WorldWideScience

Sample records for center-of-mass p-wave fermionic

  1. px+ipy Superfluid from s-Wave Interactions of Fermionic Cold Atoms

    International Nuclear Information System (INIS)

    Zhang Chuanwei; Tewari, Sumanta; Lutchyn, Roman M.; Das Sarma, S.

    2008-01-01

    Two-dimensional (p x +ip y ) superfluids or superconductors offer a playground for studying intriguing physics such as quantum teleportation, non-Abelian statistics, and topological quantum computation. Creating such a superfluid in cold fermionic atom optical traps using p-wave Feshbach resonance is turning out to be challenging. Here we propose a method to create a p x +ip y superfluid directly from an s-wave interaction making use of a topological Berry phase, which can be artificially generated. We discuss ways to detect the spontaneous Hall mass current, which acts as a diagnostic for the chiral p-wave superfluid

  2. Fermionic spectral functions in backreacting p-wave superconductors at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, G.L.; Grandi, N.E.; Lugo, A.R. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina)

    2017-04-14

    We investigate the spectral function of fermions in a p-wave superconducting state, at finite both temperature and gravitational coupling, using the AdS/CFT correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the “peak-dip-hump” structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.

  3. Some aspects of chirality: Fermion masses and chiral p-forms

    Energy Technology Data Exchange (ETDEWEB)

    Kleppe, A

    1997-05-01

    The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m{sub 0} implies the existence of other Dirac fields where the corresponding quanta have masses Rm{sub 0}, R{sup 2}m{sub 0}, .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way.

  4. Some aspects of chirality: Fermion masses and chiral p-forms

    International Nuclear Information System (INIS)

    Kleppe, A.

    1997-05-01

    The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m 0 implies the existence of other Dirac fields where the corresponding quanta have masses Rm 0 , R 2 m 0 , .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way

  5. Fermion masses through four-fermion condensates

    Energy Technology Data Exchange (ETDEWEB)

    Ayyar, Venkitesh [Department of Physics, Duke University,Science Drive, Durham, NC 27708 (United States); Chandrasekharan, Shailesh [Department of Physics, Duke University,Science Drive, Durham, NC 27708 (United States); Center for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore, 560012 (India)

    2016-10-12

    Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the two phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.

  6. Quantum limits to center-of-mass measurements

    International Nuclear Information System (INIS)

    Vaughan, Timothy; Drummond, Peter; Leuchs, Gerd

    2007-01-01

    We discuss the issue of measuring the mean position (center of mass) of a group of bosonic or fermionic quantum particles, including particle number fluctuations. We introduce a standard quantum limit for these measurements at ultralow temperatures, and discuss this limit in the context of both photons and ultracold atoms. In the case of non-interacting harmonically trapped fermions, we present evidence that the Pauli exclusion principle has a strongly beneficial effect, giving rise to a 1/N scaling in the position standard deviation--as opposed to a 1/√(N) scaling for bosons. The difference between the actual mean-position fluctuation and this limit is evidence for quantum wave-packet spreading in the center of mass. This macroscopic quantum effect cannot be readily observed for noninteracting particles, due to classical pulse broadening. For this reason, we also study the evolution of photonic and matter-wave solitons, where classical dispersion is suppressed. In the photonic case, we show that the intrinsic quantum diffusion of the mean position can contribute significantly to uncertainties in soliton pulse arrival times. We also discuss ways in which the relatively long lifetimes of attractive bosons in matter-wave solitons may be used to demonstrate quantum interference between massive objects composed of thousands of particles

  7. S-wave scattering of fermion revisited

    International Nuclear Information System (INIS)

    Rahaman, Anisur

    2011-01-01

    A model where a Dirac fermion is coupled to background dilaton field is considered to study s-wave scattering of fermion by a back ground dilaton black hole. It is found that an uncomfortable situation towards information loss scenario arises when one loop correction gets involved during bosonization.

  8. Fermion masses from dimensional reduction

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.)

  9. Fermion masses from dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1990-10-11

    We consider the fermion masses in gauge theories obtained from ten dimensions through dimensional reduction on coset spaces. We calculate the general fermion mass matrix and we apply the mass formula in illustrative examples. (orig.).

  10. Fermion masses and multiplicity

    International Nuclear Information System (INIS)

    Ramond, P.

    1986-01-01

    A general survey and analysis of fermion masses is presented in terms of both the known low energy gauge structure and of the simplest GUT structure. The replication of fermion families is discussed in the context of possible family group structures. Sample family gauge groups are presented in the cases of three and four chiral families, using ABJ and Witten anomalies to restrict the maximal gauged family group. The possible relevance of the family group to the fermion mass hierarchy is discussed in the context of various models. (author)

  11. Hierarchy in fermion masses and the phantom axion

    International Nuclear Information System (INIS)

    Nanopoulos, D.V.

    1981-01-01

    An SU(5) model is presented with hierarchical fermion masses without strong CP violation and with an almost unobservable axion. The key point is to ''tie'' the highly desirable U(1)sub(P-Q) symmetry to the symmetry needed for the fermion mass hierarchy. Since the symmetry is broken at super-high energies (10 15 GeV), the axion becomes super-difficult to detect. This is the Phantom Axion. (author)

  12. Gauge invariance and fermion mass dimensions

    International Nuclear Information System (INIS)

    Elias, V.

    1979-05-01

    Renormalization-group equation fermion mass dimensions are shown to be gauge dependent in gauge theories possessing non-vector couplings of gauge bosons to fermions. However, the ratios of running fermion masses are explicitly shown to be gauge invariant in the SU(5) and SU(2) x U(1) examples of such theories. (author)

  13. Fermion mass hierarchies in theories of technicolor

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1981-01-01

    Models in which light fermion masses result from dynamical symmetry breaking often produce these masses in a hierarchial pattern. The author exhibits two scenarios for obtaining such hierarchies and illustrates each with a simple model of mass generation. In the first scenario, the light fermion masses are separated by powers of a weak coupling constant; in the second scenario, they are separated by a ratio of large mass scales

  14. The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave

    Science.gov (United States)

    Finster, Felix; Reintjes, Moritz

    2017-05-01

    We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.

  15. Iterative methods for overlap and twisted mass fermions

    International Nuclear Information System (INIS)

    Chiarappa, T.; Jansen, K.; Shindler, A.; Wetzorke, I.; Scorzato, L.; Urbach, C.; Wenger, U.

    2006-09-01

    We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

  16. Iterative methods for overlap and twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Chiarappa, T. [Univ. di Milano Bicocca (Italy); Jansen, K.; Shindler, A.; Wetzorke, I. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Nagai, K.I. [Wuppertal Univ. (Gesamthochschule) (Germany). Fachbereich Physik; Papinutto, M. [INFN Sezione di Roma Tre, Rome (Italy); Scorzato, L. [European Centre for Theoretical Studies in Nuclear Physics and Related Areas (ECT), Villazzano (Italy); Urbach, C. [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Wenger, U. [ETH Zuerich (Switzerland). Inst. fuer Theoretische Physik

    2006-09-15

    We present a comparison of a number of iterative solvers of linear systems of equations for obtaining the fermion propagator in lattice QCD. In particular, we consider chirally invariant overlap and chirally improved Wilson (maximally) twisted mass fermions. The comparison of both formulations of lattice QCD is performed at four fixed values of the pion mass between 230 MeV and 720 MeV. For overlap fermions we address adaptive precision and low mode preconditioning while for twisted mass fermions we discuss even/odd preconditioning. Taking the best available algorithms in each case we find that calculations with the overlap operator are by a factor of 30-120 more expensive than with the twisted mass operator. (orig.)

  17. Retarded Boson–Fermion interaction in atomic systems

    Indian Academy of Sciences (India)

    WINTEC

    The retardation effect arises from the finite speed of light, and the fact that a virtual photon is always in transit. By separating the center of mass motion, a wave equa- tion that looks like the effective equation for only one spin-1/2 fermion is derived in §3. The retardation ef- fect can now be calculated to all orders. Separation ...

  18. Parametrization relating the fermionic mass spectra

    International Nuclear Information System (INIS)

    Kleppe, A.

    1993-01-01

    When parametrizing the fermionic mass spectra in terms of the unit matrix and a recursive matrix scrR 0 , which corresponds to an underlying scaling pattern in the mass spectra, each fermionic sector is characterized by three parameters: k, α, and R. Using the set of relations displayed by the parameters of the different sectors, it is possible to formulate a ''family Lagrangian'' which for each sector encompasses all the families. Relations between quark masses are furthermore deduced from these ''family Lagrangians.'' Using the relations between the parameters of the different charge sectors, it is also possible to ''derive'' the quark mass spectra from the (charged) leptonic mass spectrum

  19. Infrared divergences, mass shell singularities and gauge dependence of the dynamical fermion mass

    International Nuclear Information System (INIS)

    Das, Ashok K.; Frenkel, J.; Schubert, C.

    2013-01-01

    We study the behavior of the dynamical fermion mass when infrared divergences and mass shell singularities are present in a gauge theory. In particular, in the massive Schwinger model in covariant gauges we find that the pole of the fermion propagator is divergent and gauge dependent at one loop, but the leading singularities cancel in the quenched rainbow approximation. On the other hand, in physical gauges, we find that the dynamical fermion mass is finite and gauge independent at least up to one loop

  20. FCNC Effects in a Minimal Theory of Fermion Masses

    CERN Document Server

    Buras, Andrzej J; Pokorski, Stefan; Ziegler, Robert

    2011-01-01

    As a minimal theory of fermion masses we extend the SM by heavy vectorlike fermions, with flavor-anarchical Yukawa couplings, that mix with chiral fermions such that small SM Yukawa couplings arise from small mixing angles. This model can be regarded as an effective description of the fermionic sector of a large class of existing flavor models and thus might serve as a useful reference frame for a further understanding of flavor hierarchies in the SM. Already such a minimal framework gives rise to FCNC effects through exchange of massive SM bosons whose couplings to the light fermions get modified by the mixing. We derive general formulae for these corrections and discuss the bounds on the heavy fermion masses. Particularly stringent bounds, in a few TeV range, come from the corrections to the Z couplings.

  1. On the origin of fermion masses

    International Nuclear Information System (INIS)

    Shrock, R.E.

    1992-01-01

    We review some recent work on nonperturbative properties of fermions and connections with chiral gauge theories. In particular, we consider one of the ultimate goals of this program: The understanding of the actual fermion mass spectrum. It is pointed out that if quarks and leptons are composite, their masses may be set by the physics of the preons and their interactions in such a manner as to differ considerably from the Yukawa form m f ∝v (where v is the electroweak symmetry breaking scale) or analogous forms involving v. Some ideas of how this might work are given, and some implications are discussed. (orig.)

  2. A novel and economical explanation for SM fermion masses and mixings

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.E.C. [Universidad Tecnica Federico Santa Maria and Centro Cientifico-Tecnologico de Valparaiso, Valparaiso (Chile)

    2016-09-15

    I propose the first multiscalar singlet extension of the standard model (SM), which generates tree level top quark and exotic fermion masses as well as one and three loop level masses for charged fermions lighter than the top quark and for light active neutrinos, respectively, without invoking electrically charged scalar fields. That model, which is based on the S{sub 3} x Z{sub 8} discrete symmetry, successfully explains the observed SM fermion mass and mixing pattern. The charged exotic fermions induce one loop level masses for charged fermions lighter than the top quark. The Z{sub 8} charged scalar singlet χ generates the observed charged fermion mass and quark mixing pattern. (orig.)

  3. Fermion masses without symmetry breaking in two spacetime dimensions

    Energy Technology Data Exchange (ETDEWEB)

    BenTov, Yoni [Department of Physics, University of California,Santa Barbara, CA 93106 (United States)

    2015-07-08

    I study the prospect of generating mass for symmetry-protected fermions without breaking the symmetry that forbids quadratic mass terms in the Lagrangian. I focus on 1+1 spacetime dimensions in the hope that this can provide guidance for interacting fermions in 3+1 dimensions. I first review the SO(8) Gross-Neveu model and emphasize a subtlety in the triality transformation. Then I focus on the “m=0” manifold of the SO(7) Kitaev-Fidkowski model. I argue that this theory exhibits a phenomenon similar to “parity doubling” in hadronic physics, and this leads to the conclusion that the fermion propagator vanishes when p{sup μ}=0. I also briefly explore a connection between this model and the two-channel, single-impurity Kondo effect. This paper may serve as an introduction to topological superconductors for high energy theorists, and perhaps as a taste of elementary particle physics for condensed matter theorists.

  4. Highly imbalanced fermion-fermion mixtures in one dimension

    International Nuclear Information System (INIS)

    Recher, Christian

    2013-01-01

    In the framework of exactly solvable quantum many-body systems we study models of interacting spin one-half Fermions in one dimension. The first part deals with systems of spin one-half Fermions which interact via repulsive contact interaction. A reformulation of the Bethe-Ansatz solvable many-body wave function is presented. This simplifies considerably the calculations for the highly imbalanced case, where very few particles of one species (minority Fermions) are present. For the other particle species (majority Fermions) the thermodynamic limit is taken. We assume the majority Fermions to be in the ground state such that their non-interacting momentum distribution is a Fermi-sea. Upon this we consider excitations where the particles of the minority species may occupy an arbitrary state within the Fermi-sea. In the case of only a single minority Fermion, the many-body wave function can be expressed as a determinant. This allows us to derive exact thermodynamic expressions for several expectation values as well as for the density-density correlation function. Moreover it is possible to find closed expressions for the single particle Green's function. All of the above mentioned quantities show a non-trivial dependence on the minority particle's momentum. In particular the Green's function in the Tonks-Girardeau regime of hardcore interaction is shown to undergo a transition from the one of impenetrable Bosons to that of free Fermions as the extra particle's momentum varies from the core to the edge of the Fermi-sea. This transition becomes manifest in an algebraic asymptotic decay of the Green's function. If two minority Fermions are present, the many-body wave function turns out to be more complicated. Nevertheless it is possible to derive exact expressions for the two and the three particle density-density correlation functions. Furthermore we calculate the system's total energy and based on that, identify terms which have a natural

  5. Pole mass, width, and propagators of unstable fermions

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Sirlin, A.

    2008-01-01

    The concepts of pole mass and width are extended to unstable fermions in the general framework of parity-nonconserving gauge theories, such as the Standard Model. In contrast with the conventional on-shell definitions, these concepts are gauge independent and avoid severe unphysical singularities, properties of great importance since most fundamental fermions in nature are unstable particles. General expressions for the unrenormalized and renormalized dressed propagators of unstable fermions and their field-renormalization constants are presented. (orig.)

  6. Neutrino masses via the Zee mechanism in the 5D split fermion model

    International Nuclear Information System (INIS)

    Chang, We-Fu; Chen, I-Ting; Liou, Siao-Cing

    2011-01-01

    We study the original version of the Zee model, where both of the SU(2) L Higgs doublets are allowed to couple to the leptons, in the framework of the split fermion model in M 4 xS 1 /Z 2 space-time. The neutrino masses are generated through 1-loop diagrams without introducing the right-handed neutrinos. By assuming an order one anarchical complex 5D Yukawa couplings, all the effective 4D Yukawa couplings are determined by the wave function overlap between the split fermions and the bulk scalars in the fifth dimension. The predictability of the Yukawa couplings is in sharp contrast to the original Zee model in 4D where the Yukawa couplings are unknown free parameters. This setup exhibits a geometrical alternative to the lepton flavor symmetry. By giving four explicit sets of the split fermion locations, we demonstrate that it is possible to simultaneously fit the lepton masses and neutrino oscillation data by just a handful free parameters without much fine tuning. Moreover, we are able to make definite predictions for the mixing angle θ 13 , the absolute neutrino masses, and the lepton flavor violation processes for each configuration.

  7. Effective Mass and g Factor of Four-Flux-Quanta Composite Fermions

    International Nuclear Information System (INIS)

    Yeh, A.S.; Tsui, D.C.; Stormer, H.L.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W.; Stormer, H.L.; Tsui, D.C.

    1999-01-01

    We investigate the properties of composite fermions with four attached flux quanta through tilted-field experiments near Landau level filling factor ν=3/4 . The observed collapse of fractional quantum Hall gaps in the vicinity of this quarter-filling state can be comprehensively understood in terms of composite fermions with mass and spin. Remarkably, the effective mass and g factor of these four-flux-quanta composite fermions around ν=3/4 are very similar to those of two-flux-quanta composite fermions around ν=3/2 . copyright 1999 The American Physical Society

  8. Radiative seesaw-type mechanism of fermion masses and non-trivial quark mixing

    Energy Technology Data Exchange (ETDEWEB)

    Arbelaez, Carolina; Hernandez, A.E.C.; Kovalenko, Sergey; Schmidt, Ivan [Universidad Tecnica Federico Santa Maria, Centro Cientifico-Tecnologico de Valparaiso-CCTVal, Valparaiso (Chile)

    2017-06-15

    We propose a predictive inert two-Higgs doublet model, where the standard model (SM) symmetry is extended by S{sub 3} x Z{sub 2} x Z{sub 12} and the field content is enlarged by extra scalar fields, charged exotic fermions and two heavy right-handed Majorana neutrinos. The charged exotic fermions generate a non-trivial quark mixing and provide one-loop-level masses for the first- and second-generation charged fermions. The masses of the light active neutrinos are generated from a one-loop-level radiative seesaw mechanism. Our model successfully explains the observed SM fermion mass and mixing pattern. (orig.)

  9. The Fermionic Projector, Entanglement, and the Collapse of the Wave Function

    OpenAIRE

    Finster, Felix

    2010-01-01

    After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.

  10. The Fermionic Projector, entanglement and the collapse of the wave function

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix, E-mail: Felix.Finster@mathematik.uni-r.de [Fakultaet fuer Mathematik, Universituet Regensburg, 93040 Regensburg (Germany)

    2011-07-08

    After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.

  11. The Fermionic Projector, entanglement and the collapse of the wave function

    International Nuclear Information System (INIS)

    Finster, Felix

    2011-01-01

    After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.

  12. The Fermionic Projector, entanglement and the collapse of the wave function

    Science.gov (United States)

    Finster, Felix

    2011-07-01

    After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.

  13. Direct Photon Center-of-Mass Angular Distributions in $p\\bar{p}$ Collisions at $\\sqrt{s}$ =1.8-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Leslie F. [Brandeis Univ., Waltham, MA (United States)

    1992-01-01

    The center-of-mass angular distribution of direct photon events, resulting from proton-antiproton collisions at a center-of-mass energy of 1.8 TeV, as measured by the Collider Detector at Fermi lab ( CDF) during the 1988-1089 experimental run, is presented. The direct photon events are identified primarily through the direct photon's characteristic isolation from other particles. The main source of background is from rare fragmentation of QCD partons into single isolated neutral mesons, which decay into two or more photons. The background is removed statistically by exploitation of tile expected difference in the resulting shower profiles. The resulting angular distribution for direct photons, in the transverse momentum range from 22 to 45 Ge V is found to agree favorably with the predictions of Quantum Cbromodynamics (QCD) for an interaction with a fermion (spin 1/2) propagator.

  14. Direct Photon Center-of-Mass Angular Distributions in $p\\bar{p}$ Collisions at $\\sqrt{s}$ =1.8-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Nakae, Leslie F. [Brandeis Univ., Waltham, MA (United States)

    1992-04-01

    The center-of-mass angular distribution of direct photon events, resulting from protonantiproton collisions at a center-of-mass energy of 1.8 TeV, as measured by the Collider Detector at Fermilab ( CDF) during the 1988-1089 experimental run, is presented . The direct photon events are identified primarily through the direct photon's characteristic isolation from other particles. The main source of background is from rare fragmentation of QCD partons into single isolated neutral mesons, which decay into two or more photons. The background is removed statistically by exploitation of tile expected difference in the resulting shower profiles. The resulting angular distribution for direct photons, in the transverse momemtum range from 22 to 45 Ge V is found to agree favorably with the predictions of Quantum Cbromodynamics (QCD) for an interaction with a fermion (spin 1/2) propagator

  15. Twisted mass, overlap and Creutz fermions. Cut-off effects at tree-level of perturbation theory

    International Nuclear Information System (INIS)

    Cichy, K.; Kujawa, A.; Jansen, K.; Shindler, A.

    2008-02-01

    We study cutoff effects at tree-level of perturbation theory for maximally twisted mass Wilson, overlap and the recently proposed Creutz fermions. We demonstrate that all three kind of lattice fermions exhibit the expected O(a 2 ) scaling behaviour in the lattice spacing. In addition, the sizes of these cutoff effects are comparable for the three kinds of lattice fermions considered here. Furthermore, we analyze situations when twisted mass fermions are not exactly at maximal twist and when overlap fermions are studied in comparison to twisted mass fermions when the quark masses are not matched. (orig.)

  16. Real and imaginary elements of fermion mass matrices

    International Nuclear Information System (INIS)

    Masina, I.; Savoy, C.A.

    2006-01-01

    Prompted by the recent better determination of the angles of the unitarity triangle, we re-appraise the problem of finding simple fermion mass textures, possibly linked to some symmetry principle and compatible with grand unification. In particular, the indication that the angle α is close to rectangle turns out to be the crucial ingredient leading us to single out fermion mass textures whose elements are either real or purely imaginary. In terms of the five parameters ascribed to the quark sector, these textures reproduce the eight experimental data on quark mass ratios and mixings within 1σ. When embedded in an SU(5) framework, these textures suggest a common origin for quark and lepton CP violations, also linked to the spontaneous breaking of the gauge group

  17. Propagator of the lattice domain wall fermion and the staggered fermion

    International Nuclear Information System (INIS)

    Furui, S.

    2009-01-01

    We calculate the propagator of the domain wall fermion (DWF) of the RBC/UKQCD collaboration with 2 + 1 dynamical flavors of 16 3 x 32 x 16 lattice in Coulomb gauge, by applying the conjugate gradient method. We find that the fluctuation of the propagator is small when the momenta are taken along the diagonal of the 4-dimensional lattice. Restricting momenta in this momentum region, which is called the cylinder cut, we compare the mass function and the running coupling of the quark-gluon coupling a s,g1 (q) with those of the staggered fermion of the MILC collaboration in Landau gauge. In the case of DWF, the ambiguity of the phase of the wave function is adjusted such that the overlap of the solution of the conjugate gradient method and the plane wave at the source becomes real. The quark-gluon coupling a s,g1 (q) of the DWF in the region q > 1.3 GeV agrees with ghost-gluon coupling a s (q) that we measured by using the configuration of the MILC collaboration, i.e., enhancement by a factor (1 + c/q 2 ) with c ∼ 2.8 GeV 2 on the pQCD result. In the case of staggered fermion, in contrast to the ghost-gluon coupling a s (q) in Landau gauge which showed infrared suppression, the quark-gluon coupling a s,g1 (q) in the infrared region increases monotonically as q → 0. Above 2 GeV, the quark-gluon coupling a s,g1 (q) of staggered fermion calculated by naive crossing becomes smaller than that of DWF, probably due to the complex phase of the propagator which is not connected with the low energy physics of the fermion taste. An erratum to this article can be found at http://dx.doi.org/10.1007/s00601-009-0053-4. (author)

  18. Ambiguities and subtleties in fermion mass terms in practical quantum field theory

    International Nuclear Information System (INIS)

    Cheng, Yifan; Kong, Otto C.W.

    2014-01-01

    This is a review on structure of the fermion mass terms in quantum field theory, under the perspective of its practical applications in the real physics of Nature—specifically, we discuss fermion mass structure in the Standard Model of high energy physics, which successfully describes fundamental physics up to the TeV scale. The review is meant to be pedagogical, with detailed mathematics presented beyond the level one can find any easily in the textbooks. The discussions, however, bring up important subtleties and ambiguities about the subject that may be less than well appreciated. In fact, the naive perspective of the nature and masses of fermions as one would easily drawn from the presentations of fermion fields and their equations of motion from a typical textbook on quantum field theory leads to some confusing or even wrong statements which we clarify here. In particular, we illustrate clearly that a Dirac fermion mass eigenstate is mathematically equivalent to two degenerated Majorana fermion mass eigenstates at least as long as the mass terms are concerned. There are further ambiguities and subtleties in the exact description of the eigenstate(s). Especially, for the case of neutrinos, the use of the Dirac or Majorana terminology may be mostly a matter of choice. The common usage of such terminology is rather based on the broken SU(2) charges of the related Weyl spinors hence conventional and may not be unambiguously extended to cover more complicate models. - Highlights: • Structure of fermion mass terms in practical quantum field theory is reviewed. • Important subtleties and ambiguities on the subject are clarified. • A mass eigenstate Dirac fermion and two degenerated Majorana ones are equivalent. • The conventional meaning of such terminology for neutrinos is critically discussed

  19. A Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies

    Science.gov (United States)

    Lu, Wei

    2017-09-01

    We propose a Clifford algebra approach to chiral symmetry breaking and fermion mass hierarchies in the context of composite Higgs bosons. Standard model fermions are represented by algebraic spinors of six-dimensional binary Clifford algebra, while ternary Clifford algebra-related flavor projection operators control allowable flavor-mixing interactions. There are three composite electroweak Higgs bosons resulted from top quark, tau neutrino, and tau lepton condensations. Each of the three condensations gives rise to masses of four different fermions. The fermion mass hierarchies within these three groups are determined by four-fermion condensations, which break two global chiral symmetries. The four-fermion condensations induce axion-like pseudo-Nambu-Goldstone bosons and can be dark matter candidates. In addition to the 125 GeV Higgs boson observed at the Large Hadron Collider, we anticipate detection of tau neutrino composite Higgs boson via the charm quark decay channel.

  20. Nonabelian family symmetry and the origin of fermion masses and mixing angles

    International Nuclear Information System (INIS)

    Soldate, M.; Reno, M.H.; Hill, C.T.

    1986-01-01

    The origin of fermion masses and mixing angles is studied in a class of gauged family-symmetry models broken by elementary Higgs scalars at ≅10 3 TeV. It is found that large hierarchies among fermion masses can be produced more naturally in a model with four generations rather than three. (orig.)

  1. Hierarchical fermion masses and mixing angles from the flipped string

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L.; Nanopoulos, D.V. (Texas A and M Univ., College Station, TX (USA). Center for Theoretical Physics)

    1990-07-02

    We present a general method to obtain specific predictions for the fermion masses and mixings in the low-energy theory of the flipped SU(5) x U(1) superstring model. The condition of unbroken N=1 supergravity of M{sub Pl} in the presence of an anomalous U{sub A}(1) symmetry gives strong constraints on the parameters of the model. We obtain: (i) a top quark mass between 60 and 100 GeV, with values close to 100 GeV strongly favored; (ii) up- and down-type quark and lepton mass ratios and Cabibbo-Kobayashi-Maskawa mixings, which could be found consistent with their accepted values simultaneously in parameter space; (iii) a direct connection between the hierarchical fermion mass spectrum and baryon decay modes, we find p{yields}{mu}{sup +}{pi}{sup 0},anti {nu}{sub {mu}}{pi}{sup +}; n{yields}{mu}{sup +}{pi}{sup -},anti {nu}{sub {mu}}{pi}{sup 0}, with {tau}{sub p}{proportional to}{tau}{sub n}{proportional to}10{sup 35{plus minus}2} y; and (iv) a vanishing bare u quark mass that solves the strong CP problem in this model and is not in conflict with previous expectations. We stress that a full dynamical calculation would unambiguously determine these observables and hence constitute a definite test of the model. However, the whole framework is so constrained that crucial information can already be extracted from the model at this stage. (orig.).

  2. On bare and induced masses of Susskind fermions

    International Nuclear Information System (INIS)

    Mitra, P.; Weisz, P.

    1983-03-01

    It is shown that the mass matrix for Susskind fermions on the lattice cannot have more than two distinct eigenvalues if cubic symmetry is enforced. If the standard interaction is replaced by one proposed by Becher and Joos, degeneracy-lifting mass counterterms are induced. The #betta#-parameter is calculated. (orig.)

  3. Fermions from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C.

    2010-01-01

    We describe fermions in terms of a classical statistical ensemble. The states τ of this ensemble are characterized by a sequence of values one or zero or a corresponding set of two-level observables. Every classical probability distribution can be associated to a quantum state for fermions. If the time evolution of the classical probabilities p τ amounts to a rotation of the wave function q τ (t)=±√(p τ (t)), we infer the unitary time evolution of a quantum system of fermions according to a Schroedinger equation. We establish how such classical statistical ensembles can be mapped to Grassmann functional integrals. Quantum field theories for fermions arise for a suitable time evolution of classical probabilities for generalized Ising models.

  4. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    Science.gov (United States)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν 1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  5. Constraints on the mass spectrum of fourth generation fermions and Higgs bosons

    International Nuclear Information System (INIS)

    Hashimoto, Michio

    2010-01-01

    We reanalyze constraints on the mass spectrum of the chiral fourth generation fermions and the Higgs bosons for the standard model (SM4) and the two Higgs doublet model. We find that the Higgs mass in the SM4 should be larger than roughly the fourth generation up-type quark mass, while the light CP even Higgs mass in the two Higgs doublet model can be smaller. Various mass spectra of the fourth generation fermions and the Higgs bosons are allowed. The phenomenology of the fourth generation models is still rich.

  6. Fermion masses from superstrings

    International Nuclear Information System (INIS)

    Tanaka, K.

    1986-01-01

    It is assumed that the E 8 gauge group of the E 8 x E 8 heterotic superstring can be broken into SO(10) x SU(4). The mass relations among fermions m/sub u//m/sub d/ = m/sub c//m/sub s/ = m/sub t//m/sub b/ and m/sub ν e//m/sub e/ = m/sub ν mu//m/sub μ/ = m/sub ν tau//m/sub tau/ are discussed. 18 refs

  7. Supersymmetric Extension of Technicolor & Fermion Mass Generation

    DEFF Research Database (Denmark)

    Antola, Matti; Di Chiara, Stefano; Sannino, Francesco

    2012-01-01

    We provide a complete extension of Minimal Walking Technicolor able to account for the standard model fermion masses. The model is supersymmetric at energies greater or equal to the technicolor compositeness scale. We integrate out, at the supersymmetry breaking scale, the elementary Higgses. We...... tests and experimental bounds on the mass spectrum. We then turn to the composite Higgs phenomenology at the LHC and show that current data are already constraining the parameter space of the model....

  8. The origin of the first and third generation fermion masses in a technicolor scenario

    International Nuclear Information System (INIS)

    Doff, A.; Natale, A.A.

    2004-01-01

    We argue that the masses of the first and third fermionic generations, which are respectively of the order of a few MeV up to a hundred GeV, originate from a dynamical symmetry breaking mechanism leading to masses of the order αμ, where α is a small coupling constant, and μ, in the case of the first fermionic generation, is the scale of the dynamical quark mass (∼250 MeV). For the third fermion generation μ is the value of the dynamical techniquark mass (∼250 GeV). We discuss how this possibility can be implemented in a technicolor scenario, and how the mass of the intermediate generation is generated. (orig.)

  9. Coupled s-wave and d-wave states in the heavy-fermion superconductor U/sub 1-//sub x/Th/sub x/Be/sub 13/

    International Nuclear Information System (INIS)

    Langner, A.; Sahu, D.; George, T.F.

    1988-01-01

    In the heavy-fermion superconductor U/sub 1-//sub x/Th/sub x/Be/sub 13/, superconducting states coexist for thorium concentrations 0 ≤ x ≤ 0.06. Assuming s-wave and d-wave symmetries for these states, we derive a Ginzburg-Landau free-energy expression which couples s- and d-wave states and is rotationally invariant, in contrast to the free-energy expression proposed by P. Kumar and P. Woelfle [Phys. Rev. Lett. 59, 1954 (1987)]. We discuss in detail the consequences that follow from our free-energy relation. In particular, we predict that in the above system there are two eigenfrequencies associated with the dynamics of phase oscillations (internal Josephson effect) which are characteristic of the s-wave and d-wave states

  10. New fermion mass textures from anomalous U(1) symmetries with baryon and lepton number conservation

    CERN Document Server

    Leontaris, George K

    2000-01-01

    In this paper, we present solutions to the fermion mass hierarchy problem in the context of the minimal supersymmetric standard theory augmented by an anomalous family-dependent U(1)_X symmetry. The latter is spontaneously broken by non-zero vevs of a pair of singlet fields whose magnitude is determined through the D- and F-flatness conditions of the superpotential. We derive the general solutions to the anomaly cancellation conditions and show that they allow numerous choices for the U(1)_X fermion charges which give several fermion mass textures in agreement with the observed fermion mass hierarchy and mixing. Solutions with U(1)_X fermion charge assignments are found which forbid or substantially suppress the dangerous baryon and lepton number violating operators and the lepton-higgs mixing coupling while a higgs mixing mass classification of the fermion mass textures with respect to the sum of the doublet-higgs U(1)_X-charges and show that suppression of dimension-five operators naturally occurs for vario...

  11. Meson masses in electromagnetic fields with Wilson fermions

    Science.gov (United States)

    Bali, G. S.; Brandt, B. B.; Endrődi, G.; Gläßle, B.

    2018-02-01

    We determine the light meson spectrum in QCD in the presence of background magnetic fields using quenched Wilson fermions. Our continuum extrapolated results indicate a monotonous reduction of the connected neutral pion mass as the magnetic field grows. The vector meson mass is found to remain nonzero, a finding relevant for the conjectured ρ -meson condensation at strong magnetic fields. The continuum extrapolation was facilitated by adding a novel magnetic field-dependent improvement term to the additive quark mass renormalization. Without this term, sizable lattice artifacts that would deceptively indicate an unphysical rise of the connected neutral pion mass for strong magnetic fields are present. We also investigate the impact of these lattice artifacts on further observables like magnetic polarizabilities and discuss the magnetic field-induced mixing between ρ -mesons and pions. We also derive Ward-Takashi identities for QCD +QED both in the continuum formulation and for (order a -improved) Wilson fermions.

  12. Renormalization group approach to a p-wave superconducting model

    International Nuclear Information System (INIS)

    Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron

    2014-01-01

    We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.

  13. Fermions in the 5D Gravity-Scalar Standing Wave Braneworld

    OpenAIRE

    Gogberashvili, Merab; Midodashvili, Pavle

    2014-01-01

    In the article we investigate localization problem for spinor fields within the 5D standing wave braneworld with the bulk real scalar field and show that there exist normalizable fermion field zero modes on the brane.

  14. A realistic pattern of fermion masses from a five-dimensional SO(10) model

    International Nuclear Information System (INIS)

    Feruglio, Ferruccio; Patel, Ketan M.; Vicino, Denise

    2015-01-01

    We provide a unified description of fermion masses and mixing angles in the framework of a supersymmetric grand unified SO(10) model with anarchic Yukawa couplings of order unity. The space-time is five dimensional and the extra flat spatial dimension is compactified on the orbifold S 1 /(Z 2 ×Z 2 ′ ), leading to Pati-Salam gauge symmetry on the boundary where Yukawa interactions are localised. The gauge symmetry breaking is completed by means of a rather economic scalar sector, avoiding the doublet-triplet splitting problem. The matter fields live in the bulk and their massless modes get exponential profiles, which naturally explain the mass hierarchy of the different fermion generations. Quarks and leptons properties are naturally reproduced by a mechanism, first proposed by Kitano and Li, that lifts the SO(10) degeneracy of bulk masses in terms of a single parameter. The model provides a realistic pattern of fermion masses and mixing angles for large values of tan β. It favours normally ordered neutrino mass spectrum with the lightest neutrino mass below 0.01 eV and no preference for leptonic CP violating phases. The right handed neutrino mass spectrum is very hierarchical and does not allow for thermal leptogenesis. We analyse several variants of the basic framework and find that the results concerning the fermion spectrum are remarkably stable.

  15. Luther-Emery Phase and Atomic-Density Waves in a Trapped Fermion Gas

    International Nuclear Information System (INIS)

    Gao Xianlong; Rizzi, M.; Polini, Marco; Tosi, M. P.; Fazio, Rosario; Campo, V. L. Jr.; Capelle, K.

    2007-01-01

    The Luther-Emery liquid is a state of matter that is predicted to occur in one-dimensional systems of interacting fermions and is characterized by a gapless charge spectrum and a gapped spin spectrum. In this Letter we discuss a realization of the Luther-Emery phase in a trapped cold-atom gas. We study by means of the density-matrix renormalization-group technique a two-component atomic Fermi gas with attractive interactions subject to parabolic trapping inside an optical lattice. We demonstrate how this system exhibits compound phases characterized by the coexistence of spin pairing and atomic-density waves. A smooth crossover occurs with increasing magnitude of the atom-atom attraction to a state in which tightly bound spin-singlet dimers occupy the center of the trap. The existence of atomic-density waves could be detected in the elastic contribution to the light-scattering diffraction pattern

  16. Aspect of Fermion Mass Hierarchy within Flavor Democracy for Yukawa Couplings

    Science.gov (United States)

    Higuchi, Katsuichi; Yamamoto, Katsuji

    We discuss the fermion mass hierarchy by including vector-like fermions which are accommodated in E6 GUTs within flavor democracy for Yukawa couplings. In this framework, all Yukawa couplings for the standard Higgs doublet have the same strength, and all Yukawa couplings for the singlet Higgs have the same strength (New ansatz). In addition, singlet Higgs and right-handed neutrinos exist. Under this condition, the mass hierarchy mt ≫ mb ˜ mτ as well as mt ≫ mc, mu can be naturally explained.

  17. Negative-Parity Baryon Masses Using O(a)-improved Fermion Action

    Energy Technology Data Exchange (ETDEWEB)

    M. Gockeler; R. Horsley; D. Pleiter; P.E.L. Rakow; G. Schierholz; C.M. Maynard; D.G. Richards

    2001-06-01

    We present a calculation of the mass of the lowest-lying negative-parity J=1/2{sup {minus}} state in quenched QCD. Results are obtained using a non-perturbatively {Omicron}(a)-improved clover fermion action, and a splitting found between the masses of the nucleon, and its parity partner. The calculation is performed on two lattice volumes, and at three lattice spacings, enabling a study of both finite-volume and finite lattice-spacing uncertainties. A comparison is made with results obtained using the unimproved Wilson fermion action.

  18. Relativistic time-dependent Fermion-mass renormalization using statistical regularization

    Science.gov (United States)

    Kutnink, Timothy; McMurray, Christian; Santrach, Amelia; Hockett, Sarah; Barcus, Scott; Petridis, Athanasios

    2017-09-01

    The time-dependent electromagnetically self-coupled Dirac equation is solved numerically by means of the staggered-leap-frog algorithm with reflecting boundary conditions. The stability region of the method versus the interaction strength and the spatial-grid size over time-step ratio is established. The expectation values of several dynamic operators are then evaluated as functions of time. These include the fermion and electromagnetic energies and the fermion dynamic mass. There is a characteristic, non-exponential, oscillatory dependence leading to asymptotic constants of these expectation values. In the case of the fermion mass this amounts to renormalization. The dependence of the expectation values on the spatial-grid size is evaluated in detail. Furthermore, the contribution of positive and negative energy states to the asymptotic values and the gauge fields is analyzed. Statistical regularization, employing a canonical ensemble whose temperature is the inverse of the grid size, is used to remove the grid-size and momentum-dependence and produce a finite result in the continuum limit.

  19. Fermion masses in potential models of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Jaroszewicz, T.

    1983-01-01

    A class of models of spontaneous chiral symmetry breaking is considered, based on the Hamiltonian with an instantaneous potential interaction of fermions. An explicit mass term mΨ-barΨ is included and the physical meaning of the mass parameter is discussed. It is shown that if the Hamiltonian is normal-ordered (i.e. self-energy omitted), then the mass m introduced in the Hamiltonian is not the current mass appearing in the current algebra relations. (author)

  20. Improved bag models of P-wave baryons

    International Nuclear Information System (INIS)

    Wang Fan; Wong Chunwa

    1988-01-01

    Problems in two previous bag-model calculations of P-wave baryon states are pointed out. The two-body matrix elements used in one of these models, the Myhrer-Wroldsen bag model, have now been revised and corrected by Myhrer, Umino and Wroldsen. We use their corrected matrix elements to construct simple bag models in which baryon masses are stabilized against collapse by using a finite pion size. We find that baryon masses in both ground and excited states can be fitted with the same model parameters. Models with small-bag baryons of the type proposed by Brown and Rho are then obtained. Typical bag radii are 0.5 fm for N, 0.6 fm for Δ and 0.7 fm for P-wave nonstrange baryons. In these models, the mixing angles are still unsatisfactory, while inadequacy in the treatment of center-of-mass motion found in an earlier paper persists. These results are briefly discussed. especially in connection with skyrmion models. (orig.)

  1. Reactive effects of core fermion excitations on the inertial mass of a vortex

    International Nuclear Information System (INIS)

    Simanek, E.

    1995-01-01

    The time-dependent Schroedinger equation for a fermion two-dimensional superfluid containing a moving vortex is solved using the adiabatic approximation. The expectation value of the linear momentum of the vortex is found dominated by core fermion excitations. The resulting inertial vortex mass, obtained in the adiabatic limit, is larger than the standard core mass by a factor of (k F ξ) 2 where ξ is the coherence length at T=0. Anamalous velocity dependence of the mass, associated with the breakdown of the adiabatic approximation, is predicted

  2. Flavor symmetries and fermion masses

    International Nuclear Information System (INIS)

    Rasin, A.

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V ub /V cb = √m u /m c and V td /V ts = √m d /m s , are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay β → sγ constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tanΒ, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model

  3. Effective Lagrangian approach to the fermion mass problem

    International Nuclear Information System (INIS)

    Shaw, D.S.; Volkas, R.R.

    1994-01-01

    An effective theory is proposed, combining the standard gauge group SU(3) C direct-product SU(2) L direct-product U(1) Y with a horizontal discrete symmetry. By assigning appropriate charges under this discrete symmetry to the various fermion fields and to (at least) two Higgs doublets, the broad spread of the fermion mass and mixing angle spectrum can be explained as a result of suppressed, non-renormalizable terms. A particular model is constructed which achieves the above while simultaneously suppressing neutral Higgs-induced flavour-changing processes. 9 refs., 3 tabs., 1 fig

  4. Search for a low-mass neutral Higgs boson with suppressed couplings to fermions using events with multiphoton final states

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2016-06-01

    A search for a Higgs boson with suppressed couplings to fermions, hf, assumed to be the neutral, lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could be produced via p p ¯→H±hf→W*hfhf→4 γ +X , where H± is a charged Higgs boson. This analysis uses all events with at least three photons in the final state from proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.2 fb-1. No evidence of a signal is observed in the data. Values of Higgs-boson masses between 10 and 100 GeV /c2 are excluded at 95% Bayesian credibility.

  5. Sea of Majorana fermions from pseudo-scalar superconducting order in three dimensional Dirac materials.

    Science.gov (United States)

    Salehi, Morteza; Jafari, S A

    2017-08-15

    We suggest that spin-singlet pseudo-scalar s-wave superconducting pairing creates a two dimensional sea of Majorana fermions on the surface of three dimensional Dirac superconductors (3DDS). This pseudo-scalar superconducting order parameter Δ 5 , in competition with scalar Dirac mass m, leads to a topological phase transition due to band inversion. We find that a perfect Andreev-Klein reflection is guaranteed by presence of anomalous Andreev reflection along with the conventional one. This effect manifests itself in a resonant peak of the differential conductance. Furthermore, Josephson current of the Δ 5 |m|Δ 5 junction in the presence of anomalous Andreev reflection is fractional with 4π period. Our finding suggests another search area for condensed matter realization of Majorana fermions which are beyond the vortex-core of p-wave superconductors. The required Δ 5 pairing can be extrinsically induced by a conventional s-wave superconductor into a three dimensional Dirac material (3DDM).

  6. Elastic I=3 /2 p -wave nucleon-pion scattering amplitude and the Δ (1232) resonance from Nf=2+1 lattice QCD

    DEFF Research Database (Denmark)

    Andersen, Christian Walther; Bulava, John; Hörz, Ben

    2018-01-01

    We present the first direct determination of meson-baryon resonance parameters from a scattering amplitude calculated using lattice QCD. In particular, we calculate the elastic I=3/2, p-wave nucleon-pion amplitude on a single ensemble of Nf=2+1 Wilson-clover fermions with mπ=280 MeV and mK=460 Me......V. At these quark masses, the Δ(1232) resonance pole is found close to the N-π threshold and a Breit-Wigner fit to the amplitude gives gΔNπBW=19.0(4.7) in agreement with phenomenological determinations.......We present the first direct determination of meson-baryon resonance parameters from a scattering amplitude calculated using lattice QCD. In particular, we calculate the elastic I=3/2, p-wave nucleon-pion amplitude on a single ensemble of Nf=2+1 Wilson-clover fermions with mπ=280 MeV and mK=460 Me...

  7. The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form

    International Nuclear Information System (INIS)

    Mourad, J.; Sazdjian, H.

    1994-01-01

    The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs

  8. Natural fermion mass hierarchy and mixings in family unification

    International Nuclear Information System (INIS)

    Dent, James B.; Feger, Robert; Kephart, Thomas W.; Nandi, S.

    2011-01-01

    We present an SU(9) model of family unification with three light chiral families, and a natural hierarchy of charged fermion masses and mixings. The existence of singlet right handed neutrinos with masses about two orders of magnitude smaller than the GUT scale, as needed to understand the light neutrinos masses via the see-saw mechanism, is compelling in our model.

  9. Negative-parity baryon masses using an Ο(α)-improved fermion action

    International Nuclear Information System (INIS)

    Goeckeler, M.; Rakow, P.E.L.; Maynard, C.M.; Richards, D.G.; Old Dominion Univ., Norfolk, VA

    2001-06-01

    We present a calculation of the mass of the lowest-lying negative-parity J = 1/2 - state in quenched QCD. Results are obtained using a non-perturbatively O(a)-improved clover fermion action, and a splitting is found between the masses of the nucleon, and its parity partner. The calculation is performed on two lattice volumes and at three lattice spacings, enabling a study of both finite-volume and finite lattice-spacing uncertainties. A comparison is made with results obtained using the unimproved Wilson fermion action. (orig.)

  10. Searches for Fourth Generation Fermions

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.; /Fermilab

    2011-09-01

    We present the results from searches for fourth generation fermions performed using data samples collected by the CDF II and D0 Detectors at the Fermilab Tevatron p{bar p} collider. Many of these results represent the most stringent 95% C. L. limits on masses of new fermions to-date. A fourth chiral generation of massive fermions with the same quantum numbers as the known fermions is one of the simplest extensions of the SM with three generations. The fourth generation is predicted in a number of theories, and although historically have been considered disfavored, stands in agreement with electroweak precision data. To avoid Z {yields} {nu}{bar {nu}} constraint from LEP I a fourth generation neutrino {nu}{sub 4} must be heavy: m({nu}{sub 4}) > m{sub Z}/2, where m{sub Z} is the mass of Z boson, and to avoid LEP II bounds a fourth generation charged lepton {ell}{sub 4} must have m({ell}{sub 4}) > 101 GeV/c{sup 2}. At the same time due to sizeable radiative corrections masses of fourth generation fermions cannot be much higher the current lower bounds and masses of new heavy quarks t' and b' should be in the range of a few hundred GeV/c{sup 2}. In the four-generation model the present bounds on the Higgs are relaxed: the Higgs mass could be as large as 1 TeV/c{sup 2}. Furthermore, the CP violation is significantly enhanced to the magnitude that might account for the baryon asymmetry in the Universe. Additional chiral fermion families can also be accommodated in supersymmetric two-Higgs-doublet extensions of the SM with equivalent effect on the precision fit to the Higgs mass. Another possibility is heavy exotic quarks with vector couplings to the W boson Contributions to radiative corrections from such quarks with mass M decouple as 1/M{sup 2} and easily evade all experimental constraints. At the Tevatron p{bar p} collider 4-th generation chiral or vector-like quarks can be either produced strongly in pairs or singly via electroweak production, where the

  11. Effects of a potential fourth fermion generation on the Higgs boson mass bounds

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl

    2010-12-01

    We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)

  12. Texture of fermion mass matrices in partially unified theories

    International Nuclear Information System (INIS)

    Dutta, B.; Texas Univ., Austin, TX; Nandi, S.; Texas Univ., Austin, TX

    1996-01-01

    We investigate the texture of fermion mass matrices in theories with partial unification (for example, SU(2) L x SU(2) R x SU(4) c ) at a scale of ∼ 10 12 GeV. Starting with the low energy values of the masses and the mixing angles, we find only two viable textures with at most four texture zeros. One of these corresponds to a somewhat modified Fritzsch textures. A theoretical derivation of these textures leads to new interesting relations among the masses and the mixing angles. 13 refs

  13. Third-generation effects on fermion mass predictions in supersymmetric grand unified theories

    International Nuclear Information System (INIS)

    Naculich, S.G.

    1993-01-01

    Relations among fermion masses and mixing angles at the scale of grand unification are modified at lower energies by renormalization group running induced by gauge and Yukawa couplings. In supersymmetric theories, the b quark and τ lepton Yukawa couplings, as well as the t quark coupling, may cause significant running if tanβ, the ratio of Higgs field expectation values, is large. We present approximate analytic expressions for the scaling factors for fermion masses and CKM matrix elements induced by all three third generation Yukawa couplings. We then determine how running caused by the third generation of fermions affects the predictions arising from three possible forms for the Yukawa coupling matrices at the GUT scale: the Georgi-Jarlskog, Giudice, and Fritzsch textures

  14. Baryon-number generation in supersymmetric unified models: the effect of supermassive fermions

    International Nuclear Information System (INIS)

    Kolb, E.W.; Raby, S.

    1983-01-01

    In supersymmetric unified models, baryon-number-violating reactions may be mediated by supermassive fermions in addition to the usual supermassive bosons. The effective low-energy baryon-number-violating cross section for fermion-mediated reactions is sigma/sub DeltaB/approx.g 4 /m 2 , where g is a coupling constant and m is the supermassive fermion mass, as opposed to sigma/sub DeltaB/approx.g 4 s/m 4 for scalar- or vector-mediated reactions (√s is the center-of-mass energy). Since the fermion-mediated cross section is larger at low energy, it is more effective at damping the baryon number produced in decay of the supermassive particles. In this paper we calculate baryon-number generation in models with fermion-mediated baryon-number-violating reactions, and discuss implications for supersymmetric model building

  15. Renormalization of fermion mixing

    International Nuclear Information System (INIS)

    Schiopu, R.

    2007-01-01

    Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by

  16. Renormalization of fermion mixing

    Energy Technology Data Exchange (ETDEWEB)

    Schiopu, R.

    2007-05-11

    Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by

  17. SO(10) - Grand unification and fermion masses

    International Nuclear Information System (INIS)

    Oezer, A.D.

