Lattice simulation of a center symmetric three dimensional effective theory for SU(2) Yang-Mills
Energy Technology Data Exchange (ETDEWEB)
Smith, Dominik
2010-11-17
We present lattice simulations of a center symmetric dimensionally reduced effective field theory for SU(2) Yang Mills which employ thermal Wilson lines and three-dimensional magnetic fields as fundamental degrees of freedom. The action is composed of a gauge invariant kinetic term, spatial gauge fields and a potential for theWilson line which includes a ''fuzzy'' bag term to generate non-perturbative fluctuations between Z(2) degenerate ground states. The model is studied in the limit where the gauge fields are set to zero as well as the full model with gauge fields. We confirm that, at moderately weak coupling, the ''fuzzy'' bag term leads to eigenvalue repulsion in a finite region above the deconfining phase transition which shrinks in the extreme weak-coupling limit. A non-trivial Z(N) symmetric vacuum arises in the confined phase. The effective potential for the Polyakov loop in the theory with gauge fields is extracted from the simulations including all modes of the loop as well as for cooled configurations where the hard modes have been averaged out. The former is found to exhibit a non-analytic contribution while the latter can be described by a mean-field like ansatz with quadratic and quartic terms, plus a Vandermonde potential which depends upon the location within the phase diagram. Other results include the exact location of the phase boundary in the plane spanned by the coupling parameters, correlation lengths of several operators in the magnetic and electric sectors and the spatial string tension. We also present results from simulations of the full 4D Yang-Mills theory and attempt to make a qualitative comparison to the 3D effective theory. (orig.)
Three-dimensional modes of a symmetric nonlinear plane waveguide
Akhmediev, N. N.; Nabiev, R. F.; Popov, Yu. M.
1989-01-01
The three-dimensional problem of a symmetric nonlinear plane waveguide, which consist of a linear medium layer surrounded by nonlinear media, is investigated. The stationary solution of this problem is a mode whose field is falling to zero at infinity in all directions perpendicular to the propagation direction. The even, odd and assymetrical solutions of the problem are obtained.
The Topology of Three-Dimensional Symmetric Tensor Fields
Lavin, Yingmei; Levy, Yuval; Hesselink, Lambertus
1994-01-01
We study the topology of 3-D symmetric tensor fields. The goal is to represent their complex structure by a simple set of carefully chosen points and lines analogous to vector field topology. The basic constituents of tensor topology are the degenerate points, or points where eigenvalues are equal to each other. First, we introduce a new method for locating 3-D degenerate points. We then extract the topological skeletons of the eigenvector fields and use them for a compact, comprehensive description of the tensor field. Finally, we demonstrate the use of tensor field topology for the interpretation of the two-force Boussinesq problem.
Three-dimensional topological solitons in PT-symmetric optical lattices
Kartashov, Yaroslav V; Huang, Guoxiang; Torner, Lluis
2016-01-01
We address the properties of fully three-dimensional solitons in complex parity-time (PT)-symmetric periodic lattices with focusing Kerr nonlinearity, and uncover that such lattices can stabilize both, fundamental and vortex-carrying soliton states. The imaginary part of the lattice induces internal currents in the solitons that strongly affect their domains of existence and stability. The domain of stability for fundamental solitons can extend nearly up to the PT-symmetry breaking point, where the linear lattice spectrum becomes complex. Vortex solitons feature spatially asymmetric profiles in the PT-symmetric lattices, but they are found to still exist as stable states within narrow regions. Our results provide the first example of continuous families of stable three-dimensional propagating solitons supported by complex potentials.
Yoon, Seokkwan; Kwak, Dochan
1991-01-01
A numerical method based on the pseudocompressibility concept is developed for solving the three-dimensional incompressible Navier-Stokes equations using the lower-upper symmetric-Gauss-Seidel implicit scheme. Very high efficiency is achieved in a new flow solver, INS3D-LU code, by accomplishing the complete vectorizability of the algorithm on oblique planes of sweep in three dimensions.
Three-dimensional scrape off layer transport in the helically symmetric experiment HSX
Akerson, A. R.; Bader, A.; Hegna, C. C.; Schmitz, O.; Stephey, L. A.; Anderson, D. T.; Anderson, F. S. B.; Likin, K. M.
2016-08-01
The edge topology of helically symmetric experiment (HSX) in the quasi-helically symmetric configuration is characterized by an 8/7 magnetic island remnant embedded in a short connection length scrape-off layer (SOL) domain. A 2D mapping of edge plasma profiles within this heterogeneous SOL has been constructed using a movable, multi-pin Langmuir probe. Comparisons of these measurements to edge simulations using the EMC3-EIRENE 3D plasma fluid and kinetic neutral gas transport model have been performed. The measurements provide strong evidence that particle transport is diffusive within the island region and dominantly convective in the SOL region. Measurements indicate that phenomenological cross-field diffusion coefficients are low in the SOL region between the last closed flux surface and edge island (i.e. {{D}\\bot}≈ 0.03 m2 s-1). This level of transport was found to increase by a factor of two when a limiter is inserted almost completely into the magnetic island. A reduction in gradients of the edge electrostatic plasma potential was also measured in this configuration, suggesting that the reduced electric field may be linked to the increased cross-field transport observed.
Wang, Tongjiang; Davila, Joseph M.
2014-01-01
Determining the coronal electron density by the inversion of white-light polarized brightness (pB) measurements by coronagraphs is a classic problem in solar physics. An inversion technique based on the spherically symmetric geometry (spherically symmetric inversion, SSI) was developed in the 1950s and has been widely applied to interpret various observations. However, to date there is no study of the uncertainty estimation of this method. We here present the detailed assessment of this method using a three-dimensional (3D) electron density in the corona from 1.5 to 4 solar radius as a model, which is reconstructed by a tomography method from STEREO/COR1 observations during the solar minimum in February 2008 (Carrington Rotation, CR 2066).We first show in theory and observation that the spherically symmetric polynomial approximation (SSPA) method and the Van de Hulst inversion technique are equivalent. Then we assess the SSPA method using synthesized pB images from the 3D density model, and find that the SSPA density values are close to the model inputs for the streamer core near the plane of the sky (POS) with differences generally smaller than about a factor of two; the former has the lower peak but extends more in both longitudinal and latitudinal directions than the latter. We estimate that the SSPA method may resolve the coronal density structure near the POS with angular resolution in longitude of about 50 deg. Our results confirm the suggestion that the SSI method is applicable to the solar minimum streamer (belt), as stated in some previous studies. In addition, we demonstrate that the SSPA method can be used to reconstruct the 3D coronal density, roughly in agreement with the reconstruction by tomography for a period of low solar activity (CR 2066). We suggest that the SSI method is complementary to the 3D tomographic technique in some cases, given that the development of the latter is still an ongoing research effort.
A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept.
Gierz, G; Bartnicki-Garcia, S
2001-01-21
We developed a three-dimensional model of hyphal morphogenesis under the same basic assumption used for the construction of a two-dimensional model. Namely, that the polarized growth of tubular cells (hyphoids) arises from a gradient of wall-building vesicles generated by a vesicle supply center (VSC). Contrary to the 2-D mathematical formulation, the three-dimensional derivation led to an indetermination whose solution required defining a priori the pattern of expansion of the wall, i.e. defining the overall spatial movement of the wall as the newly inserted wall elements displace the existing wall fabric. The patterns of wall expansion can be described by tracing the movement of marker points on the cell surface (point trajectories). Point trajectories were computed for three different modes of wall expansion of the VSC-generated hyphoids: orthogonal, isometric, and rotational. The 3-D VSC models allowed us to either stipulate or calculate the degree of anisotropy for each type of wall expansion. Wireframe models were built to visualize growth anisotropy in each model. Although the overall shape of the three hyphoid models is similar, they differ substantially in point trajectories and anisotropy. Point trajectories are experimentally testable and were the basis for the conclusion that hyphae grow in orthogonal fashion. (Bartnicki-Garcia et al., 2000. Biophys. J.79, 2382-2390.)
Kendon, Vivien M.; Cates, Michael E.; Pagonabarraga, Ignacio; Desplat, J.-C.; Bladon, Peter
2001-08-01
The late-stage demixing following spinodal decomposition of a three-dimensional symmetric binary fluid mixture is studied numerically, using a thermodynamically consistent lattice Boltzmann method. We combine results from simulations with different numerical parameters to obtain an unprecedented range of length and time scales when expressed in reduced physical units. (These are the length and time units derived from fluid density, viscosity, and interfacial tension.) Using eight large (2563) runs, the resulting composite graph of reduced domain size l against reduced time t covers 1 [less, similar] l [less, similar] 105, 10 [less, similar] t [less, similar] 108. Our data are consistent with the dynamical scaling hypothesis that l(t) is a universal scaling curve. We give the first detailed statistical analysis of fluid motion, rather than just domain evolution, in simulations of this kind, and introduce scaling plots for several quantities derived from the fluid velocity and velocity gradient fields. Using the conventional definition of Reynolds number for this problem, Re[phi] = ldl/dt, we attain values approaching 350. At Re[phi] [greater, similar] 100 (which requires t [greater, similar] 106) we find clear evidence of Furukawa's inertial scaling (l [similar] t2/3), although the crossover from the viscous regime (l [similar] t) is both broad and late (102 [less, similar] t [less, similar] 106). Though it cannot be ruled out, we find no indication that Re[phi] is self-limiting (l [similar] t1/2) at late times, as recently proposed by Grant & Elder. Detailed study of the velocity fields confirms that, for our most inertial runs, the RMS ratio of nonlinear to viscous terms in the Navier Stokes equation, R2, is of order 10, with the fluid mixture showing incipient turbulent characteristics. However, we cannot go far enough into the inertial regime to obtain a clear length separation of domain size, Taylor microscale, and Kolmogorov scale, as would be needed to test a
Three-Dimensional Center of Gravity Detection for Trucks Hauling Marine Containers
Directory of Open Access Journals (Sweden)
Runan Dang
2016-01-01
Full Text Available Difficulty in preventing rollover accidents of marine containers derives from various load conditions of cargoes inside the containers. Heavier cargoes are widely regarded as presenting greater danger of rollover accidents. However, this presupposition is severely misleading because lighter cargoes having a higher center of gravity such as machinery with an upper mass can also cause rollover accidents. Rollover accidents are explainable fundamentally as follows. The center of gravity of a truck loading a marine container conflicts with the centrifugal force in cornering. A truck is unstable, causing a rollover accident when the moment originating from the centrifugal force exceeds that originating from the force of gravity. Such a truck might cause a rollover accident at a lower driving speed when the center of gravity is positioned higher. The question is therefore how to find the center of gravity of trucks with marine containers. Conditions of cargoes inside the containers differ greatly. Moreover, it is practically impossible to calculate those conditions by measuring all cargoes piece-by-piece in a container unless the time and cost to do so are unlimited. Without knowing what is inside a container, there is no way to detect the center of gravity after a truck starts moving. An important invention by the second author of this paper was produced to solve that difficulty. Detection of the Three Dimensional Center of Gravity (D3DCG can ascertain the position of the center of gravity while trucks are moving. Soon after starting to move, vertical and rolling motions are measured onboard the trucks in half a minute. Then D3DCG is activated, instantly assessing the position of the center of gravity. D3DCG assumes that the center of gravity causes unique motions depending on its position on the truck. Therefore there is no need to know what is inside the container. This paper first demonstrated the precision of D3DCG running an experiment by which
The Stellar Cusp in the Galactic Center: Three-Dimensional Orbits of Stars
Chappell, Samantha; Ghez, Andrea M.; Boehle, Anna; Yelda, Sylvana; Sitarski, Breann; Witzel, Gunther; Do, Tuan; Lu, Jessica R.; Morris, Mark; Becklin, Eric E.
2015-01-01
We present new findings from our long term study of the nuclear star cluster around the Galaxy's central supermassive blackhole (SMBH). Measurements where made using speckle and laser guided adaptive optics imaging and integral field spectroscopy on the Keck telescopes. We report 13 new measurable accelerating sources around the SMBH, down to ~17 mag in K band, only 4 of which are known to be young stars, the rest are either known to be old stars or have yet to be spectral typed. Thus we more than double the number of measured accelerations for the known old stars and unknown spectral type population (increasing the number from 6 to 15). Previous observations suggest a flat density profile of late-type stars, contrary to the theorized Bahcall-Wolf cusp (Bahcall & Wolf 1976, 1977; Buchholz et al. 2009; Do et al. 2009; Bartko et al. 2010). With three-dimensional orbits of significantly accelerating sources, we will be able to better characterize the stellar cusp in the Galactic center, including the slope of the stellar density profile.
Energy Technology Data Exchange (ETDEWEB)
Munaretto, S., E-mail: smunaretto@wisc.edu; Chapman, B. E.; Nornberg, M. D.; Boguski, J.; DuBois, A. M.; Almagri, A. F.; Sarff, J. S. [Department of Physics, University of Wisconsin–Madison, 1150 University Ave, Madison, Wisconsin 53706 (United States)
2016-05-15
The orientation of 3D equilibria in the Madison Symmetric Torus (MST) [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field pinch can now be controlled with a resonant magnetic perturbation (RMP). Absent the RMP, the orientation of the stationary 3D equilibrium varies from shot to shot in a semi-random manner, making its diagnosis difficult. Produced with a poloidal array of saddle coils at the vertical insulated cut in MST's thick conducting shell, an m = 1 RMP with an amplitude b{sub r}/B ∼ 10% forces the 3D structure into any desired orientation relative to MST's diagnostics. This control has led to improved diagnosis, revealing enhancements in both the central electron temperature and density. With sufficient amplitude, the RMP also inhibits the generation of high-energy (>20 keV) electrons, which otherwise emerge due to a reduction in magnetic stochasticity in the core. Field line tracing reveals that the RMP reintroduces stochasticity to the core. A m = 3 RMP of similar amplitude has little effect on the magnetic topology or the high-energy electrons.
Limit cycles bifurcated from a center in a three dimensional system
Directory of Open Access Journals (Sweden)
Bo Sang
2016-04-01
Full Text Available Based on the pseudo-division algorithm, we introduce a method for computing focal values of a class of 3-dimensional autonomous systems. Using the $\\epsilon^1$-order focal values computation, we determine the number of limit cycles bifurcating from each component of the center variety (obtained by Mahdi et al. It is shown that at most four limit cycles can be bifurcated from the center with identical quadratic perturbations and that the bound is sharp.
Directory of Open Access Journals (Sweden)
Marchini Gianfranco
2011-05-01
Full Text Available Abstract Background Bracing is an effective strategy for scoliosis treatment, but there is no consensus on the best type of brace, nor on the way in which it should act on the spine to achieve good correction. The aim of this paper is to present the family of SPoRT (Symmetric, Patient-oriented, Rigid, Three-dimensional, active braces: Sforzesco (the first introduced, Sibilla and Lapadula. Methods The Sforzesco brace was developed following specific principles of correction. Due to its overall symmetry, the brace provides space over pathological depressions and pushes over elevations. Correction is reached through construction of the envelope, pushes, escapes, stops, and drivers. The real novelty is the drivers, introduced for the first time with the Sforzesco brace; they allow to achieve the main action of the brace: a three-dimensional elongation pushing the spine in a down-up direction. Brace prescription is made plane by plane: frontal (on the "slopes", another novelty of this concept, i.e. the laterally flexed sections of the spine, horizontal, and sagittal. The brace is built modelling the trunk shape obtained either by a plaster cast mould or by CAD-CAM construction. Brace checking is essential, since SPoRT braces are adjustable and customisable according to each individual curve pattern. Treatment time and duration is individually tailored (18-23 hours per day until Risser 3, then gradual reduction. SEAS (Scientific Exercises Approach to Scoliosis exercises are a key factor to achieve success. Results The Sforzesco brace has shown to be more effective than the Lyon brace (matched case/control, equally effective as the Risser plaster cast (prospective cohort with retrospective controls, more effective than the Risser cast + Lyon brace in treating curves over 45 degrees Cobb (prospective cohort, and is able to improve aesthetic appearance (prospective cohort. Conclusions The SPoRT concept of bracing (three-dimensional elongation pushing in
Rotation-limited growth of three-dimensional body-centered-cubic crystals.
Tarp, Jens M; Mathiesen, Joachim
2015-07-01
According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.
A THREE-DIMENSIONAL ANALYSIS OF THE CENTER OF MASS FOR THREE DIFFERENT JUDO THROWING TECHNIQUES
Directory of Open Access Journals (Sweden)
Rodney T. Imamura
2006-07-01
Full Text Available Four black belt throwers (tori and one black belt faller (uke were filmed and analyzed in three-dimensions using two video cameras (JVC 60 Hz and motion analysis software. Average linear momentum in the anteroposterior (x, vertical (y, and mediolateral (z directions and average resultant impulse of uke's center of mass (COM were investigated for three different throwing techniques; harai-goshi (hip throw, seoi-nage (hand throw, and osoto-gari (leg throw. Each throw was broken down into three main phases; kuzushi (balance breaking, tsukuri (fit-in, and kake (throw. For the harai-goshi and osoto-gari throws, impulse measurements were the largest within kuzushi and tsukuri phases (where collision between tori and uke predominantly occurs. Both throws indicated an importance for tori to create large momentum prior to contact with uke. The seoi-nage throw demonstrated the lowest impulse and maintained forward momentum on the body of uke throughout the entire throw. The harai-goshi and osoto-gari are considered power throws well-suited for large and strong judo players. The seoi-nage throw is considered more technical and is considered well-suited for shorter players with good agility. A form of resistance by uke was found during the kuzushi phase for all throws. The resistance which can be initiated by tori's push or pull allows for the tsukuri phase to occur properly by freezing uke for a good fit-in. Strategies for initiating an effective resistance include initiating movement of uke so that their COM is shifted to their left (for right handed throw by incorporating an instantaneous "snap pull" with the pulling hand during kuzushi to create an opposite movement from uke
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-07-19
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.
High-performance formaldehyde gas-sensors based on three dimensional center-hollow ZnO.
Shi, Linqi; Cui, Jiabao; Zhao, Fei; Wang, Dejun; Xie, Tengfeng; Lin, Yanhong
2015-12-14
Three dimensional (3D) center-hollow ZnO architectures assembled by nanoparticles have been successfully fabricated on a large scale via a template-free method using an oil bath. The samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller specific surface area, surface photocurrent and UV-Vis diffuse reflectance spectroscopy. The photoelectric gas-sensing results demonstrated that the 3D porous, center-hollow ZnO structures exhibited excellent sensitivity and good selectivity to formaldehyde under 365 nm light irradiation at room temperature. The gas response to 1 ppm formaldehyde can reach 70%, which is superior to the results reported in the literature, indicating that the 3D center-hollow ZnO architectures are ideal candidate materials for photoelectric gas sensors. The underlying mechanisms responsible for the high sensitivity and selectivity to formaldehyde are discussed, which provide a new pathway for designing novel VOC sensors. Moreover, the facile method presented in this paper has the advantage of low-cost and high-yield, which is suitable for the practical production processes.
Institute of Scientific and Technical Information of China (English)
Junhua Zhao; Wanlin Guo; Chongmin She; Bo Meng
2006-01-01
Through detailed three-dimensional(3D)finite element(FE)calculations,the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied.The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2,0.4,0.5,0.6,0.8 and 1.0.Tz decreases from an approximate value of Poisson ratio ν at the crack tip to zero with increasing normalized radialdistances (r/a) in the normal plane of the crack front line,and increases gradually when the elliptical parameter angle φ changes from 0°to 90°at the sanle r/a.with a/c rising to 1.0,Tz is getting nearly independent of φ and is only related to r/a.Based on the present FE calculations for Tz,empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2 ≤ a/c ≤ 1.0.These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded center-elliptical crack front field,and a two-parameter K-Tz principle is proposed.
Bao, Luyao; Hu, Haibao; Wen, Jun; Sepri, Paavo; Luo, Kai
2016-07-01
A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed.
Geramy, Allahyar; Sodagar, Ahmad; Hassanpour, Mehdi
2014-01-01
To locate the centre of resistance of consolidated units of four and six anterior teeth during retraction. Twelve three-dimensional (3D) models were designed in SolidWorks of the anterior segment with four and six teeth and their supporting structure. A proper force system was applied in each model to retract the teeth bodily. The exact location of the centre of resistances (CRes) was determined. It was found that the path of CRes change in four-tooth and six-tooth units according to the anterior teeth torque. A posterior shift of the CRes by increasing the inclination of teeth was shown. However, vertical position has a fluctuant behaviour. First it moves apically, then it moves incisally. Furthermore, results suggest that in en masse retraction, translation can be achieved with a smaller amount of moment-to-force ratio than in four-incisor retraction. In other words, for bodily retraction of anterior incisor segments, we should apply force in a more apical position. Different anterior torques between 7 and 35 degrees, cannot affect the CRes position dramatically. The area of CRes shifting is 0.92 mm (anterioposteriorly) x 0.74 mm (superior-inferiorly) in the six-tooth unit in the teeth model and 0.85 mm (anterioposteriorly) x 0.82 mm (superior-inferiorly) in the teeth and bone model. In the four-tooth model, the area of CRes shifting is 0.97 mm (anterioposteriorly) x 0.93 mm (superior-inferiorly) in tooth model and 0.77 mm (anterioposteriorly) x 0.87 mm (superior-inferiorly) in the teeth and bone model.
Energy Technology Data Exchange (ETDEWEB)
Hirano, T.; Hayashi, Y. [Kurume Institute of Technology, Fukuoka (Japan); Imai, Y. [Nagasaki University, Nagasaki (Japan). Faculty of Engineering
1997-05-15
The photo-plastic analysis method is an experimental method which uses transparent polymer material models that show stress and strain behavior similar to the materials to be analyzed, and utilizes their compound refraction effect to analyze stress and strain in the model materials deformed to the plastic region. In using the method, a consideration is required on the effect of strain velocity in order to enhance the analytic accuracy. The consideration was introduced to analyzing stress and strain in three-dimensional axi-symmetrical problems. Three main strain differences in symmetrical cross sections in the case of tension can be calculated from continuous observation on fringe of polarized incident scattered lights from two different directions. Shear strain in a symmetrical cross section in the case of torsion can be derived from the fringe of polarized incident scattered light from the radius direction. A proposal was made on a method capable of estimating shear stress, shear strain, deviatoric stress and strain corresponding to a visco-elasto-plastic model subjected to tension. The method makes the analysis by using measurements on the fringe gradient and the fringe gradient increasing velocity. This analytic method can be applied to the case of torsion. An analysis was performed on the minimum stress distribution in a cross section and the strain distribution by using a cylindrical test piece with a semi-circular notch. As a result, the analytic result was found to agree with that from the finite element analysis, proving its effectiveness. 18 refs., 16 figs.
Three dimensional strained semiconductors
Energy Technology Data Exchange (ETDEWEB)
Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui
2016-11-08
In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.
van Loon, JP; Falkenstrom, CH; de Bont, LGM; Verkerke, GJ; Stegenga, B
A unilateral temporomandibular joint (TMJ) prosthesis may cause dysfunction of the contralateral, natural TMJ because of lack of translatorial movements of the prosthetic side. The natural translatorial capacity of the mandible can be restored in part by a TMJ prosthesis with a fixed center of
Mapelli, Andrea; Zago, Matteo; Fusini, Laura; Galante, Domenico; Colombo, Andrea; Sforza, Chiarella
2014-01-01
Since strictly related to balance and stability control, body center of mass (CoM) kinematics is a relevant quantity in sport surveys. Many methods have been proposed to estimate CoM displacement. Among them, segmental method appears to be suitable to investigate CoM kinematics in sport: human body is assumed as a system of rigid bodies, hence the whole-body CoM is calculated as the weighted average of the CoM of each segment. The number of landmarks represents a crucial choice in the protocol design process: one have to find the proper compromise between accuracy and invasivity. In this study, using a motion analysis system, a protocol based upon the segmental method is validated, adopting an anatomical model comprising 14 landmarks. Two sets of experiments were conducted. Firstly, our protocol was compared to the ground reaction force method (GRF), accounted as a standard in CoM estimation. In the second experiment, we investigated the aerial phase typical of many disciplines, comparing our protocol with: (1) an absolute reference, the parabolic regression of the vertical CoM trajectory during the time of flight; (2) two common approaches to estimate CoM kinematics in gait, known as sacrum and reconstructed pelvis methods. Recognized accuracy indexes proved that the results obtained were comparable to the GRF; what is more, during the aerial phases our protocol showed to be significantly more accurate than the two other methods. The protocol assessed can therefore be adopted as a reliable tool for CoM kinematics estimation in further sport researches.
Three-dimensional photovoltaics
Myers, Bryan; Bernardi, Marco; Grossman, Jeffrey C.
2010-03-01
The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint and total volume. Our simulations demonstrate that the performance of 3D photovoltaic structures scales linearly with height, leading to volumetric energy conversion, and provides power fairly evenly throughout the day. Furthermore, we show that optimal 3D shapes are not simple box-like shapes, and that design attributes such as reflectivity can be optimized in new ways using three-dimensionality.
Three-dimensional metamaterials
Burckel, David Bruce [Albuquerque, NM
2012-06-12
A fabrication method is capable of creating canonical metamaterial structures arrayed in a three-dimensional geometry. The method uses a membrane suspended over a cavity with predefined pattern as a directional evaporation mask. Metallic and/or dielectric material can be evaporated at high vacuum through the patterned membrane to deposit resonator structures on the interior walls of the cavity, thereby providing a unit cell of micron-scale dimension. The method can produce volumetric metamaterial structures comprising layers of such unit cells of resonator structures.
Three dimensional system integration
Papanikolaou, Antonis; Radojcic, Riko
2010-01-01
Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi
Three-Dimensional Complex Variables
Martin, E. Dale
1988-01-01
Report presents new theory of analytic functions of three-dimensional complex variables. While three-dimensional system subject to more limitations and more difficult to use than the two-dimensional system, useful in analysis of three-dimensional fluid flows, electrostatic potentials, and other phenomena involving harmonic functions.
Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje; Feng, Yuxin; Cyrankowski, Edward; Major, Ryan
2014-09-30
A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper and lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.
Energy Technology Data Exchange (ETDEWEB)
Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje; Feng, Yuxin; Cyrankowski, Edward; Major, Ryan
2014-09-30
A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper and lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.
Spherically Symmetric Space Time with Regular de Sitter Center
Dymnikova, Irina
We formulate the requirements which lead to the existence of a class of globally regular solutions of the minimally coupled GR equations asymptotically de Sitter at the center.REFID="S021827180300358XFN001"> The source term for this class, invariant under boosts in the radial direction, is classified as spherically symmetric vacuum with variable density and pressure Tμ ν vac associated with an r-dependent cosmological term Λ μ ν = 8π GTμ ν vac, whose asymptotic at the origin, dictated by the weak energy condition, is the Einstein cosmological term Λgμν, while asymptotic at infinity is de Sitter vacuum with λ < Λ or Minkowski vacuum. For this class of metrics the mass m defined by the standard ADM formula is related to both the de Sitter vacuum trapped at the origin and the breaking of space time symmetry. In the case of the flat asymptotic, space time symmetry changes smoothly from the de Sitter group at the center to the Lorentz group at infinity through radial boosts in between. Geometry is asymptotically de Sitter as r → 0 and asymptotically Schwarzschild at large r. In the range of masses m ≥ mcrit, the de Sitter Schwarzschild geometry describes a vacuum nonsingular black hole (ΛBH), and for m < mcrit it describes G-lump — a vacuum selfgravitating particle-like structure without horizons. In the case of de Sitter asymptotic at infinity, geometry is asymptotically de Sitter as r → 0 and asymptotically Schwarzschild de Sitter at large r. Λμν geometry describes, dependently on parameters m and q = √ {Λ /λ } and choice of coordinates, a vacuum nonsingular cosmological black hole, self-gravitating particle-like structure at the de Sitter background λgμν, and regular cosmological models with cosmological constant evolving smoothly from Λ to λ.
Three-dimensional echocardiography
Energy Technology Data Exchange (ETDEWEB)
Buck, Thomas [University Hospital Essen (Germany). West German Heart Center; Franke, Andreas [Klinikum Region Hannover - Klinikum Siloah, Hannover (Germany). Dept. of Cardiology, Angiology and Intensive Care Medicine; Monaghan, Mark J. (eds.) [King' s College Hospital, London (United Kingdom)
2011-07-01
Presents tips and tricks for beginners and experts Provides educational material for 3D training courses Features comprehensively illustrated cases Includes an accompanying DVD with video clips of all sample cases Three-dimensional echocardiography is the most recent fundamental advancement in echocardiography. Since real-time 3D echocardiography became commercially available in 2002, it has rapidly been accepted in echo labs worldwide. This book covers all clinically relevant aspects of this fascinating new technology, including a comprehensive explanation of its basic principles, practical aspects of clinical application, and detailed descriptions of specific uses in the broad spectrum of clinically important heart disease. The book was written by a group of well-recognized international experts in the field, who have not only been involved in the scientific and clinical evolution of 3D echocardiography since its inception but are also intensively involved in expert training courses. As a result, the clear focus of this book is on the practical application of 3D echocardiography in daily clinical routine with tips and tricks for both beginners and experts, accompanied by more than 150 case examples comprehensively illustrated in more than 800 images and more than 500 videos provided on a DVD. In addition to an in-depth review of the most recent literature on real-time 3D echocardiography, this book represents an invaluable reference work for beginners and expert users of 3D echocardiography. - Tips and tricks for beginners and experts - Educational material for 3D training courses - Comprehensively illustrated cases - DVD with video clips of all sample cases.
Three dimensional Dirac semimetals
Zaheer, Saad
We extend the physics of graphene to three dimensional systems by showing that Dirac points can exist on the Fermi surface of realistic materials in three dimensions. Many of the exotic electronic properties of graphene can be ascribed to the pseudorelativistic behavior of its charge carriers due to two dimensional Dirac points on the Fermi surface. We show that certain nonsymmorphic spacegroups exhibit Dirac points among the irreducible representations of the appropriate little group at high symmetry points on the surface of the Brillouin zone. We provide a list of all Brillouin zone momenta in the 230 spacegroups that can host Dirac points. We describe microscopic considerations necessary to design materials in one of the candidate spacegroups such that the Dirac point appears at the Fermi energy without any additional non-Dirac-like Fermi pockets. We use density functional theory based methods to propose six new Dirac semimetals: BiO 2 and SbO2 in the beta-cristobalite lattice (spacegroup 227), and BiCaSiO4, BiMgSiO4, BiAlInO 4, and BiZnSiO4 in the distorted spinels lattice (spacegroup 74). Additionally we derive effective Dirac Hamiltonians given group representative operators as well as tight binding models incorporating spin-orbit coupling. Finally we study the Fermi surface of zincblende (spacegroup 216) HgTe which is effectively point-like at Gamma in the Brillouin zone and exhibits accidental degeneracies along a threefold rotation axis. Whereas compressive strain gaps the band structure into a topological insulator, tensile strain shifts the accidental degeneracies away from Gamma and enlarges the Fermi surface. States on the Fermi surface exhibit nontrivial spin texture marked by winding of spins around the threefold rotation axis and by spin vortices indicating a change in the winding number. This is confirmed by microscopic calculations performed in tensile strained HgTe and Hg0.5Zn 0.5 Te as well as k.p theory. We conclude with a summary of recent
Three-dimensional ultrasound scanning.
Fenster, Aaron; Parraga, Grace; Bax, Jeff
2011-08-06
The past two decades have witnessed developments of new imaging techniques that provide three-dimensional images about the interior of the human body in a manner never before available. Ultrasound (US) imaging is an important cost-effective technique used routinely in the management of a number of diseases. However, two-dimensional viewing of three-dimensional anatomy, using conventional two-dimensional US, limits our ability to quantify and visualize the anatomy and guide therapy, because multiple two-dimensional images must be integrated mentally. This practice is inefficient, and may lead to variability and incorrect diagnoses. Investigators and companies have addressed these limitations by developing three-dimensional US techniques. Thus, in this paper, we review the various techniques that are in current use in three-dimensional US imaging systems, with a particular emphasis placed on the geometric accuracy of the generation of three-dimensional images. The principles involved in three-dimensional US imaging are then illustrated with a diagnostic and an interventional application: (i) three-dimensional carotid US imaging for quantification and monitoring of carotid atherosclerosis and (ii) three-dimensional US-guided prostate biopsy.
Deformations of three-dimensional metrics
Pugliese, Daniela; Stornaiolo, Cosimo
2015-03-01
We examine three-dimensional metric deformations based on a tetrad transformation through the action the matrices of scalar field. We describe by this approach to deformation the results obtained by Coll et al. (Gen. Relativ. Gravit. 34:269, 2002), where it is stated that any three-dimensional metric was locally obtained as a deformation of a constant curvature metric parameterized by a 2-form. To this aim, we construct the corresponding deforming matrices and provide their classification according to the properties of the scalar and of the vector used in Coll et al. (Gen Relativ Gravit 34:269, 2002) to deform the initial metric. The resulting causal structure of the deformed geometries is examined, too. Finally we apply our results to a spherically symmetric three geometry and to a space sector of Kerr metric.
Debnam, J Matthew; Ketonen, Leena; Guha-Thakurta, Nandita
2012-01-01
Background. Abnormal spinal curvature is routinely assessed with plain radiographs, MDCT, and MRI. MDCT can provide two-dimensional (2-D) orthogonal as well as reconstructed three-dimensional volume-rendered (3-D VR) images of the spine, including the translucent display: a computer-generated image set that enables the visualization of surgical instrumentation through bony structures. We hypothesized that the 3-D VR series provides additional information beyond that of 2-D orthogonal MDCT in the evaluation of abnormal spinal curvature in patients evaluated at a major cancer center. Methods. The 3-D VR series, including the translucent display, was compared to 2-D orthogonal MDCT studies in patients with an abnormal spinal curvature greater than 25 degrees and scored as being not helpful (0) or helpful (1) in 3 categories: spinal curvature; bony definition; additional findings (mass lesions, fractures, and instrumentation). Results. In 38 of 48 (79.2%) patients assessed, the 3-D VR series were scored as helpful in 63 of 144 (43.8%) total possible categories (32 spinal curvature; 14 bony definition; 17 additional findings). Conclusion. Three-dimensional MDCT images, including the translucent display, are complementary to multiplanar 2-D orthogonal MCDT in the evaluation of abnormal spinal curvature in patients treated at a major cancer center.
Creating Three-Dimensional Scenes
Krumpe, Norm
2005-01-01
Persistence of Vision Raytracer (POV-Ray), a free computer program for creating photo-realistic, three-dimensional scenes and a link for Mathematica users interested in generating POV-Ray files from within Mathematica, is discussed. POV-Ray has great potential in secondary mathematics classrooms and helps in strengthening students' visualization…
Optimal eavesdropping in cryptography with three-dimensional quantum states.
Bruss, D; Macchiavello, C
2002-03-25
We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure against symmetric attacks than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.
The Lissajous lens: a three-dimensional absolute optical instrument without spherical symmetry.
Danner, Aaron J; Dao, H L; Tyc, Tomáš
2015-03-09
We propose a three dimensional optical instrument with an isotropic gradient index in which all ray trajectories form Lissajous curves. The lens represents the first absolute optical instrument discovered to exist without spherical symmetry (other than trivial cases such as the plane mirror or conformal maps of spherically-symmetric lenses). An important property of this lens is that a three-dimensional region of space can be imaged stigmatically with no aberrations, with a point and its image not necessarily lying on a straight line with the lens center as in all other absolute optical instruments. In addition, rays in the Lissajous lens are not confined to planes. The lens can optionally be designed such that no rays except those along coordinate axes form closed trajectories, and conformal maps of the Lissajous lens form a rich new class of optical instruments.
Three-dimensional flow in Kupffer's Vesicle
Montenegro-Johnson, Thomas D; Smith, David J; Lopes, Susana S
2016-01-01
Whilst many vertebrates appear externally left-right symmetric, the arrangement of internal organs is asymmetric. In zebrafish, the breaking of left-right symmetry is organised by Kupffer's Vesicle (KV): an approximately spherical, fluid-filled structure that begins to form in the embryo 10 hours post fertilisation. A crucial component of zebrafish symmetry breaking is the establishment of a cilia-driven fluid flow within KV. However, it is still unclear (a) how dorsal, ventral and equatorial cilia contribute to the global vortical flow, and (b) if this flow breaks left-right symmetry through mechanical transduction or morphogen transport. Fully answering these questions requires knowledge of the three-dimensional flow patterns within KV, which have not been quantified in previous work. In this study, we calculate and analyse the three-dimensional flow in KV. We consider flow from both individual and groups of cilia, and (a) find anticlockwise flow can arise purely from excess of cilia on the dorsal roof over...
Three dimensional force balance of asymmetric droplets
Kim, Yeseul; Lim, Su Jin; Cho, Kun; Weon, Byung Mook
2016-11-01
An equilibrium contact angle of a droplet is determined by a horizontal force balance among vapor, liquid, and solid, which is known as Young's law. Conventional wetting law is valid only for axis-symmetric droplets, whereas real droplets are often asymmetric. Here we show that three-dimensional geometry must be considered for a force balance for asymmetric droplets. By visualizing asymmetric droplets placed on a free-standing membrane in air with X-ray microscopy, we are able to identify that force balances in one side and in other side control pinning behaviors during evaporation of droplets. We find that X-ray microscopy is powerful for realizing the three-dimensional force balance, which would be essential in interpretation and manipulation of wetting, spreading, and drying dynamics for asymmetric droplets. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B01007133).
Facial three-dimensional morphometry.
Ferrario, V F; Sforza, C; Poggio, C E; Serrao, G
1996-01-01
Three-dimensional facial morphometry was investigated in a sample of 40 men and 40 women, with a new noninvasive computerized method. Subjects ranged in age between 19 and 32 years, had sound dentitions, and no craniocervical disorders. For each subject, 16 cutaneous facial landmarks were automatically collected by a system consisting of two infrared camera coupled device (CCD) cameras, real time hardware for the recognition of markers, and software for the three-dimensional reconstruction of landmarks' x, y, z coordinates. From these landmarks, 15 linear and 10 angular measurements, and four linear distance ratios were computed and averaged for sex. For all angular values, both samples showed a narrow variability and no significant gender differences were demonstrated. Conversely, all the linear measurements were significantly higher in men than in women. The highest intersample variability was observed for the measurements of facial height (prevalent vertical dimension), and the lowest for the measurements of facial depth (prevalent horizontal dimension). The proportions of upper and lower face height relative to the anterior face height showed a significant sex difference. Mean values were in good agreement with literature data collected with traditional methods. The described method allowed the direct and noninvasive calculation of three-dimensional linear and angular measurements that would be usefully applied in clinics as a supplement to the classic x-ray cephalometric analyses.
Quasicrystalline three-dimensional foams
Cox, S. J.; Graner, F.; Mosseri, R.; Sadoc, J.-F.
2017-03-01
We present a numerical study of quasiperiodic foams, in which the bubbles are generated as duals of quasiperiodic Frank–Kasper phases. These foams are investigated as potential candidates to the celebrated Kelvin problem for the partition of three-dimensional space with equal volume bubbles and minimal surface area. Interestingly, one of the computed structures falls close to (but still slightly above) the best known Weaire–Phelan periodic candidate. In addition we find a correlation between the normalized bubble surface area and the root mean squared deviation of the number of faces, giving an additional clue to understanding the main geometrical ingredients driving the Kelvin problem.
Three-dimensional display technologies.
Geng, Jason
2013-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain's power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies.
The three-dimensional structure of the Eta Carinae Homunculus
Steffen, W; Madura, T I; Groh, J H; Gull, T R; Mehner, A; Corcoran, M F; Damineli, A; Hamaguchi, K
2014-01-01
We investigate, using the modeling code SHAPE, the three-dimensional structure of the bipolar Homunculus nebula surrounding Eta Carinae, as mapped by new ESO VLT/X-Shooter observations of the H2 $\\lambda=2.12125$ micron emission line. Our results reveal for the first time important deviations from the axisymmetric bipolar morphology: 1) circumpolar trenches in each lobe positioned point-symmetrically from the center and 2) off-planar protrusions in the equatorial region from each lobe at longitudinal (~55 degrees) and latitudinal (10-20 degrees) distances from the projected apastron direction of the binary orbit. The angular distance between the protrusions (~110 degrees) is similar to the angular extent of each polar trench (~130 degrees) and nearly equal to the opening angle of the wind-wind collision cavity (~110 degrees). As in previous studies, we confirm a hole near the centre of each polar lobe and no detectable near-IR H2 emission from the thin optical skirt seen prominently in visible imagery. We con...
Three-Dimensional DNA Nanostructures Assembled from DNA Star Motifs.
Tian, Cheng; Zhang, Chuan
2017-01-01
Tile-based DNA self-assembly is a promising method in DNA nanotechnology and has produced a wide range of nanostructures by using a small set of unique DNA strands. DNA star motif, as one of DNA tiles, has been employed to assemble varieties of symmetric one-, two-, three-dimensional (1, 2, 3D) DNA nanostructures. Herein, we describe the design principles, assembly methods, and characterization methods of 3D DNA nanostructures assembled from the DNA star motifs.
Energy Technology Data Exchange (ETDEWEB)
Kido, Kentaro, E-mail: kido.kentaro@jaea.go.jp [Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kasahara, Kento [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yokogawa, Daisuke [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8062 (Japan); Sato, Hirofumi [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Elements Strategy Institute for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)
2015-07-07
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein–Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple S{sub N}2 reaction (Cl{sup −} + CH{sub 3}Cl → ClCH{sub 3} + Cl{sup −}) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.
Trinkunas, G; Holzwarth, A R
1996-07-01
A procedure is described to generate and optimize the lattice models for spectrally inhomogeneous photosynthetic antenna/reaction center (RC) particles. It is based on the genetic algorithm search for the pigment spectral type distributions on the lattice by making use of steady-state and time-resolved spectroscopic input data. Upon a proper fitness definition, a family of excitation energy transfer models can be tested for their compatibility with the availability experimental data. For the case of the photosystem I core antenna (99 chlorophyll + primary electron donor pigment (P700)), three spectrally inhomogeneous three-dimensional lattice models, differing in their excitation transfer conditions, were tested. The relevant fit parameters were the pigment distribution on the lattice, the average lattice spacing of the main pool pigments, the distance of P700 and of long wavelength-absorbing (LWA) pigments to their nearest-neighbor main pool pigments, and the rate constant of charge separation from P700. For cyanobacterial PS I antenna/RC particles containing a substantial amount of LWA pigments, it is shown that the currently available experimental fluorescence data are consistent both with more migration-limited, and with more trap-limited excitation energy transfer models. A final decision between these different models requires more detailed experimental data. From all search runs about 30 different relative arrangements of P700 and LWA pigments were found. Several general features of all these different models can be noticed: 1) The reddest LWA pigment never appears next to P700. 2) The LWA pigments in most cases are spread on the surface of the lattice not far away from P700, with a pronounced tendency toward clustering of the LWA pigments. 3) The rate constant kP700 of charge separation is substantially higher than 1.2 ps-1, i.e., it exceeds the corresponding rate constant of purple bacterial RCs by at least a factor of four. 4) The excitation transfer
Structure of Three-Dimensional Separated Flow on Symmetric Bumps
2005-11-30
calculated using N - tan(SSA) -ni(/W/iy) t (1 N- - = - --(4 1 )tan(F(;A) - UII /(LI/’) where vih and 17’- are the stream-wise and span-wise eddy...velocity vectors only in bimodal region and the black lines are connecting these vectors for visual aid . As expected, the two flow patterns are totally... aid only at different yi of. Figure 5.7 Normalized FrF + IWk- vectors locally tangent to surface. 5. LDV Measurements near Large Bump#3 Surface 160
Kornreich, Philipp; Farell, Bart
2013-01-01
An imager that can measure the distance from each pixel to the point on the object that is in focus at the pixel is described. This is accomplished by short photo-conducting lightguides at each pixel. In the eye the rods and cones are the fiber-like lightguides. The device uses ambient light that is only coherent in spherical shell-shaped light packets of thickness of one coherence length. Modern semiconductor technology permits the construction of lightguides shorter than a coherence length of ambient light. Each of the frequency components of the broad band light arriving at a pixel has a phase proportional to the distance from an object point to its image pixel. Light frequency components in the packet arriving at a pixel through a convex lens add constructively only if the light comes from the object point in focus at this pixel. The light in packets from all other object points cancels. Thus the pixel receives light from one object point only. The lightguide has contacts along its length. The lightguide charge carriers are generated by the light patterns. These light patterns, and thus the photocurrent, shift in response to the phase of the input signal. Thus, the photocurrent is a function of the distance from the pixel to its object point. Applications include autonomous vehicle navigation and robotic vision. Another application is a crude teleportation system consisting of a camera and a three-dimensional printer at a remote location.
Energy Technology Data Exchange (ETDEWEB)
Akasaka, Y.
1986-12-01
VLSI will be reaching to the limit of minimization in the 1990s, and after that, further increase of packing density or functions might depend on the vertical integration technology. Three-dimensional (3-D) integration is expected to provide several advantages, such as 1) parallel processing, 2) high-speed operation, 3) high packing density, and 4) multifunctional operation. Basic technologies of 3-D IC are to fabricate SOI layers and to stack them monolithically. Crystallinity of the recrystallized layer in SOI has increasingly become better, and very recently crystal-axis controlled, defect-free single-crystal areas has been obtained in chip size level by laser recystallization technology. Some basic functional models showing the concept or image of a future 3-D IC were fabricated in two or three stacked active layers. Some other proposals of subsystems in the application of 3-D structure, and the technical issues for realizing practical 3-D IC, i.e., the technology for fabricating high-quality SOI crystal on complicated surface topology, crosstalk of the signals between the stacked layers, total power consumption and cooling of the chip, are also discussed in this paper.
Three-dimensional colloidal lithography.
Nagai, Hironori; Poteet, Austen; Zhang, Xu A; Chang, Chih-Hao
2017-03-24
Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle-light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd's mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.
Three dimensional magnetic abacus memory
Zhang, Shilei; Zhang, Jingyan; Baker, Alexander; Wang, Shouguo; Yu, Guanghua; Hesjedal, Thorsten
2015-03-01
Stacking nonvolatile memory cells into a three-dimensional matrix represents a powerful solution for the future of magnetic memory. However, it is technologically challenging to access the individual data in the storage medium if large numbers of bits are stacked on top of each other. Here we introduce a new type of multilevel, nonvolatile magnetic memory concept, the magnetic abacus. Instead of storing information in individual magnetic layers, thereby having to read out each magnetic layer separately, the magnetic abacus adopts a new encoding scheme which envisages a classical abacus with the beads operated by electron spins. It is inspired by the idea of second quantization, dealing with the memory state of the entire stack simultaneously. Direct read operations are implemented by measuring the artificially engineered `quantized' Hall voltage, representing a count of the spin-up and spin-down layers in the stack. This concept of `second quantization of memory' realizes the 3D memory architecture with superior reading and operation efficiency, thus is a promising approach for future nonvolatile magnetic random access memory.
Three-dimensional colloidal lithography
Nagai, Hironori; Poteet, Austen; Zhang, Xu A.; Chang, Chih-Hao
2017-03-01
Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle–light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd’s mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.
Mehl, S.; Hill, M.C.
2004-01-01
This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.
