. The DA system is distributed across a number of computers with a DA process for each distinct diagnostic system. An object-orientated approach is taken to the control and readout of each device in the system. It is designed to be independent of the hardware interfaces used on each diagnostic. The system is flexible enough to cope with diagnostics ranging from those involving simple time evolving signals to complex spectrometers, and will incorporate a new high speed distributed timing system. This system is also being considered as the interface to the real time Plasma Control system on MAST. A distributed scheduling system is used to co-ordinate the activity of each DA process with the Central Control system for each experiment. This paper describes the architecture of this data acquisition system with particular emphasis on the core of the data acquisition system. Aspects of distributed implementation of the system on real diagnostics are discussed in a companion paper

  7. Computer System Design System-on-Chip

    CERN Document Server

    Flynn, Michael J

    2011-01-01

    The next generation of computer system designers will be less concerned about details of processors and memories, and more concerned about the elements of a system tailored to particular applications. These designers will have a fundamental knowledge of processors and other elements in the system, but the success of their design will depend on the skills in making system-level tradeoffs that optimize the cost, performance and other attributes to meet application requirements. This book provides a new treatment of computer system design, particularly for System-on-Chip (SOC), which addresses th

  8. System specifications for the NDS EXFOR System

    International Nuclear Information System (INIS)

    EXFOR is the agreed exchange format for the magnetic-tape exchange of nuclear reaction data between national and international nuclear data centers for the benefit of nuclear data users in all countries. The NDS EXFOR System is a computerized system for the storage and retrieval of EXFOR information compiled or received of the IAEA. This document is an internal manual for the system specifications of the NDS EXFOR System. It includes flow charts, system and program summaries, input and output specifications and file and record descriptions. The manual is updated from time to time when system modifications are made; the first version was issued in July 1979. (author)

  9. System specifications for the NDS EXFOR System

    International Nuclear Information System (INIS)

    EXFOR is the agreed exchange format for the magnetic-tape exchange of nuclear reaction data between national and international nuclear data centres for the benefit of nuclear data users in all countries. The NDS EXFOR System is a computerized system for the storage and retrieval of EXFOR information compiled or received by the IAEA. This document is an internal manual for the system specifications of the NDS EXFOR System. It includes flow charts, system and program summaries, input and output specifications and file and record descriptions. The manual is updated from time to time when system modifications are made

  10. Intelligent systems technology infrastructure for integrated systems

    Science.gov (United States)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  11. Exclusive Initial-State-Radiation Production of the DDbar,D*Dbar, and D*D*bar Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-06-19

    We perform a study of the exclusive production of D{bar D}, D*{bar D}, and D*{bar D}* in initial-state-radiation events, from e{sup +}e{sup -} annihilations at a center-of-mass energy near 10.58 GeV, to search for charmonium and possible new resonances. The data sample corresponds to an integrated luminosity of 384 fb{sup -1} and was recorded by the BABAR experiment at the PEP-II storage rings. The D{bar D}, D*{bar D}, and D*{bar D}* mass spectra show clear evidence of several {psi} resonances. However, there is no evidence for Y(4260) {yields} D*{bar D} or Y(4260) {yields} D*{bar D}*.

  12. [X-33 Systems

    Science.gov (United States)

    1999-01-01

    Lockheed Martin Skunk Works has compiled an Annual Performance Report of the X-33/RLV Program. This report consists of individual reports from all industry team members, as well as NASA team centers. This portion of the report is comprised of a status report of Allied-Signal Aerospace's contribution to the program. The following is a summary of the work reviewed under their portion of the agreement: (1) Communication Systems; (2) Environmental Control Systems- Active Thermal Control System (ATCS), Purge and Vent System, Hydrogen Detection System (HDS), Avionics Bay Inerting System (ABIS), and Flush Air Data System (FADS); (2) Landing Systems; (3) Power Management and Generation Systems; (4) Flight Control Actuation System (FCAS)- Electric Power Control & Distribution System (EPCDS), and Battery Power System (BPS); and (5) Vehicle Management Systems (VMS)- VMS Hardware, VMS Software Development Activities, and System Integration Laboratory (SIL).