    2005-01-01

    In this work, we study SO(10) grand unification in its full extent by using different explicit matrix representations which exhibit the structure of SO(10) in a very transparent way. Our approach consists mainly of two stages: We derive the explicit expressions of the mass-eigenvalues and mass-eigenstates of the physical gauge bosons from a mass squared-matrix that contains all the information about the mixing parameters among the gauge fields and the phases which are sources for CP violation. In the light of this analysis, we derive the explicit expressions for the interaction Lagrangians of the charged currents, the neutral currents and the charged and colored currents in SO(10). We present explicit expressions of the vector and axial-vector couplings of the two neutral currents in SO(10). We show how the baryon, lepton and baryon minus lepton number violating processes and their explicit CP violating phases are accommodated in the SO(10) theory. The Higgs potential that we use to implement in the Higgs mechanism is constructed in a most general fashion through a careful study of the Higgs fields of SO(10), where we give special emphasis on illustrating the explicit matrix representation of these Higgs fields. The potential part of the Higgs Lagrangian will give us the properties of the minimum of the vacuum, and the kinetic part will give us the mass-squared matrix of the gauge bosons via spontaneous symmetry breakdown. The same Higgs multiplets will be coupled to fermions through a democratic Yukawa matrix. Thereby, we derive explicit expressions for the fermion masses of the third family including Majorana and Dirac masses for neutrinos. We introduce a flavor-eigenbasis for neutrinos and find the mass-eigenstates and mass-eigenvalues of the neutrinos. Explicit expressions for CP violation in the neutrino sector are obtained. In the second stage of our work, we evaluate all the above mentioned quantities. In addition, we present the values of the physical

  18. Modulational instability, solitons and periodic waves in a model of quantum degenerate boson-fermion mixtures

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym

    2007-01-01

    In this paper, we study a system of coupled nonlinear Schroedinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves

  19. b-τ unification with gaugino and s fermion mass non-universality

    International Nuclear Information System (INIS)

    Pallis, C.

    2004-01-01

    In the context of a SUSY GUT inspired MSSM version, the low energy consequences of the asymptotic b-τ Yukawa coupling unification are examined, under the assumption of universal or non-universal boundary conditions for the gaugino and s fermion masses. Gaugino non-universality is applied, so that the SUSY corrections to b-quark mass can be reconciled with the present experimental data on muon anomalous magnetic moment. Restrictions on the parameter space, originating from the cold dark matter abundance in the universe, the inclusive branching ratio of b→sγ and the accelerator data are, also, investigated and the scalar neutralino-proton cross section is calculated. In the case of a bino-like LSP and universal boundary conditions for the s fermion masses, the constraints, arising from the cold dark matter and BR(b→sγ) can be simultaneously satisfied, mainly thanks to the A-pole effect or the neutralino-stau coannihilations. In addition, s fermion mass non-universality provides the possibility of new coannihilation phenomena (neutralino-sbottom or neutralino-tau sneutrino-stau), which facilitate the simultaneous satisfaction of all the above requirements. In both cases above, the neutralino abundance can essentially decrease for a wino or higgsino like LSP creating regions of parameter space with additional neutralino-chargino and/or heavier neutralino coannihilations. The neutralino-sbottom mass proximity significantly ameliorates the detectability of LSP

  20. Shifts and widths of p-wave confinement induced resonances in atomic waveguides

    International Nuclear Information System (INIS)

    Saeidian, Shahpoor; Melezhik, Vladimir S; Schmelcher, Peter

    2015-01-01

    We develop and analyze a theoretical model to study p-wave Feshbach resonances of identical fermions in atomic waveguides by extending the two-channel model of Lange et al (2009 Phys. Rev. A 79 013622) and Saeidian et al (2012 Phys. Rev. A 86 062713). The experimentally known parameters of Feshbach resonances in free space are used as input of the model. We calculate the shifts and widths of p-wave magnetic Feshbach resonance of 40 K atoms emerging in harmonic waveguides as p-wave confinement induced resonance (CIR). Particularly, we show a possibility to control the width and shift of the p-wave CIR by the trap frequency and the applied magnetic field which could be used in corresponding experiments. Our analysis also demonstrates the importance of the inclusion of the effective range in the computational schemes for the description of the p-wave CIRs contrary to the case of s-wave CIRs where the influence of this term is negligible. (paper)

  1. Light hadrons from Nf=2+1+1 dynamical twisted mass fermions

    NARCIS (Netherlands)

    Baron, R.; Blossier, B.; Boucaud, P.; Carbonell, J.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Michael, C.; Montvay, I.; Pallante, E.; Pène, O.; Reker, S.; Urbach, C.; Wagner, M.; Wenger, U.; Collaboration, for the ETM

    2011-01-01

    We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (Nf=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a~0.06

  2. Mass anomalous dimension in SU(2) with six fundamental fermions

    DEFF Research Database (Denmark)

    Bursa, Francis; Del Debbio, Luigi; Keegan, Liam

    2010-01-01

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. We measure the running of the coupling and the mass in the Schroedinger Functional scheme. We observe very slow running of the coupling constant. We measure the mass anomalous dimension gamma, and find it is between 0.13...

  3. Topological susceptibility from twisted mass fermions using spectral projectors

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, E. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Forschungszentrum Juelich (Germany). IAS; Forschungszentrum Juelich (Germany). IKP; Forschungszentrum Juelich (Germany). JCHP; Collaboration: European Twisted Mass Collaboration

    2013-12-15

    We discuss the computation of the topological susceptibility using the method of spectral projectors and dynamical twisted mass fermions. We present our analysis concerning the O(a)- improvement of the topological susceptibility and we show numerical results for N{sub f}=2 and N{sub f}=2+1+1 flavours, performing a study of the quark mass dependence in terms of leading order chiral perturbation theory.

  4. A scan for models with realistic fermion mass patterns

    International Nuclear Information System (INIS)

    Bijnens, J.; Wetterich, C.

    1986-03-01

    We consider models which have no small Yukawa couplings unrelated to symmetry. This situation is generic in higher dimensional unification where Yukawa couplings are predicted to have strength similar to the gauge couplings. Generations have then to be differentiated by symmetry properties and the structure of fermion mass matrices is given in terms of quantum numbers alone. We scan possible symmetries leading to realistic mass matrices. (orig.)

  5. Light quark masses with Nf = 2 Wilson fermions

    International Nuclear Information System (INIS)

    Eicker, N.; Lippert, Th.; Orth, B.; Schilling, K.

    2002-01-01

    We present new data on the mass of the light and strange quarks from SESAM/TχL. The results were obtained on lattice-volumes of 16 3 x 32 and 24 3 x 40 points, with the possibility to investigate finite-size effects. Since the SESAM/TχL ensembles at β = 5.6 have been complemented by configurations with β = 5.5, moreover, we are now able to attempt the continuum extrapolation (CE) of the quark masses with standard Wilson fermions

  6. Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements

    International Nuclear Information System (INIS)

    Evers, Joerg; Qamar, Shahid; Zubairy, M. Suhail

    2007-01-01

    We discuss localization and center-of-mass wave-function measurement of a quantum particle using multiple simultaneous dispersive interactions of the particle with different standing-wave fields. In particular, we consider objects with an internal structure consisting of a single ground state and several excited states. The transitions between ground and the corresponding excited states are coupled to the light fields in the dispersive limit, thus giving rise to a phase shift of the light field during the interaction. We show that multiple simultaneous measurements allow both an increase in the measurement or localization precision in a single direction and the performance of multidimensional measurements or localization. Further, we show that multiple measurements may relax the experimental requirements for each individual measurement

  7. Simulating lattice fermions by microcanonically averaging out the nonlocal dependence of the fermionic action

    International Nuclear Information System (INIS)

    Azcoiti, V.; Cruz, A.; Di Carlo, G.; Grillo, A.F.; Vladikas, A.

    1991-01-01

    We attempt to increase the efficiency of simulations of dynamical fermions on the lattice by calculating the fermionic determinant just once for all the values of the theory's gauge coupling and flavor number. Our proposal is based on the determination of an effective fermionic action by the calculation of the fermionic determinant averaged over configurations at fixed gauge energy. The feasibility of our method is justified by the observed volume dependence of the fluctuations of the logarithm of the determinant. The algorithm we have used in order to calculate the fermionic determinant, based on the determination of all the eigenvalues of the fermionic matrix at zero mass, also enables us to obtain results at any fermion mass, with a single fermionic simulation. We test the method by simulating compact lattice QED, finding good agreement with other standard calculations. New results on the phase transition of compact QED with massless fermions on 6 4 and 8 4 lattices are also presented

  8. Diffraction of ultracold fermions by quantized light fields: Standing versus traveling waves

    International Nuclear Information System (INIS)

    Meiser, D.; Search, C.P.; Meystre, P.

    2005-01-01

    We study the diffraction of quantum-degenerate fermionic atoms off of quantized light fields in an optical cavity. We compare the case of a linear cavity with standing-wave modes to that of a ring cavity with two counterpropagating traveling wave modes. It is found that the dynamics of the atoms strongly depends on the quantization procedure for the cavity field. For standing waves, no correlations develop between the cavity field and the atoms. Consequently, standing-wave Fock states yield the same results as a classical standing wave field while coherent states give rise to a collapse and revivals in the scattering of the atoms. In contrast, for traveling waves the scattering results in quantum entanglement of the radiation field and the atoms. This leads to a collapse and revival of the scattering probability even for Fock states. The Pauli exclusion principle manifests itself as an additional dephasing of the scattering probability

  9. Mixed meson masses with domain-wall valence and staggered sea fermions

    International Nuclear Information System (INIS)

    Orginos, Kostas; Walker-Loud, Andre

    2008-01-01

    Mixed action lattice calculations allow for an additive lattice-spacing-dependent mass renormalization of mesons composed of one sea and one valence quark, regardless of the type of fermion discretization methods used in the valence and sea sectors. The value of the mass renormalization depends upon the lattice actions used. This mixed meson mass shift is an important lattice artifact to determine for mixed action calculations; because it modifies the pion mass, it plays a central role in the low-energy dynamics of all hadronic correlation functions. We determine the leading order, O(a 2 ), and next-to-leading order, O(a 2 m π 2 ), additive mass shift of valence-sea mesons for a mixed lattice action with domain-wall valence fermions and rooted staggered sea fermions, relevant to the majority of current large scale mixed action lattice efforts. We find that, on the asqtad-improved coarse MILC lattices, this additive mass shift is well parametrized in lattice units by Δ(am) 2 =0.034(2)-0.06(2)(am π ) 2 , which in physical units, using a=0.125 fm, corresponds to Δ(m) 2 =(291±8 MeV) 2 -0.06(2)m π 2 . In terms of the mixed action effective field theory parameters, the corresponding mass shift is given by a 2 Δ Mix =(316±4 MeV) 2 at leading order plus next-to-leading order corrections including the necessary chiral logarithms for this mixed action calculation, determined in this work. Within the precision of our calculation, one cannot distinguish between the full next-to-leading order effective field theory analysis of this additive mixed meson mass shift and the parametrization given above.

  10. Fermionic quantum critical point of spinless fermions on a honeycomb lattice

    International Nuclear Information System (INIS)

    Wang, Lei; Corboz, Philippe; Troyer, Matthias

    2014-01-01

    Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν=0.80(3) and η=0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states. (paper)

  11. Mass anomalous dimension and running of the coupling in SU(2) with six fundamental fermions

    DEFF Research Database (Denmark)

    Bursa, Francis; Del Debbio, Luigi; Keegan, Liam

    2010-01-01

    We simulate SU(2) gauge theory with six massless fundamental Dirac fermions. By using the Schr\\"odinger Functional method we measure the running of the coupling and the fermion mass over a wide range of length scales. We observe very slow running of the coupling and construct an estimator for the...

  12. Nucleon scalar matrix elements with N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-12-15

    We investigate scalar matrix elements of the nucleon using N{sub f}=2+1+1 flavors of maximally twisted mass fermions at a fixed value of the lattice spacing of a{approx}0.078 fm. We compute disconnected contributions to the relevant three-point functions using an efficient noise reduction technique. Using these methods together with an only multiplicative renormalization applicable for twisted mass fermions, allows us to obtain accurate results in the light and strange sector. (orig.)

  13. A role of 75sub(H) in fermion mass hierarchy

    International Nuclear Information System (INIS)

    Kim, J.E.; Ozer, M.

    1983-08-01

    It is pointed out that the second generation fermions can have a natural mass relation msub(μ)=3msub(s) at Msub(GUT) if SU(5) symmetry breaking occurs through 75sub(H) and 5sub(H). It is the first order supergravity effect and small Yukawa coupling is not necessary. (author)

  14. Competing p-wave orders

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P; Pantelidou, Christiana

    2014-01-01

    We construct electrically charged, asymptotically AdS 5 black hole solutions that are dual to d = 4 CFTs in a superfluid phase with either p-wave or (p + ip)-wave order. The two types of black holes have non-vanishing charged two-form in the bulk and appear at the same critical temperature in the unbroken phase. Both the p-wave and the (p + ip)-wave phase can be thermodynamically preferred, depending on the mass and charge of the two-form, and there can also be first order transitions between them. The p-wave black holes have a helical structure and some of them exhibit the phenomenon of pitch inversion as the temperature is decreased. Both the p-wave and the (p + ip)-wave black holes have zero entropy density ground states at zero temperature and we identify some new ground states which exhibit scaling symmetry, including a novel scenario for the emergence of conformal symmetry in the IR. (paper)

  15. Fermion mass hierarchies in low-energy supergravity and superstring models

    International Nuclear Information System (INIS)

    Binetruy, P.

    1995-01-01

    We investigate the problem of the fermion mass hierarchy in supergravity models with flat directions of the scalar potential associated with some gauge singlet moduli fields. The low-energy Yukawa couplings are non-trivial homogeneous functions of the moduli and a geometric constraint between them plays, in a large class of models, a crucial role in generating hierarchies. Explicit examples are given for no-scale type supergravity models. The Yukawa couplings are dynamical variables at low energy, to be determined by a minimization process which amounts to fixing ratios of the moduli fields. The Minimal Supersymmetric Standard Model is studied and the constraints needed on the parameters in order to have a top quark much heavier than the other fermions are worked out. The bottom mass is explicitly computed and shown to be compatible with the experimental data for a large region of the parameter space. ((orig.))

  16. Origin of fermion masses and quark mixing without of fundamental scalars

    International Nuclear Information System (INIS)

    Dyatlov, I.T.

    1991-01-01

    Hierarchy of masses of fermion generation and the properties of the weak mixing matrix give evidence for the mechanism in which the fourth generation condensate and new vector boson are necessary elements. Rather large value of neutral transitions between heavy flavours could serve as a main experimental manifestation of the suggested mechanism

  17. Approximative analytic study of fermions in magnetar's crust; ultra-relativistic plane waves, Heun and Mathieu solutions and beyond

    Science.gov (United States)

    Dariescu, Marina-Aura; Dariescu, Ciprian

    2012-10-01

    Working with a magnetic field periodic along Oz and decaying in time, we deal with the Dirac-type equation characterizing the fermions evolving in magnetar's crust. For ultra-relativistic particles, one can employ the perturbative approach, to compute the conserved current density components. If the magnetic field is frozen and the magnetar is treated as a stationary object, the fermion's wave function is expressed in terms of the Heun's Confluent functions. Finally, we are extending some previous investigations on the linearly independent fermionic modes solutions to the Mathieu's equation and we discuss the energy spectrum and the Mathieu Characteristic Exponent.

  18. Exact solutions to the center-of-mass problem in a model theory

    International Nuclear Information System (INIS)

    de Forest, T. Jr.

    1980-01-01

    A model theory, standard time-independent perturbation theory in a harmonic oscillator shell model basis, is used to investigate various aspects of the center-of-mass problem. In this model it is shown that the center-of-mass problem can be solved by projection techniques, but that the way in which one projects is crucial. The appropriate projection functions are found to be const x R/sup -3/2/ for wave function projection and 1 for density projection. The former illustrates, among other things, that the center-of-mass problem cannot be solved by simply eliminating the spurious components of the wave function. The latter agrees with the Gartenhaus-Schwartz prescription. Also, explicit center-of-mass corrections are calculated

  19. Nucleon form factors with NF=2 twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, C.; Korzec, T.; Brinet, M.; Carbonell, J.; Harraud, P.A.; Jansen, K.

    2009-10-01

    We present results on the electromagnetic and axial nucleon form factors using two degenerate flavors of twisted mass fermions on lattices of spatial size 2.1 fm and 2.7 fm and a lattice spacing of about 0.09 fm. We consider pion masses in the range of 260-470MeV.We chirally extrapolate results on the nucleon axial charge, the isovector Dirac and Pauli root mean squared radii and magnetic moment to the physical point and compare to experiment. (orig.)

  20. Continuous wave protocol for simultaneous polarization and optical detection of P1-center electron spin resonance

    Science.gov (United States)

    Kamp, E. J.; Carvajal, B.; Samarth, N.

    2018-01-01

    The ready optical detection and manipulation of bright nitrogen vacancy center spins in diamond plays a key role in contemporary quantum information science and quantum metrology. Other optically dark defects such as substitutional nitrogen atoms (`P1 centers') could also become potentially useful in this context if they could be as easily optically detected and manipulated. We develop a relatively straightforward continuous wave protocol that takes advantage of the dipolar coupling between nitrogen vacancy and P1 centers in type 1b diamond to detect and polarize the dark P1 spins. By combining mutual spin flip transitions with radio frequency driving, we demonstrate the simultaneous optical polarization and detection of the electron spin resonance of the P1 center. This technique should be applicable to detecting and manipulating a broad range of dark spin populations that couple to the nitrogen vacancy center via dipolar fields, allowing for quantum metrology using these spin populations.

  1. Interacting fermions in two dimensions: Beyond the perturbation theory

    International Nuclear Information System (INIS)

    Gangadharaiah, S.; Maslov, D.L.; Chubukov, A.V.; Glazman, L.I.

    2005-05-01

    We consider a system of 2D fermions with short-range interaction. A straightforward perturbation theory is shown to be ill-defined even for an infinitesimally weak interaction, as the perturbative series for the self-energy diverges near the mass shell. We show that the divergences result from the interaction of fermions with the zero-sound collective mode. By re-summing the most divergent diagrams, we obtain a closed form of the self-energy near the mass shell. The spectral function exhibits a threshold feature at the onset of the emission of the zero-sound waves. We also show that the interaction with the zero sound does not affect a non- analytic, T 2 -part of the specific heat. (author)

  2. Fermion masses and Higgs physics in grand unified theories

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, Abdul Aziz

    2010-03-12

    The Standard model of particle physics is a very successful theory of strong weak and electromagnetic interactions. This theory is perturbative at sufficiently high energies and renormalizable thus it describes these interactions at quantum level. However it has a number of limitations, one being the fact that it has 28 free parameters assuming massive neutrinos. Within the Standard model these parameters can not be explained, however they can be accommodated in the standard theory. Particularly the masses of the fermions are not predicted by the theory. The existence of the neutrino masses can be regarded as the first glimpse of the physics beyond the standard model. In this thesis we have described the quark and lepton masses and mixings in context of non-SUSY SO(10) and four zero texture (FZT). In the four zero texture case the fermion masses and mixing can be related. We have made some predictions using tribimaximal mixing, the near tribimaximal (TBM) mixing and the triminimal parameterization. Our results show that under the TBM the neutrinos have normal, but weak hierarchy. Under near tribimaximal mixing and the triminimal parameterization we find that the neutrino masses in general increase, if the value of solar angle increases from its TBM value and vice versa. It appears that the neutrinos become more and more degenerate for solar angle values higher than TBM value and hierarchical for lower values of solar angle. We also briefly discuss neutrino parameters in the SUSY SO(10) theories. An overview of SUSY SO(10) theories and proton decay is also presented. (orig.)

  3. Experimental Observation of Three-Component New Fermions in Topological Semimetal MoP

    Science.gov (United States)

    Lv, B. Q.; Feng, Z.-L.; Xu, Q.-N.; Ma, J.-Z.; Kong, L.-Y.; Richard, Pierre; Huang, Y.-B.; Strocov, V. N.; Fang, C.; Weng, H.-M.; Shi, Y.-G.; Qian, Tian; Ding, Hong; Paul Scherrer Institute, Swiss Light Source, CH-5232 Villigen PSI, Switzerland Team; Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics Team; University of Chinese Academy of Sciences, Beijing 100190, China Team; Collaborative Innovation Center of Quantum Matter, Beijing, China Collaboration; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Team

    Condensed matter systems can host quasiparticle excitations that are analogues to elementary particles such as Majorana, Weyl, and Dirac fermions. Recent advances in band theory have expanded the classification of fermions in crystals, and revealed crystal symmetry-protected electron excitations that have no high-energy counterparts. Here, using angle-resolved photoemission spectroscopy, we demonstrate the existence of a triply degenerate point in the electronic structure of MoP crystal, where the quasiparticle excitations are beyond the Majorana-Weyl-Dirac classification. Furthermore, we observe pairs of Weyl points in the bulk electronic structure coexisting with the new fermions, thus introducing a platform for studying the interplay between different types of fermions. We thank Binbin Fu, Nan Xu, and Xin Gao for the assistance in the ARPES experiments.

  4. Effects of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim; Jansen, Karl

    2010-12-01

    We study the effect of a potential fourth fermion generation on the upper and lower Higgs boson mass bounds. This investigation is based on the numerical evaluation of a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. In particular, the considered model obeys a Ginsparg-Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. We present our results on the modification of the upper and lower Higgs boson mass bounds induced by the presence of a hypothetical very heavy fourth quark doublet. Finally, we compare these findings to the standard scenario of three fermion generations. (orig.)

  5. A comparison of the cut-off effects for twisted mass, overlap and Creutz fermions at tree-level of perturbation theory

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Kujawa, Agnieszka

    2008-11-01

    In this paper we investigate the cutoff effects at tree-level of perturbation theory for three different lattice regularizations of fermions - maximally twisted mass Wilson, overlap and Creutz fermions. We show that all three kinds of fermions exhibit the expected O(a 2 ) scaling behaviour in the lattice spacing. Moreover, the size of these cutoff effects for the considered quantities i.e. the pseudoscalar correlation function C PS , the mass m PS and the decay constant f PS is comparable for all of them. (orig.)

  6. Fermion mass hierarchy as a consequence of the spontaneous breakdown of the four-flavor symmetry

    International Nuclear Information System (INIS)

    Cveti, M.

    1985-01-01

    We study the fermion mass matrix in the case of four fermionic flavors u, d, c, and s. The original Lagrangian of the effective gauge theory respects the full four-flavor symmetry and fermions are massless. We analyze a vacuum expectation pattern of the elementary Higgs-field multiplet Phi/sub a/b [(a,b) = u,d,c,s]. Nonzero vacuum expectation values of Phi spontaneously break the original flavor symmetry with fermionic masses being directly proportional to these vacuum expectation values. In the Higgs potential, hard terms in Phi respect the global symmetry SU(4)/sub L/ x SU(4)/sub R/ of four flavors while soft terms in Psi break this symmetry down to the effective anomaly-free gauge group SU(2)/sub L//sup e/+μ x SU(2)/sub R//sup e/+μ. These soft terms are due to radiative as well as nonperturbative effects. Such a symmetry structure of the Higgs potential can be motivated by the underlying preonic dynamics. The desired solution, i.e., the proper interfamily and intrafamily hierarchy as well as the desired Cabibbo mixing angle, can emerge as a consequence of a subtle interplay between the soft terms and certain hard terms of the Higgs potential

  7. (S)fermion masses and lepton flavor violation. A democratic approach

    International Nuclear Information System (INIS)

    Hamaguchi, K.; Kakizaki, Mitsuru; Yamaguchi, Masahiro

    2004-01-01

    It is well-known that flavor mixing among the sfermion masses must be quite suppressed to survive various FCNC experimental bounds. One of the solutions to this supersymmetric FCNC problem is an alignment mechanism in which sfermion masses and fermion masses have some common origin and thus they are somehow aligned to each other. We propose a democratic approach to realize this idea, and illustrate how it has different predictions in slepton masses as well as lepton flavor violation from a more conventional minimal supergravity approach. This talk is based on our work in Ref. 1. (author)

  8. A comparison of the cut-off effects for twisted mass, overlap and Creutz fermions at tree-level of perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof; Kujawa, Agnieszka [Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Gonzalez Lopez, Jenifer [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik]|[Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-11-15

    In this paper we investigate the cutoff effects at tree-level of perturbation theory for three different lattice regularizations of fermions - maximally twisted mass Wilson, overlap and Creutz fermions. We show that all three kinds of fermions exhibit the expected O(a{sup 2}) scaling behaviour in the lattice spacing. Moreover, the size of these cutoff effects for the considered quantities i.e. the pseudoscalar correlation function C{sub PS}, the mass m{sub PS} and the decay constant f{sub PS} is comparable for all of them. (orig.)

  9. Partially quenched study of strange baryon with Nf=2 twisted mass fermions

    International Nuclear Information System (INIS)

    Drach, Vincent; Brinet, Mariane; Carbonell, Jaume

    2009-06-01

    We present results on the mass of the baryon octet and decuplet using two flavors of light dynamical twisted mass fermions. The strange quark mass is fixed to its physical value from the kaon sector in a partially quenched set up. Calculations are performed for light quark masses corresponding to a pion mass in the range 270-500 MeV and lattice sizes of 2.1 fm and 2.7 fm. We check for cut-off effects and isospin breaking by evaluating the baryon masses at two different lattice spacings. We carry out a chiral extrapolation for the octet baryons and discuss results for the Ω. (orig.)

  10. First results of ETMC simulations with Nf=2+1+1 maximally twisted mass fermions

    NARCIS (Netherlands)

    Baron, R.; Blossier, B.; Boucaud, P.; Deuzeman, A.; Drach, V.; Farchioni, F.; Gimenez, V.; Herdoiza, G.; Jansen, K.; Michael, C.; Montvay, I.; Palao, D.; Pallante, E.; Pène, O.; Reker, S.; Urbach, C.; Wagner, M.; Wenger, U.; Collaboration, for the ETM

    2009-01-01

    We present first results from runs performed with Nf=2+1+1 flavours of dynamical twisted mass fermions at maximal twist: a degenerate light doublet and a mass split heavy doublet. An overview of the input parameters and tuning status of our ensembles is given, together with a comparison with results

  11. Optical Lattice Gases of Interacting Fermions

    Science.gov (United States)

    2015-12-02

    interacting Fermi gases has topological properties similar to the conventional chiral p- wave state. These include a non-zero Chern number and the...interacting cold gases with broad impacts on the interfaces with condensed matter and particle physics . Applications and experiments of some of the physics ...AFRL-AFOSR-VA-TR-2016-0016 Optical Lattice Gases of Interacting Fermions Wensheng Vincent Liu UNIVERSITY OF PITTSBURGH Final Report 12/02/2015

  12. 2-fermion and 4-fermion production at LEP2

    CERN Document Server

    van Vulpen, Ivo B

    2000-01-01

    We present the measurements on 2-fermion and 4-fermion production in e + e - collisions at centre-of-mass energies ranging from 192 to 202 Ge V as collected by the 4 LEP experiments in 1999. For processes with 2-fermions in the final state we present both production cross sections and asymmetries for event samples at low and high effective centre-of-mass energies, where the latter process is sensitive to possible contributions from various non-SM physics, like contact interactions or Z' exchange, and can therefore be used to set limits on parameters in those models. We also report on the measured cross sections for a subset of processes leading to 4 fermions in the final state: pair production of heavy vector bosons w+w- (NC03) and ZZ (NC02) followed by single-W production. A measurement of the leptonic branching ratio of the W-boson is used to extract information on IV c• I

  13. GUT Scale Fermion Mass Ratios

    International Nuclear Information System (INIS)

    Spinrath, Martin

    2014-01-01

    We present a series of recent works related to group theoretical factors from GUT symmetry breaking which lead to predictions for the ratios of quark and lepton Yukawa couplings at the unification scale. New predictions for the GUT scale ratios y μ /y s , y τ /y b and y t /y b in particular are shown and compared to experimental data. For this comparison it is important to include possibly large supersymmetric threshold corrections. Due to this reason the structure of the fermion masses at the GUT scale depends on TeV scale physics and makes GUT scale physics testable at the LHC. We also discuss how this new predictions might lead to predictions for mixing angles by discussing the example of the recently measured last missing leptonic mixing angle θ 13 making this new class of GUT models also testable in neutrino experiments

  14. MS vs. pole masses of gauge bosons II: Two-loop electroweak fermion correct

    International Nuclear Information System (INIS)

    Jegerlehner, F.; Kalmykov, M.Yu.; Veretin, O.

    2002-12-01

    We have calculated the fermion contributions to the shift of the position of the poles of the massive gauge boson propagators at two-loop order in the Standard Model. Together with the bosonic contributions calculated previously the full two-loop corrections are available. This allows us to investigate the full correction in the relationship between anti M anti S and pole masses of the vector bosons Z and W. Two-loop renormalization and the corresponding renormalization group equations are discussed. Analytical results for the master-integrals appearing in the massless fermion contributions are given. A new approach of summing multiple binomial sums has been developed. (orig.)

  15. Fermion production despite fermion number conservation

    International Nuclear Information System (INIS)

    Bock, W.; Hetrick, J.E.; Smit, J.

    1995-01-01

    Lattice proposals for a nonperturbative formulation of the Standard Model easily lead to a global U(1) symmetry corresponding to exactly conserved fermion number. The absence of an anomaly in the fermion current would then appear to inhibit anomalous processes, such as electroweak baryogenesis in the early universe. One way to circumvent this problem is to formulate the theory such that this U(1) symmetry is explicitly broken. However we argue that in the framework of spectral flow, fermion creation and annihilation still in fact occurs, despite the exact fermion number conservation. The crucial observation is that fermions are excitations relative to the vacuum, at the surface of the Dirac sea. The exact global U(1) symmetry prohibits a state from changing its fermion number during time evolution, however nothing prevents the fermionic ground state from doing so. We illustrate our reasoning with a model in two dimensions which has axial-vector couplings, first using a sharp momentum cutoff, then using the lattice regulator with staggered fermions. The difference in fermion number between the time evolved state and the ground state is indeed in agreement with the anomaly. Both the sharp momentum cutoff and the lattice regulator break gauge invariance. In the case of the lattice model a mass counterterm for the gauge field is sufficient to restore gauge invariance in the perturbative regime. A study of the vacuum energy shows however that the perturbative counterterm is insufficient in a nonperturbative setting and that further quartic counterterms are needed. For reference we also study a closely related model with vector couplings, the Schwinger model, and we examine the emergence of the θ-vacuum structure of both theories. ((orig.))

  16. Bragg diffraction of fermions at optical potentials

    International Nuclear Information System (INIS)

    Deh, Benjamin

    2008-01-01

    This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a 6 Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 μs. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)

  17. Fermion number in supersymmetric models

    International Nuclear Information System (INIS)

    Mainland, G.B.; Tanaka, K.

    1975-01-01

    The two known methods for introducing a conserved fermion number into supersymmetric models are discussed. While the introduction of a conserved fermion number often requires that the Lagrangian be massless or that bosons carry fermion number, a model is discussed in which masses can be introduced via spontaneous symmetry breaking and fermion number is conserved at all stages without assigning fermion number to bosons. (U.S.)

  18. From bosonic topological transition to symmetric fermion mass generation

    Science.gov (United States)

    You, Yi-Zhuang; He, Yin-Chen; Vishwanath, Ashvin; Xu, Cenke

    2018-03-01

    A bosonic topological transition (BTT) is a quantum critical point between the bosonic symmetry-protected topological phase and the trivial phase. In this work, we investigate such a transition in a (2+1)-dimensional lattice model with the maximal microscopic symmetry: an internal SO (4 ) symmetry. We derive a description for this transition in terms of compact quantum electrodynamics (QED) with four fermion flavors (Nf=4 ). Within a systematic renormalization group analysis, we identify the critical point with the desired O (4 ) emergent symmetry and all expected deformations. By lowering the microscopic symmetry, we recover the previous Nf=2 noncompact QED description of the BTT. Finally, by merging two BTTs we recover a previously discussed theory of symmetric mass generation, as an SU (2 ) quantum chromodynamics-Higgs theory with Nf=4 flavors of SU (2 ) fundamental fermions and one SU (2 ) fundamental Higgs boson. This provides a consistency check on both theories.

  19. Calculation of CWKB envelope in boson and fermion productions

    International Nuclear Information System (INIS)

    Biswas, S.; Chowdhury, I.

    2007-01-01

    We present the calculation of envelope of boson and of both low-and high-mass fermion production at the end of inflation when the coherently oscillating inflations decay into bosons and fermions. We consider three different models of inflation and use CWKB technique to calculate the envelope to understand the structure of resonance band formation. We observe that though low-mass fermion production is not effective in preheating because of Pauli blocking, it is quite probable for high-mass fermion to take part in pre heating. (author)

  20. Sigma terms and strangeness content of the nucleon with Nf=2+1+1 twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, C.

    2012-11-01

    We investigate excited state contaminations in a direct computation of the nucleon σ-terms. This is an important source of systematic effects that needs to be controlled besides the light quark mass dependence and lattice artefacts. We use maximally twisted mass fermions with dynamical light (u,d), strange and charm degrees of freedom. Employing an efficient stochastic evaluation of the disconnected contribution available for twisted mass fermions, we show that the effect of excited states is large in particular for the strange σ-terms, where it can be as big as O(>or similar 40%). This leads to the unfortunate conclusion that even with a source-sink separation of ∝1.5 fm and a good statistical accuracy it is not clear, whether excited state effects are under control for this quantity.

  1. Remarks on ''Neutrino masses and mixing angles in a predictive theory of fermion masses''

    International Nuclear Information System (INIS)

    Lavoura, L.; Silva, J.P.

    1994-01-01

    In the extension of the Dimopoulos-Hall-Raby model of the fermion mass matrices to the neutrino sector, there is an entry in the up-quark and neutrino Dirac mass matrices which can be assumed to arise from the Yukawa coupling of a 120, instead of a 10 or a 126, of SO(10). Although this assumption leads to an extra undetermined complex parameter in the model, the resulting lepton mixing matrix exhibits the remarkable feature that the ν τ does not mix with the other two neutrinos. Making a reasonable assumption about the extra parameter, we are able to fit the large-mixing-angle MSW solution of the solar-neutrino problem, and we obtain m ντ ∼10 eV, the right mass range to close the Universe. Other possibilities for explaining the solar-neutrino deficit are also discussed

  2. Loop suppressed light fermion masses with U (1 )R gauge symmetry

    Science.gov (United States)

    Nomura, Takaaki; Okada, Hiroshi

    2017-07-01

    We propose a model with a two-Higgs doublet, where quark and charged-lepton masses in the first and second families are induced at one-loop level, and neutrino masses are induced at the two-loop level. In our model, we introduce an extra U (1 )R gauge symmetry that plays a crucial role in achieving desired terms in no conflict with anomaly cancellation. We show the mechanism to generate fermion masses, the resultant mass matrices, and Yukawa interactions in mass eigenstates, and we discuss several interesting phenomenologies such as the muon anomalous magnetic dipole moment and the dark matter candidate that arise from this model.

  3. Confronting the conventional ideas of grand unification with fermion masses, neutrino oscillations and proton decay

    Energy Technology Data Exchange (ETDEWEB)

    Pati, J C [Department of Physics, University of Maryland, College Park (United States) and Stanford Linear Accelerator Center, Menlo Park (United States)

    2002-09-15

    It is noted that one is now in possession of a set of facts, which may be viewed as the matching pieces of a puzzle; in that all of them can be resolved by just one idea - that is grand unification. These include: (i) the observed family-structure, (ii) quantization of electric charge, (iii) meeting of the three gauge couplings, (iv) neutrino oscillations; in particular the mass squared-difference {delta}m{sup 2}({nu}{sub {mu}} - {nu}{sub {tau}}) (suggested by SuperK), (v) the intricate pattern of the masses and mixings of the fermions, including the smallness of V{sub cb} and the largeness of {theta}{sub {nu}{sub {mu}{nu}}{sub {tau}}}{sup osc}, and (vi) the need for B-L as a generator to implement baryogenesis (via leptogenesis). All these pieces fit beautifully together within a single puzzle board framed by supersymmetric unification, based on SO(10) or a string-unified G(224)-symmetry. The two notable pieces of the puzzle still missing, however, are proton decay and supersymmetry. A concrete proposal is presented, within a predictive SO(10)/G(224)- framework, that successfully describes the masses and mixings of all fermions, including the neutrinos - with eight predictions, all in agreement with observation. Within this framework, a systematic study of proton decay is carried out, which (a) pays special attention to its dependence on the fermion masses, including the superheavy Majorana masses of the right-handed neutrinos, and (b) limits the threshold corrections so as to preserve natural coupling unification. The study updates prior work by Babu, Pati and Wilczek, in the context of both MSSM and its (interesting) variant, the so-called ESSM, by allowing for improved values of the matrix elements and of the short and long-distance renormalization effects. It shows that a conservative upper limit on the proton lifetime is about (1/3 - 2) x 10{sup 34} years, with {nu}-barK{sup +} being the dominant decay mode, and quite possibly {mu}{sup p}+K{sup 0} and e

  4. Confronting the conventional ideas of grand unification with fermion masses, neutrino oscillations and proton decay

    International Nuclear Information System (INIS)

    Pati, J.C.

    2002-01-01

    It is noted that one is now in possession of a set of facts, which may be viewed as the matching pieces of a puzzle; in that all of them can be resolved by just one idea - that is grand unification. These include: (i) the observed family-structure, (ii) quantization of electric charge, (iii) meeting of the three gauge couplings, (iv) neutrino oscillations; in particular the mass squared-difference Δm 2 (ν μ - ν τ ) (suggested by SuperK), (v) the intricate pattern of the masses and mixings of the fermions, including the smallness of V cb and the largeness of θ ν μ ν τ osc , and (vi) the need for B-L as a generator to implement baryogenesis (via leptogenesis). All these pieces fit beautifully together within a single puzzle board framed by supersymmetric unification, based on SO(10) or a string-unified G(224)-symmetry. The two notable pieces of the puzzle still missing, however, are proton decay and supersymmetry. A concrete proposal is presented, within a predictive SO(10)/G(224)- framework, that successfully describes the masses and mixings of all fermions, including the neutrinos - with eight predictions, all in agreement with observation. Within this framework, a systematic study of proton decay is carried out, which (a) pays special attention to its dependence on the fermion masses, including the superheavy Majorana masses of the right-handed neutrinos, and (b) limits the threshold corrections so as to preserve natural coupling unification. The study updates prior work by Babu, Pati and Wilczek, in the context of both MSSM and its (interesting) variant, the so-called ESSM, by allowing for improved values of the matrix elements and of the short and long-distance renormalization effects. It shows that a conservative upper limit on the proton lifetime is about (1/3 - 2) x 10 34 years, with ν-barK + being the dominant decay mode, and quite possibly μ p +K 0 and e + π 0 being prominent. This in turn strongly suggests that an improvement in the current

  5. Two-dimensional confinement of heavy fermions

    International Nuclear Information System (INIS)

    Shishido, Hiroaki; Shibauchi, Takasada; Matsuda, Yuji; Terashima, Takahito

    2010-01-01

    Metallic systems with the strongest electron correlations are realized in certain rare-earth and actinide compounds whose physics are dominated by f-electrons. These materials are known as heavy fermions, so called because the effective mass of the conduction electrons is enhanced via correlation effects up to as much as several hundreds times the free electron mass. To date the electronic structure of all heavy-fermion compounds is essentially three-dimensional. Here we report on the first realization of a two-dimensional heavy-fermion system, where the dimensionality is adjusted in a controllable fashion by fabricating heterostructures using molecular beam epitaxy. The two-dimensional heavy fermion system displays striking deviations from the standard Fermi liquid low-temperature electronic properties. (author)

  6. A requiem for AdS4×C P3 fermionic self-T duality

    Science.gov (United States)

    O'Colgáin, E.; Pittelli, A.

    2016-11-01

    Strong evidence for dual superconformal symmetry in N =6 superconformal Chern-Simons theory has fueled expectations that the AdS /CFT dual geometry AdS4×C P3 is self-dual under T duality. We revisit the problem to identify commuting bosonic and fermionic isometries in a systematic fashion and show that fermionic T duality, a symmetry originally proposed by Berkovits and Maldacena, inevitably leads to a singularity in the dilaton transformation. We show that TsT deformations commute with fermionic T duality and comment on T duality in the corresponding sigma model. Our results rule out self-duality based on fermionic T duality for AdS4×C P3 or its TsT deformations but leave the door open for new possibilities.

  7. The Bethe-Salpeter equation with fermions

    International Nuclear Information System (INIS)

    Efimov, G.V.

    2007-01-01

    The Bethe-Salpeter (BS) equation in the ladder approximation is studied within a fermion theory: two fermion fields (constituents) with mass m interacting via an exchange of a scalar field with mass μ. The BS equation can be written in the form of an integral equation in the configuration Euclidean x-space with the symmetric kernel K for which Tr K 2 = ∞ due to the singular character of the fermion propagator. This kernel is represented in the form K = K 0 + K I . The operator K 0 with Tr K 0 2 ∞ is of the 'fall at the center' potential type and describes a continuous spectrum only. Besides the presence of this operator leads to a restriction on the value of the coupling constant. The kernel K I with Tr K I 2 2 c 2 and the variational procedure of calculations of eigenvalues and eigenfunctions can be applied. The quantum pseudoscalar and scalar mesodynamics is considered. The binding energy of the state 1 + (deuteron) as a function of the coupling constant is calculated in the framework of the procedure formulated above. It is shown that this bound state is absent in the pseudoscalar mesodynamics and does exist in the scalar mesodynamics. A comparison with the non-relativistic Schroedinger picture is made. (author)

  8. Massive chiral fermions: a natural account of chiral phenomenology in the framework of Dirac's fermion theory

    International Nuclear Information System (INIS)

    Ziino, G.

    1989-01-01

    We assume a strictly invariant definition of the Dirac parity operator under fermion ↔ antifermion exchange. We see that the opposite-intrinsic-parity condition then requires two opposite-mass Dirac equations for the fermion and the antifermion. This leads us to introduce an asymptotically left-handed (fermion) and right-handed (antifermion) chiral field, as just an alternative basis in the internal space spanned by the new pair of charge-conjugate Dirac fields. Hence a dual intrinsic model of a spin - 1/2 massive fermion is drawn: it predicts the coexistence of two anticommuting general varieties of conserved charges, namely a scalar variety, responsible for parity-invariant phenomenology, plus a pseudoscalar one, responsible for chiral phenomenology. In this light, CP-symmetry is seen to be nothing but P-symmetry; and a spontaneous CP-violation mechanism is also derived, that should work in any single process occurring via both scalar-and pseudoscalar-charge interactions. We show, at last, that our scheme automatically yields Weyl's one for a merely left-handed neutrino and a merely right-handed antineutrino, further assigning them the special meaning of pure pseudoscalar-charge objects. Some general consequences as regards magnetic monopoles are briefly discussed too

  9. Nonperturbative Renormalization of Composite Operators with Overlap Fermions

    Energy Technology Data Exchange (ETDEWEB)

    J.B. Zhang; N. Mathur; S.J. Dong; T. Draper; I. Horvath; F. X. Lee; D.B. Leinweber; K.F. Liu; A.G. Williams

    2005-12-01

    We compute non-perturbatively the renormalization constants of composite operators on a quenched 16{sup 3} x 28 lattice with lattice spacing a = 0.20 fm for the overlap fermion by using the regularization independent (RI) scheme. The quenched gauge configurations were generated with the Iwasaki action. We test the relations Z{sub A} = Z{sub V} and Z{sub S} = Z{sub P} and find that they agree well (less than 1%) above {mu} = 1.6 GeV. We also perform a Renormalization Group (RG) analysis at the next-to-next-to-leading order and match the renormalization constants to the {ovr MS} scheme. The wave-function renormalization Z{sub {psi}} is determined from the vertex function of the axial current and Z{sub A} from the chiral Ward identity. Finally, we examine the finite quark mass behavior for the renormalization factors of the quark bilinear operators. We find that the (pa){sup 2} errors of the vertex functions are small and the quark mass dependence of the renormalization factors to be quite weak.

  10. Computation of the chiral condensate using Nf=2 and Nf=2+1+1 dynamical flavors of twisted mass fermions

    International Nuclear Information System (INIS)

    Cichy, K.; Jansen, K.; Shindler, A.; Forschungszentrum Juelich; Forschungszentrum Juelich

    2013-12-01

    We apply the spectral projector method, recently introduced by Giusti and Luescher, to compute the chiral condensate using N f =2 and N f =2+1+1 dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the O(a) improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for N f =2 and N f =2+1+1 dynamical flavors.

  11. Center-of-mass corrections in the S+V potential model

    International Nuclear Information System (INIS)

    Palladino, B.E.

    1987-02-01

    Center-of-mass corrections to the mass spectrum and static properties of low-lying S-wave baryons and mesons are discussed in the context of a relativistic, independent quark model, based on a Dirac equation, with equally mixed scalar (S) and vector (V) confining potential. (author) [pt

  12. Renormalization group analysis of order parameter fluctuations in fermionic superfluids

    International Nuclear Information System (INIS)

    Obert, Benjamin

    2014-01-01

    In this work fluctuation effects in two interacting fermion systems exhibiting fermionic s-wave superfluidity are analyzed with a modern renormalization group method. A description in terms of a fermion-boson theory allows an investigation of order parameter fluctuations already on the one-loop level. In the first project a quantum phase transition between a semimetal and a s-wave superfluid in a Dirac cone model is studied. The interplay between fermions and quantum critical fluctuations close to and at the quantum critical point at zero and finite temperatures are studied within a coupled fermion-boson theory. At the quantum critical point non-Fermi liquid and non-Gaussian behaviour emerge. Close to criticality several quantities as the susceptibility show a power law behaviour with critical exponents. We find an infinite correlation length in the entire semimetallic ground state also away from the quantum critical point. In the second project, the ground state of an s-wave fermionic superfluid is investigated. Here, the mutual interplay between fermions and order parameter fluctuations is studied, especially the impact of massless Goldstone fluctuations, which occur due to spontaneous breaking of the continuous U(1)-symmetry. Fermionic gap and bosonic order parameter are distinguished. Furthermore, the bosonic order parameter is decomposed in transverse and longitudinal fluctuations. The mixing between transverse and longitudinal fluctuations is included in our description. Within a simple truncation of the fermion-boson RG flow, we describe the fermion-boson theory for the first time in a consistent manner. Several singularities appear due the Goldstone fluctuations, which partially cancel due to symmetry. Our RG flow captures the correct infrared asymptotics of the system, where the collective excitations act as an interacting Bose gas. Lowest order Ward identities and the massless Goldstone mode are fulfilled in our truncation.

  13. Strong CMB constraint on P-wave annihilating dark matter

    Directory of Open Access Journals (Sweden)

    Haipeng An

    2017-10-01

    Full Text Available We consider a dark sector consisting of dark matter that is a Dirac fermion and a scalar mediator. This model has been extensively studied in the past. If the scalar couples to the dark matter in a parity conserving manner then dark matter annihilation to two mediators is dominated by the P-wave channel and hence is suppressed at very low momentum. The indirect detection constraint from the anisotropy of the Cosmic Microwave Background is usually thought to be absent in the model because of this suppression. In this letter we show that dark matter annihilation via bound state formation occurs through the S-wave and hence there is a constraint on the parameter space of the model from the Cosmic Microwave Background.

  14. Quasi-relativistic fermions and dynamical flavour oscillations

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-01

    We introduce new Lorentz-symmetry violating kinematics for a four-fermion interaction model, where dynamical mass generation is allowed, irrespectively of the strength of the coupling. In addition, these kinematics lead to a quasi-relativistic dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not in an intermediate regime, characterized by the mass $M$. For two fermions, we show that a flavour-mixing mass matrix is generated dynamically, and the Lorentz symmetric limit $M\\to\\infty$ leads to two free relativistic fermions, with flavour oscillations. This model, valid for either Dirac or Majorana fermions, can describe any set of phenomenological values for the eigen masses and the mixing angle.

  15. CP violation, flavour violation and fermion mass relations in some horizontal gauge theories

    International Nuclear Information System (INIS)

    Shanker, O.

    1981-01-01

    Six quark horizontal gauge models incorporating a natural suppression mechanism for diagonal flavour-changing currents are considered. Some interesting possibilities for CP violation, flavour violation, fermion mass and mixing angle relation in these models are studied. (author)

  16. Nucleon axial form factors using Nf=2 twisted mass fermions with a physical value of the pion mass

    Science.gov (United States)

    Alexandrou, C.; Constantinou, M.; Hadjiyiannakou, K.; Jansen, K.; Kallidonis, C.; Koutsou, G.; Vaquero Aviles-Casco, A.

    2017-09-01

    We present results on the nucleon axial and induced pseudoscalar form factors using an ensemble of two degenerate twisted mass clover-improved fermions with mass yielding a pion mass of mπ=130 MeV . We evaluate the isovector and the isoscalar, as well as the strange and the charm axial form factors. The disconnected contributions are evaluated using recently developed methods that include deflation of the lower eigenstates, allowing us to extract the isoscalar, strange, and charm axial form factors. We find that the disconnected quark loop contributions are nonzero and particularly large for the induced pseudoscalar form factor.

  17. Dynamical twisted mass fermions with light quarks. Simulation and analysis details

    Energy Technology Data Exchange (ETDEWEB)

    Boucaud, P. [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Dimopoulos, P. [Rome-2 Univ. (Italy). Dipt. di Fisica; Farchioni, F. [Muenster Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2008-03-15

    In a recent paper (2007) we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theory formulae. (orig.)

  18. Dynamical twisted mass fermions with light quarks. Simulation and analysis details

    International Nuclear Information System (INIS)

    Boucaud, P.; Dimopoulos, P.; Farchioni, F.

    2008-03-01

    In a recent paper (2007) we presented precise lattice QCD results of our European Twisted Mass Collaboration (ETMC). They were obtained by employing two mass-degenerate flavours of twisted mass fermions at maximal twist. In the present paper we give details on our simulations and the computation of physical observables. In particular, we discuss the problem of tuning to maximal twist, the techniques we have used to compute correlators and error estimates. In addition, we provide more information on the algorithm used, the autocorrelation times and scale determination, the evaluation of disconnected contributions and the description of our data by means of chiral perturbation theory formulae. (orig.)

  19. Phenomenology of colour exotic fermions

    International Nuclear Information System (INIS)

    Luest, D.

    1986-01-01

    The authors discuss the phenomenological consequences of a dynamical scenario according to which the electroweak symmetry breaking and generation of fermion masses is due to fermions that transform under high colour representations. Particular emphasis is given to the predictions for rare processes and to the spectrum of high colour boundstates. (Auth.)

  20. Higgs mass bounds from a chirally invariant lattice Higgs-Yukawa model with overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Kallarackal, Jim

    2008-10-01

    We study the parameter dependence of the Higgs mass in a chirally invariant lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model. Eventually, the aim is to establish upper and lower Higgs mass bounds. Here we present our preliminary results on the lower Higgs mass bound at several selected values for the cutoff and give a brief outlook towards the upper Higgs mass bound. (orig.)

  1. Liouville equation of relativistic charged fermion

    International Nuclear Information System (INIS)

    Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming

    1991-01-01

    As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function

  2. Anomalous diffusion of fermions in superlattices

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Srokowski, T.; Ploszajczak, M.