Institute of Scientific and Technical Information of China (English)
邹良浩; 梁枢果; 汪大海; 熊铁华
2012-01-01
Based on synchronous surface pressure scanning of rigid model in wind tunnel test, three dimensional wind load models of high-rise buildings were obtained. Furthermore, the random internal force responses of buildings in along-wind, across-wind and torsional directions were obtained by applying modal acceleration method, which express the restoring force solution in terms of quasi-static force item and inertia force item. Accordingly the calculation methods of equivalent static wind loads, in which the contributions of the higher mode can be considered, of symmetrical high-rise buildings in along-wind, across-wind and torsional directions were deduced based on internal forces equivalence. Finally by analyzing the three dimensional equivalent static wind loads of an actual symmetrical high-rise buildings obtained by this method, and comparing with the along-wind equivalent static wind loads obtained by the national load code, it is indicated that three dimensional equivalent static wind loads should be considered for the wind resistant design of high-rise buildings, and that the contributions of the second mode to the equivalent static wind loads of high-rise buildings cannot be neglected.%基于刚性模型表面测压风洞试验建立高层建筑三维风荷载模型,进而运用振型加速度法求解风振响应动力方程,得到了包含拟静力项和惯性力项的弹性力响应解,并推导了对称截面高层建筑顺风向、横风向和扭转向风致随机内力响应。在此基础上提出了基于内力响应等效的可考虑高阶振型贡献的对称截面高层建筑顺风向、横风向和扭转向等效静力风荷载计算方法。结合某一对称截面高层建筑工程实例,对采用上述方法计算得到的结构三维等效静力风荷载进行分析并与我国规范方法顺风向等效静力风荷载计算结果进行比较。结果表明,高层建筑结构抗风设计应该考虑三维等效静力风荷载,且二阶振型对
Three-Dimensional Moire Pattern
Juday, Richard D.
1991-01-01
Use of moire patterns to determine positions extended to three dimensions. Concept requires two moire templates or grids, separated from each other. Template on side closer to observer contains alternating black and transparent areas. Template farther from observer contains alternating black and white areas. Observer determines position of center of perspective, also receiving indication of depth even without stereoscopic view. Used in rangefinding applications in which precision not required. Also used to gauge location of mobile robot in environment hostile to humans.
Scattering and conductance quantization in three-dimensional metal nanocontacts
DEFF Research Database (Denmark)
Brandbyge, Mads; Jacobsen, Karsten Wedel; Nørskov, Jens Kehlet
1997-01-01
The transmission through three-dimensional nanocontacts is calculated in the presence of localized scattering centers and boundary scattering using a coupled-channel recursion method. Simple confining potentials are used to investigate how robust the observation of quantized conductance is with r...
Elastocapillary fabrication of three-dimensional microstructures
Honschoten, van J.W.; Berenschot, J.W.; Ondarcuhu, T.; Sanders, R.G.P.; Sundaram, J.; Elwenspoek, M.; Tas, N.R.
2010-01-01
We describe the fabrication of three-dimensional microstructures by means of capillary forces. Using an origami-like technique, planar silicon nitride structures of various geometries are folded to produce three-dimensional objects of 50–100 m. Capillarity is a particularly effective mechanism since
Three-Dimensional Gravity and String Ghosts
Carlip, S.; Kogan, I. I.
1991-01-01
It is known that much of the structure of string theory can be derived from three-dimensional topological field theory and gravity. We show here that, at least for simple topologies, the string diffeomorphism ghosts can also be explained in terms of three-dimensional physics.
Three-Dimensional Structure of Solar Wind Turbulence
Chen, C H K; Schekochihin, A A; Horbury, T S; Wicks, R T; Bale, S D
2011-01-01
We have measured, for the first time, the three-dimensional structure of inertial range plasma turbulence in the fast solar wind with respect to a local, physically motivated coordinate system. We found that the incompressible Alfvenic fluctuations are three-dimensionally anisotropic, with the sense of this anisotropy changing from large to small scales. At the largest scales, the magnetic field correlations are longest in the local fluctuation direction, consistent with Alfven waves. At the smallest scales, they are longest along the local mean field direction and shortest in the direction perpendicular to the local mean field and the local field fluctuation. The compressive fluctuations are highly elongated along the local mean magnetic field direction, although axially symmetric perpendicular to it. Their large anisotropy may explain why they are not heavily damped.
A class of auxetic three-dimensional lattices
Cabras, Luigi
2015-01-01
We propose a class of auxetic three-dimensional lattice structures. The elastic microstructure can be designed in order to have omni-directional Poisson's ratio arbitrarily close to the stability limit -1. The cubic behavior of the periodic system has been fully characterized; the minumum and maximum Poisson's ratio and the associated principal directions are given as a function of the microstructural parameters. The initial microstructure is then modified into a body centered-cubic system that can achieve a Poisson's ratio lower than -1 and that can also behave as an isotropic three-dimensional auxetic structure.
Preparation and Characterization of Three-dimensional Chrysanthemun Flower-like Calcium Carbonate
Institute of Scientific and Technical Information of China (English)
CHEN Xianyong; TANG Qin; LIU Daijun; HU Weibing; DAN Youmeng
2012-01-01
Calcium carbonate with three-dimensional chrysanthemun flower-like structure was successfully prepared from calcium chloride and sodium carbonate ethanol/water mixed solution by a simple precipitation method,using trisodium citrate as crystal modifier.The experimental results show that the threedimensional structure of chrysanthemun flower-like calcium carbonate is built up with several symmetrical micrometer multi-layer petals arranged around the multi-layer pancake-liked center,and the micrometer center and petals are assemblied by a large number of nanometer spherical particles with size 10-20 nm.It is found that the amount of trisodium citrate,the ethanol volume content has an important influence on the formation of this morphology.A possible mechanism is proposed to explain the formation of three-dimensional chrysanthemun flower-like calcium carbonate according the results.Scanning electron microscopy (SEM),X-ray powder diffraction (XRD),flourier transform infrared spectroscopy (FT-IR),thermogravimety analysis (TG),transmission electron microscopy (TEM) equipped with energy-dispersive X-ray (EDX),and selected area electron diffraction (SAED) were used to characterize the crystals.
Three Dimensional Illustrating--Three-Dimensional Vision and Deception of Sensibility
Szállassy, Noémi; Gánóczy, Anita; Kriska, György
2009-01-01
The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena…
2012-01-01
Background. Abnormal spinal curvature is routinely assessed with plain radiographs, MDCT, and MRI. MDCT can provide two-dimensional (2-D) orthogonal as well as reconstructed three-dimensional volume-rendered (3-D VR) images of the spine, including the translucent display: a computer-generated image set that enables the visualization of surgical instrumentation through bony structures. We hypothesized that the 3-D VR series provides additional information beyond that of 2-D orthogonal MDCT in ...
Device fabrication: Three-dimensional printed electronics
Lewis, Jennifer A.; Ahn, Bok Y.
2015-02-01
Can three-dimensional printing enable the mass customization of electronic devices? A study that exploits this method to create light-emitting diodes based on 'quantum dots' provides a step towards this goal.
Three-Dimensional Icosahedral Phase Field Quasicrystal
Subramanian, P.; Archer, A. J.; Knobloch, E.; Rucklidge, A. M.
2016-08-01
We investigate the formation and stability of icosahedral quasicrystalline structures using a dynamic phase field crystal model. Nonlinear interactions between density waves at two length scales stabilize three-dimensional quasicrystals. We determine the phase diagram and parameter values required for the quasicrystal to be the global minimum free energy state. We demonstrate that traits that promote the formation of two-dimensional quasicrystals are extant in three dimensions, and highlight the characteristics required for three-dimensional soft matter quasicrystal formation.
Three-dimensional imaging modalities in endodontics
Mao, Teresa; NEELAKANTAN, Prasanna
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualize...
Three-dimensional imaging modalities in endodontics
Mao, Teresa; Neelakantan, Prasanna
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualize...
Clinical significance of three dimensional finite element analysis on humerus fracture
Institute of Scientific and Technical Information of China (English)
SU Jia-can; WAN Min; FU Qing-ge; ZHANG Chun-cai; XU Shuo-gui; REN Ke; WANG Jia-lin; XUE Zhao-jun; WU Jian-guo; DING Zu-quan; GAO Tang-cheng
2002-01-01
Objective: To treat humerus fracture with three dimensional pattern and finite element analysis,providing mechanical basis for treating humerus fracture. Methods: Humerus pattern was established based on the CT images, and calculation was done by ANSYS5.6 software. Three dimensional ten-node tetrahedron unit was selected and were divided into 2 729 nodes, 49 041 units. Distribution and amount of axial compression of humerus were analyzed when clip angle was 30°, 45°, 90° between fracture face and axial line with fixed X, Y, Z directions. Results: The distribution of stress was greatly different between fracture face and non fracture face. Stress in fracture part was fairly concentrated with incomplete symmetric distribution around the center of fracture face; Greater stressdistributed in the regions 10 mm from fracture face, which was 2-3 times that of other stress regions. Conclusion: Required load must be estimated under various conditions as to select the suitable internal fixation implants during the treatment of humerus fracture, which can provide helpful stress environment for fracture healing.
Three-dimensional kinematics of hummingbird flight.
Tobalske, Bret W; Warrick, Douglas R; Clark, Christopher J; Powers, Donald R; Hedrick, Tyson L; Hyder, Gabriel A; Biewener, Andrew A
2007-07-01
Hummingbirds are specialized for hovering flight, and substantial research has explored this behavior. Forward flight is also important to hummingbirds, but the manner in which they perform forward flight is not well documented. Previous research suggests that hummingbirds increase flight velocity by simultaneously tilting their body angle and stroke-plane angle of the wings, without varying wingbeat frequency and upstroke: downstroke span ratio. We hypothesized that other wing kinematics besides stroke-plane angle would vary in hummingbirds. To test this, we used synchronized high-speed (500 Hz) video cameras and measured the three-dimensional wing and body kinematics of rufous hummingbirds (Selasphorus rufus, 3 g, N=5) as they flew at velocities of 0-12 m s(-1) in a wind tunnel. Consistent with earlier research, the angles of the body and the stroke plane changed with velocity, and the effect of velocity on wingbeat frequency was not significant. However, hummingbirds significantly altered other wing kinematics including chord angle, angle of attack, anatomical stroke-plane angle relative to their body, percent of wingbeat in downstroke, wingbeat amplitude, angular velocity of the wing, wingspan at mid-downstroke, and span ratio of the wingtips and wrists. This variation in bird-centered kinematics led to significant effects of flight velocity on the angle of attack of the wing and the area and angles of the global stroke planes during downstroke and upstroke. We provide new evidence that the paths of the wingtips and wrists change gradually but consistently with velocity, as in other bird species that possess pointed wings. Although hummingbirds flex their wings slightly at the wrist during upstroke, their average wingtip-span ratio of 93% revealed that they have kinematically ;rigid' wings compared with other avian species.
Three-dimensional magnetic reconnection through a moving magnetic null
Lukin, V. S.; Linton, M. G.
2011-01-01
A computational study of three-dimensional magnetic reconnection between two flux ropes through a moving reconnection site is presented. The configuration is considered in the context of two interacting spheromaks constrained by a perfectly conducting cylindrical boundary and oriented to form a single magnetic field null at its center. The initial magnetic field configuration is embedded into a uniform thermal plasma and is unstable to tilting. As the sphe...
Three-dimensional magnetic reconnection through a moving magnetic null
Lukin, V. S.; Linton, M. G.
2011-01-01
A computational study of three-dimensional magnetic reconnection between two flux ropes through a moving reconnection site is presented. The configuration is considered in the context of two interacting spheromaks constrained by a perfectly conducting cylindrical boundary and oriented to form a single magnetic field null at its center. The initial magnetic field configuration is embedded into a uniform thermal plasma and is unstable to tilting. As the spheromaks tilt, their magnetic fi...
Universally applicable three-dimensional hydrodynamic microfluidic flow focusing
Chiu, Yu-Jui; Cho, Sung Hwan; Mei, Zhe; Lien, Victor; Wu, Tsung-Feng; Lo, Yu-Hwa
2013-01-01
We have demonstrated a microfluidic device that can not only achieve three-dimensional flow focusing but also confine particles to the center stream along the channel. The device has a sample channel of smaller height and two sheath flow channels of greater height, merged into the downstream main channel where 3D focusing effects occur. We have demonstrated that both beads and cells in our device display significantly lower CVs in velocity and position distributions as well as reduced probabi...
Three-dimensional, computer simulated navigation in endoscopic neurosurgery
Directory of Open Access Journals (Sweden)
Roberta K. Sefcik, BHA
2017-06-01
Conclusion: Three-dimensional, frameless neuronavigation systems are useful in endoscopic neurosurgery to assist in the pre-operative planning of potential trajectories and to help localize the pathology of interest. Neuronavigation appears to be accurate to <1–2 mm without issues related to brain shift. Further work is necessary in the investigation of the effect of neuronavigation on operative time, cost, and patient-centered outcomes.
Transferring color between three-dimensional objects
Shen, Hui-Liang; Xin, John H.
2005-04-01
A framework for transferring image-based color between three-dimensional objects by the use of a dichromatic reflection model is proposed. The framework addresses the following issues: (1) accurate recovery of an implicit geometric coefficient, (2) calculation of body color, (3) color transfer between different illuminants, and (4) segmentation of multicolored regions. The experimental results show that high color accuracy and photorealistic effects of the synthesized images can be achieved. The proposed technique has wide applications in image-based design and visualization of three-dimensional objects.
Two dimensional fermions in three dimensional YM
Narayanan, R
2010-01-01
Dirac fermions in the fundamental representation of $SU(N)$ live on the surface of a cylinder embedded in $R^3$ and interact with a three dimensional $SU(N)$ Yang Mills vector potential preserving a global chiral symmetry at finite $N$. As the circumference of the cylinder is varied from small to large, the chiral symmetry gets spontaneously broken in the infinite $N$ limit at a typical bulk scale. Replacing three dimensional YM by four dimensional YM introduces non-trivial renormalization effects.
Three-Dimensional Robotic Vision System
Nguyen, Thinh V.
1989-01-01
Stereoscopy and motion provide clues to outlines of objects. Digital image-processing system acts as "intelligent" automatic machine-vision system by processing views from stereoscopic television cameras into three-dimensional coordinates of moving object in view. Epipolar-line technique used to find corresponding points in stereoscopic views. Robotic vision system analyzes views from two television cameras to detect rigid three-dimensional objects and reconstruct numerically in terms of coordinates of corner points. Stereoscopy and effects of motion on two images complement each other in providing image-analyzing subsystem with clues to natures and locations of principal features.
Three dimensional dynamics of ferromagnetic swimmer
Energy Technology Data Exchange (ETDEWEB)
Erglis, K.; Livanovics, R. [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga LV-1002 (Latvia); Cebers, A., E-mail: aceb@tesla.sal.l [Department of Physics, University of Latvia, Zellu 8, Ri-bar ga LV-1002 (Latvia)
2011-05-15
It is shown that a flexible ferromagnetic filament self-propels perpendicularly to the AC magnetic field during a limited period of time due to the instability of the planar motion with respect to three dimensional perturbations. The transition from the oscillating U-like shapes to the oscillating S-like shapes is characterized by the calculated Wr number. - Research Highlights: A ferromagnetic filament self-propels perpendicularly to the AC field. During the self-propulsion cycle the filament moves both forward and backward. The self-propulsion stops due to the three dimensional instability. The mechanism of the self-propulsion is similar to that used by some microorganisms.
Three dimensional electrochemical system for neurobiological studies
DEFF Research Database (Denmark)
Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith
2009-01-01
In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...
Electron crystallography of three dimensional protein crystals
Georgieva, Dilyana
2008-01-01
This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for grow
Three dimensional measurement of rhinoplasty results.
Heerbeek, N. van; Ingels, K.J.A.O.; Loon, B. van; Plooij, J.M.; Berge, S.J.
2009-01-01
BACKGROUND: Pre- and postoperative imaging is important and essential for evaluation of the results of rhinoplasty surgery. Two-dimensional photographs are used routinely for this purpose, but have several disadvantages as opposed to three-dimensional imaging techniques, such as
Three-dimensional patterning methods and related devices
Energy Technology Data Exchange (ETDEWEB)
Putnam, Morgan C.; Kelzenberg, Michael D.; Atwater, Harry A.; Boettcher, Shannon W.; Lewis, Nathan S.; Spurgeon, Joshua M.; Turner-Evans, Daniel B.; Warren, Emily L.
2016-12-27
Three-dimensional patterning methods of a three-dimensional microstructure, such as a semiconductor wire array, are described, in conjunction with etching and/or deposition steps to pattern the three-dimensional microstructure.
Directory of Open Access Journals (Sweden)
Songjun Zeng
2010-01-01
Full Text Available A method for three-dimensional (3D reconstruction of macromolecule assembles, that is, octahedral symmetrical adapted functions (OSAFs method, was introduced in this paper and a series of formulations for reconstruction by OSAF method were derived. To verify the feasibility and advantages of the method, two octahedral symmetrical macromolecules, that is, heat shock protein Degp24 and the Red-cell L Ferritin, were utilized as examples to implement reconstruction by the OSAF method. The schedule for simulation was designed as follows: 2000 random orientated projections of single particles with predefined Euler angles and centers of origins were generated, then different levels of noises that is signal-to-noise ratio (S/N =0.1,0.5, and 0.8 were added. The structures reconstructed by the OSAF method were in good agreement with the standard models and the relative errors of the structures reconstructed by the OSAF method to standard structures were very little even for high level noise. The facts mentioned above account for that the OSAF method is feasible and efficient approach to reconstruct structures of macromolecules and have ability to suppress the influence of noise.
Three-dimensional saltating processes of multiple sediment particles
Institute of Scientific and Technical Information of China (English)
Hsiao-Wen WANG; Hong-Yuan LEE; Po-Ning LEE
2009-01-01
The purpose of this study was to investigate the interacting mechanism between the saltating particles near a channel bed.A three-dimensional real-time flow visualization technique was developed to measure the interparticle collision behaviors during the saltating process.Based on the experimental data,the distribution of the collision points was found to be symmetric.This confirms the assumption that the projections of the collision points onto the reasonable plane are uniformly distributed.A three-dimensional saltating model was also developed.This model produced satisfactory results.The model is able to simulate the continuous saltating trajectories of several particles.The simulated dimensionless saltating height,longitudinal and vertical saltation velocity components were found to increase as the dimensionless particle diameter and the dimensionless flow transport capacity parameter increase,while the simulated lateral saltation velocity component varies inversely with the dimensionless flow transport capacity parameter.A regression equation for the bed load transport rate was also obtained.
A biorthogonality relationship for three-dimensional couple stress problem
Institute of Scientific and Technical Information of China (English)
LUO JianHui; LI QiuSheng; LIU GuangDong
2009-01-01
The duality solution for elasticity and the biorthogonality relationship have been well researched. Now the couple stress theory becomes a new research spot but there is few research for the biorthogonality relationship for couple stress theory comparing to classical elasticity. A new state vector is presented for three dimensional couple stress problems of prismatic structures. A new biorthogonality relation-ship of couple stress is discovered. The dual partial differential equations of couple stress problem are derived by the new state vector. By two important identical equations the new biorthogonality rela-tionship is proved based on the method of separation of variables. The symplectic orthogonality rela-tionship to three dimensional couple stress theory may be decomposed into two independently and symmetrically orthogonality relationships. The new biorthogonality relationship includes the symplectic orthogonality relationship. The biorthogonality relationship of couple stress may also be degenerated into the theory of elasticity. The new state vector and biorthogonality relationship provide theoretic foundation for the research on the schemes of separation of variables and eigenfunction expansion of couple stress theory.
A biorthogonality relationship for three-dimensional couple stress problem
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The duality solution for elasticity and the biorthogonality relationship have been well researched. Now the couple stress theory becomes a new research spot but there is few research for the biorthogonality relationship for couple stress theory comparing to classical elasticity. A new state vector is presented for three dimensional couple stress problems of prismatic structures. A new biorthogonality relation- ship of couple stress is discovered. The dual partial differential equations of couple stress problem are derived by the new state vector. By two important identical equations the new biorthogonality rela- tionship is proved based on the method of separation of variables. The symplectic orthogonality rela- tionship to three dimensional couple stress theory may be decomposed into two independently and symmetrically orthogonality relationships. The new biorthogonality relationship includes the symplec- tic orthogonality relationship. The biorthogonality relationship of couple stress may also be degener- ated into the theory of elasticity. The new state vector and biorthogonality relationship provide theo- retic foundation for the research on the schemes of separation of variables and eigenfunction expan- sion of couple stress theory.
Interactive dynamic three-dimensional scene for the ground-based three-dimensional display
Hou, Peining; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan
2016-10-01
Three-dimensional (3D) displays provides valuable tools for many fields, such as scientific experiment, education, information transmission, medical imaging and physical simulation. Ground based 360° 3D display with dynamic and controllable scene can find some special applications, such as design and construction of buildings, aeronautics, military sand table and so on. It can be utilized to evaluate and visualize the dynamic scene of the battlefield, surgical operation and the 3D canvas of art. In order to achieve the ground based 3D display, the public focus plane should be parallel to the camera's imaging planes, and optical axes should be offset to the center of public focus plane in both vertical and horizontal directions. Virtual cameras are used to display 3D dynamic scene with Unity 3D engine. Parameters of virtual cameras for capturing scene are designed and analyzed, and locations of virtual cameras are determined by the observer's eye positions in the observing space world. An interactive dynamic 3D scene for ground based 360° 3D display is demonstrated, which provides high-immersion 3D visualization.
Three-dimensional reconstruction of the intra-cluster medium
Puchwein, E; Puchwein, Ewald; Bartelmann, Matthias
2005-01-01
We propose and test a new method based on Richardson-Lucy deconvolution to reconstruct three-dimensional gas density and temperature distributions in galaxy clusters from combined X-ray and thermal Sunyaev-Zel'dovich observations. Clusters are assumed to be axially symmetric and arbitrarily inclined with respect to the line-of-sight. No equilibrium assumption other than local thermal equilibrium is needed. We test the algorithm with synthetic observations of analytically modeled and numerically simulated galaxy clusters and discuss the quality of the density and temperature reconstructions in idealised situations and in presence of observational noise, deviations from axial symmetry and cluster substructure. We find that analytic and numerical gas density and temperature distributions can be accurately reconstructed in three dimensions, even if observational noise is present. We also discuss methods for determining the inclination angle from data and show that it can be constrained using X-ray temperature map...
Three-dimensional fracture simulations based on the SDA
Feist, C.; Hofstetter, G.
2007-02-01
A numerical model within the framework of a non-symmetric strong discontinuity approach (SDA) suitable for fracture simulations of plain concrete is presented. The model is based on the fixed crack concept and is formulated within the framework of elements with embedded discontinuities. Discontinuity segments of individual elements are considered to form a C0-continuous surface. Enforcement of continuity of the crack surface across adjacent elements is established by the so-called partial domain crack tracking algorithm (PDTA). Orientation of individual crack segments is derived from a non-local strain field. Within the present work emphasis is put on the formulation for the three-dimensional case. The implications on the respective algorithms are highlighted. The capabilities of the model are shown by means of numerical examples. Copyright
Hamiltonian thermodynamics of three-dimensional dilatonic black hole
Dias, Gonçalo A S
2008-01-01
The action for a class of three-dimensional dilaton-gravity theories with a cosmological constant can be recast in a Brans-Dicke type action, with its free $\\omega$ parameter. These theories have static spherically symmetric black holes. Those with well formulated asymptotics are studied through a Hamiltonian formalism, and their thermodynamical properties are found out. The theories studied are general relativity ($\\omega\\to\\infty$), a dimensionally reduced cylindrical four-dimensional general relativity theory ($\\omega=0$), and a theory representing a class of theories ($\\omega=-3$). The Hamiltonian formalism is setup in three dimensions through foliations on the right region of the Carter-Penrose diagram, with the bifurcation 1-sphere as the left boundary, and anti-de Sitter infinity as the right boundary. The metric functions on the foliated hypersurfaces are the canonical coordinates. The Hamiltonian action is written, the Hamiltonian being a sum of constraints. One finds a new action which yields an unc...
Artifacts in three-dimensional transesophageal echocardiography.
Faletra, Francesco Fulvio; Ramamurthi, Alamelu; Dequarti, Maria Cristina; Leo, Laura Anna; Moccetti, Tiziano; Pandian, Natesa
2014-05-01
Three-dimensional (3D) transesophageal echocardiography (TEE) is subject to the same types of artifacts encountered on two-dimensional TEE. However, when displayed in a 3D format, some of the artifacts appear more "realistic," whereas others are unique to image acquisition and postprocessing. Three-dimensional TEE is increasingly used in the setting of percutaneous catheter-based interventions and ablation procedures, and 3D artifacts caused by the metallic components of catheters and devices are particularly frequent. Knowledge of these artifacts is of paramount relevance to avoid misinterpretation of 3D images. Although artifacts and pitfalls on two-dimensional echocardiography are well described and classified, a systematic description of artifacts in 3D transesophageal echocardiographic images and how they affect 3D imaging is still absent. The aim of this review is to describe the most relevant artifacts on 3D TEE, with particular emphasis on those occurring during percutaneous interventions for structural heart disease and ablation procedures.
THREE DIMENSIONAL GRAPHICAL REPRESENTATION OF QUALITY
Directory of Open Access Journals (Sweden)
Vineet V. Kumar
2014-03-01
Full Text Available Quality is an important aspect for every firm in modern era of competition. Every product has tough competition in terms of market reach. The factor, which actually makes any product long run in market, is quality and hence quality is the stepping-stone for success of any firm. For everyone meaning of quality is different. We have seen several economists who have defined quality by considering different factors, but what all of them have common in them is Customer satisfaction. Customer satisfaction is the ultimate result of quality. In three-dimensional graphical representation of quality, optimum quality is obtained by using three-dimensional graph by considering some important factors governing quality of any product, limiting factor, and customer satisfaction.
Three-dimensional broadband tunable terahertz metamaterials
DEFF Research Database (Denmark)
Fan, Kebin; Strikwerda, Andrew; Zhang, Xin
2013-01-01
We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph......We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....
Three-dimensional imaging modalities in endodontics
Energy Technology Data Exchange (ETDEWEB)
Mao, Teresa; Neelakantan, Prasanna [Dept. of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha University, Chennai (India)
2014-09-15
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.
Three-dimensional imaging modalities in endodontics.
Mao, Teresa; Neelakantan, Prasanna
2014-09-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome.
Three-dimensional Imaging, Visualization, and Display
Javidi, Bahram; Son, Jung-Young
2009-01-01
Three-Dimensional Imaging, Visualization, and Display describes recent developments, as well as the prospects and challenges facing 3D imaging, visualization, and display systems and devices. With the rapid advances in electronics, hardware, and software, 3D imaging techniques can now be implemented with commercially available components and can be used for many applications. This volume discusses the state-of-the-art in 3D display and visualization technologies, including binocular, multi-view, holographic, and image reproduction and capture techniques. It also covers 3D optical systems, 3D display instruments, 3D imaging applications, and details several attractive methods for producing 3D moving pictures. This book integrates the background material with new advances and applications in the field, and the available online supplement will include full color videos of 3D display systems. Three-Dimensional Imaging, Visualization, and Display is suitable for electrical engineers, computer scientists, optical e...
Three-Dimensional Gear Crack Propagation Studied
Lewicki, David G.
1999-01-01
Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions.
Lossless compression for three-dimensional images
Tang, Xiaoli; Pearlman, William A.
2004-01-01
We investigate and compare the performance of several three-dimensional (3D) embedded wavelet algorithms on lossless 3D image compression. The algorithms are Asymmetric Tree Three-Dimensional Set Partitioning In Hierarchical Trees (AT-3DSPIHT), Three-Dimensional Set Partitioned Embedded bloCK (3D-SPECK), Three-Dimensional Context-Based Embedded Zerotrees of Wavelet coefficients (3D-CB-EZW), and JPEG2000 Part II for multi-component images. Two kinds of images are investigated in our study -- 8-bit CT and MR medical images and 16-bit AVIRIS hyperspectral images. First, the performances by using different size of coding units are compared. It shows that increasing the size of coding unit improves the performance somewhat. Second, the performances by using different integer wavelet transforms are compared for AT-3DSPIHT, 3D-SPECK and 3D-CB-EZW. None of the considered filters always performs the best for all data sets and algorithms. At last, we compare the different lossless compression algorithms by applying integer wavelet transform on the entire image volumes. For 8-bit medical image volumes, AT-3DSPIHT performs the best almost all the time, achieving average of 12% decreases in file size compared with JPEG2000 multi-component, the second performer. For 16-bit hyperspectral images, AT-3DSPIHT always performs the best, yielding average 5.8% and 8.9% decreases in file size compared with 3D-SPECK and JPEG2000 multi-component, respectively. Two 2D compression algorithms, JPEG2000 and UNIX zip, are also included for reference, and all 3D algorithms perform much better than 2D algorithms.
Three-dimensional display of document set
Energy Technology Data Exchange (ETDEWEB)
Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA; York, Jeremy [Bothell, WA
2009-06-30
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Energy Technology Data Exchange (ETDEWEB)
Lantrip, David B. (Oxnard, CA); Pennock, Kelly A. (Richland, WA); Pottier, Marc C. (Richland, WA); Schur, Anne (Richland, WA); Thomas, James J. (Richland, WA); Wise, James A. (Richland, WA)
2006-09-26
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may e transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-Dimensional Dispaly Of Document Set
Energy Technology Data Exchange (ETDEWEB)
Lantrip, David B. (Oxnard, CA); Pennock, Kelly A. (Richland, WA); Pottier, Marc C. (Richland, WA); Schur, Anne (Richland, WA); Thomas, James J. (Richland, WA); Wise, James A. (Richland, WA)
2003-06-24
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-dimensional display of document set
Energy Technology Data Exchange (ETDEWEB)
Lantrip, David B [Oxnard, CA; Pennock, Kelly A [Richland, WA; Pottier, Marc C [Richland, WA; Schur, Anne [Richland, WA; Thomas, James J [Richland, WA; Wise, James A [Richland, WA
2001-10-02
A method for spatializing text content for enhanced visual browsing and analysis. The invention is applied to large text document corpora such as digital libraries, regulations and procedures, archived reports, and the like. The text content from these sources may be transformed to a spatial representation that preserves informational characteristics from the documents. The three-dimensional representation may then be visually browsed and analyzed in ways that avoid language processing and that reduce the analysts' effort.
Three-Dimensional Ocean Noise Modeling
2015-03-01
particular attention paid to the case of Gaussian canyon . The solution to the three-dimensional wave equation in Cartesian co-ordinates can be written...in terms of a modal decomposition, carried out in the vertical and across- canyon horizontal directions. Work Completed 1. Nx2D and 3D Noise PE...azimuth in the Hudson Canyon [Figure 2). Additionally, the PE-reciprocity noise model was used to estimate the size, speed and distance from the
Three dimensional boundary layers in internal flows
Bodonyi, R. J.
1987-01-01
A numerical study of the effects of viscous-inviscid interactions in three-dimensional duct flows is presented. In particular interacting flows for which the oncoming flow is not fully-developed were considered. In this case there is a thin boundary layer still present upstream of the surface distortion, as opposed to the fully-developed pipe flow situation wherein the flow is viscous across the cross section.
Symmetry enrichment in three-dimensional topological phases
Ning, Shang-Qiang; Liu, Zheng-Xin; Ye, Peng
2016-12-01
While two-dimensional symmetry-enriched topological phases (SETs ) have been studied intensively and systematically, three-dimensional ones are still open issues. We propose an algorithmic approach of imposing global symmetry Gs on gauge theories (denoted by GT) with gauge group Gg. The resulting symmetric gauge theories are dubbed "symmetry-enriched gauge theories" (SEG), which may be served as low-energy effective theories of three-dimensional symmetric topological quantum spin liquids. We focus on SEGs with gauge group Gg=ZN1×ZN2×⋯ and onsite unitary symmetry group Gs=ZK1×ZK2×⋯ or Gs=U (1 ) ×ZK 1×⋯ . Each SEG(Gg,Gs) is described in the path-integral formalism associated with certain symmetry assignment. From the path-integral expression, we propose how to physically diagnose the ground-state properties (i.e., SET orders) of SEGs in experiments of charge-loop braidings (patterns of symmetry fractionalization) and the mixed multiloop braidings among deconfined loop excitations and confined symmetry fluxes. From these symmetry-enriched properties, one can obtain the map from SEGs to SETs . By giving full dynamics to background gauge fields, SEGs may be eventually promoted to a set of new gauge theories (denoted by GT*). Based on their gauge groups, GT*s may be further regrouped into different classes, each of which is labeled by a gauge group Gg*. Finally, a web of gauge theories involving GT,SEG,SET, and GT* is achieved. We demonstrate the above symmetry-enrichment physics and the web of gauge theories through many concrete examples.
Multiparallel Three-Dimensional Optical Microscopy
Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel
2010-01-01
Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.
Imaging unsteady three-dimensional transport phenomena
Indian Academy of Sciences (India)
K Muralidhar
2014-01-01
Careful and continuous measurements of flow, heat and mass transfer are required in quite a few contexts. Using appropriate light sources, it is possible to map velocity, temperature, and species concentration over a cross-section and as a function of time. Image formation in optical measurements may rely on scattering of radiation from particles. Alternatively, if the region of interest is transparent, refractive index would be a field variable and beam bending effects can be used to extract information about temperature and concentration of solutes dissolved in liquids. Time-lapsed images of light intensity can be used to determine fluid velocity. Though used originally for flow visualization, optical imaging has now emerged as a powerful tool for quantitative measurements. Optical methods that utilize the dependence of refractive index on concentration and temperature can be configured in many different ways. Three available routes considered are interferometry, schlieren imaging, and shadowgraph. Images recorded in these configurations can be analysed to yield time sequences of three-dimensional distributions of the transported variables. Optical methods are non-intrusive, inertia-free and can image cross-sections of the experimental apparatus. The image data can be jointly analysed with the physical laws governing transport and principles of image formation. Hence, with the experiment suitably carried out, three-dimensional physical domains with unsteady processes can be accommodated. Optical methods promise to breach the holy grail of measurements by extracting unsteady three-dimensional data in applications related to transport phenomena.
Volumetric Three-Dimensional Display Systems
Blundell, Barry G.; Schwarz, Adam J.
2000-03-01
A comprehensive study of approaches to three-dimensional visualization by volumetric display systems This groundbreaking volume provides an unbiased and in-depth discussion on a broad range of volumetric three-dimensional display systems. It examines the history, development, design, and future of these displays, and considers their potential for application to key areas in which visualization plays a major role. Drawing substantially on material that was previously unpublished or available only in patent form, the authors establish the first comprehensive technical and mathematical formalization of the field, and examine a number of different volumetric architectures. System level design strategies are presented, from which proposals for the next generation of high-definition predictable volumetric systems are developed. To ensure that researchers will benefit from work already completed, they provide: * Descriptions of several recent volumetric display systems prepared from material supplied by the teams that created them * An abstract volumetric display system design paradigm * An historical summary of 90 years of development in volumetric display system technology * An assessment of the strengths and weaknesses of many of the systems proposed to date * A unified presentation of the underlying principles of volumetric display systems * A comprehensive bibliography Beautifully supplemented with 17 color plates that illustrate volumetric images and prototype displays, Volumetric Three-Dimensional Display Systems is an indispensable resource for professionals in imaging systems development, scientific visualization, medical imaging, computer graphics, aerospace, military planning, and CAD/CAE.
Three-dimensional laser window formation for industrial application
Verhoff, Vincent G.; Kowalski, David
1993-01-01
The NASA Lewis Research Center has developed and implemented a unique process for forming flawless three-dimensional, compound-curvature laser windows to extreme accuracies. These windows represent an integral component of specialized nonintrusive laser data acquisition systems that are used in a variety of compressor and turbine research testing facilities. These windows are molded to the flow surface profile of turbine and compressor casings and are required to withstand extremely high pressures and temperatures. This method of glass formation could also be used to form compound-curvature mirrors that would require little polishing and for a variety of industrial applications, including research view ports for testing devices and view ports for factory machines with compound-curvature casings. Currently, sodium-alumino-silicate glass is recommended for three-dimensional laser windows because of its high strength due to chemical strengthening and its optical clarity. This paper discusses the main aspects of three-dimensional laser window formation. It focuses on the unique methodology and the peculiarities that are associated with the formation of these windows.
Three dimensional illustrating - three-dimensional vision and deception of sensibility
Directory of Open Access Journals (Sweden)
Anita Gánóczy
2009-03-01
Full Text Available The wide-spread digital photography and computer use gave the opportunity for everyone to make three-dimensional pictures and to make them public. The new opportunities with three-dimensional techniques give chance for the birth of new artistic photographs. We present in detail the biological roots of three-dimensional visualization, the phenomena of movement parallax, which can be used efficiently in making three-dimensional graphics, the Zöllner- and Corridor-illusion. There are present in this paper the visual elements, which contribute to define a plane two-dimensional image in three-dimension: coherent lines, the covering, the measurement changes, the relative altitude state, the abatement of detail profusion, the shadings and the perspective effects of colors.
Three-dimensional analysis of craniofacial bones using three-dimensional computer tomography
Energy Technology Data Exchange (ETDEWEB)
Ono, Ichiro; Ohura, Takehiko; Kimura, Chu (Hokkaido Univ., Sapporo (Japan). School of Medicine) (and others)
1989-08-01
Three-dimensional computer tomography (3DCT) was performed in patients with various diseases to visualize stereoscopically the deformity of the craniofacial bones. The data obtained were analyzed by the 3DCT analyzing system. A new coordinate system was established using the median sagittal plane of the face (a plane passing through sella, nasion and basion) on the three-dimensional image. Three-dimensional profilograms were prepared for detailed analysis of the deformation of craniofacial bones for cleft lip and palate, mandibular prognathia and hemifacial microsomia. For patients, asymmetry in the frontal view and twist-formed complicated deformities were observed, as well as deformity of profiles in the anteroposterior and up-and-down directions. A newly developed technique allows three-dimensional visualization of changes in craniofacial deformity. It would aid in determining surgical strategy, including crani-facial surgery and maxillo-facial surgery, and in evaluating surgical outcome. (N.K.).
Differential cross sections for the one electron two center symmetric systems
Energy Technology Data Exchange (ETDEWEB)
Maidagan, J.M.; Piacentini, R.D. (Universidad Nacional de Rosario (Argentina). Dept. de Fisica); Rivarola, R.D. (Bordeaux-1 Univ., 33 - Talence (France). Lab. d' Astrophysique; Universidad Autonoma de Madrid (Spain). Dept. de Quimica Fisica y Quimica Cuantica)
1982-03-01
We use the two-state atomic expansion with variable nuclear charge to study charge-exchange differential cross sections for symmetrical one-electron systems at intermediate energy. The nonclassical small angle diffraction scattering is discussed. Our results are compared with data for H/sup +/-H collisions.
Stability of three-dimensional boundary layers
Nayfeh, A. H.
1979-01-01
A theory is presented for the three-dimensional stability of boundary layers. Equations are derived for the evolution of a disturbance having a given frequency and originating at a given curve. These equations are used to determine the rays along which the disturbance energy propagates. It is shown that the results can be obtained by using the saddle-point method, or kinematic wave theory, or the method of multiple scales. Extension of the theory to the case of a wave packet is also presented.
Nonparallel stability of three-dimensional flows
Padhye, A. R.; Nayfeh, A. H.
1981-01-01
The linear stability of three-dimensional incompressible, isothermal, nonparallel boundary-layer flows has been investigated. The method of multiple scales is used to derive the partial-differential equations that describe the spatial modulations of the amplitude, phase and wavenumber of a disturbance. Group velocities are used to determine the disturbance growth direction. The envelope method is used to calculate the logarithmic amplitude growth rate N. The theory is applied to the flows over a swept-back tapered wing with boundary-layer suction. Results of such analysis for the X-21 wing are discussed. It is found that the nonparallel effects for this wing is substantial.
Stabilization of Three-Dimensional Collective Motion
Scardovi, Luca; Sepulchre, Rodolphe
2008-01-01
This paper proposes a methodology to stabilize relative equilibria in a model of identical, steered particles moving in three-dimensional Euclidean space. Exploiting the Lie group structure of the resulting dynamical system, the stabilization problem is reduced to a consensus problem on the Lie algebra. The resulting equilibria correspond to parallel, circular and helical formations. We first derive the stabilizing control laws in the presence of all-to-all communication. Providing each agent with a consensus estimator, we then extend the results to a general setting that allows for unidirectional and time-varying communication topologies.
Three-dimensional cooling of muons
Vsevolozhskaya, T A
2000-01-01
The simultaneous ionization cooling of muon beams in all three - the longitudinal and two transverse - directions is considered in a scheme, based on bent lithium lenses with dipole constituent of magnetic field in them, created by a special configuration of current-carrying rod. An analysis of three-dimensional cooling is performed with the use of kinetic equation method. Results of numerical calculation for a specific beam line configuration are presented together with results of computer simulation using the Moliere distribution to describe the Coulomb scattering and the Vavilov distribution used to describe the ionization loss of energy.
Three dimensional dilatonic gravity's rainbow: exact solutions
Hendi, Seyed Hossein; Panahiyan, Shahram
2016-01-01
Deep relations of dark energy scenario and string theory results with dilaton gravity, on one hand, and the connection between quantum gravity with gravity's rainbow, on the other hand, motivate us to consider three dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.
Three-dimensional echocardiography in valve disease.
Colombo, Chiara; Tamborini, Gloria; Pepi, Mauro; Alimento, Marina; Fiorentini, Cesare
2007-01-01
This review covers the role of three-dimensional (3D) echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic) and quantitative advantages of this technique.
Large-N Analysis of Three Dimensional Nonlinear Sigma Models
Higashijima, K; Tsuzuki, M; Higashijima, Kiyoshi; Itou, Etsuko; Tsuzuki, Makoto
2005-01-01
Non-perturbative renormalization group approach suggests that a large class of nonlinear sigma models are renormalizable in three dimensional space-time, while they are non-renormalizable in perturbation theory. ${\\cal N}=2$ supersymmetric nonlinear sigma models whose target spaces are Einstein-K\\"{a}hler manifolds with positive scalar curvature belongs to this class. hermitian symmetric spaces, being homogeneous, are specially simple examples of these manifolds. To find an independent evidence of the nonperturbative renormalizability of these models, the large N method, another nonperturbative method, is applied to 3-dimensional ${\\cal N}=2$ supersymmetric nonlinear sigma models on the target spaces $CP^{N-1}=SU(N)/[SU(N-1)\\times U(1)]$ and $Q^{N-2}=SO(N)/[SO(N-2)\\times SO(2)]$, two typical examples of hermitian symmetric spaces. We find that $\\beta$ functions in these models agree with the results of the nonperturbative renormalization group approach in the next-to-leading order of 1/N expansion, and have n...
Two component-three dimensional catalysis
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2002-01-01
This invention relates to catalytic reactor membranes having a gas-impermeable membrane for transport of oxygen anions. The membrane has an oxidation surface and a reduction surface. The membrane is coated on its oxidation surface with an adherent catalyst layer and is optionally coated on its reduction surface with a catalyst that promotes reduction of an oxygen-containing species (e.g., O.sub.2, NO.sub.2, SO.sub.2, etc.) to generate oxygen anions on the membrane. The reactor has an oxidation zone and a reduction zone separated by the membrane. A component of an oxygen containing gas in the reduction zone is reduced at the membrane and a reduced species in a reactant gas in the oxidation zone of the reactor is oxidized. The reactor optionally contains a three-dimensional catalyst in the oxidation zone. The adherent catalyst layer and the three-dimensional catalyst are selected to promote a desired oxidation reaction, particularly a partial oxidation of a hydrocarbon.
Three dimensional quantum geometry and deformed symmetry
Joung, E.; Mourad, J.; Noui, K.
2009-05-01
We study a three dimensional noncommutative space emerging in the context of three dimensional Euclidean quantum gravity. Our starting point is the assumption that the isometry group is deformed to the Drinfeld double D(SU(2)). We generalize to the deformed case the construction of E3 as the quotient of its isometry group ISU(2) by SU(2). We show that the algebra of functions on E3 becomes the noncommutative algebra of SU(2) distributions, C(SU(2))∗, endowed with the convolution product. This construction gives the action of ISU(2) on the algebra and allows the determination of plane waves and coordinate functions. In particular, we show the following: (i) plane waves have bounded momenta; (ii) to a given momentum are associated several SU(2) elements leading to an effective description of ϕ ɛC(SU(2))∗ in terms of several physical scalar fields on E3; (iii) their product leads to a deformed addition rule of momenta consistent with the bound on the spectrum. We generalize to the noncommutative setting the "local" action for a scalar field. Finally, we obtain, using harmonic analysis, another useful description of the algebra as the direct sum of the algebra of matrices. The algebra of matrices inherits the action of ISU(2): rotations leave the order of the matrices invariant, whereas translations change the order in a way we explicitly determine.
Three-dimensional image signals: processing methods
Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru
2010-11-01
Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.
Li, Cheng Gong; P-Y Maa, Jerome
2017-04-01
Numerical study on three-dimensional (3D), incompressible, four-sided lid (FSL) driven cavity flows has been conducted to show the effects of the transverse aspect ratio, K, on the flow field by using a multiple relaxation time lattice Boltzmann equation. The top wall is driven from left to right, the left wall is moved downward, whereas the right wall is driven upward, and the bottom wall is moved from right to left, all the four moving walls have the same speed and the others boundaries are fixed. Numerical computations are performed for several Reynolds numbers for laminar flows, up to 1000, with various transverse aspect ratios. The flow can reach a steady state and the flow pattern is symmetric with respect to the two cavity diagonals (i.e., the center of the cavity). At Reynolds number = 300, the flow structures of the 3D FSL cavity flow at steady state with various transverse aspect ratio, i.e., 3, 2, 1, 0.75, 0.5 and 0.25 only show the unstable symmetrical flow pattern. The stable asymmetrical flow pattern could be reproduced only by increasing the Reynolds number that is above a critical value which is dependent on the aspect ratio. It is found that an aspect ratio of more than 5 is needed to reproduce flow patterns, both symmetric and asymmetric flows, simulated by using 2D numerical models.
Trinkunas, G.; Holzwarth, A R
1996-01-01
A procedure is described to generate and optimize the lattice models for spectrally inhomogeneous photosynthetic antenna/reaction center (RC) particles. It is based on the genetic algorithm search for the pigment spectral type distributions on the lattice by making use of steady-state and time-resolved spectroscopic input data. Upon a proper fitness definition, a family of excitation energy transfer models can be tested for their compatibility with the availability experimental data. For the ...
Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes
Kory, Carol L.
2000-01-01
A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam
UNIFIED WAY FOR DEALING WITH THREE-DIMENSIONAL PROBLEMS OF SOLID ELASTICITY
Institute of Scientific and Technical Information of China (English)
许强; 孙焕纯
2001-01-01
Unified way for dealing with the problems of three dimensional solid, each type of plates and shells etc. was presented with the virtual boundary element least squares method(VBEM). It proceeded from the differential equations of three-dimensional theory of elasticity and employs the Kelvin solution and the least squares method. It is advantageous to the establishment of the models of a software for general application to calculate each type of three-dimensional problems of elasticity. Owing to directly employing the Kelvin solution and not citing any hypothesis, the numerical results of the method should be better than any others. The merits of the method are highlighted in comparison with the direct formulation of boundary element method(BEM). It is shown that coefficient matrix is symmetric and the treatment of singular integration is rendered unnecessary in the presented method. The examples prove the efficiency and calculating precision of the method.
Three-dimensional printing physiology laboratory technology.
Sulkin, Matthew S; Widder, Emily; Shao, Connie; Holzem, Katherine M; Gloschat, Christopher; Gutbrod, Sarah R; Efimov, Igor R
2013-12-01
Since its inception in 19th-century Germany, the physiology laboratory has been a complex and expensive research enterprise involving experts in various fields of science and engineering. Physiology research has been critically dependent on cutting-edge technological support of mechanical, electrical, optical, and more recently computer engineers. Evolution of modern experimental equipment is constrained by lack of direct communication between the physiological community and industry producing this equipment. Fortunately, recent advances in open source technologies, including three-dimensional printing, open source hardware and software, present an exciting opportunity to bring the design and development of research instrumentation to the end user, i.e., life scientists. Here we provide an overview on how to develop customized, cost-effective experimental equipment for physiology laboratories.
Three-dimensional context regulation of metastasis.
