WorldWideScience

Sample records for center savannah river

  1. SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M.

    1999-06-21

    'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

  2. Savannah River Technology Center monthly report

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: Acorn Cleaning Study, tritium, separation processes, bioremediation programs, environmental remediation, environmental sampling, waste management, statistical design, phase I array experiments, and, Monte Carlo Neutron Photon input files.

  3. Savannah River Technology Center monthly report, September 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1992-09-01

    This is a monthly progress report from the Savannah River Laboratory for the month of September, 1992. It has sections dealing with work in the broad areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns.

  4. Intensive archaeological survey of the proposed Savannah River Ecology Laboratory Conference Center and Educational Facility, Savannah River Site, Aiken County, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, K.; Crass, D.C.; Sassaman, K.E.

    1993-02-01

    Documented in this report are the methods and results of an intensive archaeological survey for the proposed University of Georgia Savannah River Ecology Laboratory (SREL) Conference Center and Educational Facility on the DOE Savannah River Site (SRS). Archaeological investigations conducted by the Savannah River Archaeological Research Program (SRARP) on the 70-acre project area and associated rights-of-way consisted of subsurface testing at two previously recorded sites and the discovery of one previously unrecorded site. The results show that 2 sites contain archaeological remains that may yield significant information about human occupations in the Aiken Plateau and are therefore considered eligible for nomination to the National Register of Historic Places. Adverse impacts to these sites can be mitigated through avoidance.

  5. Radioiodine in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Kantelo, M.V.; Bauer, L.R.; Marter, W.L.; Murphy, C.E. Jr.; Zeigler, C.C.

    1993-01-15

    Radioiodine, which is the collective term for all radioactive isotopes of the element iodine, is formed at the Savannah River Site (SRS) principally as a by-product of nuclear reactor operations. Part of the radioiodine is released to the environment during reactor and reprocessing operations at the site. The purpose of this report is to provide an introduction to radioiodine production and disposition, its status in the environment, and the radiation dose and health risks as a consequence of its release to the environment around the Savannah River Plant. A rigorous dose reconstruction study is to be completed by thee Center for Disease Control during the 1990s.

  6. Rheology of Savannah River site tank 42 HLW radioactive sludge

    Energy Technology Data Exchange (ETDEWEB)

    Ha, B.C.

    1997-11-05

    Knowledge of the rheology of the radioactive sludge slurries at the Savannah River Site is necessary in order to ensure that they can be retrieved from waste tanks and processed for final disposal. At Savannah River Site, Tank 42 sludge represents on of the first HLW radioactive sludges to be vitrified in the Defense Waste Processing Facility. The rheological properties of unwashed Tank 42 sludge slurries at various solids concentrations were measured remotely in the Shielded Cells at the Savannah River Technology Center using a modified Haake Rotovisco viscometer.

  7. Savannah River Laboratory monthly report, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  8. Savannah River Laboratory monthly report, September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  9. Savannah River Laboratory monthly report, November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.

    1991-12-31

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  10. Savannah River Laboratory monthly report, November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. (comp.)

    1991-01-01

    This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

  11. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of [sup 137]Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of [sup 137]Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope [sup 137]Cs releases have resulted in a negligible risk to the environment and the population it supports.

  12. Cesium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Bauer, L.R.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-03-01

    Cesium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fourth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. The earlier documents describe the environmental consequences of tritium, iodine, and uranium. Documents on plutonium, strontium, carbon, and technetium will be published in the future. These are dynamic documents and current plans call for revising and updating each one on a two-year schedule.Radiocesium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite Cosmos 954, small releases from reactors and reprocessing plants, and the operation of industrial, medical, and educational facilities. Radiocesium has been produced at SRS during the operation of five production reactors. Several hundred curies of {sup 137}Cs was released into streams in the late 50s and 60s from leaking fuel elements. Smaller quantities were released from the fuel reprocessing operations. About 1400 Ci of {sup 137}Cs was released to seepage basins where it was tightly bound by clay in the soil. A much smaller quantity, about four Ci. was released to the atmosphere. Radiocesium concentration and mechanisms for atmospheric, surface water, and groundwater have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases on the offsite maximum individual can be characterized by total doses of 033 mrem (atmospheric) and 60 mrem (liquid), compared with a dose of 12,960 mrem from non-SRS sources during the same period of time. Isotope {sup 137}Cs releases have resulted in a negligible risk to the environment and the population it supports.

  13. Savannah River Site Environmental Report for 1998

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M

    1999-06-09

    The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

  14. Reconnaissance survey of site 7 of the proposed Three Rivers Regional Landfill and Technology Center, Savannah River Site, Aiken County, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Cabak, M.A.; Beck, M.L.; Gillam, C.; Sassaman, K.E.

    1996-02-01

    This report documents the archaeological investigation of Site 7 of the proposed Three Rivers Regional Landfill and Technology Center in Aiken County on the United States Department of Energy`s Savannah River Site (SRS) in Aiken and Barnwell Counties, South Carolina. Pedestrian and subsurface survey techniques were used to investigate the 1,403-acre project area. Survey resulted in the discovery of 23 previously unrecorded sites and 11 occurrences; six previously recorded sites were also investigated. These sites consist of six prehistoric sites, nine historic sites, and 14 sites with both prehistoric and historic components. Sites locations and project area boundaries are provided on a facsimile of a USGS 7.5 topographic map. The prehistoric components consist of very small, low-density lithic and ceramic scatters; most contain less than 10 artifacts. Six of the prehistoric components are of unknown cultural affiliation, the remaining prehistoric sites were occupied predominately in the Woodland period. The historic sites are dominated by postbellum/modem home places of tenant and yeoman farmers but four historic sites were locations of antebellum house sites (38AK136, 38AK613, 38AK660, and 38AK674). The historic sites also include an African-American school (38AK677).