    1996-03-01

    Diffusion of fermions in the periodic two-dimensional lattice of fermions is studied. It is shown that effects connected with antisymmetrization of the wave function increase chaoticness of motion. Various types of anomalous diffusion, characterized by a power spectral analysis are found. The nonlocality of the Pauli potential destroys cantori in the phase space. Consequently, the diffusion process is dominated by long free paths and the power spectrum is logarithmic at small frequency limit. (author)

  3. All-order renormalization of propagator matrix for fermionic system with flavor mixing

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, Bernd A. [California Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics

    2013-08-15

    We consider a mixed system of Dirac fermions in a general parity-nonconserving theory and renormalize the propagator matrix to all orders in the pole scheme, in which the squares of the renormalized masses are identified with the complex pole positions and the wave-function renormalization (WFR) matrices are adjusted in compliance with the Lehmann-Symanzik-Zimmermann reduction formalism. We present closed analytic all-order expressions for the renormalization constants in terms of the scalar, pseudoscalar, vector, and pseudovector parts of the unrenormalized self-energy matrix, which is computable from the one-particle-irreducible Feynman diagrams of the flavor transitions. We identify residual degrees of freedom in the WFR matrices and propose an additional renormalization condition to exhaust them. We then explain how our results may be generalized to the case of unstable fermions, in which we encounter the phenomenon of WFR bifurcation. In the special case of a solitary unstable fermion, the all-order-renormalized propagator is presented in a particularly compact form.

  4. Hierarchy spectrum of SM fermions: from top quark to electron neutrino

    International Nuclear Information System (INIS)

    Xue, She-Sheng

    2016-01-01

    In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν_R"f. Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν_R"f and their left-handed conjugated fields ν_R"f"c. Light masses of gauged Majorana neutrinos in the normal hierarchy (10"−"5−10"−"2 eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of tt̄-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).

  5. Hierarchy spectrum of SM fermions: from top quark to electron neutrino

    Energy Technology Data Exchange (ETDEWEB)

    Xue, She-Sheng [ICRANet,Piazza della Repubblica 10, 65122 Pescara (Italy); Physics Department, Sapienza University of Rome,Piazzale Aldo Moro 5, 00185 Roma (Italy)

    2016-11-10

    In the SM gauge symmetries and fermion content of neutrinos, charged leptons and quarks, we study the effective four-fermion operators of Einstein-Cartan type and their contributions to the Schwinger-Dyson equations of fermion self-energy functions. The study is motivated by the speculation that these four-fermion operators are probably originated due to the quantum gravity, which provides the natural regularization for chiral-symmetric gauge field theories. In the chiral-gauge symmetry breaking phase, as to achieve the energetically favorable ground state, only the top-quark mass is generated via the spontaneous symmetry breaking, and other fermion masses are generated via the explicit symmetry breaking induced by the top-quark mass, four-fermion interactions and fermion-flavor mixing matrices. A phase transition from the symmetry breaking phase to the chiral-gauge symmetric phase at TeV scale occurs and the drastically fine-tuning problem can be resolved. In the infrared fixed-point domain of the four-fermion coupling for the SM at low energies, we qualitatively obtain the hierarchy patterns of the SM fermion Dirac masses, Yukawa couplings and family-flavor mixing matrices with three additional right-handed neutrinos ν{sub R}{sup f}. Large Majorana masses and lepton-number symmetry breaking are originated by the four-fermion interactions among ν{sub R}{sup f} and their left-handed conjugated fields ν{sub R}{sup fc}. Light masses of gauged Majorana neutrinos in the normal hierarchy (10{sup −5}−10{sup −2} eV) are obtained consistently with neutrino oscillations. We present some discussions on the composite Higgs phenomenology and forward-backward asymmetry of tt̄-production, as well as remarks on the candidates of light and heavy dark matter particles (fermions, scalar and pseudoscalar bosons).

  6. Baryon spectrum with Nƒ=2+1+1 twisted mass fermions

    DEFF Research Database (Denmark)

    Alexandrou, C.; Drach, V.; Jansen, K.

    2014-01-01

    The masses of the low-lying baryons are evaluated using a total of ten ensembles of dynamical twisted mass fermion gauge configurations. The simulations are performed using two degenerate flavors of light quarks, and a strange and a charm quark fixed to approximately their physical values....... The light sea quarks correspond to pseudo scalar masses in the range of about 210 to 430 MeV. We use the Iwasaki improved gluonic action at three values of the coupling constant corresponding to lattice spacing a = 0.094, 0.082 and 0.065 fm determined from the nucleon mass. We check for both finite volume...... and cutoff effects on the baryon masses. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. We performed a chiral extrapolation of the forty...

  7. Topological susceptibility from twisted mass fermions using spectral projectors and the gradient flow

    Science.gov (United States)

    Alexandrou, Constantia; Athenodorou, Andreas; Cichy, Krzysztof; Constantinou, Martha; Horkel, Derek P.; Jansen, Karl; Koutsou, Giannis; Larkin, Conor

    2018-04-01

    We compare lattice QCD determinations of topological susceptibility using a gluonic definition from the gradient flow and a fermionic definition from the spectral-projector method. We use ensembles with dynamical light, strange and charm flavors of maximally twisted mass fermions. For both definitions of the susceptibility we employ ensembles at three values of the lattice spacing and several quark masses at each spacing. The data are fitted to chiral perturbation theory predictions with a discretization term to determine the continuum chiral condensate in the massless limit and estimate the overall discretization errors. We find that both approaches lead to compatible results in the continuum limit, but the gluonic ones are much more affected by cutoff effects. This finally yields a much smaller total error in the spectral-projector results. We show that there exists, in principle, a value of the spectral cutoff which would completely eliminate discretization effects in the topological susceptibility.

  8. Sigma terms and strangeness content of the nucleon with N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC); Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Constantinou, M.; Hadjiyiannakou, K.; Strelchenko, A. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dinter, S.; Drach, V.; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koustou, G.; Vaquero, A. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center (CaSToRC)

    2012-11-15

    We investigate excited state contaminations in a direct computation of the nucleon {sigma}-terms. This is an important source of systematic effects that needs to be controlled besides the light quark mass dependence and lattice artefacts. We use maximally twisted mass fermions with dynamical light (u,d), strange and charm degrees of freedom. Employing an efficient stochastic evaluation of the disconnected contribution available for twisted mass fermions, we show that the effect of excited states is large in particular for the strange {sigma}-terms, where it can be as big as O(>or similar 40%). This leads to the unfortunate conclusion that even with a source-sink separation of {proportional_to}1.5 fm and a good statistical accuracy it is not clear, whether excited state effects are under control for this quantity.

  9. An SU(2) x SU(2) symmetric Higgs-Fermion model with staggered fermions

    International Nuclear Information System (INIS)

    Berlin, J.; Heller, U.M.

    1991-01-01

    We have simulated on SU(2)xSU(2) symmetric Higgs-Fermion model with a four component scalar field coupled with a Yukawa type coupling to two flavours of staggered fermions. The results show two qualitatively different behaviours in the broken phase. One for weak coupling where the fermion masses obey the perturbative tree level relation M F =y , and one for strong coupling where the behaviour agrees with a 1/d expansion. (orig.)

  10. Temperature effect on microstructure and P-wave propagation in Linyi sandstone

    International Nuclear Information System (INIS)

    Sun, Hui; Sun, Qiang; Deng, Wenni; Zhang, Weiqiang; Lü, Chao

    2017-01-01

    Highlights: • Mass loss rate, P-wave velocity change rate and damage factor increase exponentially as temperatures rise. • The damage threshold temperature of sandstone samples is 300 °C and limit temperature is 900 °C. • P-wave velocity change rate of sandstone exhibits excellent linearity with mass loss rate. • Damage factor can be well expressed by mass loss rate. - Abstract: In order to study the effect of high temperature on the sandstone, scanning electron microscope (SEM) experiments and primary wave (P-wave) velocity tests have been carried out on sandstone specimens heated to different temperature. The results showed that: (1) the mass loss rate increases exponentially with the increase of temperature and reaches 2.97% at 900 °C; (2) the P-wave velocity change rate increases exponentially with the increase of temperature while there is some fluctuation before 500 °C; (3) the damage threshold temperature of sandstone samples is 300 °C and the limit temperature is 900 °C; (4) there is a good linear relationship between the mass loss rate and the P-wave velocity change rate, and the correlation coefficient (R) of the fitting line is 0.989; (5) the damage caused by high temperature can be reflected better by the mass loss rate than P-wave velocity change rate. The results obtained in this paper will be good for predicting the properties of sandstone when exposed to high temperature.

  11. Single-time reduction of bethe-salpeter formalism for two-fermion system

    International Nuclear Information System (INIS)

    Arkhipov, A.A.

    1988-01-01

    The single-time reduction method proposed in other refs. for the system of two scalar particles is generalized for the case of two-fermion system. A self-consistent procedure of single-time reduction has been constructed both in terms of the Bethe-Salpeter wave function and in terms of the Green's function of two-fermion system. Three-dimensional dynamic equations have been obtained for single-time wave functions and two-time Green's functions of a two-fermion system and the Schroedinger structure of the equations obtained is shown to be a consequence of the causality structure of the local QFT. 32 refs

  12. Boson-fermion mass splittings in four-dimensional heterotic string models with anomalous U(1) gauge groups

    International Nuclear Information System (INIS)

    Yamaguchi, Masahiro; Yamamoto, Hisashi; Onogi, Tetsuya

    1989-01-01

    In four-dimensional heterotic string models with anomalous U(1) gauge groups, space-time supersymmetry (SUSY) breaks down spontaneously at one loop. In this paper, the Ward-Takahashi identity of broken SUSY in one-loop two-point amplitudes is investigated in all generalities. The boson-fermion mass splitting of any supersymmetric pair in an arbitrary model is proportional to the product of the D-term expectation value (the sum of (chirality)x(U(1) charge) of massless fermions in the model) and the U(1) charge of the external particle. In order to give a better understanding of the results, we present some examples of the mass splittings in a simple Z 3 orbifold model. (orig.)

  13. All-order renormalization of propagator matrix for Majorana fermions with inter-generation mixing

    International Nuclear Information System (INIS)

    Kniehl, Bernd A.

    2014-04-01

    We consider a mixed system of unstable Majorana fermions in a general parity-nonconserving theory and renormalize its propagator matrix to all orders in the pole scheme, in which the squares of the renormalized masses are identified with the complex pole positions and the wave-function renormalization (WFR) matrices are adjusted in compliance with the Lehmann-Symanzik-Zimmermann reduction formalism. In contrast to the case of unstable Dirac fermions, the WFR matrices of the in and out states are uniquely fixed, while they again bifurcate in the sense that they are no longer related by pseudo-Hermitian conjugation. We present closed analytic expressions for the renormalization constants in terms of the scalar, pseudoscalar, vector, and pseudovector parts of the unrenormalized self-energy matrix, which is computable from the one-particle-irreducible Feynman diagrams of the flavor transitions, as well as their expansions through two loops. In the case of stable Majorana fermions, the well-known one-loop results are recovered.

  14. Four fermion production in $e^+ e^-$ collisions at centre-of-mass energies of 130 and 136 GeV

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Morawitz, P; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Hoffmann, C; Jacobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Four-fermion events have been selected in a data sample of 5.8 pb**-1 collected with the ALEPH detector at centre-of-mass energies of 130 and 136 GeV. The final states l^+l^- qqbar, l^+l^-l^+l^-, nunubar qqbar, and nunubar l^+l^- have been examined. Five events are observed in the data, in agreement with the Standard Model predictions of 6.67 +/- 0.38 events from four-fermion processes and 0.14+0.19-0.05 from background processes.

  15. A Search for Excited Fermions at HERA

    CERN Document Server

    Adloff, C.; Andrieu, B.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Borras, K.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Hoprich, W.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Kaufmann, O.; Kausch, M.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Kutuev, R.; Lachnit, W.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; Lobodzinska, E.; Lobodzinski, B.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, Th.; Negri, I.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Sedlak, K.; Sefkow, F.; Chekelian, V.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Tchernyshov, V.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; von Dombrowski, S.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.; zur Nedden, M.

    2000-01-01

    A search for excited fermions f^* of the first generation in e^+p scattering at the collider HERA is presented using H1 data with an integrated luminosity of 37 pb^(-1). All electroweak decays of excited fermions, f^* -> f gamma, f W, f Z are considered and all possible final states resulting from the Z or W hadronic decays or decays into leptons of the first two generations are taken into account. No evidence for f^* production is found. Mass dependent exclusion limits on cross-sections and on the ratio of coupling constants to the compositeness scale are derived.

  16. Virtual hadronic and heavy-fermion O({alpha}{sup 2}) corrections to Bhabha scattering

    Energy Technology Data Exchange (ETDEWEB)

    Actis, Stefano [Inst. fuer Theoretische Physik E, RWTH Aachen (Germany); Czakon, Michal [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik]|[Uniwersytet Slaski, Katowice (Poland). Inst. of Physics and Chemistry of Metals; Gluza, Janusz [Uniwersytet Slaski, Katowice (Poland). Inst. of Physics and Chemistry of Metals; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-07-15

    Effects of vacuum polarization by hadronic and heavy-fermion insertions were the last unknown two-loop QED corrections to high-energy Bhabha scattering. Here we describe the corrections in detail and explore their numerical influence. The hadronic contributions to the virtual O({alpha}{sup 2}) QED corrections to the Bhabha-scattering cross-section are evaluated using dispersion relations and computing the convolution of hadronic data with perturbatively calculated kernel functions. The technique of dispersion integrals is also employed to derive the virtual O({alpha}{sup 2}) corrections generated by muon-, tau- and top-quark loops in the small electron-mass limit for arbitrary values of the internal-fermion masses. At a meson factory with 1 GeV center-of-mass energy the complete effect of hadronic and heavy-fermion corrections amounts to less than 0.5 per mille and reaches, at 10 GeV, up to about 2 per mille. At the Z resonance it amounts to 2.3 per mille at 3 degrees; overall, hadronic corrections are less than 4 per mille. For ILC energies (500 GeV or above), the combined effect of hadrons and heavy fermions becomes 6 per mille at 3 degrees; hadrons contribute less than 20 per mille in the whole angular region. (orig.)

  17. Searches for excited fermions in ep collisions at HERA

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Krakauer, D.

    2002-01-01

    Searches in ep collisions for heavy excited fermions have been performed with the ZEUS detector at HERA. Excited states of electrons and quarks have been searched for in e + p collisions at a centre-of-mass energy of 300 GeV using an integrated luminosity of 47.7 pb -1 . Excited electrons have been sought via the decays e*→eγ, e*→eZ and e*→νW. Excited quarks have been sought via the decays q*→qγ and q*→qW. A search for excited neutrinos decaying via ν*→νγ, ν*→νZ and ν*→eW is presented using e - p collisions at 318 GeV centre-of-mass energy, corresponding to an integrated luminosity of 16.7 pb -1 . No evidence for any excited fermion is found, and limits on the characteristic couplings are derived for masses ≤250 GeV

  18. Dynamic origins of fermionic D -terms

    Science.gov (United States)

    Hudson, Jonathan; Schweitzer, Peter

    2018-03-01

    The D -term is defined through matrix elements of the energy-momentum tensor, similarly to mass and spin, yet this important particle property is experimentally not known any fermion. In this work we show that the D -term of a spin 1/2 fermion is of dynamical origin: it vanishes for a free fermion. This is in pronounced contrast to the bosonic case where already a free spin-0 boson has a non-zero intrinsic D -term. We illustrate in two simple models how interactions generate the D -term of a fermion with an internal structure, the nucleon. All known matter is composed of elementary fermions. This indicates the importance to study this interesting particle property in more detail, which will provide novel insights especially on the structure of the nucleon.

  19. Light hadrons from N{sub f}=2+1+1 dynamical twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Baron, R. [CEA, Centre de Saclay, Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Blossier, B.; Boucaud, P. [Paris 11 Univ., Orsay (FR). Lab. de Physique Theorique] (and others)

    2011-01-15

    We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N{sub f}=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at three values of the lattice spacing a{approx}0.06 fm, a{approx}0.08 fm and a{approx}0.09 fm with lattice sizes ranging from L{approx}1.9 fm to L{approx}3.9 fm. We perform a preliminary study of SU(2) chiral perturbation theory by combining our lattice data from these three values of the lattice spacing. (orig.)

  20. Monopole-fermion and dyon-fermion bound states. Pt. 5

    International Nuclear Information System (INIS)

    Osland, P.; Harvard Univ., Cambridge, MA; Schultz, C.L.; Wu, T.T.

    1985-02-01

    We present explicit, approximate, remarkably precise results for the Kazama-Yang hamiltonian, which describes a Dirac monopole interacting with a spin-1/2 fermion that has an extra magnetic moment. The results are valid for bound states of angular momentum j >= Zvertical strokeegvertical stroke+1/2, where the radial wave functions are determined by four coupled differential equations. These equations have been solved analytically for M - E << M, which is a limit of considerable practical interest. Binding energies and wave functions are given. (orig.)

  1. Clifford Algebra Implying Three Fermion Generations Revisited

    International Nuclear Information System (INIS)

    Krolikowski, W.

    2002-01-01

    The author's idea of algebraic compositeness of fundamental particles, allowing to understand the existence in Nature of three fermion generations, is revisited. It is based on two postulates. Primo, for all fundamental particles of matter the Dirac square-root procedure √p 2 → Γ (N) ·p works, leading to a sequence N=1, 2, 3, ... of Dirac-type equations, where four Dirac-type matrices Γ (N) μ are embedded into a Clifford algebra via a Jacobi definition introducing four ''centre-of-mass'' and (N - 1) x four ''relative'' Dirac-type matrices. These define one ''centre-of-mass'' and N - 1 ''relative'' Dirac bispinor indices. Secundo, the ''centre-of-mass'' Dirac bispinor index is coupled to the Standard Model gauge fields, while N - 1 ''relative'' Dirac bispinor indices are all free indistinguishable physical objects obeying Fermi statistics along with the Pauli principle which requires the full antisymmetry with respect to ''relative'' Dirac indices. This allows only for three Dirac-type equations with N = 1, 3, 5 in the case of N odd, and two with N = 2, 4 in the case of N even. The first of these results implies unavoidably the existence of three and only three generations of fundamental fermions, namely leptons and quarks, as labelled by the Standard Model signature. At the end, a comment is added on the possible shape of Dirac 3 x 3 mass matrices for four sorts of spin-1/2 fundamental fermions appearing in three generations. For charged leptons a prediction is m τ = 1776.80 MeV, when the input of experimental m e and m μ is used. (author)

  2. Clifford Algebra Implying Three Fermion Generations Revisited

    Science.gov (United States)

    Krolikowski, Wojciech

    2002-09-01

    The author's idea of algebraic compositeness of fundamental particles, allowing to understand the existence in Nature of three fermion generations, is revisited. It is based on two postulates. Primo, for all fundamental particles of matter the Dirac square-root procedure √ {p2} → {Γ }(N)p works, leading to a sequence N = 1,2,3, ... of Dirac-type equations, where four Dirac-type matrices {Γ }(N)μ are embedded into a Clifford algebra via a Jacobi definition introducing four ``centre-of-mass'' and (N-1)× four ``relative'' Dirac-type matrices. These define one ``centre-of-mass'' and (N-1) ``relative'' Dirac bispinor indices. Secundo, the ``centre-of-mass'' Dirac bispinor index is coupled to the Standard Model gauge fields, while (N-1) ``relative'' Dirac bispinor indices are all free indistinguishable physical objects obeying Fermi statistics along with the Pauli principle which requires the full antisymmetry with respect to ``relative'' Dirac indices. This allows only for three Dirac-type equations with N = 1,3,5 in the case of N odd, and two with N = 2,4 in the case of N even. The first of these results implies unavoidably the existence of three and only three generations of fundamental fermions, namely leptons and quarks, as labelled by the Standard Model signature. At the end, a comment is added on the possible shape of Dirac 3x3 mass matrices for four sorts of spin-1/2 fundamental fermions appearing in three generations. For charged leptons a prediction is mτ = 1776.80 MeV, when the input of experimental me and mμ is used.

  3. Four-fermion production in e+e- collisions at centre-of-mass energies of 130 and 136 GeV

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J. C.; Rougé, A.; Rumpf, M.; Valassi, A.; Videau, H.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Morawitz, P.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Whelan, E. P.; Williams, M. I.; Galla, A.; Greene, A. M.; Hoffmann, C.; Jacobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Tilquin, A.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Bauer, C.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Williams, R. W.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    Four-fermion events have been selected in a data sample of 5.8 pb -1 collected with the ALEPH detector at centre-of-mass energies of 130 and 136 GeV. The final states ℓ +ℓ -q overlineq, ℓ +ℓ -ℓ +ℓ -, ν overlineνq overlineq, and ν overlineνℓ +ℓ - have been examined. Five events are observed in the data, in agreement with the Standard Model predictions of 6.67±0.38 events from four-fermion processes and 0.14 -0.05+0.19 from background processes.

  4. The fermionic projector in a time-dependent external potential: Mass oscillation property and Hadamard states

    Science.gov (United States)

    Finster, Felix; Murro, Simone; Röken, Christian

    2016-07-01

    We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.

  5. The fermionic projector in a time-dependent external potential: Mass oscillation property and Hadamard states

    International Nuclear Information System (INIS)

    Finster, Felix; Murro, Simone; Röken, Christian

    2016-01-01

    We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.

  6. The fermionic projector in a time-dependent external potential: Mass oscillation property and Hadamard states

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix, E-mail: finster@ur.de, E-mail: simone.murro@ur.de, E-mail: Christian.Roeken@mathematik.ur.de; Murro, Simone, E-mail: finster@ur.de, E-mail: simone.murro@ur.de, E-mail: Christian.Roeken@mathematik.ur.de; Röken, Christian, E-mail: finster@ur.de, E-mail: simone.murro@ur.de, E-mail: Christian.Roeken@mathematik.ur.de [Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg (Germany)

    2016-07-15

    We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.

  7. Two types of the effective mass divergence and the Grueneisen ratio in heavy-fermion metals

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Msezane, A.Z.; Shaginyan, V.R.

    2004-01-01

    The behavior of the specific heat c p , effective mass M*, and the thermal expansion coefficient α of a Fermi system located near the fermion condensation quantum phase transition (FCQPT) is considered. We observe the first type behavior if the system is close to FCQPT: the specific heat c p ∝√T, M*∝1/√T, while the thermal expansion coefficient α∝√T. Thus, the Grueneisen ratio Γ(T)=α/c p does not diverges. At the transition region, where the system passes over from the non-Fermi liquid to the Landau Fermi liquid, the ratio diverges as Γ(T)∝1/√T. In the system becomes the Landau Fermi liquid, Γ(T,r)∝1/r, with r being a distance from the quantum critical point. Provided the system has undergone FCQPT, the second type takes place: the specific heat behaves as c p ∝√T, M * ∝1/T, and α=a+bT with a,b being constants. Again, the Grueneisen ratio diverges as Γ(T)∝1/√T

  8. Fermionic NNLO contributions to Bhabha scattering

    International Nuclear Information System (INIS)

    Actis, S.; Riemann, T.; Czakon, M.; Uniwersytet Slaski, Katowice; Gluza, J.

    2007-10-01

    We derive the two-loop corrections to Bhabha scattering from heavy fermions using dispersion relations. The double-box contributions are expressed by three kernel functions. Convoluting the perturbative kernels with fermionic threshold functions or with hadronic data allows to determine numerical results for small electron mass m e , combined with arbitrary values of the fermion mass m f in the loop, m 2 e 2 f , or with hadronic insertions. We present numerical results for m f =m μ , m τ ,m top at typical small- and large-angle kinematics ranging from 1 GeV to 500 GeV. (orig.)

  9. Excited fermions

    International Nuclear Information System (INIS)

    Boudjema, F.; Djouadi, A.; Kneur, J.L.

    1992-01-01

    The production of excited fermions with mass above 100 GeV is considered. f→Vf (1) decay widths are calculated where V=γ, Z or W. Excited fermion pair production in e + e - annihilation and in γγ collisions, and single production in e + e - annihilation, eγ and γγ collisions is also discussed. Cross sections are calculated for all these cases. The discovery potential of the NLC at 500 GeV is compared with that of other colliders. (K.A.) 15 refs., 5 figs., 2 tabs

  10. Chiral composite fermions without U(1)'s

    International Nuclear Information System (INIS)

    Nelson, A.E.

    1986-01-01

    Some models are discussed which seem likely to produce composite fermions with masses protected only by nonabelian global symmetries. A subgroup of the original global symmetries can be weakly gauged to produce small masses for the fermions. A new feature of these models is that the original global symmetries contain no abelian factors and below the confinement scale there are neither exactly massless fermions nor Goldstone bosons. A candidate is given for a potentially realistic model with up to six families of quarks and leptons. (orig.)

  11. Fermion current algebras and Schwinger terms in (3+1)-dimensions

    International Nuclear Information System (INIS)

    Langmann, E.

    1994-01-01

    We discuss the restricted linear group in infinite dimensions modeled by the Schatten class of rank 2p=4 which contains the (3+1)-dimensional analogs of the loop groups and is closely related to Yang-Mills theory with fermions in (3+1)-dimensions. We give an alternative to the construction of the ''highest weight'' representation of this group found by Mickelsson and Rajeev. Our approach is close to quantum field theory, with the elements of this group regarded as Bogoliubov transformations for fermions in an external Yang-Mills field. Though these cannot be unitarily implemented in the physically relevant representation of the fermion field algebra, we argue that they can be implemented by sesquilinear forms, and that there is a (regularized) product of forms providing an appropriate group structure. On the Lie algebra level, this gives an explicit, non-perturbative construction of fermion current algebras in (3+1) space-time dimensions which explicitly shows that the ''wave function renormalization'' required for a consistent definition of the currents and their Lie bracket naturally leads to the Schwinger term identical with the Mickelsson-Rajeev cocycle. Though the explicit form of the Schwinger term is given only for the case p=2, our arguments apply also to the restricted linear groups modeled by Schatten classes of rank 2p=6, 8, .. corresponding to current algebras in (d+1)-dimensions, d=5, 7, .. (orig.)

  12. Progress in simulations with twisted mass fermions at the physical point

    International Nuclear Information System (INIS)

    Abdel-Rehim, A.

    2014-11-01

    In this contribution, results from N f =2 lattice QCD simulations at one lattice spacing using twisted mass fermions with a clover term at the physical pion mass are presented. The mass splitting between charged and neutral pions (including the disconnected contribution) is shown to be around 20(20) MeV. Further, a first measurement using the clover twisted mass action of the average momentum fraction of the pion is given. Finally, an analysis of pseudoscalar meson masses and decay constants is presented involving linear interpolations in strange and charm quark masses. Matching to meson mass ratios allows the calculation of quark mass ratios: μ s /μ l =27.63(13), μ c /μ l =339.6(2.2) and μ c /μ s =12.29(10). From this mass matching the quantities f K =153.9(7.5) MeV, f D =219(11) MeV, f D s =255(12) MeV and M D s =1894(93) MeV are determined without the application of finite volume or discretization artefact corrections and with errors dominated by a preliminary estimate of the lattice spacing.

  13. Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock

    Science.gov (United States)

    Bromley, S. L.; Kolkowitz, S.; Bothwell, T.; Kedar, D.; Safavi-Naini, A.; Wall, M. L.; Salomon, C.; Rey, A. M.; Ye, J.

    2018-04-01

    Quantum statistics and symmetrization dictate that identical fermions do not interact via s-wave collisions. However, in the presence of spin-orbit coupling (SOC), fermions prepared in identical internal states with distinct momenta become distinguishable. The resulting strongly interacting system can exhibit exotic topological and pairing behaviours, many of which are yet to be observed in condensed matter systems. Ultracold atomic gases offer a promising pathway for simulating these rich phenomena, but until recently have been hindered by heating and losses. Here we enter a new regime of many-body interacting SOC in a fermionic optical lattice clock (OLC), where the long-lived electronic clock states mitigate unwanted dissipation. Using clock spectroscopy, we observe the precession of the collective magnetization and the emergence of spin-locking effects arising from an interplay between p-wave and SOC-induced exchange interactions. The many-body dynamics are well captured by a collective XXZ spin model, which describes a broad class of condensed matter systems ranging from superconductors to quantum magnets. Furthermore, our work will aid in the design of next-generation OLCs by offering a route for avoiding the observed large density shifts caused by SOC-induced exchange interactions.

  14. Standard model fermion hierarchies with multiple Higgs doublets

    International Nuclear Information System (INIS)

    Solaguren-Beascoa Negre, Ana

    2016-01-01

    The hierarchies between the Standard Model (SM) fermion masses and mixing angles and the origin of neutrino masses are two of the biggest mysteries in particle physics. We extend the SM with new Higgs doublets to solve these issues. The lightest fermion masses and the mixing angles are generated through radiative effects, correctly reproducing the hierarchy pattern. Neutrino masses are generated in the see-saw mechanism.

  15. Hierarchical fermions and detectable Z' from effective two-Higgs-triplet 3-3-1 model

    Science.gov (United States)

    Barreto, E. R.; Dias, A. G.; Leite, J.; Nishi, C. C.; Oliveira, R. L. N.; Vieira, W. C.

    2018-03-01

    We develop a SU (3 )C⊗SU (3 )L⊗U (1 )X model where the number of fermion generations is fixed by cancellation of gauge anomalies, being a type of 3-3-1 model with new charged leptons. Similarly to the economical 3-3-1 models, symmetry breaking is achieved effectively with two scalar triplets so that the spectrum of scalar particles at the TeV scale contains just two C P even scalars, one of which is the recently discovered Higgs boson, plus a charged scalar. Such a scalar sector is simpler than the one in the Two Higgs Doublet Model, hence more attractive for phenomenological studies, and has no flavor changing neutral currents (FCNC) mediated by scalars except for the ones induced by the mixing of Standard Model (SM) fermions with heavy fermions. We identify a global residual symmetry of the model which guarantees mass degeneracies and some massless fermions whose masses need to be generated by the introduction of effective operators. The fermion masses so generated require less fine-tuning for most of the SM fermions and FCNC are naturally suppressed by the small mixing between the third family of quarks and the rest. The effective setting is justified by an ultraviolet completion of the model from which the effective operators emerge naturally. A detailed particle mass spectrum is presented, and an analysis of the Z' production at the LHC run II is performed to show that it could be easily detected by considering the invariant mass and transverse momentum distributions in the dimuon channel.

  16. P-S & S-P Elastic Wave Conversions from Linear Arrays of Oriented Microcracks

    Science.gov (United States)

    Jiang, L.; Modiriasari, A.; Bobet, A.; Pyrak-Nolte, L. J.

    2017-12-01

    Natural and induced processes can produce oriented mechanical discontinuities such as en echelon cracks, fractures and faults. Previous research has shown that compressional to shear (P-S) wave conversions occur at normal incidence to a fracture because of cross-coupling fracture compliances (Nakagawa et al., 2000). Here, experiments and computer simulation are presented to demonstrate the link among cross-coupling stiffness, microcrack orientation and energy partitioning among P, S, and P-S/S-P waves. A FormLabs 2 3D printer was used to fabricate 7 samples (50 mm x 50 mm x 100 mm) with linear arrays of microcracks oriented at 0, 15, 30, 45, 60, 75, and 900 with a print resolution of 0.025 mm. The microcracks were elliptical in cross-sections (2 mm long by 1 mm wide), through the 50 mm thickness of sample, and spaced 3 mm (center-to-center for adjacent cracks). A 25 mm length of each sample contained no microcracks to act as a reference material. Broadband transducers (0.2-1.5 MHz) were used to transmit and receive P and polarized S wave signals that were propagated at normal incidence to the linear array of microcracks. P-wave amplitude increased, while S-wave amplitude remained relatively constant, as the microcrack orientation increased from 0o to 90o. At normal incidence, P-S and S-P wave conversions emerged and increased in amplitude as the crack inclination increased from 00 to 450. From 450 to 900, the amplitude of these converted modes decreased. Between negative and positive crack angles, the P-to-S and S-to-P waves were 1800 phase reversed. The observed energy partitioning matched the computed compliances obtained from numerical simulations with ABAQUS. The cross-coupling compliance for cracks inclined at 450 was found to be the smallest magnitude. 3D printing enabled the study of microstructural effects on macro-scale wave measurements. Information on the orientation of microcracks or even en echelon fractures and faults is contained in P-S conversions

  17. Matter waves of Bose-Fermi mixtures in one-dimensional optical lattices

    International Nuclear Information System (INIS)

    Bludov, Yu. V.; Santhanam, J.; Kenkre, V. M.; Konotop, V. V.

    2006-01-01

    We describe solitary wave excitations in a Bose-Fermi mixture loaded in a one-dimensional and strongly elongated lattice. We focus on the mean-field theory under the condition that the fermion number significantly exceeds the boson number, and limit our consideration to lattice amplitudes corresponding to the order of a few recoil energies or less. In such a case, the fermionic atoms display 'metallic' behavior and are well-described by the effective mass approximation. After classifying the relevant cases, we concentrate on gap solitons and coupled gap solitons in the two limiting cases of large and small fermion density, respectively. In the former, the fermionic atoms are distributed almost homogeneously and thus can move freely along the lattice. In the latter, the fermionic density becomes negligible in the potential maxima, and this leads to negligible fermionic current in the linear regime

  18. Computation of the chiral condensate using N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors of twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, E. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Forschungszentrum Juelich (Germany). IAS; Forschungszentrum Juelich (Germany). IKP; Forschungszentrum Juelich (Germany). JCHP; Collaboration: European Twisted Mass Collaboration

    2013-12-15

    We apply the spectral projector method, recently introduced by Giusti and Luescher, to compute the chiral condensate using N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the O(a) improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors.

  19. Review of the fermionic dark matter model applied to galactic structures

    Science.gov (United States)

    Krut, A.; Argüelles, C. R.; Rueda, J.; Ruffini, R.

    2015-12-01

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion) is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.

  20. Review of the fermionic dark matter model applied to galactic structures

    Energy Technology Data Exchange (ETDEWEB)

    Krut, A. [Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, I–00185 Rome (Italy); Argüelles, C. R. [ICRANet, P.zza della Repubblica 10, I-65122 Pescara (Italy); Rueda, J.; Ruffini, R. [Dipartimento di Fisica, Sapienza Università di Roma, P.le Aldo Moro 5, I–00185 Rome (Italy); ICRANet, P.zza della Repubblica 10, I-65122 Pescara (Italy)

    2015-12-17

    Baryonic components (e.g. bulge and disk) of galactic structures are assumed to be embedded in an isothermal dark matter halo of fermionic nature. Besides the Pauli principle only gravitational interaction is considered. Using the underlying Fermi-Dirac phase space distribution, typical of collisionless relaxation processes, it yields an one-parameter family of scaled solutions which reproduces the observed flat rotation curves in galaxies, and additionally predicts a degenerate core through their centers. In order to provide the right DM halo properties of galaxies a set of four parameters (particle mass, degeneracy parameter at the galactic center, central density and the velocity dispersion) is necessary. The more general density profile shows three regimes depending on radius: an almost uniform very dense quantum core followed by a steep fall, a plateau in the diluted regime and a Boltzmannian tail representing the halo. In contrast to purely Boltzmannian configurations the fermionic DM model containing a quantum core allows to determine the particle mass. We show that the quantum core can be well approximated by a polytrope of index n = 3/2, while the halo can be perfectly described by an isothermal sphere with a halo scale length radius equal to approximately 3/4 of the King-radius.

  1. Freedom in electroweak symmetry breaking and mass matrix of fermions in dimensional deconstruction model

    International Nuclear Information System (INIS)

    Nojiri, Shin'ichi; Odintsov, Sergei D.; Sugamoto, Akio

    2004-01-01

    There exists a freedom in a class of four-dimensional electroweak theories proposed by Arkani-Hamed et al. relying on deconstruction and Coleman-Weinberg mechanism. The freedom comes from the winding modes of the link variable (Wilson operator) connecting non-nearest neighbours in the discrete fifth dimension. Using this freedom, dynamical breaking of SU(2) gauge symmetry, mass hierarchy patterns of fermions and Cabbibo-Kobayashi-Maskawa matrix may be obtained

  2. The effective neutrino charge radius in the presence of fermion masses

    International Nuclear Information System (INIS)

    Binosi, D.; Bernabeu, J.; Papavassiliou, J.

    2005-01-01

    We show how the crucial gauge cancellations leading to a physical definition of an effective neutrino charge radius persist in the presence of non-vanishing fermion masses. An explicit one-loop calculation demonstrates that, as happens in the massless case, the pinch technique rearrangement of the Feynman amplitudes, together with the judicious exploitation of the fundamental current relation J α (3) =2(J Z +sinθ w 2 J γ ) α , leads to a completely gauge independent definition of the effective neutrino charge radius. Using the formalism of the Nielsen identities it is further proved that the same cancellation mechanism operates unaltered to all orders in perturbation theory

  3. The role of self-coherence in correlations of bosons and fermions in linear counting experiments. Notes on the wave-particle duality

    International Nuclear Information System (INIS)

    Varro, S.

    2011-01-01

    Correlations of detection events in two detectors are studied in case of linear excitations of the measuring apparatus. On the basis of classical probability theory and fundamental conservation laws, a general formula is derived for the two-point correlation functions for both bosons and fermions. The results obtained coincide with that derivable from quantum theory which uses quantized field amplitudes. By applying both the particle and the wave picture at the same time, the phenomena of photon bunching and antibunching, photon anticorrelation and fermion antibunching measured in beam experiments are interpreted in the frame of an intuitively clear description. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Phases of renormalized lattice gauge theories with fermions

    International Nuclear Information System (INIS)

    Caracciolo, S.; Menotti, P.; and INFN Sezione di Pisa, Italy)

    1979-01-01

    Starting from the formulation of gauge theories on a lattice we derive renormalization group transformation of the Migdal-Kadanoff type in the presence of fermions. We consider the effect of the fermion vacuum polarization on the gauge Lagrangian but we neglect fermion mass renormalization. We work out the weak coupling and strong coupling expansion in the same framework. Asymptotic freedom is recovered for the non-Abelian case provided the number of fermion multiplets is lower than a critical number. Fixed points are determined both for the U (1) and SU (2) case. We determine the renormalized trajectories and the phases of the theory

  5. Heavy fermion materials

    International Nuclear Information System (INIS)

    Smith, J.L.; Cooke, D.W.

    1986-01-01

    The heavy-fermion ground state occurs in a few select metallic compounds as a result of interactions between f-electron and conduction-electron spins. A characteristically large electronic heat capacity at low temperature indicates that the effective electron mass of these materials is more than two orders of magnitude greater than that expected for a free-electron metal. This heavy-fermion ground state can become superconducting or antiferromagnetic, exhibiting very unusual properties. These materials and the role of muon spin rotation in their study are briefly discussed

  6. Two types of the effective mass divergence and the Grueneisen ratio in heavy-fermion metals

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Msezane, A.Z.; Shaginyan, V.R

    2004-01-12

    The behavior of the specific heat c{sub p}, effective mass M*, and the thermal expansion coefficient {alpha} of a Fermi system located near the fermion condensation quantum phase transition (FCQPT) is considered. We observe the first type behavior if the system is close to FCQPT: the specific heat c{sub p}{proportional_to}{radical}T, M*{proportional_to}1/{radical}T, while the thermal expansion coefficient {alpha}{proportional_to}{radical}T. Thus, the Grueneisen ratio {gamma}(T)={alpha}/c{sub p} does not diverges. At the transition region, where the system passes over from the non-Fermi liquid to the Landau Fermi liquid, the ratio diverges as {gamma}(T){proportional_to}1/{radical}T. In the system becomes the Landau Fermi liquid, {gamma}(T,r){proportional_to}1/r, with r being a distance from the quantum critical point. Provided the system has undergone FCQPT, the second type takes place: the specific heat behaves as c{sub p}{proportional_to}{radical}T, M{sup *}{proportional_to}1/T, and {alpha}=a+bT with a,b being constants. Again, the Grueneisen ratio diverges as {gamma}(T){proportional_to}1/{radical}T.

  7. Spectroscopy of Dipolar Fermions in Layered Two-Dimensional and Three-Dimensional Lattices

    Science.gov (United States)

    2011-09-06

    Moreover, we consider other sources of spectral broadening: interaction-induced quasiparticle lifetimes and the different polarizabilities of the...and study Cooper pair binding [7,8], polaron quasiparticle residue [9], and pseudogap behavior of ultracold fermions across the BEC/BCS crossover [10...imaginary part of this energy is the quasiparticle lifetime, and the only source of quasiparticle decay is the p-wave particle loss. Thus the cloud

  8. Compressibility, zero sound, and effective mass of a fermionic dipolar gas at finite temperature

    International Nuclear Information System (INIS)

    Kestner, J. P.; Das Sarma, S.

    2010-01-01

    The compressibility, zero-sound dispersion, and effective mass of a gas of fermionic dipolar molecules is calculated at finite temperature for one-, two-, and three-dimensional uniform systems, and in a multilayer quasi-two-dimensional system. The compressibility is nonmonotonic in the reduced temperature, T/T F , exhibiting a maximum at finite temperature. This effect might be visible in a quasi-low-dimensional experiment, providing a clear signature of the onset of many-body quantum degeneracy effects. The collective mode dispersion and effective mass show similar nontrivial temperature and density dependence. In a quasi-low-dimensional system, the zero-sound mode may propagate at experimentally attainable temperatures.

  9. Results form 2+1 flavours of SLiNC fermions

    International Nuclear Information System (INIS)

    Bietenholz, W.; Cundy, N.

    2009-10-01

    QCD results are presented for a 2+1 flavour fermion clover action (which we call the SLiNC action). A method of tuning the quark masses to their physical values is discussed. In this method the singlet quark mass is kept fixed, which solves the problem of different renormalisations (for singlet and non-singlet quark masses) occuring for non-chirally invariant lattice fermions. This procedure enables a wide range of quark masses to be probed, including the case with a heavy up-down quark mass and light strange quark mass. Preliminary results show the correct splittings for the baryon (octet and) decuplet spectrum. (orig.)

  10. Applications of the complex-mass renormalization scheme in effective field theory; Anwendungen des Komplexe-Masse-Renormierungsschemas in effektiver Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Torsten

    2012-07-11

    In the first part of the this doctoral thesis the perturbative unitarity in the complex-mass scheme (CMS) is analysed. To that end a procedure for calculating cutting rules for loop integrals containing propagators with finite widths is presented. A toy-model Lagrangian describing the interaction of a heavy vector boson with a light fermion is used to demonstrate that the CMS respects unitarity order by order in perturbation theory provided that the renormalized coupling constant remains real. The second part of the thesis deals with various applications of the CMS to chiral effective field theory (EFT). In particular, mass and width of the delta resonance, elastic electromagnetic form factors of the Roper resonance, form factors of the nucleon-to-Roper transition, pion-nucleon scattering, and pion photo- and electroproduction for center-of-mass energies in the region of the Roper mass are calculated. By choosing appropriate renormalization conditions, a consistent chiral power counting scheme for EFT with resonant degrees of freedom can be established. This allows for a systematic investigation of the above processes in terms of an expansion in small quantities. The obtained results can be applied to the extrapolation of corresponding simulations in the context of lattice QCD to the physical value of the pion mass. Therefore, in addition to the Q{sup 2} dependence of the form factors, also the pion-mass dependence of the magnetic moment and electromagnetic radii of the Roper resonance is explored. Both a partial wave decomposition and a multipole expansion are performed for pion-nucleon scattering and pion photo- and electroproduction, respectively. In this connection the P11 partial wave as well as the M{sub 1-} and S{sub 1-} multipoles are fitted via non-linear regression to empirical data.

  11. Strongly-interacting mirror fermions at the LHC

    Directory of Open Access Journals (Sweden)

    Triantaphyllou George

    2017-01-01

    Full Text Available The introduction of mirror fermions corresponding to an interchange of leftwith right-handed fermion quantum numbers of the Standard Model can lead to a model according to which the BEH mechanism is just an effective manifestation of a more fundamental theory while the recently-discovered Higgs-like particle is composite. This is achieved by a non-abelian gauge symmetry encompassing three mirror-fermion families strongly coupled at energies near 1 TeV. The corresponding non-perturbative dynamics lead to dynamical mirror-fermion masses between 0.14 - 1.2 TeV. Furthermore, one expects the formation of composite states, i.e. “mirror mesons”, with masses between 0.1 and 3 TeV. The number and properties of the resulting new degrees of freedom lead to a rich and interesting phenomenology, part of which is analyzed in the present work.

  12. Disordered 2d quasiparticles in class D: Dirac fermions with random mass, and dirty superconductors

    International Nuclear Information System (INIS)

    Bocquet, M.; Serban, D.; Zirnbauer, M.R.

    2000-01-01

    Disordered noninteracting quasiparticles that are governed by a Majorana-type Hamiltonian -- prominent examples are dirty superconductors with broken time-reversal and spin-rotation symmetry, or the fermionic representation of the 2d Ising model with fluctuating bond strengths -- are called class D . In two dimensions, weakly disordered systems of this kind may possess a metallic phase beyond the insulating phases expected for strong disorder. We show that the 2d metal phase emanates from the free Majorana fermion point, in the direction of the RG trajectory of a perturbed WZW model. To establish this result, we develop a supersymmetric extension of the method of nonabelian bosonization. On the metallic side of the metal-insulator transition, the density of states becomes nonvanishing at zero energy, by a mechanism akin to dynamical mass generation. This feature is explored in a model of N species of disordered Dirac fermions, via the mapping on a nonlinear sigma model, which encapsulates a Z 2 spin degree of freedom. We compute the density of states in a finite system, and obtain agreement with the random-matrix prediction for class D , in the ergodic limit. Vortex disorder, which is a relevant perturbation at the free-fermion point, changes the density of states at low energy and suppresses the local Z 2 degree of freedom, thereby leading to a different symmetry class, BD

  13. Bosonization of fermions coupled to topologically massive gravity

    Science.gov (United States)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-03-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.

  14. Bosonization of fermions coupled to topologically massive gravity

    International Nuclear Information System (INIS)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-01-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  15. Bosonization of fermions coupled to topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States); Moreno, Enrique F. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Schaposnik, Fidel A. [Departamento de Física, Universidad Nacional de La Plata, Instituto de Física La Plata, C.C. 67, 1900 La Plata (Argentina)

    2014-03-07

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  16. Squeezed fermions and back-to-back correlations

    International Nuclear Information System (INIS)

    Panda, P.K.; Krein, G.; Padula, S.S.; Csoergoe, T.; Hama, Y.

    2001-01-01

    Back-to-back correlations of asymptotic fermion pairs appear if in-medium interactions lead to mass modifications of fermion states in a thermalized medium. The back-to-back correlations of protons and anti-protons will be experimentally observable in ultrarelativistic heavy ion collisions. The strength of back-to-back correlations of fermions can be unlimitedly large, diverging as the momentum of the pair increases and the net baryon density decreases. (author)

  17. Squeezed fermions and back-to-back correlations

    Energy Technology Data Exchange (ETDEWEB)

    Panda, P.K.; Krein, G.; Padula, S.S. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Csoergoe, T. [Hungarian Academy of Sciences, Budapest (Hungary). Research Institute for Particle and Nuclear Physics (RMKI, KFKI); Hama, Y. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    2001-07-01

    Back-to-back correlations of asymptotic fermion pairs appear if in-medium interactions lead to mass modifications of fermion states in a thermalized medium. The back-to-back correlations of protons and anti-protons will be experimentally observable in ultrarelativistic heavy ion collisions. The strength of back-to-back correlations of fermions can be unlimitedly large, diverging as the momentum of the pair increases and the net baryon density decreases. (author)

  18. Singular perturbation theory for interacting fermions in two dimensions

    International Nuclear Information System (INIS)

    Chubukov, A.V.; Maslov, D.L.; Gangadharaiah, S.; Glazman, L.I.

    2004-11-01

    We consider a system of interacting fermions in two dimensions beyond the second-order perturbation theory in the interaction. It is shown that the mass-shell singularities in the self-energy, arising already at the second order of the perturbation theory, manifest a nonperturbative effect: an interaction with the zero-sound mode. Resuming the perturbation theory for a weak, short-range interaction and accounting for a finite curvature of the fermion spectrum, we eliminate the singularities and obtain the results for the quasi-particle self-energy and the spectral function to all orders in the interaction with the zero-sound mode. A threshold for emission of zero-sound waves leads a non-monotonic variation of the self-energy with energy (or momentum) near the mass shell. Consequently, the spectral function has a kink-like feature. We also study in detail a non-analytic temperature dependence of the specific heat, C(T) ∝T 2 . It turns out that although the interaction with the collective mode results in an enhancement of the fermion self-energy, this interaction does not affect the non-analytic term in C(T) due to a subtle cancellation between the contributions from the real and imaginary parts of the self-energy. For a short-range and weak interaction, this implies that the second-order perturbation theory suffices to determine the non-analytic part of C(T). We also obtain a general form of the non-analytic term in C(T), valid for the case of a generic Fermi liquid, i.e., beyond the perturbation theory. (author)

  19. New data on $K^{-}p \\rightarrow K^{-}p $and $\\overline{K}^{0}n$ and a partial wave analysis between 1840 and 2234 MeV center of mass energy

    CERN Document Server

    Hemingway, Richard J; Harmsen D M; Kiesling, C; Petersen, J O; Plane, D E; Putzer, A; Wittex, W; Eades, J no 1; Harmsen D M no 1; Hemingway, R J no 1; Kiesling, C no 3; Petersen, J O no 1; Plane, D E no 3; Putzer, A no 2; Wittex, W no 3

    1975-01-01

    The angular distributions of the reactions K/sup -/p to K/sup -/p and K/sup -/p to K/sup 0/n have been measured at 23 incident K/sup -/ momenta between 1.136 and 1.798 GeV/c using the bubble chamber technique. These data, together with other published data on the same reactions, including K/sup -/p polarisations, KN total cross sections and measurements of Re f(0)/Im f(0), have been analysed in terms of partial-wave amplitudes. Resonance behaviour is confirmed for the P /sub 03/ partial wave at 1890 MeV. The resonance parameters of the F /sub 15/(1915), F/sub 17/(2030) and G/sub 07/(2100) have been redetermined. No evidence has been found for new resonances coupling significantly to KN in the energy region explored. (24 refs).

  20. 6. QUANTUM COMPUTING: Unpaired Majorana fermions in quantum wires

    Science.gov (United States)

    Kitaev, A. Yu

    2001-10-01

    Certain one-dimensional Fermi systems have an energy gap in the bulk spectrum while boundary states are described by one Majorana operator per boundary point. A finite system of length L possesses two ground states with an energy difference proportional to exp(-L/l0) and different fermionic parities. Such systems can be used as qubits since they are intrinsically immune to decoherence. The property of a system to have boundary Majorana fermions is expressed as a condition on the bulk electron spectrum. The condition is satisfied in the presence of an arbitrary small energy gap induced by proximity of a three-dimensional p-wave superconductor, provided that the normal spectrum has an odd number of Fermi points in each half of the Brillouin zone (each spin component counts separately).