Erler, Janine T; Weaver, Valerie M
2009-01-01
Tumor progression ensues within a three-dimensional microenvironment that consists of cellular and non-cellular components. The extracellular matrix (ECM) and hypoxia are two non-cellular components that potently influence metastasis. ECM remodeling and collagen cross-linking stiffen the tissue stroma to promote transformation, tumor growth, motility and invasion, enhance cancer cell survival, enable metastatic dissemination, and facilitate the establishment of tumor cells at distant sites. Matrix degradation can additionally promote malignant progression and metastasis. Tumor hypoxia is functionally linked to altered stromal-epithelial interactions. Hypoxia additionally induces the expression of pro-migratory, survival and invasion genes, and up-regulates expression of ECM components and modifying enzymes, to enhance tumor progression and metastasis. Synergistic interactions between matrix remodeling and tumor hypoxia influence common mechanisms that maximize tumor progression and cooperate to drive metastasis. Thus, clarifying the molecular pathways by which ECM remodeling and tumor hypoxia intersect to promote tumor progression should identify novel therapeutic targets.
Three-dimensional hologram display system
Mintz, Frederick (Inventor); Chao, Tien-Hsin (Inventor); Bryant, Nevin (Inventor); Tsou, Peter (Inventor)
2009-01-01
The present invention relates to a three-dimensional (3D) hologram display system. The 3D hologram display system includes a projector device for projecting an image upon a display medium to form a 3D hologram. The 3D hologram is formed such that a viewer can view the holographic image from multiple angles up to 360 degrees. Multiple display media are described, namely a spinning diffusive screen, a circular diffuser screen, and an aerogel. The spinning diffusive screen utilizes spatial light modulators to control the image such that the 3D image is displayed on the rotating screen in a time-multiplexing manner. The circular diffuser screen includes multiple, simultaneously-operated projectors to project the image onto the circular diffuser screen from a plurality of locations, thereby forming the 3D image. The aerogel can use the projection device described as applicable to either the spinning diffusive screen or the circular diffuser screen.
Entanglement entropy in three dimensional gravity
Maxfield, Henry
2014-01-01
The Ryu-Takayanagi and covariant Hubeny-Rangamani-Takayanagi proposals relate entanglement entropy in CFTs with holographic duals to the areas of minimal or extremal surfaces in the bulk geometry. We show how, in three dimensional pure gravity, the relevant regulated geodesic lengths can be obtained by writing a spacetime as a quotients of AdS3, with the problem reduced to a simple purely algebraic calculation. We explain how this works in both Lorentzian and Euclidean formalisms, before illustrating its use to obtain novel results in a number of examples, including rotating BTZ, the RP2 geon, and several wormhole geometries. This includes spatial and temporal dependence of single-interval entanglement entropy, despite these symmetries being broken only behind an event horizon. We also discuss considerations allowing HRT to be derived from analytic continuation of Euclidean computations in certain contexts, and a related class of complexified extremal surfaces.
Three-Dimensional Pneumatic Molding of Veneers
Directory of Open Access Journals (Sweden)
Milan Gaff
2014-07-01
Full Text Available The goal of this paper is to introduce a new testing method suitable for the evaluation of the three-dimensional (3-D moldability of veneers and to use this method to test the impact of specific factors on the 3-D pneumatic molding process. The tested factors included veneer moisture content, wood species, shape of test piece, and fixing method on the maximum wood deflection. Veneers were molded using compressed air on equipment designed by our group for the sole purpose of this experiment. The results indicated that the monitored factors had an effect on deflection during the 3-D molding process. The results of this investigation extend the state-of-the-art knowledge regarding this technology and indicate the possibility of utilizing this innovative testing method for 3-D molded veneers.
Three dimensional fabric evolution of sheared sand
Energy Technology Data Exchange (ETDEWEB)
Hasan, Alsidqi; Alshibli, Khalid (UWA)
2012-10-24
Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.
Dual solutions for three-dimensional
Directory of Open Access Journals (Sweden)
C.S.K. Raju
2016-03-01
Full Text Available In this study we investigated the effect of space and temperature dependent heat generation/absorption on three-dimensional magnetohydrodynamic nanofluid flow over a nonlinearly permeable stretching sheet. After using appropriate self-similarity transformation the governing equations are solved numerically using bvp4c Matlab package. The effects of the non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed with the help of graphs. Also, coefficient of skin friction and Nusselt number is analyzed and presented through tables. It is found that present results have an excellent agreement with the existed studies under some special cases. Results indicate that an increase in space and temperature dependent heat source or sink increases the temperature and concentration profiles of the flow. Dual solutions exist only for certain range of power-law index.
Three-Dimensional Reflectance Traction Microscopy.
Directory of Open Access Journals (Sweden)
Jihan Kim
Full Text Available Cells in three-dimensional (3D environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix.
Steady inviscid three-dimensional flows
Adamczyk, J. J.; Chang, S.-C.
1985-01-01
The present analysis combines some of the theoretical concepts suggested by Hawthorne (1955) with a numerical integration procedure suggested by Martin (1978). The resulting algorithm is for inviscid subsonic flows. Thus, it is restricted to high Reynolds number flows. Chang and Adamczyk (1983) have provided a detailed derivation of the present algorithm along with a discussion of its stability bounds. The present paper represents a summary of this work. The integration of the continuity equation is considered along with an evaluation of the entropy, total temperature, and vorticity field. Attention is given to the shear-flow algorithm construction, and an application to a shear flow in a turning channel. A description of numerical results is also provided. The discussed algorithm represents a new procedure for solving inviscid subsonic three-dimensional rotational flows.
Scaffolding for Three-Dimensional Embryonic Vasculogenesis
Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.
Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.
Three-dimensional tori and Arnold tongues
Energy Technology Data Exchange (ETDEWEB)
Sekikawa, Munehisa, E-mail: sekikawa@cc.utsunomiya-u.ac.jp [Department of Mechanical and Intelligent Engineering, Utsunomiya University, Utsunomiya-shi 321-8585 (Japan); Inaba, Naohiko [Organization for the Strategic Coordination of Research and Intellectual Property, Meiji University, Kawasaki-shi 214-8571 (Japan); Kamiyama, Kyohei [Department of Electronics and Bioinformatics, Meiji University, Kawasaki-shi 214-8571 (Japan); Aihara, Kazuyuki [Institute of Industrial Science, the University of Tokyo, Meguro-ku 153-8505 (Japan)
2014-03-15
This study analyzes an Arnold resonance web, which includes complicated quasi-periodic bifurcations, by conducting a Lyapunov analysis for a coupled delayed logistic map. The map can exhibit a two-dimensional invariant torus (IT), which corresponds to a three-dimensional torus in vector fields. Numerous one-dimensional invariant closed curves (ICCs), which correspond to two-dimensional tori in vector fields, exist in a very complicated but reasonable manner inside an IT-generating region. Periodic solutions emerge at the intersections of two different thin ICC-generating regions, which we call ICC-Arnold tongues, because all three independent-frequency components of the IT become rational at the intersections. Additionally, we observe a significant bifurcation structure where conventional Arnold tongues transit to ICC-Arnold tongues through a Neimark-Sacker bifurcation in the neighborhood of a quasi-periodic Hopf bifurcation (or a quasi-periodic Neimark-Sacker bifurcation) boundary.
Entanglement entropy in three dimensional gravity
Energy Technology Data Exchange (ETDEWEB)
Maxfield, Henry [Centre for Particle Theory & Department of Mathematical Sciences, Durham University,South Road, Durham DH1 3LE (United Kingdom)
2015-04-07
The Ryu-Takayanagi (RT) and covariant Hubeny-Rangamani-Takayanagi (HRT) proposals relate entanglement entropy in CFTs with holographic duals to the areas of minimal or extremal surfaces in the bulk geometry. We show how, in three dimensional pure gravity, the relevant regulated geodesic lengths can be obtained by writing a spacetime as a quotient of AdS{sub 3}, with the problem reduced to a simple purely algebraic calculation. We explain how this works in both Lorentzian and Euclidean formalisms, before illustrating its use to obtain novel results in a number of examples, including rotating BTZ, the ℝℙ{sup 2} geon, and several wormhole geometries. This includes spatial and temporal dependence of single-interval entanglement entropy, despite these symmetries being broken only behind an event horizon. We also discuss considerations allowing HRT to be derived from analytic continuation of Euclidean computations in certain contexts, and a related class of complexified extremal surfaces.
AAOGlimpse: Three-dimensional Data Viewer
Shortridge, Keith
2011-10-01
AAOGlimpse is an experimental display program that uses OpenGL to display FITS data (and even JPEG images) as 3D surfaces that can be rotated and viewed from different angles, all in real-time. It is WCS-compliant and designed to handle three-dimensional data. Each plane in a data cube is surfaced in the same way, and the program allows the user to travel through a cube by 'peeling off' successive planes, or to look into a cube by suppressing the display of data below a given cutoff value. It can blink images and can superimpose images and contour maps from different sources using their world coordinate data. A limited socket interface allows communication with other programs.
Three dimensional polymer waveguide using hybrid lithography.
Wang, Huanran; Liu, Yu; Jiang, Minghui; Chen, Changming; Wang, Xibin; Wang, Fei; Zhang, Daming; Yi, Yunji
2015-10-01
A three dimensional polymer waveguide with taper structure was demonstrated and fabricated by a reliable and effective hybrid lithography. The hybrid lithography consists of lithography to fabricate a polymer waveguide and gray scale lithography to fabricate a polymer taper structure. Laser ablation and shadow aluminum evaporation were designed for gray scale lithography. The length of the gray scale region ranging from 20 to 400 μm could be controlled by the laser power, the ablation speed, and the aluminum thickness. The slope angle was determined by the length of the gray scale region and the thickness of the photoresist. The waveguide taper structure could be transferred to the lower layer by the etching method. The taper structure can be used for integration of the waveguide with different dimensions.
Three-dimensional printing of biological matters
Directory of Open Access Journals (Sweden)
Ahmed Munaz
2016-03-01
Full Text Available Three-dimensional (3D printing of human tissues and organ has been an exciting research topic in the past three decades. However, existing technological and biological challenges still require a significant amount of research. The present review highlights these challenges and discusses their potential solutions such as mapping and converting a human organ onto a 3D virtual design, synchronizing the virtual design with the printing hardware. Moreover, the paper discusses in details recent advances in formulating bio-inks and challenges in tissue construction with or without scaffold. Next, the paper reviews fusion processes effecting vascular cells and tissues. Finally, the paper deliberates the feasibility of organ printing with state-of-the-art technologies.
Localized shear generates three-dimensional transport
Smith, Lachlan D.; Rudman, Murray; Lester, Daniel R.; Metcalfe, Guy
2017-04-01
Understanding the mechanisms that control three-dimensional (3D) fluid transport is central to many processes, including mixing, chemical reaction, and biological activity. Here a novel mechanism for 3D transport is uncovered where fluid particles are kicked between streamlines near a localized shear, which occurs in many flows and materials. This results in 3D transport similar to Resonance Induced Dispersion (RID); however, this new mechanism is more rapid and mutually incompatible with RID. We explore its governing impact with both an abstract 2-action flow and a model fluid flow. We show that transitions from one-dimensional (1D) to two-dimensional (2D) and 2D to 3D transport occur based on the relative magnitudes of streamline jumps in two transverse directions.
GaN three dimensional nanostructures
Energy Technology Data Exchange (ETDEWEB)
Dmitriev, V.; Irvin, K. [Cree Research, Inc., Durham, NC (United States); Zubrilov, A.; Tsvetkov, D.; Nikolaev, V. [Cree Research EED, St. Petersburg (Russian Federation); Jakobson, M.; Nelson, D.; Sitnikova, A. [A.F. Ioffe Inst., St. Petersburg (Russian Federation)
1996-11-01
The authors report on the growth and characterization of three dimensional nanoscale structures of GaN. GaN dots were grown by metal organic chemical vapor deposition (MOCVD) on 6H-SiC substrates. The actual size of the dots measured by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) ranged from {approximately}20 nm to more than 2 {micro}m. The average dot density ranged from 10{sup 7} to 10{sup 9} cm{sup {minus}2}. The single crystal structure of the dots was verified by reflectance high energy electron diffraction (HEED) and TEM. Cathodoluminescence (CL) and photoluminescence (PL) of the dots were studied at various temperatures and excitation levels. The PL and CL edge peak for the GaN dots exhibited a blue shift as compared with edge peak position for continuous GaN layers grown on SiC.
Exact solutions in three-dimensional gravity
Garcia-Diaz, Alberto A
2017-01-01
A self-contained text, systematically presenting the determination and classification of exact solutions in three-dimensional Einstein gravity. This book explores the theoretical framework and general physical and geometrical characteristics of each class of solutions, and includes information on the researchers responsible for their discovery. Beginning with the physical character of the solutions, these are identified and ordered on the basis of their geometrical invariant properties, symmetries, and algebraic classifications, or from the standpoint of their physical nature, for example electrodynamic fields, fluid, scalar field, or dilaton. Consequently, this text serves as a thorough catalogue on 2+1 exact solutions to the Einstein equations coupled to matter and fields, and on vacuum solutions of topologically massive gravity with a cosmological constant. The solutions are also examined from different perspectives, enabling a conceptual bridge between exact solutions of three- and four-dimensional gravit...
Lattice Three-Dimensional Skyrmions Revisited
Charalampidis, E G; Kevrekidis, P G
2014-01-01
In the continuum a skyrmion is a topological nontrivial map between Riemannian manifolds, and a stationary point of a particular energy functional. This paper describes lattice analogues of the aforementioned skyrmions, namely a natural way of using the topological properties of the three-dimensional continuum Skyrme model to achieve topological stability on the lattice. In particular, using fixed point iterations, numerically exact lattice skyrmions are constructed; and their stability under small perturbations is verified by means of linear stability analysis. While stable branches of such solutions are identified, it is also shown that they possess a particularly delicate bifurcation structure, especially so in the vicinity of the continuum limit. The corresponding bifurcation diagram is elucidated and a prescription for selecting the branch asymptoting to the well-known continuum limit is given. Finally, the robustness of the solutions by virtue of direct numerical simulations is corroborated.
Three-dimensional (3D) analysis of the temporomandibular joint
DEFF Research Database (Denmark)
Kitai, N.; Kreiborg, S.; Murakami, S.
Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint......Symposium Orthodontics 2001: Where are We Now? Where are We Going?, three-dimensional analysis, temporomandibular joint...
Springback prediction of three-dimensional variable curvature tube bending
National Research Council Canada - National Science Library
Zhang, Shen; Wu, Jianjun
2016-01-01
.... The springback prediction of three-dimensional variable curvature bent tube is projected on each discrete osculating and rectifying plane, and then the three-dimensional problem can be transformed into two dimensions...
Modified gravity in three dimensional metric-affine scenarios
Bambi, Cosimo; Rubiera-Garcia, D
2015-01-01
We consider metric-affine scenarios where a modified gravitational action is sourced by electrovacuum fields in a three dimensional space-time. Such scenarios are supported by the physics of crystalline structures with microscopic defects and, in particular, those that can be effectively treated as bi-dimensional (like graphene). We first study the case of $f(R)$ theories, finding deviations near the center as compared to the solutions of General Relativity. We then consider Born-Infeld gravity, which has raised a lot of interest in the last few years regarding its applications in astrophysics and cosmology, and show that new features always arise at a finite distance from the center. Several properties of the resulting space-times, in particular in presence of a cosmological constant term, are discussed.
Uniform electron gases. III. Low-density gases on three-dimensional spheres
Energy Technology Data Exchange (ETDEWEB)
Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W., E-mail: peter.gill@anu.edu.au; Loos, Pierre-François, E-mail: pf.loos@anu.edu.au [Research School of Chemistry, Australian National University, Canberra ACT 2601 (Australia)
2015-08-28
By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.
Variational Method for the Three-Dimensional Many-Electron Dynamics of Semiconductor Quantum Wells
Haas, F
2015-01-01
The three-dimensional nonlinear dynamics of an electron gas in a semiconductor quantum well is analyzed in terms of a self-consistent fluid formulation and a variational approach. Assuming a time-dependent localized profile for the fluid density and appropriated spatial dependences of the scalar potential and fluid velocity, a set of ordinary differential equations is derived. In the radially symmetric case, the prominent features of the associated breathing mode are characterized.
Vocal Fold Pathologies and Three-Dimensional Flow Separation Phenomena
Apostoli, Adam G.; Weiland, Kelley S.; Plesniak, Michael W.
2013-11-01
Polyps and nodules are two different pathologies, which are geometric abnormalities that form on the medial surface of the vocal folds, and have been shown to significantly disrupt a person's ability to communicate. Although the mechanism by which the vocal folds self-oscillate and the three-dimensional nature of the glottal jet has been studied, the effect of irregularities caused by pathologies is not fully understood. Examining the formation and evolution of vortical structures created by a geometric protuberance is important, not only for understanding the aerodynamic forces exerted by these structures on the vocal folds, but also in the treatment of the above-mentioned pathological conditions. Using a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, the present investigation considers three-dimensional flow separation induced by a model vocal fold polyp. Building on previous work using skin friction line visualization, both the velocity flow field and wall pressure measurements around the model polyp are presented and compared. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).
Three-dimensional nonlinear flutter analysis of long-span suspension bridges during erection.
Zhang, Xin-jun; Sun, Bing-nan; Xiang, Hai-fan
2003-01-01
In this work, the aerodynamic stability of the Yichang Suspension Bridge over Yangtze River during erection was determined by three-dimensional nonlinear flutter analysis, in which the nonlinearities of structural dynamic characteristics and aeroelastic forces caused by large deformation are fully considered. An interesting result obtained was that the bridge was more stable when the stiffening girders were erected in a non-symmetrical manner as opposed to the traditional symmetrical erection schedule. It was also found that the severe decrease in the aerodynamic stability was due to the nonlinear effects. Therefore, the nonlinear factors should be considered accurately in aerodynamic stability analysis of long-span suspension bridges during erection.
Three-dimensional nonlinear flutter analysis of long-span suspension bridges during erection
Institute of Scientific and Technical Information of China (English)
张新军; 孙炳楠; 项海帆
2003-01-01
In this work, the aerodynamic stability of the Yichang Suspension Bridge over Yangtze River during erection was determined by three-dimensional nonlinear flutter analysis, in which the nonlinearities of structural dynamic characteristics and aeroelastic forces caused by large deformation are fully considered. An interesting result obtained was that the bridge was more stable when the stiffening girders were erected in a non-symmetrical manner as opposed to the traditional symmetrical erection schedule. It was also found that the severe decrease in the aerodynamic stability was due to the nonlinear effects. Therefore, the nonlinear factors should be considered accurately in aerodynamic stability analysis of long-span suspension bridges during erection.
Three-dimensional nonlinear flutter analysis of long-span suspension bridges during erection
Institute of Scientific and Technical Information of China (English)
张新军; 孙炳楠; 项海帆
2003-01-01
In this work, the aerodynamic stability of the Yichang Suspension Bridge over Yangtze River during erection was determined by three-dimensional nonlinear flutter analysis, in which the nonlinearities of structural dynamic characteristics and aeroelastic forces caused by large deformation are fully considered. An interesting resuh obtained was that the bridge was more stable when the stiffening girders were erected in a non-symmetrical manner as opposed to the traditional symmetrical erection schedule. It was also found that the severe decrease in the aerodynamic stability was due to the nonlinear effects. Therefore, the nonlinear factors should be considered accurately in aerodynamic stability analysis of long-span suspension bridges during erection.
Primary and Secondary Three Dimensional Microbatteries
Cirigliano, Nicolas
Today's MEMS devices are limited more so by the batteries that supply their power than the fabrication methods used to build them. Thick battery electrodes are capable of providing adequate energy, but long and tortuous diffusion pathways lead to low power capabilities. On the other hand, thin film batteries can operate at significant current densities but require large surface areas to supply practical energy. This dilemma can be solved by either developing new high capacity materials or by engineering new battery designs that decouple power and energy. Three dimensional batteries redesign traditional configurations to create nonplanar interfaces between battery components. This can be done by introducing hierarchical structures into the electrode shape. Designs such as these provide a maximum surface area over which chemical reactions can occur. Furthermore, by maintaining small feature sizes, ion diffusion and electronic transport distances can remain minimal. Manipulating these properties ensures fast kinetics that are required for high power situations. Energy density is maximized by layering material in the vertical direction, thus ensuring a minimal footprint area. Three dimensional carbon electrodes are fabricated using basic MEMS techniques. A silicon mold is anisotropically etched to produce channels of a predetermined diameter. The channels are then filled using an infiltration technique with electrode slurry. Once dried, the mold is attached to a current collector and etched using a XeF2 process. Electrodes of varying feature sizes have been fabricated using this method with aspect ratios ranging from 3.5:1 to 7:1. 3D carbon electrodes are shown to obtain capacities over 8 mAh/cm2 at 0.1 mA/cm2, or nearly 700% higher than planar carbon electrodes. When assembled with a planar cathode, the battery cell produced an average discharge capacity of 40 J/cm 2 at a current density of 0.2 mA/cm2. This places the energy density values slightly less than thick
Understanding three-dimensional damage envelopes
Browning, John; Harland, Sophie; Meredith, Philip; Healy, David; Mitchell, Tom
2017-04-01
Microcrack damage leading to failure in rocks evolves in response to differential loading. This loading is often visualized in a two-dimensional stress space through the use of Mohr-Coulomb diagrams. The vast majority of experimental studies investigate damage evolution and rock failure using conventional triaxial stress states (σ1 > σ2 = σ3) in which the results can be easily represented in a Mohr-Coulomb plot. However, in nature the stress state is in general truly triaxial (σ1 > σ2 > σ3) and as such comprises a 3D stress state potentially leading to more complexity. By monitoring acoustic wave velocities and acoustic emissions we have shown that damage is generated in multiple orientations depending on the loading directions and hence principal stress directions. Furthermore, crack growth is shown to be a function of differential stress regardless of the mean stress. As such, new cracks can form due to a decrease in the minimum principal stress, which reduces mean stress but increases the differential stress. Although the size of individual cracks is not affected by the intermediate principal stress it has been shown that the σ2 plays a key role in suppressing the total amount of crack growth and concentrates this damage in a single plane. Hence, the differential stress at which rocks fail (i.e. the rock strength) will be significantly increased under true triaxial stress conditions than under the much more commonly applied condition of conventional triaxial stress. Through a series of cyclic loading tests we investigated the Kaiser effect, we show that while individual stress states are important, the stress path by which this stress state is reached is equally important. Whether or not a stress state has been 'visited' before is also vitally important in determining and understanding damage envelopes. Finally, we show that damage evolution can be anisotropic and must be considered as a three-dimensional problem. It is unclear how damage envelopes
Spherically-symmetric Accretion onto a Black Hole at the Center of a Young Stellar Cluster
Silich, Sergiy; Hueyotl-Zahuantitla, Filiberto
2008-01-01
We present a self-consistent, bimodal stationary solution for spherically symmetric flows driven by young massive stellar clusters with a central supermassive black hole. We demonstrate that the hydrodynamic regime of the flow depends on the location of the cluster in the 3D (star cluster mechanical luminosity - BH mass - star cluster radius) parameter space. We show that a threshold mechanical luminosity (L_crit) separates clusters which evolve in the BH dominated regime frome those whose internal structure is strongly affected by the radiative cooling. In the first case(below the threshold energy) gravity of the BH separates the flow into two distinct zones: the inner accretion zone and the outer zone where the star cluster wind is formed. In the second case (above the critical luminosity), catastrophic cooling sets in inside the cluster. In this case the injected plasma becomes thermally unstable that inhibits a complete stationary solution. We compared the calculated accretion rates and the BH luminositie...
Three Dimensional CAPP Technology of Projectile Based on MBD
Directory of Open Access Journals (Sweden)
Hongzhi Zhao
2013-07-01
Full Text Available This study aims at the research goal of three-dimensional digital process design of projectile, which adopts three-dimensional computer-aided process design technology based on MBD and uses MBD to conduct parametric modeling of projectile that can reduce the input of projectile’s process information and data conversion and produce reasonable, feasible and three-dimensional projectile manufacturing process to realize paperless three-dimensional process design of projectile. The application of three-dimensional computer-assisted process design technology of projectile based on model definition can shorten the design cycle of projectile, thus improving rapid manufacturing capacity of product and reducing cost.
THEORETICAL STUDY OF THREE-DIMENSIONAL NUMERICAL MANIFOLD METHOD
Institute of Scientific and Technical Information of China (English)
LUO Shao-ming; ZHANG Xiang-wei; L(U) Wen-ge; JIANG Dong-ru
2005-01-01
The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Hammer integral method of three-dimensional numerical manifold method are put forward. The stiffness matrix of three-dimensional manifold element is derived and the dissection rules are given. The theoretical system and the numerical realizing method of three-dimensional numerical manifold method are systematically studied. As an example, the cantilever with load on the end is calculated, and the results show that the precision and efficiency are agreeable.
Three dimensional characterization and archiving system
Energy Technology Data Exchange (ETDEWEB)
Sebastian, R.L.; Clark, R.; Gallman, P. [Coleman Research Corp., Springfield, VA (United States)] [and others
1995-10-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. The 3D-ICAS system robotically conveys a multisensor probe near the surface to be inspected. The sensor position and orientation are monitored and controlled by Coherent laser radar (CLR) tracking. The ICAS fills the need for high speed automated organic analysis by means of gas chromatography-mass spectrometry sensors, and also by radionuclide sensors which combines alpha, beta, and gamma counting.
Clinical significance of three-dimensional sonohysterography
Energy Technology Data Exchange (ETDEWEB)
Lee, Eun Hye; Lee, Mi Hwa; Lee, Chan; Kim, Jong Wook; Shin, Myung Choel [Pochon Cha University College of Medicine, Pochon (Korea, Republic of)
1999-12-15
To evaluate the usefulness of three dimensional sonohysterography (3D SHG) in the evaluation of uterine endometrial and submucosal lesions in comparison with conventional two-dimensional sonohysterography (2D SHG). Our series consisted of 26 patients (mean aged 41 years) who complained of uterine bleeding, menorrhagia, or dysmenorrhea. 2D SHG was performed, and then 3D SHG was done after the volume mode was switched on. Simultaneous display of three perpendicular two-dimensional planes and surface rendering of findings on particular section were obtained. We analyzed whether the endometrium was thickened or not, and the location, size, shape, echogenicity, posterior shadowing, and echogenic rim of the focal lesion. The results were compared with the pathologic findings or MRI. There were submucosal myomas (n=12), intramural myomas (n=2), endometrial polyps (n=7), placental polyp (n=1), and normal endometrial cavities (n=4) on SHG. Nineteen cases were confirmed by pathologic findings or MRI. The results were correlated in 89% (17/19) of the cases. We misdiagnosed 2 cases: focal endometrial hyperplasia and choriocarcinoma were misdiagnosed as endometrial polyp and placental polyp, respectively. Imaging diagnoses were same in the techniques. Comparing with 2D SHG, 3D SHG provided a subjective display of pathologic findings and an additional information about spatial relationship between focal lesion and surroundings.
Globographic visualisation of three dimensional joint angles.
Baker, Richard
2011-07-07
Three different methods for describing three dimensional joint angles are commonly used in biomechanics. The joint coordinate system and Cardan/Euler angles are conceptually quite different but are known to represent the same underlying mathematics. More recently the globographic method has been suggested as an alternative and this has proved particularly attractive for the shoulder joint. All three methods can be implemented in a number of ways leading to a choice of angle definitions. Very recently Rab has demonstrated that the globographic method is equivalent to one implementation of the joint coordinate system. This paper presents a rigorous analysis of the three different methods and proves their mathematical equivalence. The well known sequence dependence of Cardan/Euler is presented as equivalent to configuration dependence of the joint coordinate system and orientation dependence of globographic angles. The precise definition of different angle sets can be easily visualised using the globographic method using analogues of longitude, latitude and surface bearings with which most users will already be familiar. The method implicitly requires one axis of the moving segment to be identified as its principal axis and this can be extremely useful in helping define the most appropriate angle set to describe the orientation of any particular joint. Using this technique different angle sets are considered to be most appropriate for different joints and examples of this for the hip, knee, ankle, pelvis and axial skeleton are outlined.
Three dimensional characterization and archiving system
Energy Technology Data Exchange (ETDEWEB)
Sebastian, R.L.; Clark, R.; Gallman, P. [and others
1995-12-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D&D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D&D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. Chemical analysis plays a vital role throughout the process of decontamination. Before clean-up operations can begin the site must be characterized with respect to the type and concentration of contaminants, and detailed site mapping must clarify areas of both high and low risk. During remediation activities chemical analysis provides a means to measure progress and to adjust clean-up strategy. Once the clean-up process has been completed the results of chemical analysis will verify that the site is in compliance with federal and local regulations.
Three Dimensional Hydrodynamic Model With Multiquadtree Meshes
Directory of Open Access Journals (Sweden)
G. P. Vanegas
2008-01-01
Full Text Available This study presents a three dimensional model for the transport of conservative contaminants, which can be used for bodies of water which are affected by winds and/or tides. The model solves the equation of mass transport, based on results obtained using a hydrodynamic model for shallow waters that works in a finite volume scheme and a type of hierarchical grid, called multi-quadtree, which is adaptable to the bathymetry. To solve the vertical coordinates, the coordinate z is transformed into a sigma (σ coordinate, thus allowing the same number of layers in the vertical, regardless of depth. This hydrodynamic model is validated using two cases: a long wave propagated in a channel of variable width and bottom and wind action in a rectangular basin. Finally, the results obtained are presented for a hypothetical single port outfall in the bay of Campeche, México. The model developed here is both quick and easy to use and is efficient when compared with models presented by other authors since it uses adaptable grids which allow detailed solutions to be obtained for areas of interest such as coastlines and the area around an outfall.
Three-dimensionally Perforated Calcium Phosphate Ceramics
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Porous calcium phosphate ceramics were produced by compression molding using a special mold followed by sintering. The porous calcium phosphate ceramics have three-dimensional and penetrated open pores380-400μm in diameter spaced at intervals of 200μm. The layers of the linear penetration pores alternately lay perpendicular to pore direction. The porosity was 59%-65% . The Ca/P molar ratios of the porous calcium phosphate ceramics range from 1.5 to 1.85. A binder containing methyl cellulose was most effective for preparing the powder compact among vinyl acetate, polyvinyl alcohol, starch, stearic acid, methyl cellulose and their mixtures. Stainless steel, polystyrene, nylon and bamboo were used as the long columnar male dies for the penetrated open pores. When polystyrene, nylon and bamboo were used as the long columnar male dies, the dies were burned out during the sintering process. Using stainless steel as the male dies with the removal of the dies before heat treatment resulted in a higher level of densification of the calcium phosphate ceramic.
Three-dimensional survey of paint layer
Pampaloni, Enrico; Bellucci, Roberto; Carcagni, Pierluigi; Casaccia, Antonella; Fontana, Raffaella; Gambino, Maria Chiara; Piccolo, Roberta; Pingi, Paolo; Pezzati, Luca
2007-07-01
The quantitative morphological analysis of a painting surface allows to evidence form defects and to study, thus, their influence on the stability of the paint and preparatory layers, as well as of the support. Therefore a three-dimensional survey can be very useful in planning the restoration intervention of a painting. In this work we present the results of the surface analysis carried out on the painting "Ultima Cena" by Giorgio Vasari. This panel painting is severely affected by paint film wrinkling produced as a consequence of the flood that occurred in Florence in 1966. Our analysis, accomplished to quantify the lengthening of the paint layer with respect to the one of the support in order to plan the restoration intervention, was performed on 25 profiles separated each by 10 cm in order to cover the whole painting surface. A data analysis, based on morphological filtering named "Rolling Ball" transformation, was used to evaluate the length difference between the paint layer and the panel support along each profile.
Why Observable Space Is Solely Three Dimensional
Rabinowitz, Mario
2015-01-01
Quantum (and classical) binding energy considerations in n-dimensional space indicate that atoms (and planets) can only exist in three-dimensional space. This is why observable space is solely 3-dimensional. Both a novel Virial theorem analysis, and detailed classical and quantum energy calculations for 3-space circular and elliptical orbits indicate that they have no orbital binding energy in greater than 3-space. The same energy equation also excludes the possibility of atom-like bodies in strictly 1 and 2-dimensions. A prediction is made that in the search for deviations from r^-2 of the gravitational force at sub-millimeter distances such a deviation must occur at < ~ 10^-10 m (or < ~10^-12 m considering muoniom), since atoms would disintegrate if the curled up dimensions of string theory were larger than this. Callender asserts that the often-repeated claim in previous work that stable orbits are possible in only three dimensions is not even remotely established. The binding energy analysis herein ...
Three dimensional modeling of CR propagation
Gaggero, Daniele; Di Bernardo, Giuseppe; Evoli, Carmelo; Grasso, Dario
2013-01-01
We present here a major upgrade of DRAGON, a numerical package that computes the propagation of a wide set of CR species from both astrophysical and exotic origin in the Galaxy in a wide energy range from tens of MeV to tens of TeV. DRAGON takes into account all relevant processes in particular diffusion, convection, reacceleration, fragmentation and energy losses. For the first time, we present a full 3D version of DRAGON with anisotropic position-dependent diffusion. In this version, the propagation is calculated within a 3D cartesian grid and the user is able to implement realistic and structured three dimensional source, gas and regular magnetic field distributions. Moreover, it is possible to specify an arbitrary function of position and rigidity for the diffusion coefficients in the parallel and perpendicular direction to the regular magnetic field of the Galaxy. The code opens many new possibilities in the study of CR physics. In particular, we can study for the first time the impact of the spiral arm ...
Three-Dimensional Printed Graphene Foams.
Sha, Junwei; Li, Yilun; Villegas Salvatierra, Rodrigo; Wang, Tuo; Dong, Pei; Ji, Yongsung; Lee, Seoung-Ki; Zhang, Chenhao; Zhang, Jibo; Smith, Robert H; Ajayan, Pulickel M; Lou, Jun; Zhao, Naiqin; Tour, James M
2017-07-25
An automated metal powder three-dimensional (3D) printing method for in situ synthesis of free-standing 3D graphene foams (GFs) was successfully modeled by manually placing a mixture of Ni and sucrose onto a platform and then using a commercial CO2 laser to convert the Ni/sucrose mixture into 3D GFs. The sucrose acted as the solid carbon source for graphene, and the sintered Ni metal acted as the catalyst and template for graphene growth. This simple and efficient method combines powder metallurgy templating with 3D printing techniques and enables direct in situ 3D printing of GFs with no high-temperature furnace or lengthy growth process required. The 3D printed GFs show high-porosity (∼99.3%), low-density (∼0.015g cm(-3)), high-quality, and multilayered graphene features. The GFs have an electrical conductivity of ∼8.7 S cm(-1), a remarkable storage modulus of ∼11 kPa, and a high damping capacity of ∼0.06. These excellent physical properties of 3D printed GFs indicate potential applications in fields requiring rapid design and manufacturing of 3D carbon materials, for example, energy storage devices, damping materials, and sound absorption.
Chaotic Mixing in Three Dimensional Porous Media
Lester, Daniel R; Borgne, Tanguy Le
2016-01-01
Under steady flow conditions, the topological complexity inherent to all random 3D porous media imparts complicated flow and transport dynamics. It has been established that this complexity generates persistent chaotic advection via a three-dimensional (3D) fluid mechanical analogue of the baker's map which rapidly accelerates scalar mixing in the presence of molecular di?usion. Hence pore-scale fluid mixing is governed by the interplay between chaotic advection, molecular di?usion and the broad (power-law) distribution of fluid particle travel times which arise from the non-slip condition at pore walls. To understand and quantify mixing in 3D porous media, we consider these processes in a model 3D open porous network and develop a novel stretching continuous time random walk (CTRW) which provides analytic estimates of pore-scale mixing which compare well with direct numerical simulations. We ?nd that chaotic advection inherent to 3D porous media imparts scalar mixing which scales exponentially with longitudi...
Three dimensional characterization and archiving system
Energy Technology Data Exchange (ETDEWEB)
Sebastian, R.L.; Clark, R.; Gallman, P. [and others
1996-04-01
The Three Dimensional Characterization and Archiving System (3D-ICAS) is being developed as a remote system to perform rapid in situ analysis of hazardous organics and radionuclide contamination on structural materials. Coleman Research and its subcontractors, Thermedics Detection, Inc. (TD) and the University of Idaho (UI) are in the second phase of a three phase program to develop 3D-ICAS to support Decontamination and Decommissioning (D and D) operations. Accurate physical characterization of surfaces and the radioactive and organic is a critical D and D task. Surface characterization includes identification of potentially dangerous inorganic materials, such as asbestos and transite. Real-time remotely operable characterization instrumentation will significantly advance the analysis capabilities beyond those currently employed. Chemical analysis is a primary area where the characterization process will be improved. The 3D-ICAS system robotically conveys a multisensor probe near the surfaces to be inspected. The sensor position and orientation are monitored and controlled using coherent laser radar (CLR) tracking. The CLR also provides 3D facility maps which establish a 3D world view within which the robotic sensor system can operate.
Three-dimensional Printing in the Intestine.
Wengerter, Brian C; Emre, Gulus; Park, Jea Young; Geibel, John
2016-08-01
Intestinal transplantation remains a life-saving option for patients with severe intestinal failure. With the advent of advanced tissue engineering techniques, great strides have been made toward manufacturing replacement tissues and organs, including the intestine, which aim to avoid transplant-related complications. The current paradigm is to seed a biocompatible support material (scaffold) with a desired cell population to generate viable replacement tissue. Although this technique has now been extended by the three-dimensional (3D) printing of geometrically complex scaffolds, the overall approach is hindered by relatively slow turnover and negative effects of residual scaffold material, which affects final clinical outcome. Methods recently developed for scaffold-free 3D bioprinting may overcome such obstacles and should allow for rapid manufacture and deployment of "bioprinted organs." Much work remains before 3D bioprinted tissues can enter clinical use. In this brief review we examine the present state and future perspectives of this nascent technology before full clinical implementation.
Application of Simulated Three Dimensional CT Image in Orthognathic Surgery
Energy Technology Data Exchange (ETDEWEB)
Kim, Hyun Don; Park, Chang Seo [Dept. of Dental Radiology, College of Dentistry, Yensei University, Seoul (Korea, Republic of); Yoo, Sun Kook; Lee, Kyoung Sang [Dept. of Medical Engineering, College of Medicine, Yensei University, Seoul (Korea, Republic of)
1998-08-15
In orthodontics and orthognathic surgery, cephalogram has been routine practice in diagnosis and treatment evaluation of craniofacial deformity. But its inherent distortion of actual length and angles during projecting three dimensional object to two dimensional plane might cause errors in quantitative analysis of shape and size. Therefore, it is desirable that three dimensional object is diagnosed and evaluated three dimensionally and three dimensional CT image is best for three dimensional analysis. Development of clinic necessitates evaluation of result of treatment and comparison before and after surgery. It is desirable that patient that was diagnosed and planned by three dimensional computed tomography before surgery is evaluated by three dimensional computed tomography after surgery, too. But Because there is no standardized normal values in three dimension now and three dimensional Computed Tomography needs expensive equipment and because of its expenses and amount of exposure to radiation, limitations still remain to be solved in its application to routine practice. If postoperative three dimensional image is constructed by pre and postoperative lateral and postero-anterior cephalograms and preoperative three dimensional computed tomogram, pre and postoperative image will be compared and evaluated three dimensionally without three dimensional computed tomography after surgery and that will contribute to standardize normal values in three dimension. This study introduced new method that computer-simulated three dimensional image was constructed by preoperative three dimensional computed tomogram and pre and postoperative lateral and postero-anterior cephalograms, and for validation of new method, in four cases of dry skull that position of mandible was displaced and four patients of orthognathic surgery, computer-simulated three dimensional image and actual postoperative three dimensional image were compared. The results were as follows. 1. In four cases of
Figure-ground organization based on three-dimensional symmetry
Michaux, Aaron; Jayadevan, Vijai; Delp, Edward; Pizlo, Zygmunt
2016-11-01
We present an approach to figure/ground organization using mirror symmetry as a general purpose and biologically motivated prior. Psychophysical evidence suggests that the human visual system makes use of symmetry in producing three-dimensional (3-D) percepts of objects. 3-D symmetry aids in scene organization because (i) almost all objects exhibit symmetry, and (ii) configurations of objects are not likely to be symmetric unless they share some additional relationship. No general purpose approach is known for solving 3-D symmetry correspondence in two-dimensional (2-D) camera images, because few invariants exist. Therefore, we present a general purpose method for finding 3-D symmetry correspondence by pairing the problem with the two-view geometry of the binocular correspondence problem. Mirror symmetry is a spatially global property that is not likely to be lost in the spatially local noise of binocular depth maps. We tested our approach on a corpus of 180 images collected indoors with a stereo camera system. K-means clustering was used as a baseline for comparison. The informative nature of the symmetry prior makes it possible to cluster data without a priori knowledge of which objects may appear in the scene, and without knowing how many objects there are in the scene.
Modal properties of three-dimensional helical planetary gears
Eritenel, Tugan; Parker, Robert G.
2009-08-01
The structured modal properties of single-stage helical planetary gears with equally spaced planets are categorized and mathematically proved. Compared to prior two-dimensional analyses of spur gears, this study examines the three-dimensional motion of the helical gears and shafts. A lumped-parameter model is formulated to obtain the equations of motion. The gear-shaft bodies are modeled as rigid bodies with compliant bearings at arbitrary axial locations on the shafts. A translational and a tilting stiffness account for the force and moment transmission at the gear mesh interface. The derived modal properties generalize those of two-dimensional spur planetary gears; there are twice as many degrees of freedom and natural frequencies due to the added tilting and axial motion. All vibration modes are categorized as rotational-axial, translational-tilting, and planet modes. The modal properties are shown to hold even for configurations that are not symmetric about the gear plane, due to, for example, shaft bearings not being equidistant from the gear plane.
Three-dimensional periodic dielectric structures having photonic Dirac points
Energy Technology Data Exchange (ETDEWEB)
Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin
2015-06-02
The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.
Three dimensional view of the SYK/AdS duality
Das, Sumit R.; Jevicki, Antal; Suzuki, Kenta
2017-09-01
We show that the spectrum of the SYK model can be interpreted as that of a 3D scalar coupled to gravity. The scalar has a mass which is at the Breitenholer-Freedman bound of AdS2, and subject to a delta function potential at the center of the interval along the third direction. This, through Kaluza-Klein procedure on AdS2 × ( S 1) /Z 2, generates the spectrum reproducing the bi-local propagator at strong coupling. Furthermore, the leading 1 /J correction calculated in this picture reproduces the known correction to the poles of the SYK propagator, providing credence to a conjecture that the bulk dual of this model can be interpreted as a three dimensional theory.
Three dimensional sensitivity characterization of plasmonic nanorods for refractometric biosensors.
Leitgeb, V; Trügler, A; Köstler, S; Krug, M K; Hohenester, U; Hohenau, A; Leitner, A; Krenn, J R
2016-02-07
An experimental three dimensional characterization of the local refractive index sensitivity of plasmonic gold nanorods is performed by controlled apposition of lithographic nanostructures. We show up to seven times higher sensitivity values to local changes in the refractive index at the particle tip than center. In addition, successive deposition of defined nm-thin dielectric layers on nanorods covered with stripe masks allows us to study the sensitivity decrease normal to the particle surface separately for different particle sites. Clear trends to a stronger sensitivity decay at sites of higher local sensitivity are demonstrated experimentally and theoretically. Our sensitivity characterization provides an important tool to find the most suitable particle type and particle site for specific bio-sensing applications.
Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment
Turner, M. W.; Hawk, C. W.; Litchford, R. J.
2009-01-01
Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.
A spectral formalism for computing three-dimensional deformations due to surface loads. 1: Theory
Mitrovica, J. X.; Davis, J. L.; Shapiro, I. I.
1994-01-01
We outline a complete spectral formalism for computing high spatial resolution three-dimensional deformations arising from the surface mass loading of a spherically symmetric planet. The main advantages of the formalism are that all surface mass loads are always described using a consistent mathematical representation and that calculations of deformation fields for various spatial resolutions can be performed by simpley altering the spherical harmonic degree truncation level of the procedure. The latter may be important when incorporating improved observational constraints on a particular surface mass load, when considering potential errors in the computed field associated with mass loading having a spatial scale unresolved by the observational constraints, or when treating a number of global surface mass loads constrained with different spatial resolutions. The advantages do not extend to traditional 'Green's function' approaches which involve surface element discretizations of the global mass loads. Another advantage of the spectral formalism, over the Green's function approach, is that a posteriori analyses of the computed deformation fields are easily performed. In developing the spectral formalism, we consider specific cases where the Earth's mantle is assumed to respond as an elastic, slightly anelastic, or linear viscoelastic medium. In the case of an elastic or slightly anelastic mantle rheology the spectral response equations incorporate frequency dependent Love numbers. The formalism can therefore be used, for example, to compute the potentially resonant deformational response associated with the free core nutation and Chandler wobble eigenfunctions. For completeness, the spectral response equations include both body forces, as arise from the gravitational attraction of the Sun and the Moon, and surface mass loads. In either case, and for both elastic and anelastic mantle rheologies, we outline a pseudo-spectral technique for computing the ocean
Three-dimensional Spontaneous Magnetic Reconnection
Beresnyak, Andrey
2017-01-01
Magnetic reconnection is best known from observations of the Sun where it causes solar flares. Observations estimate the reconnection rate as a small, but non-negligible fraction of the Alfvén speed, so-called fast reconnection. Until recently, the prevailing pictures of reconnection were either of resistivity or plasma microscopic effects, which was contradictory to the observed rates. Alternative pictures were either of reconnection due to the stochasticity of magnetic field lines in turbulence or the tearing instability of the thin current sheet. In this paper we simulate long-term three-dimensional nonlinear evolution of a thin, planar current sheet subject to a fast oblique tearing instability using direct numerical simulations of resistive-viscous magnetohydrodynamics. The late-time evolution resembles generic turbulence with a ‑5/3 power spectrum and scale-dependent anisotropy, so we conclude that the tearing-driven reconnection becomes turbulent reconnection. The turbulence is local in scale, so microscopic diffusivity should not affect large-scale quantities. This is confirmed by convergence of the reconnection rate toward ∼ 0.015{v}{{A}} with increasing Lundquist number. In this spontaneous reconnection, with mean field and without driving, the dissipation rate per unit area also converges to ∼ 0.006ρ {v}{{A}}3, and the dimensionless constants 0.015 and 0.006 are governed only by self-driven nonlinear dynamics of the sheared magnetic field. Remarkably, this also means that a thin current sheet has a universal fluid resistance depending only on its length to width ratio and to {v}{{A}}/c.
Three-dimensional, dynamic meteorology of Titan
Mitchell, J.; Adamkovics, M.; Caballero, R.; Turtle, E. P.; Arias, T.; Sayanagi, K. M.
2011-12-01
Titan exhibits an active weather cycle involving methane. Because of low insolation and a stabilizing antigreenhouse effect [McKay et al. 1989], moist convection on Titan cannot be maintained purely through surface evaporative fluxes, indicating that moisture convergence provided by large-scale modes of circulation is important for convective cloud formation [e.g., Mitchell et al. 2006; Barth & Rafkin 2010]. Recent Cassini Imaging Science Subsystem (ISS) images of Titan have revealed large-scale clouds with an interesting array of morphologies and characteristics. Most strikingly, an arrow-shaped cloud oriented eastward was observed at the equator on 27 September 2010 [Turtle et al. 2011a], followed by observations of surface wetting which gradually diminished over several months [Turtle et al. 2011b]. We demonstrate a process for the physical interpretation of individual observed storms and their aggregate effect on surface erosion through a combined analysis of cloud observations and simulations [Mitchell et al. in press]. We show that planetary-scale Kelvin waves naturally arising in a new, three-dimensional version of our Titan general circulation model (GCM) robustly organize convection into chevron-shaped storms at Titan's equator during the current season, as observed. The phasing of this mode with another, much slower one causes a 20-fold increase in precipitation rates over the average, each producing up to several centimeters of precipitation over 1000-km-scale regions, with important implications for observed fluvial features [Langhans et al. 2011]. Our initial results indicate an essential role for planetary-scale atmospheric waves in organizing Titan's methane weather. I will discuss prospects for extending our analysis to other Titan observations.