  15. Environmental Assessment for the construction and operation of the Three Rivers Solid Waste Authority regional waste management center at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This Environmental Assessment (EA) has been prepared by the US Department of Energy (DOE) to assess the potential environmental impacts associated with the construction and operation of a landfill and technology center for regionally-generated municipal solid waste at the Savannah River Site (SRS) near Aiken, South Carolina. The facility would serve the municipal solid waste disposal needs for SRS and at least nine of the surrounding counties who currently comprise the Three Rivers Solid Waste Authority (TRSWA). Additional counties could become included in the proposed action at some future date. Current Federal and state requirements do not afford individual counties and municipalities within the region encompassing SRS the ability to efficiently or economically operate modern waste management facilities. In addition, consolidation of regional municipal solid waste at one location would have the benefit of reducing the duplicity of environmental consequences associated with the construction and operation of county-level facilities. The option to seek a combined disposal and technology development facility based on a regionally-cooperative effort was selected as a viable alternative to the existing individual SRS or county disposal activities. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Part 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described for impacts described herein, DOE will either publish a Finding of No Significant Impact or prepare an environmental impact statement (EIS).

  16. Advanced separations at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.; McCabe, D.

    1996-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (cesium, strontium, tritium, actinides) and hazardous components (polychlorinated biphenyls (PCBs), cyanide, metal ions).

  17. Savannah River Site Environmental Report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Mamatey, A.R. [eds.

    1998-08-01

    The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

  18. Consequence Analyses Following Potential Savannah River Site Hydrological Releases

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-07-28

    Postulated accidental release of radiological material to surface water bodies on the Savannah River Site and the resulting downstream contamination of the Savannah River pose a potential threat to downstream river users.

  19. Geographic information system planning for geotechnical and earthquake engineering applications at the Savannah River Site, SC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.

    1993-02-01

    The Savannah River Technology Center (SRTC) of the Savannah River Site is in the planning stages of compiling a geological, geophysical, and seismological data base on an industry standard Geographic Information System (GIS). The system will serve as a tool for management and integration of already collected site data,planning for additional investigations, and for special studies such as seismic hazard and risk analyses for the Savannah River Site (SRS).

  20. Geographic information system planning for geotechnical and earthquake engineering applications at the Savannah River Site, SC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.

    1993-01-01

    The Savannah River Technology Center (SRTC) of the Savannah River Site is in the planning stages of compiling a geological, geophysical, and seismological data base on an industry standard Geographic Information System (GIS). The system will serve as a tool for management and integration of already collected site data,planning for additional investigations, and for special studies such as seismic hazard and risk analyses for the Savannah River Site (SRS).

  1. Savannah River Site computing architecture

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-29

    A computing architecture is a framework for making decisions about the implementation of computer technology and the supporting infrastructure. Because of the size, diversity, and amount of resources dedicated to computing at the Savannah River Site (SRS), there must be an overall strategic plan that can be followed by the thousands of site personnel who make decisions daily that directly affect the SRS computing environment and impact the site's production and business systems. This plan must address the following requirements: There must be SRS-wide standards for procurement or development of computing systems (hardware and software). The site computing organizations must develop systems that end users find easy to use. Systems must be put in place to support the primary function of site information workers. The developers of computer systems must be given tools that automate and speed up the development of information systems and applications based on computer technology. This document describes a proposal for a site-wide computing architecture that addresses the above requirements. In summary, this architecture is standards-based data-driven, and workstation-oriented with larger systems being utilized for the delivery of needed information to users in a client-server relationship.

  2. Savannah River Site computing architecture

    Energy Technology Data Exchange (ETDEWEB)

    1991-03-29

    A computing architecture is a framework for making decisions about the implementation of computer technology and the supporting infrastructure. Because of the size, diversity, and amount of resources dedicated to computing at the Savannah River Site (SRS), there must be an overall strategic plan that can be followed by the thousands of site personnel who make decisions daily that directly affect the SRS computing environment and impact the site`s production and business systems. This plan must address the following requirements: There must be SRS-wide standards for procurement or development of computing systems (hardware and software). The site computing organizations must develop systems that end users find easy to use. Systems must be put in place to support the primary function of site information workers. The developers of computer systems must be given tools that automate and speed up the development of information systems and applications based on computer technology. This document describes a proposal for a site-wide computing architecture that addresses the above requirements. In summary, this architecture is standards-based data-driven, and workstation-oriented with larger systems being utilized for the delivery of needed information to users in a client-server relationship.

  3. Carolina bays of the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Schalles, J.F. (Creighton Univ., Omaha, NE (USA)); Sharitz, R.R.; Gibbons, J.W.; Leversee, G.J.; Knox, J.N. (Savannah River Ecology Lab., Aiken, SC (USA))

    1989-01-01

    Much of the research to date on the Carolina bays of the Savannah River Plant and elsewhere has focused on certain species or on environmental features. Different levels of detail exist for different groups of organisms and reflect the diverse interests of previous investigators. This report summarizes aspects of research to date and presents data from numerous studies. 70 refs., 14 figs., 12 tabs.

  4. Savannah River Laboratory monthly report, February 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M. [comp.; Ice, L.W. [ed.

    1992-02-01

    This report is a progress report for the Savannah River Laboratory for the month of February 1992. The progress and activities in six categories were described in the report. The categories are reactor, tritium, separations, environmental, waste management, and general. Each category described numerous and varied activities. Some examples of these activities described are such things as radiation monitoring, maintenance, modifications, and remedial action.