  13. Linking Political Systems and War Systems

    DEFF Research Database (Denmark)

    Harste, Gorm

    2009-01-01

    Decisive parts of the Western political system have demonstrated a seemingly surprising misinterpretation of military might. As Madelaine Albright has suggested, the mighty perceived themselves as "almighty". Political power seems to have invested in instrumental coercive power relations and found...... military coercion to be the appropriate mean. Using the system theory and the theory of systemic risks displayed by the German sociologist Niklas Luhmann the article demonstrates how military systems due to their own autonomy and autopoiesis do not fit into the idea of political government. The...... Clausewitzian ideal of a political system that could continue its power games by means of war was moderated by Clausewitz' own analysis of "friction". How can a political system be so blind towards the possibilities of another system? What are the risks of systemic blind spots? The argument of the paper...

  14. Immune System as a Sensory System

    OpenAIRE

    Dozmorov, Igor M.; Dresser, D.

    2010-01-01

    As suggested by the well-known gestalt concept the immune system can be regarded as an integrated complex system, the functioning of which cannot be fully characterized by the behavior of its constituent elements. Similar approaches to the immune system in particular and sensory systems in general allows one to discern similarities and differences in the process of distinguishing informative patterns in an otherwise random background, thus initiating an appropriate and adequate response. This...

  15. Operating System Performance Analyzer for Embedded Systems

    OpenAIRE

    Shahzada Khayyam Nisar; Maqsood Ahmed; Huma Ayub; Iram Baig

    2011-01-01

    RTOS provides a number of services to an embedded system designs such as case management, memory management, and Resource Management to build a program. Choosing the best OS for an embedded system is based on the available OS for system designers and their previous knowledge and experience. This can cause an imbalance between the OS and embedded systems. RTOS performance analysis is critical in the design and integration of embedded software to ensure that limits the application meet at runti...

  16. Intrusion Detection System: Security Monitoring System

    OpenAIRE

    ShabnamNoorani,; Sharmila Gaikwad Rathod

    2015-01-01

    An intrusion detection system (IDS) is an ad hoc security solution to protect flawed computer systems. It works like a burglar alarm that goes off if someone tampers with or manages to get past other security mechanisms such as authentication mechanisms and firewalls. An Intrusion Detection System (IDS) is a device or a software application that monitors network or system activities for malicious activities or policy violations and produces reports to a management station.Intrusio...

  17. UNMANNED AIRCRAFT SYSTEMS AS COMPLEX MULTISTRUCTURAL SYSTEM

    Directory of Open Access Journals (Sweden)

    A. S. Abufanas

    2015-08-01

    Full Text Available The principles of constructing mathematical models of unmanned aircraft systems as complex systems consisting of a plurality ofsubsystems, each of which is considered as a system. In this case, the relationship between the subsystems are described by equations based on the topological graph theory, and for the preparation of component equations describing the dynamics of the subsystems is proposed to use differential equations discontinuous type based on systems theory of random structure.

  18. Game Information System

    OpenAIRE

    Spits Warnars

    2010-01-01

    In this Information system age many organizations consider information system as their weapon to compete or gain competitive advantage or give the best services for non profit organizations. Game Information System as combining Information System and game is breakthrough to achieve organizations' performance. The Game Information System will run the Information System with game and how game can be implemented to run the Information System. Game is not only for fun and entertainment, but will ...

  19. Designing information systems

    CERN Document Server

    Blethyn, Stanley G

    2014-01-01

    Designing Information Systems focuses on the processes, methodologies, and approaches involved in designing information systems. The book first describes systems, management and control, and how to design information systems. Discussions focus on documents produced from the functional construction function, users, operators, analysts, programmers and others, process management and control, levels of management, open systems, design of management information systems, and business system description, partitioning, and leveling. The text then takes a look at functional specification and functiona

  20. Instrumentation control system

    International Nuclear Information System (INIS)

    This book explains instrumentation control system, which mentions summary, basic theory, kinds, control device, and design of each instrumentation system. The contents of this book are introduction of instrumentation system, temperature detector, pressure sensor, flow detector, level detector, ingredient detector, signal convert and transmission, instructions, record and control of instrumentation system, PID controller control valve of instrumentation system, instrumentation equipment of water system, instrumentation facility of thermal power plant, examples of advance instrumentation facility and install and design of instrumentation system.