Measurements using three-dimensional product imaging
Directory of Open Access Journals (Sweden)
A. Sioma
2010-07-01
Full Text Available This article discusses a method of creating a three-dimensional cast model using vision systems and how that model can be used in thequality assessment process carried out directly on the assembly line. The technology of active vision, consisting in illumination of theobject with a laser beam, was used to create the model. Appropriate configuration of camera position geometry and laser light allows thecollection of height profiles and construction of a 3D model of the product on their basis. The article discusses problems connected with the resolution of the vision system, resolution of the laser beam analysis, and resolution connected with the application of the successive height profiles on sample cast planes. On the basis of the model, measurements allowing assessment of dimension parameters and surface defects of a given cast are presented. On the basis of tests and analyses of such a threedimensional cast model, a range of checks which are possible to conduct using 3D vision systems is indicated.Testing casts using that technology allows rapid assessment of selected parameters. Construction of the product’s model and dimensional assessment take a few seconds, which significantly reduces the duration of checks in the technological process. Depending on the product, a few checks may be carried out simultaneously on the product’s model.The possibility of controlling all outgoing products, and creating and modifying the product parameter control program, makes the solutionhighly flexible, which is confirmed by pilot industrial implementations. The technology will be developed in terms of detection andidentification of surface defects. It is important due to the possibility of using such information for the purposes of selecting technologicalprocess parameters and observing the effect of changes in selected parameters on the cast parameter controlled in a vision system.
[Three-dimensional reconstruction of heart valves].
Flachskampf, F A; Kühl, H; Franke, A; Frielingsdorf, J; Klues, H; Krebs, W; Hanrath, P
1995-08-01
The reconstruction of three-dimensional data sets from two-dimensional echocardiographic images offers several fundamental advantages: 1. more complete data than present in the few standard 2D-view; 2. off-line generation of any desired plane, cut, or perspective after the data set has been acquired; 3. access to quantitative parameters like surface areas (e.g., of valve leaflets or portions of leaflets), volumes, and others, without geometric assumptions. The mitral valve has been the focus of several studies using various techniques of reconstruction of transthoracic or transesophageal images. These studies have shown the mitral annulus to be a non-planar, "saddle-shaped" structure, with an average distance of highest to lowest points of 14 mm in normals. This recognition of mitral annular non-planarity has led to a more stringent echocardiographic definition of mitral valve prolapse. Further studies have shown systolic shrinkage of mitral annular area by about 30% and systolic apico-basal translation of the annulus by approximately 1 cm in normals. In patients with dilated cardiomyopathy, the annulus is flattened, and both cyclic change in annular area and apico-basal translation are significantly reduced. 3D-studies of the left ventricular outflow tract in hypertrophic obstructive cardiomyopathy allow measurement of outflow tract and leaflet surface areas and dynamic spatial visualization of systolic anterior motion of the anterior mitral leaflet. Automated techniques to reconstruct the full grey value data set from a high number of parallel or rotational transesophageal planes allow impressive visualization of normal and diseased mitral and aortic valves or valve prostheses, with special emphasis on generating "surgical" views and perspectives, which cannot be obtained by conventional tomographic imaging.(ABSTRACT TRUNCATED AT 250 WORDS)
Airway branching morphogenesis in three dimensional culture
Directory of Open Access Journals (Sweden)
Gudjonsson Thorarinn
2010-11-01
Full Text Available Abstract Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10 recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs, to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2 and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to
Three-dimensional nonlinear acoustical holography
Niu, Yaying
Nearfield Acoustical Holography (NAH) is an acoustic field visualization technique that can be used to reconstruct three-dimensional (3-D) acoustic fields by projecting two-dimensional (2-D) data measured on a hologram surface. However, linear NAH algorithms developed and improved by many researchers can result in significant reconstruction errors when they are applied to reconstruct 3-D acoustic fields that are radiated from a high-level noise source and include significant nonlinear components. Here, planar, nonlinear acoustical holography procedures are developed that can be used to reconstruct 3-D, nonlinear acoustic fields radiated from a high-level noise source based on 2-D acoustic pressure data measured on a hologram surface. The first nonlinear acoustic holography procedure is derived for reconstructing steady-state acoustic pressure fields by applying perturbation and renormalization methods to nonlinear, dissipative, pressure-based Westervelt Wave Equation (WWE). The nonlinear acoustic pressure fields radiated from a high-level pulsating sphere and an infinite-size, vibrating panel are used to validate this procedure. Although the WWE-based algorithm is successfully validated by those two numerical simulations, it still has several limitations: (1) Only the fundamental frequency and its second harmonic nonlinear components can be reconstructed; (2) the application of this algorithm is limited to mono-frequency source cases; (3) the effects of bent wave rays caused by transverse particle velocities are not included; (4) only acoustic pressure fields can be reconstructed. In order to address the limitations of the steady-state, WWE-based procedure, a transient, planar, nonlinear acoustic holography algorithm is developed that can be used to reconstruct 3-D nonlinear acoustic pressure and particle velocity fields. This procedure is based on Kuznetsov Wave Equation (KWE) that is directly solved by using temporal and spatial Fourier Transforms. When compared
The Three-dimensional Digital Factory for Shipbuilding Technology Research
Directory of Open Access Journals (Sweden)
Xu Wei
2016-01-01
Full Text Available The three-dimensional digital factory technology research is the hotspot in shipbuilding recently. The three-dimensional digital factory technology not only focus on design the components of the product, but also discuss on the simulation and analyses of the production process.Based on the three-dimensional model, the basic data layer, application control layer and the presentation layer of hierarchical structure are established in the three-dimensional digital factory of shipbuilding in this paper. And the key technologies of three-dimensional digital factory of shipbuilding are analysed. Finally, a case study is applied and the results show that the three-dimensional digital factory will play an important role in the future.
Three-dimensional decomposition method of global atmospheric circulation
Institute of Scientific and Technical Information of China (English)
LIU HaiTao; HU ShuJuan; XU Ming; CHOU JiFan
2008-01-01
By adopting the idea of three-dimensional Walker, Hadley and Rossby stream functions, the global atmospheric circulation can be considered as the sum of three stream functions from a global perspective. Therefore, a mathematical model of three-dimensional decomposition of global atmospheric circulation is proposed and the existence and uniqueness of the model are proved. Besides, the model includes a numerical method leading to no truncation error in the discrete three-dimensional grid points. Results also show that the three-dimensional stream functions exist and are unique for a given velocity field. The mathematical model shows the generalized form of three-dimensional stream functions equal to the velocity field in representing the features of atmospheric motion. Besides, the vertical velocity calculated through the model can represent the main characteristics of the vertical motion. In sum, the three-dimensional decomposition of atmospheric circulation is convenient for the further investigation of the features of global atmospheric motions.
Three-dimensional carbon nanotube based photovoltaics
Flicker, Jack
2011-12-01
Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values
Interplay between sign problem and Z3 symmetry in three-dimensional Potts models
Hirakida, Takehiro; Kouno, Hiroaki; Takahashi, Junichi; Yahiro, Masanobu
2016-07-01
We construct four kinds of Z3 -symmetric three-dimensional (3D) Potts models, each with a different number of states at each site on a 3D lattice, by extending the 3D 3-state Potts model. Comparing the ordinary Potts model with the four Z3-symmetric Potts models, we investigate how Z3 symmetry affects the sign problem and see how the deconfinement transition line changes in the μ -κ plane as the number of states increases, where μ (κ ) plays a role of chemical potential (temperature) in the models. We find that the sign problem is almost cured by imposing Z3 symmetry. This mechanism may happen in Z3-symmetric QCD-like theory. We also show that the deconfinement transition line has stronger μ dependence with respect to increasing the number of states.
Ye, Lin; Wang, Yu; Chen, Xueying; Yue, Bin; Tsang, Shik Chi; He, Heyong
2011-07-14
Three-dimensionally ordered mesoporous Pd networks fabricated by a simple reduction method in solution using a face centered cubic silica super crystal as template exhibit high electroactivity in formic acid oxidation.
Numerical Calculation of the Three-Dimensional Swirling Flow Inside the Centrifugal Pump Volutes
Directory of Open Access Journals (Sweden)
E. Cezmi Nursen
2003-01-01
Full Text Available The flow inside the volute of a centrifugal pump is threedimensional and, depending upon the position of the inlet relative to the cross-section center line, a single or double swirling flow occurs. The purpose of this study was the calculation of the three-dimensional swirling flow inside the centrifugal pump volute.
Three-dimensional simulations of resistance spot welding
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Zhang, Wenqi; Perret, William
2014-01-01
This paper draws from the fundamentals of electro-thermo-mechanical coupling to the main aspects of finite element implementation and three-dimensional modelling of resistance welding. A new simulation environment is proposed in order to perform three-dimensional simulations and optimization of r...
Three-dimensional Reciprocal Structures: Morphology, Concepts, Generative Rules
DEFF Research Database (Denmark)
Parigi, Dario; Pugnale, Alberto
2012-01-01
This paper present seven different three dimensional structures based on the principle of structural reciprocity with superimposition joint and standardized un-notched elements. Such typology could be regarded as being intrinsically three-dimensional because elements sit one of the top of the oth...
Collapse in a forced three-dimensional nonlinear Schrodinger equation
DEFF Research Database (Denmark)
Lushnikov, P.M.; Saffman, M.
2000-01-01
We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....
Synthetic Spectrum Methods for Three-Dimensional Supernova Models
Thomas, R C
2003-01-01
Current observations stimulate the production of fully three-dimensional explosion models, which in turn motivates three-dimensional spectrum synthesis for supernova atmospheres. We briefly discuss techniques adapted to address the latter problem, and consider some fundamentals of line formation in supernovae without recourse to spherical symmetry. Direct and detailed extensions of the technique are discussed, and future work is outlined.
Semifolded Localized Structures in Three-Dimensional Soliton Systems
Institute of Scientific and Technical Information of China (English)
FANG Jian-Ping; ZHENG Chun-Long; CHEN Li-Qun
2004-01-01
By means ora Painlevé-Backlund transformation and a multi-linear variable separation approach, abundant localized coherent excitations of the three-dimensional Broer-Kaup-Kupershmidt system with variable coefficients are derived. There are possible phase shifts for the interactions of the three-dimensional novel localized structures discussed in this paper.
Semifolded Localized Structures in Three-Dimensional Soliton Systems
Institute of Scientific and Technical Information of China (English)
FANGJian-Ping; ZHENGChun-Long; CHENLi-Qun
2004-01-01
By means ofa Painlev6 Backlund transformation and a multi-linear variable separation approach, abundant localized coherent excitations of the three-dimensional Broer Kaup Kupershmidt system with variable coeft~cients are derived. There are possible phase shifts for the interactions of the three-dimensional novel localized structures discussed in this paper.
Computer-Generated, Three-Dimensional Character Animation.
Van Baerle, Susan Lynn
This master's thesis begins by discussing the differences between 3-D computer animation of solid three-dimensional, or monolithic, objects, and the animation of characters, i.e., collections of movable parts with soft pliable surfaces. Principles from two-dimensional character animation that can be transferred to three-dimensional character…
Abe, Makito; Hasegawa, Kenji
2016-01-01
We explore the possibility of the formation of globular clusters under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-mass (10^6-10^7 solar masses) gas clouds exposed to intense UV radiation can lead to the formation of compact star clusters like globular clusters (GCs) if gas clouds contract with supersonic infall velocities. However, three-dimensional effects, such as the anisotropy of background radiation and the inhomogeneity in gas clouds, have not been studied so far. In this paper, we perform three-dimensional RHD simulations in a semi-cosmological context, and reconsider the formation of compact star clusters in strong UV radiation fields. As a result, we find that although anisotropic radiation fields bring an elongated shadow of neutral gas, almost spherical compact star clusters can be procreated from a "supersonic infall" cloud, since photo-dissociating radiation supp...
Complete topology of cells, grains, and bubbles in three-dimensional microstructures.
Lazar, Emanuel A; Mason, Jeremy K; MacPherson, Robert D; Srolovitz, David J
2012-08-31
We introduce a general, efficient method to completely describe the topology of individual grains, bubbles, and cells in three-dimensional polycrystals, foams, and other multicellular microstructures. This approach is applied to a pair of three-dimensional microstructures that are often regarded as close analogues in the literature: one resulting from normal grain growth (mean curvature flow) and another resulting from a random Poisson-Voronoi tessellation of space. Grain growth strongly favors particular grain topologies, compared with the Poisson-Voronoi model. Moreover, the frequencies of highly symmetric grains are orders of magnitude higher in the grain growth microstructure than they are in the Poisson-Voronoi one. Grain topology statistics provide a strong, robust differentiator of different cellular microstructures and provide hints to the processes that drive different classes of microstructure evolution.
Numerical tests of conjectures of conformal field theory for three-dimensional systems
Weigel, Martin; Janke, Wolfhard
1998-11-01
The concept of conformal field theory provides a general classification of statistical systems on two-dimensional geometries at the point of a continuous phase transition. Considering the finite-size scaling of certain special observables, one thus obtains not only the critical exponents but even the corresponding amplitudes of the divergences analytically. A first numerical analysis brought up the question whether analogous results can be obtained for those systems on three-dimensional manifolds. Using Monte Carlo simulations based on the Wolff single-cluster update algorithm we investigate the scaling properties of O(n) symmetric classical spin models on a three-dimensional, hyper-cylindrical geometry with a toroidal cross-section considering both periodic and antiperiodic boundary conditions. Studying the correlation lengths of the Ising, the XY, and the Heisenberg model, we find strong evidence for a scaling relation analogous to the two-dimensional case, but in contrast here for the systems with antiperiodic boundary conditions.
Three dimensional periodic foundations for base seismic isolation
Yan, Y.; Cheng, Z.; Menq, F.; Mo, Y. L.; Tang, Y.; Shi, Z.
2015-07-01
Based on the concept of phononic crystals, periodic foundations made of periodic materials are investigated in this paper. The periodic foundations can provide low frequency band gaps, which cover the main frequency ranges of seismic waves. Therefore, the periodic foundations are able to protect the upper structures during earthquake events. In this paper, the basic theory of three dimensional periodic foundations is studied and the finite element method was used to conduct the sensitivity study. A simplified three-dimensional periodic foundation with a superstructure was tested in the field and the feasibility of three dimensional periodic foundations was proved. The test results showed that the response of the upper structure with the three dimensional periodic foundation was reduced under excitation waves with the main frequency falling in the attenuation zones. The finite element analysis results are consistent with the experimental data, indicating that three dimensional periodic foundations are a feasible way of reducing seismic vibrations.
Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera.
Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N
2004-01-10
We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.
Three-dimensional Physical Modeling: Applications and Experience at Mayo Clinic.
Matsumoto, Jane S; Morris, Jonathan M; Foley, Thomas A; Williamson, Eric E; Leng, Shuai; McGee, Kiaran P; Kuhlmann, Joel L; Nesberg, Linda E; Vrtiska, Terri J
2015-01-01
Radiologists will be at the center of the rapid technologic expansion of three-dimensional (3D) printing of medical models, as accurate models depend on well-planned, high-quality imaging studies. This article outlines the available technology and the processes necessary to create 3D models from the radiologist's perspective. We review the published medical literature regarding the use of 3D models in various surgical practices and share our experience in creating a hospital-based three-dimensional printing laboratory to aid in the planning of complex surgeries.
Three-dimensional orientation of the acetabulum.
Suzuki, Daisuke; Nagoya, Satoshi; Takashima, Hiroyuki; Tateda, Kenji; Yamashita, Toshihiko
2017-09-01
This study was designed specifically to determine the normal acetabular orientation and femoral head covering, and whether these are affected by age or sex. Computed tomographic images of normal Japanese hip joints were used (males 60, females 60; mean age 48.3 years, range 15-79 years). Male and female age profiles were matched. The reconstructed 3-D pelvic images were aligned in the anatomical pelvic coordinate system. The acetabular orientation angles and femoral covering angles were measured in the sagittal, coronal, and horizontal planes. In the sagittal plane, the acetabular orientation angle was operative anteversion (O-av), and the femoral covering angles were the anterior and posterior center-edge angles (ACE and PCE). In the coronal plane, they were the Sharp angle (SA) and the lateral center-edge angle (LCE). In the horizontal plane, they were anatomical anteversion (A-av) and the anterior and posterior sector angles (ASA and PSA). The O-av, SA, and A-av were smaller in the male than the female acetabulum (P Anat. 30:753-760, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Optimal three-dimensional biped walking pattern generation based on geodesics
Directory of Open Access Journals (Sweden)
Liandong Zhang
2017-03-01
Full Text Available The innovative three-dimensional humanoid biped gait planning method using geodesics is introduced in this article. In order to control three-dimensional walking, the three-dimensional linear inverted pendulum model is studied in our energy-optimal gait planning based on geodesics. The kinetic energy of the three-dimensional linear inverted pendulum model is calculated at first. Based on this kinetic energy model, the Riemannian metric is defined and the Riemannian surface is further determined by this Riemannian metric. The geodesic is the shortest line between two points on the Riemannian surface. This geodesic is the optimal kinetic energy gait for the center of gravity because the kinetic energy along the geodesic is invariant according to the geometric property of geodesics and the walking is energy-saving. Finally, a simulation experiment using a 12-degree-of-freedom biped robot model is implemented. The gait sequences of the simulated RoboErectus humanoid robot are obtained in the ROS (Robot Operating System Gazebo environment. The proposed geodesics approach is compared with the traditional sinusoidal interpolation method by analyzing the torque feedback of each joint of both legs, and our geodesics optimization gait planning method for three-dimensional linear inverted pendulum model walking control is verified by the assessment results.
Three-dimensional positioning with optofluidic microscope
DEFF Research Database (Denmark)
Vig, Asger Laurberg; Marie, Rodolphe; Jensen, Eric
2010-01-01
in the plane perpendicular to the flow direction and the velocity along the flow direction of separated fluorescent labeled polystyrene microspheres with diameters of 1 μm, 2.1 μm, 3 μm and 4 μm is measured using the OFM readout. These results are bench marked against those obtained with a PFF device using...... a conventional fluorescence microscope as readout. The size separated microspheres are detected by OFM with an accuracy of ≤ 0.92 μm. The position in the height of the channel and the velocity of the separated microspheres are detected with an accuracy of 1.4 μm and 0.08 mm/s respectively. Throughout...... the measurements of the height and velocity distribution, the microspheres are observed to move towards the center of the channel in regard to its height....
Zhang, Siqian; Kuang, Gangyao
2014-10-01
In this paper, a novel three-dimensional imaging algorithm of downward-looking linear array SAR is presented. To improve the resolution, multiple signal classification (MUSIC) algorithm has been used. However, since the scattering centers are always correlated in real SAR system, the estimated covariance matrix becomes singular. To address the problem, a three-dimensional spatial smoothing method is proposed in this paper to restore the singular covariance matrix to a full-rank one. The three-dimensional signal matrix can be divided into a set of orthogonal three-dimensional subspaces. The main idea of the method is based on extracting the array correlation matrix as the average of all correlation matrices from the subspaces. In addition, the spectral height of the peaks contains no information with regard to the scattering intensity of the different scattering centers, thus it is difficulty to reconstruct the backscattering information. The least square strategy is used to estimate the amplitude of the scattering center in this paper. The above results of the theoretical analysis are verified by 3-D scene simulations and experiments on real data.
Three-dimensional model for fusion processes
Energy Technology Data Exchange (ETDEWEB)
Olson, A.P.
1984-01-01
Active galactic nuclei (AGN) emit unusual spectra of radiation which is interpreted to signify extreme distance, extreme power, or both. The status of AGNs was recently reviewed by Balick and Heckman. It seems that the greatest conceptual difficulty with understanding AGNs is how to form a coherent phenomenological model of their properties. What drives the galactic engine. What and where are the mass-flows of fuel to this engine. Are there more than one engine. Do the engines have any symmetry properties. Is observed radiation isotropically emitted from the source. If it is polarized, what causes the polarization. Why is there a roughly spherical cloud of ionized gas about the center of our own galaxy, the Milky Way. The purpose of this paper is to discuss a new model, based on fusion processes which are not axisymmetric, uniform, isotropic, or even time-invariant. Then, the relationship to these questions will be developed. A unified model of fusion processes applicable to many astronomical phenomena will be proposed and discussed.
THREE-DIMENSIONAL NON-HYDROSTATIC MODEL FOR FREE-SURFACE FLOWS WITH UNSTRUCTURED GRID
Institute of Scientific and Technical Information of China (English)
AI Cong-fang; JIN Sheng
2008-01-01
The three-dimensional Navier-Stokes equations were solved with the fractional step method where the hydrostatic pressure component was determined first, while the non-hydrostatic component of the pressure was computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric. The eddy viscosity was calculated from the efficient k-ε turbulence model. The resulting model is computationally efficient and unrestricted to the CFL condition. Computations with and without hydrostatic approximation were compared for the same cases to test the validity of the conventional hydrostatic pressure assumption. The model was verified against analytical solutions and experimental data, with excellent agreement.
Critical behaviour and scaling functions of the three-dimensional O(6) model
Holtmann, S; Schulze, Thomas
2003-01-01
We numerically investigate the three-dimensional O(6) model on 12^3 to 120^3 lattices within the critical region at zero magnetic field, as well as at finite magnetic field on the critical isotherm and for several fixed couplings in the broken and the symmetric phase. We obtain from the Binder cumulant at vanishing magnetic field the critical coupling J_c=1.42865(3). The universal value of the Binder cumulant at this point is g_r(J_c)=-1.94456(10). At the critical coupling, the critical exponents \\gamma=1.604(6), \\beta=0.425(2) and \
Robust three dimensional surface contouring method with digital holography
Institute of Scientific and Technical Information of China (English)
YUAN Cao-jin; ZHAI Hong-chen; WANG Xiao-lei; WU Lan
2006-01-01
In this paper,a digital holography system with short-coherence light source is used to record a series of holograms of a micro-object. The three dimensional reconstruction is completed by the least-square-polynomial-fitting with a series of two dimensional intensity images which are obtained through holographic reconstruction. This three dimensional reconstruction method can be used to carry out three-dimensional reconstruction of a micro-object with strong laser speckle noise,which can not be obtained from the conventional method.
Cylindrical Three-Dimensional Porous Anodic Alumina Networks
Directory of Open Access Journals (Sweden)
Pedro M. Resende
2016-11-01
Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.
Three Dimensional Topological Field Theory induced from Generalized Complex Structure
Ikeda, N
2004-01-01
We construct a three-dimensional topological sigma model which is induced from a generalized complex structure on a target generalized complex manifold. This model is constructed from maps from a three-dimensional manifold $X$ to an arbitrary generalized complex manifold $M$. The theory is invariant under the diffeomorphism on the world volume and the $b$-transformation on the generalized complex structure. Moreover the model is manifestly invariant under the mirror symmetry. We derive from this model the Zucchini's two dimensional topological sigma model with a generalized complex structure as a boundary action on $\\partial X$. As a special case, we obtain three dimensional realization of a WZ-Poisson manifold.
Protein conformation in solution by three-dimensional fluorescence spectrometry
Institute of Scientific and Technical Information of China (English)
鄢远; 许金钩; 陈国珍
1996-01-01
The conformations of bovine serum albumin (USA) and egg albumin (EA) in solution and their conformation changes under different conditions were studied by using three-dimensional fluorescence spectrometry (TDFS) such as three-dimensional fluorescence (TDF) spectra and three-dimensional fluorescence polarization (TDFP) spectra with tryptophan residues in protein molecules as an intrinsic fluorescent probe. The results show that the microenvironment of tryptophan residues of protein molecules in various solutions can be directly indicated and TDFS is an effective tool for studying protein conformation in solution. Meantime, some valuable results were obtained.
DEVELOPMENT OF A HYBRID MODEL FOR THREE-DIMENSIONAL GIS
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper presents a hybrid model for three-dimensional Geographical Information Systems which is an integration of surface- and volume-based models. The Triangulat ed Irregular Network (TIN) and octree models are integrated in this hybrid model. The TIN model works as a surface-based model which mainly serves for surface presentation and visualization. On the other hand, the octree encoding supports volumetric analysis. The designed data structure brings a major advantage in the three-dimensional selective retrieval. This technique increases the efficiency of three-dimensional data operation.
Three-dimensional magnetic reconnection through a moving magnetic null
Directory of Open Access Journals (Sweden)
V. S. Lukin
2011-11-01
Full Text Available A computational study of three-dimensional magnetic reconnection between two flux ropes through a moving reconnection site is presented. The configuration is considered in the context of two interacting spheromaks constrained by a perfectly conducting cylindrical boundary and oriented to form a single magnetic field null at its center. The initial magnetic field configuration is embedded into a uniform thermal plasma and is unstable to tilting. As the spheromaks tilt, their magnetic fields begin to reconnect at the null, subsequently displacing both the null and the reconnection site. The motion of the reconnection region and the magnetic null are shown to be correlated, with stronger correlation and faster reconnection observed in plasmas with lower thermal to magnetic pressure ratio. It is also shown that ion inertial effects allow for yet faster reconnection, but do not qualitatively change the dynamics of the process. Implications of the coupling between moving magnetic nulls and reconnection sites, as well as of possible mechanisms for fast reconnection through a moving reconnection region, are discussed. The simulations are conducted using both single-fluid and Hall MHD plasma models within the HiFi multi-fluid modeling framework.
Three-dimensional magnetic reconnection through a moving magnetic null
Lukin, V. S.; Linton, M. G.
2011-11-01
A computational study of three-dimensional magnetic reconnection between two flux ropes through a moving reconnection site is presented. The configuration is considered in the context of two interacting spheromaks constrained by a perfectly conducting cylindrical boundary and oriented to form a single magnetic field null at its center. The initial magnetic field configuration is embedded into a uniform thermal plasma and is unstable to tilting. As the spheromaks tilt, their magnetic fields begin to reconnect at the null, subsequently displacing both the null and the reconnection site. The motion of the reconnection region and the magnetic null are shown to be correlated, with stronger correlation and faster reconnection observed in plasmas with lower thermal to magnetic pressure ratio. It is also shown that ion inertial effects allow for yet faster reconnection, but do not qualitatively change the dynamics of the process. Implications of the coupling between moving magnetic nulls and reconnection sites, as well as of possible mechanisms for fast reconnection through a moving reconnection region, are discussed. The simulations are conducted using both single-fluid and Hall MHD plasma models within the HiFi multi-fluid modeling framework.
Three-dimensional calibration targets for optical coherence tomography
Gabriele Sandrian, Michelle; Tomlins, Pete; Woolliams, Peter; Rasakanthan, Janarthanan; Lee, Graham C.; Yang, Anna; Považay, Boris; Alex, Aneesh; Sugden, Kate; Drexler, Wolfgang
2012-03-01
The recent expansion of clinical applications for optical coherence tomography (OCT) is driving the development of approaches for consistent image acquisition. There is a simultaneous need for time-stable, easy-to-use imaging targets for calibration and standardization of OCT devices. We present calibration targets consisting of three-dimensional structures etched into nanoparticle-embedded resin. Spherical iron oxide nanoparticles with a predominant particle diameter of 400 nm were homogeneously dispersed in a two part polyurethane resin and allowed to harden overnight. These samples were then etched using a precision micromachining femtosecond laser with a center wavelength of 1026 nm, 100kHz repetition rate and 450 fs pulse duration. A series of lines in depth were etched, varying the percentage of inscription energy and speed of the translation stage moving the target with respect to the laser. Samples were imaged with a dual wavelength spectral-domain OCT system (λ=800nm, ▵λ~180nm, and λ=1325nm, ▵λ~100nm) and point-spread function of nanoparticles within the target was measured.
Pseudolocalized Three-dimensional Solitary Waves as Quasi-Particles
Christov, C I
2012-01-01
A higher-order dispersive equation is introduced as a candidate for the governing equation of a field theory. A new class of solutions of the three-dimensional field equation are considered, which are not localized functions in the sense of the integrability of the square of the profile over an infinite domain. For the new type of solutions, the gradient and/or the Hessian/Laplacian are square integrable. In the linear limiting case, analytical expression for the pseudolocalized solution is found and the method of variational approximation is applied to find the dynamics of the centers of the quasi-particles (QPs) corresponding to these solutions. A discrete Lagrangian can be derived due to the localization of the gradient and the Laplacian of the profile. The equations of motion of the QPs are derived from the discrete Lagrangian. The pseudomass ("wave mass") of a QP is defined as well as the potential of interaction. The most important trait of the new QPs is that at large distances, the force of attraction...
Three dimensional simulations of viscous folding in diverging microchannels
Xu, Bingrui; Chergui, Jalel; Shin, Seungwon; Juric, Damir
2016-11-01
Three dimensional simulations on the viscous folding in diverging microchannels reported by Cubaud and Mason are performed using the parallel code BLUE for multi-phase flows. The more viscous liquid L1 is injected into the channel from the center inlet, and the less viscous liquid L2 from two side inlets. Liquid L1 takes the form of a thin filament due to hydrodynamic focusing in the long channel that leads to the diverging region. The thread then becomes unstable to a folding instability, due to the longitudinal compressive stress applied to it by the diverging flow of liquid L2. We performed a parameter study in which the flow rate ratio, the viscosity ratio, the Reynolds number, and the shape of the channel were varied relative to a reference model. In our simulations, the cross section of the thread produced by focusing is elliptical rather than circular. The initial folding axis can be either parallel or perpendicular to the narrow dimension of the chamber. In the former case, the folding slowly transforms via twisting to perpendicular folding, or it may remain parallel. The direction of folding onset is determined by the velocity profile and the elliptical shape of the thread cross section in the channel that feeds the diverging part of the cell.
Three dimensional simulations of viscous folding in diverging microchannels
Xu, Bingrui; Shin, Seungwon; Juric, Damir
2016-01-01
Three dimensional simulations on the viscous folding in diverging microchannels reported by Cubaud and Mason are performed using the parallel code BLUE for multi-phase flows. The more viscous liquid L_1 is injected into the channel from the center inlet, and the less viscous liquid L_2 from two side inlets. Liquid L_1 takes the form of a thin filament due to hydrodynamic focusing in the long channel that leads to the diverging region. The thread then becomes unstable to a folding instability, due to the longitudinal compressive stress applied to it by the diverging flow of liquid L_2. Given the long computation time, we were limited to a parameter study comprising five simulations in which the flow rate ratio, the viscosity ratio, the Reynolds number, and the shape of the channel were varied relative to a reference model. In our simulations, the cross section of the thread produced by focusing is elliptical rather than circular. The initial folding axis can be either parallel or perpendicular to the narrow di...
Surgical accuracy of three-dimensional virtual planning
DEFF Research Database (Denmark)
Stokbro, Kasper; Aagaard, Esben; Torkov, Peter
2016-01-01
This retrospective study evaluated the precision and positional accuracy of different orthognathic procedures following virtual surgical planning in 30 patients. To date, no studies of three-dimensional virtual surgical planning have evaluated the influence of segmentation on positional accuracy ...
Magnetic structure of two- and three-dimensional supramolecular compounds
Energy Technology Data Exchange (ETDEWEB)
Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)
1997-09-01
Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.
Direct Linear Transformation Method for Three-Dimensional Cinematography
Shapiro, Robert
1978-01-01
The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)
Study on three-dimensional freehand stroke creation
Directory of Open Access Journals (Sweden)
Cuixian Xuan
2015-05-01
Full Text Available The automotive frames that can be created consciously with three-dimensional freehand strokes are quite important and useful in the early stage of automotive styling. However, all the strokes are drawn on the screen in two-dimensional. This study focuses on the creation of three-dimensional freehand strokes by applying the interpolation algorithm in two orthogonal planes, the projection algorithm and the resultant matrix algorithm. The fitting algorithms of strokes have been developed as the bridges between the traditional two-dimensional sketching and three-dimensional digital modeling. The stylists could use the digital tablet and pen to sketch the frames or outlines of a vehicle in three-dimensional space and then those could be used for establishing the automotive surfaces in any engineering software.
Magnetic structure of two- and three-dimensional supramolecular compounds
Energy Technology Data Exchange (ETDEWEB)
Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)
1997-09-01
Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.
Three-Dimensional Measurement and Reconstruction of Fabric Drape Shape
Institute of Scientific and Technical Information of China (English)
SHEN Yi; YIN Hong-yuan; LIU Xuan-mu
2007-01-01
This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes on the surface of fabrics. We then collect the images of contour stripes using Charge Coupled Device (CCD). Subsequently, we process the images to identify the contour stripes and edges of fabrics, and obtain the fabric contour lines of curved surfaces. Finally, we apply three-dimensional curved surface modeling method based on a network of polar coordinates, and reconstruct the three-dimensional drape shape of fabrics. Experiments show that our method is effective in testing and reconstructing three-dimensional drape shape of fabrics.
Standalone visualization tool for three-dimensional DRAGON geometrical models
Energy Technology Data Exchange (ETDEWEB)
Lukomski, A.; McIntee, B.; Moule, D.; Nichita, E. [Faculty of Energy Systems and Nuclear Science, Univ. of Ontario Inst. of Tech., Oshawa, Ontario (Canada)
2008-07-01
DRAGON is a neutron transport and depletion code able to solve one-, two- and three-dimensional problems. To date DRAGON provides two visualization modules, able to represent respectively two- and three-dimensional geometries. The two-dimensional visualization module generates a postscript file, while the three dimensional visualization module generates a MATLAB M-file with instructions for drawing the tracks in the DRAGON TRACKING data structure, which implicitly provide a representation of the geometry. The current work introduces a new, standalone, tool based on the open-source Visualization Toolkit (VTK) software package which allows the visualization of three-dimensional geometrical models by reading the DRAGON GEOMETRY data structure and generating an axonometric image which can be manipulated interactively by the user. (author)
GOTCHA experience report: three-dimensional SAR imaging with complete circular apertures
Ertin, Emre; Austin, Christian D.; Sharma, Samir; Moses, Randolph L.; Potter, Lee C.
2007-04-01
We study circular synthetic aperture radar (CSAR) systems collecting radar backscatter measurements over a complete circular aperture of 360 degrees. This study is motivated by the GOTCHA CSAR data collection experiment conducted by the Air Force Research Laboratory (AFRL). Circular SAR provides wide-angle information about the anisotropic reflectivity of the scattering centers in the scene, and also provides three dimensional information about the location of the scattering centers due to a non planar collection geometry. Three dimensional imaging results with single pass circular SAR data reveals that the 3D resolution of the system is poor due to the limited persistence of the reflectors in the scene. We present results on polarimetric processing of CSAR data and illustrate reasoning of three dimensional shape from multi-view layover using prior information about target scattering mechanisms. Next, we discuss processing of multipass (CSAR) data and present volumetric imaging results with IFSAR and three dimensional backprojection techniques on the GOTCHA data set. We observe that the volumetric imaging with GOTCHA data is degraded by aliasing and high sidelobes due to nonlinear flightpaths and sparse and unequal sampling in elevation. We conclude with a model based technique that resolves target features and enhances the volumetric imagery by extrapolating the phase history data using the estimated model.
Three-dimensional reconstruction of functional brain images
Energy Technology Data Exchange (ETDEWEB)
Inoue, Masato; Shoji, Kazuhiko; Kojima, Hisayoshi; Hirano, Shigeru; Naito, Yasushi; Honjo, Iwao [Kyoto Univ. (Japan)
1999-08-01
We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: routine images by SPM, three-dimensional static images, and three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface
Stability of compressible three-dimensional boundary-layer flows
Reed, H. L.; Nayfeh, A. H.
1982-01-01
For compressible three-dimensional flow, the method of multiple scales to formulate the three-dimensional stability problem and determine the partial-differential equations governing variations of the amplitude and complex wavenumbers is used. A method for following one specific wave along its trajectory to ascertain the characteristics of the most unstable disturbance is proposed. Numerical results using the flow over the X-21 wing as calculated from the Kaups-Cebeci code will be presented.
Alignment-free three-dimensional optical metamaterials.
Zhao, Yang; Shi, Jinwei; Sun, Liuyang; Li, Xiaoqin; Alù, Andrea
2014-03-05
Three-dimensional optical metamaterials based on multilayers typically rely on critical vertical alignment to achieve the desired functionality. Here the conditions under which three-dimensional metamaterials with different functionalities may be realized without constraints on alignment are analyzed and demonstrated experimentally. This study demonstrates that the release of alignment constraints for multilayered metamaterials is allowed, while their anomalous interaction with light is preserved. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three-dimensional visualization and animation for power systems analysis
Energy Technology Data Exchange (ETDEWEB)
Milano, Federico [Department of Electrical Engineering of the University of Castilla-La Mancha, 13071, Ciudad Real (Spain)
2009-12-15
This paper describes a novel approach for three-dimensional visualization and animation of power systems analyses. The paper demonstrates that three-dimensional visualization of power systems can be used for teaching and can help in easily understanding complex concepts. The solutions of power flow analysis, continuation power flow, optimal power flow and time domain simulations are used for illustrating the proposed technique. The paper presents a variety of examples, particularly oriented to education and practitioner training. Conclusions are duly drawn. (author)
Three-dimensional network of Drosophila brain hemisphere
Mizutani, Ryuta; Saiga, Rino; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio
2016-01-01
The first step to understanding brain function is to determine the brain's network structure. We report a three-dimensional analysis of the brain network of the fruit fly Drosophila melanogaster by synchrotron-radiation tomographic microscopy. A skeletonized wire model of the left half of the brain network was built by tracing the three-dimensional distribution of X-ray absorption coefficients. The obtained models of neuronal processes were classified into groups on the basis of their three-d...
Three-dimensional study of the multi-cavity FEL
Energy Technology Data Exchange (ETDEWEB)
Krishnagopal, S.; Kumar, V. [Centre for Advanced Technology, Indore (India)
1995-12-31
The Multi-Cavity Free-Electron Laser has been proposed earlier, as a new configuration to obtain short, intense pulses of radiation, the key idea being to pre-bunch the electron beam in a number of very short cavities. Those studies were one-dimensional. Here we use three-dimensional simulations to study the viability of this concept when three-dimensional effects are included, particularly with regard to the transverse modes of the optical beam.
Uniform Deterministic Discrete Method for Three Dimensional Systems
Institute of Scientific and Technical Information of China (English)
无
1997-01-01
For radiative direct exchange areas in three dimensional system,the Uniform Deterministic Discrete Method(UDDM) was adopted.The spherical surface dividing method for sending area element and the regular icosahedron for sending volume element can meet with the direct exchange area computation of any kind of zone pairs.The numerical examples of direct exchange area in three dimensional system with nonhomogeneous attenuation coefficients indicated that the UDDM can give very high numercal accuracy.
Three-dimensional microfabrication using two-photon polymerization
Cumpston, Brian H.; Ehrlich, Jeffrey E.; Kuebler, Stephen M.; Lipson, Matthew; Marder, Seth R.; McCord-Maughon, D.; Perry, Joseph W.; Roeckel, Harold; Rumi, Maria Cristina
1998-09-01
Photopolymerization initiated by the simultaneous absorption of two photons is unique in its ability to produce complex three-dimensional (3D) structures from a single, thick photopolymer film. Strong 3D confinement of the polymerization process is not possible in other polymer microfabrication techniques such as LIGA, rapid prototyping, and conventional photoresist technology. Two-photon polymerization also permits the fabrication of 3D structures and the definition of lithographic features on non-planar surfaces. We have developed a wide array of chromophores which hold great promise for 3D microfabrication, as well as other applications, such as two-photon fluorescence imaging and 3D optical data storage. These materials are based on a donor- (pi) -donor, donor-acceptor-donor, or acceptor-donor-acceptor structural motif. The magnitude of the two-photon absorption cross-section, (delta) , and the position of the two-photon absorption maximum, (lambda) (2)max, can be controlled by varying the length of the conjugated bridge and by varying the strength of the donor/acceptor groups. In this way, chromophores have been developed which exhibit strong two- photon absorption in the range of 500 - 975 nm, in some cases as high as 4400 X 10-50 cm4 s/photon-molecule. In the case of donor-(pi) -donor structures, quantum-chemical calculations show that the large absorption cross-sections arise from the symmetric re-distribution of charge from the donor end-groups to the conjugated bridge, resulting in an electronic excited-state which is more delocalized than the ground state. For many of these molecules, two-photon excitation populates a state which is sufficiently reducing that a charge transfer reaction can occur with acrylate monomers. The efficiency of these processes can be described using Marcus theory. Under suitable conditions, such reactions can induce radical polymerization of acrylate resins. Polymerization rates have been measured, and we show that these two
Three-dimensional decomposition method of global atmospheric circulation
Institute of Scientific and Technical Information of China (English)
2008-01-01
By adopting the idea of three-dimensional Walker, Hadley and Rossby stream functions, the global atmospheric circulation can be considered as the sum of three stream functions from a global per- spective. Therefore, a mathematical model of three-dimensional decomposition of global atmospheric circulation is proposed and the existence and uniqueness of the model are proved. Besides, the model includes a numerical method leading to no truncation error in the discrete three-dimensional grid points. Results also show that the three-dimensional stream functions exist and are unique for a given velocity field. The mathematical model shows the generalized form of three-dimensional stream func- tions equal to the velocity field in representing the features of atmospheric motion. Besides, the vertical velocity calculated through the model can represent the main characteristics of the vertical motion. In sum, the three-dimensional decomposition of atmospheric circulation is convenient for the further in- vestigation of the features of global atmospheric motions.
Ordered three-dimensional interconnected nanoarchitectures in anodic porous alumina
Martín, Jaime; Martín-González, Marisol; Fernández, Jose Francisco; Caballero-Calero, Olga
2014-01-01
Three-dimensional nanostructures combine properties of nanoscale materials with the advantages of being macro-sized pieces when the time comes to manipulate, measure their properties, or make a device. However, the amount of compounds with the ability to self-organize in ordered three-dimensional nanostructures is limited. Therefore, template-based fabrication strategies become the key approach towards three-dimensional nanostructures. Here we report the simple fabrication of a template based on anodic aluminum oxide, having a well-defined, ordered, tunable, homogeneous 3D nanotubular network in the sub 100 nm range. The three-dimensional templates are then employed to achieve three-dimensional, ordered nanowire-networks in Bi2Te3 and polystyrene. Lastly, we demonstrate the photonic crystal behavior of both the template and the polystyrene three-dimensional nanostructure. Our approach may establish the foundations for future high-throughput, cheap, photonic materials and devices made of simple commodity plastics, metals, and semiconductors. PMID:25342247
Institute of Scientific and Technical Information of China (English)
郭灿; 王锦程; 王志军; 李俊杰; 郭耀麟; 唐赛
2015-01-01
通过在自由能泛函中引入各向异性参数得到了一个基于高斯内核的改进晶体相场模型，并采用该模型研究了体心立方结构(BCC)枝晶生长的原子堆垛过程。结果表明，在BCC由正十二面体平衡形貌演化为枝晶组织过程中，形核位置经历了由面心({110}面)到尖端(⟨100⟩取向)的转移，进而发生界面失稳形成枝晶组织；枝晶生长过程中，新的固相原子首先在枝晶尖端附近形核，并快速向尖端及根部生长，枝晶尖端被新原子完全包覆后将再次诱发液相原子附着形核及生长；随初始液相密度的增加，固-液界面移动速率增加，速率系数的各向异性也增强。%On the basis of the Gaussian kernel phase field crystal model (PFC), we propose a modified PFC model. The atom-attaching process of three-dimensional body-center-cubic (BCC) dendritic growth is examined by using the modified PFC model. Our simulations indicate that in the process of the morphology evolution from regular dodecahedron to dendrite shape, the nucleation position of new layer is transferred from the center of {110} planes into the region of{110}plane near the⟨100⟩tips, and then the BCC dendritic morphology is obtained. In the process of dendritic growth, first, new solid atom absorption takes place near dendrite tips, then liquid atoms start to grow up on the existing solid phase rapidly. After the dendrite tips are completely occupied by new atoms, new nuclei begin to form again. Increasing the initial atom density n will increase the velocity coeﬃcient C and the anisotropy of C.
Three-dimensional ultrasound system for guided breast brachytherapy.
De Jean, Paul; Beaulieu, Luc; Fenster, Aaron
2009-11-01
Breast-conserving surgery combined with subsequent radiation therapy is a standard procedure in breast cancer treatment. The disadvantage of whole-breast beam irradiation is that it requires 20-25 treatment days, which is inconvenient for patients with limited mobility or who reside far from the treatment center. However, interstitial high-dose-rate (HDR) brachytherapy is an irradiation method requiring only 5 treatment days and that delivers a lower radiation dose to the surrounding healthy tissue. It involves delivering radiation through 192Ir seeds placed inside the catheters, which are inserted into the breast. The catheters are attached to a HDR afterloader, which controls the seed placement within the catheters and irradiation times to deliver the proper radiation dose. One disadvantage of using HDR brachytherapy is that it requires performing at least one CT scan during treatment planning. The procedure at our institution involves the use of two CT scans. Performing CT scans requires moving the patient from the brachytherapy suite with catheters inserted in their breasts. One alternative is using three-dimensional ultrasound (3DUS) to image the patient. In this study, the authors developed a 3DUS translation scanning system for use in breast brachytherapy. The new system was validated using CT, the current clinical standard, to image catheters in a breast phantom. Once the CT and 3DUS images were registered, the catheter trajectories were then compared. The results showed that the average angular separation between catheter trajectories was 2.4 degrees, the average maximum trajectory separation was 1.0 mm, and the average mean trajectory separation was found to be 0.7 mm. In this article, the authors present the 3DUS translation scanning system's capabilities as well as its potential to be used as the primary treatment planning imaging modality in breast brachytherapy.
[Microchips based on three dimensional gel cells: history and perspective].
Kolchinskiĭ, A M; Griadunov, D A; Lysov, Iu P; Mikhaĭlovich, V M; Nasedkina, T V; Turygin, A Iu; Rubina, A Iu; Barskiĭ, V E; Zasedatelev, A S
2004-01-01
The review describes the history of creation and development of the microchip technology and its role in the human genome project in Russia. The emphasis is placed on the three-dimensional gel-based microchips developed at the Center of Biological Microchips headed by A.D. Mirzabekov since 1988. The gel-based chips of the last generation, IMAGE chips (Immobilized Micro Array of Gel Elements), have a number of advantages over the previous versions. The microchips are manufactured by photo-initiated copolymerization of gel components and immobilized molecules (DNA, proteins, and ligands). This ensures an even distribution of the immobilized probe throughout the microchip gel element with a high yield (about 50% for oligonucleotides). The use of methacrylamide as a main component of the polymerization mixture resulted in a substantial increase of gel porosity without affecting its mechanical strength and stability, which allowed one to work with the DNA fragments of up to 500 nt in length, as well as with rather large protein molecules. At present, the gel-based microchips are widely applied to address different problems. The generic microchips containing a complete set of possible hexanucleotides are used to reveal the DNA motifs binding with different proteins and to study the DNA-protein interactions. The oligonucleotide microchips are a cheap and reliable tool of diagnostics designed for mass application. Biochips have been developed for identification of the tuberculosis pathogen and its antibiotic-resistant forms; for diagnostics of orthopoxviruses, including the smallpox virus; for diagnostics of the anthrax pathogen; and for identification of chromosomal rearrangements in leukemia patients. The protein microchips can be adapted for further use in proteomics. Bacterial and yeast cells were also immobilized in the gel, maintaining their viability, which open a wide potential for creation biosensors on the basis of microchips.
An Experimental Investigation of Some Three-Dimensional Effects of Stationary Circular Cylinders
Weiss, Lesley G.; Szewczyk, Albin A.