  5. SAVANNAH RIVER NATIONAL LABORATORYREGENERATIVE FUEL CELL PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T

    2008-11-11

    A team comprised of governmental, academic and industrial partners led by the Savannah River National Laboratory developed and demonstrated a regenerative fuel cell system for backup power applications. Recent market assessments have identified emergency response and telecommunication applications as promising near-term markets for fuel cell backup power systems. The Regenerative Fuel Cell System (RFC) consisted of a 2 kg-per-day electrolyzer, metal-hydride based hydrogen storage units and a 5 kW fuel cell. Coupling these components together created a system that can produce and store its own energy from the power grid much like a rechargeable battery. A series of test were conducted to evaluate the performance of the RFC system under both steady-state and transit conditions that might be encountered in typical backup power applications. In almost all cases the RFC functioned effectively. Test results from the demonstration project will be used to support recommendations for future fuel cell and hydrogen component and system designs and support potential commercialization activities. In addition to the work presented in this report, further testing of the RFC system at the Center for Hydrogen Research in Aiken County, SC is planned including evaluating the system as a renewable system coupled with a 20kW-peak solar photovoltaic array.

  6. Thermal discharges from the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.J.; Jacobsen, W.R.; Rabon, E.W.; Tilly, L.J.

    1972-09-01

    The nuclear production reactors at the AEC's Savannah River Plant, located by siting requirements, utilize on-site natural watercourses, swamps, and cooling water impoundments to dissipate heat in effluent cooling water. Stream-swamp cooling is the most efficient and economical cooling mechanism available to the two reactors presently using this method of heat dissipation. The effects on the Savannah River of high temperature water discharged from the reactors are thus minimized, and detrimental environmental consequences are confined to the plantsite. A large cooling water impoundment, which is currently being used to dissipate heat from one reactor, has furnished an extensive area for biological research into the effects on the aquatic community resulting from its varied thermal conditions.

  7. Watershed modeling at the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Vache, Kellie [Oregon State University

    2015-04-29

    The overall goal of the work was the development of a watershed scale model of hydrological function for application to the US Department of Energy’s (DOE) Savannah River Site (SRS). The primary outcomes is a grid based hydrological modeling system that captures near surface runoff as well as groundwater recharge and contributions of groundwater to streams. The model includes a physically-based algorithm to capture both evaporation and transpiration from forestland.

  8. Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R. A.

    1982-04-01

    In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the spring and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.

  9. 1996 Savannah River Site annual epidemiologic surveillance report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-03-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1996 through December 31, 1996. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1996 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 1996 report includes a new section on time trends that provides comparative information on the health of the work force from 1994 through 1996.

  10. 1997 Savannah River Site annual epidemiologic surveillance report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-06-01

    This report provides a summary of epidemiologic surveillance data collected from Savannah River Site from January 1, 1997 through December 31, 1997. The data were collected by a coordinator at Savannah River Site and submitted to the Epidemiologic Surveillance Data Center located at Oak Ridge Institute for Science and Education, where quality control procedures and preliminary data analyses were carried out. The analyses were interpreted and the final report prepared by the DOE Office of Epidemiologic Studies. The information in this report provides highlights of the data analyses conducted on the 1997 data collected from Savannah River Site. The main sections of the report include: work force characteristics; absences due to injury or illness lasting 5 or more consecutive workdays; workplace illnesses, injuries, and deaths that were reportable to the Occupational Safety and Health Administration (''OSHA-recordable'' events); and disabilities and deaths among current workers. The 199 7 report includes a section on time trends that provides comparative information on the health of the work force from 1994 through 1997.

  11. Savannah River Site environmental report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A. (eds.); Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01

    This volume of Savannah River Site Environmental report for 1988 (WSRC-RP-89-59-1) contains the figures and tables referenced in Volume 1. The figures contain graphic illustrations of sample locations and/or data. The tables contain summaries of the following types of data: Federal and State standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation dose commitments from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results.

  12. Savannah River Site environmental report for 1991

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.; Todd, J.L.

    1991-01-01

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included.

  13. Savannah River Site reactor safety assessment. Draft

    Energy Technology Data Exchange (ETDEWEB)

    Woody, N.D.; Brandyberry, M.D. [eds.] [Westinghouse Savannah River Co., Aiken, SC (United States); Baker, W.H.; Brandyberry, M.D.; Kearnaghan, D.P.; O`Kula, K.R.; Woody, N.D. [Westinghouse Savannah River Co., Aiken, SC (United States); Amos, C.N.; Weingardt, J.J. [Science Applications International Corp., San Diego, CA (United States)

    1991-02-28

    This report gives the results of a Savannah River Site (SRS) Production Reactor risk assessment. Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide timely information to the US Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other Site programs in Heavy Water Reactor safety.

  14. Savannah River Site Environmental Report for 2004

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, Albert R.

    2005-06-07

    The Savannah River Site Environmental Report for 2004 (WSRC-TR-2005-00005) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting,'' and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  15. Savannah River Site environmental report for 1995

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Mamatey, A. [eds.

    1995-12-31

    The 1990s have brought dramatic change to the Savannah River Site (SRS) in its role as a key part of the U.S. Department of Energy`s (DOE) weapons complex. Shrinking federal budgets, sharp workforce reductions, the end of the Cold War, and a major shift in mission objectives have combined to severely test the mettle of SRS-South Carolina`s largest employer. But the sprawling 310-square-mile site`s employees have responded to the test in admirable fashion, effectively shifting their emphasis from weapons production to environmental restoration. This report describes the environmental report for the SRS for 1995.

  16. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2007

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A

    2008-08-27

    The Savannah River Site Environmental Report for 2007 (WSRC-STI-2008-00057) prepared for the US Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting', and DOE Order 5400.5, 'Radiation Protection of the Public and Environment'. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; (4) assess the impact of SRS operations on the public and the environment.