  1. What Do s- and p-Wave Neutron Average Radiative Widths Reveal

    Energy Technology Data Exchange (ETDEWEB)

    Mughabghab, S.F.

    2010-04-30

    A first observation of two resonance-like structures at mass numbers 92 and 112 in the average capture widths of the p-wave neutron resonances relative to the s-wave component is interpreted in terms of a spin-orbit splitting of the 3p single-particle state into P{sub 3/2} and P{sub 1/2} components at the neutron separation energy. A third structure at about A = 124, which is not correlated with the 3p-wave neutron strength function, is possibly due to the Pygmy Dipole Resonance. Five significant results emerge from this investigation: (i) The strength of the spin-orbit potential of the optical-model is determined as 5.7 {+-} 0.5 MeV, (ii) Non-statistical effects dominate the p-wave neutron-capture in the mass region A = 85 - 130, (iii) The background magnitude of the p-wave average capture-width relative to that of the s-wave is determined as 0.50 {+-} 0.05, which is accounted for quantitatively in tenns of the generalized Fermi liquid model of Mughabghab and Dunford, (iv) The p-wave resonances arc partially decoupled from the giant-dipole resonance (GDR), and (v) Gamma-ray transitions, enhanced over the predictions of the GDR, are observed in the {sup 90}Zr - {sup 98}Mo and Sn-Ba regions.

  2. Interacting fermions on a random lattice

    International Nuclear Information System (INIS)

    Perantonis, S.J.; Wheater, J.F.

    1988-01-01

    We extend previous work on the properties of the Dirac lagrangian on two-dimensional random lattices to the case where interaction terms are included. Although for free fermions the chiral symmetry of the doubles is spontaneously broken by their interaction with the lattice and tehy decouple from long-distance physics, our results in this paper show that all is undone by quantum corrections in an interacting field theory and taht the end result is very similar to what is found with Wilson fermions. Two field-theoretical models with interacting fermions are studied by perturbation expansion in the field theory coupling constant. These are a model with one fermion and one boson species interacting via a scalar Yukawa coupling and the massive Thirring model. It is shown that on the random lattice ultraviolet finite diagrams and finite parts of ultraviolet divergent diagrams have the correct continuum limit. Ultraviolet divergent parts can be removed by the same renormalisation procedure as in the continuum, but do not exhibit the same dependence on the lagrangian mass. In the case of the massive Thirring model this causes a fermion mass correction of order the cut-off scale, which breaks the chiral symmetry of the remaining light fermion; there is consequently a fine-tuning problem. In the context of the same model we discuss the effect of the Goldstone boson associated with the spontaneous breakdown of the chiral symmetry of the doubles on two-dimensional models with vector couplings. (orig.)

  3. Four fermion interaction near four dimensions

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1991-01-01

    It is known that field theories with attractive four-point fermion interactions can produce scalar bound states: Fermion mass generation by spontaneous chiral symmetry breaking associated with such fermion bound states provides an attractive mechanism for building models of composite Higgs bosons. The ratio of fermion and boson masses can then be predicted while it seems to be a free parameter in similar models where a boson field explicitly appears in the action. The main problem is that the corresponding models are renormalizable only in two dimensions, in contrast with models with explicit bosons. Many fermion models with four-point interaction are asymptotically free in two dimensions and then behave also like renormalizable models in higher dimensions, at least within the framework of some 1/N expansion. On the other hand mass ratio predictions also follow in the models with explicit bosons, when they have an IR fixed point, from the additional natural assumption that coupling constants have generic values at the cut-off scale. To the model with a four fermion interaction one can associate an effective model containing an additional scalar field, renormalizable in four dimensions, which has the same large distance, small momentum physics, at least to all orders in some 1/N expansion. Even the leading corrections corresponding to irrelevant or marginal operators are identical. This property is important in four dimensions where the IR fixed point coupling constants vanish: The correction amplitudes can be varied by changing the coupling constants in the renormalizable model and the cut-off function in the perturbatively non-renormalizable model. We shall consider here for definiteness only the Gross-Neveu model but it will be clear that the arguments are more general

  4. Structural aspects of the fermion-boson mapping in two-dimensional gauge and anomalous gauge theories with massive fermions

    International Nuclear Information System (INIS)

    Belvedere, L.V.; Souza Dutra, A. de; Natividade, C.P.; Queiroz, A.F. de

    2002-01-01

    Using a synthesis of the functional integral and operator approaches we discuss the fermion-boson mapping and the role played by the Bose field algebra in the Hilbert space of two-dimensional gauge and anomalous gauge field theories with massive fermions. In QED 2 with quartic self-interaction among massive fermions, the use of an auxiliary vector field introduces a redundant Bose field algebra that should not be considered as an element of the intrinsic algebraic structure defining the model. In anomalous chiral QED 2 with massive fermions the effect of the chiral anomaly leads to the appearance in the mass operator of a spurious Bose field combination. This phase factor carries no fermion selection rule and the expected absence of Θ-vacuum in the anomalous model is displayed from the operator solution. Even in the anomalous model with massive Fermi fields, the introduction of the Wess-Zumino field replicates the theory, changing neither its algebraic content nor its physical content

  5. Bragg diffraction of fermions at optical potentials; Braggbeugung von Fermionen an optischen Potentialen

    Energy Technology Data Exchange (ETDEWEB)

    Deh, Benjamin

    2008-10-27

    This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a {sup 6}Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 {mu}s. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)

  6. Fermion electric dipole moments induced by P- and T-odd WWγ interactions in the minimal supersymmetric standard model and multi-Higgs-boson model

    International Nuclear Information System (INIS)

    West, T.H.

    1994-01-01

    We calculate fermion electric dipole moments generated by P- and T-odd WWγ interactions in the supersymmetry and multi-Higgs-boson models without using an approximation first introduced by Marciano and Queijeiro. In essence, this approximation consists of ignoring the details of the high energy physics responsible for the W electric dipole moment. For the minimal supersymmetry model, our more exact results are roughly three times those obtained from the simplest application of the above-mentioned approximation for gaugino masses larger than m W . However, if the gaugino masses are approx-lt m W , our results are less than would be expected from the Marciano-Queijeiro estimate. In part, because of this suppression, we discover that the experimental bounds on d n place no restrictions on either the allowed values of d W or on the permitted masses of the minimal supersymmetry model. This contradicts the findings of Vendramin who used the Marciano-Queijeiro results to deduce such prohibited regions of parameter space and mildly improves the prospects of observing a nonzero W-boson electric dipole moment in accelerator experiments. In the case of the multi-Higgs-boson model, we again find fermion electric dipole moments that are three times those expected from a simple application of the Marciano-Queijeiro technique. In addition, when this result is combined with a complete two-loop calculation of the W electric dipole moment, we find that the fermion electric dipole moments generated in this way are approximately 30 times those expected from a previous calculation by He and McKellar

  7. Effects of unknown fermion generations on the msub(w),msub(z) interdependence

    International Nuclear Information System (INIS)

    Bertolini, S.; Sirlin, A.

    1984-01-01

    The effect of unknown fermion generation of the msub(w), msub(z) interdependence is analyzed. It is shown that an additional fermion generation can increase the quantum correction Δr and, therefore, the predicted mass difference msub(z)-msub(w) for given msub(z), but such positive contributions are bounded above by small quantities. In particular, as previously pointed out by Veltman, massive degenerate fermions do not fully decouple but lead to small positive corrections. On the other hand, it is known that significant negative contributions to Δr and msub(z)-msub(w) can arise from exotic values for the mass of the top quark and the isodoublet splittings in higher generations. A method of obtaining information about such masses when msub(w) and msub(z) become precisely known is discussed. The analytic methods of obtaining the general features of the corrections, for essentially arbitrary fermion masses, exploit the convexity properties of elementary functions. (orig.)

  8. Large cutoff effects of dynamical Wilson fermions

    International Nuclear Information System (INIS)

    Sommer, R.; Hoffmann, R.; Knechtli, F.; Rolf, J.; Wolff, U.; Wetzorke, I.

    2003-09-01

    We present and discuss results for cutoff effects in the PCAC masses and the mass dependence of r 0 for full QCD and various fermion actions. Our discussion of how one computes mass dependences - here of r 0 - is also relevant for comparisons with chiral perturbation theory. (orig.)

  9. Graviton mass bounds from an analysis of bright star trajectories at the Galactic Center

    Directory of Open Access Journals (Sweden)

    Zakharov Alexander

    2017-01-01

    Full Text Available In February 2016 the LIGO & VIRGO collaboration reported the discovery of gravitational waves in merging black holes, therefore, the team confirmed GR predictions about an existence of black holes and gravitational waves in the strong gravitational field limit. Moreover, in their papers the joint LIGO & VIRGO team presented an upper limit on graviton mass such as mg < 1.2 × 10−22 eV (Abbott et al. 2016. So, the authors concluded that their observational data do not show any violation of classical general relativity. We show that an analysis of bright star trajectories could constrain graviton mass with a comparable accuracy with accuracies reached with gravitational wave interferometers and the estimate is consistent with the one obtained by the LIGO & VIRGO collaboration. This analysis gives an opportunity to treat observations of bright stars near the Galactic Center as a useful tool to obtain constraints on the fundamental gravity law such as modifications of the Newton gravity law in a weak field approximation. In that way, based on a potential reconstruction at the Galactic Center we obtain bounds on a graviton mass.

  10. Continuum-limit scaling of overlap fermions as valence quarks

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Herdoiza, Gregorio; Jansen, Karl

    2009-10-01

    We present the results of a mixed action approach, employing dynamical twisted mass fermions in the sea sector and overlap valence fermions, with the aim of testing the continuum limit scaling behaviour of physical quantities, taking the pion decay constant as an example. To render the computations practical, we impose for this purpose a fixed finite volume with lattice size L∼1.3 fm. We also briefly review the techniques we have used to deal with overlap fermions. (orig.)

  11. Dynamical twisted mass fermions and baryon spectroscopy

    International Nuclear Information System (INIS)

    Drach, V.

    2010-06-01

    The aim of this work is an ab initio computation of the baryon masses starting from quantum chromodynamics (QCD). This theory describes the interaction between quarks and gluons and has been established at high energy thanks to one of its fundamental properties: the asymptotic freedom. This property predicts that the running coupling constant tends to zero at high energy and thus that perturbative expansions in the coupling constant are justified in this regime. On the contrary the low energy dynamics can only be understood in terms of a non perturbative approach. To date, the only known method that allows the computation of observables in this regime together with a control of its systematic effects is called lattice QCD. It consists in formulating the theory on an Euclidean space-time and to evaluating numerically suitable functional integrals. First chapter is an introduction to the QCD in the continuum and on a discrete space time. The chapter 2 describes the formalism of maximally twisted fermions used in the European Twisted Mass (ETM) collaboration. The chapter 3 deals with the techniques needed to build hadronic correlator starting from gauge configuration. We then discuss how we determine hadron masses and their statistical errors. The numerical estimation of functional integral is explained in chapter 4. It is stressed that it requires sophisticated algorithm and massive parallel computing on Blue-Gene type architecture. Gauge configuration production is an important part of the work realized during my Ph.D. Chapter 5 is a critical review on chiral perturbation theory in the baryon sector. The two last chapter are devoted to the analysis in the light and strange baryon sector. Systematics and chiral extrapolation are extensively discussed. (author)

  12. Unconventional superfluids of fermionic polar molecules in a bilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Boudjemâa, Abdelâali, E-mail: a.boudjemaa@univhb-chlef.dz

    2017-05-25

    We study unconventional superfluids of fermionic polar molecules in a two-dimensional bilayer system with dipoles are head-to-tail across the layers. We analyze the critical temperature of several unconventional pairings as a function of different system parameters. The peculiar competition between the d- and the s-wave pairings is discussed. We show that the experimental observation of such unconventional superfluids requires ultralow temperatures, which opens up new possibilities to realize several topological phases. - Highlights: • Investigation of novel superfluids of fermionic polar molecules in a bilayer geometry. • Solving the gap equation and the l-wave interlayer scattering problem. • Calculation of the critical temperature of several competing pairings using the BCS approach.

  13. Wilson Fermions and Axion Electrodynamics in Optical Lattices

    International Nuclear Information System (INIS)

    Bermudez, A.; Martin-Delgado, M. A.; Mazza, L.; Rizzi, M.; Goldman, N.; Lewenstein, M.

    2010-01-01

    We show that ultracold Fermi gases in optical superlattices can be used as quantum simulators of relativistic lattice fermions in 3+1 dimensions. By exploiting laser-assisted tunneling, we find an analogue of the so-called naive Dirac fermions, and thus provide a realization of the fermion doubling problem. Moreover, we show how to implement Wilson fermions, and discuss how their mass can be inverted by tuning the laser intensities. In this regime, our atomic gas corresponds to a phase of matter where Maxwell electrodynamics is replaced by axion electrodynamics: a 3D topological insulator.

  14. Singlet fermionic dark matter with Veltman conditions

    OpenAIRE

    Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon

    2018-01-01

    We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormaliz...

  15. The Fermion boson interaction within the linear sigma model at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caldas, H.C.G. [Fundacao de Ensino Superior de Sao Joao del Rei (FUNREI), MG (Brazil). Dept. de Ciencias Naturais (DCNAT)

    2000-07-01

    We study the interaction of massless bosons at finite temperature. Specifically, we calculate the self-energy of massless fermions due to interaction with massless bosons at high temperature, which is the region where thermal effects are maximal. The calculations are concentrated in the limit of vanishing fermion three momentum and after considering the effective boson dressed mass, we obtain the damping rate of the fermion. It is shown that in the limit k{sub O} <fermion acquire a thermal mass of order gT and the leading term of the fermion damping rate is of order g{sup 2} T + g{sup 3} T. (author)

  16. Composite fermions in the quantum Hall effect

    International Nuclear Information System (INIS)

    Johnson, B.L.; Kirczenow, G.

    1997-01-01

    The quantum Hall effect and associated quantum transport phenomena in low-dimensional systems have been the focus of much attention for more than a decade. Recent theoretical development of interesting quasiparticles - 'composite fermions' - has led to significant advances in understanding and predicting the behaviour of two-dimensional electron systems under high transverse magnetic fields. Composite fermions may be viewed as fermions carrying attached (fictitious) magnetic flux. Here we review models of the integer and fractional quantum Hall effects, including the development of a unified picture of the integer and fractional effects based upon composite fermions. The composite fermion picture predicts remarkable new physics: the formation of a Fermi surface at high magnetic fields, and anomalous ballistic transport, thermopower, and surface acoustic wave behaviour. The specific theoretical predictions of the model, as well as the body of experimental evidence for these phenomena are reviewed. We also review recent edge-state models for magnetotransport in low-dimensional devices based on the composite fermion picture. These models explain the fractional quantum Hall effect and transport phenomena in nanoscale devices in a unified framework that also includes edge state models of the integer quantum Hall effect. The features of the composite fermion edge-state model are compared and contrasted with those of other recent edge-state models of the fractional quantum Hall effect. (author)

  17. Calculation of CWKB envelope in boson and fermion productions

    Indian Academy of Sciences (India)

    Abstract. We present the calculation of envelope of boson and of both low- and high- mass fermion production at the end of inflation when the coherently oscillating inflatons decay into bosons and fermions. We consider three different models of inflation and use. CWKB technique to calculate the envelope to understand the ...

  18. Study of NΣ cusp in p+pp+K{sup +}+Λ with partial wave analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S.; Muenzer, R.; Epple, E.; Fabbietti, L. [Excellenz Cluster Universe, Technische Universitaet Muenchen (Germany); Ritman, J.; Roderburg, E.; Hauenstein, F. [FZ Juelich (Germany); Collaboration: Hades and FOPI Collaboration

    2016-07-01

    In the last years, an analysis of exclusive reaction of p+pp+K{sup +}+Λ has been carried out using Bonn-Gatchina Partial Wave Analysis. In a combined analysis of data from Hades, Fopi, Disto and Cosy-TOF, an energy dependent production process is determined. This analysis has shown that a sufficient description of the p+pp+K{sup +}+Λ is quite challenging due to the presence of resonances N* and interference, which requires Partial Wave Analysis. A pronounced narrow structure is observed in its projection on the pΛ-invariant mass. This peak structure, which appears around the NΣ threshold, has a strongly asymmetric structure and is interpreted a NΣ cusp effect. In this talk, the results from a combined analysis will be shown, with a special focus on the NΣ cusp structure and a description using Flatte parametrization.

  19. Topological susceptibility and chiral condensate with Nf=2+1+1 dynamical flavors of maximally twisted mass fermions

    International Nuclear Information System (INIS)

    Cichy, K.

    2012-03-01

    We study the 'spectral projector' method for the computation of the chiral condensate and the topological susceptibility, using N f =2+1+1 dynamical flavors of maximally twisted mass Wilson fermions. In particular, we perform a study of the quark mass dependence of the chiral condensate Σ and topological susceptibility χ top in the range 270 MeV π top in the quenched approximation where we match the lattice spacing to the N f =2+1+1 dynamical simulations. Using the Kaon, η and η' meson masses computed on the N f =2+1+1 ensembles, we then perform a preliminary test of the Witten-Veneziano relation.

  20. Quarks and leptons as quasi Nambu-Goldstone fermions

    International Nuclear Information System (INIS)

    Buchmueller, W.; Peccei, R.D.; Yanagida, T.

    1983-01-01

    We discuss a new idea for constructing composite quarks and leptons which have (approximately) vanishing mass. They are associated with fermionic partners of Goldstone bosons arising from the spontaneous breakdown of an internal symmetry Gsub(f) in a supersymmetric preon theory. For Gsub(f)=SU(5) being broken to SU(3) x U(1)sub(em) there arise as quasi Goldstone fermions, naturally and unequivocally, precisely the quarks and leptons of one family. The dynamics of these quasi Goldstone fermions is explored by constructing a general supersymmetric nonlinear effective lagrangian. By means of a reduced model, we show that the first nontrivial interactions of the quasi Goldstone fermions can give rise, in an effective way, to the weak interactions. Issues connected with the incorporation of families in the scheme and the generation of masses, as well as the possible structure of the underlying preon theory are briefly discussed. (orig.)

  1. Boson-fermion mixtures inside an elongated cigar-shaped trap

    International Nuclear Information System (INIS)

    Akdeniz, Z; Vignolo, P; Tosi, M P

    2005-01-01

    We present mean-field calculations of the equilibrium state in a gaseous mixture of bosonic and spin-polarized fermionic atoms with repulsive or attractive interspecies interactions, confined inside a cigar-shaped trap under conditions such that the radial thickness of the two atomic clouds is approaching the magnitude of the s-wave scattering lengths. In this regime, the kinetic pressure of the fermionic component is dominant. Full demixing under repulsive boson-fermion interactions can occur only when the number of fermions in the trap is below a threshold, and collapse under attractive interactions is suppressed within the range of validity of the mean-field model. Specific numerical illustrations are given for values of system parameters obtaining in 7 Li- 6 Li clouds

  2. Fermionic particles with position-dependent mass in the presence of ...

    Indian Academy of Sciences (India)

    2013-02-01

    Feb 1, 2013 ... Quantum mechanical systems with position-dependent mass are proved ... The relativistic energy eigenvalues of the Dirac equation with ... the exact eigenfunctions can be derived from the following wave function generator:.

  3. arXiv Charged Fermions Below 100 GeV

    CERN Document Server

    Egana-Ugrinovic, Daniel; Ruderman, Joshua T.

    2018-05-03

    How light can a fermion be if it has unit electric charge? We revisit the lore that LEP robustly excludes charged fermions lighter than about 100 GeV. We review LEP chargino searches, and find them to exclude charged fermions lighter than 90 GeV, assuming a higgsino-like cross section. However, if the charged fermion couples to a new scalar, destructive interference among production channels can lower the LEP cross section by a factor of 3. In this case, we find that charged fermions as light as 75 GeV can evade LEP bounds, while remaining consistent with constraints from the LHC. As the LHC collects more data, charged fermions in the 75–100 GeV mass range serve as a target for future monojet and disappearing track searches.

  4. Nonperturbative volume reduction of large-N QCD with adjoint fermions

    International Nuclear Information System (INIS)

    Bringoltz, Barak; Sharpe, Stephen R.

    2009-01-01

    We use nonperturbative lattice techniques to study the volume-reduced 'Eguchi-Kawai' version of four-dimensional large-N QCD with a single adjoint Dirac fermion. We explore the phase diagram of this single-site theory in the space of quark mass and gauge coupling using Wilson fermions for a number of colors in the range 8≤N≤15. Our evidence suggests that these values of N are large enough to determine the nature of the phase diagram for N→∞. We identify the region in the parameter space where the (Z N ) 4 center symmetry is intact. According to previous theoretical work using the orbifolding paradigm, and assuming that translation invariance is not spontaneously broken in the infinite-volume theory, in this region volume reduction holds: the single-site and infinite-volume theories become equivalent when N→∞. We find strong evidence that this region includes both light and heavy quarks (with masses that are at the cutoff scale), and our results are consistent with this region extending toward the continuum limit. We also compare the action density and the eigenvalue density of the overlap Dirac operator in the fundamental representation with those obtained in large-N pure-gauge theory.

  5. Looking at the gluon moment of the nucleon with dynamical twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, Constantia; Cyprus Institute, Nicosia; Drach, Vincent; Wiese, Christian; Hadjiyiannakou, Kyriakos; Jansen, Karl; Deutsches Elektronen-Synchrotron; Kostrzewa, Bartosz

    2013-11-01

    To understand the structure of hadrons it is important to know the PDF of their constituents, the quarks and gluons. In our work we aim to compute the first moment of the gluon PDF left angle x right angle g for the nucleon. We follow two possible approaches in order to extract the gluon moment: the Feynman-Hellmann theorem and a direct method with smearing of the gluon operator. We present preliminary results computed on 24 3 x 48 lattices for the case where the Feynman-Hellman theorem is used and 32 3 x 64 lattices for the direct method, employing N f =2+1+1 maximally twisted mass fermions.

  6. Fermionic Collective Excitations in a Lattice Gas of Rydberg Atoms

    International Nuclear Information System (INIS)

    Olmos, B.; Gonzalez-Ferez, R.; Lesanovsky, I.

    2009-01-01

    We investigate the many-body quantum states of a laser-driven gas of Rydberg atoms confined to a large spacing ring lattice. If the laser driving is much stronger than the van der Waals interaction among the Rydberg atoms, these many-body states are collective fermionic excitations. The first excited state is a spin wave that extends over the entire lattice. We demonstrate that our system permits us to study fermions in the presence of disorder although no external atomic motion takes place. We analyze how this disorder influences the excitation properties of the fermionic states. Our work shows a route towards the creation of complex many-particle states with atoms in lattices.

  7. Fermion-number violation in regularizations that preserve fermion-number symmetry

    Science.gov (United States)

    Golterman, Maarten; Shamir, Yigal

    2003-01-01

    There exist both continuum and lattice regularizations of gauge theories with fermions which preserve chiral U(1) invariance (“fermion number”). Such regularizations necessarily break gauge invariance but, in a covariant gauge, one recovers gauge invariance to all orders in perturbation theory by including suitable counterterms. At the nonperturbative level, an apparent conflict then arises between the chiral U(1) symmetry of the regularized theory and the existence of ’t Hooft vertices in the renormalized theory. The only possible resolution of the paradox is that the chiral U(1) symmetry is broken spontaneously in the enlarged Hilbert space of the covariantly gauge-fixed theory. The corresponding Goldstone pole is unphysical. The theory must therefore be defined by introducing a small fermion-mass term that breaks explicitly the chiral U(1) invariance and is sent to zero after the infinite-volume limit has been taken. Using this careful definition (and a lattice regularization) for the calculation of correlation functions in the one-instanton sector, we show that the ’t Hooft vertices are recovered as expected.

  8. Alternative to domain wall fermions

    International Nuclear Information System (INIS)

    Neuberger, H.

    2002-01-01

    An alternative to commonly used domain wall fermions is presented. Some rigorous bounds on the condition number of the associated linear problem are derived. On the basis of these bounds and some experimentation it is argued that domain wall fermions will in general be associated with a condition number that is of the same order of magnitude as the product of the condition number of the linear problem in the physical dimensions by the inverse bare quark mass. Thus, the computational cost of implementing true domain wall fermions using a single conjugate gradient algorithm is of the same order of magnitude as that of implementing the overlap Dirac operator directly using two nested conjugate gradient algorithms. At a cost of about a factor of two in operation count it is possible to make the memory usage of direct implementations of the overlap Dirac operator independent of the accuracy of the approximation to the sign function and of the same order as that of standard Wilson fermions

  9. Fermion masses and flavor mixings in a model with S4 flavor symmetry

    International Nuclear Information System (INIS)

    Ding Guijun

    2010-01-01

    We present a supersymmetric model of quark and lepton based on S 4 xZ 3 xZ 4 flavor symmetry. The S 4 symmetry is broken down to Klein four and Z 3 subgroups in the neutrino and the charged lepton sectors, respectively. Tri-Bimaximal mixing and the charged lepton mass hierarchies are reproduced simultaneously at leading order. Moreover, a realistic pattern of quark masses and mixing angles is generated with the exception of the mixing angle between the first two generations, which requires a small accidental enhancement. It is remarkable that the mass hierarchies are controlled by the spontaneous breaking of flavor symmetry in our model. The next to leading order contributions are studied, all the fermion masses and mixing angles receive corrections of relative order λ c 2 with respect to the leading order results. The phenomenological consequences of the model are analyzed, the neutrino mass spectrum can be normal hierarchy or inverted hierarchy, and the combined measurement of the 0ν2β decay effective mass m ββ and the lightest neutrino mass can distinguish the normal hierarchy from the inverted hierarchy.

  10. Light baryon masses with dynamical twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Baron, R. [CEA-Saclay, IRFU/Service de Physique Nucleaire, Gif-sur-Yvette (France); Blossier, B. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (DE). John von Neumann-Inst. fuer Computing NIC] (and others)

    2008-03-15

    We present results on the mass of the nucleon and the {delta} using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of about 300-600 MeV on lattices of 2.1-2.7 fm. We check for cut-off effects by evaluating these baryon masses on lattices of spatial size 2.1 fm at {beta}=3.9 and {beta}=4.05 and on a lattice of 2.4 fm at {beta}=3.8. The values we find are compatible within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. Performing a combined fit to our lattice data at {beta}=3.9 and {beta}=4.05 we find a nucleon mass of 964{+-}28(stat.){+-}8(syst.) MeV where we used the lattice spacings determined from the pion decay constant to convert to physical units. The systematic error due to the chiral extrapolation is estimated by comparing results obtained at O(p{sup 3}) and O(p{sup 4}) heavy baryon chiral perturbation theory. The nucleon mass at the physical point provides an independent determination of the lattice spacing. Using heavy baryon chiral perturbation theory at O(p{sup 3}) we find a{sub {beta}}{sub =3.9}=0.0890{+-}0.0039(stat.){+-}0.0014(syst.) fm, and a{sub {beta}}{sub =4.05}=0.0691{+-}0.0034(stat.){+-}0.0010(syst.) fm, in good agreement with the values determined from the pion decay constant. Using results from our two smaller lattices spacings at constant r0m we estimate the continuum limit and check consistency with results from the coarser lattice. Results at the continuum limit are chirally extrapolated to the physical point. Isospin violating lattice artifacts in the {delta}-system are found to be compatible with zero for the values of the lattice spacings used in this work. Performing a combined fit to our lattice data at {beta}=3.9 and {beta}=4.05 we find for the masses of the {delta}{sup ++,-} and {delta}{sup +,0} 1316{+-}60(stat.) MeV and 1330{+-}74(stat.) MeV respectively. We confirm

  11. Light baryon masses with dynamical twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, C.; Blossier, B.

    2008-03-01

    We present results on the mass of the nucleon and the Δ using two dynamical degenerate twisted mass quarks. The evaluation is performed at four quark masses corresponding to a pion mass in the range of about 300-600 MeV on lattices of 2.1-2.7 fm. We check for cut-off effects by evaluating these baryon masses on lattices of spatial size 2.1 fm at β=3.9 and β=4.05 and on a lattice of 2.4 fm at β=3.8. The values we find are compatible within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. Performing a combined fit to our lattice data at β=3.9 and β=4.05 we find a nucleon mass of 964±28(stat.)±8(syst.) MeV where we used the lattice spacings determined from the pion decay constant to convert to physical units. The systematic error due to the chiral extrapolation is estimated by comparing results obtained at O(p 3 ) and O(p 4 ) heavy baryon chiral perturbation theory. The nucleon mass at the physical point provides an independent determination of the lattice spacing. Using heavy baryon chiral perturbation theory at O(p 3 ) we find a β=3.9 =0.0890±0.0039(stat.)±0.0014(syst.) fm, and a β=4.05 =0.0691±0.0034(stat.)±0.0010(syst.) fm, in good agreement with the values determined from the pion decay constant. Using results from our two smaller lattices spacings at constant r0m we estimate the continuum limit and check consistency with results from the coarser lattice. Results at the continuum limit are chirally extrapolated to the physical point. Isospin violating lattice artifacts in the Δ-system are found to be compatible with zero for the values of the lattice spacings used in this work. Performing a combined fit to our lattice data at β=3.9 and β=4.05 we find for the masses of the Δ ++,- and Δ +,0 1316±60(stat.) MeV and 1330±74(stat.) MeV respectively. We confirm that in the continuum limit they are also degenerate. (orig.)

  12. Monopole-fermion and dyon-fermion bound states. Pt. 4

    International Nuclear Information System (INIS)

    Osland, P.; Harvard Univ., Cambridge, MA; Tai Tsun Wu

    1985-01-01

    In the first part of the paper, we give analytic, approximate results for dyon-fermion binding energies and wave functions, valid for large values of A = 1/2 Zvertical strokeegvertical strokeK, where K is the magnetic moment. In the second part, more general results are obtained for the same problem that are valid when either A is large or the binding is weak. Numerical results for the binding energy are tabulated and compared. The case of very strong binding is also discussed. (orig.)

  13. Simulating QCD at the physical point with Nf=2 Wilson twisted mass fermions at maximal twist

    International Nuclear Information System (INIS)

    Abdel-Rehim, A.; Alexandrou, C.; Cyprus Univ. Nicosia; Burger, F.

    2015-12-01

    We present simulations of QCD using N f =2 dynamical Wilson twisted mass lattice QCD with physical value of the pion mass and at one value of the lattice spacing. Such simulations at a∼0.09 fm became possible by adding the clover term to the action. While O(a) improvement is still guaranteed by Wilson twisted mass fermions at maximal twist, the introduction of the clover term reduces O(a 2 ) cutoff effects related to isospin symmetry breaking. We give results for a set of phenomenologically interesting observables like pseudo-scalar masses and decay constants, quark masses and the anomalous magnetic moments of leptons. We mostly find remarkably good agreement with phenomenology, even though we cannot take the continuum and thermodynamic limits.

  14. Composite fermion basis for two-component Bose gases

    Science.gov (United States)

    Meyer, Marius; Liabotro, Ola

    The composite fermion (CF) construction is known to produce wave functions that are not necessarily orthogonal, or even linearly independent, after projection. While usually not a practical issue in the quantum Hall regime, we have previously shown that it presents a technical challenge for rotating Bose gases with low angular momentum. These are systems where the CF approach yield surprisingly good approximations to the exact eigenstates of weak short-range interactions, and so solving the problem of linearly dependent wave functions is of interest. It can also be useful for studying CF excitations for fermions. Here we present several ways of constructing a basis for the space of ``simple CF states'' for two-component rotating Bose gases in the lowest Landau level, and prove that they all give a basis. Using the basis, we study the structure of the lowest-lying state using so-called restricted wave functions. We also examine the scaling of the overlap between the exact and CF wave functions at the maximal possible angular momentum for simple states. This work was financially supported by the Research Council of Norway.

  15. Search for Gravitational Waves from Intermediate Mass Binary Black Holes

    Science.gov (United States)

    Blackburn, L.; Camp, J. B.; Cannizzo, J.; Stroeer, A. S.

    2012-01-01

    We present the results of a weakly modeled burst search for gravitational waves from mergers of non-spinning intermediate mass black holes (IMBH) in the total mass range 100-450 solar Mass and with the component mass ratios between 1:1 and 4:1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the IMBH mergers as a function of the component masses. In the most efficiently detected bin centered on 88 + 88 solar Mass , for non-spinning sources, the rate density upper limit is 0.13 per Mpc(exp 3) per Myr at the 90% confidence level.

  16. In-medium P-wave quarkonium from the complex lattice QCD potential

    International Nuclear Information System (INIS)

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2016-01-01

    We extend our lattice QCD potential based study http://dx.doi.org/10.1007/JHEP12(2015)101 of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ b and χ c states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.

  17. In-medium P-wave quarkonium from the complex lattice QCD potential

    Energy Technology Data Exchange (ETDEWEB)

    Burnier, Yannis [Institute of Theoretical Physics, EPFL,CH-1015 Lausanne (Switzerland); Kaczmarek, Olaf [Fakultät für Physik, Universität Bielefeld,D-33615 Bielefeld (Germany); Rothkopf, Alexander [Institute for Theoretical Physics, Heidelberg University,Philosophenweg 16, 69120 Heidelberg (Germany)

    2016-10-07

    We extend our lattice QCD potential based study http://dx.doi.org/10.1007/JHEP12(2015)101 of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ{sub b} and χ{sub c} states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.

  18. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks

    Science.gov (United States)

    Khandelwal, Manoj

    2013-04-01

    In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.

  19. Born-Kothari Condensation for Fermions

    Directory of Open Access Journals (Sweden)

    Arnab Ghosh

    2017-09-01

    Full Text Available In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical description of the condensation phenomena for a Fermi–Dirac gas following the works of Born and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion principle, the condensed phase occurs only in the form of a single occupancy dense modes at the highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave. To reach the above conclusion, we employ the close relationship between the statistical methods of bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results, we described in this mini-review that the highest momentum (energy for individual fermions, prerequisite for the condensation process, can be specified in terms of the natural length and energy scales of the problem. The existence of such condensed phases, which are of obvious significance in the context of elementary particles, have also been scrutinized.

  20. The derivative expansion of the fermion number current

    International Nuclear Information System (INIS)

    D'Hoker, E.; Goldstone, J.

    1985-01-01

    The fermion number current is evaluated to leading order in the derivative expansion for chiral fermions in the background of arbitrary Higgs and chiral gauge fields. This current is given by the gauged topological current plus a total divergence term. The total divergence term is absent in Weinberg-Salam theory with one scalar Higgs doublet, even for an arbitrary mass matrix, but appears when several Higgs doublets are present. (orig.)

  1. Hadron spectrum, quark masses and decay constants from light overlap fermions on large lattices

    International Nuclear Information System (INIS)

    Galletly, D.; Horsley, R.; Streuer, T.; Freie Univ. Berlin

    2006-07-01

    We present results from a simulation of quenched overlap fermions with Luescher-Weisz gauge field action on lattices up to 24 3 48 and for pion masses down to ∼250 MeV. Among the quantities we study are the pion, rho and nucleon masses, the light and strange quark masses, and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RI-MOM scheme. The simulations are performed at two different lattice spacings, a ∼0.1 fm and ∼0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well. (orig.)

  2. Hadron spectrum, quark masses and decay constants from light overlap fermions on large lattices

    Energy Technology Data Exchange (ETDEWEB)

    Galletly, D.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Guertler, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division, Dept. of Mathematical Sciences; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Streuer, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC]|[Freie Univ. Berlin (Germany). Inst. fuer Theoretische Physik

    2006-07-15

    We present results from a simulation of quenched overlap fermions with Luescher-Weisz gauge field action on lattices up to 24{sup 3} 48 and for pion masses down to {approx}250 MeV. Among the quantities we study are the pion, rho and nucleon masses, the light and strange quark masses, and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RI-MOM scheme. The simulations are performed at two different lattice spacings, a {approx}0.1 fm and {approx}0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well. (orig.)

  3. Issues related to the Fermion mass problem

    Science.gov (United States)

    Murakowski, Janusz Adam

    1998-09-01

    This thesis is divided into three parts. Each illustrates a different aspect of the fermion mass issue in elementary particle physics. In the first part, the possibility of chiral symmetry breaking in the presence of uniform magnetic and electric fields is investigated. The system is studied nonperturbatively with the use of basis functions compatible with the external field configuration, the parabolic cylinder functions. It is found that chiral symmetry, broken by a uniform magnetic field, is restored by electric field. Obtained result is nonperturbative in nature: even the tiniest deviation of the electric field from zero restores chiral symmetry. In the second part, heavy quarkonium systems are investigated. To study these systems, a phenomenological nonrelativistic model is built. Approximate solutions to this model are found with the use of a specially designed Pade approximation and by direct numerical integration of Schrodinger equation. The results are compared with experimental measurements of respective meson masses. Good agreement between theoretical calculations and experimental results is found. Advantages and shortcommings of the new approximation method are analysed. In the third part, an extension of the standard model of elementary particles is studied. The extension, called the aspon model, was originally introduced to cure the so called strong CP problem. In addition to fulfilling its original purpose, the aspon model modifies the couplings of the standard model quarks to the Z boson. As a result, the decay rates of the Z boson to quarks are altered. By using the recent precise measurements of the decay rates Z → bb and Z /to [/it c/=c], new constraints on the aspon model parameters are found.

  4. Interacting-fermion approximation in the two-dimensional ANNNI model

    International Nuclear Information System (INIS)

    Grynberg, M.D.; Ceva, H.

    1990-12-01

    We investigate the effect of including domain-walls interactions in the two-dimensional axial next-nearest-neighbor Ising or ANNNI model. At low temperatures this problem is reduced to a one-dimensional system of interacting fermions which can be treated exactly. It is found that the critical boundaries of the low-temperature phases are in good agreement with those obtained using a free-fermion approximation. In contrast with the monotonic behavior derived from the free-fermion approach, the wall density or wave number displays reentrant phenomena when the ratio of the next-nearest-neighbor and nearest-neighbor interactions is greater than one-half. (author). 17 refs, 2 figs

  5. Wilson Fermions with Four Fermion Interactions

    DEFF Research Database (Denmark)

    Rantaharju, Jarno; Drach, Vincent; Hietanen, Ari

    2015-01-01

    We present a lattice study of a four fermion theory, known as Nambu Jona-Lasinio (NJL) theory, via Wilson fermions. Four fermion interactions naturally occur in several extensions of the Standard Model as a low energy parameterisation of a more fundamental theory. In models of dynamical electroweak...

  6. Fermion hierarchy from sfermion anarchy

    International Nuclear Information System (INIS)

    Altmannshofer, Wolfgang; Frugiuele, Claudia; Harnik, Roni

    2014-01-01

    We present a framework to generate the hierarchical flavor structure of Standard Model quarks and leptons from loops of superpartners. The simplest model consists of the minimal supersymmetric standard model with tree level Yukawa couplings for the third generation only and anarchic squark and slepton mass matrices. Agreement with constraints from low energy flavor observables, in particular Kaon mixing, is obtained for supersymmetric particles with masses at the PeV scale or above. In our framework both the second and the first generation fermion masses are generated at 1-loop. Despite this, a novel mechanism generates a hierarchy among the first and second generations without imposing a symmetry or small parameters. A second-to-first generation mass ratio of order 100 is typical. The minimal supersymmetric standard model thus includes all the necessary ingredients to realize a fermion spectrum that is qualitatively similar to observation, with hierarchical masses and mixing. The minimal framework produces only a few quantitative discrepancies with observation, most notably the muon mass is too low. Furthermore, we discuss simple modifications which resolve this and also investigate the compatibility of our model with gauge and Yukawa coupling Unification

  7. Light baryon masses with dynamical twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, C.; Korzec, T.; Koutsou, G.; Baron, R.; Guichon, P.; Blossier, B.; Herdoiza, G.; Jansen, K.; Brinet, M.; Carbonell, J.; Drach, V.; Dimopoulos, P.; Frezzotti, R.; Farchioni, F.; Liu, Z.; Pene, O.; Michael, C.; Shindler, A.; Urbach, C.; Wenger, U.

    2008-01-01

    We present results on the mass of the nucleon and the Δ using two dynamical degenerate twisted mass quarks and the tree-level Symanzik improved gauge action. The evaluation is performed at four quark masses corresponding to a pion mass in the range of about 300-600 MeV on lattices of 2.1-2.7 fm at three lattice spacings less than 0.1 fm. We check for cutoff effects by evaluating these baryon masses on lattices of spatial size 2.1 fm at β=3.9 and β=4.05 and on a lattice of 2.4 fm at β=3.8. The values we find are compatible within our statistical errors. Lattice results are extrapolated to the physical limit using continuum chiral perturbation theory. Performing a combined fit to our lattice data at β=3.9 and β=4.05 we find a nucleon mass of 963±12(stat)±8(syst) MeV where we used the lattice spacings determined from the pion decay constant to convert to physical units. The systematic error due to the chiral extrapolation is estimated by comparing results obtained at O(p 3 ) and O(p 4 ) heavy baryon chiral perturbation theory. The nucleon mass at the physical point provides an independent determination of the lattice spacing. Using heavy baryon chiral perturbation theory at O(p 3 ) we find a β=3.9 =0.0889±0.0012(stat)±0.0014(syst) fm, and a β=4.05 =0.0691±0.0010(stat)±0.0010(syst) fm, in good agreement with the values determined from the pion decay constant. Using results from our two smaller lattices spacings at constant r 0 m π we estimate the continuum limit and check consistency with results from the coarser lattice. Results at the continuum limit are chirally extrapolated to the physical point. Isospin violating lattice artifacts in the Δ-system are found to be compatible with zero for the values of the lattice spacings used in this work. Performing a combined fit to our lattice data at β=3.9 and β=4.05 we find for the masses of the Δ ++,- and Δ +,0 1315±24(stat) MeV and 1329±30(stat) MeV, respectively. We confirm that in the continuum limit

  8. Trajectories of bright stars at the Galactic Center as a tool to evaluate a graviton mass

    Directory of Open Access Journals (Sweden)

    Zakharov Alexander

    2016-01-01

    Full Text Available Scientists worked in Saint-Petersburg (Petrograd, Leningrad played the extremely important role in creation of scientific school and development of general relativity in Russia. Very recently LIGO collaboration discovered gravitational waves [1] predicted 100 years ago by A. Einstein. In the papers reporting about this discovery, the joint LIGO & VIRGO team presented an upper limit on graviton mass such as mg < 1.2 × 10−22eV [1, 2]. The authors concluded that their observational data do not show violations of classical general relativity because the graviton mass limit is very small. We show that an analysis of bright star trajectories could bound graviton mass with a comparable accuracy with accuracies reached with gravitational wave interferometers and expected with forthcoming pulsar timing observations for gravitational wave detection. This analysis gives an opportunity to treat observations of bright stars near the Galactic Center as a tool for an evaluation specific parameters of the black hole and also to obtain constraints on the fundamental gravity law such as a modifications of Newton gravity law in a weak field approximation. In that way, based on a potential reconstruction at the Galactic Center we give a bounds on a graviton mass.

  9. Disconnected quark loop contributions to nucleon observables using Nf=2 twisted clover fermions at the physical value of the light quark mass

    International Nuclear Information System (INIS)

    Abdel-Rehim, Abdou; Kallidonis, Christos; Koutsou, Giannis

    2015-11-01

    We compute the disconnected quark loops contributions entering the determination of nucleon observables, by using a N f =2 ensemble of twisted mass fermions with a clover term at a pion mass m π =133 MeV. We employ exact deflation and implement all calculations in GPUs, enabling us to achieve large statistics and a good signal.

  10. The epsilon regime of chiral perturbation theory with Wilson-type fermions

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Liverpool Univ. (United Kingdom). Theoretical Physics Division

    2009-11-15

    In this proceeding contribution we report on the ongoing effort to simulate Wilson-type fermions in the so called epsilon regime of chiral perturbation theory (cPT).We present results for the chiral condensate and the pseudoscalar decay constant obtained with Wilson twisted mass fermions employing two lattice spacings, two different physical volumes and several quark masses. With this set of simulations we make a first attempt to estimate the systematic uncertainties. (orig.)

  11. The epsilon regime of chiral perturbation theory with Wilson-type fermions

    International Nuclear Information System (INIS)

    Jansen, K.; Shindler, A.

    2009-11-01

    In this proceeding contribution we report on the ongoing effort to simulate Wilson-type fermions in the so called epsilon regime of chiral perturbation theory (cPT).We present results for the chiral condensate and the pseudoscalar decay constant obtained with Wilson twisted mass fermions employing two lattice spacings, two different physical volumes and several quark masses. With this set of simulations we make a first attempt to estimate the systematic uncertainties. (orig.)

  12. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter.

    Science.gov (United States)

    Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel

    2014-09-01

    The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p shear wave elastography parameter was higher than that of ultrasound (p shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio

  13. Consequences of a unified, anarchical model of fermion masses and mixings

    International Nuclear Information System (INIS)

    Calibbi, L.; Ferretti, L.; Romanino, A.; Ziegler, R.

    2009-01-01

    We show that most features of the mass and mixing pattern of the second and third SM fermion families can be accounted for without making use of flavour symmetries or other types of flavour dynamics. We discuss the implications for flavour phenomenology, in particular for the τ → μγ decay rate, and comment on LFV effects at colliders. We show that the model can be embedded in a full SO(10) supersymmetric GUT in 5 dimensions that preserves the successful MSSM gauge coupling unification prediction for α s . Interesting features of this embedding are i) the connection of one of the hierarchy parameters with the strong coupling assumption, ii) the absence of KK threshold effects on the α s prediction at one loop, and iii) the shift of the GUT scale up to about 10 17 GeV. Proton decay is under control, also due to the larger GUT scale. A large atmospheric angle for normal hierarchical neutrinos is obtained in an unusual way.

  14. Two-dimensional thermofield bosonization II: Massive fermions

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2008-01-01

    We consider the perturbative computation of the N-point function of chiral densities of massive free fermions at finite temperature within the thermofield dynamics approach. The infinite series in the mass parameter for the N-point functions are computed in the fermionic formulation and compared with the corresponding perturbative series in the interaction parameter in the bosonized thermofield formulation. Thereby we establish in thermofield dynamics the formal equivalence of the massive free fermion theory with the sine-Gordon thermofield model for a particular value of the sine-Gordon parameter. We extend the thermofield bosonization to include the massive Thirring model

  15. A search for excited fermions in electron-proton collisions at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1994-10-01

    A search for excited states of the standard model fermions was performed using the ZEUS detector at the HERA electron-proton collider, operating at a centre of mass enery of 296 GeV. In a sample corresponding to an integrated luminosity of 0.55 pb -1 , no evidence was found for any resonant state decaying into final states composed of a fermion and a gauge boson. Limits on the coupling strength times branching ratio of excited fermions are presented for masses between 50 GeV and 250 GeV, extending previous search regions significantly. (orig.)

  16. Goldstone fermions in supersymmetric theories at finite temperature

    International Nuclear Information System (INIS)

    Aoyama, H.; Boyanovsky, D.

    1984-01-01

    The behavior of supersymmetric theories at finite temperature is examined. It is shown that supersymmetry is broken for any T> or =0 because of the different statistics obeyed by bosons and fermions. This breaking is always associated with a Goldstone mode(s). This phenomenon is shown to take place even in a free massive theory, where the Goldstone modes are created by composite fermion-boson bilinear operators. In the interacting theory with chiral symmetry, the same bilinear operators create the chiral doublet of Goldstone fermions, which is shown to saturate the Ward-Takahashi identities up to one loop. Because of this spontaneous supersymmetry breaking, the fermions and the bosons acquire different effective masses. In theories without chiral symmetry, at the tree level the fermion-boson bilinear operators create Goldstone modes, but at higher orders these modes become massive and the elementary fermion becomes the Goldstone field because of the mixing with these bilinear operators

  17. Combined Tevatron upper limit on gg -> H -> W^+W^- and constraints on the Higgs boson mass in fourth-generation fermion models

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Adelman, J.; Aguilo, E.; Alexeev, G.D.; Alkhazov, G.; /Helsinki Inst. of Phys. /Dubna, JINR /Oklahoma U. /Michigan State U. /Tata Inst. /Illinois U., Chicago /Florida State U. /Chicago U., EFI /Simon Fraser U. /York U., Canada /St. Petersburg, INP /Illinois U., Urbana /Sao Paulo, IFT /Munich U. /University Coll. London /Oxford U. /St. Petersburg, INP /Duke U. /Kyungpook Natl. U. /Chonnam Natl. U. /Florida U. /Osaka City U.

    2010-05-01

    We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg {yields} H {yields} W{sup +}W{sup -} in p{bar p} collisions at the Fermilab Tevatron Collider at {radical}s = 1.o6 TeV. With 4.8 fb{sup -1} of itnegrated luminosity analyzed at CDF and 5.4 fb{sup -1} at D0, the 95% Confidence Level upper limit on {sigma}(gg {yields} H) x {Beta}(H {yields} W{sup +}W{sup -}) is 1.75 pb at m{sub H} = 120 GeV, 0.38 pb at m{sub H} = 165 GeV, and 0.83 pb at m{sub H} = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, they exclude at the 95% Confidence Level a standard-model-like Higgs boson with a mass between 131 and 204 Gev.

  18. Dirac fermions in nontrivial topology black hole backgrounds

    International Nuclear Information System (INIS)

    Gozdz, Marek; Nakonieczny, Lukasz; Rogatko, Marek

    2010-01-01

    We discuss the behavior of the Dirac fermions in a general spherically symmetric black hole background with a nontrivial topology of the event horizon. Both massive and massless cases are taken into account. We will conduct an analytical study of intermediate and late-time behavior of massive Dirac hair in the background of a black hole with a global monopole and dilaton black hole pierced by a cosmic string. In the case of a global monopole swallowed by a static black hole, the intermediate late-time behavior depends on the mass of the Dirac field, the multiple number of the wave mode, and the global monopole parameter. The late-time behavior is quite independent of these factors and has a decay rate proportional to t -5/6 . As far as the black hole pierced by a cosmic string is concerned, the intermediate late-time behavior depends only on the hair mass and the multipole number of the wave mode, while the late-time behavior dependence is the same as in the previous case. The main modification stems from the topology of the S 2 sphere pierced by a cosmic string. This factor modifies the eigenvalues of the Dirac operator acting on the transverse manifold.

  19. Preparing and probing atomic Majorana fermions and topological order in optical lattices

    International Nuclear Information System (INIS)

    Kraus, C V; Diehl, S; Zoller, P; Baranov, M A

    2012-01-01

    We introduce a one-dimensional system of fermionic atoms in an optical lattice whose phase diagram includes topological states of different symmetry classes with a simple possibility to switch between them. The states and topological phase transitions between them can be identified by looking at their zero-energy edge modes which are Majorana fermions. We propose several universal methods of detecting the Majorana edge states, based on their genuine features: the zero-energy, localized character of the wave functions and the induced non-local fermionic correlations. (paper)

  20. Tuning up an oldtimer: hybrid Monte Carlo with Wilson fermions

    International Nuclear Information System (INIS)

    Schilling, K.; Hannemann, V.; Lippert, T.; Noeckel, B.