1999-11-01
Some effects of three-dimensionality on the near wake of a circular cylinder were investigated in the subcritical Reynolds number range. The three-dimensional effects were imposed by a linear shear approach flow and taper in the cylinder. A rake of 16 hot-wires was placed in the near wake in order to investigate the effects of three-dimensionality on the vortex shedding along the span. Results of the present investigation indicate that the three-dimensionality triggers the formation of constant frequency cells. The number and size of the cells are dependent on the combination of nonuniformity in the flow and cylinder. When based on midspan values of diameter and velocity the Strouhal number remains constant within each cell and is centered around the two-dimensional Strouhal number. If the Strouhal number is based on local values it tends to vary linearly within each cell and jump between cell boundaries. A pseudo-visualization technique using time series data is used to show the splitting of vortex cells of different frequency.
Three-dimensional magnetospheric equilibrium with isotropic pressure
Energy Technology Data Exchange (ETDEWEB)
Cheng, C.Z.
1995-05-01
In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal ({Psi},{alpha},{chi}) flux coordinate system, where {Psi} is the magnetic flux function, {chi} is a generalized poloidal angle, {alpha} is the toroidal angle, {alpha} = {phi} {minus} {delta}({Psi},{phi},{chi}) is the toroidal angle, {delta}({Psi},{phi},{chi}) is periodic in {phi}, and the magnetic field is represented as {rvec B} = {del}{Psi} {times} {del}{alpha}. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section.
Biodynamic profiling of three-dimensional tissue growth techniques
Sun, Hao; Merrill, Dan; Turek, John; Nolte, David
2016-03-01
Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.
Three-dimensional suction flow control and suction jet length optimization of NACA 0012 wing
Yousefi, Kianoosh; Saleh, Reza
2015-01-01
A three-dimensional suction flow control study was performed to investigate the aerodynamic characteristics of a rectangular wing with a NACA 0012 airfoil section. In addition, the optimum suction jet length was determined. In this study, the Reynolds-averaged Navier–Stokes equations were employed in conjunction with a k–ω SST turbulent model. Perpendicular suction was applied at the leading edge of the wing's upper surface, with two different types of slot distributions: i.e., center suction...
Three-dimensional Effect of the Single Plane Proximal Femur Osteotomy
Kim, Sung Soo
2015-01-01
Purpose Three-dimensional (3D) effects of the single plane osteotomies of the proximal femur are compared and analyzed by the trigonometric method. Materials and Methods The shape of proximal femur was simplified as a bent line. The bent line is the continuation of the three points-the center of the femoral head, the center of femoral neck at the base, and the center of the femoral shaft. Then rotated the proximal femur at the junction of the neck and shaft with the each rotation axis of X, Y...
Three-dimensional image reconstruction of an Hα flare on 26 March 2001
Institute of Scientific and Technical Information of China (English)
XU; Zhi(徐稚); QU; Zhongquan(屈中权); ZHANG; Xiaoyu(张霄宇); LUAN; Ti(栾蒂); LIU; Zizhong(刘子忠)
2002-01-01
Three-dimensional (3D) image reconstruction of an Hα flare near the solar disk center, is done by a series of line-center and off-line-center filtering observation, according to the physical meaning of contribution function based on the line formation theory. The contribution function represents the contribution from stellar atmospheric layers to the emergent specific intensity and describes the depth distribution of escape photons. In this paper, an Hα flare of 26 March 2001 is used to illustrate the 3D line-of-sight reconstruction and its development.
Coupled particle dispersion by three-dimensional vortex structures
Energy Technology Data Exchange (ETDEWEB)
Troutt, T.R.; Chung, J.N.; Crowe, C.T.
1996-12-31
The primary objective of this research program is to obtain understanding concerning the role of three-dimensional vortex structures in the dispersion of particles and droplets in free shear flows. This research program builds on previous studies which focused on the nature of particle dispersion in large scale quasi two-dimensional vortex structures. This investigation employs time dependent experimental and numerical techniques to provide information concerning the particulate dispersion produced by three dimensional vortex structures in free shear layers. The free shear flows investigated include modified plane mixing layers, and modified plane wakes. The modifications to these flows involve slight perturbations to the initiation boundary conditions such that three-dimensional vortex structures are rapidly generated by the experimental and numerical flow fields. Recent results support the importance of these vortex structures in the particle dispersion process.
Hydrofocusing Bioreactor for Three-Dimensional Cell Culture
Gonda, Steve R.; Spaulding, Glenn F.; Tsao, Yow-Min D.; Flechsig, Scott; Jones, Leslie; Soehnge, Holly
2003-01-01
The hydrodynamic focusing bioreactor (HFB) is a bioreactor system designed for three-dimensional cell culture and tissue-engineering investigations on orbiting spacecraft and in laboratories on Earth. The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear culture environment simultaneously with the "herding" of suspended cells, tissue assemblies, and air bubbles. Under development for use in the Biotechnology Facility on the International Space Station, the HFB has successfully grown large three-dimensional, tissuelike assemblies from anchorage-dependent cells and grown suspension hybridoma cells to high densities. The HFB, based on the principle of hydrodynamic focusing, provides the capability to control the movement of air bubbles and removes them from the bioreactor without degrading the low-shear culture environment or the suspended three-dimensional tissue assemblies. The HFB also provides unparalleled control over the locations of cells and tissues within its bioreactor vessel during operation and sampling.
Computational methods for three-dimensional microscopy reconstruction
Frank, Joachim
2014-01-01
Approaches to the recovery of three-dimensional information on a biological object, which are often formulated or implemented initially in an intuitive way, are concisely described here based on physical models of the object and the image-formation process. Both three-dimensional electron microscopy and X-ray tomography can be captured in the same mathematical framework, leading to closely-related computational approaches, but the methodologies differ in detail and hence pose different challenges. The editors of this volume, Gabor T. Herman and Joachim Frank, are experts in the respective methodologies and present research at the forefront of biological imaging and structural biology. Computational Methods for Three-Dimensional Microscopy Reconstruction will serve as a useful resource for scholars interested in the development of computational methods for structural biology and cell biology, particularly in the area of 3D imaging and modeling.
Radiation hardness of three-dimensional polycrystalline diamond detectors
Energy Technology Data Exchange (ETDEWEB)
Lagomarsino, Stefano, E-mail: lagomarsino@fi.infn.it; Sciortino, Silvio [National Institute of Nuclear Physics (INFN), Via B. Rossi, 1-3, 50019 Sesto Fiorentino (Italy); Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Bellini, Marco [European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Istituto Nazionale di Ottica (INO-CNR), Largo Enrico Fermi 6, 50125 Firenze (Italy); Corsi, Chiara [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Cindro, Vladimir [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Kanxheri, Keida; Servoli, Leonello [National Institute of Nuclear Physics (INFN), Via A. Pascoli, 06123 Perugia (Italy); Department of Physics, University of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Morozzi, Arianna [Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia (Italy); Passeri, Daniele [National Institute of Nuclear Physics (INFN), Via A. Pascoli, 06123 Perugia (Italy); Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia (Italy); Schmidt, Christian J. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany)
2015-05-11
The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.
Three-dimensional network of Drosophila brain hemisphere
Mizutani, Ryuta; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio
2016-01-01
The first step to understanding brain function is to determine the brain's network structure. We report a three-dimensional analysis of the brain network of the fruit fly Drosophila melanogaster by synchrotron-radiation tomographic microscopy. A skeletonized wire model of the left half of the brain network was built by tracing the three-dimensional distribution of X-ray absorption coefficients. The obtained models of neuronal processes were classified into groups on the basis of their three-dimensional structures. These classified groups correspond to neuronal tracts that send long-range projections or repeated structures of the optic lobe. The skeletonized model is also composed of neuronal processes that could not be classified into the groups. The distribution of these unclassified structures correlates with the distribution of contacts between neuronal processes. This suggests that neurons that cannot be classified into typical structures should play important roles in brain functions. The quantitative de...
Park, Eun-Kyung; Lim, Jun-Young; Yun, In-Sik; Kim, Ju-Seong; Woo, Su-Heon; Kim, Dong-Seok; Shim, Kyu-Won
2016-06-01
The authors studied to demonstrate the efficacy of custom-made three-dimensional (3D)-printed titanium implants for reconstructing skull defects. From 2013 to 2015, 21 patients (8-62 years old, mean = 28.6-year old; 11 females and 10 males) with skull defects were treated. Total disease duration ranged from 6 to 168 months (mean = 33.6 months). The size of skull defects ranged from 84 × 104 to 154 × 193 mm. Custom-made implants were manufactured by Medyssey Co, Ltd (Jecheon, South Korea) using 3D computed tomography data, Mimics software, and an electron beam melting machine. The team reviewed several different designs and simulated surgery using a 3D skull model. During the operation, the implant was fit to the defect without dead space. Operation times ranged from 85 to 180 minutes (mean = 115.7 minutes). Operative sites healed without any complications except for 1 patient who had red swelling with exudation at the skin defect, which was a skin infection and defect at the center of the scalp flap reoccurring since the initial head injury. This patient underwent reoperation for skin defect revision and replacement of the implant. Twenty-one patients were followed for 6 to 24 months (mean = 14.1 months). The patients were satisfied and had no recurrent wound problems. Head computed tomography after operation showed good fixation of titanium implants and satisfactory skull-shape symmetry. For the reconstruction of skull defects, the use of autologous bone grafts has been the treatment of choice. However, bone use depends on availability, defect size, and donor morbidity. As 3D printing techniques are further advanced, it is becoming possible to manufacture custom-made 3D titanium implants for skull reconstruction.
Three-dimensional microtomographic imaging of human brain cortex
Mizutania, Ryuta; Uesugi, Kentaro; Ohyama, Masami; Takekoshi, Susumu; Osamura, R Yoshiyuki; Suzuki, Yoshio
2016-01-01
This paper describes an x-ray microtomographic technique for imaging the three-dimensional structure of the human cerebral cortex. Neurons in the brain constitute a neural circuit as a three-dimensional network. The brain tissue is composed of light elements that give little contrast in a hard x-ray transmission image. The contrast was enhanced by staining neural cells with metal compounds. The obtained structure revealed the microarchitecture of the gray and white matter regions of the frontal cortex, which is responsible for the higher brain functions.
Three-dimensional flow and turbulence structure in electrostatic precipitator
DEFF Research Database (Denmark)
Ullum, Thorvald Uhrskov; Larsen, Poul Scheel; Özcan, Oktay
2002-01-01
Stereo PIV is employed to study the three-dimensional velocity and turbulence fields in a laboratory model of a negative corona, barbed-wire, smooth-plate, electrostatic precipitator (figure 1). The study is focused on determining the parametric effects of axial development, mean current density Jm...... and bulk velocity U0 on secondary flows and turbulence levels and structures due to the action of the three-dimensional electrostatic field on the charged gas. At constant bulk velocity (U0 = 1 m/s) and current density (Jm = 0.4 mA/m2), secondary flows in the form of rolls of axial vorticity with swirl...
Three dimensional super-resolution in metamaterial slab lenses
Mesa, F; Freire, M; Baena, J D
2005-01-01
This letter presents a theoretical and experimental study on the viability of obtaining three dimensional super-resolution (i.e. resolution overcoming the diffraction limit for all directions in space) by means of metamaterial slab lenses. Although the source field cannot be actually reproduced at the back side of the lens with super-resolution in all space directions, the matching capabilities of metamaterial slabs does make it possible the detection of images with three-dimensional super-resolution. This imaging takes place because of the coupling between the evanescent space harmonic components of the field generated at both the source and the detector.
A system of three-dimensional complex variables
Martin, E. Dale
1986-01-01
Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.
Structure of turbulence in three-dimensional boundary layers
Subramanian, Chelakara S.
1993-01-01
This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.
Urologic applications of multiplanar and three-dimensional computed tomography.
Olson, M C; Posniak, H V
1995-01-01
The introduction of helical computed tomography (CT) has resulted in improved quality of multiplanar reformations and three-dimensional reconstructions in the chest and abdomen and has made CT angiography a clinical reality. These imaging techniques are useful for evaluating the urinary tract, adding a new dimension to its display, resulting in improved diagnosis of renal and perirenal disease. This article reviews the indications and techniques utilized for multiplanar and three-dimensional CT for urology. The advantages and limitations are discussed, and normal and pathologic findings in the urinary tract illustrated.
Gas-Kinetic BGK Scheme for Three Dimensional Magnetohydrodynamics
Institute of Scientific and Technical Information of China (English)
Huazhong
2010-01-01
The gas-kinetic theory based flux splitting method has been successfully proposed for solving one- and two-dimensional ideal magnetohydrodynamics by Xu et al.[J. Comput. Phys., 1999; 2000], respectively. This paper extends the kinetic method to solve three-dimensional ideal magnetohydrodynamics equations, where an adaptive parameter η is used to control the numerical dissipation in the flux splitting method.Several numerical examples are given to demonstrate that the proposed method can achieve high numerical accuracy and resolve strong discontinuous waves in three dimensional ideal MHD problems.
Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry
Energy Technology Data Exchange (ETDEWEB)
Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.; Mendoza, Albert
2014-05-28
We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.
Fabrication and characterization of three-dimensional biomimetic chiral composites.
Turner, Mark D; Schröder-Turk, Gerd E; Gu, Min
2011-05-09
Here we show the fabrication and characterization of a novel class of biomimetic photonic chiral composites inspired by a recent finding in butterfly wing-scales. These three-dimensional networks have cubic symmetry, are fully interconnected, have robust mechanical strength and possess chirality which can be controlled through the composition of multiple chiral networks, providing an excellent platform for developing novel chiral materials. Using direct laser writing we have fabricated different types of chiral composites that can be engineered to form novel photonic devices. We experimentally show strong circular dichroism and compare with numerical simulations to illustrate the high quality of these three-dimensional photonic structures.
Symmetries and defects in three-dimensional topological field theory
Fuchs, Jurgen
2015-01-01
Boundary conditions and defects of any codimension are natural parts of any quantum field theory. Surface defects in three-dimensional topological field theories of Turaev-Reshetikhin type have applications to two-dimensional conformal field theories, in solid state physics and in quantum computing. We explain an obstruction to the existence of surface defects that takes values in a Witt group. We then turn to surface defects in Dijkgraaf-Witten theories and their construction in terms of relative bundles; this allows one to exhibit Brauer-Picard groups as symmetry groups of three-dimensional topological field theories.
Three dimensional Monte Carlo simulations of ionized nebulae
Ercolano, Barbara
2002-12-01
The study of photoionized environments is fundamental to many astrophysical problems. Up to the present most photoionization codes have numerically solved the equations of radiative transfer by making the extreme simplifying assumption of spherical symmetry. Unfortunately very few real astronomical nebulae satisfy this requirement. To remedy these shortcomings, a self-consistent, three-dimensional radiative transfer code has been developed using Monte Carlo techniques. The code, Mocassin, is designed to build realistic models of photoionized nebulae having arbitrary geometries and density distributions with both the stellar and diffuse radiation fields treated self-consistently. In addition, the code is capable of treating one or more exciting stars located at non-central locations. The gaseous region is approximated by a cuboidal Cartesian grid composed of numerous cells. The physical conditions within each grid cell are determined by solving the thermal equilibrium and ionization balance equations. This requires a knowledge of the local primary and secondary radiation fields, which are calculated self-consistently by locally simulating the individual processes of ionization and recombination. The main structure and computational methods used in the Mocassin code are described in this thesis. Mocassin has been benchmarked against established one-dimensional spherically symmetric codes for a number of standard cases, as defined by the Lexington/Meudon photoionization workshops (Pequignot, 1986; Ferland et al., 1995; Pequignot et al., 2001). The results obtained for the benchmark cases are satisfactory and are presented in this work. A performance analysis has also been carried out and is discussed here. The code has been applied to construct a realistic model of the planetary nebula NGC 3918. Three different geometric models were tried, the first being the biconical density distribution already used by Clegg et al. (1987). In this model the nebula is approximated
Fenton, Flavio H.; Evans, Steven J.; Hastings, Harold M.; Cherry, Elizabeth M.
2006-03-01
Presentation and analysis of large three-dimensional data sets is in general hard to do using only two-dimensional figures and plots. In this talk, we will demonstrate techniques for illustrating static and dynamic three-dimensional objects and data using Virtual Reality Modeling Language (VRML) as well as Java. The advantage of these two languages is that they are platform-independent, which allows for easy sharing of data and visualizations. In addition, manipulation of data is relatively easy as rotation, translation and zooming can be done in real- time for static objects as well as for data and objects that vary and deform in time. Examples of fully three-dimensional movies will be shown, including dendritic growth and propagation of electrical waves in cardiac tissue. In addition, we will show how to include VRML and Java viewers in PowerPoint for easy presentation of results in classes and seminars.
Approaching the Sequential and Three-Dimensional Organization of Genomes
T.A. Knoch (Tobias)
2006-01-01
textabstractGenomes are one of the major foundations of life due to their role in information storage, process regulation and evolution. To achieve a deeper unterstanding of the human genome the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic prope
Vacuum polarization around a three-dimensional black hole
Shiraishi, Kiyoshi
2015-01-01
We calculate the Euclidean propagator for a conformally coupled massless scalar field in the background of the three-dimensional black hole. The expectation value $\\langle\\varphi^2\\rangle$ in the Hartle-Hawking state is obtained in the spacetime.
Three-dimensional echocardiographic assessment of the repaired mitral valve.
Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun
2014-02-01
This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.
Generation of a Desired Three-Dimensional Electromagnetic Field
DEFF Research Database (Denmark)
2005-01-01
The present invention relates to a method and a system for synthesizing a prescribed three-dimensional electromagnetic field based on generalized phase contrast imaging. Such a method and apparatus may be utilized in advanced optical micro and nano-manipulation, such as by provision of a multiple...
Three-dimensional reconstruction of the otosclerotic focus
DEFF Research Database (Denmark)
Bloch, Sune Land; Sørensen, Mads Sølvsten
2010-01-01
The location and three-dimensional (3D) shapes of the otosclerotic foci suggest a general centripetal distribution of otosclerotic bone remodeling around the inner ear space, whereas the normal bone remodeling is distributed centrifugally. The existence of an inverse spatial relation between normal...
Computer Generated Holography as a Three-Dimensional Display Medium
1990-12-01
series of two dimensional images are reflected on an object screen resulting in an autostereoscopic , or true three dimensional, images. The advantages of...an attractive target to optimize. Jack Ritter has suggested a fast approximation to 3D Euclidean distance calculations (10:432). His methid uses no
Resistive drift wave turbulence in a three-dimensional geometry
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Naulin, V.
1999-01-01
The Hasegawa-Wakatani model describing resistive drift waves is investigated analytically and numerically in a three-dimensional periodic geometry. After an initial growth of the energy the drift waves couple nonlinearly to convective cells, which eventually dominate the system completely...
Three-Dimensional Evolution of the Galactic Fountain
D'Avillez, M A
1999-01-01
Gas that escapes from the Galactic disk, rises into the halo, cools and falls back, constitutes a "Galactic Fountain". Three-Dimensional simulations show that such a fountain model reproduces many of the features that have been observed in the Galaxy and other galaxies such as M31 and M33. Here, these results are reported.
Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices.
Yarema, Maksym; Kovalenko, Maksym V; Hesser, Günter; Talapin, Dmitri V; Heiss, Wolfgang
2010-11-01
A simple and reproducible synthesis of highly monodisperse and ligand-protected bismuth nanoparticles (Bi NPs) is reported. The size of the single-crystalline and spherically shaped NPs is controlled between 11 and 22 nm mainly by the reaction temperature. The high uniformity of the NPs allows their self-assembly into long-range-ordered two- and three-dimensional superstructures.
Three-Dimensional Bone Adaptation of the Proximal Femur
DEFF Research Database (Denmark)
Bagge, Mette
1998-01-01
The bone remodeling of a three-dimensional model of the proximal femur is considered. The bone adaptation is numerically described as an evolution in time formulated such that the structural change goes in an optimal direction within each time step for the optimal boundary conditions. In the bone...
THE THREE DIMENSIONAL MODELS AND THEIR IDENTIFICATION MINING SUBSIDENCE
Institute of Scientific and Technical Information of China (English)
WUGe; SHENGuanghan; JIXiaoming; WANGQuanke
1995-01-01
The theory and method for selecting the three dimensional prediction models of mining subsidence are studied in this paper. Namely, based on system identification and statistics theory, an optimum mining subsidence prediction model can be selected. The method proved by a typical case has a good prospect for determining the physical model of rock mass for mining subsidence prediction.
BIFURCATION OF PERIODIC ORBITS OF A THREE-DIMENSIONAL SYSTEM
Institute of Scientific and Technical Information of China (English)
LIU XUANLIANG; HAN MAOAN
2005-01-01
Consider a three-dimensional system having an invariant surface. By using bifurcation techniques and analyzing the solutions of bifurcation equations, the authors study the spacial bifurcation phenomena of a k multiple closed orbit in the invariant surface.The sufficient conditions of the existence of many closed orbits bifurcate from the k multiple closed orbit are obtained.
Three dimensional geometric modeling of processing-tomatoes
Characterizing tomato geometries with different shapes and sizes would facilitate the design of tomato processing equipments and promote computer-based engineering simulations. This research sought to develop a three-dimensional geometric model that can describe the morphological attributes of proce...
Thermodynamics of a Simple Three-Dimensional DNA Hairpin Model
Kremer, Kellan; Boggess, Erin; Mask, Walker; Saucedo, Tony; Hansen, JJ; Appelgate, Ian; Jurgensen, Taylor; Santos, Aaron
2016-01-01
We characterize the equation of state for a simple three-dimensional DNA hairpin model using a Metropolis Monte Carlo algorithm. This algorithm was run at constant temperature and fixed separation between the terminal ends of the strand. From the equation of state, we compute the compressibility, thermal expansion coefficient, and specific heat along with adiabatic path.
Three-dimensional simulations of viscoelastic instability in polymeric filaments
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Hassager, Ole
1999-01-01
The three-dimensional Langrangian integral method is used to simulate the elastic end-plate instability that occurs in the rapid extension of some polymeric filaments between parallel plates. It is demonstrated that the upper convected Maxwell model describes the essential features of the instabi...
Two-Dimensional Chirality in Three-Dimensional Chemistry.
Wintner, Claude E.
1983-01-01
The concept of two-dimensional chirality is used to enhance students' understanding of three-dimensional stereochemistry. This chirality is used as a key to teaching/understanding such concepts as enaniotropism, diastereotopism, pseudoasymmetry, retention/inversion of configuration, and stereochemical results of addition to double bonds. (JN)
A Three-Dimensional Haptic Matrix Test of Nonverbal Reasoning
Miller, Joseph C.; Skillman, Gemma D.; Benedetto, Joanne M.; Holtz, Ann M.; Nassif, Carrie L.; Weber, Anh D.
2007-01-01
Three-dimensional haptic matrices were pilot-tested as a nonvisual measure of cognitive ability. The results indicated that they correlated with convergent measures, with emphasis on spatial processing and that the participants who described items "visually" completed them more quickly and accurately and tended to have become visually impaired…
Polycrystalline diamond detectors with three-dimensional electrodes
Energy Technology Data Exchange (ETDEWEB)
Lagomarsino, S., E-mail: lagomarsino@fi.infn.it [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Bellini, M. [INO-CNR Firenze, Largo E. Fermi 6, 50125 Firenze (Italy); Brianzi, M. [INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Carzino, R. [Smart Materials-Nanophysics, Istituto Italiano di Tecnologia, Genova, Via Morego 30, 16163 Genova (Italy); Cindro, V. [Joseph Stefan Institute, Jamova Cesta 39, 1000 Ljubljana (Slovenia); Corsi, C. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); LENS Firenze, Via N. Carrara 1, 50019 Sesto Fiorentino (Italy); Morozzi, A.; Passeri, D. [INFN Perugia, Perugia (Italy); Università degli Studi di Perugia, Dipartimento di Ingegneria, via G. Duranti 93, 06125 Perugia (Italy); Sciortino, S. [University of Florence, Department of Physics, Via Sansone 1, 50019 Sesto Fiorentino (Italy); INFN Firenze, Via B. Rossi 1, 50019 Sesto Fiorentino (Italy); Servoli, L. [INFN Perugia, Perugia (Italy)
2015-10-01
The three-dimensional concept in diamond detectors has been applied, so far, to high quality single-crystal material, in order to test this technology in the best available conditions. However, its application to polycrystalline chemical vapor deposited diamond could be desirable for two reasons: first, the short inter-electrode distance of three-dimensional detectors should improve the intrinsically lower collection efficiency of polycrystalline diamond, and second, at high levels of radiation damage the performances of the poly-crystal material are not expected to be much lower than those of the single crystal one. We report on the fabrication and test of three-dimensional polycrystalline diamond detectors with several inter-electrode distances, and we demonstrate that their collection efficiency is equal or higher than that obtained with conventional planar detectors fabricated with the same material. - Highlights: • Pulsed laser fabrication of polycristalline diamond detectors with 3D electrodes. • Measurement of the charge collection efficiency (CCE) under beta irradiation. • Comparation between the CCE of 3D and conventional planar diamond sensors. • A rationale for the behavior of three-dimensional and planar sensors is given.
Potential Flows From Three-Dimensional Complex Variables
Martin, E. Dale; Kelly, Patrick H.; Panton, Ronald L.
1992-01-01
Report presents investigation of several functions of three-dimensional complex variable, with emphasis on potential-flow fields computed from these functions. Part of continuing research on generalization of well-established two-dimensional complex analysis to three and more dimensions.
Oblique water entry of a three dimensional body
Directory of Open Access Journals (Sweden)
Scolan Yves-Marie
2014-12-01
Full Text Available The problem of the oblique water entry of a three dimensional body is considered. Wagner theory is the theoretical framework. Applications are discussed for an elliptic paraboloid entering an initially flat free surface. A dedicated experimental campaign yields a data base for comparisons. In the present analysis, pressure, force and dynamics of the wetted surface expansion are assessed.
Three-Dimensional Reconstruction of Macroscopic Features in Biological Materials
Krumnikl, Michal; Sojka, Eduard; Gaura, Jan; Motyka, Oldřich
This paper covers the topic of three dimensional reconstruction of small textureless formations usually found in biological samples. Generally used reconstructing algorithms do not provide sufficient accuracy for surface analysis. In order to achieve better results, combined strategy was developed, linking stereo matching algorithms with monocular depth cues such as depth from focus and depth from illumination.
Three-dimensional stiffness of the carpal arch.
Gabra, Joseph N; Li, Zong-Ming
2016-01-01
The carpal arch of the wrist is formed by irregularly shaped carpal bones interconnected by numerous ligaments, resulting in complex structural mechanics. The purpose of this study was to determine the three-dimensional stiffness characteristics of the carpal arch using displacement perturbations. It was hypothesized that the carpal arch would exhibit an anisotropic stiffness behavior with principal directions that are oblique to the conventional anatomical axes. Eight (n=8) cadavers were used in this study. For each specimen, the hamate was fixed to a custom stationary apparatus. An instrumented robot arm applied three-dimensional displacement perturbations to the ridge of trapezium and corresponding reaction forces were collected. The displacement-force data were used to determine a three-dimensional stiffness matrix using least squares fitting. Eigendecomposition of the stiffness matrix was used to identify the magnitudes and directions of the principal stiffness components. The carpal arch structure exhibited anisotropic stiffness behaviors with a maximum principal stiffness of 16.4±4.6N/mm that was significantly larger than the other principal components of 3.1±0.9 and 2.6±0.5N/mm (pcarpal tunnel which is accounted for by the stiff transverse ligaments that tightly bind distal carpal arch. The minimal principal stiffness is attributed to the less constraining articulation between the trapezium and scaphoid. This study provides advanced characterization of the wrist׳s three-dimensional structural stiffness for improved insight into wrist biomechanics, stability, and function.
Three-Dimensional Space to Assess Cloud Interoperability
2013-03-01
major cloud providers, OpenStack and OpeNebula, to demonstrate the usage of the three-dimensional space and its benefits . We start this chapter with a...documentation:rel4.0:external_auth. [68] X. Gao, P. Shah, A. Yoga , A. Kodgire and X. Ni. Cloud storage survey [Online]. Available: http
Three-dimensional charge transport in organic semiconductor single crystals.
He, Tao; Zhang, Xiying; Jia, Jiong; Li, Yexin; Tao, Xutang
2012-04-24
Three-dimensional charge transport anisotropy in organic semiconductor single crystals - both plates and rods (above and below, respectively, in the figure) - is measured in well-performing organic field-effect transistors for the first time. The results provide an excellent model for molecular design and device preparation that leads to good performance.
Differential equations of the shell suspension. Three-dimensional problem
Гнатейко, Нонна Валентинівна
2016-01-01
Differential equations of suspension of gyroscope are constructed as a shell of rotation. Analytical material well-being of analysis of properties of suspension as a system with part parameters is created. Three-dimensional approach gives possibility for the comprehensive study of errors of devices of inertial navigation from position impedance status.
Automated analysis of three-dimensional stress echocardiography
K.Y.E. Leung (Esther); M. van Stralen (Marijn); M.G. Danilouchkine (Mikhail); G. van Burken (Gerard); M.L. Geleijnse (Marcel); J.H.C. Reiber (Johan); N. de Jong (Nico); A.F.W. van der Steen (Ton); J.G. Bosch (Johan)
2011-01-01
textabstractReal-time three-dimensional (3D) ultrasound imaging has been proposed as an alternative for two-dimensional stress echocardiography for assessing myocardial dysfunction and underlying coronary artery disease. Analysis of 3D stress echocardiography is no simple task and requires considera
Yttrium oxide based three dimensional metamaterials for visible light cloaking
Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene
2014-04-01
Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.
Polyimide Aerogels with Three-Dimensional Cross-Linked Structure
Meador, Mary Ann B. (Inventor)
2016-01-01
A method for creating a three dimensional cross-linked polyimide structure includes dissolving a diamine, a dianhydride, and a triamine in a solvent, imidizing a polyamic acid gel by heating the gel, extracting the gel in a second solvent, supercritically drying the gel, and removing the solvent to create a polyimide aerogel.
Three-dimensional reconstruction of the pigeon inner ear
Hofman, R.; Segenhout, J. M.; Wit, H. P.
2009-01-01
Three-dimensional reconstructions of the inner ear of the pigeon (Columba livia domestica), from two-dimensional images, obtained with (conventional) light microscopy or orthogonal-plane fluorescence optical sectioning (OPFOS), are presented. The results are compared with available information on th
Renormalization group theory of the three dimensional dilute Bose gas
Bijlsma, M.; Stoof, H.T.C.
1996-01-01
We study the three-dimensional atomic Bose gas using renormalization group techniques. Using our knowledge of the microscopic details of the interatomic interaction, we determine the correct initial values of our renormalization group equations and thus obtain also information on nonuniversal
Algebraic Ricci Solitons of three-dimensional Lorentzian Lie groups
Batat, Wafaa
2011-01-01
We classify Algebraic Ricci Solitons of three-dimensional Lorentzian Lie groups. All algebraic Ricci solitons that we obtain are sol-solitons. In particular, we prove that, contrary to the Riemannian case, Lorentzian Ricci solitons need not to be algebraic Ricci solitons.
Three-Dimensional Printing Using a Photoinitiated Polymer
Muskin, Joseph; Ragusa, Matthew; Gelsthorpe, Thomas
2010-01-01
Printers capable of producing three-dimensional objects are becoming more common. Most of these printers are impractical for use in the chemistry classroom because of the expense incurred in fabricating a print head that must be controlled in three dimensions. We propose a simpler solution to this problem that allows the emerging technology of…
Three dimensional boundary layers on submarine conning towers and rudders
Gleyzes, C.
1988-01-01
Solutions for the definition of grids adapted to the calculation of three-dimensional boundary layers on submarine conning towers and on submarine rudders and fins are described. The particular geometry of such bodies (oblique shaped hull, curved fins) required special adaptations. The grids were verified on examples from a test basin.
Three-Dimensional Printing Using a Photoinitiated Polymer
Muskin, Joseph; Ragusa, Matthew; Gelsthorpe, Thomas
2010-01-01
Printers capable of producing three-dimensional objects are becoming more common. Most of these printers are impractical for use in the chemistry classroom because of the expense incurred in fabricating a print head that must be controlled in three dimensions. We propose a simpler solution to this problem that allows the emerging technology of…
Three-dimensional topology optimized electrically-small conformal antenna
DEFF Research Database (Denmark)
Erentok, Aycan; Sigmund, Ole
2008-01-01
A three-dimensional (3D) conductor-based conformal electrically small antenna is obtained using a topology optimization method. The optimization method distributes a certain amount of conductive material to a designated design domain such that the material layout defines an electrically small...
A Novel Three-Dimensional Tool for Teaching Human Neuroanatomy
Estevez, Maureen E.; Lindgren, Kristen A.; Bergethon, Peter R.
2010-01-01
Three-dimensional (3D) visualization of neuroanatomy can be challenging for medical students. This knowledge is essential in order for students to correlate cross-sectional neuroanatomy and whole brain specimens within neuroscience curricula and to interpret clinical and radiological information as clinicians or researchers. This study implemented…
Three-dimensional reconstruction of the otosclerotic focus
DEFF Research Database (Denmark)
Bloch, Sune Land; Sørensen, Mads Sølvsten
2010-01-01
The location and three-dimensional (3D) shapes of the otosclerotic foci suggest a general centripetal distribution of otosclerotic bone remodeling around the inner ear space, whereas the normal bone remodeling is distributed centrifugally. The existence of an inverse spatial relation between normal...
Three-Dimensional Extension of a Digital Library Service System
Xiao, Long
2010-01-01
Purpose: The paper aims to provide an overall methodology and case study for the innovation and extension of a digital library, especially the service system. Design/methodology/approach: Based on the three-dimensional structure theory of the information service industry, this paper combines a comprehensive analysis with the practical experiences…
Exploring Approaches to Teaching in Three-Dimensional Virtual Worlds
Englund, Claire
2017-01-01
Purpose: The purpose of this paper is to explore how teachers' approaches to teaching and conceptions of teaching and learning with educational technology influence the implementation of three-dimensional virtual worlds (3DVWs) in health care education. Design/methodology/approach: Data were collected through thematic interviews with eight…
Three dimensional rigorous model for optical scattering problems
Wei, X.
2006-01-01
We present a three-dimensional model based on the finite element method for solving the time-harmonic Maxwell equation in optics. It applies to isotropic or anisotropic dielectrics and metals, and to many configurations such as an isolated scatterer in a multilayer, bi-gratings and crystals. We shal
Institute of Scientific and Technical Information of China (English)
Chen Yong-Qiang; Tang Xiong-Xin; Xu Jian-Jun
2009-01-01
Dendritic pattern formation at the interface between liquid and solid is a commonly observed phenomenon in crystal growth and solidification process. The theoretical investigation of dendritic growth is one of the most profound and highly challenging subjects in the broad areas of intcrfacial pattern formation, condensed matter physics and materials science, preoccupying many researchers from various areas. Some longstanding key issues on this subject finally gained a breakthrough in the late of last century, via the 'Interracial Wave (IFW) Theory' on the ground of systematical global stability analysis of the basic state of dendritic growth. The original form of the IFW theory mainly focus on the investigation of various axi-symmetric unsteady perturbed modes solutions around the axi-symmctric basic state of system of dendritic growth. In reality, the system may allow various non-axi-symmctric, unsteady perturbed states. Whether or not the system of dendritic growth allows some growing non-axi-symmetric modes? Will the stationary dendritic pattern be destroyed by some of such non-axi-symmetric modes? Or, in one word, what is the stability property of the system, once the non-axi-symmetric modes can be evoked? The answers for these questions are important for the solid foundation of IFW theory. The present work attempts to settle down these issues and develop a three-dimensional (3D) interracial wave theory of dendritic growth. Our investigations verify that dendritic growth indeed allows a discrete set of non-axi-symmetric unstable global wave modes, which gives rise to a set of multiple arms spiral waves propagating along the Ivantsov's paraboloid.
Three-dimensional adult male head and skull contours.
Lee, Calvin; Loyd, Andre M; Nightingale, Roger; Myers, Barry S; Damon, Andrew; Bass, Cameron R
2014-01-01
of 2 mm. Minimization of the area between the midsagittal contours resulted in only 2.3 mm of translation, corroborating the good correlation between the contours established by initial comparison. Three-dimensional average male head and skull contours were created and measurements of landmark locations were made. It was found that the 50th percentile male Hybrid III corresponds well to the average male head contour and validated its 3D shape. Average adult head and skull contours and landmark data are available for public research use at http://biomechanics.pratt.duke.edu/data .
Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase
Energy Technology Data Exchange (ETDEWEB)
Kamat, S.S.; Swaminathan, S.; Bagaria, A.; Kumaran, D.; Holmes-Hampton, G. P.; Fan, H.; Sali, A.; Sauder, J. M.; Burley, S. K.; Lindahl, P. A.; Raushel, F. M.
2011-03-22
Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with kcat and kcat/Km values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction mechanism and the
Catalytic Mechanism and Three-Dimensional Structure of Adenine Deaminase
Energy Technology Data Exchange (ETDEWEB)
S Kamat; A Bagaria; D Kumaran; G Holmes-Hampton; H Fan; A Sali; J Sauder; S Burley; P Lindahl; et. al.
2011-12-31
Adenine deaminase (ADE) catalyzes the conversion of adenine to hypoxanthine and ammonia. The enzyme isolated from Escherichia coli using standard expression conditions was low for the deamination of adenine (k{sub cat} = 2.0 s{sup -1}; k{sub cat}/K{sub m} = 2.5 x 10{sup 3} M{sup -1} s{sup -1}). However, when iron was sequestered with a metal chelator and the growth medium was supplemented with Mn{sup 2+} prior to induction, the purified enzyme was substantially more active for the deamination of adenine with k{sub cat} and k{sub cat}/K{sub m} values of 200 s{sup -1} and 5 x 10{sup 5} M{sup -1} s{sup -1}, respectively. The apoenzyme was prepared and reconstituted with Fe{sup 2+}, Zn{sup 2+}, or Mn{sup 2+}. In each case, two enzyme equivalents of metal were necessary for reconstitution of the deaminase activity. This work provides the first example of any member of the deaminase subfamily of the amidohydrolase superfamily to utilize a binuclear metal center for the catalysis of a deamination reaction. [Fe{sup II}/Fe{sup II}]-ADE was oxidized to [Fe{sup III}/Fe{sup III}]-ADE with ferricyanide with inactivation of the deaminase activity. Reducing [Fe{sup III}/Fe{sup III}]-ADE with dithionite restored the deaminase activity, and thus, the diferrous form of the enzyme is essential for catalytic activity. No evidence of spin coupling between metal ions was evident by electron paramagnetic resonance or Moessbauer spectroscopy. The three-dimensional structure of adenine deaminase from Agrobacterium tumefaciens (Atu4426) was determined by X-ray crystallography at 2.2 {angstrom} resolution, and adenine was modeled into the active site on the basis of homology to other members of the amidohydrolase superfamily. On the basis of the model of the adenine-ADE complex and subsequent mutagenesis experiments, the roles for each of the highly conserved residues were proposed. Solvent isotope effects, pH-rate profiles, and solvent viscosity were utilized to propose a chemical reaction
Three-dimensional potential flows from functions of a 3D complex variable
Kelly, Patrick; Panton, Ronald L.; Martin, E. D.
1990-01-01
Potential, or ideal, flow velocities can be found from the gradient of an harmonic function. An ordinary complex valued analytic function can be written as the sum of two real valued functions, both of which are harmonic. Thus, 2D complex valued functions serve as a source of functions that describe two-dimensional potential flows. However, this use of complex variables has been limited to two-dimensions. Recently, a new system of three-dimensional complex variables has been developed at the NASA Ames Research Center. As a step toward application of this theory to the analysis of 3D potential flow, several functions of a three-dimensional complex variable have been investigated. The results for two such functions, the 3D exponential and 3D logarithm, are presented in this paper. Potential flows found from these functions are investigated. Important characteristics of these flows fields are noted.
Three-dimensional shock formation in the spontaneous fast reconnection evolution
Kondoh, K.; Ugai, M.; Shimizu, T.
2011-12-01
Shock structure associated with magnetic reconnection is studied using three-dimensional magneto-hydro-dynamics simulations on the basis of the spontaneous fast reconnection model. In the two-dimensional reconnection, the angle between the slow shock pair (thickness of the plasma sheet) is smaller (thinner) in the region with higher reconnection rate. On the other hand, in the three-dimensional reconnection, the reconnection rate in the diffusion region is not uniform in the direction of sheet current, and the angle between the shock pair at the center of the diffusion region should be smallest. However, the profile of the angle in the direction of sheet current is not satisfied with this relationship. It is shown that this structure is caused by the inflow from the direction of the positive and negative sheet current and the inflow of the magnetic flux accompanied with it.
Yuan, Shuai; Liu, Mei-Jiao; Xie, Han-Yi; Xu, Meng-Zhen; Sun, Di
2012-03-01
A novel Cd(II) metal-organic framework, [Cd(C(3)H(2)O(4))(NH(3))](n), was synthesized by liquid diffusion conducted in the presence of ammonia. The Cd(II) atom has seven-coordinate O(6)N pentagonal-bipyramidal geometry. Six Cd(II) centers are joined by six malonate ligands to form an S(6)-symmetric [Cd(6)(malonate)(6)] metallomacrocycle, which is further extended through a side-on chelating malonate ligand to form a three-dimensional network. Topologically, each Cd(II) center is connected to four others to yield an infinite three-periodic four-coordinated SOD (sodalite) network with point symbol {4(2)·6(4)}. The overall network structure in the crystal is maintained and stabilized by the presence of N-H...O hydrogen bonds.
Abe, Makito; Umemura, Masayuki; Hasegawa, Kenji
2016-12-01
We explore the possibility of the formation of globular clusters (GCs) under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-mass (106-7 M⊙) gas clouds exposed to intense UV radiation can lead to the formation of compact star clusters like GCs if gas clouds contract with supersonic infall velocities. However, three-dimensional effects, such as the anisotropy of background radiation and the inhomogeneity in gas clouds, have not been studied so far. In this paper, we perform three-dimensional RHD simulations in a semicosmological context, and reconsider the formation of compact star clusters in strong UV radiation fields. As a result, we find that although anisotropic radiation fields bring an elongated shadow of neutral gas, almost spherical compact star clusters can be procreated from a `supersonic infall' cloud, since photodissociating radiation suppresses the formation of hydrogen molecules in the shadowed regions and the regions are compressed by UV heated ambient gas. The properties of resultant star clusters match those of GCs. On the other hand, in weak UV radiation fields, dark-matter-dominated star clusters with low stellar density form due to the self-shielding effect as well as the positive feedback by ionizing photons. Thus, we conclude that the `supersonic infall' under a strong UV background is a potential mechanism to form GCs.
Nonequilibrium Dynamical Phase Transition of a Three-Dimensional Kinetic Heisenberg Spin System
Institute of Scientific and Technical Information of China (English)
邵元智; 林光明; 蓝图; J.K.L Lai; C.H.Shek
2002-01-01
We systematically investigate the dynamical response of a three-dimensional kinetic isotropic Heisenberg spin system (ISS) to an external driving field by Monte Carlo numerical simulation. The dynamical response of the isotropic HSS differs obviously from those of the anisotropic Ising spin system in which no realstable ordered state and relevant dynamical phase transition were observed in the kinetic ISS. There is a threshold time after which the magnetization m(t) in the ISS driven by a symmetrical external field always tends asymptotically to a disorder state regardless of the initial state of the system. The threshold time depends on the reduced temperature T/TC of the investigated spin system, amplitude H0 and frequency of the external field, i.e. γ = C. ωα . H0-β. (T/TC)-γ.C is a constant equal to 0.0302 for a three-dimensional lattice and exponents а = 1.18 ± 0.01, β = 1.81 ± 0.01and γ = 1.68 ± 0.01.
Three-dimensional structure of ionospheric currents produced by field-aligned currents
Takeda, M.
1982-08-01
Ionospheric currents caused by field-aligned currents are calculated three-dimensionally under quiet conditions at the equinox, using a magnetic field line coordinate system and with the assumption of infinite parallel conductivity. Input field-aligned currents are assumed to be distributed only in the daytime and the whole system is assumed to be symmetric about the equator. Calculated currents are comparable with those of the ionospheric dynamo in higher latitudes, but much weaker in lower latitudes including the equatorial electrojet region. Hence, if the model is valid these currents may have a considerable effect on the day-to-day variation of Sq currents in higher latitudes, but little effect on those in lower latitudes such as the counter-electrojet.
Three-dimensional topological field theory and symplectic algebraic geometry I
Energy Technology Data Exchange (ETDEWEB)
Kapustin, Anton [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA (United States)], E-mail: kapustin@theory.caltech.edu; Rozansky, Lev [University of North Carolina (United States)], E-mail: rozansky@math.unc.edu; Saulina, Natalia [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA (United States)], E-mail: saulina@theory.caltech.edu
2009-08-01
We study boundary conditions and defects in a three-dimensional topological sigma-model with a complex symplectic target space X (the Rozansky-Witten model). We show that boundary conditions correspond to complex Lagrangian submanifolds in X equipped with complex fibrations. The set of boundary conditions has the structure of a 2-category; morphisms in this 2-category are interpreted physically as one-dimensional defect lines separating parts of the boundary with different boundary conditions. This 2-category is a categorification of the Z{sub 2}-graded derived category of X; it is also related to categories of matrix factorizations and a categorification of deformation quantization (quantization of symmetric monoidal categories). In Appendix B we describe a deformation of the B-model and the associated category of branes by forms of arbitrary even degree.
Three-dimensional quantum calculations on the ground and excited state vibrations of ethylene
Groenenboom, Gerrit Cornelis
Three dimensional potential energy surfaces of the ground and excited states of ethylene were calculated at the MRCEPA (Multi Reference Coupled Electronic Pair Approximation) level. The modes included are the torsion, the CC stretch, and the symmetric scissors. Full vibrational calculations were performed using the Lanczos/grid method. The avoided crossing between the V and the R state was dealt with in a diabetic model. The ground state results agree within 3 up to the highest vibrational level known experimentally. The origin and the maximum of the V back arrow N band are calculated at 5.68 and 7.82 eV, respectively, approximately 0.2 eV above the somewhat ambiguous experimental values. This work considerably diminishes the existing gap of approximately 0.5 eV between theory and experiment.
Visualizing Three-dimensional Volumetric Data with an Arbitrary Coordinate System
Taylor, R.
2017-02-01
Astronomical data does not always use Cartesian coordinates. Both all-sky observational data and simulations of rotationally symmetric systems, such as accretion and protoplanetary disks, may use spherical polar or other coordinate systems. Standard displays rely on Cartesian coordinates, but converting non-Cartesian data into Cartesian format causes distortion of the data and loss of detail. Here, I demonstrate a method using standard techniques from computer graphics that avoids these problems with three-dimensional data in arbitrary coordinate systems. The method adds minimum computational cost to the display process and is suitable for both realtime, interactive content, and producing fixed rendered images and videos. Proof-of-concept code is provided which works for data in spherical polar coordinates.
Three-Dimensional Waves in Tilt Thermal Boundary Layers
Institute of Scientific and Technical Information of China (English)
TAO Jian-Jun; YUAN Xiang-Jiang
2009-01-01
We numerically and theoretically study the stabilities of tilt thermal boundary layers immersed in stratified air. An interesting phenomenon is revealed: the stationary longitudinal-roll mode becomes unstable to some oscillating state even when the Grashof number is smaller than its corresponding critical value. By stability analysis, this phenomenon is explained in terms of a new three-dimensional wave mode. The effect of the tilt angle on the stability of the boundary flows is investigated. Since the new three-dimensional wave is found to be the most unstable mode when the title angle is between 30° and 64°, it is expected to play an important role in the transition to turbulence.