  17. Guide to Savannah River Laboratory Analytical Services Group

    Energy Technology Data Exchange (ETDEWEB)

    1990-04-01

    The mission of the Analytical Services Group (ASG) is to provide analytical support for Savannah River Laboratory Research and Development Programs using onsite and offsite analytical labs as resources. A second mission is to provide Savannah River Site (SRS) operations with analytical support for nonroutine material characterization or special chemical analyses. The ASG provides backup support for the SRS process control labs as necessary.

  18. 33 CFR 165.751 - Security Zone: LNG mooring slip, Savannah River, Savannah, Georgia.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone: LNG mooring slip... § 165.751 Security Zone: LNG mooring slip, Savannah River, Savannah, Georgia. (a) Security zone. The... security zone; or (4) Actively engaged in escort, maneuvering, or support duties for an LNG tankship....

  19. Savannah River Site environmental report for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R. [eds.

    1994-08-01

    Savannah River Site (SRS) conducts effluent monitoring and environmental surveillance to ensure the safety of the public and the well-being of the environment. DOE Order 5400,1, ``General Environmental Protection Program,`` requires the submission of an environmental report that documents the impact of facility operations on the environment and on public health. SRS has had an extensive environmental surveillance program in place since 1951 (before site startup). At that time, data generated by the on-site surveillance program were reported in site documents. Beginning in 1959, data from off-site environmental monitoring activities were presented in reports issued for public dissemination. Separate reporting of SRS`s on- and off-site environmental monitoring activities continued until 1985, when data from both surveillance programs were merged into a single public document. The Savannah River Site Environmental Report for 1993 is an overview of effluent monitoring and environmental surveillance activities conducted on and in the vicinity of SRS from January 1 through December 31, 1993. For complete program descriptions, consult the ``SRS Environmental Monitoring Plan`` (WSRC-3Ql-2-1000). It documents the rationale and design criteria for the monitoring program, the frequency of monitoring and analysis, the specific analytical and sampling procedures, and the quality assurance requirements.

  20. 2004 Savannah River Cooling Tower Collection (U)

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Alfred [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Parker, Matthew J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  1. Savannah River site environmental report for 1996

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.; Mamatey, A. [eds.

    1998-12-31

    The mission at the Savannah River Site (SRS) has changed from the production of nuclear weapons materials for national defense to the management of site-generated waste, restoration of the surrounding environment, and the development of industry in and around the site. However, SRS-through its prime operating contractor, Westinghouse Savannah River Company (WSRC)-continues to maintain a comprehensive environmental monitoring program. In 1996, effluent monitoring and environmental surveillance were conducted within a 31,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Though the environmental monitoring program was streamlined in 1996-to improve its cost-effectiveness without compromising data quality or reducing its overall ability to produce critical information-thousands of samples of air, surface water, groundwater, food products, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  2. Mammals of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-12-31

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, ``The Forbearer Census`` and ``White-tailed Deer Studies``. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master`s theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  3. Mammals of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Cothran, E.G.; Smith, M.H.; Wolff, J.O.; Gentry, J.B.

    1991-01-01

    This book is designed to be used as a field guide, reference book, bibliography, and introduction to the basic biology and ecology of the 54 mammal species that currently or potentially exist on or near the Savannah River Site (SRS). For 50 of these species, we present basic descriptions, distinguishing morphological features, distribution and habitat preferences, food habits, reproductive biology, social behavior, ecological relationships with other species, and economic importance to man. For those species that have been studied on the SRS, we summarize the results of these studies. Keys and illustrations are provided for whole body and skull identification. A selected glossary defines technical terminology. Illustrations of tracks of the more common larger mammals will assist in field identifications. We also summarize the results of two major long-term SRS studies, The Forbearer Census'' and White-tailed Deer Studies''. A cross-indexed list of over 300 SRS publications on mammals classifies each publication by 23 categories such as habitat, reproduction, genetics, etc., and also for each mammal species. The 149 Master's theses and Ph.D. dissertations that have been conducted at the Savannah River Ecology Laboratory are provided as additional references.

  4. Savannah River Site Environmental Report for 1994

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Mamatey, A.; Spitzer, D.

    1994-12-16

    The mission at the Savannah River Site has changed from producing nuclear weapons materials for national defense to managing the waste it has generated, restoring the environment, and enhancing industrial development in and around the site. But no matter what the site`s mission is, it will continue to maintain its comprehensive environmental monitoring and surveillance program. In 1994, effluent monitoring and environmental surveillance were conducted within a 30,000-square-mile area in and around SRS that includes neighboring cities, towns, and counties in Georgia and South Carolina and extends up to 100 miles from the site. Thousands of samples of air, surface water, groundwater, foodstuffs, drinking water, wildlife, rainwater, soil, sediment, and vegetation were collected and analyzed for radioactive and nonradioactive contaminants.

  5. Wildflowers of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Seger, Tona [Savannah River Site (SRS), Aiken, SC (United States). USDA Forest Service

    2015-08-01

    This guidebook is a resource to help field personnel (nonbotanists) identify plants on the Savannah River Site (SRS) premises. Although not a complete flora guide, this publication contains information about 123 plant species found on the SRS. Plants are listed by their common names and arranged by the color of the flower. The SRS supports a diverse array of plant communities. Land use history, the establishment of the SRS, and current land management practices have shaped the flora presently found on the SRS. Located south of Aiken, SC, SRS spans 198,344 acres with land covering Aiken, Allendale, and Barnwell Counties. Situated on the Upper Coastal Plain and Sandhills physiographic provinces, the SRS has more than 50 distinct soil types. The topography is rolling to flat with elevation ranges from 50 to 400 feet above sea level.

  6. Savannah River Site generic data base development

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, C.H.; Eide, S.A.

    1993-06-30

    This report describes the results of a project to improve the generic component failure data base for the Savannah River Site (SRS). A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. This information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor) for each component failure mode.