    1995-01-01

    We show that BiCGStab inversion algorithm helps to speed up by 50% the computation of the fermionic force inside the Hybrid Monte Carlo (HMC) simulation of full QCD with Wilson fermions, in the chiral regime of small quark masses. ((orig.))

  1. A contribution to the study of fermions and of their mixing angles in Quantum Field Theory

    International Nuclear Information System (INIS)

    Duret, Q.

    2008-09-01

    This thesis is divided into two parts. The first one is devoted to the study of the fermion mixing angles in Quantum Field Theory (QFT). We show that, due to the non-ortho-normality of its mass eigenstates, the mixing matrix of a non-degenerate system of coupled fermions cannot be considered a priori to be unitary; then, in the standard model framework, that all mixing angles of quarks and leptons are consistent with a precise structure of neutral currents, in which universality and absence of flavour changing currents are equally violated. This scheme yields the quark-lepton complementarity relation between the Cabibbo angle and the second mixing angle of neutrinos. We also recover perturbatively the non unitarity of the mixing matrix by canceling nondiagonal one-loop transitions between mass eigenstates, and show how the gauge symmetry nevertheless guarantees the unitarity of the Cabibbo matrix which occurs in renormalized gauge currents. We finally study the flavour transformations that are relevant in this procedure, and outline a link between the neutral currents and the mass matrix usually considered for coupled systems. The second part presents the first results of a general study of the constraints cast in QFT by the discrete symmetries (parity P, charge conjugation C and time reversal T) on the fermionic Lagrangian and propagator. We show for one generation that the latter, being written in the most general way compatible with Lorentz invariance, are naturally PCT-invariant, and that the eigenstates of a C-invariant propagator are Majorana fermions. (author)

  2. Sigma terms and strangeness content of the nucleon with N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Dinter, Simon; Drach, Vincent [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Frezzotti, Roberto; Rossi, Giancarlo [Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN Sezione di Roma Tor Vergata, Roma (Italy); Herdoiza, Gregorio [Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Roma Tor Vergata Univ. (Italy). Dipt. di Fisica; INFN Sezione di Roma Tor Vergata, Roma (Italy)

    2012-02-15

    We study the nucleon matrix elements of the quark scalar-density operator using maximally twisted mass fermions with dynamical light (u,d), strange and charm degrees of freedom. We demonstrate that in this setup the nucleon matrix elements of the light and strange quark densities can be obtained with good statistical accuracy, while for the charm quark counterpart only a bound can be provided. The present calculation which is performed at only one value of the lattice spacing and pion mass serves as a benchmark for a future more systematic computation of the scalar quark content of the nucleon. (orig.)

  3. Stochastic methods for the fermion determinant in lattice quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Finkenrath, Jacob Friedrich

    2015-02-17

    In this thesis, algorithms in lattice quantum chromodynamics are presented by developing and using stochastic methods for fermion determinant ratios. For that an integral representation is proved which can be used also for non hermitian matrices. The stochastic estimation or the Monte Carlo integration of this integral representation introduces stochastic fluctuations which are controlled by using Domain Decomposition of the Dirac operator and introducing interpolation techniques. Determinant ratios of the lattice fermion operator, here the Wilson Dirac operator, are needed for corrections of the Boltzmann weight. These corrections have interesting applications e.g. in the mass by using mass reweighting. It will be shown that mass reweighting can be used e.g. to improve extrapolation in the light quark mass towards the chiral or physical point or to introduce an isospin breaking by splitting up the mass of the light quark. Furthermore the extraction of the light quark masses will be shown by using dynamical 2 flavor CLS ensembles. Stochastic estimation of determinant ratios can be used in Monte Carlo algorithms, e.g. in the Partial Stochastic Multi Step algorithm which can sample two mass-degenerate quarks. The idea is to propose a new configuration weighted by the pure gauge weight and including afterwards the fermion weight by using Metropolis accept-reject steps. It is shown by using an adequate interpolation with relative gauge fixing and a hierarchical filter structure that it is possible to simulate moderate lattices up to (2.1 fm){sup 4}. Furthermore the iteration of the pure gauge update can be increased which can decouple long autocorrelation times from the weighting with the fermions. Moreover a novel Hybrid Monte Carlo algorithm based on Domain Decomposition and combined with mass reweighting is presented. By using Domain Decomposition it is possible to split up the mass term in the Schur complement and the block operators. By introducing a higher mass

  4. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume I P-Wave Measurements in Borehole C4993 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (I), all P-wave measurements are presented that were performed in Borehole C4993 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 370 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1200 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4993, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4993, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  5. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume II P-Wave Measurements in Borehole C4996 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-07-06

    In this volume (II), all P-wave measurements are presented that were performed in Borehole C4996 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 360 to 1400 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used, while below about 1180 ft, depth intervals of 20 ft were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 22 ft in Borehole C4996, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4996, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  6. Deep Downhole Seismic Testing at the Waste Treatment Plant Site, Hanford, WA. Volume III P-Wave Measurements in Borehole C4997 Seismic Records, Wave-Arrival Identifications and Interpreted P-Wave Velocity Profile.

    Energy Technology Data Exchange (ETDEWEB)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh

    2007-06-06

    In this volume (III), all P-wave measurements are presented that were performed in Borehole C4997 at the Waste Treatment Plant (WTP) with T-Rex as the seismic source and the Lawrence Berkeley National Laboratory (LBNL) 3-D wireline geophone as the at-depth borehole receiver. P-wave measurements were performed over the depth range of 390 to 1220 ft, typically in 10-ft intervals. However, in some interbeds, 5-ft depth intervals were used. Compression (P) waves were generated by moving the base plate of T-Rex for a given number of cycles at a fixed frequency as discussed in Section 2. This process was repeated so that signal averaging in the time domain was performed using 3 to about 15 averages, with 5 averages typically used. In addition to the LBNL 3-D geophone, called the lower receiver herein, a 3-D geophone from Redpath Geophysics was fixed at a depth of 40 ft (later relocated to 27.5 ft due to visibility in borehole after rain) in Borehole C4997, and a 3-D geophone from the University of Texas was embedded near the borehole at about 1.5 ft below the ground surface. This volume is organized into 12 sections as follows: Section 1: Introduction, Section 2: Explanation of Terminology, Section 3: Vp Profile at Borehole C4997, Sections 4 to 6: Unfiltered P-wave records of lower vertical receiver, reaction mass, and reference receiver, Sections 7 to 9: Filtered P-wave signals of lower vertical receiver, reaction mass and reference receiver, Section 10: Expanded and filtered P-wave signals of lower vertical receiver, and Sections 11 and 12: Waterfall plots of unfiltered and filtered lower vertical receiver signals.

  7. Fermionic quantum mechanics and superfields

    International Nuclear Information System (INIS)

    Marnelius, R.

    1990-01-01

    The explicit forms of consistent eigenstate representations for finite dimensional fermionic quantum theories are considered in detail. In particular are the possible Grassmann characters of the eigenstates determined. A straightforward Schrodinger representation is shown to exist if they are even or odd. For an odd number of real eigenvalues, the eigenstates cannot be even or odd. Still a consistent Schrodinger picture is shown to exist provided the basic canonical operators are antilinearly represented. Since the wave functions within the Schrodinger picture are super-fields, the class of superfields which also are first quantized wave functions is determined

  8. High-order Path Integral Monte Carlo methods for solving strongly correlated fermion problems

    Science.gov (United States)

    Chin, Siu A.

    2015-03-01

    In solving for the ground state of a strongly correlated many-fermion system, the conventional second-order Path Integral Monte Carlo method is plagued with the sign problem. This is due to the large number of anti-symmetric free fermion propagators that are needed to extract the square of the ground state wave function at large imaginary time. In this work, I show that optimized fourth-order Path Integral Monte Carlo methods, which uses no more than 5 free-fermion propagators, in conjunction with the use of the Hamiltonian energy estimator, can yield accurate ground state energies for quantum dots with up to 20 polarized electrons. The correlations are directly built-in and no explicit wave functions are needed. This work is supported by the Qatar National Research Fund NPRP GRANT #5-674-1-114.

  9. Vacuum polarization and chiral lattice fermions

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Strathdee, J.

    1995-09-01

    The vacuum polarization due to chiral fermions on a 4-dimensional Euclidean lattice is calculated according to the overlap prescription. The fermions are coupled to weak and slowly varying background gauge and Higgs fields, and the polarization tensor is given by second order perturbation theory. In this order the overlap constitutes a gauge invariant regularization of the fermion vacuum amplitude. Its low energy - long wavelength behaviour can be computed explicitly and we verify that it coincides with the Feynman graph result obtainable, for example, by dimensional regularization of continuum gauge theory. In particular, the Standard Model Callan-Symanzik, RG functions are recovered. Moreover, there are no residual lattice artefacts such as a dependence on Wilson-type mass parameters. (author). 16 refs

  10. Search for Majorana fermions in topological superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shi, Xiaoyan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John Frederick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  11. Singlet fermionic dark matter with Veltman conditions

    Science.gov (United States)

    Kim, Yeong Gyun; Lee, Kang Young; Nam, Soo-hyeon

    2018-07-01

    We reexamine a renormalizable model of a fermionic dark matter with a gauge singlet Dirac fermion and a real singlet scalar which can ameliorate the scalar mass hierarchy problem of the Standard Model (SM). Our model setup is the minimal extension of the SM for which a realistic dark matter (DM) candidate is provided and the cancellation of one-loop quadratic divergence to the scalar masses can be achieved by the Veltman condition (VC) simultaneously. This model extension, although renormalizable, can be considered as an effective low-energy theory valid up to cut-off energies about 10 TeV. We calculate the one-loop quadratic divergence contributions of the new scalar and fermionic DM singlets, and constrain the model parameters using the VC and the perturbative unitarity conditions. Taking into account the invisible Higgs decay measurement, we show the allowed region of new physics parameters satisfying the recent measurement of relic abundance. With the obtained parameter set, we predict the elastic scattering cross section of the new singlet fermion into target nuclei for a direct detection of the dark matter. We also perform the full analysis with arbitrary set of parameters without the VC as a comparison, and discuss the implication of the constraints by the VC in detail.

  12. Itinerant quantum multicriticality of two-dimensional Dirac fermions

    Science.gov (United States)

    Roy, Bitan; Goswami, Pallab; Juričić, Vladimir

    2018-05-01

    We analyze emergent quantum multicriticality for strongly interacting, massless Dirac fermions in two spatial dimensions (d =2 ) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break O(S1) and O(S2) symmetries in the ordered phase. Performing a renormalization-group analysis by using the ɛ =(3 -d ) expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an enlarged O(S1+S2) chiral symmetry. Such a fixed point acts as an exotic quantum multicritical point (MCP), governing the continuous semimetal-insulator as well as insulator-insulator (for example, antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either O(S1) or O(S2) chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power-law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher-dimensional Dirac fermions is also outlined.

  13. A study of block algorithms for fermion matrix inversion

    International Nuclear Information System (INIS)

    Henty, D.

    1990-01-01

    We compare the convergence properties of Lanczos and Conjugate Gradient algorithms applied to the calculation of columns of the inverse fermion matrix for Kogut-Susskind and Wilson fermions in lattice QCD. When several columns of the inverse are required simultaneously, a block version of the Lanczos algorithm is most efficient at small mass, being over 5 times faster than the single algorithms. The block algorithm is also less susceptible to critical slowing down. (orig.)

  14. Quantitative Maximum Shear-Wave Stiffness of Breast Masses as a Predictor of Histopathologic Severity.

    Science.gov (United States)

    Berg, Wendie A; Mendelson, Ellen B; Cosgrove, David O; Doré, Caroline J; Gay, Joel; Henry, Jean-Pierre; Cohen-Bacrie, Claude

    2015-08-01

    The objective of our study was to compare quantitative maximum breast mass stiffness on shear-wave elastography (SWE) with histopathologic outcome. From September 2008 through September 2010, at 16 centers in the United States and Europe, 1647 women with a sonographically visible breast mass consented to undergo quantitative SWE in this prospective protocol; 1562 masses in 1562 women had an acceptable reference standard. The quantitative maximum stiffness (termed "Emax") on three acquisitions was recorded for each mass with the range set from 0 (very soft) to 180 kPa (very stiff). The median Emax and interquartile ranges (IQRs) were determined as a function of histopathologic diagnosis and were compared using the Mann-Whitney U test. We considered the impact of mass size on maximum stiffness by performing the same comparisons for masses 9 mm or smaller and those larger than 9 mm in diameter. The median patient age was 50 years (mean, 51.8 years; SD, 14.5 years; range, 21-94 years), and the median lesion diameter was 12 mm (mean, 14 mm; SD, 7.9 mm; range, 1-53 mm). The median Emax of the 1562 masses (32.1% malignant) was 71 kPa (mean, 90 kPa; SD, 65 kPa; IQR, 31-170 kPa). Of 502 malignancies, 23 (4.6%) ductal carcinoma in situ (DCIS) masses had a median Emax of 126 kPa (IQR, 71-180 kPa) and were less stiff than 468 invasive carcinomas (median Emax, 180 kPa [IQR, 138-180 kPa]; p = 0.002). Benign lesions were much softer than malignancies (median Emax, 43 kPa [IQR, 24-83 kPa] vs 180 kPa [IQR, 129-180 kPa]; p masses. Despite overlap in Emax values, maximum stiffness measured by SWE is a highly effective predictor of the histopathologic severity of sonographically depicted breast masses.

  15. Fermion flavor in the soft-wall AdS model

    International Nuclear Information System (INIS)

    Gherghetta, Tony; Sword, Daniel

    2009-01-01

    The formalism for modeling multiple fermion generations in a warped extra dimension with a soft wall is presented. A bulk Higgs condensate is responsible for generating mass for the zero-mode fermions but leads to additional complexity from large mixing between different flavors. We extend existing single-generation analyses by considering new special cases in which analytical solutions can be derived. The general three-generation case is then treated using a simple numerical routine. Assuming anarchic 5D parameters, we find a fermion mass spectrum resembling the standard model quarks and leptons with highly degenerate couplings to Kaluza-Klein gauge bosons. This confirms that the soft-wall model has similar attractive features as that found in hard-wall models, providing a framework to generalize existing phenomenological analyses.

  16. Algebraic structures of the fermion mass spectrum and the phenomenon of the quark mixing

    International Nuclear Information System (INIS)

    Plankl, J.

    1990-01-01

    In the present thesis algebraic structures of the fermion mass spectrum are considered, whereby especially a possible connection with the phenomenon of the flavor mixing is looked for. After a presentation of the relevant theoretical and experimental foundations arguments are given, which call for the hypothesis of a relation of the mass and mixing parameters. We discuss the populary approaches of the mass matrices of the quarks. A main topic of this thesis form studies on the 'democratic' mass matrix. For this approximation, which corresponds to a matrix of the rank one, specific corrections are proposed, which have a breaking of chiral permutation symmetries as consequence, from which the masses of the first two generations result. The generation of possible small neutrino masses follows by the see-saw mechanism, which in generalized form serves also for the foundation of the smallness of the masses of the first two families. The mass hierarchy becomes understandable, if the corrections to the rank-1-matrix are of radiative nature. In this connection we especially enter the model of the 'see-saw democracy' more closely. The second main topic represents another access to the present theme, whic is given by the mixing matrix of the quarks. We diagonalize the mixing matrix for two and three families. Furthermore we define eigenstates of the weak interaction and give for the real 3x3 matrix a geometrical interpretation of the flavor mixing. Beyond we obtain in the current eigen base in the case of a decoupled third generation for the first two families mass matrices with democratic structure. (orig.) [de

  17. [P wave dispersion increased in childhood depending on blood pressure, weight, height, and cardiac structure and function].

    Science.gov (United States)

    Chávez-González, Elibet; González-Rodríguez, Emilio; Llanes-Camacho, María Del Carmen; Garí-Llanes, Merlin; García-Nóbrega, Yosvany; García-Sáez, Julieta

    2014-01-01

    Increased P wave dispersion are identified as a predictor of atrial fibrillation. There are associations between hypertension, P wave dispersion, constitutional and echocardiographic variables. These relationships have been scarcely studied in pediatrics. The aim of this study was to determine the relationship between P wave dispersion, blood pressure, echocardiographic and constitutional variables, and determine the most influential variables on P wave dispersion increases in pediatrics. In the frame of the PROCDEC II project, children from 8 to 11 years old, without known heart conditions were studied. Arterial blood pressure was measured in all the children; a 12-lead surface electrocardiogram and an echocardiogram were done as well. Left ventricular mass index mean values for normotensive (25.91±5.96g/m(2.7)) and hypertensive (30.34±8.48g/m(2.7)) showed significant differences P=.000. When we add prehypertensive and hypertensive there are 50.38% with normal left ventricular mass index and P wave dispersion was increased versus 13.36% of normotensive. Multiple regression demonstrated that the mean blood pressure, duration of A wave of mitral inflow, weight and height have a value of r=0.88 as related to P wave dispersion. P wave dispersion is increased in pre- and hypertensive children compared to normotensive. There are pre- and hypertensive patients with normal left ventricular mass index and increased P wave dispersion. Mean arterial pressure, duration of the A wave of mitral inflow, weight and height are the variables with the highest influence on increased P wave dispersion. Copyright © 2013 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  18. Connected and disconnected contributions to nucleon axial form factors using Nf = 2 twisted mass fermions at the physical point

    Science.gov (United States)

    Alexandrou, Constantia; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Kallidonis, Christos; Koutsou, Giannis; Vaquero Avilés-Casco, Alejandro

    2018-03-01

    We present results on the isovector and isoscalar nucleon axial form factors including disconnected contributions, using an ensemble of Nf = 2 twisted mass cloverimproved Wilson fermions simulated with approximately the physical value of the pion mass. The light disconnected quark loops are computed using exact deflation, while the strange and the charm quark loops are evaluated using the truncated solver method. Techniques such as the summation and the two-state fits have been employed to access ground-state dominance.

  19. Geometry of non-degenerate Susskind fermions

    International Nuclear Information System (INIS)

    Mitra, P.

    1983-01-01

    The Dirac-Kaehler equation on the lattice is known to describe the degenerate ''flavours'' appering in Susskind's approach to lattice fermions. We study the modification that has to be made in this equation in order to lift the degeneracy and give the flavours arbitrary different masses. (orig.)

  20. Finite-temperature mobility of a particle coupled to a fermionic environment

    International Nuclear Information System (INIS)

    Castella, H.; Zotos, X.

    1996-01-01

    We study numerically the finite-temperature and frequency mobility of a particle coupled by a local interaction to a system of spinless fermions in one dimension. We find that when the model is integrable (particle mass equal to the mass of fermions) the static mobility diverges. Further, an enhanced mobility is observed over a finite parameter range away from the integrable point. We present an analysis of the finite-temperature static mobility based on a random matrix theory description of the many-body Hamiltonian. copyright 1996 The American Physical Society

  1. Chiral fermions in asymptotically safe quantum gravity.

    Science.gov (United States)

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  2. Topological susceptibility in lattice QCD with unimproved Wilson fermions

    International Nuclear Information System (INIS)

    Chowdhury, Abhishek; De, Asit K.; De Sarkar, Sangita; Harindranath, A.; Mondal, Santanu; Sarkar, Anwesa; Maiti, Jyotirmoy

    2012-01-01

    We address a long standing problem regarding topology in lattice simulations of QCD with unimproved Wilson fermions. Earlier attempt with unimproved Wilson fermions at β=5.6 to verify the suppression of topological susceptibility with decreasing quark mass (m q ) was unable to unambiguously confirm the suppression. We carry out systematic calculations for two degenerate flavours at two different lattice spacings (β=5.6 and 5.8). The effects of quark mass, lattice volume and the lattice spacing on the spanning of different topological sectors are presented. We unambiguously demonstrate the suppression of the topological susceptibility with decreasing quark mass, expected from chiral Ward identity and chiral perturbation theory.

  3. Adding gauge fields to Kaplan's fermions

    International Nuclear Information System (INIS)

    Blum, T.; Kaerkkaeinen, L.

    1994-01-01

    We experiment with adding dynamical gauge field to Kaplan (defect) fermions. In the case of U(1) gauge theory we use an inhomogeneous Higgs mechanism to restrict the 3d gauge dynamics to a planar 2d defect. In our simulations the 3d theory produce the correct 2d gauge dynamics. We measure fermion propagators with dynamical gauge fields. They posses the correct chiral structure. The fermions at the boundary of the support of the gauge field (waveguide) are non-chiral, and have a mass two times heavier than the chiral modes. Moreover, these modes cannot be excited by a source at the defect; implying that they are dynamically decoupled. We have also checked that the anomaly relation is fullfilled for the case of a smooth external gauge field. (orig.)

  4. Models of light singlet fermion and neutrino phenomenology

    International Nuclear Information System (INIS)

    Chun, E.J.; Joshipura, A.S.; Smirnov, A.Yu.

    1995-05-01

    We suggest that a single fermion S exists beyond the standard see-saw structure. It mixes with light neutrinos via interactions with the right-handed neutrino components, so that ν e → S conversion solves the solar neutrino problem. Supersymmetry endowed with R-symmetry is shown to give a natural framework for existence, mass scale (∼ 3 · 10 -3 eV) and mixing (sin 2 2θ es ∼ (0.1 - 1.5) · 10 -2 ) of such a fermion. Models with an approximate horizontal symmetry are constructed, which embed the fermion S and explain simultaneously solar, atmospheric, hot dark matter problems as well as may predict the oscillation ν-bar μ → ν-bar e in the region of sensitivity of KARMEN and LSND experiments. (author). 24 refs

  5. Novel fat-link fermion actions for lattice QCD

    International Nuclear Information System (INIS)

    Zanotti, J.; Bilson-Thompson, S.; Bonnet, F.; Leinweber, D.; Melnitchouk, W.; Williams, A.

    2000-01-01

    Full text: We are currently exploring new ideas for lattice fermion actions. Naive implementations of fermion actions encounter the well known fermion-doubling problem. In order to solve this problem, Wilson introduced an irrelevant (energy) dimension-five operator (the so-called Wilson term) which explicitly breaks chiral symmetry. The scaling properties of this Wilson action can be improved by introducing any number of irrelevant operators of increasing dimension which also vanish in the continuum limit. In this manner, one can improve fermion actions at finite 'a' by combining operators to eliminate O(a) and perhaps O(a 2 ) errors etc. A popular formulation of a lattice fermion action that achieves this is the Clover action which removes the O(a) error introduced by the Wilson term by introducing an additional irrelevant dimension-five operator. The Clover action can be O(a) improved to all orders in the strong coupling 'g'. While the Clover action displays excellent scaling, it is responsible for revealing the exceptional configuration problem where the quark propagator encounters singular behaviour particularly as the quark mass becomes small. Moreover, its free dispersion relation between energy and momentum is unchanged from the standard Wilson action dispersion and shows a continuum like behaviour only for relatively small momenta [F. X. Lee and D. B. Leinweber, Phys. Rev. D59, 074504 (1999), hep-lat/9711044]. Finally, significant chiral symmetry breaking is apparent as the renormalised quark mass differs significantly from the bare mass of the theory. Hence we propose a different approach to fermion action improvement. One in which the additive renormalisations become small while expressing good chiral behaviour. This can be achieved through the consideration of 'fat-link' fermion actions [T. DeGrand (the MILC collaboration, Phys. Rev. D60, 094501 (1999)]. Fat links are created by averaging or smearing links on the lattice with their nearest neighbours in

  6. Center of mass detection via an active pixel sensor

    Science.gov (United States)

    Yadid-Pecht, Orly (Inventor); Minch, Brad (Inventor); Pain, Bedabrara (Inventor); Fossum, Eric (Inventor)

    2006-01-01

    An imaging system for identifying the location of the center of mass (COM) in an image. In one aspect, an imaging system includes a plurality of photosensitive elements arranged in a matrix. A center of mass circuit coupled to the photosensitive elements includes a resistive network and a normalization circuit including at least one bipolar transistor. The center of mass circuit identifies a center of mass location in the matrix and includes: a row circuit, where the row circuit identifies a center of mass row value in each row of the matrix and identifies a row intensity for each row; a horizontal circuit, where the horizontal circuit identifies a center of mass horizontal value; and a vertical circuit, where the vertical circuit identifies a center of mass vertical value. The horizontal and vertical center of mass values indicate the coordinates of the center of mass location for the image.

  7. Disconnected quark loop contributions to nucleon observables using N{sub f}=2 twisted clover fermions at the physical value of the light quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rehim, Abdou; Kallidonis, Christos; Koutsou, Giannis [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Alexandrou, Constantia; Constantinou, Martha; Hadjiyiannakou, Kyriakos [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Cyprus Univ. (Cyprus). Dept. of Physics; Jansen, Karl [DESY Zeuthen (Germany). NIC; Aviles-Casco, Alejandro Vaquero [INFN Sezione di Milano-Bicocca, Milano (Italy)

    2015-11-15

    We compute the disconnected quark loops contributions entering the determination of nucleon observables, by using a N{sub f}=2 ensemble of twisted mass fermions with a clover term at a pion mass m{sub π}=133 MeV. We employ exact deflation and implement all calculations in GPUs, enabling us to achieve large statistics and a good signal.

  8. Near threshold enhancement of the p p-bar mass spectrum in J/Psi decay

    International Nuclear Information System (INIS)

    A. Sibirtsev; J. Haidenbauer; S. Krewald; Ulf-G. Meissner; A.W. Thomas

    2004-01-01

    We investigate the nature of the near-threshold enhancement in the p (bar p) invariant mass spectrum of the reaction J/Ψ → γ p (bar p) reported recently by the BES Collaboration. Using the Juelich N (bar N) model we show that the mass dependence of the p (bar p) spectrum close to the threshold can be reproduced by the S-wave p (bar p) final state interaction in the isospin I=1 state within the Watson-Migdal approach. However, because of our poor knowledge of the N (bar N) interaction near threshold and of the J/Ψ → γ p (bar p) reaction mechanism and in view of the controversial situation in the decay J/Ψ → π 0 p (bar p), where no obvious signs of a p (bar p) final state interaction are seen, explanations other than final state interactions cannot be ruled out at the present stage

  9. Near threshold enhancement of the p p-bar mass spectrum in J/Psi decay

    Energy Technology Data Exchange (ETDEWEB)

    A. Sibirtsev; J. Haidenbauer; S. Krewald; Ulf-G. Meissner; A.W. Thomas

    2004-12-01

    We investigate the nature of the near-threshold enhancement in the p {bar p} invariant mass spectrum of the reaction J/{Psi} {yields} {gamma} p {bar p} reported recently by the BES Collaboration. Using the Juelich N {bar N} model we show that the mass dependence of the p {bar p} spectrum close to the threshold can be reproduced by the S-wave p {bar p} final state interaction in the isospin I=1 state within the Watson-Migdal approach. However, because of our poor knowledge of the N {bar N} interaction near threshold and of the J/{Psi} {yields} {gamma} p {bar p} reaction mechanism and in view of the controversial situation in the decay J/{Psi} {yields} {pi}{sup 0} p {bar p}, where no obvious signs of a p {bar p} final state interaction are seen, explanations other than final state interactions cannot be ruled out at the present stage.

  10. A determination of the centre-of-mass energy at LEP2 using radiative two-fermion events

    Czech Academy of Sciences Publication Activity Database

    Abdallah, J.; Abreu, P.; Adam, W.; Chudoba, Jiří; Mašík, Jiří; Rameš, Jiří; Řídký, Jan; Todorovová, Šárka; Trávníček, Petr; Vrba, Václav

    2006-01-01

    Roč. 46, - (2006), s. 295-305 ISSN 1434-6044 R&D Projects: GA MŠk 1P04LA211 Institutional research plan: CEZ:AV0Z10100502 Keywords : center -of-mass system * e + e - interactions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.251, year: 2006

  11. Dynamical Mass Generation.

    Science.gov (United States)

    Mendel Horwitz, Roberto Ruben

    1982-03-01

    In the framework of the Glashow-Weinberg-Salem model without elementary scalar particles, we show that masses for fermions and intermediate vector bosons can be generated dynamically. The mechanism is the formation of fermion-antifermion pseudoscalar bound states of zero total four momentum, which form a condensate in the physical vacuum. The force responsible for the binding is the short distance part of the net Coulomb force due to photon and Z exchange. Fermions and bosons acquire masses through their interaction with this condensate. The neutrinos remain massless because their righthanded components have no interactions. Also the charge -1/3 quarks remain massless because the repulsive force from the Z exchange dominates over the Coulomb force. To correct this, we propose two possible modifications to the theory. One is to cut off the Z exchange at very small distances, so that all fermions except the neutrinos acquire masses, which are then, purely electromagnetic in origin. The other is to introduce an additional gauge boson that couples to all quarks with a pure vector coupling. To make this vector boson unobservable at usual energies, at least two new fermions must couple to it. The vector boson squared masses receive additive contributions from all the fermion squared masses. The photon remains massless and the masses of the Z and W('(+OR -)) bosons are shown to be related through the Weinberg angle in the conventional way. Assuming only three families of fermions, we obtain estimates for the top quark mass.

  12. Perturbative analysis for Kaplan's lattice chiral fermions

    International Nuclear Information System (INIS)

    Aoki, S.; Hirose, H.

    1994-01-01

    Perturbation theory for lattice fermions with domain wall mass terms is developed and is applied to investigate the chiral Schwinger model formulated on the lattice by Kaplan's method. We calculate the effective action for gauge fields to one loop, and find that it contains a longitudinal component even for anomaly-free cases. From the effective action we obtain gauge anomalies and Chern-Simons currents without ambiguity. We also show that the current corresponding to the fermion number has a nonzero divergence and it flows off the wall into the extra dimension. Similar results are obtained for a proposal by Shamir, who used a constant mass term with free boundaries instead of domain walls

  13. Optical resonator for a standing wave dipole trap for fermionic lithium atoms

    International Nuclear Information System (INIS)

    Elsaesser, T.

    2000-01-01

    This thesis reports on the the construction of an optical resonator for a new resonator dipole trap to store the fermionic 6 Li-isotope and to investigate its scattering properties. It was demonstrated that the resonator enhances the energy density of a (1064 nm and 40 mW) laser beam by a factor of more than 100. A fused silica vacuum cell is positioned inside the resonator under Brewster's angle. The losses of the resonator depend mainly on the optical quality of the cell. The expected trap depth of the dipole trap is 200 μK and the photon scattering rate is expected to be about 0.4 s -1 . The resonator is stabilized by means of a polarization spectroscopy method. Due to high trap frequencies, which are produced by the tight enclosure of the standing wave in the resonator, the axial motion must be quantized. A simple model to describe this quantization has been developed. A magneto-optical trap, which serves as a source of cold lithium atoms, was put in operation. (orig.)

  14. First-principle Simulations of Heavy Fermion Materials

    Science.gov (United States)

    Dong, Ruanchen

    Heavy fermion materials, one of the most challenging topics in condensed matter physics, pose a variety of interesting properties and have attracted extensive studies for decades. Although there has been great success in explaining many ground- state properties of solids, the well-known theoretical calculations based on density functional theory (DFT) in its popular local density approximation (LDA) fail to describe heavy fermion materials due to improper treatment of many-body correlation effects. Here with the implementations of dynamical mean-field theory (DMFT) and the Gutzwiller variational method, the computational simulation of the heavy fermion materials is explored further and better compared with experimental data. In this dissertation, first, the theoretical background of DMFT and LDA+G methods is described in detail. The rest is the application of these techniques and is basically divided into two parts. First, the continuous-time quantum Monte Carlo (CT-QMC) method combined with DMFT is used to calculate and compare both the periodic Anderson model (PAM) and the Kondo lattice model (KLM). Different parameter sets of both models are connected by the Schrieffer-Wolff transformation. For spin and orbital degeneracy N = 2 case, a special particle-hole symmetric case of PAM at half-filling which always fixes one electron per impurity site is compared with the results of the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract quasiparticle mass renormalizations for the f-electrons directly from KLM. The method is further applied to higher degenerate cases and to the realistic heavy fermion system CeRhIn5 in which the estimate of the Sommerfeld coefficient is proven to be close to the experimental value. Second, a series of Cerium based heavy fermion materials is studied using a combination of local

  15. Two-loop fermionic corrections to massive Bhabha scattering

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S.; Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Czakon, M. [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik]|[Institute of Nuclear Physics, NSCR DEMOKRITOS, Athens (Greece); Gluza, J. [Silesia Univ., Katowice (Poland). Inst. of Physics

    2007-05-15

    We evaluate the two-loop corrections to Bhabha scattering from fermion loops in the context of pure Quantum Electrodynamics. The differential cross section is expressed by a small number of Master Integrals with exact dependence on the fermion masses m{sub e}, m{sub f} and the Mandelstam invariants s, t, u. We determine the limit of fixed scattering angle and high energy, assuming the hierarchy of scales m{sup 2}{sub e}<fermionic contributions. As a by-product, we provide an independent check of the known electron-loop contributions. (orig.)

  16. Nucleon structure by Lattice QCD computations with twisted mass fermions

    International Nuclear Information System (INIS)

    Harraud, P.A.

    2010-11-01

    Understanding the structure of the nucleon from quantum chromodynamics (QCD) is one of the greatest challenges of hadronic physics. Only lattice QCD allows to determine numerically the values of the observables from ab-initio principles. This thesis aims to study the nucleon form factors and the first moments of partons distribution functions by using a discretized action with twisted mass fermions. As main advantage, the discretization effects are suppressed at first order in the lattice spacing. In addition, the set of simulations allows a good control of the systematical errors. After reviewing the computation techniques, the results obtained for a wide range of parameters are presented, with lattice spacings varying from 0.0056 fm to 0.089 fm, spatial volumes from 2.1 up to 2.7 fm and several pion masses in the range of 260-470 MeV. The vector renormalization constant was determined in the nucleon sector with improved precision. Concerning the electric charge radius, we found a finite volume effect that provides a key towards an explanation of the chiral dependence of the physical point. The results for the magnetic moment, the axial charge, the magnetic and axial charge radii, the momentum and spin fractions carried by the quarks show no dependence on the lattice spacing nor volume. In our range of pion masses, their values show a deviation from the experimental values. Their chiral behaviour do not exhibit the curvature predicted by the chiral perturbation theory which could explain the apparent discrepancy. (author)

  17. Phase space methods for Majorana fermions

    Science.gov (United States)

    Rushin Joseph, Ria; Rosales-Zárate, Laura E. C.; Drummond, Peter D.

    2018-06-01

    Fermionic phase space representations are a promising method for studying correlated fermion systems. The fermionic Q-function and P-function have been defined using Gaussian operators of fermion annihilation and creation operators. The resulting phase-space of covariance matrices belongs to the symmetry class D, one of the non-standard symmetry classes. This was originally proposed to study mesoscopic normal-metal-superconducting hybrid structures, which is the type of structure that has led to recent experimental observations of Majorana fermions. Under a unitary transformation, it is possible to express these Gaussian operators using real anti-symmetric matrices and Majorana operators, which are much simpler mathematical objects. We derive differential identities involving Majorana fermion operators and an antisymmetric matrix which are relevant to the derivation of the corresponding Fokker–Planck equations on symmetric space. These enable stochastic simulations either in real or imaginary time. This formalism has direct relevance to the study of fermionic systems in which there are Majorana type excitations, and is an alternative to using expansions involving conventional Fermi operators. The approach is illustrated by showing how a linear coupled Hamiltonian as used to study topological excitations can be transformed to Fokker–Planck and stochastic equation form, including dissipation through particle losses.

  18. Fermionic greybody factors of two and five-dimensional dilatonic black holes

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2014-08-15

    We study fermionic perturbations in the background of a two and five-dimensional dilatonic black holes. Then, we compute the reflection and transmission coefficients and the absorption cross section for fermionic fields, and we show numerically that the absorption cross section vanishes in the low and high frequency limit. Also we find that beyond a certain value of the horizon radius r{sub 0} the absorption cross section for five-dimensional dilatonic black hole is constant. Besides, we have find that the absorption cross section decreases for higher angular momentum, and it decreases when the mass of the fermionic field increases. (orig.)

  19. Hunting for dark particles with gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo [CERN, Theoretical Physics Department,Geneva (Switzerland)

    2016-10-03

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  20. Hunting for Dark Particles with Gravitational Waves

    Science.gov (United States)

    Giudice, Gian F.

    2017-12-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  1. Hunting for dark particles with gravitational waves

    International Nuclear Information System (INIS)

    Giudice, Gian F.; McCullough, Matthew; Urbano, Alfredo

    2016-01-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking’s area theorem.

  2. Hunting for Dark Particles with Gravitational Waves

    CERN Document Server

    Giudice, Gian F.; Urbano, Alfredo

    2016-01-01

    The LIGO observation of gravitational waves from a binary black hole merger has begun a new era in fundamental physics. If new dark sector particles, be they bosons or fermions, can coalesce into exotic compact objects (ECOs) of astronomical size, then the first evidence for such objects, and their underlying microphysical description, may arise in gravitational wave observations. In this work we study how the macroscopic properties of ECOs are related to their microscopic properties, such as dark particle mass and couplings. We then demonstrate the smoking gun exotic signatures that would provide observational evidence for ECOs, and hence new particles, in terrestrial gravitational wave observatories. Finally, we discuss how gravitational waves can test a core concept in general relativity: Hawking's area theorem.

  3. End States, Ladder Compounds, and Domain-Wall Fermions

    International Nuclear Information System (INIS)

    Creutz, M.

    1999-01-01

    A magnetic field applied to a cross-linked ladder compound can generate isolated electronic states bound to the ends of the chain. After exploring the interference phenomena responsible, I discuss a connection to the domain-wall approach to chiral fermions in lattice gauge theory. The robust nature of the states under small variations of the bond strengths is tied to chiral symmetry and the multiplicative renormalization of fermion masses. copyright 1999 The American Physical Society

  4. Exact pairing correlations in one-dimensional trapped fermions with stochastic mean-field wave-functions

    Energy Technology Data Exchange (ETDEWEB)

    Juillet, O.; Gulminelli, F. [Caen Univ., Lab. de Physique Corpusculaire (LPC/ENSICAEN), 14 (France); Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    2003-11-01

    The canonical thermodynamic properties of a one-dimensional system of interacting spin-1/2 fermions with an attractive zero-range pseudo-potential are investigated within an exact approach. The density operator is evaluated as the statistical average of dyadics formed from a stochastic mean-field propagation of independent Slater determinants. For an harmonically trapped Fermi gas and for fermions confined in a 1D-like torus, we observe the transition to a quasi-BCS state with Cooper-like momentum correlations and an algebraic long-range order. For few trapped fermions in a rotating torus, a dominant superfluid component with quantized circulation can be isolated. (author)

  5. Magnetic fluctuations in heavy fermion systems

    International Nuclear Information System (INIS)

    Broholm, C.L.

    1989-06-01

    Magnetic order and fluctuations in the heavy Fermion systems UPt 3 , U 2 Zn 17 and URu 2 Si 2 have been studied by neutron scattering. Single crystalline samples and triple-axis neutron-scattering techniques with energy transfers between 0 and 40 meV and energy resolutions between 0.1 meV and 4 meV have been employed. UPt 3 develops an antiferromagnetically ordered moment of (0.02±0.005) μ B below T N = 5 K which doubles the unit cell in the basal plane and coexists with superconductivity below T c = 0.5 K. The magnetic fluctuations are relaxational, and enhanced at the antiferromagnetic zone center in a low-energy regime. The characteristic zone-center relaxation energy is 0.3 meV. The temperature- and field-dependence of the antiferromagnetic order in the superconducting phase suggest a close relation between these two properties in UPt 3 . U 2 Zn 17 has a broad spectrum of magnetic fluctuations, even below T N = 9.7 K, of which the transverse part below 10 meV is strongly enhanced at the antiferromagnetic zone center. The system has an anomalously extended critical region and the antiferromagnetic phase transition seems to be driven by the temperature-dependence of an effective RKKY interaction, as anticipated theoretically. URu 2 Si 2 , a strongly anisotropic heavy Fermion system, has a high-energy regime of antiferromagnetically-correlated overdamped magnetic fluctuations. Below T N = 17.5 K weak antiferromagnetic order, μ = (0.04±0.01)μ B , with finite correlations along the tetragonal c axis, develops along with a low-energy regime of strongly dispersive singlet-singlet excitations. Below T c = 1 K antiferromagnetism coexists with superconductivity. A phenomenological model describing the exchange-enhanced overdamped magnetic fluctuations of heavy Fermion systems is proposed. Our experimental results are compared to the anomalous bulk properties of heavy Fermion systems, and to magnetic fluctuations in other metallic magnets. (orig.)

  6. Multiplicity and Pseudorapidity Distributions from $p\\bar{p}$ Collisions at Center-of-Mass Energy 1.8-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Charles Cameron [Purdue U.

    1991-12-01

    Charged-particle multiplicity and pseudorapidity distributions produced in protonantiproton collisions at center of mass energy 1.8 TeV and measured in the Central Tracking Chamber are discussed. The data were taken using a minimum bias trigger at E-735 at Fermi lab.

  7. Fermion Mass Textures in an M-Inspired Flipped SU(5) Model Derived from String

    CERN Document Server

    Ellis, Jonathan Richard; Lola, S; Nanopoulos, Dimitri V

    1998-01-01

    We are inspired by the facts that M-theory may reconcile the supersymmetric GUT scale with that of quantum gravity, and that it provides new avenues for low-energy supersymmetry breaking, to re-examine a flipped SU(5) model that has been derived from string and may possess an elevation to a fully-fledged M-phenomenological model. Using a complete analysis of all superpotential terms through the sixth order, we explore in this model a new flat potential direction that provides a pair of light Higgs doublets, yields realistic textures for the fermion mass matrices, and is free of R-violating interactions and dimension-five proton decay operators.

  8. Conditions for the classicality of the center of mass of many-particle quantum states

    International Nuclear Information System (INIS)

    Oriols, Xavier; Benseny, Albert

    2017-01-01

    We discuss the conditions for the classicality of quantum states with a very large number of identical particles. By defining the center of mass from a large set of Bohmian particles, we show that it follows a classical trajectory when the distribution of the Bohmian particle positions in a single experiment is always equal to the marginal distribution of the quantum state in physical space. This result can also be interpreted as a single experiment generalization of the well-known Ehrenfest theorem. We also demonstrate that the classical trajectory of the center of mass is fully compatible with a quantum (conditional) wave function solution of a classical non-linear Schrödinger equation. Our work shows clear evidence for a quantum–classical inter-theory unification, and opens new possibilities for practical quantum computations with decoherence. (paper)

  9. Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S{sub 3} flavor symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, A.E.C. [Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Martinez, R.; Ochoa, F. [Universidad Nacional de Colombia, Departamento de Fisica, Bogota (Colombia)

    2016-11-15

    We propose a 3-3-1 model where the SU(3){sub C} x SU(3){sub L} x U(1){sub X} symmetry is extended by S{sub 3} x Z{sub 3} x Z{sub 3}{sup '} x Z{sub 8} x Z{sub 16} and the scalar spectrum is enlarged by extra SU(3){sub L} singlet scalar fields. The model successfully describes the observed SM fermion mass and mixing pattern. In this framework, the light active neutrino masses arise via an inverse seesaw mechanism and the observed charged fermion mass and quark mixing hierarchy is a consequence of the Z{sub 3} x Z{sub 3}{sup '} x Z{sub 8} x Z{sub 16} symmetry breaking at very high energy. The obtained physical observables for both quark and lepton sectors are compatible with their experimental values. The model predicts the effective Majorana neutrino mass parameter of neutrinoless double beta decay to be m{sub ββ} = 4 and 48 meV for the normal and the inverted neutrino spectra, respectively. Furthermore, we found a leptonic Dirac CP-violating phase close to (π)/(2) and a Jarlskog invariant close to about 3 x 10{sup -2} for both normal and inverted neutrino mass hierarchy. (orig.)

  10. The electric dipole moment of the neutron from Nf=2+1+1 twisted mass fermions

    International Nuclear Information System (INIS)

    Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Cyprus Institute, Nicosia; Hadjiyiannakou, K.; Cyprus Institute, Nicosia; George Washington Univ., Washington, DC; Jansen, K.; Koutsou, G.; Ottnad, K.; Bonn Univ.; Petschlies, M.; Bonn Univ.

    2015-11-01

    We extract the neutron electric dipole moment (nEDM) vertical stroke vector d n vertical stroke on configurations produced with N f =2+1+1 twisted mass fermions with lattice spacing of a ≅0.082 fm and a light quark mass that corresponds to M π ≅ 373 MeV. We do so by evaluating the CP-odd form factor F 3 for small values of the CP-violation parameter θ in the limit of zero momentum transfer. This limit is extracted using the usual parametrization but in addition position space methods. The topological charge is computed via cooling and gradient flow using the Wilson, Symanzik tree-level improved and Iwasaki actions for smoothing. We obtain consistent results for all choices of smoothing procedures and methods to extract F 3 at zero momentum transfer. For the ensemble analyzed we find a value of nEDM of vertical stroke vector d n vertical stroke /θ=0.045(6)(1) e.fm.

  11. Phase structure of thermal lattice QCD with N{sub f} = 2 twisted mass Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Lombardo, M. P. [INFN, Laboratori Nazionali di Frascati (Italy); Mueller-Preussker, M.; Petschlies, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Philipsen, O.; Zeidlewicz, L. [Inst. fuer Theoretische Physik, Wilhelms-Univ. Muenster (Germany)

    2009-09-15

    We present numerical results for the phase diagram of lattice QCD at finite temperature in the formulation with twisted mass Wilson fermions and a tree-level Symanzik-improved gauge action. Our simulations are performed on lattices with temporal extent N{sub {tau}}=8, and lattice coupling {beta} ranging from strong coupling to the scaling domain. Covering a wide range in the space spanned by the lattice coupling {beta} and the hopping and twisted mass parameters {kappa} and {mu}, respectively, we obtain a comprehensive picture of the rich phase structure of the lattice theory. In particular, we verify the existence of an Aoki phase in the strong coupling region and the realisation of the Sharpe-Singleton scenario at intermediate couplings. In the weak coupling region we identify the phase boundary for the physical finite temperature phase transition/crossover. Its shape in the three-dimensional parameter space is consistent with Creutz's conjecture of a cone-shaped thermal transition surface. (orig.)

  12. Boson and fermion many-body assemblies: Fingerprints of excitations in the ground-state wave functions, with examples of superfluid 4He and the homogeneous correlated electron liquid

    International Nuclear Information System (INIS)

    March, N.H.

    2007-08-01

    After a brief summary of some basic properties of ideal gases of bosons and of fermions, two many-body Hamiltonians are cited for which ground-state wave functions allow the generation of excited states. But because of the complexity of ground-state many-body wave functions, we then consider properties of reduced density matrices, and in particular, the diagonal element of the second-order density matrix. For both the homogeneous correlated electron liquid and for an assembly of charged bosons, the ground-state pair correlation function g(r) has fingerprints of the zero-point energy of the plasmon modes. These affect crucially the static structure factor S(k), in the long wavelength limit. This is best understood by means of the Ornstein-Zernike direct correlation function c(r), which plays an important role throughout this article. Turning from such charged liquids, both boson and fermion, to superfluid 4 He, the elevated temperature (T) structure factor S(k, T) is related, albeit approximately, to its zero-temperature counterpart, via the velocity of sound, reflecting the collective phonon excitations, and the superfluid density. Finally some future directions are pointed. (author)

  13. Scaling behavior of heavy fermion metals

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.r [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical Technical Institute, RAS, St. Petersburg 194021 (Russian Federation); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a, Chernova str. Syktyvkar, 167982 (Russian Federation)

    2010-07-15

    Strongly correlated Fermi systems are fundamental systems in physics that are best studied experimentally, which until very recently have lacked theoretical explanations. This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as heavy-fermion (HF) metals and two-dimensional (2D) Fermi systems. It is shown that the basic properties and the scaling behavior of HF metals can be described within the framework of a fermion condensation quantum phase transition (FCQPT) and an extended quasiparticle paradigm that allow us to explain the non-Fermi liquid behavior observed in strongly correlated Fermi systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Having analyzed the collected facts on strongly correlated Fermi systems with quite a different microscopic nature, we find these to exhibit the same non-Fermi liquid behavior at FCQPT. We show both analytically and using arguments based entirely on the experimental grounds that the data collected on very different strongly correlated Fermi systems have a universal scaling behavior, and materials with strongly correlated fermions can unexpectedly be uniform in their diversity. Our analysis of strongly correlated systems such as HF metals and 2D Fermi systems is in the context of salient experimental results. Our calculations of the non-Fermi liquid behavior, the scales and thermodynamic, relaxation and transport properties are in good agreement with experimental facts.

  14. Estimating the Wet-Rock P-Wave Velocity from the Dry-Rock P-Wave Velocity for Pyroclastic Rocks

    Science.gov (United States)

    Kahraman, Sair; Fener, Mustafa; Kilic, Cumhur Ozcan

    2017-07-01

    Seismic methods are widely used for the geotechnical investigations in volcanic areas or for the determination of the engineering properties of pyroclastic rocks in laboratory. Therefore, developing a relation between the wet- and dry-rock P-wave velocities will be helpful for engineers when evaluating the formation characteristics of pyroclastic rocks. To investigate the predictability of the wet-rock P-wave velocity from the dry-rock P-wave velocity for pyroclastic rocks P-wave velocity measurements were conducted on 27 different pyroclastic rocks. In addition, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theories and it was seen that estimates for saturated P-wave velocity from the theories fit well measured data. For samples having values of less and greater than 20%, practical equations were derived for reliably estimating wet-rock P-wave velocity as function of dry-rock P-wave velocity.

  15. Fermionic molecular dynamics for ground states and collisions of nuclei

    International Nuclear Information System (INIS)

    Feldmeier, H.; Bieler, K.; Schnack, J.

    1994-08-01

    The antisymmetric many-body trial state which describes a system of interacting fermions is parametrized in terms of localized wave packets. The equations of motion are derived from the time-dependent quantum variational principle. The resulting Fermionic Molecular Dynamics (FMD) equations include a wide range of semi-quantal to classical physics extending from deformed Hartree-Fock theory to Newtonian molecular dynamics. Conservation laws are discussed in connection with the choice of the trial state. The model is applied to heavy-ion collisions with which its basic features are illustrated. The results show a great variety of phenomena including deeply inelastic collisions, fusion, incomplete fusion, fragmentation, neck emission, promptly emitted nucleons and evaporation. (orig.)