Three-dimensional P velocity structure in Beijing area
Institute of Scientific and Technical Information of China (English)
于湘伟; 陈运泰; 王培德
2003-01-01
A detail three-dimensional P wave velocity structure of Beijing, Tianjin and Tangshan area (BTT area) was determined by inverting local earthquake data. In total 16 048 P wave first arrival times from 16048 shallow and mid-depth crustal earthquakes, which occurred in and around the BTT area from 1992 to 1999 were used. The first arrival times are recorded by Northern China United Telemetry Seismic Network and Yanqing-Huailai Digital Seismic Network. Hypocentral parameters of 1 132 earthquakes with magnitude ML=1.7~6.2 and the three-dimensional P wave velocity structure were obtained simultaneously. The inversion result reveals the complicated lateral heterogeneity of P wave velocity structure around BTT area. The tomographic images obtained are also found to explain other seismological observations well.
Three-dimensional radiation transfer modeling in a dicotyledon leaf
Govaerts, Yves M.; Jacquemoud, Stéphane; Verstraete, Michel M.; Ustin, Susan L.
1996-11-01
The propagation of light in a typical dicotyledon leaf is investigated with a new Monte Carlo ray-tracing model. The three-dimensional internal cellular structure of the various leaf tissues, including the epidermis, the palisade parenchyma, and the spongy mesophyll, is explicitly described. Cells of different tissues are assigned appropriate morphologies and contain realistic amounts of water and chlorophyll. Each cell constituent is characterized by an index of refraction and an absorption coefficient. The objective of this study is to investigate how the internal three-dimensional structure of the tissues and the optical properties of cell constituents control the reflectance and transmittance of the leaf. Model results compare favorably with laboratory observations. The influence of the roughness of the epidermis on the reflection and absorption of light is investigated, and simulation results confirm that convex cells in the epidermis focus light on the palisade parenchyma and increase the absorption of radiation.
Three Dimensional Energy Transmitting Boundary in the Time Domain
Directory of Open Access Journals (Sweden)
Naohiro eNakamura
2015-11-01
Full Text Available Although the energy transmitting boundary is accurate and efficient for the FEM earthquake response analysis, it could be applied in the frequency domain only. In the previous papers, the author proposed an earthquake response analysis method using the time domain energy transmitting boundary for two dimensional problems. In this paper, this technique is expanded for three dimensional problems. The inner field is supposed to be a hexahedron shape and the approximate time domain boundary is explained, first. Next, two dimensional anti-plane time domain boundary is studied for a part of the approximate three dimensional boundary method. Then, accuracy and efficiency of the proposed method are confirmed by example problems.
Three-dimensional mapping of single-atom magnetic anisotropy.
Yan, Shichao; Choi, Deung-Jang; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Loth, Sebastian
2015-03-11
Magnetic anisotropy plays a key role in the magnetic stability and spin-related quantum phenomena of surface adatoms. It manifests as angular variations of the atom's magnetic properties. We measure the spin excitations of individual Fe atoms on a copper nitride surface with inelastic electron tunneling spectroscopy. Using a three-axis vector magnet we rotate the magnetic field and map out the resulting variations of the spin excitations. We quantitatively determine the three-dimensional distribution of the magnetic anisotropy of single Fe atoms by fitting the spin excitation spectra with a spin Hamiltonian. This experiment demonstrates the feasibility of fully mapping the vector magnetic properties of individual spins and characterizing complex three-dimensional magnetic systems.
Atomic force microscope study of three-dimensional nanostructure sidewalls
Energy Technology Data Exchange (ETDEWEB)
Hussain, Muhammad Mustafa [SEMATECH, 2706 Montopolis Drive, Austin, TX 78741 (United States); Gondran, Carolyn F H [Advanced Technology Development Facility, 2706 Montopolis Drive, Austin, TX 78741 (United States); Michelson, Diane K [International SEMATECH Manufacturing Initiative, 2706 Montopolis Drive, Austin, TX 78741 (United States)
2007-08-22
Next generation planar and non-planar complementary metal oxide semiconductor (CMOS) structures are three-dimensional nanostructures with multi-layer stacks that can contain films thinner than ten atomic layers. The high resolution of transmission electron microscopy (TEM) is typically chosen for studying properties of these stacks such as film thickness, interface and interfacial roughness. However, TEM sample preparation is time-consuming and destructive, and TEM analysis is expensive and can provide problematic results for surface and interface roughness. Therefore, in this paper, we present the use of direct measurements of sidewall surface structures by conventional atomic force microscopy (AFM) as an alternative or complementary method for studying multi-layer film stacks and as the preferred method for studying FinFET sidewall surface roughness. In addition to these semiconductor device applications, this AFM sidewall measurement technique could be used for other three-dimensional nanostructures.
Three-dimensional hybrid networks based on aspartic acid
Indian Academy of Sciences (India)
Anupama Ghosh; R A Sanguramath
2008-01-01
Three-dimensional achiral coordination polymers of the general formula M2(D, L-NHCH (COO)CH2COO)2.C4H4N2 where M = Ni and Co and pyrazine acts as the linker molecule have been prepared under hydrothermal conditions starting with [M(L-NHCH(COO)CH2COO).3H2O] possessing a helical chain structure. A three-dimensional hybrid compound of the formula Pb2.5[N{CH(COO)CH2COO}22H2O] has also been prepared hydrothermally starting with aspartic acid and Pb(NO3)2. In this lead compound, where a secondary amine formed by the dimerisation of aspartic acid acts as the ligand, there is two-dimensional inorganic connectivity and one-dimensional organic connectivity.
Artificial three-dimensional niches deconstruct pancreas development in vitro.
Greggio, Chiara; De Franceschi, Filippo; Figueiredo-Larsen, Manuel; Gobaa, Samy; Ranga, Adrian; Semb, Henrik; Lutolf, Matthias; Grapin-Botton, Anne
2013-11-01
In the context of a cellular therapy for diabetes, methods for pancreatic progenitor expansion and subsequent differentiation into insulin-producing beta cells would be extremely valuable. Here we establish three-dimensional culture conditions in Matrigel that enable the efficient expansion of dissociated mouse embryonic pancreatic progenitors. By manipulating the medium composition we generate either hollow spheres, which are mainly composed of pancreatic progenitors, or complex organoids that spontaneously undergo pancreatic morphogenesis and differentiation. The in vitro maintenance and expansion of pancreatic progenitors require active Notch and FGF signaling, thus recapitulating in vivo niche signaling interactions. Our experiments reveal new aspects of pancreas development, such as a community effect by which small groups of cells better maintain progenitor properties and expand more efficiently than isolated cells, as well as the requirement for three-dimensionality. Finally, growth conditions in chemically defined biomaterials pave the way for testing the biophysical and biochemical properties of the niche that sustains pancreatic progenitors.
Time multiplexed pinhole array based lensless three-dimensional imager
Schwarz, Ariel; Wang, Jingang; Shemer, Amir; Zalevsky, Zeev; Javidi, Bahram
2016-06-01
We present an overview of multi variable coded aperture (MVCA) for lensless three-dimensional integral imaging (3D II) systems. The new configuration is based on a time multiplexing method using a variable pinholes array design. The system provides higher resolution 3D images with improved light intensity and signal to noise ratio as compared to single pinhole system. The MVCA 3D II system configuration can be designed to achieve high light intensity for practical use as micro lenslets arrays. This new configuration preserves the advantages of pinhole optics while solving the resolution limitation problem and the long exposure time of such systems. The three dimensional images are obtained with improved resolution, signal to noise ratio and sensitivity efficiency. This integral imaging lensless system is characterized by large depth of focus, simplicity and low cost. In this paper we present numerical simulations as well as experimental results that validate the proposed lensless imaging configuration.
Electroencephalographic (EEG) control of three-dimensional movement
McFarland, Dennis J.; Sarnacki, William A.; Wolpaw, Jonathan R.
2010-06-01
Brain-computer interfaces (BCIs) can use brain signals from the scalp (EEG), the cortical surface (ECoG), or within the cortex to restore movement control to people who are paralyzed. Like muscle-based skills, BCIs' use requires activity-dependent adaptations in the brain that maintain stable relationships between the person's intent and the signals that convey it. This study shows that humans can learn over a series of training sessions to use EEG for three-dimensional control. The responsible EEG features are focused topographically on the scalp and spectrally in specific frequency bands. People acquire simultaneous control of three independent signals (one for each dimension) and reach targets in a virtual three-dimensional space. Such BCI control in humans has not been reported previously. The results suggest that with further development noninvasive EEG-based BCIs might control the complex movements of robotic arms or neuroprostheses.
Three-Dimensional All-Dielectric Photonic Topological Insulator
Slobozhanyuk, Alexey; Ni, Xiang; Smirnova, Daria; Kivshar, Yuri S; Khanikaev, Alexander B
2016-01-01
The discovery of two-dimensional topological photonic systems has transformed our views on electromagnetic propagation and scattering of classical waves, and a quest for similar states in three dimensions, known to exist in condensed matter systems, has been put forward. Here we demonstrate that symmetry protected three-dimensional topological states can be engineered in an all-dielectric platform with the electromagnetic duality between electric and magnetic fields ensured by the structure design. Magneto-electric coupling playing the role of a synthetic gauge field leads to a topological transition to an insulating regime with a complete three-dimensional photonic bandgap. An emergence of surface states with conical Dirac dispersion and spin-locking is unimpeded. Robust propagation of surface states along two-dimensional domain walls defined by the reversal of magneto-electric coupling is confirmed numerically by first principle studies. It is shown that the proposed system represents a table-top platform f...
Moyamoya disease: diagnosis with three-dimensional CT angiography
Energy Technology Data Exchange (ETDEWEB)
Tsuchiya, K. (Dept. of Radiology, National Defense Medical Coll., Saitama (Japan) Dept. of Radiology, Kyorin Univ. School of Medicine, Tokyo (Japan)); Makita, K. (Dept. of Radiology, National Defense Medical Coll., Saitama (Japan) Dept. of Radiology, Social Health Insurance Medical Center, Tokyo (Japan)); Furui, S. (Dept. of Radiology, National Defense Medical Coll., Saitama (Japan) Dept. of Diagnostic Radiology, Toranomon Kyosai Hospital, Tokyo (Japan))
1994-08-01
Our purpose was to assess the value of three-dimensional (3D) CT angiography in the diagnosis of moyamoya disease. We studied seven patients with moyamoya disease proved by conventional angiography. Three-dimensional (3D) CT angiography was performed using rapid sequence or helical (spiral) scanning in conjunction with a bolus injection of intravenous contrast medium. All seven patients could be diagnosed as having moyamoya disease on the basis of the following 3D CT angiographic findings: poor visualisation of the main trunks and/or major branches of anterior and middle cerebral arteries (7 patients); dilated leptomeningeal anastomotic channels from the posterior cerebral arteries (4); and demonstration of ''moyamoya vessels'' in the basal ganglia (2). Although conventional angiography remains the principal imaging technique for demonstrating anatomical changes in detail, less invasive 3D CT angiography provides a solid means of diagnosing moyamoya disease when it is suspected on CT, MRI, or clinical grounds. (orig.)
Three-Dimensional Modeling of Guide-Field Magnetic Reconnection
Hesse, Michael
2005-01-01
The dissipation mechanism of guide field magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we analyze three-dimensional PIC simulations of guide-field magnetic reconnection. Specific emphasis will be on the question whether thermal-inertia processes, mediated by the electron pressure tensor, remain a viable dissipation mechanism in fully three-dimensional systems.
Slightly Two or Three Dimensional Self-Similar Solutions
Sari, Re'em; Yalinewich, Almog; MacFadyen, Andrew
2011-01-01
Self similarity allows for analytic or semi-analytic solutions to many hydrodynamics problems. Most of these solutions are one dimensional. Using linear perturbation theory, expanded around such a one-dimensional solution, we find self-similar hydrodynamic solutions that are two- or three-dimensional. Since the deviation from a one-dimensional solution is small, we call these slightly two-dimensional and slightly three-dimensional self-similar solutions, respectively. As an example, we treat strong spherical explosions of the second type. A strong explosion propagates into an ideal gas with negligible temperature and density profile of the form rho(r,theta,phi)=r^{-omega}[1+sigma*F(theta,phi)], where omega>3 and sigma << 1. Analytical solutions are obtained by expanding the arbitrary function F(theta,phi) in spherical harmonics. We compare our results with two dimensional numerical simulations, and find good agreement.
Three-Dimensional Dynamical Instabilities in Galactic Ionization Fronts
Whalen, D J; Whalen, Daniel J.; Norman, Michael L.
2007-01-01
Ionization front instabilities have long been of interest for their suspected role in a variety of phenomena in the galaxy, from the formation of bright rims and 'elephant trunks' in nebulae to triggered star formation in molecular clouds. Numerical treatments of these instabilities have historically been limited in both dimensionality and input physics, leaving important questions about their true evolution unanswered. We present the first three-dimensional radiation hydrodynamical calculations of both R-type and D-type ionization front instabilities in galactic environments (i.e., solar metallicity gas). Consistent with linear stability analyses of planar D-type fronts, our models exhibit many short-wavelength perturbations growing at early times that later evolve into fewer large-wavelength structures. The simulations demonstrate that both self-consistent radiative transfer and three-dimensional flow introduce significant morphological differences to unstable modes when compared to earlier two-dimensional ...
Stability analysis of cracks propagating in three dimensional solids
Energy Technology Data Exchange (ETDEWEB)
Larralde, H.; Al-Falou, A.A.; Ball, R.C. [Cavendish Lab., Cambridge (United Kingdom)
1996-12-01
The authors present a theory for the morphology of the fracture surface left behind by slowly propagating cracks in linear, isotropic and homogeneous three dimensional solids. The results are based on first order perturbation theory of the equations of elasticity for cracks whose shape is slightly perturbed from planar. For cracks propagating under pure type 1 loading they find that all perturbation modes are linearly stable, from which they can predict the roughness of the fracture surface induced by fluctuations in the material. The authors compare their results with the classical results for cracks propagating in two dimensional systems, and discuss the effects in the three dimensional analysis which result from taking into account contributions from non-singular terms of the stress field, as well as the effects arising from finite speeds of crack propagation.
Magnetic field intensification by three-dimensional explosion process
Hotta, H; Yokoyama, T
2012-01-01
We investigate an intensification mechanism for the magnetic field near the base of the solar convection zone that does not rely on differential rotation. Such mechanism in addition to differential rotation has been suggested by studies of flux emergence, which typically require field strength in excess of those provided by differential rotation alone. We study here a process in which potential energy of the superadiabatically stratified convection zone is converted into magnetic energy. This mechanism, know as explosion of magnetic flux tubes, has been previously studied in the thin flux tube approximation as well as two-dimensional MHD simulations, we expand the investigation to three-dimensional MHD simulations. Our main result is that enough intensification can be achieved in a three-dimensional magnetic flux sheet as long as the spatial scale of the imposed perturbation normal to the magnetic field is sufficiently large. When this spatial scale is small, the flux sheet tends to rise toward the surface, r...
Canonical and symplectic analysis for three dimensional gravity without dynamics
Energy Technology Data Exchange (ETDEWEB)
Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48 72570, Puebla, Pue. (Mexico); Osmart Ochoa-Gutiérrez, H. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apartado postal 1152, 72001 Puebla, Pue. (Mexico)
2017-03-15
In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiw constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.
Three-dimensional theory for light-matter interaction
DEFF Research Database (Denmark)
Sørensen, Martin Westring; Sørensen, Anders Søndberg
2008-01-01
We present a full quantum mechanical three dimensional theory describing an electromagnetic field interacting with an ensemble of identical atoms. The theory is constructed such that it describes recent experiments on light-matter quantum interfaces, where the quantum fluctuations of light...... to a dressed state picture, where the light modes are solutions to the diffraction problem, and develop a perturbative expansion in the fluctuations. The fluctuations are due to quantum fluctuations as well as the random positions of the atoms. In this perturbative expansion we show how the quantum...... fluctuations are mapped between atoms and light while the random positioning of the atoms give rise to decay due to spontaneous emission. Furthermore we identify limits, where the full three dimensional theory reduce to the one dimensional theory typically used to describe the interaction....
Three Dimensional Iterative Reconstruction Techniques in Positron Tomography.
Sloka, Scott
The acquisition of positron tomographic data in three dimensions is an improvement over the two dimensional acquisition of data because the greater the number of measurements taken of a stochastic process, the more accurately determined the desired parameter may be. This research pursues the goal of three dimensional image reconstruction in Positron Tomography using an iterative approach. This thesis has followed a systematic approach to the exploration of a system for three dimensional iterative reconstruction. System design parameters were discussed such as the advantages and disadvantages of iterative vs analytic methods, the implementation of two, three dimensional iterative algorithms, the selection of a ray passing method, and the choice of an analytic method for comparison to the iterative methods. Several qualitative and quantitative tests were used/developed and performed to analyse and compare the results. Three dimensional reconstruction in Positron Tomography using two iterative techniques (ART and ML-EM) was demonstrated. The ML-EM algorithm was adapted to satisfy the objective of equalizing the estimates with the measurements via division of the sampling density. A new multi-objective function methodology was developed for two dimensions and its extension to three dimensions discussed. A smoothly-varying Gaussian phantom was created for comparing artifacts from different ray passing methods. The analysis of voxel trends over many iterations was used. The use of the output from a two dimensional filtered backprojection algorithm as the seed for three dimensional algorithms to accelerate the reconstruction the was explored. The importance of the selection of a good ray ordering in ART and its effects on the total squared error were explored. For the phantoms studied in this thesis, the ML -EM algorithm tended to perform better under most conditions. This algorithm is slower than ART to achieve both a low total squared error and good contrast, but the
Influence of stable stratification on three-dimensional isotropic turbulence
Metais, O.
The influence of a stable stratification on three-dimensional homogeneous turbulence is investigated by performing large eddy simulations with the subgrid scales procedure developed by Chollet and Lesieur for isotropic turbulence. Computational initial conditions close to those of the experiments performed by Itsweire, Helland and Van Atta allow the comparison of the experimental and numerical evolutions of density-stratified turbulent flows. Theoretical works by Riley, Metcalfe and Weisman and by Lilly suggest that low Froude number stably-stratified turbulence may be a nearly noninteracting superposition of wave and quasi-horizontal turbulent vortex motions. For our computations the stably-stratified turbulence seems to be a decaying three-dimensional turbulence pulsed by internal gravity waves. However some tendencies towards two-dimensional turbulence are observed.
Three-dimensional metamaterials fabricated using Proton Beam Writing
Energy Technology Data Exchange (ETDEWEB)
Bettiol, A.A., E-mail: a.bettiol@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Turaga, S.P.; Yan, Y.; Vanga, S.K. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Dr. 3, Singapore 117542 (Singapore); Chiam, S.Y. [NUS High School for Maths and Science, 20 Clementi Avenue 1, Singapore 129957 (Singapore)
2013-07-01
Proton Beam Writing (PBW) is a direct write lithographic technique that has recently been applied to the fabrication of three dimensional metamaterials. In this work, we show that the unique capabilities of PBW, namely the ability to fabricate arrays of high resolution, high aspect ratio microstructures in polymer or replicated into metal, is well suited to metamaterials research. We have also developed a novel method for selectively electroless plating silver directly onto polymer structures that were fabricated using PBW. This method opens up new avenues for utilizing PBW for making metamaterials and other sub-wavelength metallic structures. Several potential applications of three dimensional metamaterials fabricated using PBW are discussed, including sensing and negative refractive index materials.
Single florescent nanodiamond in a three dimensional ABEL trap
Kayci, Metin; Radenovic, Aleksandra
2015-11-01
Three dimensional single particle trapping and manipulation is an outstanding challenge in various fields ranging from basic physics to life sciences. By monitoring the response of a trapped particle to a designed environment one can extract its characteristics. In addition, quantum dynamics of a spatially scanned well-known particle can provide environmental information. Precise tracking and positioning of such a particle in aqueous environment is crucial task for achieving nano-scale resolution. Here we experimentally demonstrate three dimensional ABEL trap operating at high frequency by employing a hybrid approach in particle tracking. The particle location in the transverse plane is detected via a scanning laser beam while the axial position is determined by defocused imaging. The scanning of the trapped particle is accomplished through a nano positioning stage integrated to the trap platform.
Three dimensional calculation of flux of low energy atmospheric neutrinos
Lee, H.; Bludman, S. A.
1985-01-01
Results of three-dimensional Monte Carlo calculation of low energy flux of atmospheric neutrinos are presented and compared with earlier one-dimensional calculations 1,2 valid at higher neutrino energies. These low energy neutrinos are the atmospheric background in searching for neutrinos from astrophysical sources. Primary cosmic rays produce the neutrino flux peaking at near E sub=40 MeV and neutrino intensity peaking near E sub v=100 MeV. Because such neutrinos typically deviate by 20 approximately 30 from the primary cosmic ray direction, three-dimensional effects are important for the search of atmospheric neutrinos. Nevertheless, the background of these atmospheric neutrinos is negligible for the detection of solar and supernova neutrinos.
Three Dimensional Numerical Relativity with a Hyperbolic Formulation
Bona, C; Seidel, E; Walker, P; Bona, Carles; Masso, Joan; Seidel, Edward; Walker, Paul
1998-01-01
We discuss a successful three-dimensional cartesian implementation of the Bona-Massó hyperbolic formulation of the 3+1 Einstein evolution equations in numerical relativity. The numerical code, which we call ``Cactus,'' provides a general framework for 3D numerical relativity, and can include various formulations of the evolution equations, initial data sets, and analysis modules. We show important code tests, including dynamically sliced flat space, wave spacetimes, and black hole spacetimes. We discuss the numerical convergence of each spacetime, and also compare results with previously tested codes based on other formalisms, including the traditional ADM formalism. This is the first time that a hyperbolic reformulation of Einstein's equations has been shown appropriate for three-dimensional numerical relativity in a wide variety of spacetimes.
Three-dimensional natural convection in a narrow spherical shell
Liu, Ming; Egbers, Christoph
The convective motions in a shallow fluid layer between two concentric spheres in the presence of a constant axial force field have been studied numerically. The aspect ratio of the fluid layer to inner radius is beta =0.08, the Prandtl number Pra =37.5. A three-dimensional time-dependent numerical code is used to solve the governing equations in primitive variables. Convection in the sphe rical shell has then a highly three-dimensional nature. Characteristic flow patterns with a large number of banana-type cells, oriented in north-south direction and aligned in the azimuthal direction, are formed on the northern hemisphere, which grow gradually into the equatorial region accompanied by the generation of new cells as the Rayleigh number is increased. Various characteristics of these flows as well as their transient evolution are investigated for Rayleigh numbers up to 20 000.
Three-Dimensional Reconstruction of Erythrocyte in the Capillary
Fan, Yifang; Li, Zhiyu; Lin, Wentao; Wei, Yuan; Zhong, Xing; Newman, Tony; Lv, Changsheng; Fan, Yuzhou
2013-01-01
The dynamic analysis of erythrocyte deformability is used as an important means for early diagnosis of blood diseases and blood rheology. Yet no effective method is available in terms of three-dimensional reconstruction of erythrocytes in a capillary. In this study, ultrathin serial sections of skeletal muscle tissue are obtained from the ultramicrotome, the tomographic images of an erythrocyte in a capillary are captured by the transmission electron microscope, and then a method to position and restore is devised to demonstrate the physiological relationship between two adjacent tomographic images of an erythrocyte. Both the modeling and the physical verification reveal that this method is effective, which means that it can be used to make three-dimensional reconstruction of an erythrocyte in a capillary. An example of reconstructed deformation of erythrocyte based on the serial ultrathin sections is shown at the end of this paper.
Three-dimensional potential energy surface of Ar–CO
Energy Technology Data Exchange (ETDEWEB)
Sumiyoshi, Yoshihiro, E-mail: y-sumiyoshi@gunma-u.ac.jp [Division of Pure and Applied Science, Graduate School of Science and Technology, Gunma University, 4-2 Aramaki, Maebashi, Gunma 371-8510 (Japan); Endo, Yasuki [Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902 (Japan)
2015-01-14
A three-dimensional intermolecular potential energy surface of the Ar–CO complex has been determined by fitting most of the previously reported spectroscopic data, where observed transition frequencies by microwave, millimeter-wave, submillimeter-wave, and infrared spectroscopy were reproduced simultaneously within their experimental accuracies. A free rotor model Hamiltonian considering all the freedom of motions for an atom-diatom system was applied to calculate vibration-rotation energies. A three-dimensional potential energy surface obtained by ab initio calculations at the CCSD(T)-F12b/aug-cc-pV5Z level of theory was parameterized by a model function consisting of 46 parameters. They were used as initial values for the least-squares analysis of the experimental data. A total of 20 parameters were optimized to reproduce all the spectroscopic data.
Relaxation techniques for three-dimensional transonic flow about wings.
Bailey, F. R.; Steger, J. L.
1972-01-01
A relaxation procedure has been developed to treat the three-dimensional, transonic small perturbation equations about finite lifting wings. A combination of two schemes is employed. For flow forward of the wing trailing edge the equations are written in terms of a velocity potential in order to minimize computer algebra and storage. For the remaining flow field the equations are written in terms of the velocity components in order to simplify the enforcement of the Kutta condition. Difference equations and relaxation procedures are described for both schemes. The computational method automatically captures the imbedded shock wave in the three-dimensional flow field. Computed results are given and compared to experiment and other inviscid methods.
All-optical three-dimensional electron pulse compression
Wong, Liang Jie; Rohwer, Timm; Gedik, Nuh; Johnson, Steven G
2014-01-01
We propose an all-optical, three-dimensional electron pulse compression scheme in which Hermite-Gaussian optical modes are used to fashion a three-dimensional optical trap in the electron pulse's rest frame. We show that the correct choices of optical incidence angles are necessary for optimal compression. We obtain analytical expressions for the net impulse imparted by Hermite-Gaussian free-space modes of arbitrary order. Although we focus on electrons, our theory applies to any charged particle and any particle with non-zero polarizability in the Rayleigh regime. We verify our theory numerically using exact solutions to Maxwell's equations for first-order Hermite-Gaussian beams, demonstrating single-electron pulse compression factors of $>10^{2}$ in both longitudinal and transverse dimensions with experimentally realizable optical pulses. The proposed scheme is useful in ultrafast electron imaging for both single- and multi-electron pulse compression, and as a means of circumventing temporal distortions in ...
Absence of bilinear condensate in three-dimensional QED
Karthik, Nikhil
2016-01-01
There are plausibility arguments that QED in three dimensions has a critical number of flavors of massless two-component fermions, below which scale invariance is broken by the presence of bilinear condensate. We present numerical evidences from our lattice simulations using dynamical overlap as well as Wilson-Dirac fermions for the absence of bilinear condensate for any even number of flavors of two-component fermions. Instead, we find evidences for the scale-invariant nature of three-dimensional QED.
APPLICATIONS OF FRACTIONAL EXTERIOR DIFFERENTIAL IN THREE-DIMENSIONAL SPACE
Institute of Scientific and Technical Information of China (English)
陈勇; 闫振亚; 张鸿庆
2003-01-01
A brief survey of fractional calculus and fractional differential forms was firstly given. The fractional exterior transition to curvilinear coordinate at the origin were discussed and the two coordinate transformations for the fractional differentials for three-dimensional Cartesian coordinates to spherical and cylindrical coordinates are obtained, respectively. In particular, for v = m = 1 , the usual exterior transformations, between the spherical coordinate and Cartesian coordinate, as well as the cylindrical coordinate and Cartesian coordinate, are found respectively, from fractional exterior transformation.
MRFD Method for Scattering From Three Dimensional Dielectric Bodies
Directory of Open Access Journals (Sweden)
A. F. Yagli
2011-09-01
Full Text Available A three-dimensional multiresolution frequency domain (MRFD method is established to compute bistatic radar cross sections of arbitrarily shaped dielectric objects. The proposed formulation is successfully verified by computing the bistatic radar cross sections of a dielectric sphere and a dielectric cube. Comparing the results to those obtained from the finite difference frequency domain (FDFD method simulations and analytic calculations, we demonstrated the computational time and memory advantages of MRFD method.
Three-dimensional conceptual model for service-oriented simulation
Institute of Scientific and Technical Information of China (English)
Wen-guang WANG; Wei-ping WANG; Justyna ZANDER; Yi-fan ZHU
2009-01-01
In this letter, we propose a novel three-dimensional conceptual model for an emerging service-oriented simulation paradigm. The model can be used as a guideline or an analytic means to find the potential and possible future directions of the current simulation frameworks, In particular, the model inspects the crossover between the disciplines of modeling and simulation,service-orientation, and software/systems engineering. Finally, two specific simulation frameworks are studied as examples.
Three-dimensional vortex structures under breaking waves
WATANABE Yasunori; Saeki, Hiroshi; Hosking, Roger J.
2005-01-01
The large-scale vortex structures under spilling and plunging breakers are investigated, using a fully three-dimensional large-eddy simulation (LES). When an overturning jet projecting from the crest in a breaking wave rebounds from the water surface ahead, the vorticity becomes unstable in a saddle region of strain between the rebounding jet and a primary spanwise vortex, resulting in spanwise undulations of the vorticity. The undulations are amplified on a braid in this saddle region, leadi...
Probability current tornado loops in three-dimensional scattering
Exner, P; Exner, Pavel; Seba, Petr
1998-01-01
We consider scattering of a three-dimensional particle on a finite family of delta potentials. For some parameter values the scattering wavenctions exhibit nodal lines in the form of closed loops, which may touch but do not entangle. The corresponding probability current forms vortical singularities around these lines; if the scattered particle is charged, this gives rise to magnetic flux loops. The conclusions extend to scattering on hard obstacles or smooth potentials.
Environmental, Transient, Three-Dimensional, Hydrothermal, Mass Transport Code - FLESCOT
Energy Technology Data Exchange (ETDEWEB)
Onishi, Yasuo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bao, Jie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glass, Kevin A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Eyler, L. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Okumura, Masahiko [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-03-28
The purpose of the project was to modify and apply the transient, three-dimensional FLESCOT code to be able to effectively simulate cesium behavior in Fukushima lakes/dam reservoirs, river mouths, and coastal areas. The ultimate objective of the FLESCOT simulation is to predict future changes of cesium accumulation in Fukushima area reservoirs and costal water. These evaluation results will assist ongoing and future environmental remediation activities and policies in a systematic and comprehensive manner.
Complete wetting in the three-dimensional transverse Ising model
Harris, A B; Micheletti, C.; Yeomans, J. M.
1996-01-01
We consider a three-dimensional Ising model in a transverse magnetic field, $h$ and a bulk field $H$. An interface is introduced by an appropriate choice of boundary conditions. At the point $(H=0,h=0)$ spin configurations corresponding to different positions of the interface are degenerate. By studying the phase diagram near this multiphase point using quantum-mechanical perturbation theory we show that that quantum fluctuations, controlled by $h$, split the multiphase degeneracy giving rise...
A new three-dimensional general-relativistic hydrodynamics code
Baiotti, L.; Hawke, I.; Montero, P. J.; Rezzolla, L.
We present a new three-dimensional general relativistic hydrodynamics code, the Whisky code. This code incorporates the expertise developed over the past years in the numerical solution of Einstein equations and of the hydrodynamics equations in a curved spacetime, and is the result of a collaboration of several European Institutes. We here discuss the ability of the code to carry out long-term accurate evolutions of the linear and nonlinear dynamics of isolated relativistic stars.
A new three-dimensional general-relativistic hydrodynamics code
Baiotti, Luca; Montero, Pedro J; Rezzolla, Luciano
2010-01-01
We present a new three-dimensional general relativistic hydrodynamics code, the Whisky code. This code incorporates the expertise developed over the past years in the numerical solution of Einstein equations and of the hydrodynamics equations in a curved spacetime, and is the result of a collaboration of several European Institutes. We here discuss the ability of the code to carry out long-term accurate evolutions of the linear and nonlinear dynamics of isolated relativistic stars.
Reentrance and ultrametricity in three-dimensional Ising spin glasses
Katzgraber, Helmut G.; Thomas, Creighton K.; Hartmann, Alexander K.
2012-02-01
We study the three-dimensional Edwards-Anderson Ising spin glass with bimodal disorder with a fraction of 22.8% antiferromagnetic bonds. Parallel tempering Monte Carlo simulations down to very low temperatures show that for this fraction of antiferromagnetic bonds the phase diagram of the system is reentrant, in agreement with previous results. Furthemore, using a clustering analysis, we analyze the ultrametric properties of phase space for this model.
Strategy for automatic and complete three-dimensional optical digitization
2012-01-01
This Letter proposes a new strategy of a three-dimensional (3D) scanning pipeline to achieve complete 3D digitization of complex objects in a real scene. This strategy consists of a one-dimensional array of optical 3D sensors combined with an automatically controlled turntable. An efficient calibration method for the sensor array is presented to guarantee the accuracy of the 3D measurement. Furthermore, an automatic registration technique is also proposed for aligning multiple range images ta...
Entropy of three-dimensional BTZ black holes
Institute of Scientific and Technical Information of China (English)
GAO; Changjun; SHEN; Yougen
2004-01-01
The entropies of scalar field and neutrino field are calculated in the back ground of three-dimensional BTZ black hole.Considering statistical physics,we propose not to consider the superraradiant modes for bosons(Fermion fields do not displaysup perradiance).In fact,the nonsuperradiant modes do contribute exactly the area entropy for both bosons and fermions.The result shows that the neutrino field entropy is 3/2 times the scalar one.
Three-Dimensional Simulations of Deep-Water Breaking Waves
Brucker, Kyle A; Dommermuth, Douglas G; Adams, Paul
2014-01-01
The formulation of a canonical deep-water breaking wave problem is introduced, and the results of a set of three-dimensional numerical simulations for deep-water breaking waves are presented. In this paper fully nonlinear progressive waves are generated by applying a normal stress to the free surface. Precise control of the forcing allows for a systematic study of four types of deep-water breaking waves, characterized herein as weak plunging, plunging, strong plunging, and very strong plunging.
Development of three-dimensional memory (3D-M)
Yu, Hong-Yu; Shen, Chen; Jiang, Lingli; Dong, Bin; Zhang, Guobiao
2016-10-01
Since the invention of 3-D ROM in 1996, three-dimensional memory (3D-M) has been under development for nearly two decades. In this presentation, we'll review the 3D-M history and compare different 3D-Ms (including 3D-OTP from Matrix Semiconductor, 3D-NAND from Samsung and 3D-XPoint from Intel/Micron).
Three dimensional momentum distributions of recoil-ions and photoelectrons
Energy Technology Data Exchange (ETDEWEB)
Ullrich, J.; Schmitt, W. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Doerner, R.; Jagutzki, O.; Mergel, V.; Moshammer, R.; Schmidt-Boecking, H.; Spielberger, L.; Unverzagt, M.; Vogt, T. [Frankfurt Univ. (Germany). Inst. fuer Kernphysik
1996-10-01
A novel high-resolution technique, the Multi-Electron-Recoil-Ion Momentum Spectroscopy, allows to determine in coincidence the three dimensional momentum vectors of the ion and up to three electrons created in any photo ionization event. At a solid angle of 4 {pi} the energy-resolutions for ions and electrons are {+-}2{mu} eV and {+-}10 meV, respectively. (orig.)
Three-dimensional echocardiographic assessment of atrial septal defects
Directory of Open Access Journals (Sweden)
Charles German
2015-01-01
Full Text Available Echocardiography provides a useful tool in the diagnosis of many congenital heart diseases, including atrial septal defects, and aids in further delineating treatment options. Although two-dimensional echocardiography has been the standard of care in this regard, technological advancements have made three-dimensional echocardiography possible, and the images obtained in this new imaging modality are able to accurately portray the morphology, location, dimensions, and dynamic changes of defects and many other heart structures during the cardiac cycle.
Three-dimensional surface reconstruction from multistatic SAR images.
Rigling, Brian D; Moses, Randolph L
2005-08-01
This paper discusses reconstruction of three-dimensional surfaces from multiple bistatic synthetic aperture radar (SAR) images. Techniques for surface reconstruction from multiple monostatic SAR images already exist, including interferometric processing and stereo SAR. We generalize these methods to obtain algorithms for bistatic interferometric SAR and bistatic stereo SAR. We also propose a framework for predicting the performance of our multistatic stereo SAR algorithm, and, from this framework, we suggest a metric for use in planning strategic deployment of multistatic assets.
Sectional and Ricci Curvature for Three-Dimensional Lie Groups
Directory of Open Access Journals (Sweden)
Gerard Thompson
2016-01-01
Full Text Available Formulas for the Riemann and Ricci curvature tensors of an invariant metric on a Lie group are determined. The results are applied to a systematic study of the curvature properties of invariant metrics on three-dimensional Lie groups. In each case the metric is reduced by using the automorphism group of the associated Lie algebra. In particular, the maximum and minimum values of the sectional curvature function are determined.
THE SYSTEM SIMULATION OF THREE-DIMENSIONAL RADAR
Institute of Scientific and Technical Information of China (English)
Zhang Wei; Xiang Jingcheng; Wang Xuegang
2004-01-01
To provide a test platform for Electronic Warfare (EW) system, it is needed to simulate the radar received Intermediate Frequency (IF) signals and radar system functions.This letter gives a description of a radar system simulation software developed for frequencyphase scanning three-dimensional (3-D) radar. Experimental results prove that the software could be used for system evaluation and for training purposes as an attractive alternative to real EW system.
IF signals simulation of three-dimensional radar
Institute of Scientific and Technical Information of China (English)
Zhang Wei; Wang Xuegang; Zhu Zhaoda
2008-01-01
Based on the analysis of the principles of frequency-phase scanning 3-D (three-dimensional) radar and the scattering mechanism of 3-D radar, the target and clutter IF (intermediate frequency) signals model of frequencyphase scanning 3-D radar is presented. The IF signals model of different channels of 3-D radar is presented in one simple formula in which complex waveform effects are considered. The simulation results obtained during tests are also provided in the end.
Electric transport in three-dimensional Skyrmion/monopole crystal
Zhang, Xiao-Xiao; Mishchenko, Andrey S.; De Filippis, Giulio; Nagaosa, Naoto
2016-01-01
We study theoretically the transport properties of a three-dimensional spin texture made from three orthogonal helices, which is essentially a lattice of monopole-antimonopole pairs connected by Skyrmion strings. This spin structure is proposed for MnGe based on the neutron scattering experiment as well as the Lorentz transmission electron microscopy observation. Equipped with a sophisticated spectral analysis method, we adopt finite temperature Green's function technique to calculate the lon...
Three-dimensional nonparaxial beams in parabolic rotational coordinates.
Deng, Dongmei; Gao, Yuanmei; Zhao, Juanying; Zhang, Peng; Chen, Zhigang
2013-10-01
We introduce a class of three-dimensional nonparaxial optical beams found in a parabolic rotational coordinate system. These beams, representing exact solutions of the nonparaxial Helmholtz equation, have inherent parabolic symmetries. Assisted with a computer-generated holography, we experimentally demonstrate the generation of different modes of these beams. The observed transverse beam patterns along the propagation direction agree well with those from our theoretical predication.
A practical three-dimensional dosimetry system for radiation therapy
Guo, Pengyi; Adamovics, John; Oldham, Mark
2006-01-01
There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE™) and a commercial optical computed tomography (CT) scanning system (OCTOPUS™). PRESAGE™ is a transparent material with com...
Three-dimensional conceptual model for service-oriented simulation
Wang, Wenguang; Zander, Justyna; Zhu, Yifan; 10.1631/jzus.A0920258
2009-01-01
In this letter, we propose a novel three-dimensional conceptual model for an emerging service-oriented simulation paradigm. The model can be used as a guideline or an analytic means to find the potential and possible future directions of the current simulation frameworks. In particular, the model inspects the crossover between the disciplines of modeling and simulation, service-orientation, and software/systems engineering. Finally, two specific simulation frameworks are studied as examples.
On a three-dimensional implementation of the baker's transformation
Carrière, Philippe
2007-11-01
A three-dimensional, steady flow configuration intended to mimic the baker's map is studied by means of numerical simulation. The Poincaré sections computed from a finite element solution of the velocity field show that the behavior is dominated by chaotic advection. The value obtained for the Lyapunov exponent is very close to the theoretical value of ln2 predicted by the baker's map.
Powder blasting for three-dimensional microstructuring of glass
Belloy, E.; Sayah, A.; M.A.M. Gijs
2000-01-01
We report on powder blasting as a promising technology for the three-dimensional structuring of brittle materials. We investigate the basic parameters of this process, which is based on the erosion of a masked substrate by a high-velocity eroding powder beam, using glass substrates. We study the effect of various parameters on the etching rate, like the powder velocity and the mask feature size, which induces geometrical effects to the erosion process. We introduce oblique powder blasting and...
Three-dimensional magnetic recording using ferromagnetic resonance
Suto, Hirofumi; Kudo, Kiwamu; Nagasawa, Tazumi; Kanao, Taro; Mizushima, Koichi; Sato, Rie
2016-07-01
To meet the ever-increasing demand for data storage, future magnetic recording devices will need to be made three-dimensional by implementing multilayer recording. In this article, we present methods of detecting and manipulating the magnetization direction of a specific layer selectively in a vertically stacked multilayer magnetic system, which enable layer-selective read and write operations in three-dimensional magnetic recording devices. The principle behind the methods is ferromagnetic resonance excitation in a microwave magnetic field. By designing each magnetic recording layer to have a different ferromagnetic resonance frequency, magnetization excitation can be induced individually in each layer by tuning the frequency of an applied microwave magnetic field, and this selective magnetization excitation can be utilized for the layer-selective operations. Regarding media for three-dimensional recording, when layers of a perpendicular magnetic material are vertically stacked, dipolar interaction between multiple recording layers arises and is expected to cause problems, such as degradation of thermal stability and switching field distribution. To solve these problems, we propose the use of an antiferromagnetically coupled structure consisting of hard and soft magnetic layers. Because the stray fields from these two layers cancel each other, antiferromagnetically coupled media can reduce the dipolar interaction.
Three dimensional self-assembly at the nanoscale
Gracias, D. H.
2013-05-01
At the nanoscale, three dimensional manipulation and assembly becomes extremely challenging and also cost prohibitive. Self-assembly provides an attractive and possibly the only highly parallel methodology to structure truly three dimensional patterned materials and devices at this size scale for applications in electronics, optics, robotics and medicine. This is a concise review along with a perspective of an important and exciting field in nanotechnology and is related to a Nanoengineering Pioneer Award that I received at this SPIE symposium for my contributions to the 3D selfassembly of nanostructures. I detail a historical account of 3D self-assembly and outline important developments in this area which is put into context with the larger research areas of 3D nanofabrication, assembly and nanomanufacturing. A focus in this review is on our work as it relates to the self-assembly with lithographically patterned units; this approach provides a means for heterogeneous integration of periodic, curved and angled nanostructures with precisely defined three dimensional patterns.
Interaction of two three-dimensional explosion bubbles
Institute of Scientific and Technical Information of China (English)
YAO Xiong-liang; ZHANG A-man; LIU Yu-chen
2007-01-01
The interaction of two underwater explosion bubbles was mathematically analyzed in this paper. Based on the assumption of potential flow, high-order curved elements were used to discretize the boundary integral equation and solve it. Assuming that gas inside the bubble follows the isentropic rule,the Euler-Lagrange method was used to trace the evolution of the bubble, and when calculating the singular integral, the singularity of the double-layer singular integral was eliminated by reconstructing a principal-value integral of double-layer potential so that a more precise result could be obtained. Elastic mesh technique (EMT) was also used when tracing the evolution of the bubble interface, and numerical smoothing wasn't needed. A comparison of calculations using this three-dimensional model with results of the Reyleigh-Plesset bubble model shows that the three-dimensional model and calculation method in this paper is practical. This three-dimensional model was applied to simulate the interaction of two bubbles under the action of gravity, and the dynamic characteristics of two bubbles near the surface was also analyzed. Bubbles influenced by surface effects and gravity present severe non-linearity. This paper provides a reference for research into the dynamics of multi-bubbles.
Three-dimensional illumination system for tomographic particle image velocimetry
Zhang, Fen; Song, Yang; Qu, Xiangju; Ji, Yunjing; Li, Zhenhua; He, Anzhi
2016-10-01
Tomographic particle image velocimetry (Tomo-PIV) is a new developed technique for three-component threedimensional (3C-3D) velocity measurement of the flow field based on the optical tomographic reconstruction method, and has been received extensive attention of the related industries. Three-dimensional light source illuminating the tracer particles of flow field is a critical application for tomographic particle image velocimetry. Three-dimensional light source not only determines the size of measurement volume and the range of the scope of application, but also has a great influence on the image quality. In this work, we propose a rectangular light amplification system using powell lens, prisms and two reflectors. The system can be optimized if given the system parameters based on the theoretical model. The rectangular light amplification system will be verified experimentally by measuring the cross section size of the illuminated light source. A 60mm×25mm cross section of rectangular three-dimensional light source can be obtained by using the rectangular light amplification system. The experiments demonstrate the the feasibility the proposed system.
Three-dimensional robust diving guidance for hypersonic vehicle
Zhu, Jianwen; Liu, Luhua; Tang, Guojian; Bao, Weimin
2016-01-01
A novel three-dimensional robust guidance law based on H∞ filter and H∞ control is proposed to meet the constraints of the impact accuracy and the flight direction under process disturbances for the dive phase of hypersonic vehicle. Complete three-dimensional coupling relative motion equations are established and decoupled into linear ones by feedback linearization to simplify the design process of the further guidance law. Based on the linearized equations, H∞ filter is introduced to eliminate the measurement noises of line-of-sight angles and estimate the angular rates. Furthermore, H∞ robust control is well employed to design guidance law, and the filtered information is used to generate guidance commands to meet the guidance goal accurately and robustly. The simulation results of CAV-H indicate that the proposed three-dimensional equations can describe the coupling character more clearly than the traditional decoupling guidance, and the proposed guidance strategy can guide the vehicle to satisfy different multiple constraints with high accuracy and robustness.
Formation of three-dimensional Parylene C structures via thermoforming
Kim, B. J.; Chen, B.; Gupta, M.; Meng, E.
2014-06-01
The thermoplastic nature of Parylene C is leveraged to enable the formation of three-dimensional structures using a thermal forming (thermoforming) technique. Thermoforming involves the heating of Parylene films above its glass transition temperature while they are physically confined in the final desired conformation. Micro and macro scale three-dimensional structures composed of Parylene thin films were developed using the thermoforming process, and the resulting chemical and mechanical changes to the films were characterized. No large changes to the surface and bulk chemistries of the polymer were observed following the thermoforming process conducted in vacuum. Heat treated structures exhibited increased stiffness by a maximum of 37% depending on the treatment temperature, due to an increase in crystallinity of the Parylene polymer. This study revealed important property changes resulting from the process, namely (1) the development of high strains in thermoformed areas of small radii of curvature (30-90 µm) and (2) ˜1.5% bulk material shrinkage in thermoformed multilayered Parylene-Parylene and Parylene-metal-Parylene films. Thermoforming is a simple process whereby three-dimensional structures can be achieved from Parylene C-based thin film structures with tunable mechanical properties as a function of treatment temperature.
Springback prediction of three-dimensional variable curvature tube bending
Directory of Open Access Journals (Sweden)
Shen Zhang
2016-03-01
Full Text Available The springback phenomenon of tube bending occurs consequentially after unloading, which will affect the manufacturing accuracy and processing efficiency of the tubular products. In this article, the bending and springback processes of minor-diameter thick-walled tube are simulated by ABAQUS to reveal the springback laws. The springback prediction of three-dimensional variable curvature bent tube is projected on each discrete osculating and rectifying plane, and then the three-dimensional problem can be transformed into two dimensions. The mathematic relationship of the radius before and after springback in the plane is built by approximate pure bending springback experiments. The springback on such planes is transformed into three dimensions. The tube axes are merged by first-order geometric (G1 continuity and then compensated with the modified function according to the axis complexity, so as to establish mathematic analytic model for springback prediction of three-dimensional variable curvature tube bending. Finally, the feasibility, reliability, and accuracy of the model are verified by finite element method and experiments.