  7. Savannah River Site environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01

    The purpose of this report is to meet three of the primary objectives of the Savannah River Site (SRS) environmental monitoring program. These objectives are to assess actual or potential exposures to populations form the presence of radioactive and nonradioactive materials from normal operations or nonroutine occurrences; to demonstrate compliance with applicable authorized limits and legal requirements; and to communicate results of the monitoring program to the public. This 1989 report contains descriptions of radiological and nonradiological monitoring programs, it provides data obtained from these programs, and it describes various environmental research activities ongoing at the site. Also included are summaries of environmental management and compliance activities, a summary of National Environmental Policy Act activities, and a listing of environmental permits issued by regulatory agencies.

  8. Savannah River Site Environmental Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    Formal sitewide environmental planning at the . Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan (Volume 2) provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period.

  9. Savannah River Site environmental data for 1992

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W. [ed.

    1993-09-01

    The figures and tables in this report represent a capsule view of the routine environmental monitoring and surveillance programs at the Savannah River Site. An attempt has been made to include all available data from environmental research programs. The first section of the book is a collection of maps of radiological and nonradiological sampling locations. Also included are general radiological and nonradiological sampling and analysis schedules; a list of the media sampled, along with sample sizes and representative aliquots; a list of the lower limits of detection for radiological detection instruments; the minimum detectable concentrations for gamma analysis of water and air samples; and the minimum detectable concentrations for gamma analysis of soil, food, fish and wildlife, and vegetation samples. Following the first section are data tables containing radiological and nonradiological effluent monitoring results, radiological and nonradiological environmental surveillance results, dose estimates, quality assurance activities, and results of nonroutine occurrences and special surveys.

  10. Deer monitoring at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fledderman, P.D.

    1992-01-01

    To protect public health, all deer and feral hogs harvested at the Savannah River Site (SRS) during controlled hunts are monitored for Cs-137. A new monitoring program has been developed by the Environmental Monitoring Section (EMS). To provide increased confidence in dose data and compliance with regulations, many changes have been made to the deer and hog monitoring program. Using field count information, a computerized database determines Cs-137 concentration and calculates the committed effective dose equivalent (CEDE) resulting from consumption of the animal. The database then updates each hunter's cumulative CEDE in real time. Also, enhancements to the instrument calibration and quality control portions of the monitoring program were implemented. These include improved monitor calibration, intercomparison of field results from the same animal using different detectors, and regular use of check sources to verify equipment performance. With these program changes, EMS can produce more accurate and verifiable dose data.

  11. Deer monitoring at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Fledderman, P.D.

    1992-10-01

    To protect public health, all deer and feral hogs harvested at the Savannah River Site (SRS) during controlled hunts are monitored for Cs-137. A new monitoring program has been developed by the Environmental Monitoring Section (EMS). To provide increased confidence in dose data and compliance with regulations, many changes have been made to the deer and hog monitoring program. Using field count information, a computerized database determines Cs-137 concentration and calculates the committed effective dose equivalent (CEDE) resulting from consumption of the animal. The database then updates each hunter`s cumulative CEDE in real time. Also, enhancements to the instrument calibration and quality control portions of the monitoring program were implemented. These include improved monitor calibration, intercomparison of field results from the same animal using different detectors, and regular use of check sources to verify equipment performance. With these program changes, EMS can produce more accurate and verifiable dose data.

  12. Savannah River Site environmental data for 1993

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W. [ed.

    1994-05-01

    The figures and tables in this report represent a capsule view of the routine environmental monitoring and surveillance programs at the Savannah River Site. An attempt has been made to include all available data from environmental research programs. The first section of the book is a collection of maps of radiological and nonradiological sampling locations. Also included are general radiological and nonradiological sampling and analysis schedules; a list of the media sampled, along with sample sizes and representative aliquots; a list of the lower limits of detection for radiological detection instruments; the minimum detectable concentrations for gamma analysis of water and air samples; and the minimum detectable concentrations for gamma analysis of soil, food, fish and wildlife, and vegetation samples. Following the first section are data tables containing radiological and nonradiological effluent monitoring results, radiological and nonradiological environmental surveillance results, dose estimates, quality assurance activities, and results of nonroutine occurrences and special surveys.

  13. Thermodynamic Modeling of Savannah River Evaporators

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.F.

    2001-08-02

    A thermodynamic model based on the code SOLGASMIX is developed to calculate phase equilibrium in evaporators and related tank wastes at the Savannah River Site (SRS). This model uses the Pitzer method to calculate activity coefficients, and many of the required Pitzer parameters have been determined in the course of this work. Principal chemical species in standard SRS simulant solutions are included, and the temperature range for most parameters has been extended above 100 C. The SOLGASMIX model and calculations using the code Geochemists Workbench are compared to actual solubility data including silicate, aluminate, and aluminosilicate solutions. In addition, SOLGASMIX model calculations are also compared to transient solubility data involving SRS simulant solutions. These comparisons indicate that the SOLGASMIX predictions closely match reliable data over the range of temperature and solution composition expected in the SRS evaporator and related tanks. Predictions using the Geochemists Workbench may be unreliable, due primarily to the use of an inaccurate activity coefficient model.

  14. Advanced separations at Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, M.C. [Savannah River Technology Center, Aiken, SC (United States)

    1997-10-01

    The Savannah River Site (SRS) has many waste streams that are contaminated with radionuclides and/or hazardous materials that must be treated to remove the radioactivity (Cs, Sr, tritium, actinides) and hazardous components (poly-chlorinated biphenyls [PCBs], cyanide, metal ions). This task provides testbeds for ESP-developed materials and technology using actual SRS waste streams. The work includes different SRS waste streams: high-level waste (HLW) solutions currently stored in underground tanks onsite, water recycled from the waste vitrification plant, groundwater and other aqueous streams contaminated with metal ions and radionuclides, and reactor basin water in excess facilities. Another part of this task is to provide a report on materials for Cs removal from aqueous solutions for use as a reference.