  16. P wave dispersion and maximum P wave duration are independently associated with rapid renal function decline.

    Science.gov (United States)

    Su, Ho-Ming; Tsai, Wei-Chung; Lin, Tsung-Hsien; Hsu, Po-Chao; Lee, Wen-Hsien; Lin, Ming-Yen; Chen, Szu-Chia; Lee, Chee-Siong; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2012-01-01

    The P wave parameters measured by 12-lead electrocardiogram (ECG) are commonly used as noninvasive tools to assess for left atrial enlargement. There are limited studies to evaluate whether P wave parameters are independently associated with decline in renal function. Accordingly, the aim of this study is to assess whether P wave parameters are independently associated with progression to renal end point of ≥25% decline in estimated glomerular filtration rate (eGFR). This longitudinal study included 166 patients. The renal end point was defined as ≥25% decline in eGFR. We measured two ECG P wave parameters corrected by heart rate, i.e. corrected P wave dispersion (PWdisperC) and corrected P wave maximum duration (PWdurMaxC). Heart function and structure were measured from echocardiography. Clinical data, P wave parameters, and echocardiographic measurements were compared and analyzed. Forty-three patients (25.9%) reached renal end point. Kaplan-Meier curves for renal end point-free survival showed PWdisperC > median (63.0 ms) (log-rank P = 0.004) and PWdurMaxC > median (117.9 ms) (log-rank Pfunction decline.

  17. Quasiparticle picture of high-temperature superconductors in the frame of a Fermi liquid with the fermion condensate

    International Nuclear Information System (INIS)

    Amusia, M. Ya.; Shaginyan, V. R.

    2001-01-01

    A model of a Fermi liquid with the fermion condensate (FC) is applied to the consideration of quasiparticle excitations in high-temperature superconductors, in their superconducting and normal states. Within our model the appearance of the fermion condensate presents a quantum phase transition that separates the regions of normal and strongly correlated electron liquids. Beyond the phase transition point the quasiparticle system is divided into two subsystems, one containing normal quasiparticles and the other-fermion condensate localized at the Fermi surface and characterized by almost dispersionless single-particle excitations. In the superconducting state the quasiparticle dispersion in systems with FC can be presented by two straight lines, characterized by effective masses M FC * and M L * , respectively, and intersecting near the binding energy, which is of the order of the superconducting gap. This same quasiparticle picture persists in the normal state, thus manifesting itself over a wide range of temperatures as new energy scales. Arguments are presented that fermion systems with FC have features of a 'quantum protectorate' [R. B. Laughlin and D. Pines, Proc. Natl. Acad. Sci. U.S.A. >97, 28 (2000); P. W. Anderson, cond-mat/0007185 (unpublished); cond-mat/0007287 (unpublished)

  18. Exact solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED

    International Nuclear Information System (INIS)

    Kernemann, A.; Stefanis, N.G.

    1989-01-01

    A set of new closed-form solutions for fermionic Green's functions in the Bloch-Nordsieck approximation of QED is presented. A manifestly covariant phase-space path-integral method is applied for calculating the n-fermion Green's function in a classical external field. In the case of one and two fermions, explicit expressions for the full Green's functions are analytically obtained, with renormalization carried out in the modified minimal subtraction scheme. The renormalization constants and the corresponding anomalous dimensions are determined. The mass-shell behavior of the two-fermion Green's function is investigated in detail. No assumptions are made concerning the structure of asymptotic states and no IR cutoff is used in the calculations

  19. Increased P-wave dispersion a risk for atrial fibrillation in adolescents with anorexia nervosa.

    Science.gov (United States)

    Ertuğrul, İlker; Akgül, Sinem; Derman, Orhan; Karagöz, Tevfik; Kanbur, Nuray

    2016-01-01

    Studies have shown that a prolonged P-wave dispersion is a risk factor for the development of atrial fibrillation. The aim of this study was to evaluate P-wave dispersion in adolescents with anorexia nervosa at diagnosis. We evaluated electrocardiographic findings, particularly the P-wave dispersion, at initial assessment in 47 adolescents with anorexia nervosa. Comparison of P-wave dispersion between adolescents with anorexia nervosa and controls showed a statistically significant higher P-wave dispersion in patients with anorexia nervosa (72 ± 16.3 msec) when compared to the control group (43.8 ± 9.5 msec). Percent of body weight lost, lower body mass index, and higher weight loss rate in the patients with anorexia nervosa had no effect on P-wave dispersion. Due to the fact that anorexia nervosa has a high mortality rate we believe that cardiac pathologies such as atrial fibrillation must also be considered in the medical evaluation.

  20. Effective mass of the four-flux composite fermion at ν=1/4

    International Nuclear Information System (INIS)

    Pan, W.; Stormer, H. L.; Tsui, D. C.; Pfeiffer, L. N.; Baldwin, K. W.; West, K. W.

    2000-01-01

    We have measured the effective mass (m * ) of the four flux composite fermion at Landau-level filling factor ν=1/4 ( 4 CF), using the activation energy gaps at the fractional quantum Hall effect states ν=2/7, 3/11, and 4/15 and the temperature dependence of the Shubnikov-de Haas (SdH) oscillations around ν=1/4. We find that the energy gaps show a linear dependence on the effective magnetic field B eff (≡B-B ν=1/4 ), and from this linear dependence we obtain m * =1.0m e and a disorder broadening Γ∼1 K for a sample of density n=0.87x10 11 cm -2 . The m * deduced from the temperature dependence of the SdH effect shows large differences for ν>1/4 and ν 1/4, m * ∼1.0m e . It scales as √(B ν ) with the mass derived from the data around ν=1/2 and shows an increase in m * as ν→1/4, resembling the findings around ν=1/2. For ν * increases rapidly with increasing B eff and can be described by m * /m e =-3.3+5.7B eff . This anomalous dependence on B eff is precursory to the formation of the insulating phase at still lower filling. (c) 2000 The American Physical Society

  1. Fermion boson metamorphosis in field theory

    International Nuclear Information System (INIS)

    Ha, Y.K.

    1982-01-01

    In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered

  2. Majorana fermion codes

    International Nuclear Information System (INIS)

    Bravyi, Sergey; Terhal, Barbara M; Leemhuis, Bernhard

    2010-01-01

    We initiate the study of Majorana fermion codes (MFCs). These codes can be viewed as extensions of Kitaev's one-dimensional (1D) model of unpaired Majorana fermions in quantum wires to higher spatial dimensions and interacting fermions. The purpose of MFCs is to protect quantum information against low-weight fermionic errors, that is, operators acting on sufficiently small subsets of fermionic modes. We examine to what extent MFCs can surpass qubit stabilizer codes in terms of their stability properties. A general construction of 2D MFCs is proposed that combines topological protection based on a macroscopic code distance with protection based on fermionic parity conservation. Finally, we use MFCs to show how to transform any qubit stabilizer code to a weakly self-dual CSS code.

  3. Upper and lower Higgs boson mass bounds from a lattice Higgs-Yukawa model with dynamical overlap fermions

    International Nuclear Information System (INIS)

    Gerhold, Philipp; Jansen, Karl

    2009-12-01

    We study a lattice Higgs-Yukawa model emulating the same Higgs-fermion coupling structure as in the Higgs sector of the electroweak Standard Model, in particular, obeying a Ginsparg- Wilson version of the underlying SU(2) L x U(1) Y symmetry, being a global symmetry here due to the neglection of gauge fields in this model. In this paper we present our results on the cutoffdependent upper Higgs boson mass bound at several selected values of the cutoff parameter Λ. (orig.)

  4. Scattering of fermions in the Yukawa theory coupled to unimodular gravity

    International Nuclear Information System (INIS)

    Gonzalez-Martin, S.; Martin, C.P.

    2018-01-01

    We compute the lowest order gravitational UV divergent radiative corrections to the S matrix element of the fermion + fermionfermion + fermion scattering process in the massive Yukawa theory, coupled either to Unimodular Gravity or to General Relativity. We show that both Unimodular Gravity and General Relativity give rise to the same UV divergent contribution in Dimensional Regularization. This is a nontrivial result, since in the classical action of Unimodular Gravity coupled to the Yukawa theory, the graviton field does not couple neither to the mass operator nor to the Yukawa operator. This is unlike the General Relativity case. The agreement found points in the direction that Unimodular Gravity and General Relativity give rise to the same quantum theory when coupled to matter, as long as the Cosmological Constant vanishes. Along the way we have come across another unexpected cancellation of UV divergences for both Unimodular Gravity and General Relativity, resulting in the UV finiteness of the one-loop and κy 2 order of the vertex involving two fermions and one graviton only. (orig.)

  5. Precision Measurement of the Mass of the Top Quark in p $\\bar{p}$ Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Carlos A. [Univ. of Rochester, NY (United States)

    2007-01-01

    We report a measurement of the mass of the top quark (mtop) in p$\\bar{p}$ collisions at a center of mass energy of 1.96 TeV. The analysis is based on p$\\bar{p}$→t$\\bar{t}$→ lepton+jets data recorded with the D0 detector at the Fermilab Tevatron Collider. Events were preselected in the e+jets (913 events/pb of data) and in the μ+jets (871 events/pb of data) channels. These were analyzed through a comparison of the matrix element for the production and decay of the t$\\bar{t}$ states with data, using a likelihood method and 'tagged' b quarks from the t → Wb decays.

  6. Dynamics of attractively interacting Fermi atoms in one-dimensional optical lattices: Non-equilibrium simulations of fermion superfluidity

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, M., E-mail: okumura.masahiko@jaea.go.j [CCSE, Japan Atomic Energy Agency, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015 (Japan); CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Onishi, H. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Yamada, S. [CCSE, Japan Atomic Energy Agency, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015 (Japan); CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Machida, M. [CCSE, Japan Atomic Energy Agency, 6-9-3 Higashi-Ueno, Taito-ku, Tokyo 110-0015 (Japan); CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan) and JST, TRIP, Sambancho Chiyoda-ku, Tokyo 102-0075 (Japan)

    2010-12-15

    We study center of mass (CoM) motions of attractively interacting fermionic atoms loaded on an one-dimensional optical lattice confined by a harmonic potential at zero temperature by using adaptive time-dependent density-matrix renormalization-group method. We find that the CoM motions in weak and strong attraction show underdamped and overdamped motions, respectively, which are consistent with the experimental results of the CoM motion in the three-dimensional optical lattice. In addition, we find spin-imbalance effects on the CoM motion, which slow the CoM motion down.

  7. Derivation of mean-field dynamics for fermions

    International Nuclear Information System (INIS)

    Petrat, Soeren

    2014-01-01

    the form vertical stroke x vertical stroke -s , with 0fermions in this work is new. The method is based on a functional that ''counts the number of particles outside the condensate'', i.e., in the case of fermions, it measures those parts of the Schroedinger wave function that are not in the antisymmetric product of the Hartree states. We show that convergence of the functional to zero (which means that the mean-field equations approximate the dynamics well) is equivalent to convergence of the corresponding reduced one-particle density matrices in trace norm and in Hilbert-Schmidt norm. Finally, we show how also the recently treated semiclassical mean-field limits can be derived with this method.

  8. Effective action and electromagnetic response of topological superconductors and Majorana-mass Weyl fermions

    Science.gov (United States)

    Stone, Michael; Lopes, Pedro L. e. S.

    2016-05-01

    Motivated by an apparent paradox in [X.-L. Qi, E. Witten, and S.-C. Zhang, Phys. Rev. B 87, 134519 (2013), 10.1103/PhysRevB.87.134519], we use the method of gauged Wess-Zumino-Witten functionals to construct an effective action for a Weyl fermion with a Majorana mass that arises from coupling to a charged condensate. We obtain expressions for the current induced by an external gauge field and observe that the topological part of the current is only one-third of that that might have been expected from the gauge anomaly. The anomaly is not changed by the induced mass gap, however. The topological current is supplemented by a conventional supercurrent that provides the remaining two-thirds of the anomaly once the equation of motion for the Goldstone mode is satisfied. We apply our formula for the current to resolve the apparent paradox and also to the chiral magnetic effect (CME), where it predicts a reduction of the CME current to one-third of its value for a free Weyl gas in thermal equilibrium. We attribute this reduction to a partial cancellation of the CME by a chiral vortical effect current arising from the persistent rotation of the fluid induced by the external magnetic field.

  9. Trial wave functions for a composite Fermi liquid on a torus

    Science.gov (United States)

    Fremling, M.; Moran, N.; Slingerland, J. K.; Simon, S. H.

    2018-01-01

    We study the two-dimensional electron gas in a magnetic field at filling fraction ν =1/2 . At this filling the system is in a gapless state which can be interpreted as a Fermi liquid of composite fermions. We construct trial wave functions for the system on a torus, based on this idea, and numerically compare these to exact wave functions for small systems found by exact diagonalization. We find that the trial wave functions give an excellent description of the ground state of the system, as well as its charged excitations, in all momentum sectors. We analyze the dispersion of the composite fermions and the Berry phase associated with dragging a single fermion around the Fermi surface and comment on the implications of our results for the current debate on whether composite fermions are Dirac fermions.

  10. Non-perturbative renormalization of quark bilinear operators with N{sub f}=2 (tmQCD) Wilson fermions and the tree-level improved gauge action

    Energy Technology Data Exchange (ETDEWEB)

    Constantinou, M. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dimopoulos, P. [Roma ' ' La Sapienza' ' Univ. (Italy). Dipt. di Fisica; INFN, Rome (Italy); Frezzotti, R. [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Fisica; INFN, Roma (IT)] (and others)

    2010-06-15

    We present results for the renormalization constants of bilinear quark operators obtained b4>UNL<426>UNL using the tree-level Symanzik improved gauge action and the N{sub f}=2 twisted mass fermion action at maximal twist, which guarantees automatic O(a)- improvement. Our results are also relevant for the corresponding standard (untwisted) Wilson fermionic action since the two actions only differ, in the massless limit, by a chiral rotation of the quark fields. The scale-independent renormalization constants Z{sub V}, Z{sub A} and the ratio Z{sub P}/Z{sub S} have been computed using the RI-MOM approach, as well as other alternative methods. For Z{sub A} and Z{sub P}/Z{sub S}, the latter are based on both standard twisted mass and Osterwalder-Seiler fermions, while for Z{sub V} a Ward Identity has been used. The quark field renormalization constant Z{sub q} and the scale dependent renormalization constants Z{sub S}, Z{sub P} and Z{sub T} are determined in the RI-MOM scheme. Leading discretization effects of O(g{sup 2}a{sup 2}), evaluated in one-loop perturbation theory, are explicitly subtracted from the RI-MOM estimates. (orig.)

  11. Anomalous fermion number nonconservation: Paradoxes in the level crossing picture

    International Nuclear Information System (INIS)

    Burnier, Y.

    2006-01-01

    In theories with anomalous fermion number nonconservation, the level-crossing picture is considered a faithful representation of the fermionic quantum number variation. It represents each created fermion by an energy level that crosses the zero-energy line from below. If several fermions of various masses are created, the level-crossing picture contains several levels that cross the zero-energy line and cross each other. However, we know from quantum mechanics that the corresponding levels cannot cross if the different fermions are mixed via some interaction potential. The simultaneous application of these two requirements on the level behavior leads to paradoxes. For instance, a naive interpretation of the resulting level-crossing picture gives rise to charge nonconservation. In this paper, we resolve this paradox by a precise calculation of the transition probability, and discuss what are the implications for the electroweak theory. In particular, the nonperturbative transition probability is higher if top quarks are present in the initial state

  12. Three-body recombination of cold fermionic atoms

    International Nuclear Information System (INIS)

    Suno, H; Esry, B D; Greene, Chris H

    2003-01-01

    Recombination of identical, spin-polarized fermions in cold three-body collisions is investigated. We parametrize the mechanisms for recombination in terms of the 'scattering volume' V p and another length scale r 0 . Model two-body interactions were used within the framework of the adiabatic hyperspherical representation. We examine the recombination rate K 3 as a function of the collision energy E for various values of V p . Not only do we consider the dominant J Π = 1 + case, but also the next-leading order contributions from J Π = 1 - and 3 - . We discuss the behaviour near a two-body resonance and the expected universality of fermionic recombination. Comparisons with boson recombination are considered in detail

  13. Some polarization properties of many-fermion systems for N-dimensional worlds in the framework of self-consistent renormalization

    International Nuclear Information System (INIS)

    Kucheryavy, V.I.

    1997-01-01

    Using the self-consistent renormalization we calculate five types of quantities (having the mass anisotropy in general) associated with the canonical Ward identities and reduction identities for two-point chronological fermion current correlators which describe most general polarization properties of fermionic sector for all n-dimensional quantum field theories incorporating fermions with both degenerate and nondegenerate fermion mass spectrum. The analysis of the vector and axial-vector Ward identities and the reduction ones for regular values of these quantities is carried out. The effective formulae for nontrivial quantum corrections (NQC) to the canonical Ward identities are obtained for any space-time dimension. The properties of the NQC are investigated in detail. The emphasis on the space-time dimension and the signature dependence has been made. Particular properties of the two-dimensional words are pointed out

  14. Fermion families and vacuum in the two measures theory

    International Nuclear Information System (INIS)

    Guendelman, E.; Kaganovich, A.

    2005-01-01

    We present an alternative gravity and matter fields theory where the consistency condition of equations of motion yields strong correlation between states of 'primordial' fermion fields and local value of the scalar fields (dilaton and Higgs) energy density. The same 'primordial' fermion field at different densities can be either in states of regular fermionic matter or in states presumably corresponding to the dark fermionic matter. In regime of the fermion densities typical for normal particle physics, each of the primordial fermions splits into three generations identified with regular fermions. When restricting ourselves to the first two fermion generations, the theory reproduces general relativity and regular particle theory. As fermion energy density is comparable with vacuum energy density, the theory allows new type of states. Such Cosmo-Low Energy Physics (CLEP) state is studied in the framework of the model where FRW universe filled with homogeneous scalar field and uniformly distributed nonrelativistic neutrinos. Neutrinos in CLEP state are drawn into cosmological expansion by means of dynamically changing their own parameters. Some of the features of the CLEP state in the late time universe: neutrino mass increases as α 3/2 (α = α(t) is the scale factor); its energy density scales as a sort of dark energy and approaches constant as α→∞; this cold dark matter possesses negative pressure and its equation of state approaches that of the cosmological constant as α→∞; the total energy density of such universe is less than it would be in the universe free of fermionic matter at all. The latter means that nonrelativistic neutrinos are able to produce expanding bubbles of the CLEP state playing the role of a true 'cosmological vacuum' surrounded by a 'regular' vacuum. (authors)

  15. On the validity of the Migdal's theorem in heavy fermion systems

    International Nuclear Information System (INIS)

    Wojciechowski, R.J.

    1996-09-01

    The interaction between phonons and electrons in strongly correlated electron systems is investigated in the context of the electron-phonon vertex correction. We preserve characteristic features of heavy fermion systems assuming a high density of states near the Fermi level and a very large effective mass m * . We have calculated the lowest-order vertex correction to the quasi particle-phonon interaction and shown that there is no Migdal's theorem for heavy fermion systems. (author). 12 refs, 1 fig

  16. Composite antisymmetric tensor bosons in a four-fermion interaction model

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2000-01-01

    We discuss the phenomenological consequences of the U A (1) symmetry-breaking two-flavour four-fermion antisymmetric (AS) Lorentz tensor interaction Lagrangians. We use the recently developed methods that respect the 'duality' symmetry of this interaction. Starting from the Fierz transform of the two-flavour 't Hooft interaction (a four-fermion Lagrangian with AS tensor interaction terms augmented by Nambu and Jona-Lasinio (NJL)-type Lorentz scalar interaction responsible for dynamical symmetry breaking and quark mass generation), we find the following. (a) Four antisymmetric tensor and four AS pseudotensor bosons exist which satisfy a mass relation previously derived for scalar and pseudoscalar mesons from the 't Hooft interaction. (b) Antisymmetric tensor bosons mix with vector bosons via one-fermion-loop effective couplings so that both kinds of bosons have their masses shifted and the fermions (quarks) acquire anomalous magnetic moment form factors that explicitly violate chiral symmetry. (c) The mixing of massive AS tensor fields with vector fields leads to two sets of spin-1 states. The second set of spin-1 mesons is heavy and has not been observed. Moreover, at least one member of this second set is tachyonic, under standard assumptions about the source and strength of the AS tensor interaction. The tachyonic state also shows up as a pole in the space-like region of the electromagnetic form factors. (d) The mixing of axial-vector fields with antisymmetric tensor bosons is proportional to the (small) isospin-breaking up-down quark mass difference, so the mixing-induced mass shift is negligible. (e) The AS tensor version of the Veneziano-Witten U A (1) symmetry-breaking interaction does not lead to tachyons, or any AS tensor field propagation to leading order in N C . (author)

  17. Protonium spectrosopy and identification of P-wave and S-wave initial states of p-p annihilations at rest with the ASTERIX experiment at LEAR

    International Nuclear Information System (INIS)

    Gastaldi, U.; Ahmad, S.; Amsler, C.

    1984-01-01

    This chapter discusses an experiment designed to study the general features of p - p interactions at rest, to extend work done in the spectroscopy of light mesons produced in p - p annihilations at rest, and to search with high sensitivity for gluonium, qq - qq baryonium structures and NN states bound by strong interactions. The effect of using a gas target and a large acceptance X-ray detector is examined. The rate and the signature of antiprotons stopping in the gas target are investigated. Topics covered include the protonium cascade and spectroscopy; a comparison of S-wave and P-wave p - p annihilations at rest; - p stop and the formation of p - p atoms; the x-ray detector (projection chamber, electronics, tests); and examples of estimations of signal and background (protonium spectroscopy, search of resonances in P-wave annihilations, search of resonances in S-wave annihilations). The distinctive features of the ASTERIX experiment are the use of a gaseous H 2 target instead of a conventional liquid H 2 one; an X-ray detector of large overall detection efficiency, low energy threshold and low background rate that enables identification of P-wave and S-wave annihilation events from 2P and 1S levels of protonium; a detection system for the products of p - p annihilations; and a trigger system that enables filtration of the acquisition of events by means of two independent chains of processors working in parallel

  18. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization ...

  19. The Fermion boson interaction within the linear sigma model at finite temperature

    International Nuclear Information System (INIS)

    Caldas, H.C.G.

    2000-01-01

    We study the interaction of massless bosons at finite temperature. Specifically, we calculate the self-energy of massless fermions due to interaction with massless bosons at high temperature, which is the region where thermal effects are maximal. The calculations are concentrated in the limit of vanishing fermion three momentum and after considering the effective boson dressed mass, we obtain the damping rate of the fermion. It is shown that in the limit k O 2 T + g 3 T. (author)

  20. The effect of instanton-induced interaction on P-wave meson spectra ...

    Indian Academy of Sciences (India)

    possible to reproduce the observed spectra as the tensor and spin-orbit terms of. OGEP are attractive, and hence naturally triplet states masses will be lower than the corresponding singlet states. Hence, to reproduce the full P-wave spectra it is essential to include the hyperfine interaction term of III to have a consistent. 76.

  1. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    Science.gov (United States)

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  2. The realization of Majorana fermions in Kitaev Quantum Spin Lattice

    Science.gov (United States)

    Do, Seung-Hwan; Park, Sang-Youn; Yoshitake, Junki; Nasu, Joji; Motome, Yukitoshi; Kwon, Y. S.; Adroja, D. T.; Voneshen, D.; Park, J.-H.; Choi, Kwang-Yong; Ji, Sungdae

    The Kitaev honeycomb lattice is envisioned as an ideal host for Majorana fermions that are created out of the spin liquid background. Combining specific heat and neutron scattering experiments with theoretical calculations, here, we establish a hitherto unparalleled spin fractionalization to two species of Majorana fermions in the Kitaev material α-RuCl3. The specific heat data unveil a two-stage release of magnetic entropy by (R/2)ln2 and the T-linear dependence at intermediate temperatures. Our inelastic neutron scattering measurements further corroborate two distinct characters of fractionalized excitations: an Y-like, dispersive, magnetic continuum at higher energies and a dispersionless excitation at low energies around the Brillouin zone center. These dual features are well described by a Ferromagnetic Kitaev model, providing a smoking gun proof of the itinerant and localized Majorana fermions emergent in Kitaev magnets.

  3. Fundamental theories of waves and particles formulated without classical mass

    Science.gov (United States)

    Fry, J. L.; Musielak, Z. E.

    2010-12-01

    Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called 'wave mass', which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.

  4. Dirac Fermions in an Antiferromagnetic Semimetal

    Science.gov (United States)

    Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng; Shou-Cheng Zhang's Group Team, Prof.

    Analogues of the elementary particles have been extensively searched for in condensed matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low energy excitations in materials now known as Dirac semimetals. All the currently known Dirac semimetals are nonmagnetic with both time-reversal symmetry  and inversion symmetry "". Here we show that Dirac fermions can exist in one type of antiferromagnetic systems, where both  and "" are broken but their combination "" is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyze the robustness of the Dirac points under symmetry protections, and demonstrate its distinctive bulk dispersions as well as the corresponding surface states by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism. We acknowledge the DOE, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under contract DE-AC02-76SF00515, NSF under Grant No.DMR-1305677 and FAME, one of six centers of STARnet.

  5. Lattice degeneracies of fermions

    International Nuclear Information System (INIS)

    Raszillier, H.

    1983-10-01

    We present a detailed description of the minimal degeneracies of geometric (Kaehler) fermions on all the lattices of maximal symmetries in n = 1, ..., 4 dimensions. We also determine the isolated orbits of the maximal symmetry groups, which are related to the minimal numbers of ''naive'' fermions on the reciprocals of these lattices. It turns out that on the self-reciprocal lattices the minimal numbers of naive fermions are equal to the minimal numbers of degrees of freedom of geometric fermions. The description we give relies on the close connection of the maximal lattice symmetry groups with (affine) Weyl groups of root systems of (semi-) simple Lie algebras. (orig.)

  6. Cost of QCD simulations with nf = 2 dynamical Wilson fermions

    International Nuclear Information System (INIS)

    Lippert, Th.

    2002-01-01

    Cost estimates for simulations of full QCD with n f = 2 Wilson fermions by hybrid Monte Carlo are presented. The extrapolations are based on the average number of iterations, N it , of the iterative solver within the fermionic part of the HMC molecular dynamics, which is closely related to the minimal eigenvalue of M † M. The cost formula is determined as a product of the scaling functions of iterative solver and integrated autocorrelation time of 1/N it as function of the inverse lattice pseudoscalar mass. Timings by SESAM/TχL allow to fix the pre-factor. It is demonstrated that a 2-flavor dynamical determination of light hadron masses with a statistical precision comparable to the corresponding quenched results from CP-PACS is the appropriate task for a 100 Tflops system

  7. Thermodynamics of lattice QCD with massless quarks and chiral 4-fermion interactions

    International Nuclear Information System (INIS)

    Kogut, J. B.

    1998-01-01

    N f = 2 lattice QCD with massless quarks and a weak 4-fermion interaction appears to have the expected second order transition, at least for N t ≥ 6. More work is needed to clarify the N t = 4 case. With more statistics the N t = 6 simulations should produce an accurate determination of the critical exponent β m . Moving to finite mass at β = β c should allow an accurate determination of σ. Hadronic screening masses need further analysis. Other order parameters remain to be analyzed. Unfortunately, there is no obvious way to include 4-fermion interactions with full SU(2) x SU(2) chiral flavor symmetry

  8. Arbitrary spin fermions on the lattice

    International Nuclear Information System (INIS)

    Bullinaria, J.A.

    1985-01-01

    Lattice actions are constructed for free Dirac and Majorana fermions of arbitrary (half-integer) spin various extensions of the spin 1/2 Kogut-Susskind, Kaehler and Wilson formalisms. In each case, the spectrum degeneracy and preservation of gauge invariance is analysed, and the equivalence or non-equivalence to previously constructed actions is determined. The Kogut-Susskind and lattice Kaehler actions are then written explicitly in terms of spinors to demonstrate how the degenerate fermions couple on the lattice and how the original spinorial actions are recovered (or to recovered) in the continuum limit. Both degenerate and non-degenerate mass terms are dealt with and the various U(1) invariances of the lattice actions are pointed out

  9. Chirally improving Wilson fermions I. O(a) improvement

    International Nuclear Information System (INIS)

    Frezzotti, R.; Rossi, G.C.

    2004-01-01

    We show that it is possible to improve the chiral behaviour and the approach to the continuum limit of correlation functions in lattice QCD with Wilson fermions by taking arithmetic averages of correlators computed in theories regularized with Wilson terms of opposite sign. Improved hadronic masses and matrix elements can be obtained by similarly averaging the corresponding physical quantities separately computed within the two regularizations. To deal with the problems related to the spectrum of the Wilson-Dirac operator, which are particularly worrisome when Wilson and mass terms are such as to give contributions of opposite sign to the real part of the eigenvalues, we propose to use twisted-mass lattice QCD for the actual computation of the quantities taking part to the averages. The choice ±π/2 for the twisting angle is particularly interesting, as O(a) improved estimates of physical quantities can be obtained even without averaging data from lattice formulations with opposite Wilson terms. In all cases little or no extra computing power is necessary, compared to simulations with standard Wilson fermions or twisted-mass lattice QCD. (author)

  10. Remarks on Fermion-Boson equivalence in three dimensions

    International Nuclear Information System (INIS)

    Dutra, A. de Souza; Natividade, C.P.

    1998-06-01

    Starting from a decomposition of the self-dual field in (2+1) dimensions, we build up an alternative quantum theory which consists of a self-dual model coupled to a Maxwell-generalized Chern-Simons theory. We discuss the fermion-boson equivalence of this quantum theory by comparing it to the Thirring model. Using these results we were able to compute the mass of the bosonized fermions up to third order in (1/m). Some problems related to the number of poles of the effective propagator are also addressed. (author)

  11. Remarks on Fermion-Boson equivalence in three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, A de Souza [UNESP, Guaratingueta, SP (Brazil); Natividade, C P [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica

    1998-06-01

    Starting from a decomposition of the self-dual field in (2+1) dimensions, we build up an alternative quantum theory which consists of a self-dual model coupled to a Maxwell-generalized Chern-Simons theory. We discuss the fermion-boson equivalence of this quantum theory by comparing it to the Thirring model. Using these results we were able to compute the mass of the bosonized fermions up to third order in (1/m). Some problems related to the number of poles of the effective propagator are also addressed. (author) 13 refs.

  12. Localized bound states of fermions interacting via massive vector bosons

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Reinhardt, J.; Mueller, B.; Greiner, W.; Soff, G.

    1988-11-01

    A model for composite consisting of fermions with internal degrees of freedom interacting via intermediate vector bosons (IVB) is constructed. We find highly localized, low-mass bound states in the Hartree-Fock approximation. We investigate the dependence of these states as function of the coupling constant and vector boson mass. In the limit of infinite vector boson mass the interaction is described by Fermi-type contact forces. (orig.)

  13. Superfluid response in heavy fermion superconductors

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  14. Implication of sterile fermions in particle physics and cosmology

    International Nuclear Information System (INIS)

    Lucente, M.

    2015-01-01

    The Ph.D. thesis work summarised in this manuscript was dedicated to studying several aspects of the phenomenology of Standard Model (SM) extensions by sterile fermions, in particular their impact for particle and astro-particle physics. An important part of the work is dedicated to a class of SM extensions which allow to explain the smallness of the observed neutrino masses (as well as their mixings) by linking them to the breaking of total lepton number, in the framework of the so-called Inverse seesaw mechanism (ISS). The work described in the thesis addresses the role of these sterile states in providing a satisfactory explanation to 3 open observational problems of the SM: the generation of neutrino masses and mixings, a viable dark matter candidate, and the dynamical generation of the baryon asymmetry of the Universe. We identified the minimal ISS realisation accounting for the observed neutrino data while at the same time complying with all available experimental and observational constraints. This study was based on a perturbative approach to the diagonalization of the neutrino mass matrix, which allowed to identify the number of states associated with the different mass scales. Our study revealed that, depending on the number of additional sterile fermion fields, the ISS can accommodate both a 3-flavour mixing scheme and a 3+more mixing scheme. The potential role of these sterile states as dark matter (DM) candidates led us to carry a dedicated study of the viability of the sterile fermion dark matter hypothesis in a minimal ISS realisation (in which the SM is extended by 2 right-handed neutrinos and 3 additional sterile fermion fields). The degeneracy in the sterile neutrino mass spectrum - which is characteristic of low scale seesaw models with approximate lepton number conservation - can play a relevant role in cosmology, since it allows us to explain the observed baryon asymmetry of the Universe via lepto-genesis. We identified different lepton number

  15. Coulomb’s law corrections and fermion field localization in a tachyonic de Sitter thick braneworld

    International Nuclear Information System (INIS)

    Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel; Herrera-Aguilar, Alfredo; Mora-Luna, Refugio Rigel

    2016-01-01

    Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally

  16. Coulomb’s law corrections and fermion field localization in a tachyonic de Sitter thick braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Cartas-Fuentevilla, Roberto; Escalante, Alberto [Instituto de Física, Benemérita Universidad Autónoma de Puebla,Apdo. postal J-48, 72570 Puebla, Pue. (Mexico); Germán, Gabriel [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road,Oxford, OX1 3NP (United Kingdom); Herrera-Aguilar, Alfredo [Instituto de Física, Benemérita Universidad Autónoma de Puebla,Apdo. postal J-48, 72570 Puebla, Pue. (Mexico); Institutode Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Mora-Luna, Refugio Rigel [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2016-05-11

    Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally

  17. Monotop signature from a fermionic top partner

    Science.gov (United States)

    Gonçalves, Dorival; Kong, Kyoungchul; Sakurai, Kazuki; Takeuchi, Michihisa

    2018-01-01

    We investigate monotop signatures arising from phenomenological models of fermionic top partners, which are degenerate in mass and decay into a bosonic dark matter candidate, either spin 0 or spin 1. Such a model provides a monotop signature as a smoking gun, while conventional searches with t t ¯ + missing transverse momentum are limited. Two such scenarios, (i) a phenomenological third generation extradimensional model with excited top and electroweak sectors, and (ii) a model where only a top partner and a dark matter particle are added to the standard model, are studied in the degenerate mass regime. We find that in the case of extra dimension a number of different processes give rise to effectively the same monotop final state, and a great gain can be obtained in the sensitivity for this channel. We show that the monotop search can explore top-partner masses up to 630 and 300 GeV for the third generation extradimensional model and the minimal fermionic top-partner model, respectively, at the high luminosity LHC.

  18. Why is the top-quark much heavier than other fermions?

    International Nuclear Information System (INIS)

    Xue, She-Sheng

    2013-01-01

    The recent ATLAS and CMS experiments show the first observations of a new particle in the search for the Standard Model Higgs boson at the LHC. We revisit the theoretical inconsistency of the fundamental high-energy cutoff with the parity-violating gauge symmetry of local quantum field theory for the Standard Model. This inconsistency suggests high-dimensional operators of fermion interactions, which are attributed to the quantum gravity. In this Letter, recalling the minimal dynamical symmetry breaking mechanism, we show that it is energetically favorable for the top-quark to acquire its mass via spontaneous symmetry breaking, whereas other fermions acquire their masses via explicit symmetry breaking

  19. Earthquake early warning using P-waves that appear after initial S-waves

    Science.gov (United States)

    Kodera, Y.

    2017-12-01

    As measures for underprediction for large earthquakes with finite faults and overprediction for multiple simultaneous earthquakes, Hoshiba (2013), Hoshiba and Aoki (2015), and Kodera et al. (2016) proposed earthquake early warning (EEW) methods that directly predict ground motion by computing the wave propagation of observed ground motion. These methods are expected to predict ground motion with a high accuracy even for complicated scenarios because these methods do not need source parameter estimation. On the other hand, there is room for improvement in their rapidity because they predict strong motion prediction mainly based on the observation of S-waves and do not explicitly use P-wave information available before the S-waves. In this research, we propose a real-time P-wave detector to incorporate P-wave information into these wavefield-estimation approaches. P-waves within a few seconds from the P-onsets are commonly used in many existing EEW methods. In addition, we focus on P-waves that may appear in the later part of seismic waves. Kurahashi and Irikura (2013) mentioned that P-waves radiated from strong motion generation areas (SMGAs) were recognizable after S-waves of the initial rupture point in the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0) (the Tohoku-oki earthquake). Detecting these P-waves would enhance the rapidity of prediction for the peak ground motion generated by SMGAs. We constructed a real-time P-wave detector that uses a polarity analysis. Using acceleration records in boreholes of KiK-net (band-pass filtered around 0.5-10 Hz with site amplification correction), the P-wave detector performed the principal component analysis with a sliding window of 4 s and calculated P-filter values (e.g. Ross and Ben-Zion, 2014). The application to the Tohoku-oki earthquake (Mw 9.0) showed that (1) peaks of P-filter that corresponded to SMGAs appeared in several stations located near SMGAs and (2) real-time seismic intensities (Kunugi et al

  20. Wilson fermions at finite temperature

    International Nuclear Information System (INIS)

    Creutz, M.

    1996-01-01

    The author conjectures on the phase structure expected for lattice gauge theory with two flavors of Wilson fermions, concentrating on large values of the hopping parameter. Numerous phases are expected, including the conventional confinement and deconfinement phases, as well as an Aoki phase with spontaneous breaking of flavor and parity and a large hopping phase corresponding to negative quark masses

  1. Fractional fermions

    International Nuclear Information System (INIS)

    Jackiw, R.; Massachusetts Inst. of Tech., Cambridge; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    The theory of fermion fractionization due to topologically generated fermion ground states is presented. Applications to one-dimensional conductors, to the MIT bag, and to the Hall effect are reviewed. (author)

  2. Resonating-valence-bond superconductors with fermionic projected entangled pair states

    NARCIS (Netherlands)

    Poilblanc, D.; Corboz, P.; Schuch, N.; Cirac, J.I.

    2014-01-01

    We construct a family of simple fermionic projected entangled pair states (fPEPS) on the square lattice with bond dimension D=3 which are exactly hole-doped resonating valence bond (RVB) wave functions with short-range singlet bonds. Under doping the insulating RVB spin liquid evolves immediately

  3. The comparison of bosonic and fermionic descriptions of collective nuclear structure

    International Nuclear Information System (INIS)

    Baktybaev, K.

    2004-01-01

    Full text: Bosonic and fermionic descriptions for the nuclear many body system are complementary. The archetypical bosonic algebra is the original interacting boson model [1]. Without distinguishing between proton and neutron bosons, it gave rise to successful phenomenology for medium and heavy nuclei, and is built from the concept of dynamical symmetry whose genesis is a group chain. The fermionic algebra on the other hand, such as the fermion dynamical symmetry model (FDSM) [2], is necessarily more complex because it originates from the shell structure and uses protons and neutrons as building blocks. We have presented two complementary pictures of bosons and fermions to describe the normal and the exotic states. We find that the bosonic concepts of symmetry and mixed- symmetry can subtly be interpreted within the fermion picture as well. However, there is one important dichotomy. In the fermion description, the n-p quadrupole interaction is responsible for splitting these two type of states and produces strong M1 transitions. This phenomenon is in close analogy to the L-S splitting of orbital and spin spaces. The examples given in the paper show that many 2 + normal and exotic states are in fact 'partners' for n-p quadrupole coupling and there fore must split in its presence. We would like to emphasize that the proper placement of the positions of the exotic states and the prediction of their respective transitions must be another stringent constraint on the effective interactions of the Hamiltonian

  4. Quasiparticle picture of high-temperature superconductors in the frame of a Fermi liquid with the fermion condensate

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M. Ya.; Shaginyan, V. R.

    2001-06-01

    A model of a Fermi liquid with the fermion condensate (FC) is applied to the consideration of quasiparticle excitations in high-temperature superconductors, in their superconducting and normal states. Within our model the appearance of the fermion condensate presents a quantum phase transition that separates the regions of normal and strongly correlated electron liquids. Beyond the phase transition point the quasiparticle system is divided into two subsystems, one containing normal quasiparticles and the other{emdash}fermion condensate localized at the Fermi surface and characterized by almost dispersionless single-particle excitations. In the superconducting state the quasiparticle dispersion in systems with FC can be presented by two straight lines, characterized by effective masses M{sub FC}{sup *} and M{sub L}{sup *}, respectively, and intersecting near the binding energy, which is of the order of the superconducting gap. This same quasiparticle picture persists in the normal state, thus manifesting itself over a wide range of temperatures as new energy scales. Arguments are presented that fermion systems with FC have features of a {open_quotes}quantum protectorate{close_quotes} [R. B. Laughlin and D. Pines, Proc. Natl. Acad. Sci. U.S.A. >97, 28 (2000); P. W. Anderson, cond-mat/0007185 (unpublished); cond-mat/0007287 (unpublished)].

  5. Charm physics with physical light and strange quarks using domain wall fermions

    CERN Document Server

    Boyle, Peter A; Garron, Nicolas; Khamseh, Ava; Marinkovic, Marina; Sanfilippo, Francesco; Tsang, Justus Tobias; Boyle, Peter A.

    2015-01-01

    We present a study of charm physics using RBC/UKQCD 2+1 flavour physical point domain wall fermion ensembles for the light quarks as well as for the valence charm quark. After a brief motivation of domain wall fermions as a suitable heavy quark discretisation we will show first results for masses and matrix elements.

  6. Surface states of a system of Dirac fermions: A minimal model

    International Nuclear Information System (INIS)

    Volkov, V. A.; Enaldiev, V. V.

    2016-01-01

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  7. Surface states of a system of Dirac fermions: A minimal model

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, V. A., E-mail: volkov.v.a@gmail.com; Enaldiev, V. V. [Russian Academy of Sciences, Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)

    2016-03-15

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  8. The Fermi-LAT gamma-ray excess at the Galactic Center in the singlet-doublet fermion dark matter model

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Shunsaku; Macias, Oscar [Center for Neutrino Physics, Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Restrepo, Diego; Rivera, Andrés; Zapata, Oscar [Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, Medellín (Colombia); Silverwood, Hamish, E-mail: horiuchi@vt.edu, E-mail: oscar.macias@vt.edu, E-mail: restrepo@udea.edu.co, E-mail: afelipe.rivera@udea.edu.co, E-mail: oalberto.zapata@udea.edu.co, E-mail: h.g.m.silverwood@uva.nl [GRAPPA, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands)

    2016-03-01

    The singlet-doublet fermion dark matter model (SDFDM) provides a good DM candidate as well as the possibility of generating neutrino masses radiatively. The search and identification of DM requires the combined effort of both indirect and direct DM detection experiments in addition to the LHC. Remarkably, an excess of GeV gamma rays from the Galactic Center (GCE) has been measured with the Fermi Large Area Telescope (LAT) which appears to be robust with respect to changes in the diffuse galactic background modeling. Although several astrophysical explanations have been proposed, DM remains a simple and well motivated alternative. In this work, we examine the sensitivities of dark matter searches in the SDFDM scenario using Fermi-LAT, CTA, IceCube/DeepCore, LUX, PICO and LHC with an emphasis on exploring the regions of the parameter space that can account for the GCE. We find that DM particles present in this model with masses close to ∼ 99 GeV and ∼ (173–190) GeV annihilating predominantly into the W{sup +}W{sup −} channel and t t-bar channel respectively, provide an acceptable fit to the GCE while being consistent with different current experimental bounds. We also find that much of the obtained parameter space can be ruled out by future direct search experiments like LZ and XENON-1T, in case of null results by these detectors. Interestingly, we show that the most recent data by LUX is starting to probe the best fit region in the SDFDM model.

  9. Four-fermion interaction near four dimensions

    International Nuclear Information System (INIS)

    Zinn-Justin, J.

    1991-01-01

    A large class of models with four-fermion interactions is known to be renormalizable and asymptotically free in two dimensions. It has been noticed very early, in the example of the U(N)-invariant Gross-Neveu model and within the framework of the 1/N expansion, that then these models behave also like renormalizable models in higher dimensions. Some of them are thus natural candidates for composite models of scalar particles like for example the Higgs boson. An important question, however, has to be answered: Are these models more predictive, in four dimensions, than the effective models containing the bosons explicitly? We shall show here that, like for the non-linear σ-model which has been investigated earlier, the answer, at least in some perturbative sense, is negative for a large class of models. The reason can be easily understood: These models are more short-distance sensitive than normal renormalizable models. The new parameters are hidden in the cut-off procedure. In particular in some models the fermions receive masses by spontaneous chiral symmetry breaking. The property that ratio of fermion and boson masses can be predicted is simply a consequence of the IR freedom of both type of models and the natural assumption that coupling constants have generic values at the cut-off scale. We shall consider in this article for definiteness the Gross-Neveu model but it will be clear that the arguments are rather general. (orig.)

  10. Mass terms in effective theories of high density quark matter

    Science.gov (United States)

    Schäfer, T.

    2002-04-01

    We study the structure of mass terms in the effective theory for quasiparticles in QCD at high baryon density. To next-to-leading order in the 1/pF expansion we find two types of mass terms: chirality conserving two-fermion operators and chirality violating four-fermion operators. In the effective chiral theory for Goldstone modes in the color-flavor-locked (CFL) phase the former terms correspond to effective chemical potentials, while the latter lead to Lorentz invariant mass terms. We compute the masses of Goldstone bosons in the CFL phase, confirming earlier results by Son and Stephanov as well as Bedaque and Schäfer. We show that to leading order in the coupling constant g there is no antiparticle gap contribution to the mass of Goldstone modes, and that our results are independent of the choice of gauge.

  11. Boson and fermion degrees of freedom in the orthosymplectic extension of the IVBM: Odd-odd nuclear spectra

    International Nuclear Information System (INIS)

    Ganev, H. G.; Georgieva, A. I.

    2008-01-01

    The dynamical symmetry group Sp(12, R) of the Interacting Vector Boson Model (IVBM) is extended to the orthosymplectic group OSp(2Ω/12, R) in order to incorporate fermion degrees of freedom. The structure of even-even nuclei is used as a core on which the collective excitations of the neighboring odd-mass and odd-odd nuclei are build on. Hence, the spectra of odd-mass and odd-odd nuclei arise as a result of the coupling of the fermion degrees of freedom, specified by the fermion sector SOF (2Ω) to the boson core, whose states belong to an Sp(12, R) irreducible representation. The orthosymplectic dynamical symmetry is applied for the simultaneous description of the spectra of some neighboring nuclei from rare earth region. The theoretical predictions for different low-lying collective bands with positive and negative parity are compared with the experiment. The obtained results reveal the applicability of the model and its boson-fermion extension.

  12. Weyl-van der Waerden spinor technic for spin-3/2 fermions

    International Nuclear Information System (INIS)

    Novaes, S.F.; Spehler, D.

    1991-09-01

    We use the Weyl-van der Waerden spinor technic to construct helicity wave functions for massless and massive spin-3/2 fermions. We apply our formalism to evaluate helicity amplitudes taking into account some phenomenological couplings involving these particles. (author)

  13. Studies of heavy fermion systems: Progress report, July 1, 1986-December 31, 1987

    International Nuclear Information System (INIS)

    Stewart, G.R.

    1987-08-01

    Studies of the resistivity, susceptibility, and specific heat of the new heavy fermion system UPt/sub 5-x/Au/sub x/ have shown: (1) the high effective mass, m*, can be varied by almost an order of magnitude by varying x near x = 1; and (2) the occurrence of high m* in this system and (presumably) in heavy fermion systems in general is typified by a nearness to magnetic instability. High field (24 T) specific heat studies of CeCu 6 show a total suppression of the low temperature heavy fermion ground state by magnetic field, in direct contradiction of present non-interacting ''Kondo lattice'' theory

  14. Multi-boson block factorization of fermions

    Science.gov (United States)

    Giusti, Leonardo; Cè, Marco; Schaefer, Stefan

    2018-03-01

    The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g - 2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will review a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the gauge field and in the auxiliary boson fields. Once combined with the corresponding factorization of the quark propagator, it paves the way for multi-level Monte Carlo integration in the presence of fermions opening new perspectives in lattice QCD. Exploratory results on the impact on the above mentioned observables will be presented.

  15. Fermionic cosmologies

    International Nuclear Information System (INIS)

    Chimento, L P; Forte, M; Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L

    2011-01-01

    In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.

  16. Fermionic One-Way Quantum Computation

    International Nuclear Information System (INIS)

    Cao Xin; Shang Yun

    2014-01-01

    Fermions, as another major class of quantum particles, could be taken as carriers for quantum information processing beyond spins or bosons. In this work, we consider the fermionic generalization of the one-way quantum computation model and find that one-way quantum computation can also be simulated with fermions. In detail, using the n → 2n encoding scheme from a spin system to a fermion system, we introduce the fermionic cluster state, then the universal computing power with a fermionic cluster state is demonstrated explicitly. Furthermore, we show that the fermionic cluster state can be created only by measurements on at most four modes with |+〉 f (fermionic Bell state) being free

  17. Resonance scattering of Rayleigh waves by a mass defect

    International Nuclear Information System (INIS)

    Croitoru, M.; Grecu, D.

    1978-06-01

    The resonance scattering of an incident Rayleigh wave by a mass defect extending over a small cylindrical region situated in the surface of a semi-infinite isotropic, elastic medium is investigated by means of the Green's function method. The form of the differential cross-section for the scattering into different channels exhibits a strong resonance phenomenon at two frequencies. The expression of the resonance frequencies as well as of the corresponding widths depends on the relative change in mass density. The main assumption that the wavelengths of incoming and scattered wave are large compared to the defect dimension implies a large relative mass-density change. (author)

  18. Surmounting the sign problem in nonrelativistic calculations: A case study with mass-imbalanced fermions

    Science.gov (United States)

    Rammelmüller, Lukas; Porter, William J.; Drut, Joaquín E.; Braun, Jens

    2017-11-01

    The calculation of the ground state and thermodynamics of mass-imbalanced Fermi systems is a challenging many-body problem. Even in one spatial dimension, analytic solutions are limited to special configurations and numerical progress with standard Monte Carlo approaches is hindered by the sign problem. The focus of the present work is on the further development of methods to study imbalanced systems in a fully nonperturbative fashion. We report our calculations of the ground-state energy of mass-imbalanced fermions using two different approaches which are also very popular in the context of the theory of the strong interaction (quantum chromodynamics, QCD): (a) the hybrid Monte Carlo algorithm with imaginary mass imbalance, followed by an analytic continuation to the real axis; and (b) the complex Langevin algorithm. We cover a range of on-site interaction strengths that includes strongly attractive as well as strongly repulsive cases which we verify with nonperturbative renormalization group methods and perturbation theory. Our findings indicate that, for strong repulsive couplings, the energy starts to flatten out, implying interesting consequences for short-range and high-frequency correlation functions. Overall, our results clearly indicate that the complex Langevin approach is very versatile and works very well for imbalanced Fermi gases with both attractive and repulsive interactions.

  19. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  20. Analytic operator approach to fermionic lattice field theories

    International Nuclear Information System (INIS)

    Duncan, A.

    1985-01-01

    An analytic Lanczos algorithm previously used to extract the spectrum of bosonic lattice field theories in the continuum region is extended to theories with fermions. The method is illustrated in detail for the (1+1)-dimensional Gross-Neveu model. All parameters in the model (coupling, lattice size N, number of fermion flavors Nsub(F), etc.) appear explicitly in analytic formulas for matrix elements of the hamiltonian. The method is applied to the calculation of the collective field vacuum expectation value and the mass gap, and excellent agreement obtained with explicit results available from the large Nsub(F) solution of the model. (orig.)

  1. The subgroup structure of grand unified theories with application to the fermion mass matrix in 0(10)

    International Nuclear Information System (INIS)

    Feldman, G.; Fulton, T.