Three dimensional modelling of ICRF launchers for fusion devices
Carter, M. D.; Rasmussen, D. A.; Ryan, P. M.; Hanson, G. R.; Stallings, D. C.; Batchelor, D. B.; Bigelow, T. S.; England, A. C.; Hoffman, D. J.; Murakami, M.; Wang, C. Y.; Wilgen, J. B.; Rogers, J. H.; Wilson, J. R.; Majeski, R.; Schilling, G.
1996-02-01
The three dimensional (3-D) nature of antennas for fusion applications in the ion cyclotron range of frequencies (ICRF) requires accurate modelling to design and analyse new antennas. In this article, analysis and design tools for radiofrequency (RF) antennas are successfully benchmarked with experiment, and the 3-D physics of the launched waves is explored. The systematic analysis combines measured density profiles from a reflectometer system, transmission line circuit modelling, detailed 3-D magnetostatics modelling and a new 3-D electromagnetic antenna model including plasma. This analysis gives very good agreement with measured loading data from the Tokamak Fusion Test Reactor (TFTR) Bay-M antenna, thus demonstrating the validity of the analysis for the design of new RF antennas. The 3-D modelling is contrasted with 2-D models, and significant deficiencies are found in the latter. The 2-D models are in error by as much as a factor of 2 in real and reactive loading, even after they are corrected for the most obvious 3-D effects. Three dimensional effects play the most significant role at low parallel wavenumbers, where the launched power spectrum can be quite different from the predictions of 2-D models. Three dimensional effects should not be ignored for many RF designs, especially those intended for fast wave current drive
The correction of the distortion of human face based on three-dimensional modeling methods
Ye, Qingmin; Chen, Kuo; Feng, Huajun; Xu, Zhihai; Li, Qi
2015-08-01
When the human face is on the edge of field of the camera which has a large view, serious deformation will be captured. To correct the distortion of the human face, we present an approach based on setting up a 3D model. Firstly, we construct 3D target face modeling by using the data and depth information of the standard human face, which is set up by the three-dimensional model with three-dimensional Gaussian function with sectional type. According to the size of the face in the image and the parameters of the camera, we can obtain the information of relative position and depth of the human face. Then by translating the virtual camera axis to the center of the face, we can achieve the goal to correct the distortion of the face based on the theory of three-dimensional imaging. Finally, we have made a lot of experiments, and we study the influence of parameters of the 3D model of human face. The result indicates that the method presented by this paper can play an effective role in correcting the distortion of the face in the edge of the view, and we can get better results if the model appreciates the real human face.
Application research on three-dimensional virtual mine in the framework of internet of things
Institute of Scientific and Technical Information of China (English)
WANG Chun-lei; XIE Hai-dong; WANG Zhi-dong; JIA Shao-yi
2011-01-01
Based on the information system characteristics of mine, proposed network architecture design of the mine property. And in this framework based on the design of three-dimensional virtual mine described the application of intelligent management platform. Three-dimensional virtual underground mine that shows the situation, the core application is through remote monitoring system of information exchange between devices (material object communication). Internet of things in the framework of mining three-dimensional virtual reconstruction of mine. On coal mine safety in the production process of human, machine and environment, control elements and their harmony and unity. 3D virtual mine management platform inegrates personnel positioning, dust control, gas monitoring, roof pressure monitoring, fan-line monitoring and other subsystems. Platform through the underground mine sensing equipment to conduct various types of monitoring data integration, through the transport layer device to transmit the information to the application layer intelligence processing software platform, the system automatically handles the operational status of each subsystem and the need for safe production under the proper introduction of human factors deal with special event. 3D virtual mine management platform to mining, excavation, transport, ventilation and other safety information quickly and accurately transmitted to the ground operation control center. Underground for the first time on the linkage between systems in case of emergencies, to provide safety for management decision support.
Hydrodynamic Analysis of the Flow Field Induced by a Symmetrical Suction Elbow at the Pump Inlet
Muntean, S.; Bosioc, A. I.; Drăghici, I.; Anton, L. E.
2016-11-01
The paper investigates the hydrodynamic field generated by the symmetrical suction elbow at the pump impeller inlet. The full three-dimensional turbulent numerical investigation of the flow in the symmetrical suction elbow is performed using FLUENT then the flow non-uniformity generated by it is numerically computed. The numerical results on the annular cross section are qualitatively and quantitatively validated against LDV data. A good agreement between numerical results and experimental data is obtained on this cross section located downstream to the suction elbow and upstream to the pump impeller. The hydrodynamic flow structure with four vortices is identified plotting the vorticity field. The largest values of the vorticity magnitude are identified in the center of both vortices located behind the shaft. The vortex core location is plotted on four annular cross sections located along to the cylindrical part between the suction elbow and the pump inlet. Also, the three-dimensional distribution of the vortex core filaments is visualized and extracted. The shapes of vortex core filaments located behind the pump shaft agree well with its visualization performed on the test rig. As a result, the three-dimensional complex geometry of the suction elbow and the pump shaft are identified as the main sources of the flow non-uniformity at the pump inlet.
Hyakutake, Toru; Nagai, Shinya
2015-01-01
We constructed three-dimensional microvascular bifurcation models using a parent vessel of diameter 10μm and investigated the flow behavior of the red blood cells (RBCs) through bifurcations. We considered symmetric and asymmetric model types. Two cases of equal daughter vessel diameter were employed for the asymmetric models, where the first was 10μm, which is the same as the parent vessel and the second was 7.94μm, which satisfies Murray's law. Simulated blood flow was computed using the lattice Boltzmann method in conjunction with the immersed boundary method for incorporating fluid-membrane interactions between the flow field and deformable RBCs. First, we investigated the flow behavior of a single RBC through microvascular bifurcations. In the case of the symmetric bifurcation, the turning point of the fractional plasma flow wherein the RBC flow changed from one daughter vessel to the other was 0.50. This turning point was however different for asymmetric bifurcations. Additionally, we varied the initial offset of RBCs from the centerline of the parent vessel. The simulation results indicated that the RBCs preferentially flow through the branch of a larger flow ratio. Next, we investigated the distribution characteristics of multiple RBCs. Simulations indicated that the results of the symmetric model were similar to those predicted by a previously published empirical model. On the other hand, results of asymmetric models deviated from those of the symmetric and empirical models. These results suggest that the distribution of RBCs varies according to the bifurcation angle and daughter vessel diameter in a microvascular bifurcation of the size considered.
Comparison of Dust Lattice Waves in Three-Dimensional Cubic Configurations
Institute of Scientific and Technical Information of China (English)
B. Farokhi; A. Hameditabar
2012-01-01
A three-dimensional (3D) dusty plasma crystalline with cubic configurations is considered. We calculate the interaction between particles up to distance √2a, implying the second-neighbor interactions for the simple cubic structure, the third-neighbor interactions for the body-centered cubic structure, and the forth-neighbor interactions the for face-centered cubic structure. Longitudinal and transverse dispersion relations are derived in arbitrary directions. The dispersion relations are studied in special directions, I.e. (1,0,0), (l,l,0)/√2, and (1,1, l)/√3- Study of dispersion relations with more neighbor interactions show that in some cases the results change physically.%A three-dimensional (3D) dusty plasma crystalline with cubic configurations is considered.We calculate the interaction between particles up to distance (√2)a,implying the second-neighbor interactions for the simple cubic structure,the third-neighbor interactions for the body-centered cubic structure,and the forth-neighbor interactions the for face-centered cubic structure.Longitudinal and transverse dispersion relations are derived in arbitrary directions.The dispersion relations are studied in special directions,i.e.(1,0,0),(1,1,0)/(√2),and (1,1,1)/(√3).Study of dispersion relations with more neighbor interactions show that in some cases the results change physically.
Directory of Open Access Journals (Sweden)
Fucai Li
2012-01-01
Full Text Available A three-dimensional spectral element method (SEM was developed for analysis of Lamb wave propagation in composite laminates containing a delamination. SEM is more efficient in simulating wave propagation in structures than conventional finite element method (FEM because of its unique diagonal form of the mass matrix. Three types of composite laminates, namely, unidirectional-ply laminates, cross-ply laminates, and angle-ply laminates are modeled using three-dimensional spectral finite elements. Wave propagation characteristics in intact composite laminates are investigated, and the effectiveness of the method is validated by comparison of the simulation results with analytical solutions based on transfer matrix method. Different Lamb wave mode interactions with delamination are evaluated, and it is demonstrated that symmetric Lamb wave mode may be insensitive to delamination at certain interfaces of laminates while the antisymmetric mode is more suited for identification of delamination in composite structures.
Stil, J M; Ouyed, R; Taylor, A R
2008-01-01
We present three-dimensional magnetohydrodynamic (MHD) simulations of superbubbles, to study the importance of MHD effects in the interpretation of images from recent surveys of the Galactic plane. These simulations focus mainly on atmospheres defined by an exponential density distribution and the Dickey & Lockman (1990) density distribution. In each case, the magnetic field is parallel to the Galactic plane and we investigate cases with either infinite scale height (constant magnetic field) or a constant ratio of gas pressure to magnetic pressure. The three-dimensional structure of superbubbles in these simulations is discussed with emphasis on the axial ratio of the cavity as a function of magnetic field strength and the age of the bubble. We investigate systematic errors in the age of the bubble and scale height of the surrounding medium that may be introduced by modeling the data with purely hydrodynamic models. Age estimates derived with symmetric hydrodynamic models fitted to an asymmetric magnetize...
Three-dimensional appearance of the lips muscles with three-dimensional isotropic MRI: in vivo study
Energy Technology Data Exchange (ETDEWEB)
Olszewski, Raphael; Reychler, H. [Universite Catholique de Louvain, Department of Oral and Maxillofacial Surgery, Cliniques Universitaires Saint Luc, Brussels (Belgium); Liu, Y.; Xu, T.M. [Peking University School and Hospital of Stomatology, Department of Orthodontics, Beijing (China); Duprez, T. [Universite Catholique de Louvain, Department of Radiology, Cliniques Universitaires Saint Luc, Brussels (Belgium)
2009-06-15
Our knowledge of facial muscles is based primarily on atlases and cadaveric studies. This study describes a non-invasive in vivo method (3D MRI) for segmenting and reconstructing facial muscles in a three-dimensional fashion. Three-dimensional (3D), T1-weighted, 3 Tesla, isotropic MRI was applied to a subject. One observer performed semi-automatic segmentation using the Editor module from the 3D Slicer software (Harvard Medical School, Boston, MA, USA), version 3.2. We were able to successfully outline and three-dimensionally reconstruct the following facial muscles: pars labialis orbicularis oris, m. levatro labii superioris alaeque nasi, m. levator labii superioris, m. zygomaticus major and minor, m. depressor anguli oris, m. depressor labii inferioris, m. mentalis, m. buccinator, and m. orbicularis oculi. 3D reconstruction of the lip muscles should be taken into consideration in order to improve the accuracy and individualization of existing 3D facial soft tissue models. More studies are needed to further develop efficient methods for segmentation in this field. (orig.)
Existence of three-dimensional ideal-magnetohydrodynamic equilibria with current sheets
Energy Technology Data Exchange (ETDEWEB)
Loizu, J. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany); Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Hudson, S. R.; Bhattacharjee, A.; Lazerson, S. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States); Helander, P. [Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald (Germany)
2015-09-15
We consider the linear and nonlinear ideal plasma response to a boundary perturbation in a screw pinch. We demonstrate that three-dimensional, ideal-MHD equilibria with continuously nested flux-surfaces and with discontinuous rotational-transform across the resonant rational-surfaces are well defined and can be computed both perturbatively and using fully nonlinear equilibrium calculations. This rescues the possibility of constructing MHD equilibria with current sheets and continuous, smooth pressure profiles. The results predict that, even if the plasma acts as a perfectly conducting fluid, a resonant magnetic perturbation can penetrate all the way into the center of a tokamak without being shielded at the resonant surface.
Anomalous Discharge Product Distribution in Lithium-Air Cathodes: A Three Dimensional View
Energy Technology Data Exchange (ETDEWEB)
Nanda, Jagjit [ORNL; Allu, Srikanth [ORNL; Bilheux, Hassina Z [ORNL; Dudney, Nancy J [ORNL; Pannala, Sreekanth [ORNL; Veith, Gabriel M [ORNL; Voisin, Sophie [ORNL; Walker, Lakeisha MH [ORNL; Archibald, Richard K [ORNL
2012-01-01
Using neutron tomographic imaging we report for the first time three dimensional spatial distribution of lithium product distribution in electrochemically discharged Lithium-Air cathodes. Neutron imaging finds a non-uniform lithium product distribution across the electrode thickness; the lithium species concentration being higher near the edges of the Li-air electrode and relatively uniform in the center of the electrode. The experimental neutron images were analyzed in context of results obtained from 3D modeling of the spatial lithium product distribution using a kinetically coupled diffusion based transport model that accounts for the dynamical reaction rate dependence on the discharge product formation, porosity changes and mass transfer.
Parallax scanning methods for stereoscopic three-dimensional imaging
Mayhew, Christopher A.; Mayhew, Craig M.
2012-03-01
Under certain circumstances, conventional stereoscopic imagery is subject to being misinterpreted. Stereo perception created from two static horizontally separated views can create a "cut out" 2D appearance for objects at various planes of depth. The subject volume looks three-dimensional, but the objects themselves appear flat. This is especially true if the images are captured using small disparities. One potential explanation for this effect is that, although three-dimensional perception comes primarily from binocular vision, a human's gaze (the direction and orientation of a person's eyes with respect to their environment) and head motion also contribute additional sub-process information. The absence of this information may be the reason that certain stereoscopic imagery appears "odd" and unrealistic. Another contributing factor may be the absence of vertical disparity information in a traditional stereoscopy display. Recently, Parallax Scanning technologies have been introduced, which provide (1) a scanning methodology, (2) incorporate vertical disparity, and (3) produce stereo images with substantially smaller disparities than the human interocular distances.1 To test whether these three features would improve the realism and reduce the cardboard cutout effect of stereo images, we have applied Parallax Scanning (PS) technologies to commercial stereoscopic digital cinema productions and have tested the results with a panel of stereo experts. These informal experiments show that the addition of PS information into the left and right image capture improves the overall perception of three-dimensionality for most viewers. Parallax scanning significantly increases the set of tools available for 3D storytelling while at the same time presenting imagery that is easy and pleasant to view.
Three-dimensional stochastic seepage field for embankment engineering
Directory of Open Access Journals (Sweden)
Ya-jun WANG
2009-03-01
Full Text Available Owing to the complexity of geo-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering applications. A three-dimensional anisotropic heterogeneous steady random seepage model was developed on the basis of the finite element method. A statistical analysis of the distribution characteristics of soil parameters sampled from the main embankment of the Yangtze River in the Southern Jingzhou zone of China was conducted. The Kolomogorov-Smirnov test verified the statistical hypothesis that the permeability coefficient tensor has a Gaussian distribution. With the help of numerical analysis of the stochastic seepage field using the developed model, various statistical and random characteristics of the stochastic seepage field of the main embankment of the Yangtze River in the Southern Jingzhou zone of China were investigated. The model was also examined with statistical testing. Through the introduction of random variation of the upstream and downstream water levels into the model, the effects of the boundary randomness due to variation of the downstream and upstream water levels on the variation of simulated results presented with a vector series of the random seepage field were analyzed. Furthermore, the combined influence of the variation of the soil permeability coefficient and such seepage resistance measures as the cut-off wall and relief ditch on the hydraulic head distribution was analyzed and compared with the results obtained by determinate analysis. Meanwhile, sensitivities of the hydraulic gradient and downstream exit height to the variation of boundary water level were studied. The validity of the simulated results was verified by stochastic testing and measured data. The developed model provides more detail and a full stochastic algorithm to characterize and analyze three-dimensional stochastic seepage field problems
Three-dimensional stochastic seepage field for embankment engineering
Institute of Scientific and Technical Information of China (English)
Ya-jun WANG; Wo-hua ZHANG; Chang-yu WU; Da-chun REN
2009-01-01
Owing to the complexity of get-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering applications. A three-dimensional anisotropic heterogeneous steady random seepage model was developed on the basis of the finite element method. A statistical analysis of the distribution characteristics of soil parameters sampled from the main embankment of the Yangtze River in the Southern Jingzhou zone of China was conducted. The Kolomogorov-Smimov test verified the statistical hypothesis that the permeability coefficient tensor has a Gaussian distribution. With the help of numerical analysis of the stochastic seepage field using the developed model, various statistical and random characteristics of the stochastic seepage field of the main embankment of the Yangtze River in the Southern Jingzhou zone of China were investigated. The model was also examined with statistical testing. Through the introduction of random variation of the upstream and downstream water levels into the model, the effects of the boundary randomness due to variation of the downstream and upstream water levels on the variation of simulated results presented with a vector series of the random seepage field were analyzed. Furthermore, the combined influence of the variation of the soil permeability coefficient and such seepage resistance measures as the cut-off wall and relief ditch on the hydraulic head distribution was analyzed and compared with the results obtained by determinate analysis. Meanwhile, sensitivities of the hydraulic gradient and downstream exit height to the variation of boundary water level were studied. The validity of the simulated results was verified by stochastic testing and measured data. The developed model provides more detail and a full stochastic algorithm to characterize and analyze three-dimensional stochastic seepage field problems.
Three-dimensional numerical modeling of nearshore circulation
Institute of Scientific and Technical Information of China (English)
SUN Detong
2008-01-01
A three-dimensional nearshore circulation model was developed by coupling CH3D, a three-dimensional hydrodynamic model and REF/DIF, a nearsbore wave transformation model. The model solves the three-dimensional wave-averaged equations of motion. Wave-induced effects on circulation were introduced in the form of radiation stresses, wave-induced mass transport, wave-induced enhancement of bottom friction and wave-induced turbulent mixing. Effects of breaking waves were considered following Svendsen (1984a and 1984b) and Stive and Wind (1986). The model was successfully tested against the analytical solution of longshore currents by Longuet and Higgins (1970). The model successfully simulated the undertow as observed in a laboratory experiment by Stive and Wind (1982). In addition, the model was applied to a physical model by Mory and Hamm (1997) and successfully reproduced the eddy behind a detached breakwater as well as the longshore current on the open beach and the contiguous eddy in the open area of the wave tank. While the qualitative agreement between model results and experimental observations was very good, the quantitative agreement needs to be further improved. Albeit difficult to explain every discrepancy between the model re- suits and observations, in general, sources of errors are attributed to the lack of understanding and comprehensive description of following processes: (1) the horizontal and vertical distribution of radiation stress, especially for breaking waves; (2) the detailed structure of turbulence;(3)Wave-current interaction (not included at this moment) ; and (4)the wave- current boundary layer and the resulting bottom shear stress.
Three-dimensional visual illusion of graphic painting
Institute of Scientific and Technical Information of China (English)
于静
2012-01-01
Visual illusion is the visual design of a special category.It is a set of technology and art in one of a unique form of artistic expression.Visual illusion can give people a taste of the spirit, with strong cultural con- tent and artistic appeal.So by this way of painting, it has a clever and unique perspective. Aspect If the plane can be realistic paintings to life, then the three-dimensional, two-dimensional space can be called even more powerful by aspects.
Three-dimensional reconstruction of the rat nephron
DEFF Research Database (Denmark)
Christensen, Erik Ilsø; Grann, Birgitte; Kristoffersen, Inger B.;
2014-01-01
This study gives a three-dimensional (3D) structural analysis of rat nephrons and their connections to collecting ducts. Approximately 4,500 2.5-μm-thick serial sections from the renal surface to the papillary tip were obtained from each of 3 kidneys of Wistar rats. Digital images were recorded...... and aligned into three image stacks and traced from image to image. Short-loop nephrons (SLNs), long-loop nephrons (LLNs), and collecting ducts (CDs) were reconstructed in 3D. We identified a well-defined boundary between the outer stripe and the inner stripe of the outer medulla corresponding...
Integrated three-dimensional reconstruction using reflectance fields
Directory of Open Access Journals (Sweden)
Maria-Luisa Rosas
2012-01-01
Full Text Available A method to obtain three-dimensional data of real-world objects by integrating their material properties is presented. The material properties are defined by capturing the Reflectance Fields of the real-world objects. It is shown, unlike conventional reconstruction methods, the method is able to use the reflectance information to recover surface depth for objects having a non-Lambertian surface reflectance. It is, for recovering 3D data of objects exhibiting an anisotropic BRDF with an error less than 0.3%.
Three-dimensional imaging for a very large excavator
Energy Technology Data Exchange (ETDEWEB)
Roberts, J.; Winstanley, G.; Corke, P. [CSIRO, Kenmore, Qld. (Australia). Manufacture and & Infrastructure Technology
2003-08-01
We describe the development of a three-dimensional (3D) imaging system for a 3500 tonne mining machine (dragline). Draglines are large walking cranes used for removing the dirt that covers a coal seam. Our group has been developing a dragline swing automation system since 1994. The system so far has been 'blind' to its external environment. The work presented in this paper attempts to give the dragline an ability to sense its surroundings. A 3D digital terrain map (DTM) is created from data obtained from a two-dimensional laser scanner while the dragline swings. Experimental data from an operational dragline are presented.
New Discrete Element Models for Three-Dimensional Impact Problems
Institute of Scientific and Technical Information of China (English)
SHAN Li; CHENG Ming; LIU Kai-xin; LIU Wei-Fu; CHEN Shi-Yang
2009-01-01
Two 3-D numerical models of the discrete element method(DEM)for impact problems are proposed.The models can calculate not only the impact problems of continuum and non-continuum,but also the transient process from continuum to non-continuum.The stress wave propagation in a concrete block and a dynamic splitting process of a marble disc under impact loading are numerically simulated with the proposed models.By comparing the numerical results with the corresponding results obtained by the finite element method(FEM)and the experiments,it is proved that the models are reliable for three-dimensional impact problems.
Three-dimensional versus two-dimensional vision in laparoscopy
DEFF Research Database (Denmark)
Sørensen, Stine Maya Dreier; Savran, Mona M; Konge, Lars;
2016-01-01
BACKGROUND: Laparoscopic surgery is widely used, and results in accelerated patient recovery time and hospital stay were compared with laparotomy. However, laparoscopic surgery is more challenging compared with open surgery, in part because surgeons must operate in a three-dimensional (3D) space...... through a two-dimensional (2D) projection on a monitor, which results in loss of depth perception. To counter this problem, 3D imaging for laparoscopy was developed. A systematic review of the literature was performed to assess the effect of 3D laparoscopy. METHODS: A systematic search of the literature...
CATIA Core Tools Computer Aided Three-Dimensional Interactive Application
Michaud, Michel
2012-01-01
CATIA Core Tools: Computer-Aided Three-Dimensional Interactive Application explains how to use the essential features of this cutting-edge solution for product design and innovation. The book begins with the basics, such as launching the software, configuring the settings, and managing files. Next, you'll learn about sketching, modeling, drafting, and visualization tools and techniques. Easy-to-follow instructions along with detailed illustrations and screenshots help you get started using several CATIA workbenches right away. Reverse engineering--a valuable product development skill--is also covered in this practical resource.
Three dimensional free convection couette flow with transpiration cooling
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Free convection flow between two vertical parallel plates with transverse sinusoidal injection of the fluid at the stationary plate and its corresponding removal by constant suction through the plate in uniform motion has been analyzed. Due to this type of injection velocity, the flow becomes three-dimensional. Analytical expressions for the velocity, temperature, skin friction and rate of heat transfer were obtained. The important characteristics of the problem, namely the skin friction and the rate of heat transfer are discussed in detail with the help of graphs.
The Electron in Three-Dimensional Momentum Space
Mantovani, L.; Bacchetta, A.; Pasquini, B.
2016-07-01
We study the electron as a system composed of an electron and a photon and derive the leading-twist transverse-momentum-dependent distribution functions for both the electron and photon in the dressed electron, thereby offering a three-dimensional description of the dressed electron in momentum space. To obtain the distribution functions, we apply both the formalism of light-front wave function overlap representation and the diagrammatic approach; we discuss the comparison of our results between light-cone gauge and Feynman gauge, discussing the role of the Wilson lines to obtain gauge-independent results. We provide examples of plots of the computed distributions.
Three-dimensional characterization of stress corrosion cracks
DEFF Research Database (Denmark)
Lozano-Perez, S.; Rodrigo, P.; Gontard, Lionel Cervera
2011-01-01
Understanding crack propagation and initiation is fundamental if stress corrosion cracking (SCC) mechanisms are to be understood. However, cracking is a three-dimensional (3D) phenomenon and most characterization techniques are restricted to two-dimensional (2D) observations. In order to overcome...... the best spatial resolution. To illustrate the power of these techniques, different parts of dominant stress corrosion cracks in Ni-alloys and stainless steels have been reconstructed in 3D. All relevant microstructural features can now be studied in detail and its relative orientation respect...
The three-dimensional crystal structure of cholera toxin
Energy Technology Data Exchange (ETDEWEB)
Zhang, Rong-Guang; Westbrook, M.L.; Nance, S.; Spangler, B.D. [Argonne National Lab., IL (United States); Scott, D.L. [Yale Univ., New Haven, CT (United States). Dept. of Molecular Biophysics and Biochemistry; Westbrook, E.M. [Northwestern Univ., Evanston, IL (United States)
1996-02-01
The clinical manifestations of cholera are largely attributable to the actions of a secreted hexameric AB{sub 5} enterotoxin (choleragen). We have solved the three-dimensional structure of choleragen at 2.5 {Angstrom} resolution and compared the refined coordinates with those of choleragenoid (isolated B pentamer) and the heat-labile enterotoxin from Escherichia coli (LT). The crystalline coordinates provide a detailed view of the stereochemistry implicated in binding to GM1 gangliosides and in carrying out ADP-ribosylation. The A2 chain of choleragen, in contrast to that of LT, is a nearly continuous {alpha}-helix with an interpretable carboxyl tail.
Integrating three-dimensional printing and nanotechnology for musculoskeletal regeneration
Nowicki, Margaret; Castro, Nathan J.; Rao, Raj; Plesniak, Michael; Zhang, Lijie Grace
2017-09-01
The field of tissue engineering is advancing steadily, partly due to advancements in rapid prototyping technology. Even with increasing focus, successful complex tissue regeneration of vascularized bone, cartilage and the osteochondral interface remains largely illusive. This review examines current three-dimensional printing techniques and their application towards bone, cartilage and osteochondral regeneration. The importance of, and benefit to, nanomaterial integration is also highlighted with recent published examples. Early-stage successes and challenges of recent studies are discussed, with an outlook to future research in the related areas.
Methods for preparation of three-dimensional bodies
Energy Technology Data Exchange (ETDEWEB)
Mulligan, Anthony C [Tucson, AZ; Rigali, Mark J [Carlsbad, NM; Sutaria, Manish P [Malden, MA; Artz, Gregory J [Tucson, AZ; Gafner, Felix H [Tucson, AZ; Vaidyanathan, K Ranji [Tucson, AZ
2008-06-17
Processes for mechanically fabricating two and three-dimensional fibrous monolith composites include preparing a fibrous monolith filament from a core composition of a first powder material and a boundary material of a second powder material. The filament includes a first portion of the core composition surrounded by a second portion of the boundary composition. One or more filaments are extruded through a mechanically-controlled deposition nozzle onto a working surface to create a fibrous monolith composite object. The objects may be formed directly from computer models and have complex geometries.
Critical exponents of a three dimensional O(4) spin model
Kanaya, K; Kanaya, K; Kaya, S
1995-01-01
By Monte Carlo simulation we study the critical exponents governing the transition of the three-dimensional classical O(4) Heisenberg model, which is considered to be in the same universality class as the finite-temperature QCD with massless two flavors. We use the single cluster algorithm and the histogram reweighting technique to obtain observables at the critical temperature. After estimating an accurate value of the inverse critical temperature \\Kc=0.9360(1) we make non-perturbative estimates for various critical exponents by finite-size scaling analysis. They are in excellent agreement with those obtained with the 4-\\epsilon expansion method with errors reduced to about halves of them.
Complete wetting in the three-dimensional transverse Ising model
Harris, A. B.; Micheletti, C.; Yeomans, J. M.
1996-08-01
We consider a three-dimensional Ising model in a transverse magnetic field h and a bulk field H. An interface is introduced by an appropriate choice of boundary conditions. At the point ( H=0, h=0) spin configurations corresponding to different positions of the interface are degenerate. By studying the phase diagram near this multiphase point using quantum mechanical perturbation theory, we show that the quantum fluctuations, controlled by h, split the multiphase degeneracy giving rise to an infinite sequence of layering transitions.
A Novel Woodpile Three-Dimensional Terahertz Photonic Crystal
Institute of Scientific and Technical Information of China (English)
LIU Huan; YAO Jian-Quan; ZHENG Fang-Hua; XU De-Gang; WANG Peng
2007-01-01
A novel woodpile lattice structure is proposed. Based on plane wave expansion (PWE) method, the complete photonic band gaps (PBGs) of the novel woodpile three-dimensional (3D) terahertz (THz) photonic crystal (PC) with a decreasing symmetry relative to a face-centred-tetragonal (fct) symmetry are optimized by varying some structural parameters and the highest band gap ratio can reach 27.61%. Compared to the traditional woodpile lattice, the novel woodpile lattice has a wider range of the Riling ratios to gain high quality PBGs, which provides greater convenience for the manufacturing process. The novel woodpile 3D PC will be very promising for materials of THz functional components.
Three-dimensional wake potential in a streaming dusty plasma
Indian Academy of Sciences (India)
M Salahuddin; M K Islam; A K Banerjee; M Salimullah; S K Ghosh
2003-09-01
The oscillatory wake potential for a slowly moving or static test dust particulate in a ﬁnite temperature, collisionless and unmagnetized dusty plasma with a continuous ﬂow of ions and dust particles has been studied. The collective resonant interaction of the moving test particle with the low-frequency and low-phase-velocity dust-acoustic mode is the origin of the periodic attractive force between the like polarity particulates along and perpendicular to the streaming ions and dust grains resulting into dust-Coulomb crystal formation. This wake potential can explain the three-dimensional dust-Coulomb crystal formation in the laboratory conditions.
Ising Model Coupled to Three-Dimensional Quantum Gravity
Baillie, C F
1992-01-01
We have performed Monte Carlo simulations of the Ising model coupled to three-dimensional quantum gravity based on a summation over dynamical triangulations. These were done both in the microcanonical ensemble, with the number of points in the triangulation and the number of Ising spins fixed, and in the grand canoncal ensemble. We have investigated the two possible cases of the spins living on the vertices of the triangulation (``diect'' case) and the spins living in the middle of the tetrahedra (``dual'' case). We observed phase transitions which are probably second order, and found that the dual implementation more effectively couples the spins to the quantum gravity.
On three-dimensional trace anomaly from holographic local RG
Kikuchi, Ken; Suzuki, Akihiro
2016-01-01
Odd-dimensional quantum field theories (QFTs) can have nonzero trace anomalies if external fields are introduced and some ingredients needed to make Lorentz scalars with appropriate mass dimensions (or weights) are supplied. We have studied a three-dimensional QFT and explicitly computed the trace of the stress tensor using the holographic local renormalization group (RG). We have checked some properties of vector beta functions and the Wess-Zumino consistency condition, however, found the anomalies vanish on fixed points. We clarify what is responsible for the vanishing trace anomalies.
Seismic waves in a three-dimensional block medium
Aleksandrova, Nadezhda
2016-01-01
We study numerically the propagation of seismic waves in a three-dimensional block medium. The medium is modeled by a spatial lattice of masses connected by elastic springs and viscous dampers. We study Lamb's problem under a surface point vertical load. The cases of both step and pulse load are considered. The displacements and velocities are calculated for surface masses. The influence of the viscosity of the dampers on the attenuation of perturbations is studied. We compare our numerical results for the block medium with known analytical solutions for the elastic medium.
Electrified magnetic catalysis in three-dimensional topological insulators
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2016-09-01
The gap equations for the surface quasiparticle propagators in a slab of three-dimensional topological insulator in external electric and magnetic fields perpendicular to the slab surfaces are analyzed and solved. A different type of magnetic catalysis is revealed with the dynamical generation of both Haldane and Dirac gaps. Its characteristic feature manifests itself in the crucial role that the electric field plays in dynamical symmetry breaking and the generation of a Dirac gap in the slab. It is argued that, for a sufficiently large external electric field, the ground state of the system is a phase with a homogeneous surface charge density.
Three-dimensional imaging of direct-written photonic structures
Marshall, Graham D; Thayil, Anisha; Withford, Michael J; Booth, Martin
2010-01-01
Third harmonic generation microscopy has been used to analyze the morphology of photonic structures created using the femtosecond laser direct-write technique. Three dimensional waveguide arrays and waveguide-Bragg gratings written in fused-silica and doped phosphate glass were investigated. A sensorless adaptive optical system was used to correct the optical aberrations occurring in the sample and microscope system, which had a lateral resolution of less than 500 nm. This non-destructive testing method creates volume reconstructions of photonic devices and reveals details invisible to other linear microscopy and index profilometry techniques.
Three-dimensional array foci of generalized Fibonacci photon sieves
Zhang, Junyong; Zhu, Jianqiang; Lin, Zunqi
2015-01-01
We present a new kind of photon sieves on the basis of the generalized Fibonacci sequences. The required numbers and locations of axial foci can be designed by generalized Fibonacci photon sieves (GFiPS). Furthermore, the three-dimensional array foci can be controllable and adjustable by the optical path difference scaling factor (OPDSF) when the amplitude modulation is replaced with the phase modulation. Multi-focal technologies can be applied to nano-imaging, THZ, laser communications, direct laser writing, optical tweezers or atom trapping, etc.
Canonical and symplectic analysis for three dimensional gravity without dynamics
Escalante, Alberto
2016-01-01
In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev-Jackiw symplectic approach is developed; we report the complete set of Faddeev-Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev-Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev-Jackiw and Dirac's formalism are briefly discussed.
Role of retardation in three-dimensional relativistic equations
Energy Technology Data Exchange (ETDEWEB)
Lahiff, A.D.; Afnan, I.R. [Department of Physics, The Flinders University of South Australia, GPO Box 2100, Adelaide 5001 (Australia)
1997-11-01
Equal-time Green{close_quote}s function is used to derive a three-dimensional integral equation from the Bethe-Salpeter equation. The resultant equation, in the absence of antiparticles, is identical to the use of time-ordered diagrams, and has been used within the framework of {phi}{sup 2}{sigma} coupling to study the role of energy dependence and nonlocality when the two-body potential is the sum of {sigma} exchange and crossed {sigma} exchange. The results show that nonlocality and energy dependence make a substantial contribution to both the on-shell and off-shell amplitudes. {copyright} {ital 1997} {ital The American Physical Society}
Role of retardation in three-dimensional relativistic equations
Lahiff, A. D.; Afnan, I. R.
1997-11-01
Equal-time Green's function is used to derive a three-dimensional integral equation from the Bethe-Salpeter equation. The resultant equation, in the absence of antiparticles, is identical to the use of time-ordered diagrams, and has been used within the framework of φ2σ coupling to study the role of energy dependence and nonlocality when the two-body potential is the sum of σ exchange and crossed σ exchange. The results show that nonlocality and energy dependence make a substantial contribution to both the on-shell and off-shell amplitudes.
Three-Dimensional Model for Strip Hot Rolling
Institute of Scientific and Technical Information of China (English)
ZHANG Guo-min; XIAO Hong; WANG Chun-hua
2006-01-01
A three-dimensional model for strip hot rolling was developed, in which the plastic deformation of strip, the thermal crown of rolls, roll deflection and flattening were calculated by rigid-plastic finite element method, finite difference method, influential function method and elastic finite element method respectively. The roll wear was taken into consideration. The model can provide detailed information such as rolling pressure distribution, contact pressure distribution between backup rolls and work rolls, deflection and flattening of work rolls, lateral distribution of strip thickness, and lateral distribution of front and back tensions. The finish rolling on a 1 450 mm hot strip mill was simulated.
Three-dimensional dilatonic gravity's rainbow: Exact solutions
Hossein Hendi, Seyed; Eslam Panah, Behzad; Panahiyan, Shahram
2016-10-01
Deep relations of dark energy scenario and string theory results into dilaton gravity, on the one hand, and the connection between quantum gravity and gravity's rainbow, on the other hand, motivate us to consider three-dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions, which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.
Discrete canonical analysis of three dimensional gravity with cosmological constant
Berra-Montiel, J
2014-01-01
We discuss the interplay between standard canonical analysis and canonical discretization in three-dimensional gravity with cosmological constant. By using the Hamiltonian analysis, we find that the continuum local symmetries of the theory are given by the on-shell space-time diffeomorphisms, which at the action level, corresponds to the Kalb-Ramond transformations. At the time of discretization, although this symmetry is explicitly broken, we prove that the theory still preserves certain gauge freedom generated by a constant curvature relation in terms of holonomies and the Gauss's law in the lattice approach.
Three-dimensional structure of brain tissue at submicrometer resolution
Saiga, Rino; Mizutani, Ryuta; Inomoto, Chie; Takekoshi, Susumu; Nakamura, Naoya; Tsuboi, Akio; Osawa, Motoki; Arai, Makoto; Oshima, Kenichi; Itokawa, Masanari; Uesugi, Kentaro; Takeuchi, Akihisa; Terada, Yasuko; Suzuki, Yoshio
2016-01-01
Biological objects are composed of submicrometer structures such as cells and organelles that are essential for their functions. Here, we report on three-dimensional X-ray visualization of cells and organelles at resolutions up to 100 nm by imaging microtomography (micro-CT) equipped with Fresnel zone plate optics. Human cerebral tissue, fruit fly cephalic ganglia, and Escherichia coli bacteria labeled with high atomic-number elements were embedded in epoxy resin and subjected to X-ray microtomography at the BL37XU and BL47XU beamlines of the SPring-8 synchrotron radiation facility. The obtained results indicated that soft tissue structures can be visualized with the imaging microtomography.
Three-dimensional measurement of a tightly focused laser beam
Directory of Open Access Journals (Sweden)
Xiangsheng Xie
2013-02-01
Full Text Available The spatial structure of a tightly focused light field is measured with a double knife-edge scanning method. The measurement method is based on the use of a high-quality double knife-edge fabricated from a right-angled silicon fragment mounted on a photodetector. The reconstruction of the three-dimensional structures of tightly focused spots is carried out with both uniform and partially obstructed linearly polarized incident light beams. The optical field distribution is found to deviate substantially from the input beam profile in the tightly focused region, which is in good agreement with the results of numerical simulations.
Synthesis of three-dimensional hierarchical cobalt hydroxide microstructures
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
β-Co(OH)2 with three-dimensional (3-D) structures was prepared by a simple hydrothermal method. It was found that the amount of cetyltrimethylammonium bromide (CTAB), the pH value, and the reaction time all had an important influence on the formation of this morphology. The products were characterized by X-ray diffraction, energy-dispersive X-ray analysis, and scanning electron microscopy. A possible mechanism of the formation of the 3-D microstructures of β-Co(OH)2 was proposed.
Three-dimensional point spread function measurements of imaging spectrometers
Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2017-09-01
Measuring the three-dimensional point spread function (3D PSF) of imaging spectrometers is a challenging task since it requires a small, monochromatic and bright source. Here we introduce a powerful and practical new approach for 3D PSF measurement on the basis of a bright virtual monochromatic point-like source, which is formed by a collimated light beam and a convex spherical mirror. The effectiveness of the proposed methodology is demonstrated and discussed through 3D PSF measurements of an acousto-optic tunable filter based imaging spectrometer.
Overlap distribution of the three-dimensional Ising model.
Berg, Bernd A; Billoire, Alain; Janke, Wolfhard
2002-10-01
We study the Parisi overlap probability density P(L)(q) for the three-dimensional Ising ferromagnet by means of Monte Carlo (MC) simulations. At the critical point, P(L)(q) is peaked around q=0 in contrast with the double peaked magnetic probability density. We give particular attention to the tails of the overlap distribution at the critical point, which we control over up to 500 orders of magnitude by using the multioverlap MC algorithm. Below the critical temperature, interface tension estimates from the overlap probability density are given and their approach to the infinite volume limit appears to be smoother than for estimates from the magnetization.
Modified Three-Dimensional Multicarrier Optical Prime Codes
Directory of Open Access Journals (Sweden)
Rajesh Yadav
2016-01-01
Full Text Available We propose a mathematical model for novel three-dimensional multicarrier optical codes in terms of wavelength/time/space based on the prime sequence algorithm. The proposed model has been extensively simulated on MATLAB for prime numbers (P to analyze the performance of code in terms of autocorrelation and cross-correlation. The simulated outcome resembles the mathematical model and gives better results over other methods available in the literature as far as autocorrelation and cross-correlation are concerned. The proposed 3D optical codes are more efficient in terms of cardinality, improved security, and providing quality of services.
Observation of three dimensional optical rogue waves through obstacles
Energy Technology Data Exchange (ETDEWEB)
Leonetti, Marco, E-mail: marco.leonetti@roma1.infn.it [Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291 00161 Roma (RM) (Italy); Conti, Claudio [ISC-CNR and Department of Physics, University Sapienza, P.le Aldo Moro 5, I-00185 Roma (Italy)
2015-06-22
We observe three-dimensional rogue waves in the speckle distribution of a spatially modulated optical beam. Light is transmitted beyond a partially reflecting obstacle generating optical rogue waves at a controlled position in the shadow of the barrier. When the barrier transmits only 0.07% of the input laser power, we observe the mostly localized event. These results demonstrate that an optimum amount of spatial non-homogeneity maximizes the probability of a gigantic event while the technique we exploit enables to control light behind a fully reflective wall.
Three-dimensional edge extraction in optical scanning holography
Zong, Yonghong; Zhou, Changhe; Ma, Jianyong; Jia, Wei; Wang, Jin
2016-10-01
Edge extraction has found applications in various image processing fields, such as in pattern recognition. In this paper, a new method is proposed for edge extraction of three-dimensional objects in optical scanning holography (OSH). Isotropic and anisotropic edge extraction of 3D objects is simulated using spiral phase plates in OSH operating in an incoherent mode. We propose to use a delta function and a spiral phase plate as the pupil functions to realize isotropic and anisotropic edge extraction. Our computer simulations show the capability of extracting the edges of a given 3D object by spiral phase filtering in OSH.
Proton beam writing of three-dimensional microcavities
Energy Technology Data Exchange (ETDEWEB)
Vanga, S.K., E-mail: sudheer@nus.edu.sg [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Bettiol, A.A. [Centre for Ion Beam Applications, Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore)
2013-07-01
Optical micro cavities exhibit high quality factors due to the circulation of resonant optical fields within the cavity. Polymers are good materials for the fabrication of micro cavities for practical applications due to the availability of various refractive indices and their low cost. Polymer micro cavities generally yield low Q-factors compared to semiconductor materials because of inherent material absorption losses, and their Q-factors are limited by the low index contrast between the polymer and the substrate material. In the present work, three dimensional micro cavities were fabricated in SU-8 using proton beam writing to enhance the index contrast by isolating the cavities from the substrate.
Analysis and visualization of complex unsteady three-dimensional flows
Van Dalsem, William R.; Buning, Pieter G.; Dougherty, F. Carroll; Smith, Merritt H.
1989-01-01
Flow field animation is the natural choice as a tool in the analysis of the numerical simulations of complex unsteady three-dimensional flows. The PLOT4D extension of the widely used PLOT3D code to allow the interactive animation of a broad range of flow variables was developed and is presented. To allow direct comparison with unsteady experimental smoke and dye flow visualization, the code STREAKER was developed to produce time accurate streaklines. Considerations regarding the development of PLOT4D and STREAKER, and example results are presented.
Seismic waves in a three-dimensional block medium
Aleksandrova, N. I.
2016-08-01
We study numerically the propagation of seismic waves in a three-dimensional block medium. The medium is modelled by a spatial lattice of masses connected by elastic springs and viscous dampers. We study Lamb's problem under a surface point vertical load. The cases of both step and pulse load are considered. The displacements and velocities are calculated for surface masses. The influence of the viscosity of the dampers on the attenuation of perturbations is studied. We compare our numerical results for the block medium with known analytical solutions for the elastic medium.
Three-Dimensional Orientation Mapping in the Transmission Electron Microscope
DEFF Research Database (Denmark)
Liu, Haihua; Schmidt, Søren; Poulsen, Henning Friis
2011-01-01
Over the past decade, efforts have been made to develop nondestructive techniques for three-dimensional (3D) grain-orientation mapping in crystalline materials. 3D x-ray diffraction microscopy and differential-aperture x-ray microscopy can now be used to generate 3D orientation maps with a spatial...... resolution of 200 nanometers (nm). We describe here a nondestructive technique that enables 3D orientation mapping in the transmission electron microscope of mono- and multiphase nanocrystalline materials with a spatial resolution reaching 1 nm. We demonstrate the technique by an experimental study...... of a nanocrystalline aluminum sample and use simulations to validate the principles involved...
Three-dimensional multifunctional optical coherence tomography for skin imaging
Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki
2016-02-01
Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.
High-resolution three-dimensional imaging of dislocations.
Barnard, J S; Sharp, J; Tong, J R; Midgley, P A
2006-07-21
Dislocations and their interactions govern the properties of many materials, ranging from work hardening in metals to device pathology in semiconductor laser diodes. However, conventional electron micrographs are simply two-dimensional projections of three-dimensional (3D) structures, and even stereo microscopy cannot reveal the true 3D complexity of defect structures. Here, we describe an electron tomographic method that yields 3D reconstructions of dislocation networks with a spatial resolution three orders of magnitude better than previous work. We illustrate the method's success with a study of dislocations in a GaN epilayer, where dislocation densities of 1010 per square centimeter are common.
Optimal control of three-dimensional steamflooding processes
Energy Technology Data Exchange (ETDEWEB)
Liu, Wei; Fred Ramirez, W. (Dept. of Chemical Engineering, Univ. of Colorado, Boulder, CO (United States))
1994-06-01
A system science approach using optimal control theory of distributed parameter systems has been developed to determine operating strategies that maximize the economic profitability of the steamflooding processes. Necessary conditions of optimization are established by using the discrete form of calculus of variations and Pontryagin's Maximum Principle. The performance of this approach is investigated through two actual three-dimensional steamflooding projects. The optimization results show this method yields significant improvements over the original operating strategies. These improvements cannot be achieved through traditional design methods
Ordinary polarization singularities in three-dimensional optical fields.
Freund, Isaac
2012-06-15
In generic three-dimensional optical fields the canonical point polarization singularities are points of circular polarization, C points on C lines, and points of linear polarization, L points on L lines. These special points are surrounded by a sea of ordinary points. In planes oriented normal to the principle axes of the polarization ellipse at the point, every ordinary point is also a singularity, here an ordinary polarization singularity, or O point. Interactions between O points, between O points and C points, and between O points and L points are described that highlight the fact that a consistent description of optical fields containing C and L lines must include O points.
Three Dimensional Transformations in the Film Subtitle Translation
Institute of Scientific and Technical Information of China (English)
陈志海
2015-01-01
Film plays an indispensable part in cultural exchange. However, current scholars’studies on the film subtitle transla⁃tion are less than literary translation. There exists no systematic strategy and theory guiding it, and there still exists some problems. This paper introduces eco-translatology to film subtitle translation. Eco-translatology proposes that translation is an alternative cy⁃cle of translators’adaptation and selection activities in translational eco-environment. The translation method focuses on three-dimensional transformation, namely linguistic, cultural and communicative dimensions.
Three dimensional evolution of differentially rotating magnetized neutron stars
Kiuchi, Kenta; Shibata, Masaru
2012-01-01
We construct a new three-dimensional general relativistic magnetohydrodynamics code, in which a fixed mesh refinement technique is implemented. To ensure the divergence-free condition as well as the magnetic flux conservation, we employ the method by Balsara (2001). Using this new code, we evolve differentially rotating magnetized neutron stars, and find that a magnetically driven outflow is launched from the star exhibiting a kink instability. The matter ejection rate and Poynting flux are still consistent with our previous finding (Shibata et al., 2011) obtained in axisymmetric simulations.