  15. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2008

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A.

    2009-09-15

    The Savannah River Site Environmental Report for 2008 (SRNS-STI-2009-00190) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, 'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts.

  16. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2005

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A

    2006-07-18

    The ''Savannah River Site Environmental Report for 2005'' (WSRC-TR-2006-00007) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  17. SAVANNAH RIVER ENVIRONMENTAL REPORT FOR 2006

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A

    2007-08-22

    The ''Savannah River Site Environmental Report for 2006'' (WSRC-TR-2007-00008) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: present summary environmental data that characterize site environmental management performance; confirm compliance with environmental standards and requirements; highlight significant programs and efforts; and assess the impact of SRS operations on the public and the environment.

  18. Savannah River Site generic data base development

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard , A.

    2000-01-04

    This report describes the results of a project to improve the generic component failure database for the Savannah River Site (SRS). Additionally, guidelines were developed further for more advanced applications of database values. A representative list of components and failure modes for SRS risk models was generated by reviewing existing safety analyses and component failure data bases and from suggestions from SRS safety analysts. Then sources of data or failure rate estimates were identified and reviewed for applicability. A major source of information was the Nuclear Computerized Library for Assessing Reactor Reliability, or NUCLARR. This source includes an extensive collection of failure data and failure rate estimates for commercial nuclear power plants. A recent Idaho National Engineering Laboratory report on failure data from the Idaho Chemical Processing Plant was also reviewed. From these and other recent sources, failure data and failure rate estimates were collected for the components and failure modes of interest. For each component failure mode, this information was aggregated to obtain a recommended generic failure rate distribution (mean and error factor based on a lognormal distribution). Results are presented in a table in this report. A major difference between generic database and previous efforts is that this effort estimates failure rates based on actual data (failure events) rather than on existing failure rate estimates. This effort was successful in that over 75% of the results are now based on actual data. Also included is a section on guidelines for more advanced applications of failure rate data. This report describes the results of a project to improve the generic component failure database for the Savannah River site (SRS). Additionally, guidelines were developed further for more advanced applications of database values.

  19. Savannah River VM--Intellect application support documentation

    Energy Technology Data Exchange (ETDEWEB)

    Carter, L.S.

    1988-09-23

    This document details the underlying support programming and structures that support the INTELLECT and KBMS products at the Savannah River Facility. The target audience for this document includes INTELLECT System Administrators, INTELLECT programmers and developers, and VM Systems Programmers.

  20. Commercial integration and partnering at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Steele, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Babione, R.A.; Shikashio, L.A.; Wacaster, A.J.; Paterson, A.D. [SCIENTECH, Inc., Idaho Falls, ID (United States)

    1994-06-01

    Savannah River Site (SRS), particularly the Savannah River Technology Center (SRTC) with the experience from the first successful Integrated Technology Demonstration, can provide an excellent foundation for meeting DOE-EM`s objectives with the new DOE-EM five focus area approach. With this in mind, SRTC established an activity to pursue full commercialization of environmental technologies. This report is an assessment of the status of commercialization at SRS and provides recommendations for enhancement as well as some tools critical to implementation. A review was made of the current situation at SRS with regards to taking technology development to commercial fruition. This was done from the perspective of comparing it to known commercialization models and processes. It was found that SRTC already works through many of the steps in these processes. With integration and action-oriented efforts of the inclusion of business and market factors, SRTC could become an aggressive, successful developer of commercialized technologies. Commercial success criteria tools were developed with regards to integrating them with SRTC selection criteria to ensure that all critical factors are covered in technology commercialization project evaluations. Private investors are very clear that their interest lies in funding commercial enterprises, not merely technologies. Mobilizing private capital is critical to real job growth and long-term economic development. Also, potential industry partners were identified that are willing to be involved with SRS` technology applications and regional development efforts. As another important component to success, regional support organizations were reviewed and evaluated.

  1. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2010

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A.; Dunaway-Ackerman, J.

    2011-08-16

    This report was prepared in accordance with U.S. Department of Energy (DOE) Order 231.1A, 'Environment, Safety and Health Reporting,' to present summary environmental data for the purpose of: (a) characterizing site's environmental management performance; (b) summarizing environmental occurrences and responses reported during the calendar year; (c) describing compliance status with respect to environmental standards and requirements; and (d) highlighting significant site programs and efforts. This report is the principal document that demonstrates compliance with the requirements of DOE Order 5400.5, 'Radiation Protection of the Public and the Environment,' and is a key component of DOE's effort to keep the public informed of environmental conditions at Savannah River Site (SRS). SRS has four primary missions: (1) Environmental Management - Cleaning up the legacy of the Cold War efforts and preparing decommissioned facilities and areas for long-term stewardship; (2) Nuclear Weapons Stockpile Support - Meeting the needs of the U.S. nuclear weapons stockpile through the tritium programs of the National Nuclear Security Administration (NNSA); (3) Nuclear Nonproliferation Support - Meeting the needs of the NNSA's nuclear nonproliferation programs by safely storing and dispositioning excess special nuclear materials; and (4) Research and Development - Supporting the application of science by the Savannah River National Laboratory (SRNL) to meet the needs of SRS, the DOE complex, and other federal agencies During 2010, SRS worked to fulfill these missions and position the site for future operations. SRS continued to work with the South Carolina Department of Health and Environmental Control (SCDHEC), the Environmental Protection Agency (EPA), and the Nuclear Regulatory Commission to find and implement solutions and schedules for waste management and disposition. As part of its mission to clean up the Cold War legacy, SRS will continue