    1982-01-01

    A technique, using the orthonormal basis for roots and weights of compact Lie groups, introduced by Van der Waerden and developed by Dynkin (Am. Math. Soc. Transl.; 17: (1950) and Sec 2,6:111 (1957)) provides a convenient framework for discussing mass relations in grand unification theories. The structure constants Nsub(αβ) for SU(R + 1), O(2R + 1), Sp(2R), O(2R) and G(2) are obtained in an appendix, using an approach arising from this basis. The method for obtaining generators of non-regular subalgebras, in terms of generators of the original algebras, is discussed in terms of the basis. It is necessary to know this structure in order to trace the history of particles, originally in some grand unification group, through the various chains of decompositions into subgroups. As an illustration, the methods are applied to finding the minimal, non-trivial, mass relations for fermions in the O(10) grand unification scheme. (author)

  2. Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium

    Science.gov (United States)

    Zhu, Ruilin

    2018-06-01

    We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.

  3. The electric dipole moment of the neutron from N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C.; Athenodorou, A.; Constantinou, M. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; George Washington Univ., Washington, DC (United States). Dept. of Physics; Jansen, K. [DESY Zeuthen (Germany). NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics; Petschlies, M. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics

    2015-11-15

    We extract the neutron electric dipole moment (nEDM) vertical stroke vector d{sub n} vertical stroke on configurations produced with N{sub f}=2+1+1 twisted mass fermions with lattice spacing of a ≅0.082 fm and a light quark mass that corresponds to M{sub π} ≅ 373 MeV. We do so by evaluating the CP-odd form factor F{sub 3} for small values of the CP-violation parameter θ in the limit of zero momentum transfer. This limit is extracted using the usual parametrization but in addition position space methods. The topological charge is computed via cooling and gradient flow using the Wilson, Symanzik tree-level improved and Iwasaki actions for smoothing. We obtain consistent results for all choices of smoothing procedures and methods to extract F{sub 3} at zero momentum transfer. For the ensemble analyzed we find a value of nEDM of vertical stroke vector d{sub n} vertical stroke /θ=0.045(6)(1) e.fm.

  4. Greybody factors of massive charged fermionic fields in a charged two-dimensional dilatonic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-02-01

    We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)

  5. Can the couplings in the fermion-Higgs sector of the standard model be strong?

    International Nuclear Information System (INIS)

    Bock, W.; Frick, C.; Smit, J.; Vink, J.C.

    1993-01-01

    We present results for the renormalized quartic self-coupling λ R and the Yukawa coupling y R in a lattice fermion-Higgs model with two SU(2) L doublets, mostly for large values of the bare couplings. One-component ('reduced') staggered fermions are used in a numerical simulation with the Hybrid Monte Carlo algorithm. The fermion and Higgs masses and the renormalized scalar field expectation value are computed on L 3 24 lattices where L ranges from 6 to 16. In the scaling region these quantities are found to have a 1/L 2 dependence, which is used to determine their values in the infinite-volume limit. We then calculate the y R and λ R from their tree-level definitions in terms of the masses and renormalized scalar field expectation value, extrapolated to infinite volume. The scalar field propagators can be described momenta up to the cut-off by one-fermion-loop renormalized perturbation theory and the results for λ R and y R come out to be close to the tree-level unitarity bounds. There are no signs that are in contradiction with the triviality of the Yukawa and quartic self-coupling. (orig.)

  6. Holographic Fermions in Anisotropic Einstein-Maxwell-Dilaton-Axion Theory

    International Nuclear Information System (INIS)

    Kuang, Xiao-Mei; Fang, Li-Qing

    2015-01-01

    We investigate the properties of the holographic Fermionic system dual to an anisotropic charged black brane bulk in Einstein-Maxwell-Dilaton-Axion gravity theory. We consider the minimal coupling between the Dirac field and the gauge field in the bulk gravity theory and mainly explore the dispersion relation exponents of the Green functions of the dual Fermionic operators in the dual field theory. We find that along both the anisotropic and the isotropic directions the Fermi momentum will be effected by the anisotropy of the bulk theory. However, the anisotropy has influence on the dispersion relation which is almost linear for massless Fermions with charge q=2. The universal properties that the mass and the charge of the Fermi possibly correspond to nonlinear dispersion relation are also investigated

  7. Masses in the Weinberg-Salam model

    International Nuclear Information System (INIS)

    Flores, F.A.

    1984-01-01

    This thesis is a detailed discussion of the currently existing limits on the masses of Higgs scalars and fermions in the Weinberg-Salam model. The spontaneous breaking of the gauge symmetry of the model generates arbitrary masses for Higgs scalars and fermions, which for the known fermions have to be set to their experimentally known values. In this thesis, the authors discuss in detail both the theoretical and experimental constraints on these otherwise arbitrary masses

  8. Shock waves in P-bar target

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed.

  9. Shock waves in P-bar target

    International Nuclear Information System (INIS)

    Tang, Zhijing; Anderson, K.

    1991-11-01

    The deposition of large amount of beam energy in short time will cause high temperature and pressure in the center of P-bar Target, and this disturbance will propagate outwards as a shock wave. Shock wave induced material changes which are of our concern include void growth and accompanying density decrease which will decrease antiproton yield, and crack formation and fracture as was observed in tungsten target which will destroy the integrity of the target. Our objective is to analyze the shock wave behavior in the target, optimize its design so that the destructive effects of shock wave can be minimized, the integrity of the target can be maintained, and a reasonably high yield of antiproton production can be achieved. In this report we put together some results of our analysis of a cylindrical copper target. We hope that it will provide a general overview of the shock wave phenomena in the target, establish a basis for further research, and facilitate the target design. First, energy deposition data are analyzed, and it is justified that as an approximation, the problem can be treated as axi-symmetric. The average data therefore are used as energy profile, however, the maximum energy deposition are still used as the peak value. Next some basic estimations are made as to what temperature and pressure can reach at present level of energy deposition. Then some characteristics of wave propagation in a thermal shock loaded solid are illustrated with a one-dimensional model. Since there is no analytical solution available for cylindrical geometry, our understanding of the problem relies on numerical model, which are performed via finite element package ANSYS. results of numerical analysis are summarized, sources of potential danger are identified, and design ideas to minimize the damage are proposed

  10. Scattering Theory on Surface Majorana Fermions by an Impurity in ^{3}He-B.

    Science.gov (United States)

    Tsutsumi, Yasumasa

    2017-04-07

    We have formulated the scattering theory on Majorana fermions emerging in the surface bound state of the superfluid ^{3}He B phase (^{3}He-B) by an impurity. By applying the theory to the electron bubble, which is regarded as the impurity, trapped below a free surface of ^{3}He-B, the observed mobility of the electron bubble [J. Phys. Soc. Jpn. 82, 124607 (2013)JUPSAU0031-901510.7566/JPSJ.82.124607] is quantitatively reproduced. The mobility is suppressed in low temperatures from the expected value in the bulk ^{3}He-B by the contribution from the surface Majorana fermions. By contrast, the mobility does not depend on the trapped depth of the electron bubble in spite of the spatial variation of the wave function of the surface Majorana fermions. Our formulated theory demonstrates the depth-independent mobility by considering intermediate states in the scattering process. Therefore, we conclude that the experiment has succeeded in observing Majorana fermions in the surface bound state.

  11. Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Haluk Denizli; James Mueller; Steven Dytman; M.L. Leber; R.D. Levine; J. Miles; Kui Kim; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Harutyun Avakian; Hovhannes Baghdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; Steve Barrow; V. Batourine; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Catalina Cetina; Shifeng Chen; Philip Cole; Alan Coleman; Patrick Collins; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Volker Crede; John Cummings; Natalya Dashyan; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Lawrence Dennis; Alexandre Deur; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Laurent Farhi; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; Tony Forest; Valera Frolov; Herbert Funsten; Sally Gaff; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Pascal Girard; Francois-Xavier Girod; John Goetz; Atilla Gonenc; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Kawtar Hafidi; Hayk Hakobyan; Rafael Hakobyan; John Hardie; David Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Jingliang Hu; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; J.H. Kelley; James Kellie; Mahbubul Khandaker; K. Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Mike Klusman; Mikhail Kossov; Laird Kramer; V. Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Kenneth Livingston; Haiyun Lu; K. Lukashin; Marion MacCormick; Joseph Manak; Nikolai Markov; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; M. Moteabbed; Valeria Muccifora; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Steve Nelson; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O' Rielly; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Gerald Peterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Ermanno Polli; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Konstantin Sabourov; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; Jeremiah Shaw; Nikolay Shvedunov; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; Daria Sokhan; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; I.I. Strakovsky; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Kebin Wang; Daniel Watts; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Junho Yun; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao

    2007-07-01

    New cross sections for the reaction $ep \\to e'\\eta p$ are reported for total center of mass energy $W$=1.5--2.3 GeV and invariant squared momentum transfer $Q^2$=0.13--3.3 GeV$^2$. This large kinematic range allows extraction of new information about response functions, photocouplings, and $\\eta N$ coupling strengths of baryon resonances. A sharp structure is seen at $W\\sim$ 1.7 GeV. The shape of the differential cross section is indicative of the presence of a $P$-wave resonance that persists to high $Q^2$. Improved values are derived for the photon coupling amplitude for the $S_{11}$(1535) resonance. The new data greatly expands the $Q^2$ range covered and an interpretation of all data with a consistent parameterization is provided.

  12. Effective mass of the four-flux composite fermion at {nu}=1/4

    Energy Technology Data Exchange (ETDEWEB)

    Pan, W. [Princeton University, Princeton, New Jersey 08544 (United States); National High Magnetic Field Laboratory, Tallahassee, Florida 32310 (United States); Stormer, H. L. [Lucent Technologies, Bell Laboratories, Murray Hill, New Jersey 07974 (United States); Department of Physics and Department of Applied Physics, Columbia University, New York, New York 10027 (United States); Tsui, D. C. [Princeton University, Princeton, New Jersey 08544 (United States); Pfeiffer, L. N. [Lucent Technologies, Bell Laboratories, Murray Hill, New Jersey 07974 (United States); Baldwin, K. W. [Lucent Technologies, Bell Laboratories, Murray Hill, New Jersey 07974 (United States); West, K. W. [Lucent Technologies, Bell Laboratories, Murray Hill, New Jersey 07974 (United States)

    2000-02-15

    We have measured the effective mass (m{sup *}) of the four flux composite fermion at Landau-level filling factor {nu}=1/4 ({sup 4}CF), using the activation energy gaps at the fractional quantum Hall effect states {nu}=2/7, 3/11, and 4/15 and the temperature dependence of the Shubnikov-de Haas (SdH) oscillations around {nu}=1/4. We find that the energy gaps show a linear dependence on the effective magnetic field B{sub eff} ({identical_to}B-B{sub {nu}}{sub =1/4}), and from this linear dependence we obtain m{sup *}=1.0m{sub e} and a disorder broadening {gamma}{approx}1 K for a sample of density n=0.87x10{sup 11} cm{sup -2}. The m{sup *} deduced from the temperature dependence of the SdH effect shows large differences for {nu}>1/4 and {nu}<1/4. For {nu}>1/4, m{sup *}{approx}1.0m{sub e}. It scales as {radical}(B{sub {nu}}) with the mass derived from the data around {nu}=1/2 and shows an increase in m{sup *} as {nu}{yields}1/4, resembling the findings around {nu}=1/2. For {nu}<1/4, m{sup *} increases rapidly with increasing B{sub eff} and can be described by m{sup *}/m{sub e}=-3.3+5.7B{sub eff}. This anomalous dependence on B{sub eff} is precursory to the formation of the insulating phase at still lower filling. (c) 2000 The American Physical Society.

  13. AdS5 black holes with fermionic hair

    International Nuclear Information System (INIS)

    Burrington, Benjamin A.; Liu, James T.; Sabra, W. A.

    2005-01-01

    The study of new Bogomol'nyi-Prasad-Sommerfield (BPS) objects in AdS 5 has led to a deeper understanding of AdS/CFT. To help complete this picture, and to fully explore the consequences of the supersymmetry algebra, it is also important to obtain new solutions with bulk fermions turned on. In this paper we construct superpartners of the 1/2 BPS black hole in AdS 5 using a natural set of fermion zero modes. We demonstrate that these superpartners, carrying fermionic hair, have conserved charges differing from the original bosonic counterpart. To do so, we find the R-charge and dipole moment of the new system, as well as the mass and angular momentum, defined through the boundary stress tensor. The complete set of superpartners fits nicely into a chiral representation of AdS 5 supersymmetry, and the spinning solutions have the expected gyromagnetic ratio, g=1

  14. Nucleon form factors and moments of generalized parton distributions using N{sub f}= 2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Constantinou, M.; Kallidonis, C. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Dinter, S.; Drach, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, K. [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Collaboration: European Twisted Mass Collaboration

    2013-04-15

    We present results on the axial and the electromagnetic form factors of the nucleon, as well as, on the first moments of the nucleon generalized parton distributions using maximally twisted mass fermions. We analyze two N{sub f}=2+1+1 ensembles having pion masses of 210 MeV and 354 MeV at two values of the lattice spacing. The lattice scale is determined using the nucleon mass computed on a total of 18 N{sub f}=2+1+1 ensembles generated at three values of the lattice spacing, a. The renormalization constants are evaluated non-perturbatively with a perturbative subtraction of O(a''2)-terms. The moments of the generalized parton distributions are given in the MS scheme at a scale of {mu}=2 GeV. We compare with recent results obtained using different discretization schemes. The implications on the spin content of the nucleon are also discussed.

  15. The Riemann zeros as energy levels of a Dirac fermion in a potential built from the prime numbers in Rindler spacetime

    International Nuclear Information System (INIS)

    Sierra, Germán

    2014-01-01

    We construct a Hamiltonian H R whose discrete spectrum contains, in a certain limit, the Riemann zeros. H R is derived from the action of a massless Dirac fermion living in a domain of Rindler spacetime, in 1 + 1 dimensions, which has a boundary given by the world line of a uniformly accelerated observer. The action contains a sum of delta function potentials that can be viewed as partially reflecting moving mirrors. An appropriate choice of the accelerations of the mirrors, provide primitive periodic orbits that are associated with the prime numbers p, whose periods, as measured by the observer's clock, are logp. Acting on the chiral components of the fermion χ ∓ , H R becomes the Berry–Keating Hamiltonian ±(x p-hat + p-hat x)/2, where x is identified with the Rindler spatial coordinate and p-hat with the conjugate momentum. The delta function potentials give the matching conditions of the fermion wave functions on both sides of the mirrors. There is also a phase shift e iϑ for the reflection of the fermions at the boundary where the observer sits. The eigenvalue problem is solved by transfer matrix methods in the limit where the reflection amplitudes become infinitesimally small. We find that, for generic values of ϑ, the spectrum is a continuum where the Riemann zeros are missing, as in the adelic Connes model. However, for some values of ϑ, related to the phase of the zeta function, the Riemann zeros appear as discrete eigenvalues that are immersed in the continuum. We generalize this result to the zeros of Dirichlet L-functions, which are associated to primitive characters, that are encoded in the reflection coefficients of the mirrors. Finally, we show that the Hamiltonian associated to the Riemann zeros belongs to class AIII, or chiral GUE, of the Random Matrix Theory. (paper)

  16. Plasma Waves Associated with Mass-Loaded Comets

    Science.gov (United States)

    Tsurutani, Bruce; Glassmeier, Karl-Heinz

    2015-01-01

    Plasma waves and instabilities are integrally involved with the plasma "pickup" process and the mass loading of the solar wind (thus the formation of ion tails and the magnetic tails). Anisotropic plasmas generated by solar wind-comet interactions (the bow shock, magnetic field pileup) cause the generation of plasma waves which in turn "smooth out" these discontinuities. The plasma waves evolve and form plasma turbulence. Comets are perhaps the best "laboratories" to study waves and turbulence because over time (and distance) one can identify the waves and their evolution. We will argue that comets in some ways are better laboratories than magnetospheres, interplanetary space and fusion devices to study nonlinear waves and their evolution.

  17. On the chirality of the SM and the fermion content of GUTs

    Directory of Open Access Journals (Sweden)

    Renato M. Fonseca

    2015-08-01

    Full Text Available The Standard Model (SM is a chiral theory, where right- and left-handed fermion fields transform differently under the gauge group. Extra fermions, if they do exist, need to be heavy otherwise they would have already been observed. With no complex mechanisms at work, such as confining interactions or extra-dimensions, this can only be achieved if every extra right-handed fermion comes paired with a left-handed one transforming in the same way under the Standard Model gauge group, otherwise the new states would only get a mass after electroweak symmetry breaking, which would necessarily be small (∼100 GeV. Such a simple requirement severely constrains the fermion content of Grand Unified Theories (GUTs. It is known for example that three copies of the representations 5¯+10 of SU(5 or three copies of the 16 of SO(10 can reproduce the Standard Model's chirality, but how unique are these arrangements? In a systematic way, this paper looks at the possibility of having non-standard mixtures of fermion GUT representations yielding the correct Standard Model chirality. Family unification is possible with large special unitary groups — for example, the 171 representation of SU(19 may decompose as 3(16+120+3(1 under SO(10.

  18. Fermion bag approach to the sign problem in strongly coupled lattice QED with Wilson fermions

    OpenAIRE

    Chandrasekharan, Shailesh; Li, Anyi

    2010-01-01

    We explore the sign problem in strongly coupled lattice QED with one flavor of Wilson fermions in four dimensions using the fermion bag formulation. We construct rules to compute the weight of a fermion bag and show that even though the fermions are confined into bosons, fermion bags with negative weights do exist. By classifying fermion bags as either simple or complex, we find numerical evidence that complex bags with positive and negative weights come with almost equal probabilities and th...

  19. Physics implications of flat directions in free fermionic superstring models. II. Renormalization group analysis

    International Nuclear Information System (INIS)

    Cleaver, G.; Cvetic, M.; Everett, L.; Langacker, P.; Wang, J.; Espinosa, J.R.; Everett, L.

    1999-01-01

    We continue the investigation of the physics implications of a class of flat directions for a prototype quasi-realistic free fermionic string model (CHL5), building upon the results of a previous paper in which the complete mass spectrum and effective trilinear couplings of the observable sector were calculated to all orders in the superpotential. We introduce soft supersymmetry breaking mass parameters into the model, and investigate the gauge symmetry breaking patterns and the renormalization group analysis for two representative flat directions, which leave an additional U(1) ' as well as the SM gauge group unbroken at the string scale. We study symmetry breaking patterns that lead to a phenomenologically acceptable Z-Z ' hierarchy, M Z ' ∼O(1 TeV) and 10 12 GeV for electroweak and intermediate scale U(1) ' symmetry breaking, respectively, and the associated mass spectra after electroweak symmetry breaking. The fermion mass spectrum exhibits unrealistic features, including massless exotic fermions, but has an interesting d-quark hierarchy and associated CKM matrix in one case. There are (some) non-canonical effective μ terms, which lead to a non-minimal Higgs sector with more than two Higgs doublets involved in the symmetry breaking, and a rich structure of Higgs particles, charginos, and neutralinos, some of which, however, are massless or ultralight. In the electroweak scale cases the scale of supersymmetry breaking is set by the Z ' mass, with the sparticle masses in the several TeV range. copyright 1999 The American Physical Society

  20. Jordan-Wigner fermionization and the theory of low-dimensional quantum spin models

    International Nuclear Information System (INIS)

    Derzhko, O.

    2007-01-01

    The idea of mapping quantum spin lattice model onto fermionic lattice model goes back to Jordan and Wigner (1928) who transformed s = 1/2 operators which commute at different lattice sites into fermionic operators. Later on the Jordan-Wigner transformation was used for mapping one-dimensional s = 1/2 isotropic XY (XX) model onto an exactly solvable tight-binding model of spinless fermions (Lieb, Schultz and Mattis, 1961). Since that times the Jordan-Wigner transformation is known as a powerful tool in the condensed matter theory especially in the theory of low-dimensional quantum spin systems. The aim of these lectures is to review the applications of the Jordan-Wigner fermionization technique for calculating dynamic properties of low-dimensional quantum spin models. The dynamic quantities (such as dynamic structure factors or dynamic susceptibilities) are observable directly or indirectly in various experiments. The frequency and wave-vector dependence of the dynamic quantities yields valuable information about the magnetic structure of materials. Owing to a tremendous recent progress in synthesizing low-dimensional magnetic materials detailed comparisons of theoretical results with direct experimental observation are becoming possible. The lectures are organized as follows. After a brief introduction of the Jordan-Wigner transformation for one-dimensional spin one half systems and some of its extensions for higher dimensions and higher spin values we focus on the dynamic properties of several low-dimensional quantum spin models. We start from a famous s = 1/2 XX chain. As a first step we recall well-known results for dynamics of the z-spin-component fluctuation operator and then turn to dynamics of the dimer and trimer fluctuation operators. The dynamics of the trimer fluctuations involves both the two fermion (one particle and one hole) and the four-fermion (two particles and two holes) excitations. We discuss some properties of the two-fermion and four-fermion

  1. Fermion cluster algorithms

    International Nuclear Information System (INIS)

    Chandrasekharan, Shailesh

    2000-01-01

    Cluster algorithms have been recently used to eliminate sign problems that plague Monte-Carlo methods in a variety of systems. In particular such algorithms can also be used to solve sign problems associated with the permutation of fermion world lines. This solution leads to the possibility of designing fermion cluster algorithms in certain cases. Using the example of free non-relativistic fermions we discuss the ideas underlying the algorithm

  2. A Dirac sea pilot-wave model for quantum field theory

    International Nuclear Information System (INIS)

    Colin, S; Struyve, W

    2007-01-01

    We present a pilot-wave model for quantum field theory in which the Dirac sea is taken seriously. The model ascribes particle trajectories to all the fermions, including the fermions filling the Dirac sea. The model is deterministic and applies to the regime in which fermion number is superselected. This work is a further elaboration of work by Colin, in which a Dirac sea pilot-wave model is presented for quantum electrodynamics. We extend his work to non-electromagnetic interactions, we discuss a cut-off regularization of the pilot-wave model and study how it reproduces the standard quantum predictions. The Dirac sea pilot-wave model can be seen as a possible continuum generalization of a lattice model by Bell. It can also be seen as a development and generalization of the ideas by Bohm, Hiley and Kaloyerou, who also suggested the use of the Dirac sea for the development of a pilot-wave model for quantum electrodynamics

  3. Fermion-boson scattering in ladder approximation

    International Nuclear Information System (INIS)

    Jafarov, R.G.; Hadjiev, S.A.

    1992-10-01

    A method of calculation of forward scattering amplitude for fermions and scalar bosons with exchanging of scalar particle is suggested. The Bethe-Salpeter ladder equation for the imaginary part of the amplitude is constructed and a solution in Regge asymptotical form is found and the corrections to the amplitude due to the exit from mass shell are calculated. (author). 8 refs

  4. Microcanonical and hybrid simulations of lattice quantum chromodynamics with dynamical fermions

    International Nuclear Information System (INIS)

    Sinclair, D.K.

    1986-10-01

    Lattice QCD is simulated using Microcanonical and Hybrid (Micro-canonical/Langevin) methods to facilitate the inclusion of dynamical fermions (quarks). We report on simulations with 4 flavors of light dynamical quarks on a 10 3 x 6 lattice to study the finite temperature deconfinement/chiral transition which should be observable in relativistic heavy ion collisions, as a function of quark mass. A first order transition is observed at large mass, weakens at intermediate mass and strengthens for very small quark mass

  5. Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Chih-Lung

    2005-04-05

    The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.

  6. Magnetic fluctuations in heavy-fermion metals

    DEFF Research Database (Denmark)

    Mason, T.E.; Petersen, T.; Aeppli, G.

    1995-01-01

    Elastic and inelastic neutron scattering have been used to study the antiferromagnetic ordering and magnetic excitations of the U heavy-fermion superconductors UPd2Al3 and URu2Si2 above and below T-N. While both materials exhibit the coexistence of superconductivity and antiferromagnetic order......, the nature of the antiferromagnetic order and magnetic fluctuations is qualitatively quite different. UPd2Al3 resembles a rare earth magnetic system with coupling of the 4f electrons to the conduction electrons manifested in a broadening of otherwise conventional spin wave excitations. This is in marked...

  7. Reproducibility and diagnostic performance of shear wave elastography in evaluating breast solid mass.

    Science.gov (United States)

    Hong, Sun; Woo, Ok Hee; Shin, Hye Seon; Hwang, Soon-Young; Cho, Kyu Ran; Seo, Bo Kyoung

    Shear wave elastography (SWE) was performed independently by two radiologists in 264 solid breast masses. The images were reviewed for color overlay pattern (COP) classification by the two radiologists, double blinded to any information. The interobserver agreement of the COP was almost perfect (κ=0.908) and high in E max (ICC=0.89). The AUC value of the COP (0.954) was significantly higher than that of E max (0.915) (p=0.002) but not significantly different from that of E max combined with COP (0.957) (p=0.098). The SWE color overlay pattern and E max of breast masses were highly reproducible. The COP had better diagnostic ability than E max , suggesting that COP may be a more reliable parameter for solid breast mass evaluation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Fermions and non-Abelian vortex

    International Nuclear Information System (INIS)

    Mello, E.R.B. de.

    1986-01-01

    Some aspectos of the fermion-non-Abelian vortex system are discussed. It is shown that this system presents properties analogous to the fermion-non-Abelian magnetic monopole one. But, differrently from the fermion-monopole case, this system does not present fermion condensate V = 0. (Author) [pt

  9. Bethe-Salpeter equation for fermion-antifermion system in the ladder approximation

    International Nuclear Information System (INIS)

    Fukui, Ichio; Seto, Noriaki; Yoshida, Toshihiro.

    1977-01-01

    The Bethe-Salpeter (B-S) equation is important for studying hadron physics. Especially intensive investigation on the fermion-antifermion B-S equation is indispensable for the phenomenological studies of hardrons. However, many components of the B-S amplitude and the Wick-rotated integral kernel of non-Fredholm type have prevented from knowing details the solutions even in the ladder approximation. Some particular solutions are known in case of the vanishing four-momenta of bound states. The B-S equation for the bound state of fermion-anti-fermion system interacting through vector (axial-vector) particle exchange was studied in the ladder approximation with Feynman gauge. The reduced equations were obtained for suitably decomposed amplitude, and it is shown that, in the S-wave case, the coupled equations separate into two parts. In the nonrelativistic limit, large components of the amplitude satisfy the Wick-Cutkosky equation, and small components are expressed in terms of the large ones. Equations are derived for the equal-time amplitudes. (Kobatake, H.)

  10. Dynamical FLIC fermions

    International Nuclear Information System (INIS)

    Kamleh, W.; Leinweber, D.B.; Williams, A.G.

    2004-01-01

    The use of APE smearing or other blocking techniques in fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as FLIC fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarisation is often performed using an iterative maximisation of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard. Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants

  11. Measuring and engineering the atomic mass density wave of a Gaussian mass-polariton pulse in optical fibers

    Science.gov (United States)

    Partanen, Mikko; Tulkki, Jukka

    2018-02-01

    Conventional theories of electromagnetic waves in a medium assume that only the energy of the field propagates inside the medium. Consequently, they neglect the transport of mass density by the medium atoms. We have recently presented foundations of a covariant theory of light propagation in a nondispersive medium by considering a light wave simultaneously with the dynamics of the medium atoms driven by optoelastic forces [Phys. Rev. A 95, 063850 (2017)]. In particular, we have shown that the mass is transferred by an atomic mass density wave (MDW), which gives rise to mass-polariton (MP) quasiparticles, i.e., covariant coupled states of the field and matter having a nonzero rest mass. Another key observation of the mass-polariton theory of light is that, in common semiconductors, most of the momentum of light is transferred by moving atoms, e.g., 92% in the case of silicon. In this work, we generalize the MP theory of light for dispersive media and consider experimental measurement of the mass transferred by the MDW atoms when an intense light pulse propagates in a silicon fiber. In particular, we consider optimal intensity and time dependence of a Gaussian pulse and account for the breakdown threshold irradiance of the material. The optical shock wave property of the MDW, which propagates with the velocity of light instead of the velocity of sound, prompts for engineering of novel device concepts like very high frequency mechanical oscillators not limited by the acoustic cutoff frequency.

  12. Radiative four-fermion processes at LEP2

    International Nuclear Information System (INIS)

    Montagna, G.; Nicrosini, O.; Osmo, M.; Piccinini, F.; Moretti, M.

    2001-01-01

    The production of four fermions plus a visible photon in electron-positron collisions is analyzed, with particular emphasis on the LEP2 energy range. The study is based on the calculation of exact matrix elements, including the effect of fermion masses. In the light of the present measurements performed at LEP, triple and quartic anomalous gauge couplings are taken into account. Due to the presence of a visible photon in the final state, particular attention is paid to the treatment of higher-order QED corrections. Explicit results for integrated cross sections and differential distributions are shown and commented on. The features of the Monte Carlo program WRAP, used to perform the calculation and available for experimental analysis, are described. (orig.)

  13. Theoretical studies of strongly correlated fermions

    Energy Technology Data Exchange (ETDEWEB)

    Logan, D [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    Strongly correlated fermions are investigated. An understanding of strongly correlated fermions underpins a diverse range of phenomena such as metal-insulator transitions, high-temperature superconductivity, magnetic impurity problems and the properties of heavy-fermion systems, in all of which local moments play an important role. (author).

  14. A nonperturbative fermion-boson vertex

    International Nuclear Information System (INIS)

    Bashir, A.; Raya, A.

    2002-01-01

    We calculate the massive fermion propagator at one-loop order in QED3. The Ward-Takahashi identity (WTI) relates the propagator to the vertex. This allows us to split the vertex into its longitudinal and transverse parts. The former is fixed by the WTI. Following the scheme of Ball and Chiu later modified by Kizilersue et. al., we calculate the full vertex at one-loop order. A mere subtraction of the longitudinal part of the vertex gives us the transverse part. The α dependence in the transverse vertex can be eliminated by making use of the perturbative expressions for the wavefunction renormalization function and the mass function of complicated arguments of the incoming and outgoing fermion momenta. This leads us to a vertex which is nonperturbative in nature. We also calculate an effective vertex for which the arguments of the unknown functions have no angular dependence, making it particularly suitable for numerical studies of dynamical symmetry breaking

  15. Near the sill of the conformal window: Gauge theories with fermions in two-index representations

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, Thomas; Shamir, Yigal; Svetitsky, Benjamin

    2013-09-16

    We apply Schroedinger functional methods to two gauge theories with fermions in two-index representations: the SU(3) theory with Nf=2 adjoint fermions, and the SU(4) theory with Nf=6 fermions in the two-index antisymmetric representation. Each theory is believed to lie near the bottom of the conformal window for its respective representation. In the SU(3) theory we find a small beta function in strong coupling but we cannot confirm or rule out an infrared fixed point. In the SU(4) theory we find a hint of walking - a beta function that approaches the axis and then turns away from it. In both theories the mass anomalous dimension remains small even at the strongest couplings, much like the theories with fermions in the two-index symmetric representation investigated earlier.

  16. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass.We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass.The general law introduces a damped thermal wave equation.It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected,which indicates that the CV model only considers the temporal inertia of heat flux.Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory.For larger thermal perturbation,however,the physically impossible phenomenon pre-dicted by CV model,i.e.the negative temperature induced by the thermal wave superposition,is eliminated by the general heat conduction law,which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  17. Study on thermal wave based on the thermal mass theory

    Institute of Scientific and Technical Information of China (English)

    HU RuiFeng; CAO BingYang

    2009-01-01

    The conservation equations for heat conduction are established based on the concept of thermal mass. We obtain a general heat conduction law which takes into account the spatial and temporal inertia of thermal mass. The general law introduces a damped thermal wave equation. It reduces to the well-known CV model when the spatial inertia of heat flux and temperature and the temporal inertia of temperature are neglected, which indicates that the CV model only considers the temporal inertia of heat flux. Numerical simulations on the propagation and superposition of thermal waves show that for small thermal perturbation the CV model agrees with the thermal wave equation based on the thermal mass theory. For larger thermal perturbation, however, the physically impossible phenomenon pre-dicted by CV model, i.e. the negative temperature induced by the thermal wave superposition, is eliminated by the general heat conduction law, which demonstrates that the present heat conduction law based on the thermal mass theory is more reasonable.

  18. Nucleon electromagnetic form factors with Wilson fermions

    International Nuclear Information System (INIS)

    Goeckeler, M.; Haegler, P.; Horsley, R.

    2007-10-01

    The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  19. Nucleon electromagnetic form factors with Wilson fermions

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Haegler, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics] (and others)

    2007-10-15

    The nucleon electromagnetic form factors continue to be of major interest for experimentalists and phenomenologists alike. They provide important insights into the structure of nuclear matter. For a range of interesting momenta they can be calculated on the lattice. The limiting factor continues to be the value of the pion mass. We present the latest results of the QCDSF collaboration using gauge configurations with two dynamical, non-perturbatively improved Wilson fermions at pion masses as low as 350 MeV. (orig.)

  20. Superstrings fermionic solutions

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    1990-06-01

    The solutions proposed by the superstring theory are classified and compared. In order to obtain some of the equivalences, the demonstration is based on the coincidence of the excitation spectrum and the quantum numbers from different states. The fermionic representation of the heterotical strings is discussed. The conformal invariance and the supersymmetric results extended to two dimensions are investigated. Concerning the fermionic strings, the formalism and a phenomenological solution involving three families of quarks, chiral leptons and leptons from the E 6 gauge group are presented. The equivalence between real and complex fermions is discussed. The similarity between some of the solutions of the Wess-Zumino-Witten model and the orbifolds is considered. The formal calculation program developed for reproducing the theory's low energy spectra, in the fermionic string formalism is given [fr

  1. A fermion-boson composite model of quarks and leptons

    Directory of Open Access Journals (Sweden)

    Yoshio Koide

    1983-01-01

    Full Text Available Quark and lepton masses and flavor-mixing angles are estimated on the basis of a fermion-boson composite model where the (u, d, (c, s and (t, b quarks are assigned to the diagonal elements π8, η8 and η1, respectively, in3 × 3* = 8 + 1 of the SU(3-generation symmetry.

  2. Fermion-fermion scattering in quantum field theory with superconducting circuits.

    Science.gov (United States)

    García-Álvarez, L; Casanova, J; Mezzacapo, A; Egusquiza, I L; Lamata, L; Romero, G; Solano, E

    2015-02-20

    We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.

  3. Splish-splash: Center of mass, stability, and a fun pool toy

    Science.gov (United States)

    Ashman, Seth

    2018-03-01

    Center of mass is a common topic in physics courses. It appears in relation to studies of stable and unstable equilibrium, momentum, and rotation. Science products suppliers frequently include gadgets that demonstrate the concepts of center of mass and stability, such as the classic balancing bird. Additionally, The Physics Teacher has featured articles studying the center of mass of a rotating baton, locating the center of mass of a hanging Slinky toy, and describing a wide range of interesting systems.

  4. Three-Stage InP Submillimeter-Wave MMIC Amplifier

    Science.gov (United States)

    Pukala, David; Samoska, Lorene; Man, King; Gaier, Todd; Deal, William; Lai, Richard; Mei, Gerry; Makishi, Stella

    2008-01-01

    A submillimeter-wave monolithic integrated- circuit (S-MMIC) amplifier has been designed and fabricated using an indium phosphide (InP) 35-nm gate-length high electron mobility transistor (HEMT) device, developed at Northrop Grumman Corporation. The HEMT device employs two fingers each 15 micrometers wide. The HEMT wafers are grown by molecular beam epitaxy (MBE) and make use of a pseudomorphic In0.75Ga0.25As channel, a silicon delta-doping layer as the electron supply, an In0.52Al0.48As buffer layer, and an InP substrate. The three-stage design uses coplanar waveguide topology with a very narrow ground-to-ground spacing of 14 micrometers. Quarter-wave matching transmission lines, on-chip metal-insulator-metal shunt capacitors, series thin-film resistors, and matching stubs were used in the design. Series resistors in the shunt branch arm provide the basic circuit stabilization. The S-MMIC amplifier was measured for S-parameters and found to be centered at 320 GHz with 13-15-dB gain from 300-345 GHz. This chip was developed as part of the DARPA Submillimeter Wave Imaging Focal Plane Technology (SWIFT) program (see figure). Submillimeter-wave amplifiers could enable more sensitive receivers for earth science, planetary remote sensing, and astrophysics telescopes, particularly in radio astronomy, both from the ground and in space. A small atmospheric window at 340 GHz exists and could enable ground-based observations. However, the submillimeter-wave regime (above 300 GHz) is best used for space telescopes as Earth s atmosphere attenuates most of the signal through water and oxygen absorption. Future radio telescopes could make use of S-MMIC amplifiers for wideband, low noise, instantaneous frequency coverage, particularly in the case of heterodyne array receivers.

  5. Physics Implications of Flat Directions in Free Fermionic Superstring Models; 1, Mass Spectrum and Couplings

    CERN Document Server

    Cleaver, G; Espinosa, J R; Everett, L; Langacker, P G; Wang, J

    1999-01-01

    From the "top-down" approach we investigate physics implications of the class of D- and F- flat directions formed from non-Abelian singlets which are proven flat to all orders in the nonrenormalizable superpotential, for a prototype quasi-realistic free fermionic string model with the standard model gauge group and three families (CHL5). These flat directions have at least an additional U(1)' unbroken at the string scale. For each flat direction, the complete set of effective mass terms and effective trilinear superpotential terms in the observable sector are computed to all orders in the VEV's of the fields in the flat direction. The "string selection-rules" disallow a large number of couplings allowed by gauge invariance, resulting in a massless spectrum with a large number of exotics, in most cases excluded by experiment, thus signifying a generic flaw of these models. Nevertheless, the resulting trilinear couplings of the massless spectrum possess a number of interesting features which we analyse for two ...

  6. Ultrasonic dispersion and off-center rattling in heavy fermion superconductor PrOs4Sb12

    International Nuclear Information System (INIS)

    Nemoto, Yuichi; Ueno, Takafumi; Takeda, Naoya; Yamaguchi, Takashi; Yanagisawa, Tatsuya; Goto, Terutaka; Sugawara, Hitoshi; Sato, Hideyuki

    2006-01-01

    Ultrasonic attenuation measurements have been firstly performed for a large single crystal of PrOs 4 Sb 12 with the dimensions of 5.97x0.6x0.6mm 3 . Remarkable frequency dependence around 20-40K has been observed in the elastic constant and attenuation coefficient of the longitudinal C 11 mode associated with E g symmetry strain in part, which results from a thermally activated off-center rattling with E g symmetry of a Pr ion inside a Sb icosahedron cage. Parameters of a characteristic time τ 0 =3.1x10 -11 s and an activation energy E=225K were obtained. This E g rattling involving a local charge fluctuation inside a Sb cage periodically arranged may couple to the conduction electrons. As a result, the electron-phonon coupling would lead to heavy fermion and its superconductivity in PrOs 4 Sb 12

  7. Quasiparticle Green's function theory of the Josephson effect in chiral p-wave superconductor/diffusive normal metal/chiral p-wave superconductor junctions

    NARCIS (Netherlands)

    Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study the Josephson effect in chiral p-wave superconductor/diffusive normal metal (DN)/chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is

  8. Evidence for the direct decay of the 125 GeV Higgs boson to fermions

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Mahrous, Ayman; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sauvan, Jean-baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Geiser, Achim; Grebenyuk, Anastasia; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krämer, Mira; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Stein, Matthias; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Enderle, Holger; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Martschei, Daniel; Mozer, Matthias Ulrich; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Jones, John; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Singh, Anil; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Ferro, Fabrizio; Lo Vetere, Maurizio; Musenich, Riccardo; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Konoplyanikov, Viktor; Korenkov, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Palencia Cortezon, Enrique; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Reece, William; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Ronga, Frederic Jean; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Wilken, Rachel; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Ilic, Jelena; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Shrinivas, Amithabh; Sturdy, Jared; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Kovalskyi, Dmytro; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Gray, Julia; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Cremaldi, Lucien Marcus; Kroeger, Rob; Oliveros, Sandra; Perera, Lalith; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Woods, Nathaniel

    2014-06-22

    The discovery of a new boson with a mass of approximately 125 GeV in 2012 at the LHC has heralded a new era in understanding the nature of electroweak symmetry breaking and possibly completing the standard model of particle physics. Since the first observation in decays to gamma-gamma, WW, and ZZ boson pairs, an extensive set of measurements of the mass and couplings to W and Z bosons, as well as multiple tests of the spin-parity quantum numbers, have revealed that the properties of the new boson are consistent with those of the long-sought agent responsible for electroweak symmetry breaking. An important open question is whether the new particle also couples to fermions, and in particular to down-type fermions, since the current measurements mainly constrain the couplings to the up-type top quark. Determination of the couplings to down-type fermions requires direct measurement of the corresponding Higgs boson decays, as recently reported by the CMS experiment in the study of Higgs decays to bottom quarks and...

  9. Physics Implications of Flat Directions in Free Fermionic Superstring Models; 2, Renormalization Group Analysis

    CERN Document Server

    Cleaver, G.; Espinosa, J.R.; Everett, L.L.; Langacker, P.; Wang, J.

    1999-01-01

    We continue the investigation of the physics implications of a class of flat directions for a prototype quasi-realistic free fermionic string model (CHL5), building upon the results of the previous paper in which the complete mass spectrum and effective trilinear couplings of the observable sector were calculated to all orders in the superpotential. We introduce soft supersymmetry breaking mass parameters into the model, and investigate the gauge symmetry breaking patterns and the renormalization group analysis for two representative flat directions, which leave an additional $U(1)'$ as well as the SM gauge group unbroken at the string scale. We study symmetry breaking patterns that lead to a phenomenologically acceptable $Z-Z'$ hierarchy, $M_{Z^{'}} \\sim {\\cal O}(1~{\\rm TeV})$ and $ 10^{12}~{\\rm GeV}$ for electroweak and intermediate scale $U(1)^{'}$ symmetry breaking, respectively, and the associated mass spectra after electroweak symmetry breaking. The fermion mass spectrum exhibits unrealistic features, i...

  10. Fermion condensation: a strange idea successfully explaining behaviour of numerous objects in nature

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.

    2010-01-01

    A theory of fermion condensation quantum phase transition, preserving the extended quasiparticles paradigm and intimately related to the unlimited growth of the effective mass as a function of the temperature, magnetic field, etc., is capable to resolve the problem. We discuss the construction of the theory and show that it delivers theoretical explanations of the vast majority of experimental results in strongly correlated systems such as heavy-fermion metals and quasi-two dimensional Fermi systems. Our analysis is placed in the context of recent salient experimental results. Our calculations of the non-Fermi liquid behavior, the scales, and thermodynamic and transport properties are in good agreement with the heat capacity, magnetization, longitudinal magnetoresistance, and magnetic entropy obtained in remarkable measurements on the heavy-fermion metal YbRh 2 Si 2 .

  11. Renormalization group running of fermion observables in an extended non-supersymmetric SO(10) model

    Energy Technology Data Exchange (ETDEWEB)

    Meloni, Davide [Dipartimento di Matematica e Fisica, Università di Roma Tre,Via della Vasca Navale 84, 00146 Rome (Italy); Ohlsson, Tommy; Riad, Stella [Department of Physics, School of Engineering Sciences,KTH Royal Institute of Technology - AlbaNova University Center,Roslagstullsbacken 21, 106 91 Stockholm (Sweden)

    2017-03-08

    We investigate the renormalization group evolution of fermion masses, mixings and quartic scalar Higgs self-couplings in an extended non-supersymmetric SO(10) model, where the Higgs sector contains the 10{sub H}, 120{sub H}, and 126{sub H} representations. The group SO(10) is spontaneously broken at the GUT scale to the Pati-Salam group and subsequently to the Standard Model (SM) at an intermediate scale M{sub I}. We explicitly take into account the effects of the change of gauge groups in the evolution. In particular, we derive the renormalization group equations for the different Yukawa couplings. We find that the computed physical fermion observables can be successfully matched to the experimental measured values at the electroweak scale. Using the same Yukawa couplings at the GUT scale, the measured values of the fermion observables cannot be reproduced with a SM-like evolution, leading to differences in the numerical values up to around 80%. Furthermore, a similar evolution can be performed for a minimal SO(10) model, where the Higgs sector consists of the 10{sub H} and 126{sub H} representations only, showing an equally good potential to describe the low-energy fermion observables. Finally, for both the extended and the minimal SO(10) models, we present predictions for the three Dirac and Majorana CP-violating phases as well as three effective neutrino mass parameters.

  12. Significant correlation of P-wave parameters with left atrial volume index and left ventricular diastolic function.

    Science.gov (United States)

    Tsai, Wei-Chung; Lee, Kun-Tai; Wu, Ming-Tsang; Chu, Chih-Sheng; Lin, Tsung-Hsien; Hsu, Po-Chao; Su, Ho-Ming; Voon, Wen-Chol; Lai, Wen-Ter; Sheu, Sheng-Hsiung

    2013-07-01

    The 12-lead electrocardiogram (ECG) is a commonly used tool to access left atrial enlargement, which is a marker of left ventricular diastolic dysfunction (LVDD). The aim of this study was to evaluate any association of the P-wave measurements in ECG with left atrial volume (LAV) index and LVDD. This study enrolled 270 patients. In this study, 4 ECG P-wave parameters corrected by heart rate, that is, corrected P-wave maximum duration (PWdurMaxC), corrected P-wave dispersion (PWdisperC), corrected P-wave area (PWareaC) and corrected mean P-wave duration (meanPWdurC), were measured. LAV and left ventricular diastolic parameters were measured from echocardiography. LVDD was defined as a pseudonormal or restrictive mitral inflow pattern. The 4 P-wave parameters were significantly correlated with the LAV index after adjusting for age, sex, diabetes, hypertension, coronary artery disease, body mass index and diastolic blood pressure in multivariate analysis. The standardized β coefficients of PWdurMaxC, PWdisperC, meanPWdurC and PWareaC were 0.338, 0.298, 0.215 and 0.296, respectively. The 4 P-wave parameters were also significantly correlated with LVDD after multivariate logistic regression analysis. The odds ratios (95% confidence intervals) of PWdurMaxC, PWdisperC, meanPWdurC and PWareaC were 1.03 (1.01-1.04), 1.02 (1.04-1.04), 1.04 (1.02-1.07) and 1.01 (1.00-1.02), respectively. This study demonstrated that PWdurMaxC, PWdisperC, meanPWdurC and PWareaC were important determinants of the LAV index and LVDD. Therefore, screening patients by means of the 12-lead ECG may be helpful in identifying a high-risk group of increased LAV index and LVDD.

  13. Null-plane quantization of fermions

    International Nuclear Information System (INIS)

    Mustaki, D.

    1990-01-01

    Massive Dirac fermions are canonically quantized on the null plane using the Dirac-Bergmann algorithm. The procedure is carried out in the framework of quantum electrodynamics as an illustration of a rigorous treatment of interacting fermion fields

  14. Fermion Fields in BTZ Black Hole Space-Time and Entanglement Entropy

    Directory of Open Access Journals (Sweden)

    Dharm Veer Singh

    2015-01-01

    Full Text Available We study the entanglement entropy of fermion fields in BTZ black hole space-time and calculate prefactor of the leading and subleading terms and logarithmic divergence term of the entropy using the discretized model. The leading term is the standard Bekenstein-Hawking area law and subleading term corresponds to first quantum corrections in black hole entropy. We also investigate the corrections to entanglement entropy for massive fermion fields in BTZ space-time. The mass term does not affect the area law.

  15. Test of s-wave pairing in heavy-fermion systems due to Kondo volume collapse

    International Nuclear Information System (INIS)

    Svozil, K.

    1987-01-01

    It is proposed to utilize resonant Raman scattering on heavy-fermion superconductors as a test for Cooper pairing via an effective phonon-mediated attraction due to the Kondo volume collapse. The suggested experiment might help to discriminate between singlet and triplet pairing

  16. Conformal window of gauge theories with four-fermion interactions and ideal walking technicolor

    DEFF Research Database (Denmark)

    Sannino, Francesco; Sakuma, Hidenori

    2010-01-01

    We investigate the effects of four-fermion interactions on the phase diagram of strongly interacting theories for any representation as function of the number of colors and flavors. We show that the conformal window, for any representation, shrinks with respect to the case in which the four...... discover that when the extended technicolor sector, responsible for giving masses to the standard model fermions, is sufficiently strongly coupled the technicolor theory, in isolation, must have an infrared fixed point for the full model to be phenomenologically viable. Using the new phase diagram we show...

  17. Search for R-Parity Violating Decays of Scalar Fermions at LEP

    CERN Document Server

    Abbiendi, G.; Alexander, G.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Ashby, S.F.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Behnke, T.; Bell, Kenneth Watson; Bella, G.; Bellerive, A.; Bentvelsen, S.; Bethke, S.; Betts, S.; Biebel, O.; Biguzzi, A.; Bloodworth, I.J.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Ciocca, C.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Couchman, J.; Couyoumtzelis, C.; Coxe, R.L.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Davis, R.; De Jong, S.; de Roeck, A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Estabrooks, P.G.; Etzion, E.; Fabbri, F.; Fanfani, A.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fleck, I.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon-Shotkin, S.M.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Gorn, W.; Grandi, C.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Harder, K.; Harel, A.; Hargrove, C.K.; Harin-Dirac, M.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hobson, P.R.; Hocker, James Andrew; Hoffman, Kara Dion; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Imrie, D.C.; Ishii, K.; Jacob, F.R.; Jawahery, A.; Jeremie, H.; Jimack, M.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klier, A.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kowalewski, Robert V.; Kress, T.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lauber, J.; Lawson, I.; Layter, J.G.; Lellouch, D.; Letts, J.; Levinson, L.; Liebisch, R.; List, B.; Littlewood, C.; Lloyd, A.W.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Lui, D.; Macchiolo, A.; Macpherson, A.; Mader, W.; Mannelli, M.; Marcellini, S.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Montanari, A.; Mori, T.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Polok, J.; Przybycien, M.; Quadt, A.; Rembser, C.; Rick, H.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rossi, A.M.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sang, W.M.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Sproston, M.; Stahl, A.; Stephens, K.; Steuerer, J.; Stoll, K.; Strom, David M.; Strohmer, R.; Surrow, B.; Talbot, S.D.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomas, J.; Thomson, M.A.; Torrence, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Van Kooten, Rick J.; Vannerem, P.; Verzocchi, M.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; Wetterling, D.; White, J.S.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.

    2000-01-01

    A search for pair produced scalar fermions with couplings that violate R-parity has been performed using a data sample corresponding to an integrated luminosity of 56 pb-1 at a centre-of-mass energy of sqrt{s}= 183 GeV collected with the OPAL detector at LEP. An important consequence of R-parity breaking interactions is that the lightest supersymmetric particle is expected to be unstable. Searches for R-parity violating decays of charged sleptons, sneutrinos and stop quarks have been performed under the assumptions that the lightest supersymmetric particle decays promptly and that only one of the R-parity violating couplings is dominant for each of the decay modes considered. Such processes would yield multi-leptons, jets plus leptons or multi-jets, with or without missing energy, in the final state. No significant excess of such events has been observed. Limits on the production cross-sections of scalar fermions in R-parity violating scenarios are obtained. Mass exclusion regions are also presented in the fr...