Three dimensional monocular SLAM for autonomous drone navigation
Dehem, Boris
2017-01-01
This master's thesis expands on work previously done at the UCL's autonomous drone project to allow three dimensional simultaneous localization and mapping by a low-cost quadcopter. In GPS-denied environments, drones have to rely on their on-board sensors to localize themselves. We decided to use the drone's front camera to build a map of the environment and to localize the drone within that map. We take a keyframe-based approach, building a map from a small set of snapshots of the drone's ca...
Three-dimensional global fluid simulations of cylindrical magnetized plasmas
DEFF Research Database (Denmark)
Naulin, Volker; Windisch, T.; Grulke, O.
2008-01-01
. Thus, it is possible to assess the reproductive and predictive capabilities of plasma simulations in unprecedented detail. Here, three-dimensional global fluid simulations of a cylindrical magnetized plasma are presented. This plasma is characterized by the existence of spatially localized sources...... and sinks. The traditional scale separation paradigm is not applied in the simulation model to account for the important evolution of the background profiles due to the dynamics of turbulent fluctuations. Furthermore, the fluid modeling of sheath boundary conditions, which determine the plasma conditions...
Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems
Energy Technology Data Exchange (ETDEWEB)
Christensen, J S; Hrousis, C A
2010-03-09
Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.
Three-dimensional dilatonic gravity's rainbow: Exact solutions
Hossein Hendi, Seyed; Eslam Panah, Behzad; Panahiyan, Shahram
2016-10-01
Deep relations of dark energy scenario and string theory results into dilaton gravity, on the one hand, and the connection between quantum gravity and gravity's rainbow, on the other hand, motivate us to consider three-dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions, which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.
Multiple scattering of light in three-dimensional photonic quasicrystals.
Ledermann, Alexandra; Wiersma, Diederik S; Wegener, Martin; von Freymann, Georg
2009-02-01
Recent experiments on three-dimensional icosahedral dielectric photonic quasicrystals have shown several unexpected features: transmitted femtosecond pulses developed a trailing "diffusive" exponential tail and the sum of (zeroth-order) transmittance and reflectance was well below unity. These experimental findings have previously been ascribed to sample imperfections. Here, we analyze these findings by using 3D periodic approximants of the ideal photonic quasicrystals. We show that the experimental observations can be explained in terms of multiple scattering of light within these structures, i.e., in terms of intrinsic rather than purely extrinsic quasicrystal properties.
Three-dimensional nanojunction device models for photovoltaics
Wangperawong, Artit; Bent, Stacey F.
2011-06-01
A model is developed to describe the behavior of three-dimensionally nanostructured photovoltaic devices, distinguishing between isolated radial pn junctions and interdigitated pn junctions. We examine two specific interdigitated architectures, the point-contact nanojunction and the extended nanojunction, which are most relevant to experimental devices reported to date but have yet to be distinguished in the field. The model is also applied to polycrystalline CdTe devices with inverted grain boundaries. We demonstrate that for CdTe/CdS solar cells using low-quality materials, the efficiency of the extended nanojunction geometry is superior to other designs considered.
The application of three-dimensional photoelasticity to impact problems
Energy Technology Data Exchange (ETDEWEB)
Kostin, I.C. [Moscow State Univ. of Civil Engeneering (Russian Federation); Fedorov, A.V. [Mining School of Nantes (France)
1995-12-31
A method is proposed for the solution of three-dimensional dynamic problems in geometrically complex structural configurations under impact. The methodology developed employs the generation of photoelastically observable stress wave propagation in a birefringent material applied to the external surfaces of a structure. This work demonstrated the extension of this technique to impact loading. Problems of practical engineering application, such as the gluing of birefringent material to test models were examined experimentally. Pulsed magnetic fields generated by capacitor discharge were employed on typical complex engineering models to demonstrate that the methodology is adequate for solving practical impact problems.
On three-dimensional trace anomaly from holographic local RG
Kikuchi, Ken; Hosoda, Hiroto; Suzuki, Akihiro
2017-01-01
Odd-dimensional quantum field theories (QFTs) can have nonzero trace anomalies if external fields are introduced and some ingredients needed to make Lorentz scalars with appropriate mass dimensions (or weights) are supplied. We have studied a three-dimensional QFT and explicitly computed the trace of the stress tensor using the holographic local renormalization group (RG). We have checked some properties of vector beta functions and the Wess-Zumino consistency condition; however, we have found that the anomalies vanish on fixed points. We clarify what is responsible for the vanishing trace anomalies.
Three-Dimensional Bone Adaptation of the Proximal Femur
DEFF Research Database (Denmark)
Bagge, Mette
1998-01-01
The bone remodeling of a three-dimensional model of the proximal femur is considered. The bone adaptation is numerically described as an evolution in time formulated such that the structural change goes in an optimal direction within each time step for the optimal boundary conditions. In the bone...... remodeling scheme is included the memory of past loadings to account for the delay in the bone response to the load changes. In order to get a realistic bone adaptation process, the bone structure at the onset of the remodeling needs to be realistic too. A start design is obtained by structural optimization...
Black holes in three-dimensional dilaton gravity theories
Sá, P M; Lemos, J P S; Sa, Paulo M; Kleber, Antares; Lemos, Jose P S
1995-01-01
Three dimensional black holes in a generalized dilaton gravity action theory are analysed. The theory is specified by two fields, the dilaton and the graviton, and two parameters, the cosmological constant and the Brans-Dicke parameter. It contains seven different cases, of which one distinguishes as special cases, string theory, general relativity and a theory equivalent to four dimensional general relativity with one Killing vector. We study the causal structure and geodesic motion of null and timelike particles in the black hole geometries and find the ADM masses of the different solutions.
Three Dimensional Digital Image Processing using Edge Detectors
Directory of Open Access Journals (Sweden)
John Schmeelk
2005-11-01
Full Text Available This paper provides an introduction to three dimensional image edge detection and its relationship to partial derivatives, convolutions and wavelets. We are especially addressing the notion of edge detection because it has far reaching applications in all areas of research to include medical research. A patient can be diagnosed as having an aneurysm by studying an angiogram. An angiogram is the visual view of the blood vessels whereby the edges are highlighted through the implementation of edge detectors. This process is completed through convolution, wavelets and matrix techniques. Some illustrations included will be vertical, horizontal, Sobel and wavelet edge detectors.
AN EXAMPLE OF THREE-DIMENSIONAL PROGRESSIVE SLOPE FAILURE
Institute of Scientific and Technical Information of China (English)
王家臣; 骆中洲
1995-01-01
In fact, the failure of any slope takes place progressively, but the progressive failure mechanism has not been emphasized sufficently in the present stability analysis of slopes. This paper provides an example of the progressive slope failure which took place at Pingzhuang west surface coal mine and was numbered the 26th slide. The three-dimensional reliability model for progressive slope failure is used to study the failure process of the 26th slide. The outcomes indicate that the progressive failure is indeed the failure mechanism of the slide.
Half-filled Landau level, topological insulator surfaces, and three-dimensional quantum spin liquids
Wang, Chong; Senthil, T.
2016-02-01
We synthesize and partly review recent developments relating the physics of the half-filled Landau level in two dimensions to correlated surface states of topological insulators in three dimensions. The latter are in turn related to the physics of certain three-dimensional quantum spin liquid states. The resulting insights provide an interesting answer to the old question of how particle-hole symmetry is realized in composite fermion liquids. Specifically the metallic state at filling ν =1/2 —described originally in pioneering work by Halperin, Lee, and Read as a liquid of composite fermions—was proposed recently by Son to be described by a particle-hole symmetric effective field theory distinct from that in the prior literature. We show how the relation to topological insulator surface states leads to a physical understanding of the correctness of this proposal. We develop a simple picture of the particle-hole symmetric composite fermion through a modification of older pictures as electrically neutral "dipolar" particles. We revisit the phenomenology of composite fermi liquids (with or without particle-hole symmetry), and show that their heat/electrical transport dramatically violates the conventional Wiedemann-Franz law but satisfies a modified one. We also discuss the implications of these insights for finding physical realizations of correlated topological insulator surfaces.
Frozen Gaussian approximation for three-dimensional seismic wave propagation
Chai, Lihui; Tong, Ping; Yang, Xu
2016-09-01
We present a systematic introduction on applying frozen Gaussian approximation (FGA) to compute synthetic seismograms in three-dimensional earth models. In this method, seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Rather than the coherent state solution to the wave equation, this method is rigorously derived by asymptotic expansion on phase plane, with analysis of its accuracy determined by the ratio of short wavelength over large domain size. Similar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively small number of Gaussians to get accurate approximations of high-frequency wavefield. The algorithm is embarrassingly parallel, which can drastically speed up the computation with a multicore-processor computer station. We illustrate the accuracy and efficiency of the method by comparing it to the spectral element method for a three-dimensional (3D) seismic wave propagation in homogeneous media, where one has the analytical solution as a benchmark. As another proof of methodology, simulations of high-frequency seismic wave propagation in heterogeneous media are performed for 3D waveguide model and smoothed Marmousi model respectively. The second contribution of this paper is that, we incorporate the Snell's law into the FGA formulation, and asymptotically derive reflection, transmission and free surface conditions for FGA to compute high-frequency seismic wave propagation in high contrast media. We numerically test these conditions by computing traveltime kernels of different phases in the 3D crust-over-mantle model.
Three-dimensional bioprinting in tissue engineering and regenerative medicine.
Gao, Guifang; Cui, Xiaofeng
2016-02-01
With the advances of stem cell research, development of intelligent biomaterials and three-dimensional biofabrication strategies, highly mimicked tissue or organs can be engineered. Among all the biofabrication approaches, bioprinting based on inkjet printing technology has the promises to deliver and create biomimicked tissue with high throughput, digital control, and the capacity of single cell manipulation. Therefore, this enabling technology has great potential in regenerative medicine and translational applications. The most current advances in organ and tissue bioprinting based on the thermal inkjet printing technology are described in this review, including vasculature, muscle, cartilage, and bone. In addition, the benign side effect of bioprinting to the printed mammalian cells can be utilized for gene or drug delivery, which can be achieved conveniently during precise cell placement for tissue construction. With layer-by-layer assembly, three-dimensional tissues with complex structures can be printed using converted medical images. Therefore, bioprinting based on thermal inkjet is so far the most optimal solution to engineer vascular system to the thick and complex tissues. Collectively, bioprinting has great potential and broad applications in tissue engineering and regenerative medicine. The future advances of bioprinting include the integration of different printing mechanisms to engineer biphasic or triphasic tissues with optimized scaffolds and further understanding of stem cell biology.
Modular transportation system with a three dimensional routeing
Directory of Open Access Journals (Sweden)
Löffler Christoph
2015-12-01
Full Text Available In intra-enterprise logistics and automation of manufacturing processes general a rising productivity by high flexibility is required. Existing transportation systems exclusively use two-dimensional track sections, because they can be served with standard drives. Because of these simple structures the transport speed is limited and thereby also the throughput. In this paper now a modular transportation system is presented which could reach higher speeds with a direct drive and the use of centrifugal force compensating curves. Simultaneously the system also can change the altitude. All this succeeds with the integration of three-dimensional track sections. Therefore a two piped guiding system with a long stator linear motor was designed. To combine the linear motor with the three dimensional track special stator elements were developed which allow a bending of the stator to follow the route course. The current work deals with the implementation of a mechanical passive switch, which is operated by the electromagnetic forces of the linear motor. So no additional mechanical actors or a separate electromagnetic system are necessary.
Three-dimensional flows in a transonic compressor rotor
Reid, Lonnie; Celestina, Mark L.; Dewitt, Kenneth; Keith, Theo
1991-01-01
This study involves an experimental and numerical investigation of the three-dimensional flows in a transonic compressor rotor. A variety of data which could be used, in a complementary fashion, to validate/calibrate the computational fluid dynamics turbomachinery code and improve understanding of the flow physics, were acquired. Detailed radial survey data which consisted of total pressure, total temperature, static pressure and flow angle were obtained at stations upstream and downstream of the rotor blade. Detailed velocity and turbulence profiles were obtained upstream of the rotor and used as the upstream boundary conditions for the numerical analysis. Calibrated flush-mounted hot film probes were used to measure wall shear stress on the hub and casing walls upstream of the rotor. The blade-to-blade shear-stress angle distributions were obtained at two axial locations on the rotor casing, using flush-mounted hot film probes. A numerical analysis conducted using a three-dimensional Navier-Stokes code was compared with the experimental results.
Three-dimensional Majorana fermions in chiral superconductors.
Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang
2016-12-01
Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.
Three-dimensional Echocardiography in Valvular Heart Disease.
Kurklinsky, Andrew; Mankad, Sunil
2012-01-01
Recent technologic advances in 3-dimensional (3D) echocardiography, using parallel processing to scan a pyramidal volume, have allowed for a superior ability to describe valvular anatomy using both transthoracic and transesophageal echocardiography. Although still in evolution and at an early phase of adaptation with respect to its clinical application, 3D echocardiography has emerged as an important clinical tool in the assessment of valvular heart disease. Three-dimensional echocardiography provides unique perspectives of valvular structures by presenting "en face" views of valvular structures, allowing for a better understanding of the topographical aspects of pathology, and a refined definition of the spatial relationships of intracardiac structures. Three-dimensional echocardiography makes available indices not described by 2D echocardiography and has been demonstrated to be superior to 2D echocardiography in a variety of valvular disease scenarios. The information gained from 3D echocardiography has especially made an impact in guiding clinical decisions in the evaluation of mitral valve (MV) disease. The decision of early surgery in degenerative MV disease is based on the suitability of repair, and the suitability of repair is generally based on echocardiography. The superior understanding of MV anatomy afforded by 3D echocardiography has been shown to be quite valuable in this setting. This review will describe the contemporary use of 3D echocardiography in the assessment of valvular heart disease, including MV, aortic, tricuspid, and prosthetic valve abnormalities. This article illustrates how 3D echocardiography can complement current echocardiography techniques in the management of valvular heart disease.
Three-dimensional vision sensors for autonomous robots
Uchiyama, Takashi; Okabayashi, Keizyu; Wakitani, Jun
1993-09-01
A three dimensional measurement system, which is important for developing autonomous robots is described. Industrial robots used in today's plants are of the preprogrammed teaching playback type. It is necessary to develop autonomous robots which can work based on sensor information for intelligent manufacturing systems. Moreover, practical use of robots which work in unstructured environments such as outdoors and in space is expected. To realize this, a function to measure objects and the environment three-dimensionally is a key technology. Additional important requirements for robotic sensors are real-time processing and compactness. We have developed smart 3-D vision sensors for the purpose of realizing autonomous robots. These are two kinds of sensors with different functions corresponding to the application. One is a slitted light range finder ( SLRF ) to measure stationary objects. The other is a real-time tracking vision ( RTTV ) which can measure moving objects at high speed. SLRF uses multiple slitted lights which are generated by a semiconductor laser through an interference filter and a cylindrical lens. Furthermore, we developed a liquid crystal shutter with multiple electrodes. We devised a technique to make coded slitted light by putting this shutter in front of the light source. As a result, using the principle of triangulation, objects can be measured in three dimensions. In addition, high-speed image input was enabled by projecting multiple slitted light at the same time. We have confirmed the effectiveness of the SLRF applied to a hand-eye system using a robot.
Three-Dimensional Dynamical Instabilities in Galactic Ionization Fronts
Whalen, Daniel J.; Norman, Michael L.
2008-01-01
Ionization front instabilities have long been of interest for their suspected role in a variety of phenomena in the Galaxy, from the formation of bright rims and "elephant trunks" in nebulae to triggered star formation in molecular clouds. Numerical treatments of these instabilities have historically been limited in both dimensionality and input physics, leaving important questions about their true evolution unanswered. We present the first three-dimensional radiation hydrodynamical calculations of both R-type (rarefied) and D-type (dense) ionization front instabilities in Galactic environments (i.e., solar-metallicity gas). Consistent with linear stability analyses of planar D-type fronts, our models exhibit many short-wavelength perturbations that grow at early times and later evolve into fewer large-wavelength structures. The simulations demonstrate that both self-consistent radiative transfer and three-dimensional flow introduce significant morphological differences to unstable modes when compared to earlier two-dimensional approximate models. We find that the amplitude of the instabilities in the nonlinear regime is primarily determined by the efficiency of cooling within the shocked neutral shell. Strong radiative cooling leads to long, extended structures with pronounced clumping, while weaker cooling leads to saturated modes that devolve into turbulent flows. These results suggest that expanding H II regions may either promote or provide turbulent support against the formation of later generations of stars, with potential consequences for star formation rates in the Galaxy today.
Three dimensional visualisation of human facial exposure to solar ultraviolet.
Downs, Nathan; Parisi, Alfio
2007-01-01
A three dimensional computer model of the human face has been developed to represent solar ultraviolet exposures recorded by dosimeter measurements on a manikin headform under low cloud conditions and various solar zenith angles. Additionally, polysulfone dosimeters have been successfully miniaturised to provide the detailed measurements required across the face. The headform used in this research was scanned at 709 individual locations to make a wireframe mesh consisting of 18 vertical contours and 49 horizontal contours covering half the manikin's frontal facial topography. Additionally, the back of the headform and neck have also been scanned at 576 locations. Each scanned location has been used as a viable dosimeter position on the headform and represents a grid intersection point on the developed computer wireframe. A series of exposures recorded by dosimeters have been translated into three dimensional exposure ratio maps, representing ambient solar ultraviolet exposure. High dosimeter density has allowed for the development of individual topographic contour models which take into account complex variation in the face and improve upon previously employed techniques which utilise fewer dosimeters to interpolate exposure across facial contours. Exposure ratios for solar zenith angle ranges of 0 degrees -30 degrees, 30 degrees -50 degrees, and 50 degrees -80 degrees have been developed.
Nanoscale three-dimensional imaging of the human myocyte.
Sulkin, Matthew S; Yang, Fei; Holzem, Katherine M; Van Leer, Brandon; Bugge, Cliff; Laughner, Jacob I; Green, Karen; Efimov, Igor R
2014-10-01
The ventricular human myocyte is spatially organized for optimal ATP and Ca(2+) delivery to sarcomeric myosin and ionic pumps during every excitation-contraction cycle. Comprehension of three-dimensional geometry of the tightly packed ultrastructure has been derived from discontinuous two-dimensional images, but has never been precisely reconstructed or analyzed in human myocardium. Using a focused ion beam scanning electron microscope, we created nanoscale resolution serial images to quantify the three-dimensional ultrastructure of a human left ventricular myocyte. Transverse tubules (t-tubule), lipid droplets, A-bands, and mitochondria occupy 1.8, 1.9, 10.8, and 27.9% of the myocyte volume, respectively. The complex t-tubule system has a small tortuosity (1.04±0.01), and is composed of long transverse segments with diameters of 317±24nm and short branches. Our data indicates that lipid droplets located well beneath the sarcolemma are proximal to t-tubules, where 59% (13 of 22) of lipid droplet centroids are within 0.50μm of a t-tubule. This spatial association could have an important implication in the development and treatment of heart failure because it connects two independently known pathophysiological alterations, a substrate switch from fatty acids to glucose and t-tubular derangement.
Three-dimensional percolation modeling of self-healing composites.
Dementsov, Alexander; Privman, Vladimir
2008-08-01
We study the self-healing process of materials with embedded "glue"-carrying cells, in the regime of the onset of the initial fatigue. Three-dimensional numerical simulations within the percolation-model approach are reported. The main numerical challenge taken up in the present work has been to extend the calculation of the conductance to three-dimensional lattices. Our results confirm the general features of the process: The onset of material fatigue is delayed, by development of a plateaulike time dependence of the material quality. We demonstrate that, in this low-damage regime, the changes in the conductance and thus in similar transport and response properties of the material can be used as measures of the material quality degradation. A new feature found for three dimensions, where it is much more profound than in earlier-studied two-dimensional systems, is the competition between the healing cells. Even for low initial densities of the healing cells, they interfere with each other and reduce each other's effective healing efficiency.
Three-dimensional shock wave diffraction off a discontinuous edge
Cooppan, S.; Skews, B.
2017-03-01
The interaction of three-dimensional vortex flows was investigated through vortex shedding off a discontinuous edge. Two wedges of 14.5° wedge angle (up and downstream edges) were separated by an offset. The size of the offset (5, 10, and 20 mm) and the Mach number (Mach 1.32, 1.42, and 1.6) were the key parameters investigated. Experimental images were taken and computational simulations were run; a close relation was found between the two. This enabled the three-dimensional effects of the flow to be studied and analysed. It was found, as the offset increased in size, the vortices shed off the up and downstream edges took a longer time to merge and the strength of the interaction was weaker. The vortex topology changed with a larger offset; the downstream vortex was thinner (in terms of cross-sectional diameter) adjacent to the offset, which is an indication of a change in density, than the rest of the vortex along the downstream diffraction edge. This particular feature was more prevalent at lower Mach numbers. The effect of a higher Mach number was to increase the rate of dissipation of the vortices, lengthen the shear layer due to the higher upstream velocity, and make the vortex profile elliptical.
Direct-writing organic three-dimensional nanofibrous structure
Wang, Han; Zheng, Gaofeng; Li, Wenwang; Wang, Xiang; Sun, Daoheng
2011-02-01
Direct-writing technology based on Near-Field Electrospinning (NFES) was used to fabricate an organic three-dimensional nanofibrous circle on the patterned silicon substrate. In NFES, straight jet without splitting and chaotic motion was utilized to direct-write orderly nanofiber. When the collector movement speed was lower than electrospinning rate, the relaxed nanofiber would be lead into the pendulum motion by the electrical field force and Coulomb repulsion force from the residual charges on the collector. When the relative air humidity is lower than 35%, individual nanofiber with larger elastic resistance would reveal a good self-assembly performance. Owing to the guidance of the electric field force at the edge of the micro-pattern, a nanofiber was deposited layer by layer to format a 3D nanofibrous circle on the top surface of the micro-pattern. The dimension scale of 3D nanofibrous circle was smaller than 30 µm. With the help of a microscope, a 3D nanofibrous circle can be deposited precisely on the strip micro-pattern with width of 4 µm. Furthermore, a 3D nanofibrous circle in different shapes can be obtained by using special micro-patterns. This organic three-dimensional nanofibrous circle has created a new aspect for the fabrication of organic micro/nanosystems.
Three-Dimensional Turbulent Reconnection Induced by the Plasmoid Instability
Bhattacharjee, A.; Huang, Y. M.
2014-12-01
It has been established that the Sweet-Parker current layer in high-Lundquist-number reconnection is unstable to the super-Alfvenic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime in which the Sweet-Parker current layer evolves into a chain of plasmoids connected by secondary current sheets and the averaged reconnection rate becomes nearly independent of the Lundquist number. In a three-dimensional configuration with a guide field, the additional degree of freedom allows plasmoid instabilities to grow at oblique angles [S. Baalrud et al. Phys. Plasmas 19, 022101 (2012)] and develop the complex dynamics of flux ropes which overlap, cause field-line stochasticization, and self-generate a turbulent state. Three-dimensional simulations in the high-Lundquist-number regime show the formation of cigar-shaped eddies elongated in the direction of the local magnetic field, which is a signature of anisotropic MHD turbulence. Furthermore, the energy fluctuation spectra are found to satisfy power laws in the inertial range. The averaged 3D reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfven speed, which is an order of magnitude lower than the reconnection rate reported in recent studies of externally driven 3D turbulent reconnection. The physical reasons for these differences will be discussed.
Tailoring thermal conductivity via three-dimensional porous alumina
Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol
2016-12-01
Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m-1·K-1, which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties.
Three-dimensional finite element analysis of platform switched implant
2017-01-01
PURPOSE The purpose of this study was to analyze the influence of the platform switching concept on an implant system and peri-implant bone using three-dimensional finite element analysis. MATERIALS AND METHODS Two three-dimensional finite element models for wide platform and platform switching were created. In the wide platform model, a wide platform abutment was connected to a wide platform implant. In the platform switching model, the wide platform abutment of the wide platform model was replaced by a regular platform abutment. A contact condition was set between the implant components. A vertical load of 300 N was applied to the crown. The maximum von Mises stress values and displacements of the two models were compared to analyze the biomechanical behavior of the models. RESULTS In the two models, the stress was mainly concentrated at the bottom of the abutment and the top surface of the implant in both models. However, the von Mises stress values were much higher in the platform switching model in most of the components, except for the bone. The highest von Mises values and stress distribution pattern of the bone were similar in the two models. The components of the platform switching model showed greater displacement than those of the wide platform model. CONCLUSION Due to the stress concentration generated in the implant and the prosthodontic components of the platform switched implant, the mechanical complications might occur when platform switching concept is used. PMID:28243389
Automated photogrammetry for three-dimensional models of urban spaces
Leberl, Franz; Meixner, Philipp; Wendel, Andreas; Irschara, Arnold
2012-02-01
The location-aware Internet is inspiring intensive work addressing the automated assembly of three-dimensional models of urban spaces with their buildings, circulation spaces, vegetation, signs, even their above-ground and underground utility lines. Two-dimensional geographic information systems (GISs) and municipal utility information exist and can serve to guide the creation of models being built with aerial, sometimes satellite imagery, streetside images, indoor imaging, and alternatively with light detection and ranging systems (LiDARs) carried on airplanes, cars, or mounted on tripods. We review the results of current research to automate the information extraction from sensor data. We show that aerial photography at ground sampling distances (GSD) of 1 to 10 cm is well suited to provide geometry data about building facades and roofs, that streetside imagery at 0.5 to 2 cm is particularly interesting when it is collected within community photo collections (CPCs) by the general public, and that the transition to digital imaging has opened the no-cost option of highly overlapping images in support of a more complete and thus more economical automation. LiDAR-systems are a widely used source of three-dimensional data, but they deliver information not really superior to digital photography.
A Three-Dimensional Map of Milky-Way Dust
Green, Gregory M; Finkbeiner, Douglas P; Rix, Hans-Walter; Martin, Nicolas; Burgett, William; Draper, Peter W; Flewelling, Heather; Hodapp, Klaus; Kaiser, Nicholas; Kudritzki, Rolf Peter; Magnier, Eugene; Metcalfe, Nigel; Price, Paul; Tonry, John; Wainscoat, Richard
2015-01-01
We present a three-dimensional map of interstellar dust reddening, covering three-quarters of the sky out to a distance of several kiloparsecs, based on Pan-STARRS 1 and 2MASS photometry. The map reveals a wealth of detailed structure, from filaments to large cloud complexes. The map has a hybrid angular resolution, with most of the map at an angular resolution of 3.4' to 13.7', and a maximum distance resolution of ~25%. The three-dimensional distribution of dust is determined in a fully probabilistic framework, yielding the uncertainty in the reddening distribution along each line of sight, as well as stellar distances, reddenings and classifications for 800 million stars detected by Pan-STARRS 1. We demonstrate the consistency of our reddening estimates with those of two-dimensional emission-based maps of dust reddening. In particular, we find agreement with the Planck 353 GHz optical depth-based reddening map to within 0.05 mag in E(B-V) to a depth of 0.5 mag, and explore systematics at reddenings less tha...
Three-dimensional protonic conductivity in porous organic cage solids
Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y.; Little, Marc A.; Hasell, Tom; Aldous, Iain M.; Brown, Craig M.; Smith, Martin W.; Morrison, Carole A.; Hardwick, Laurence J.; Cooper, Andrew I.
2016-09-01
Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10-3 S cm-1 at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores.
Three-dimensional recurring patterns in excitable media
Energy Technology Data Exchange (ETDEWEB)
Biton, Y. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Rabinovitch, A., E-mail: avinoam@bgu.ac.il [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Braunstein, D. [Physics Department, Sami Shamoon College of Engineering, Beer-Sheva (Israel); Friedman, M. [Department of Information Systems Engineering, Ben-Gurion University, Beer-Sheva 84105 (Israel); Aviram, I. [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)
2011-06-13
A new method to create three-dimensional periodic patterns in excitable media is presented. The method is demonstrated and the patterns are obtained with the help of two types of 3D 'spiral pairs' generators, which are respectively based on a 'corner effect' and a 'unidirectional propagation' processes. The results portray time-repeating patterns resembling fruits or potteries. The method is easy to implement and can be used to form other types of 3D patterns in excitable media. The question of periodicity of the patterns thus obtained is resolved by calculating the singular lines (filaments) around which they evolve and showing their unique reattachment property. Actual realizations could be conceived e.g. in chemical reactions such as Belousov-Zhabotinsky. Possible severe cardiac arrhythmias following the appearance of such patterns in the action potential of the heart are considered. -- Highlights: → New method to create three-dimensional periodic patterns in excitable media. → Singular lines (filaments) for the corner effect are presented. → Filaments are shown to exhibit periodic behavior.
Three-dimensional solidification and melting using magnetic field control
Dulikravich, George S.; Ahuja, Vineet
1993-01-01
A new two-fluid mathematical model for fully three dimensional steady solidification under the influence of an arbitrary acceleration vector and with or without an arbitrary externally applied steady magnetic field have been formulated and integrated numerically. The model includes Joule heating and allows for separate temperature dependent physical properties within the melt and the solid. Latent heat of phase change during melting/solidification was incorporated using an enthalpy method. Mushy region was automatically captured by varying viscosity orders of magnitude between liquidus and solidus temperature. Computational results were obtained for silicon melt solidification in a parallelepiped container cooled from above and from a side. The results confirm that the magnetic field has a profound influence on the solidifying melt flow field thus changing convective heat transfer through the boundaries and the amount and shape of the solid accrued. This suggests that development of a quick-response algorithm for active control of three dimensional solidification is feasible since it would require low strength magnetic fields.
Tailoring thermal conductivity via three-dimensional porous alumina.
Abad, Begoña; Maiz, Jon; Ruiz-Clavijo, Alejandra; Caballero-Calero, Olga; Martin-Gonzalez, Marisol
2016-12-09
Three-dimensional anodic alumina templates (3D-AAO) are an astonishing framework with open highly ordered three-dimensional skeleton structures. Since these templates are architecturally different from conventional solids or porous templates, they teem with opportunities for engineering thermal properties. By establishing the mechanisms of heat transfer in these frameworks, we aim to create materials with tailored thermal properties. The effective thermal conductivity of an empty 3D-AAO membrane was measured. As the effective medium theory was not valid to extract the skeletal thermal conductivity of 3D-AAO, a simple 3D thermal conduction model was developed, based on a mixed series and parallel thermal resistor circuit, giving a skeletal thermal conductivity value of approximately 1.25 W·m(-1)·K(-1), which matches the value of the ordinary AAO membranes prepared from the same acid solution. The effect of different filler materials as well as the variation of the number of transversal nanochannels and the length of the 3D-AAO membrane in the effective thermal conductivity of the composite was studied. Finally, the thermal conductivity of two 3D-AAO membranes filled with cobalt and bismuth telluride was also measured, which was in good agreement with the thermal model predictions. Therefore, this work proved this structure as a powerful approach to tailor thermal properties.
Three-Dimensional Concentration Measurements around Actively Tracking Blue Crabs
Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.; Webster, D. R.
2006-11-01
Many aquatic arthropods locate food, suitable habitats, and mates solely through information extracted by chemical signals in their environment. Chemical plumes detected by larger animals are influenced by turbulence that creates an intermittent and unpredictable chemical stimulus environment. To link the stimulus pattern to behavior, we have developed a measurement system to quantify the instantaneous odor concentration surrounding a freely tracking blue crab through three-dimensional laser-induced fluorescence (3DLIF). A blue crab receives chemical stimulus at several locations, including the antennules near the mouth region and the distal tips of the legs and claws. Hence, three-dimensional measurements of the concentration field are required to link behavior to plume structure. During trials, crabs began their search 150 cm downstream of a source, and walking kinematics were recording simultaneously. The crabs were reversibly ``blindfolded'' during tracking to prevent aversive reactions to the intense laser light. Our experiments allow us to examine how hypothesized navigational cues, such as concentration bursts at the antennules and spatial asymmetry in concentration at the distributed chemosensory organs on the legs and claws, results in particular decisions during navigation.
Three-dimensional angular domain optical projection tomography
Ng, Eldon; Vasefi, Fartash; Roumeliotis, Michael; Kaminska, Bozena; Carson, Jeffrey J. L.
2011-03-01
Angular Domain Imaging (ADI) has been previously demonstrated to generate projection images of attenuating targets embedded within a turbid medium. The imaging system employs a silicon micro-tunnel array positioned between the sample and the detection system to reject scattered photons that have deviated from the initial propagation direction and to select for ballistic and quasi-ballistic photons that have retained their forward trajectory. Two dimensional tomographic images can be reconstructed from ADI projections collected at a multitude of angles. The objective of this work was to extend the system to three dimensions by collecting several tomographic images and stacking the reconstructed slices to generate a three dimensional volume representative of the imaging target. A diode laser (808nm, CW) with a beam expander was used to illuminate the sample cuvette. An Angular Filter Array (AFA) of 80 μm × 80 μm square-shaped tunnels 2 cm in length was used to select for image forming quasi-ballistic photons. Images were detected with a linear CCD. Our approach was to use a SCARA robot to rotate and translate the sample to collect sufficient projections to reconstruct a three dimensional volume. A custom designed 3D target consisting of 4 truncated cones was imaged and reconstructed with filtered backprojection and iterative methods. A 0.5 mm graphite rod was used to collect the forward model, while a truncated pseudoinverse was used to approximate the backward model for the iterative algorithm.
Transect-based Three-Dimensional Road Modeling and Visualization
Institute of Scientific and Technical Information of China (English)
LI Qingquan; TANG Luliang; ZUO Xiaoqing; LI Hanwu
2004-01-01
On the basis of the study on road elements and the existing three-dimensional road data models, this paper puts forward the transect-based road modeling, resolves the modeling of the simplest road with two road transects, and fulfils the visualization of the road. OpenGL is applied as the tool of visualization. The map texture technology, LOD algorithm and dynamic multi-differentiating texture technology are of benefit to the construction of 3D road GIS, and improve the speed of roaming and effective visualization. This paper also disusses the combination of 2D digitall road map and 3D road scene, and the dynamic response between them. Finally, on the basis of the research on the transect-based road model, this paper develops the three-dimensional road geographic information system called virtual road ( VRoad ), which not only supplies road designers with a set of tool which can turn the designed 2D road data into 3D road and the high road assistant function area in computer, but also supplies the road management with a set of tool which can realize the road real time and interactive roaming, high-efficiency management.
Three Dimensional Culture of Human Renal Cell Carcinoma Organoids.
Directory of Open Access Journals (Sweden)
Cynthia A Batchelder
Full Text Available Renal cell carcinomas arise from the nephron but are heterogeneous in disease biology, clinical behavior, prognosis, and response to systemic therapy. Development of patient-specific in vitro models that efficiently and faithfully reproduce the in vivo phenotype may provide a means to develop personalized therapies for this diverse carcinoma. Studies to maintain and model tumor phenotypes in vitro were conducted with emerging three-dimensional culture techniques and natural scaffolding materials. Human renal cell carcinomas were individually characterized by histology, immunohistochemistry, and quantitative PCR to establish the characteristics of each tumor. Isolated cells were cultured on renal extracellular matrix and compared to a novel polysaccharide scaffold to assess cell-scaffold interactions, development of organoids, and maintenance of gene expression signatures over time in culture. Renal cell carcinomas cultured on renal extracellular matrix repopulated tubules or vessel lumens in renal pyramids and medullary rays, but cells were not observed in glomeruli or outer cortical regions of the scaffold. In the polysaccharide scaffold, renal cell carcinomas formed aggregates that were loosely attached to the scaffold or free-floating within the matrix. Molecular analysis of cell-scaffold constructs including immunohistochemistry and quantitative PCR demonstrated that individual tumor phenotypes could be sustained for up to 21 days in culture on both scaffolds, and in comparison to outcomes in two-dimensional monolayer cultures. The use of three-dimensional scaffolds to engineer a personalized in vitro renal cell carcinoma model provides opportunities to advance understanding of this disease.
Three-dimensional imaging using differential synthetic aperture interferometry
Zhang, Ning; Zhou, Yu; Sun, Jianfeng; Zhi, Ya'nan; Lu, Zhiyong; Xu, Qian; Sun, Zhiwei; Liu, Liren
2014-09-01
Synthetic aperture radar interferometry (InSAR) can gain three-dimensional topography with high spatial resolution and height accuracy using across track interferometry[1]. Conventional InSAR produce three-dimensional images from SAR data. But when the working wavelength transit from microwave to optical wave, the transmission antenna and receive antenna become very sensitive to platform vibration and beam quality[2]. Through differential receive antenna formation, we can relax the requirement of platform and laser using synthetic aperture imaging ladar (SAIL) concept[3]. Line-of-sight motion constraints are reduced by several orders of magnitude. We introduce two distinctive forms of antenna formation according to the position of interferogram. The first architecture can simplify the interferogram processing and phase extraction algorithm under time-division multiplex operation. The second architecture can process the 2D coordinate and height coordinate at the same time. Using optical diffraction theory, a systematic theory of side-looking SAIL is mathematically formulated and the necessary conditions for assuring a correct phase history are established[4]. Based on optical transformation and regulation of wavefront, a side-looking SAIL of two distinctive architectures is invented and the basic principle, systematic theory, design equations and necessary conditions are presented. It is shown that high height accuracy can be reached and the influences from atmospheric turbulence and unmodeled line-of-sight motion can be automatically compensated.
Three-dimensional scene capturing for the virtual reality display
Dong, Jingsheng; Sang, Xinzhu; Guo, Nan; Chen, Duo; Yan, Binbin; Wang, Kuiru; Dou, Wenhua; Xiao, Liquan
2016-10-01
A virtual reality shooting and display system based on multiple degrees of freedom camera is designed and demonstrated. Three-dimensional scene display and the wide angle display can be achieved easily and quickly through the construction with the proposed system. The range of the viewing scene can be broaden with the image stitching process, and the display in the demonstrated system can achieve the effect of wide angle for applications of image mosaic. In the meantime, the system can realize 3D scene display, which can effectively reduce the complexity of the 3D scene generation, and provide a foundation for adding interactive characteristics for the 3D scene in the future. The system includes an adjustable bracket, computer software, and a virtual reality device. Multiple degrees of freedom of the adjustable bracket are developed to obtain 3D scene source images and mosaic source images easily. 5 degrees of freedom are realized, including rotation, lifting, translation, convergence and pitching. To realize the generation and display of three-dimensional scenes, two cameras are adjusted into a parallel state. With the process of image distortion eliminating and calibration, the image is transferred to the virtual reality device for display. In order to realize wide angle display, the cameras are adjusted into "V" type. The preprocessing includes image matching and fusion to realize image stitching. The mosaic image is transferred for virtual reality display with its image reading and display functions. The wide angle 3D scene display is realized by adjusting different states.
Three-dimensional volumetric quantification of fat loss following cryolipolysis.
Garibyan, Lilit; Sipprell, William H; Jalian, H Ray; Sakamoto, Fernanda H; Avram, Mathew; Anderson, R Rox
2014-02-01
Cryolipolysis is a noninvasive and well-tolerated treatment for reduction of localized subcutaneous fat. Although several studies demonstrate the safety and efficacy of this procedure, volumetric fat reduction from this treatment has not been quantified. This prospective study investigated the change in volume of fat after cryolipolysis treatment using three-dimensional (3D) photography. A prospective study of subjects treated with cryolipolysis on the flank (love handle) was performed at Massachusetts General Hospital. Volume measurements were performed with a Canfield Scientific Vectra three-dimensional camera and software to evaluate the amount of post procedure volume change. Clinical outcomes were assessed with caliper measurements, subject surveys, and blinded physician assessment of photographs. Eleven subjects were enrolled in this study. Each subject underwent a single cycle of cryolipolysis to one flank. The untreated flank served as an internal control. The follow-up time after treatment was 2 months. The mean amount of calculated absolute fat volume loss using 3D photography from baseline to 2 months follow-up visit was 56.2 ± 25.6 from the treatment site and 16.6 ± 17.6 cc from the control (P fat removal methodology that on average leads to 39.6 cc of fat loss of the treated flank at 2 months after a single treatment cycle. © 2013 Wiley Periodicals, Inc.
Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors
Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda
2017-06-01
This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.
Three Dimensional Quantum Geometry and Deformed Poincare Symmetry
Joung, E; Noui, K
2008-01-01
We study a three dimensional non-commutative space emerging in the context of three dimensional Euclidean quantum gravity. Our starting point is the assumption that the isometry group is deformed to the Drinfeld double D(SU(2)). We generalize to the deformed case the construction of the flat Euclidean space as the quotient of its isometry group ISU(2) by SU(2). We show that the algebra of functions becomes the non-commutative algebra of SU(2) distributions endowed with the convolution product. This construction gives the action of ISU(2) on the algebra and allows the determination of plane waves and coordinate functions. In particular, we show that: (i) plane waves have bounded momenta; (ii) to a given momentum are associated several SU(2) elements leading to an effective description of an element in the algebra in terms of several physical scalar fields; (iii) their product leads to a deformed addition rule of momenta consistent with the bound on the spectrum. We generalize to the non-commutative setting the...
The Bio Bay Game: Three-Dimensional Learning of Biomagnification.
Jasti, Chandana; Lauren, Hillary; Wallon, Robert C; Hug, Barbara
2016-01-01
Pressing concerns about sustainability and the state of the environment amplify the need to teach students about the connections between ecosystem health, toxicology, and human health. Additionally, the Next Generation Science Standards call for three-dimensional science learning, which integrates disciplinary core ideas, scientific practices, and crosscutting concepts. The Bio Bay Game is a way to teach students about the biomagnification of toxicants across trophic levels while engaging them in three-dimensional learning. In the game, the class models the biomagnification of mercury in a simple aquatic food chain as they play the roles of anchovies, tuna, and humans. While playing, the class generates data, which they analyze after the game to graphically visualize the buildup of toxicants. Students also read and discuss two articles that draw connections to a real-world case. The activity ends with students applying their understanding to evaluate the game as a model of biomagnification. Throughout the activity, students practice modeling and data analysis and engage with the crosscutting concepts of patterns and cause and effect to develop an understanding of core ideas about the connections between humans and the environment.
Topology of Flow Separation on Three-Dimensional Bodies
Chapman, Gary T.; Yates, Leslie A.
1991-01-01
In recent years there has been extensive research on three-dimensional flow separation. There are two different approaches: the phenomenological approach and a mathematical approach using topology. These two approaches are reviewed briefly and the shortcomings of some of the past works are discussed. A comprehensive approach applicable to incompressible and compressible steady-state flows as well as incompressible unsteady flow is then presented. The approach is similar to earlier topological approaches to separation but is more complete and in some cases adds more emphasis to certain points than in the past. To assist in the classification of various types of flow, nomenclature is introduced to describe the skin-friction portraits on the surface. This method of classification is then demonstrated on several categories of flow to illustrate particular points as well as the diversity of flow separation. The categories include attached, two-dimensional separation and three different types of simple, three-dimensional primary separation, secondary separation, and compound separation. Hypothetical experiments are utilized to illustrate the topological terminology and its role in characterizing these flows. These hypothetical experiments use colored oil injected onto the surface at singular points in the skin-friction portrait. Actual flow-visualization information, if available, is used to corroborate the hypothetical examples.
Three-dimensional protonic conductivity in porous organic cage solids
Liu, Ming; Chen, Linjiang; Lewis, Scott; Chong, Samantha Y.; Little, Marc A.; Hasell, Tom; Aldous, Iain M.; Brown, Craig M.; Smith, Martin W.; Morrison, Carole A.; Hardwick, Laurence J.; Cooper, Andrew I.
2016-01-01
Proton conduction is a fundamental process in biology and in devices such as proton exchange membrane fuel cells. To maximize proton conduction, three-dimensional conduction pathways are preferred over one-dimensional pathways, which prevent conduction in two dimensions. Many crystalline porous solids to date show one-dimensional proton conduction. Here we report porous molecular cages with proton conductivities (up to 10−3 S cm−1 at high relative humidity) that compete with extended metal-organic frameworks. The structure of the organic cage imposes a conduction pathway that is necessarily three-dimensional. The cage molecules also promote proton transfer by confining the water molecules while being sufficiently flexible to allow hydrogen bond reorganization. The proton conduction is explained at the molecular level through a combination of proton conductivity measurements, crystallography, molecular simulations and quasi-elastic neutron scattering. These results provide a starting point for high-temperature, anhydrous proton conductors through inclusion of guests other than water in the cage pores. PMID:27619230
Oieroset, M.; Phan, T. D.; Haggerty, C.; Shay, M. A.; Eastwood, J. P.; Gershman, D. J.; Drake, J. F.; Fujimoto, M.; Ergun, R. E.; Mozer, F. S.;
2016-01-01
We report evidence for reconnection between colliding reconnection jets in a compressed current sheet at the center of a magnetic flux rope at Earth's magnetopause. The reconnection involved nearly symmetric Inflow boundary conditions with a strong guide field of two. The thin (2.5 ion-skin depth (d(sub i) width) current sheet (at approximately 12 d(sub i) downstream of the X line) was well resolved by MMS, which revealed large asymmetries in plasma and field structures in the exhaust. Ion perpendicular heating, electron parallel heating, and density compression occurred on one side of the exhaust, while ion parallel heating and density depression were shifted to the other side. The normal electric field and double out-of-plane (bifurcated) currents spanned almost the entire exhaust. These observations are in good agreement with a kinetic simulation for similar boundary conditions, demonstrating in new detail that the structure of large guide field symmetric reconnection is distinctly different from antiparallel reconnection.
Imaging three-dimensional innervation zone distribution in muscles from M-wave recordings
Zhang, Chuan; Peng, Yun; Liu, Yang; Li, Sheng; Zhou, Ping; Zev Rymer, William; Zhang, Yingchun
2017-06-01
Objective. To localize neuromuscular junctions in skeletal muscles in vivo which is of great importance in understanding, diagnosing and managing of neuromuscular disorders. Approach. A three-dimensional global innervation zone imaging technique was developed to characterize the global distribution of innervation zones, as an indication of the location and features of neuromuscular junctions, using electrically evoked high-density surface electromyogram recordings. Main results. The performance of the technique was evaluated in the biceps brachii of six intact human subjects. The geometric centers of the distributions of the reconstructed innervation zones were determined with a mean distance of 9.4 ± 1.4 cm from the reference plane, situated at the medial epicondyle of the humerus. A mean depth was calculated as 1.5 ± 0.3 cm from the geometric centers to the closed points over the skin. The results are consistent with those reported in previous histology studies. It was also found that the volumes and distributions of the reconstructed innervation zones changed as the stimulation intensities increased until the supramaximal muscle response was achieved. Significance. Results have demonstrated the high performance of the proposed imaging technique in noninvasively imaging global distributions of the innervation zones in the three-dimensional muscle space in vivo, and the feasibility of its clinical applications, such as guiding botulinum toxin injections in spasticity management, or in early diagnosis of neurodegenerative progression of amyotrophic lateral sclerosis.
Three-Dimensional Lattice Structure Formed in a Binary System with DNA Nanoparticles
Kawasaki, Keno; Katsuno, Hiroyasu; Sato, Masahide
2017-06-01
Keeping the formation of lattice structures by nanoparticles covered with DNA in mind, we carry out Brownian dynamics simulations and study three-dimensional lattice structures formed by two species of particles. In our previous study [H. Katsuno, Y. Maegawa, and M. Sato, https://doi.org/10.7566/JPSJ.85.074605" xlink:type="simple">J. Phys. Soc. Jpn. 85, 074605 (2016)], we used the Lennard-Jones potential and studied two-dimensional structures formed in a binary system. When the interaction length between the different species, σ', is shorter than that between the same species, σ, the lattice structure changes with the ratio σ'/σ. In this paper, we use the same potential and study the formation of three-dimensional structures. With decreasing ratio σ'/σ, the mixture of the face-centered-cubic (fcc) structure and hexagonal-close-packed (hcp) structure is changed to the body-centered-cubic (bcc) structure and the NaCl structure.