  2. ROUGHNESS LENGTHS FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C.

    2012-03-28

    Surface roughness values for the areas surrounding the H, D and N-Area meteorological towers were computed from archived 2010 meteorological data. These 15-minute-averaged data were measured with cup anemometers and bidirectional wind vanes (bivanes) 61 m above the surface. The results of the roughness calculation using the standard deviation of elevation angle {sigma}{sub E}, and applying the simple formula based on tree canopy height, gave consistent estimates for roughness around the H-Area tower in the range of 1.76 to 1.86 m (95% confidence interval) with a mean value of 1.81 m. Application of the {sigma}{sub E} method for the 61-m level at D and N-Areas gave mean values of 1.71 and 1.81 with confidence ranges of 1.62-1.81 and 1.73-1.88 meters, respectively. Roughness results are azimuth dependent, and thus are presented as averages over compass sectors spanning 22.5 degrees. Calculated values were compared to other methods of determining roughness, including the standard deviation of the azimuth direction, {sigma}{sub A}, and standard deviation of the wind speed, {sigma}{sub U}. Additional data was obtained from a sonic anemometer at 61-m on the H-Area tower during a period of a few weeks in 2010. Results from the sonic anemometer support our use of {sigma}{sub E} to calculate roughness. Based on the H-Area tower results, a surface roughness of 1.8 m using is recommended for use in dispersion modeling applications that consider the impacts of a contaminant release to individuals along the Site boundary. The canopy surrounding the H-Area tower is relatively uniform (i.e., little variance in roughness by upwind direction), and data supplied by the U.S. Forest Service at Savannah River show that the canopy height and composition surrounding the H-Area tower is reasonably representative of forested areas throughout the SRS reservation. For dispersion modeling analyses requiring assessments of a co-located worker within the respective operations area, recommended

  3. Savannah River Site environmental report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Martin, D.K.; Todd, J.L.

    1989-01-01

    this volume of Savannah River Site Environmental Report for 1989 (WSRC-IM-90-60) contains the figures and tables referenced in Volume I. The figures contain graphic illustrations of sample locations and/or data. The tables present summaries of the following types of data federal and state standards and guides applicable to SRS operations; concentrations of radioactivity in environmental media; the quantity of radioactivity released to the environment from SRS operations; offsite radiation committed dose from SRS operations; measurements of physical properties, chemicals, and metals concentrations in environmental media; and interlaboratory comparison of analytical results. The figures and tables in this report contain information about the routine environmental monitoring program at SRS unless otherwise indicated. No attempt has been made to include all data from environmental research programs. Variations in the report's content from year to year reflect changes in the routine environmental monitoring program or the inability to obtain certain samples from a specific location. 42 figs., 188 tabs.

  4. Savannah River Site. Environmental report for 2001

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, Margaret W. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Site. ed; Mamatey, Albert R. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Site. ed

    2001-12-31

    The goal of the Savannah River Site (SRS)—and that of the U.S. Department of Energy (DOE)—is positive environmental stewardship and full regulatory compliance, with zero violations. The site’s employees maintained progress toward achievement of this goal in 2001, as demonstrated by examples in this chapter. The site’s compliance efforts were near-perfect again in 2001. No notices of violation (NOVs) were issued in 2001 under the Resource Conservation and Recovery Act (RCRA), the Safe Drinking Water Act (SDWA), or the Clean Water Act (CWA). Two NOVs were issued to SRS during 2001—one, associated with permit requirement compliance, was issued under the Clean Air Act (CAA); the other, related to an oil release, was issued under the South Carolina Pollution Control Act. Under the CWA, the site’s National Pollutant Discharge Elimination System (NPDES) compliance rate was 99.6 percent. Also, 274 National Environmental Policy Act (NEPA) reviews of newly proposed actions were conducted and formally documented in 2001, and only one of the year’s 799 Site Item Reportability and Issues Management (SIRIM) program-reportable events was categorized as environmental; it was classified as an off-normal event.

  5. Tritium in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found.

  6. Savannah River Site environmental report for 1988

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.; Hetrick, C.S.; Stevenson, D.A. (eds.); Davis, H.A.; Martin, D.K.; Todd, J.L.

    1989-01-01

    During 1988, as in previous years, Savannah River Site operations had no adverse impact on the general public or the environment. Based on the SRS site-specific code, the maximum radiation dose commitment to a hypothetical individual at the SRS boundary from 1988 SRS atmospheric releases of radioactive materials was 0.46 millirem (mrem) (0.0046 millisievert (mSv)). To obtain the maximum dose, an individual would have had to reside on the SRS boundary at the location of highest dose for 24 hours per day, 365 days per year, consume a maximum amount of foliage and meat which originated from the general vicinity of the plant boundary, and drink a maximum amount of milk from cows grazing at the plant boundary. The average radiation dose commitment from atmospheric releases to the hypothetical individual on the SRS boundary in 1988 was 0.18 mrem (0. 0018 mSv). This person, unlike the maximumly exposed individual, consumes an average amount of foliage, meat, and milk which originated from the foliage and animals living at the plant boundary.

  7. Savannah River Site Environmental Report for 2003

    Energy Technology Data Exchange (ETDEWEB)

    A. MAMATEY

    2003-01-01

    The ''Savannah River Site Environmental Report for 2003'' (WSRC-TR-2004-00015) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1, ''Environment, Safety and Health Reporting'', and DOE Order 5400.5, ''Radiation Protection of the Public and Environment''. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; (3) highlight significant programs and efforts; and (4) assess the impact of SRS operations on the public and the environment. This year's report reflects a continuing effort (begun in 2001) to streamline the document and thereby increase its cost effectiveness--without omitting valuable technical data. To that end each author will continue to work toward presenting results in summary fashion, focusing on historical trends. Complete data tables again are included on the CD inside the back cover of the report. The CD also features an electronic version of the report; an appendix of site, environmental sampling location, dose, and groundwater maps; and complete 2003 reports from a number of other SRS organizations.