  1. Expert Systems for auditing management information systems

    Directory of Open Access Journals (Sweden)

    Gheroghe Popescu

    2007-05-01

    Full Text Available Expert systems are built with the help of: specialised programming languages or expert system generators (shell. But this structure was reached after tens of years of work and research, because expert systems are nothing but pragmatic capitalisation of the results of research carried out in artificial intelligence and theory of knowledge.

  2. System Design of the SWRL Financial System.

    Science.gov (United States)

    Ikeda, Masumi

    To produce various management and accounting reports in order to maintain control of SWRL (Southwest Regional Laboratory) operational and financial activities, a computer-based SWRL financial system was developed. The system design is outlined, and various types of system inputs described. The kinds of management and accounting reports generated…

  3. Modeling learning technology systems as business systems

    NARCIS (Netherlands)

    Avgeriou, Paris; Retalis, Symeon; Papaspyrou, Nikolaos

    2003-01-01

    The design of Learning Technology Systems, and the Software Systems that support them, is largely conducted on an intuitive, ad hoc basis, thus resulting in inefficient systems that defectively support the learning process. There is now justifiable, increasing effort in formalizing the engineering o

  4. Optical system defect propagation in ABCD systems

    DEFF Research Database (Denmark)

    McKinley, W.G.; Yura, H.T.; Hanson, Steen Grüner

    1988-01-01

    We describe how optical system defects (tilt/jitter, decenter, and despace) propagate through an arbitrary paraxial optical system that can be described by an ABCD ray transfer matrix. A pedagogical example is given that demonstrates the effect of alignment errors on a typical optical system...

  5. Information Systems: Towards a System of Information Systems

    OpenAIRE

    Saleh, Majd; Abel, Marie-Helene

    2015-01-01

    International audience Information Systems are viewed as a set of services creating a workflow of information directed to specific groups and members. This allows individuals to share ideas and their talents with other members. In such manner , tasks can be carried out both efficiently and effectively. Due to the nature of Information Systems that revolves around creating information useful to users , and in some higher forms of Information Systems creating knowledge , management of inform...

  6. Modeling Flocks and Prices: Jumping Particles with an Attractive Interaction

    CERN Document Server

    Balazs, Marton; Toth, Balint

    2011-01-01

    We introduce and investigate a new model of a finite number of particles jumping forward on the real line. The jump lengths are independent of everything, but the jump rate of each particle depends on the relative position of the particle compared to the center of mass of the system. The rates are higher for those left behind, and lower for those ahead of the center of mass, providing an attractive interaction keeping the particles together. We prove that in the fluid limit, as the number of particles goes to infinity, the evolution of the system is described by a mean field equation that exhibits traveling wave solutions. A connection to extreme value statistics is also provided.

  7. Modeling Flocks and Prices: Jumping Particles with an Attractive Interaction (shortened version)

    CERN Document Server

    Balazs, Marton; Toth, Balint

    2011-01-01

    We introduce and investigate a new model of a finite number of particles jumping forward on the real line. The jump lengths are independent of everything, but the jump rate of each particle depends on the relative position of the particle compared to the center of mass of the system. The rates are higher for those left behind, and lower for those ahead of the center of mass, providing an attractive interaction keeping the particles together. We prove that in the fluid limit, as the number of particles goes to infinity, the evolution of the system is described by a mean field equation that exhibits traveling wave solutions. A connection to extreme value statistics is also provided.

  8. Psychology of system design

    CERN Document Server

    Meister, D

    2014-01-01

    This is a book about systems, including: systems in which humans control machines; systems in which humans interact with humans and the machine component is relatively unimportant; systems which are heavily computerized and those that are not; and governmental, industrial, military and social systems. The book deals with both traditional systems like farming, fishing and the military, and with systems just now tentatively emerging, like the expert and the interactive computer system. The emphasis is on the system concept and its implications for analysis, design and evaluation of these many di