  18. Impact of Center-of-Mass Acceleration on the Performance of Ultramarathon Runners

    Directory of Open Access Journals (Sweden)

    Lin Shun-Ping

    2014-12-01

    Full Text Available Ultramarathon races are rapidly gaining popularity in several countries, raising interest for the improvement of training programs. The aim of this study was to use a triaxial accelerometer to compare the three-dimensional centerof- mass accelerations of two groups of ultramarathon runners with distinct performances during different running speeds and distances. Ten runners who participated in the 12-h Taipei International Ultramarathon Race underwent laboratory treadmill testing one month later. They were divided into an elite group (EG; n = 5 and a sub-elite group (SG; n = 5. The triaxial center-of-mass acceleration recorded during a level-surface progressive intensity running protocol (3, 6, 8, 9, 10, and 12 km/h; 5 min each was used for correlation analyses with running distance during the ultramarathon. The EG showed negative correlations between mediolateral (ML acceleration (r = −0.83 to −0.93, p < 0.05, and between anterior-posterior (AP acceleration and running distance (r = −0.8953 to −0.9653, p < 0.05, but not for vertical control of the center of mass. This study suggests that runners reduce stride length to minimize mediolateral sway and the effects of braking on the trunk; moreover, cadence must be increased to reduce braking effects and enhance impetus. Consequently, the competition level of ultramarathons can be elevated.

  19. Radiative neutrino mass and Majorana dark matter within an inert Higgs doublet model

    Science.gov (United States)

    Ahriche, Amine; Jueid, Adil; Nasri, Salah

    2018-05-01

    We consider an extension of the standard model (SM) with an inert Higgs doublet and three Majorana singlet fermions to address both origin and the smallness of neutrino masses and dark matter (DM) problems. In this setup, the lightest Majorana singlet fermion plays the role of DM candidate and the model parameter space can be accommodated to avoid different experimental constraints such as lepton flavor violating processes and electroweak precision tests. The neutrino mass is generated at one-loop level a la Scotogenic model and its smallness is ensured by the degeneracy between the C P -odd and C P -even scalar members of the inert doublet. Interesting signatures at both leptonic and hadronic colliders are discussed.

  20. FLIC-overlap fermions and topology

    International Nuclear Information System (INIS)

    Kamleh, W.; Kusterer, D.J.; Leinweber, D.B.; Williams, A.G.

    2003-01-01

    APE smearing the links in the irrelevant operators of clover fermions (Fat-Link Irrelevant Clover (FLIC) fermions) provides significant improvement in the condition number of the Hermitian-Dirac operator and gives rise to a factor of two savings in computing the overlap operator. This report investigates the effects of using a highly-improved definition of the lattice field-strength tensor F μν in the fermion action, made possible through the use of APE-smeared fat links in the construction of the irrelevant operators. Spurious double-zero crossings in the spectral flow of the Hermitian-Wilson Dirac operator associated with lattice artifacts at the scale of the lattice spacing are removed with FLIC fermions composed with an O(α 4 )-improved lattice field strength tensor. Hence, FLIC-Overlap fermions provide an additional benefit to the overlap formalism: a correct realization of topology in the fermion sector on the lattice

  1. Unification and fermion mass structure

    International Nuclear Information System (INIS)

    Ross, Graham G.; Serna, Mario

    2008-01-01

    Grand Unified Theories predict relationships between the GUT-scale quark and lepton masses. Using new data in the context of the MSSM, we update the values and uncertainties of the masses and mixing angles for the three generations at the GUT scale. We also update fits to hierarchical patterns in the GUT-scale Yukawa matrices. The new data shows not all the classic GUT-scale mass relationships remain in quantitative agreement at small to moderate tanβ. However, at large tanβ, these discrepancies can be eliminated by finite, tanβ-enhanced, radiative, threshold corrections if the gluino mass has the opposite sign to the wino mass

  2. Fermion bag solutions to some sign problems in four-fermion field theories

    International Nuclear Information System (INIS)

    Li, Anyi

    2013-01-01

    Lattice four-fermion models containing N flavors of staggered fermions, that are invariant under Z 2 and U(1) chiral symmetries, are known to suffer from sign problems when formulated using the auxiliary field approach. Although these problems have been ignored in previous studies, they can be severe. In this talk, we show that the sign problems disappear when the models are formulated in the fermion bag approach, allowing us to solve them rigorously for the first time.

  3. Fermion bag solutions to some sign problems in four-fermion field theories

    Science.gov (United States)

    Li, Anyi

    2013-04-01

    Lattice four-fermion models containing N flavors of staggered fermions, that are invariant under Z2 and U(1) chiral symmetries, are known to suffer from sign problems when formulated using the auxiliary field approach. Although these problems have been ignored in previous studies, they can be severe. In this talk, we show that the sign problems disappear when the models are formulated in the fermion bag approach, allowing us to solve them rigorously for the first time.

  4. Augury of darkness: the low-mass dark Z′ portal

    International Nuclear Information System (INIS)

    Alves, Alexandre; Arcadi, Giorgio; Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2017-01-01

    Dirac fermion dark matter models with heavy Z ′ mediators are subject to stringent constraints from spin-independent direct searches and from LHC bounds, cornering them to live near the Z ′ resonance. Such constraints can be relaxed, however, by turning off the vector coupling to Standard Model fermions, thus weakening direct detection bounds, or by resorting to light Z ′ masses, below the Z pole, to escape heavy resonance searches at the LHC. In this work we investigate both cases, as well as the applicability of our findings to Majorana dark matter. We derive collider bounds for light Z ′ gauge bosons using the CL S method, spin-dependent scattering limits, as well as the spin-independent scattering rate arising from the evolution of couplings between the energy scale of the mediator mass and the nuclear energy scale, and indirect detection limits. We show that such scenarios are still rather constrained by data, and that near resonance they could accommodate the gamma-ray GeV excess in the Galactic center.

  5. Wave attenuation charcteristics of tethered float system

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.

    incident wave height transmitted wave height G wave number float mass number of rows of floats drag power transmitted wave power incident wave power 111 112 P. Vethamony float radius wave period time velocity and acceleration of fluid... particles, respectively wave attenuation in percentage displacement, velocity and acceleration of float, respectively amplitude of float displacement added mass damping coefficient fluid particle displacement amplitude of fluid particle displacement...

  6. Constraining the Stellar Mass Function in the Galactic Center via Mass Loss from Stellar Collisions

    Directory of Open Access Journals (Sweden)

    Douglas Rubin

    2011-01-01

    Full Text Available The dense concentration of stars and high-velocity dispersions in the Galactic center imply that stellar collisions frequently occur. Stellar collisions could therefore result in significant mass loss rates. We calculate the amount of stellar mass lost due to indirect and direct stellar collisions and find its dependence on the present-day mass function of stars. We find that the total mass loss rate in the Galactic center due to stellar collisions is sensitive to the present-day mass function adopted. We use the observed diffuse X-ray luminosity in the Galactic center to preclude any present-day mass functions that result in mass loss rates >10-5M⨀yr−1 in the vicinity of ~1″. For present-day mass functions of the form, dN/dM∝M-α, we constrain the present-day mass function to have a minimum stellar mass ≲7M⨀ and a power-law slope ≳1.25. We also use this result to constrain the initial mass function in the Galactic center by considering different star formation scenarios.

  7. MSW-resonant fermion mixing during reheating

    Science.gov (United States)

    Kanai, Tsuneto; Tsujikawa, Shinji

    2003-10-01

    We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario.

  8. MSW-resonant fermion mixing during reheating

    International Nuclear Information System (INIS)

    Kanai, Tsuneto; Tsujikawa, Shinji

    2003-01-01

    We study the dynamics of reheating in which an inflaton field couples two flavor fermions through Yukawa-couplings. When two fermions have a mixing term with a constant coupling, we show that the Mikheyev-Smirnov-Wolfenstein (MSW)-type resonance emerges due to a time-dependent background in addition to the standard fermion creation via parametric resonance. This MSW resonance not only alters the number densities of fermions generated by a preheating process but also can lead to the larger energy transfer from the inflaton to fermions. Our mechanism can provide additional source terms for the creation of superheavy fermions which may be relevant for the leptogenesis scenario

  9. Fermion families from two layer warped extra dimensions

    International Nuclear Information System (INIS)

    Guo Zhiqiang; Ma BoQiang

    2008-01-01

    In extra dimensions, the quark and lepton mass hierarchy can be reproduced from the same order bulk mass parameters, and standard model fermion families can be generated from one generation in the high dimensional space. We try to explain the origin of the same order bulk mass parameters and address the family replication puzzle simultaneously. We show that they correlate with each other. We construct models that families are generated from extra dimensional space, and in the meantime the bulk mass parameters of same order emerge naturally. The interesting point is that the bulk mass parameters, which are in same order, correspond to the eigenvalues of a Schroedinger-like equation. We also discuss the problem existing in this approach.

  10. Lattice degeneracies of geometric fermions

    International Nuclear Information System (INIS)

    Raszillier, H.

    1983-05-01

    We give the minimal numbers of degrees of freedom carried by geometric fermions on all lattices of maximal symmetries in d = 2, 3, and 4 dimensions. These numbers are lattice dependent, but in the (free) continuum limit, part of the degrees of freedom have to escape to infinity by a Wilson mechanism built in, and 2sup(d) survive for any lattice. On self-reciprocal lattices we compare the minimal numbers of degrees of freedom of geometric fermions with the minimal numbers of naive fermions on these lattices and argue that these numbers are equal. (orig.)

  11. Soliton Compton Mass from Auto-Parametric Wave-Soliton Coupling

    CERN Document Server

    Binder, B

    2002-01-01

    In this paper a self-excited Rayleigh-type system models the auto-parametric wave-soliton coupling via phase fluctuations. The parameter of dissipative terms determine not only the most likely quantum coupling between solitons and linear waves but also the most likely mass of the solitons. Phase fluctuations are mediated by virtual photons coupling at light-velocity in a permanent Compton scattering process. With a reference to the SI-units and proper scaling relations in length and velocity, the final result shows a highly interesting sequence: the likely soliton Compton mass is about 1.00138 times the neutron and 1.00276 times the proton mass.

  12. Hyperspherical Treatment of Strongly-Interacting Few-Fermion Systems in One Dimension

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Fedorov, D. V.; Jensen, A. S.

    2015-01-01

    We examine a one-dimensional two-component fermionic system in a trap, assuming that all particles have the same mass and interact through a strong repulsive zero-range force. First we show how a simple system of three strongly interacting particles in a harmonic trap can be treated using...

  13. The bosonic mother of fermionic D-branes

    OpenAIRE

    Chattaraputi, Auttakit; Englert, Francois; Houart, Laurent; Taormina, Anne

    2002-01-01

    We extend the search for fermionic subspaces of the bosonic string compactified on E8 X SO(16) lattices to include all fermionic D-branes. This extension constraints the truncation procedure previously proposed and relates the fermionic strings, supersymmetric or not, to the global structure of the SO(16) group. The specific properties of all the fermionic D-branes are found to be encoded in its universal covering, whose maximal toroid defines the configuration space torus of their mother bos...

  14. The center-of-mass angular distribution of prompt photons produced in p bar p collisions at √s = 1.8 TeV

    International Nuclear Information System (INIS)

    1993-08-01

    Data taken with the Collider Detector at Fermilab (CDF) during the 1992--1993 run of the Tevatron are used to measure the distribution of the center-of-mass angle between isolated prompt photons and the beam direction. The shape of the angular distribution for photon-jet events is found to differ from the predictions of NLO QCD

  15. Deeply bound 1s and 2p pionic states in 205Pb and determination of the s-wave part of the pion-nucleus interaction

    International Nuclear Information System (INIS)

    Geissel, H.; Gilg, H.; Gillitzer, A.

    2001-06-01

    We observed well separated 1s and 2p π - states in 205 Pb in the 206 Pb(d, 3 He) reaction at T d = 604.3 MeV. The binding energies and the widths determined are: B 1s = 6.768 ± 0.044 (stat) ± 0.041 (syst) MeV, Γ 1s = 0.778 -0.130 +0.150 (stat) ± 0.055 (syst) MeV, B 2p = 5.110 ± 0.015 (stat) ± 0.042 (syst) MeV, and Γ 2p = 0.371 ± 0.037 (stat) ± 0.048 (syst) MeV. They are used to deduce the real and imaginary strengths of the s-wave part of the pion-nucleus interaction, yielding 26.1 -1.5 +1.7 MeV as a pion mass shift in the center of 205 Pb. (orig.)

  16. Chiral Schwinger model and lattice fermionic regularizations

    International Nuclear Information System (INIS)

    Kieu, T.D.; Sen, D.; Xue, S.

    1988-01-01

    The chiral Schwinger model is studied on the lattice with use of Wilson fermions. The arbitrary mass term for the gauge boson is shown to originate from the arbitrariness of the Wilson parameter, which is required to avoid the doubling phenomenon on the lattice. The necessity for such a term is thus demonstrated in contrast to the mere admissibility as indicated by previous continuum calculations

  17. Towards critical physics in 2+1d with U(2N)-invariant fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hands, Simon [Department of Physics, College of Science, Swansea University,Singleton Park, Swansea SA2 8PP (United Kingdom)

    2016-11-04

    Interacting theories of N relativistic fermion flavors in reducible spinor representations in 2+1 spacetime dimensions are formulated on a lattice using domain wall fermions (DWF), for which a U(2N) global symmetry is recovered in the limit that the wall separation L{sub s} is made large. The Gross-Neveu (GN) model is studied in the large-N limit and an exponential acceleration of convergence to the large-L{sub s} limit is demonstrated if the usual parity-invariant mass mψ̄ψ is replaced by the U(2N)-equivalent im{sub 3}ψ̄γ{sub 3}ψ. The GN model and two lattice variants of the Thirring model are simulated for N=2 using a hybrid Monte Carlo algorithm, and studies made of the symmetry-breaking bilinear condensate and its associated susceptibility, the axial Ward identity, and the mass spectrum of both fermion and meson excitations. Comparisons are made with existing results obtained using staggered fermions. For the GN model a symmetry-breaking phase transition is observed, the Ward identity is recovered, and the spectrum found to be consistent with large-N expectations. There appears to be no obstruction to the study of critical UV fixed-point physics using DWF. For the Thirring model the Ward identity is not recovered, the spectroscopy measurements are inconclusive, and no symmetry breaking is observed all the way up to the effective strong coupling limit. This is consistent with a critical Thirring flavor number N{sub c}<2, contradicting earlier staggered fermion results.

  18. Coronal ``Wave'': Magnetic Footprint of a Coronal Mass Ejection?

    Science.gov (United States)

    Attrill, Gemma D. R.; Harra, Louise K.; van Driel-Gesztelyi, Lidia; Démoulin, Pascal

    2007-02-01

    We investigate the properties of two ``classical'' EUV Imaging Telescope (EIT) coronal waves. The two source regions of the associated coronal mass ejections (CMEs) possess opposite helicities, and the coronal waves display rotations in opposite senses. We observe deep core dimmings near the flare site and also widespread diffuse dimming, accompanying the expansion of the EIT wave. We also report a new property of these EIT waves, namely, that they display dual brightenings: persistent ones at the outermost edge of the core dimming regions and simultaneously diffuse brightenings constituting the leading edge of the coronal wave, surrounding the expanding diffuse dimmings. We show that such behavior is consistent with a diffuse EIT wave being the magnetic footprint of a CME. We propose a new mechanism where driven magnetic reconnections between the skirt of the expanding CME magnetic field and quiet-Sun magnetic loops generate the observed bright diffuse front. The dual brightenings and the widespread diffuse dimming are identified as innate characteristics of this process.

  19. Electric dipole moments of charged leptons with sterile fermions

    International Nuclear Information System (INIS)

    Abada, Asmaa; Toma, Takashi

    2016-01-01

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.

  20. Electric dipole moments of charged leptons with sterile fermions

    Energy Technology Data Exchange (ETDEWEB)

    Abada, Asmaa; Toma, Takashi [Laboratoire de Physique Théorique, CNRS, University Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)

    2016-02-26

    We address the impact of sterile fermions on charged lepton electric dipole moments. Any experimental signal of these observables calls for scenarios of physics beyond the Standard Model providing new sources of CP violation. In this work, we consider a minimal extension of the Standard Model via the addition of sterile fermions which mix with active neutrinos and we derive the corresponding analytical expressions for the electric dipole moments of charged leptons at two-loop order. Our study reveals that, in order to have a non-vanishing contribution in this framework, the minimal extension necessitates the addition of at least 2 sterile fermion states to the Standard Model field content. Our conclusion is that sterile neutrinos can give significant contributions to the charged lepton electric dipole moments, some of them lying within present and future experimental sensitivity if the masses of the non-degenerate sterile states are both above the electroweak scale. The Majorana nature of neutrinos is also important in order to allow for significative contributions to the charged lepton electric dipole moments. In our analysis we impose all available experimental and observational constraints on sterile neutrinos and we further discuss the prospect of probing this scenario at low and high energy experiments.

  1. Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media

    International Nuclear Information System (INIS)

    Chernodub, M.N.

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.

  2. Electron scattering by trapped fermionic atoms

    International Nuclear Information System (INIS)

    Wang Haijun; Jhe, Wonho

    2002-01-01

    Considering the Fermi gases of alkali-metal atoms that are trapped in a harmonic potential, we study theoretically the elastic and inelastic scattering of the electrons by the trapped Fermi atoms and present the corresponding differential cross sections. We also obtain the stopping power for the cases that the electronic state as well as the center-of-mass state are excited both separately and simultaneously. It is shown that the elastic scattering process is no longer coherent in contrast to the electron scattering by the atomic Bose-Einstein condensate (BEC). For the inelastic scattering process, on the other hand, the differential cross section is found to be proportional to the 2/3 power of the number of the trapped atoms. In particular, the trapped fermionic atoms display the effect of ''Fermi surface,'' that is, only the energy levels near the Fermi energy have dominant contributions to the scattering process. Moreover, it is found that the stopping power scales as the 7/6 power of the atomic number. These results are fundamentally different from those of the electron scattering by the atomic BEC, mainly due to the different statistics obeyed by the trapped atomic systems

  3. Feynman rules for fermion-number-violating interactions

    International Nuclear Information System (INIS)

    Denner, A.; Eck, H.; Hahn, O.; Kueblbeck, J.

    1992-01-01

    We present simple algorithmic Feynman rules for fermion-number-violating interactions. They do not involve explicit charge-conjugation matrices and resemble closely the familiar rules for Dirac fermions. We insist on a fermion flow through the graphs along fermion lines and get the correct relative signs between different interfering Feynman graphs as in the case of Dirac fermions. We only need the familiar Dirac propagator and fewer vertices than in the usual treatment of fermion-number-violating interactions. (orig.)

  4. More on random-lattice fermions

    International Nuclear Information System (INIS)

    Kieu, T.D.; Institute for Advanced Study, Princeton, NJ; Markham, J.F.; Paranavitane, C.B.

    1995-01-01

    The lattice fermion determinants, in a given background gauge field, are evaluated for two different kinds of random lattices and compared to those of naive and wilson fermions in the continuum limit. While the fermion doubling is confirmed on one kind of lattices, there is positive evidence that it may be absent for the other, at least for vector interactions in two dimensions. Combined with previous studies, arbitrary randomness by itself is shown to be not a sufficient condition to remove the fermion doublers. 8 refs., 3 figs

  5. Non-perturbative renormalisation of left-left four-fermion operators with Neuberger fermions

    International Nuclear Information System (INIS)

    Dimopoulos, P.; Giusti, L.; Hernandez, P.; Palombi, F.; Pena, C.; Vladikas, A.; Wennekers, J.; Wittig, H.

    2006-01-01

    We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the ΔS=1 and ΔS=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays

  6. P-wave excited {B}_{c}^{* * } meson photoproduction at the LHeC

    Science.gov (United States)

    Kai, He; Huan-Yu, Bi; Ren-You, Zhang; Xiao-Zhou, Li; Wen-Gan, Ma

    2018-05-01

    As an important sequential work of the S-wave {B}c(* ) ({}1{S}0({}3{S}1) ) meson production at the large hadron electron collider (LHeC), we investigate the production of the P-wave excited {B}c* * states (1 P 1 and 3 P J with J = 0, 1, 2) via photoproduction mechanism within the framework of nonrelativistic QCD at the LHeC. Generally, the {e}-+P\\to γ +g\\to {B}c* * +b+\\bar{c} process is considered as the main production mechanism at an electron–proton collider due to the large luminosity of the gluon. However, according to our experience on the S-wave {B}c(* ) meson production at the LHeC, the extrinsic production mechanism, i.e., {e}-+P\\to γ +c\\to {B}c* * +b and {e}-+P\\to γ +\\bar{b} \\to {B}c* * +\\bar{c}, could also provide dominating contributions at low p T region. A careful treatment between these channels is performed and the results on total and differential cross sections, together with main uncertainties are discussed. Taking the quark masses m b = 4.90 ± 0.40 GeV and m c = 1.50 ± 0.20 GeV into account and summing up all the production channels, we expect to accumulate ({2.48}-1.75+3.55)× {10}4 {B}c* * ({}1{P}1), ({1.14}-0.82+1.49)× {10}4 {B}c* * ({}3{P}0),({2.38}-1.74+3.39)× {10}4 {B}c* * ({}3{P}1) and ({5.59}-3.93+7.84)× {10}4 {B}c* * ({}3{P}2) events at the \\sqrt{S}=1.30 {{T}}{{e}}{{V}} LHeC in one operation year with luminosity { \\mathcal L }={10}33 cm‑2 s‑1. With such sizable events, it is worth studying the properties of excited P-wave {B}c* * states at the LHeC.

  7. Elimination of spurious lattice fermion solutions and noncompact lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.D.

    1997-09-22

    It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.

  8. Inverted radiative hierarchy of quark masses

    International Nuclear Information System (INIS)

    Berezhiani, Z.G.; Rattazzi, R.

    1992-01-01

    Inverted radiative hierarchy of quark masses is investigated. The authors suggest that the mass hierarchy is first generated in a sector of heavy isosinglet fermions due to radiative effects and then projected in the inverted way to the usual quarks by means of a universal seesaw. The simple left-right symmetric gauge model is presented with the P- and CP-parities and the exact isotopical symmetry which are softly (or spontaneously) broken in the Higgs potential. This approach naturally explains the observed pattern of quark masses and mixing, providing the quantitatively correct formula for the Cabibbo angle. Top quark is predicted to be in the 90-150 GeV range

  9. Three mirror pairs of fermion families

    International Nuclear Information System (INIS)

    Montvay, I.

    1988-01-01

    A simple model with three mirror pairs of fermion families is considered which allows for a substantial mixing between the mirror fermion partners without conflicting with known phenomenology. (orig.)

  10. Neutron electric dipole moment using N{sub f}=2+1+1 twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, C.; Athenodorou, A.; Constantinou, M.; Hadjiyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Koutsou, G. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Ottnad, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Petschlies, M. [The Cyprus Institute, Nicosia (Cyprus). Computation-based Science and Technology Research Center; Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen- und Kernphysik; Bonn Univ. (Germany). Bethe Center for Theoretical Physics

    2016-03-15

    We evaluate the neutron electric dipole moment vertical stroke vector d{sub N} vertical stroke using lattice QCD techniques. The gauge configurations analyzed are produced by the European Twisted Mass Collaboration using N{sub f}=2+1+1 twisted mass fermions at one value of the lattice spacing of a ≅0.082 fm and a light quark mass corresponding to m{sub π}≅373 MeV. Our approach to extract the neutron electric dipole moment is based on the calculation of the CP-odd electromagnetic form factor F{sub 3}(Q{sup 2}) for small values of the vacuum angle θ in the limit of zero Euclidean momentum transfer Q{sup 2}. The limit Q{sup 2}→0 is realized either by adopting a parameterization of the momentum dependence of F{sub 3}(Q{sup 2}) and performing a fit, or by employing new position space methods, which involve the elimination of the kinematical momentum factor in front of F{sub 3}(Q{sup 2}). The computation in the presence of a CP-violating term requires the evaluation of the topological charge Q. This is computed by applying the cooling technique and the gradient flow with three different actions, namely the Wilson, the Symanzik tree-level improved and the Iwasaki action. We demonstrate that cooling and gradient flow give equivalent results for the neutron electric dipole moment. Our analysis yields a value of vertical stroke vector d{sub N} vertical stroke =0.045(6)(1) anti θ e.fm for the ensemble with m{sub π}=373 MeV considered.

  11. WTO — a deterministic approach to 4-fermion physics

    Science.gov (United States)

    Passarino, Giampiero

    1996-09-01

    The program WTO, which is designed for computing cross sections and other relevant observables in the e+e- annihilation into four fermions, is described. The various quantities are computed over both a completely inclusive experimental set-up and a realistic one, i.e. with cuts on the final state energies, final state angles, scattering angles and final state invariant masses. Initial state QED corrections are included by means of the structure function approach while final state QCD corrections are applicable in their naive formulation. A gauge restoring mechanism is included according to the Fermion-Loop scheme. The program structure is highly modular and particular care has been devoted to computing efficiency and speed.

  12. Functional renormalization group study of fluctuation effects in fermionic superfluids

    Energy Technology Data Exchange (ETDEWEB)

    Eberlein, Andreas

    2013-03-22

    . The two-loop approximation captures the singular infrared behaviour that is expected in a fermionic superfluid at zero temperature. For the repulsive Hubbard model at weak coupling, the momentum dependence of the two-particle vertex and the d-wave superfluid gap are determined on one-loop level as a function of the interaction, the next-nearest neighbour hopping and the fermionic density. The results for the critical scales and superfluid gaps are in qualitative agreement with the literature and suggest the existence of an optimal value of the next-nearest neighbour hopping for pairing.

  13. Fermion number non-conservation and cold neutral fermionic matter in (V-A) gauge theories

    International Nuclear Information System (INIS)

    Matveev, V.A.; Rubakov, V.A.; Tavkhelidze, A.N.; Tokarev, V.F.

    1987-01-01

    It is shown that in four-dimensional abelian (V-A) theories, the ground state of cold neutral fermionic matter is an anomalous state containing domains of abnormal phase surrounded by the normal vacuum. Inside these domains, there exists a gauge field condensate which makes real fermions disappear both inside and outside the domains. In non-abelian theories, the abnormal matter is unstable in its turn, and the system rolls back down into the normal state with a small number of fermions above the topologically non-trivial vacuum. Thus, in several non-abelian gauge theories, the fermion number density of cold neutral matter cannot exceed some critical value. (orig.)

  14. Higgs inflation, seesaw physics and fermion dark matter

    Directory of Open Access Journals (Sweden)

    Nobuchika Okada

    2015-07-01

    Full Text Available We present an inflationary model in which the Standard Model Higgs doublet field with non-minimal coupling to gravity drives inflation, and the effective Higgs potential is stabilized by new physics which includes a dark matter particle and right-handed neutrinos for the seesaw mechanism. All of the new particles are fermions, so that the Higgs doublet is the unique inflaton candidate. With central values for the masses of the top quark and the Higgs boson, the renormalization group improved Higgs potential is employed to yield the scalar spectral index ns≃0.968, the tensor-to-scalar ratio r≃0.003, and the running of the spectral index α=dns/dln⁡k≃−5.2×10−4 for the number of e-folds N0=60 (ns≃0.962, r≃0.004, and α≃−7.5×10−4 for N0=50. The fairly low value of r≃0.003 predicted in this class of models means that the ongoing space and land based experiments are not expected to observe gravity waves generated during inflation.

  15. Sensitivity analysis of P-waves and S-waves to gas hydrate in the Shenhu area using OBS

    Science.gov (United States)

    Xing, Lei; Liu, Xueqin; Zhang, Jin; Liu, Huaishan; Zhang, Jing; Li, Zizheng; Wang, Jianhua

    2018-02-01

    Compared to towed streamers, ocean-bottom seismometers (OBS) obtain both S-wave data and richer wavefield information. In this paper, the induced polarization method is used to conduct wavefield separation on OBS data obtained from the Shenhu area in the South China Sea. A comparison of the changes in P- and S-waves, and a comprehensive analysis of geological factors within the area, enable analysis and description of the occurrence of natural gas hydrate in the study area. Results show an increase in P-wave velocity when natural gas hydrate exists in the formation, whereas the S-wave velocity remains almost constant, as S-waves can only propagate through the rock skeleton. Therefore, the bottom-simulating reflection (BSR) response of the P-wave is better than that of the S-wave in the frequency analysis profile. In a wide-angle section, the refractive wave of the hydrate layer is evident when using P-wave components but identification is difficult with S-wave components. This velocity model illustrates the sensitivity of P- and S-wave components to gas hydrate. The use of this polarization method and results of analysis provide technical and theoretical support for research on hydrate deposits and other geological features in the Shenhu area.

  16. Aharonov-Bohm effect for a fermion field in a planar black hole ''spacetime''

    Energy Technology Data Exchange (ETDEWEB)

    Anacleto, M.A.; Mohammadi, A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil); Brito, F.A. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil); Universidade Federal da Paraiba, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, Paraiba (Brazil); Passos, E. [Universidade Federal de Campina Grande, Departamento de Fisica, Caixa Postal 10071, Campina Grande, Paraiba (Brazil); Universidade Federal do Rio de Janeiro, Instituto de Fisica, Caixa Postal 21945, Rio de Janeiro (Brazil)

    2017-04-15

    In this paper we consider the dynamics of a massive spinor field in the background of the acoustic black hole spacetime. Although this effective metric is acoustic and describes the propagation of sound waves, it can be considered as a toy model for the gravitational black hole. In this manner, we study the properties of the dynamics of the fermion field in this ''gravitational'' rotating black hole as well as the vortex background. We compute the differential cross section through the use of the partial wave approach and show that an effect similar to the gravitational Aharonov-Bohm effect occurs for the massive fermion field moving in this effective metric. We discuss the limiting cases and compare the results with the massless scalar field case. (orig.)

  17. SSB of Scale Symmetry, Fermion Families and Quintessence without the Long-Range Force Problem

    Science.gov (United States)

    Guendelman, E. I.; Kaganovich, A. B.

    We study a scale-invariant two measures theory where a dilaton field φ has no explicit potentials. The scale transformations include the translation of a dilaton φ-->φ+ const. The theory demonstrates a new mechanism for generation of the exponential potential: in the conformal Einstein frame (CEF), after SSB of scale invariance, the theory develops the exponential potential and, in general, the nonlinear kinetic term is generated as well. The scale symmetry does not allow the appearance of terms breaking the exponential shape of the potential that solves the problem of the flatness of the scalar field potential in the context of quintessential scenarios. As examples, two different possibilities for the choice of the dimensionless parameters are presented where the theory permits to get interesting cosmological results. For the first choice, the theory has standard scaling solutions for φ usually used in the context of the quintessential scenario. For the second choice, the theory allows three different solutions, one of which is a scaling solution with equation of state pφ=wρφ where w is predicted to be restricted by -1fermionic matter dominates (as compared to the dilatonic contribution) is analyzed. There it is found that starting from a single fermionic field we obtain exactly three different types of spin 1/2 particles in CEF that appears to suggest a new approach to the family problem of particle physics. It is automatically achieved that for two of them, fermion masses are constants, the energy-momentum tensor is canonical and the ``fifth force'' is absent. For the third type of particles, a fermionic self-interaction appears as a result of SSB of scale invariance.

  18. Magnetism and unconventional superconductivity in CenMmIn3n+2m heavy-fermion crystals

    International Nuclear Information System (INIS)

    Thompson, J.D.; Nicklas, M.; Bianchi, A.; Movshovich, R.; Llobet, A.; Bao, W.; Malinowski, A.; Hundley, M.F.; Moreno, N.O.; Pagliuso, P.G.; Sarrao, J.L.; Nakatsuji, S.; Fisk, Z.; Borth, R.; Lengyel, E.; Oeschler, N.; Sparn, G.; Steglich, F.

    2003-01-01

    We review magnetic, superconducting and non-Fermi-liquid properties of the structurally layered heavy-fermion compounds Ce n M m In 3n+2m (M=Co,Rh,Ir). These properties suggest d-wave superconductivity and proximity to an antiferromagetic quantum-critical point

  19. Squeezing a wave packet with an angular-dependent mass

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Alexandre G M [Departamento de Ciencias Exatas, Universidade Federal Fluminense, Av. dos Trabalhadores 420, Volta Redonda RJ, CEP 27255-125 (Brazil)], E-mail: agmschmidt@gmail.com, E-mail: agmschmidt@pq.cnpq.br

    2009-06-19

    We present a new effect of position-dependent mass (PDM) systems: the possibility of creating squeezed wave packets at the partial revival times. We solve exactly the PDM Schroedinger equation for the two-dimensional quantum rotor with two effective masses {mu}({theta}), both free and interacting with a uniform electric field, and present their energy eigenvalues and eigenfunctions in terms of Mathieu functions. For the first one, in order to squeeze the wave packet it is necessary to apply an electric field; for the second one such an effect can be achieved without the field.

  20. Squeezing a wave packet with an angular-dependent mass

    International Nuclear Information System (INIS)

    Schmidt, Alexandre G M

    2009-01-01

    We present a new effect of position-dependent mass (PDM) systems: the possibility of creating squeezed wave packets at the partial revival times. We solve exactly the PDM Schroedinger equation for the two-dimensional quantum rotor with two effective masses μ(θ), both free and interacting with a uniform electric field, and present their energy eigenvalues and eigenfunctions in terms of Mathieu functions. For the first one, in order to squeeze the wave packet it is necessary to apply an electric field; for the second one such an effect can be achieved without the field

  1. Gravitational Waves and Intermediate-mass Black Hole Retention in Globular Clusters

    Science.gov (United States)

    Fragione, Giacomo; Ginsburg, Idan; Kocsis, Bence

    2018-04-01

    The recent discovery of gravitational waves (GWs) has opened new horizons for physics. Current and upcoming missions, such as LIGO, VIRGO, KAGRA, and LISA, promise to shed light on black holes of every size from stellar mass (SBH) sizes up to supermassive black holes. The intermediate-mass black hole (IMBH) family has not been detected beyond any reasonable doubt. Recent analyses suggest observational evidence for the presence of IMBHs in the centers of two Galactic globular clusters (GCs). In this paper, we investigate the possibility that GCs were born with a central IMBH, which undergoes repeated merger events with SBHs in the cluster core. By means of a semi-analytical method, we follow the evolution of the primordial cluster population in the galactic potential and the mergers of the binary IMBH-SBH systems. Our models predict ≈1000 IMBHs within 1 kpc from the galactic center and show that the IMBH-SBH merger rate density changes from { \\mathcal R }≈ 1000 Gpc‑3 yr‑1 beyond z ≈ 2 to { \\mathcal R }≈ 1{--}10 Gpc‑3 yr‑1 at z ≈ 0. The rates at low redshifts may be significantly higher if young massive star clusters host IMBHs. The merger rates are dominated by IMBHs with masses between 103 and 104 M ⊙. Currently, there are no LIGO/VIRGO upper limits for GW sources in this mass range, but our results show that at design sensitivity, these instruments will detect IMBH-SBH mergers in the coming years. LISA and the Einstein Telescope will be best suited to detect these events. The inspirals of IMBH-SBH systems may also generate an unresolved GW background.

  2. Fermions in light front transverse lattice quantum chromodynamics

    Indian Academy of Sciences (India)

    Ur(x-aˆr)]}. (3). After eliminating the constraint fields we arrive at the transverse lattice Hamiltonian. P. =P. 1 +P. 2 ,. (4) where P. 1 arises from the elimination of ψ (hence sensitive to how fermions are put on the transverse lattice) and P. 2 contains Wilson plaquette term and the terms arising from the elimination of A . Explicitly.

  3. Fermionic extensions of the Standard Model in light of the Higgs couplings

    Science.gov (United States)

    Bizot, Nicolas; Frigerio, Michele

    2016-01-01

    As the Higgs boson properties settle, the constraints on the Standard Model extensions tighten. We consider all possible new fermions that can couple to the Higgs, inspecting sets of up to four chiral multiplets. We confront them with direct collider searches, electroweak precision tests, and current knowledge of the Higgs couplings. The focus is on scenarios that may depart from the decoupling limit of very large masses and vanishing mixing, as they offer the best prospects for detection. We identify exotic chiral families that may receive a mass from the Higgs only, still in agreement with the hγγ signal strength. A mixing θ between the Standard Model and non-chiral fermions induces order θ 2 deviations in the Higgs couplings. The mixing can be as large as θ ˜ 0 .5 in case of custodial protection of the Z couplings or accidental cancellation in the oblique parameters. We also notice some intriguing effects for much smaller values of θ, especially in the lepton sector. Our survey includes a number of unconventional pairs of vector-like and Majorana fermions coupled through the Higgs, that may induce order one corrections to the Higgs radiative couplings. We single out the regions of parameters where hγγ and hgg are unaffected, while the hγZ signal strength is significantly modified, turning a few times larger than in the Standard Model in two cases. The second run of the LHC will effectively test most of these scenarios.

  4. Strongly interacting fermion systems. Progress report, November 15, 1994--November 14, 1995

    International Nuclear Information System (INIS)

    1994-01-01

    This paper is the progress report for the period November 15, 1993 to November 14, 1994 for a program which relates to studies of strongly interacting fermion systems. The author has made significant progress in three areas, which are discussed in the report. These are: (1) optical properties in the open-quotes electronic structure program,close quotes calculating optical properties of quartz and urea; (2) quasi-one-dimensional systems, discussing the tuning of the large-density-wave or Peierls distortion in transition-metal linear chain compounds and the universal subgap optical absorptance of classes of quasi-one-dimensional compounds; and (3) other strongly interaction fermion systems, emphasizing the study of the effect of many-body interactions on the low-temperature properties of metals and superconductors

  5. Microscopic theoretical study of frequency dependent dielectric constant of heavy fermion systems

    Science.gov (United States)

    Shadangi, Keshab Chandra; Rout, G. C.

    2017-05-01

    The dielectric polarization and the dielectric constant plays a vital role in the deciding the properties of the Heavy Fermion Systems. In the present communication we consider the periodic Anderson's Model which consists of conduction electron kinetic energy, localized f-electron kinetic energy and the hybridization between the conduction and localized electrons, besides the Coulomb correlation energy. We calculate dielectric polarization which involves two particle Green's functions which are calculated by using Zubarev's Green's function technique. Using the equations of motion of the fermion electron operators. Finally, the temperature and frequency dependent dielectric constant is calculated from the dielectric polarization function. The charge susceptibility and dielectric constant are computed numerically for different physical parameters like the position (Ef) of the f-electron level with respect to fermi level, the strength of the hybridization (V) between the conduction and localized f-electrons, Coulomb correlation potential temperature and optical phonon wave vector (q). The results will be discussed in a reference to the experimental observations of the dielectric constants.

  6. Ultracold fermion race is on

    International Nuclear Information System (INIS)

    Hulet, R.

    1999-01-01

    At the quantum level, particles behave very differently depending on whether their spin angular momentum is an integer or a half-integer. Half-integer spin particles are known as fermions, and include all the constituents of atoms: electrons, protons and neutrons. Bosons, on the other hand, are particles with integer spin, such as photons. Atoms are fermions if they are composed of an odd number of particles, like helium-3 or lithium-6. If they have an even number of constituents, like hydrogen, helium-4 or lithium-7, they are known as bosons. Fermions and bosons behave in profoundly different ways under certain conditions, especially at low temperatures. Four years ago, physicists created a Bose condensate, a quantum degenerate gas of bosons. Now the race is on to do the same with fermions. Deborah Jin's group at the US National Institute of Standards and Technology (NIST) and the University of Colorado has cooled a fermion gas to the lowest temperature yet (B DeMarco 1999 Phys. Rev. Lett. 82 4208). And John Thomas and co-workers at Duke University have set a new record for the length of time that fermions can be trapped using lasers (K O'Hara 1999 Phys. Rev. Lett. 82 4204). In this article the author describes the latest advances in the race to create a quantum degenerate gas of fermions. (UK)

  7. Consequences of the center-of-mass correction in nuclear mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Reinhard, P.G.; Maruhn, J.A.

    2000-01-01

    We study the influence of the scheme for the correction for spurious center-of-mass motion on the fit of effective interactions for self-consistent nuclear mean-field calculations. We find that interactions with very simple center-of-mass correction have significantly larger surface coefficients than interactions for which the center-of-mass correction was calculated for the actual many-body state during the fit. The reason for that is that the effective interaction has to counteract the wrong trends with nucleon number of all simplified schemes for center-of-mass correction which puts a wrong trend with mass number into the effective interaction itself. The effect becomes clearly visible when looking at the deformation energy of largely deformed systems, e.g. superdeformed states or fission barriers of heavy nuclei. (orig.)

  8. Quantum corrections to ward identities of chronological AVV- and AAA-current correlators for nondegenerate many-fermion systems in the four-dimensional world

    International Nuclear Information System (INIS)

    Kucheryavij, V.Yi.

    1994-01-01

    The explicit form of nontrivial quantum corrections to Ward identities for AVV- and AAA-current correlators in the four-dimensional world for nondegenerate many-fermion systems of general type is obtained. The characteristics of all nontrivial quantum corrections for nondegenerate two-flavour fermion systems are classified and described. In particular, the well-known results follow from ours for the trivial quantum corrections (anomalies) in the case of the degenerate spectrum of fermion masses

  9. Finite boson mappings of fermion systems

    International Nuclear Information System (INIS)

    Johnson, C.W.; Ginocchio, J.N.

    1994-01-01

    We discuss a general mapping of fermion pairs to bosons that preserves Hermitian conjugation, with an eye towards producing finite and usable boson Hamiltonians that approximate well the low-energy dynamics of a fermion Hamiltonian

  10. Suppressing the spurious states of the center of mass

    International Nuclear Information System (INIS)

    Dita, P.; Micu, L.

    2008-01-01

    Following Dirac's ideas concerning the quantization of constrained systems, we suggest to replace the free center of mass Hamiltonian HCM by another operator which commutes with all the elements of the algebra generated via the commutation relations by HCM and the constraints which fix the center of mass position. We show that the new Hamiltonian is a multiple of the identity operator and, as a result, its unique effect is to raise the internal energy levels by a constant amount. (authors)

  11. Data collected by the Shock Wave Data Center

    International Nuclear Information System (INIS)

    Van Thiel, M.

    1976-01-01

    The Shock Wave Data Center of the Lawrence Livermore Lab collects and disseminates P.V.E. data obtained with shock waves. It has been in existence since 1964. An extensive number of papers reporting shock data had become available by that time. This was so in spite of the fact that the technology was developed only during the 2nd World War. Collection and partial evaluation of this data was therefore of value to facilitate its use by our laboratory and others who were involved with science and engineering in the high pressure field. The pressure range of the data collected is quite extensive and extends from 1 MPa to 1 TPa. One very important difference between shock wave compression data and those obtained with static presses must be emphasized, since it is often not fully appreciated. The pressure-volume locus of shock wave states (Hugoniot), which is obtained by passing increasingly stronger shocks into samples with the same initial state, rapidly increases in temperature as the shocks get stronger and the pressure and compression get higher. As a consequence, this Hugoniot locus must have a lower compressibility than isotherms obtained under static conditions. In fact, if porous or otherwise expanded samples are used, states at or near the critical region of metals can be obtained if the shock pressure is allowed to decrease in a controlled manner. Such pressure release measurements have so far only been utilized to a limited extent since the compression process has been of primary interest to workers in the field. As the use of this data in the energy field increases, however, such data will be needed more often. Applications are discussed that involve transient high pressure processes, practically all of which involve both compressed and expanded states

  12. ESTIMA, Neutron Width Level Spacing, Neutron Strength Function of S- Wave, P-Wave Resonances

    International Nuclear Information System (INIS)

    Fort, E.

    1982-01-01

    1 - Description of problem or function: ESTIMA calculates level spacing and neutron strength function of a mixed sequence of s- and p-wave resonances given a set of neutron widths as input parameters. Three algorithms are used, two of which calculate s-wave average parameters and assume that the reduced widths obey a Porter-Thomas distribution truncated by a minimum detection threshold. The third performs a maximum likelihood fit to a truncated chi-squared distribution of any specified number of degrees of freedom, i.e. it can be used for calculating s-wave or p-wave average parameters. Resonances of undeclared angular orbital momentum are divided into groups of probable s-wave and probable p-wave by a simple application of Bayes' Theorem. 2 - Method of solution: Three algorithms are used: i) GAMN method, based on simple moments properties of a Porter-Thomas distribution. ii) Missing Level Estimator, a simplified version of the algorithm used by the program BAYESZ. iii) ESTIMA, a maximum likelihood fit. 3 - Restrictions on the complexity of the problem: A maximum of 400 resonances is allowed in the version available from NEADB, however this restriction can be relaxed by increasing array dimensions

  13. Mirror fermions and cosmology

    International Nuclear Information System (INIS)

    Senjanovic, G.; Virginia Polytechnic Inst. and State Univ., Blacksburg

    1984-07-01

    Extended supersymmetry, Kaluza-Klein theory and family unification all suggest the existence of mirror fermions, with same quantum numbers but opposite helicities from ordinary fermions. The laboratory and especially cosmological implications of such particles are reviewed and summarized. (author)

  14. Fermion bag solutions to some unsolved sign problems

    Science.gov (United States)

    Li, Anyi; Chandrasekharan, Shailesh

    2012-03-01

    Some interesting lattice four-fermion models containing N flavors of staggered fermions with Z2 and U(1) chiral symmetries suffer from sign problems in the auxiliary field approach. Earlier calculations have either ignored these sign problems or have circumvented them by adding conjugate fermion fields which changes the model. In this talk we show that the recently proposed fermion bag approach solves these sign problems. The basic idea of the new approach is to collect unpaired fermionic degrees of freedom inside a fermion bag. A resummation of all fermion world lines inside the bag is then sufficient to solve the sign problems. The fermion bag approach provides new opportunities to solve in these ``unsolved'' four-fermion models in the chiral limit efficiently.

  15. Transference of Fermi Contour Anisotropy to Composite Fermions.

    Science.gov (United States)

    Jo, Insun; Rosales, K A Villegas; Mueed, M A; Pfeiffer, L N; West, K W; Baldwin, K W; Winkler, R; Padmanabhan, Medini; Shayegan, M

    2017-07-07

    There has been a surge of recent interest in the role of anisotropy in interaction-induced phenomena in two-dimensional (2D) charged carrier systems. A fundamental question is how an anisotropy in the energy-band structure of the carriers at zero magnetic field affects the properties of the interacting particles at high fields, in particular of the composite fermions (CFs) and the fractional quantum Hall states (FQHSs). We demonstrate here tunable anisotropy for holes and hole-flux CFs confined to GaAs quantum wells, via applying in situ in-plane strain and measuring their Fermi wave vector anisotropy through commensurability oscillations. For strains on the order of 10^{-4} we observe significant deformations of the shapes of the Fermi contours for both holes and CFs. The measured Fermi contour anisotropy for CFs at high magnetic field (α_{CF}) is less than the anisotropy of their low-field hole (fermion) counterparts (α_{F}), and closely follows the relation α_{CF}=sqrt[α_{F}]. The energy gap measured for the ν=2/3 FQHS, on the other hand, is nearly unaffected by the Fermi contour anisotropy up to α_{F}∼3.3, the highest anisotropy achieved in our experiments.

  16. Asymptotic fermion propagator in massless three-dimensional QED

    International Nuclear Information System (INIS)

    Hand, B.J.

    1993-01-01

    Massless quantum electrodynamics in two spatial and one time dimensions has a logarithmically confining static Coulomb potential, and thus nontrivial infrared behavior. We apply a technique developed for ordinary four-dimensional quantum electrodynamics in which the charged asymptotic states in the theory are dressed with soft vector bosons, in order to improve the representation of the infrared dynamics in perturbation theory. The resulting modification to the mass-shell behavior of the fermion propagator is determined, with the result that the propagator no longer possesses a mass-shell singularity

  17. Gauge Trimming of Neutrino Masses

    International Nuclear Information System (INIS)

    Chen, Mu-Chun; de Gouvea, Andre; Dobrescu, Bogdan A.

    2006-01-01

    We show that under a new U(1) gauge symmetry, which is non-anomalous in the presence of one ''right-handed neutrino'' per generation and consistent with the standard model Yukawa couplings, the most general fermion charges are determined in terms of four rational parameters. This generalization of the B-L symmetry with generation-dependent lepton charges leads to neutrino masses induced by operators of high dimensionality. Neutrino masses are thus naturally small without invoking physics at energies above the TeV scale, whether neutrinos are Majorana or Dirac fermions. This ''Leptocratic'' Model predicts the existence of light quasi-sterile neutrinos with consequences for cosmology, and implies that collider experiments may reveal the origin of neutrino masses

  18. The Kaon B-parameter from Two-Flavour Dynamical Domain Wall Fermions

    International Nuclear Information System (INIS)

    Dawson, C.

    2005-01-01

    We report on the calculation of the kaon B-parameter using two dynamical flavours of domain wall fermions. Our analysis is based on three ensembles of configurations, each consisting of about 5,000 HMC trajectories, with a lattice spacing of approximately 1.7 GeV for 16 3 x32 lattices; dynamical quark masses range from approximately the strange quark mass to half of that. Both degenerate and non-degenerate quark masses are used for the kaons

  19. Quadrupole mass detector in the field of weak plane gravitational waves

    International Nuclear Information System (INIS)

    Borisova, L.B.

    1978-01-01

    Studied is the behaviour of the system which consists of two test particles connected by a string (quadrupole mass detector) and placed in the field of weak plane monochromatic gravitational waves. It is shown that at cross orientation of the detector the gravitational wave effecting such a system excites oscillations in it with the frequency equal to that of the gravitational wave source. The role of the driving force is played by the periodical change with the time of the equilibrium position. The gravitational wave does not influence the detector at its longitudinal orientation

  20. Warm and cold fermionic dark matter via freeze-in

    International Nuclear Information System (INIS)

    Klasen, Michael; Yaguna, Carlos E.

    2013-01-01

    The freeze-in mechanism of dark matter production provides a simple and intriguing alternative to the WIMP paradigm. In this paper, we analyze whether freeze-in can be used to account for the dark matter in the so-called singlet fermionic model. In it, the SM is extended with only two additional fields, a singlet scalar that mixes with the Higgs boson, and the dark matter particle, a fermion assumed to be odd under a Z 2 symmetry. After numerically studying the generation of dark matter, we analyze the dependence of the relic density with respect to all the free parameters of the model. These results are then used to obtain the regions of the parameter space that are compatible with the dark matter constraint. We demonstrate that the observed dark matter abundance can be explained via freeze-in over a wide range of masses extending down to the keV range. As a result, warm and cold dark matter can be obtained in this model. It is also possible to have dark matter masses well above the unitarity bound for WIMPs