  8. Demonstration of Caustic-Side Solvent Extraction with Savannah River Site High Level Waste

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.D.

    2001-08-27

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet for the decontamination of high level waste using a 33-stage, 2-cm centrifugal contactor apparatus at the Savannah River Technology Center. This represents the first CSSX process demonstration using Savannah River Site (SRS) high level waste. Three tests lasting 6, 12, and 48 hours processed simulated average SRS waste, simulated Tank 37H/44F composite waste, and Tank 37H/44F high level waste, respectively.

  9. Pen Branch Delta and Savannah River Swamp Hydraulic Model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.F.

    1999-05-13

    The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions.

  10. 77 FR 19534 - Special Local Regulations; Savannah Tall Ships Challenge, Savannah River, Savannah, GA

    Science.gov (United States)

    2012-04-02

    ... Benjamin Mercado, Marine Safety Unit Savannah Office of Waterways Management, Coast Guard; telephone (912) 652-4353, email Benjamin.Mercado@uscg.mil . If you have questions on viewing the docket, call Renee...

  11. THE TRITIUM UNDERFLOW STUDY AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Hiergesell, R; Daniel Kaplan,D

    2007-05-21

    An issue of concern at the Savannah River Site (SRS) over the past 20 years is whether tritiated groundwater originating at SRS might be the cause of low levels of tritium measured in certain domestic wells in Georgia. Tritium activity levels in several domestic wells have been observed to occur at levels comparable to what is measured in rainfall in areas surrounding SRS. Since 1988, there has been speculation that tritiated groundwater from SRS could flow under the river and find its way into Georgia wells. A considerable effort was directed at assessing the likelihood of trans-river flow, and 44 wells have been drilled by the USGS and the Georgia Department of Natural Resources. Also, as part of the data collection and analysis, the USGS developed a numerical model during 1997-98 (Ref. 1) to assess the possibility for such trans-river flow to occur. The model represented the regional groundwater flow system surrounding the Savannah River Site (SRS) in seven layers corresponding to the underlying hydrostratigraphic units, which was regarded as sufficiently detailed to evaluate whether groundwater originating at SRS could possibly flow beneath the Savannah River into Georgia. The model was calibrated against a large database of water-level measurements obtained from wells on both sides of the Savannah River and screened in each of the hydrostratigraphic units represented within the model. The model results verified that the groundwater movement in all hydrostratigraphic units proceeds laterally toward the Savannah River from both South Carolina and Georgia, and discharges into the river. Once the model was calibrated, a particle-track analysis was conducted to delineate areas of potential trans-river flow. Trans-river flow can occur in either an eastward or westward direction. The model indicated that all locations of trans-river flow are restricted to the Savannah River's floodplain, where groundwater passes immediately prior to discharging into the river

  12. Natural Remediation at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C. M.; Van Pelt, R.

    2002-02-25

    Natural remediation is a general term that includes any technology or strategy that takes advantage of natural processes to remediate a contaminated media to a condition that is protective of human health and the environment. Natural remediation techniques are often passive and minimally disruptive to the environment. They are generally implemented in conjunction with traditional remedial solutions for source control (i.e., capping, stabilization, removal, soil vapor extraction, etc.). Natural remediation techniques being employed at Savannah River Site (SRS) include enhanced bio-remediation, monitored natural attenuation, and phytoremediation. Enhanced bio-remediation involves making nutrients available and conditions favorable for microbial growth. With proper precautions and feeding, the naturally existing microbes flourish and consume the contaminants. Case studies of enhanced bio-remediation include surface soils contaminated with PCBs and pesticides, and Volatile Organic Compound (VOC) contamination in both the vadose zone and groundwater. Monitored natural attenuation (MNA) has been selected as the preferred alternative for groundwater clean up at several SRS waste units. Successful implementation of MNA has been based on demonstration that sources have been controlled, groundwater modeling that indicates that plumes will not expand or reach surface water discharge points at levels that exceed regulatory limits, and continued monitoring. Phytoremediation is being successfully utilized at several SRS waste units. Phytoremediation involves using plants and vegetation to uptake, break down, or manage contaminants in groundwater or soils. Case studies at SRS include managing groundwater plumes of tritium and VOCs with pine trees that are native to the area. Significant decreases in tritium discharge to a site stream have been realized in one phytoremediation project. Studies of other vegetation types, methods of application, and other target contaminants are

  13. Savannah River Site DNAPL technical program plan

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, J.E.; Looney, B.B.; Rossabi, J.; Bergren, C.L.

    1993-12-31

    This document was developed by the environmental remediation and technology development organizations at the Savannah River Site (SRS) and is the Site technical program plan to address the remediation of residual chlorinated hydrocarbon solvents in the groundwater and the soil. These solvents are often labeled dense nonaqueous phase liquids (DNAPLs). At SRS, the primary DNAPL constituents of concern are trichloroethylene (TCE) and tetrachloroethylene (PCE); two commonly used industrial organic solvents. The goal of the technical program plan is to provide clear objectives for DNAPL characterization and remediation activities at SRS. Developed by a task team of researchers at SRS, the objectives and program description document a coordinated, programmatic approach to identify solutions to the complex problem of DNAPL contamination. The purposes of this program are to expedite the development and application of technologies for DNAPL characterization and remediation, to provide a well characterized {open_quotes}real{close_quotes} site to perform the work, and to facilitate DNAPL remediation at SRS. Given the appropriate resources, SRS will provide an intelligent application of technical skills and confidence toward the remediation of DNAPLS. We have completed an initial characterization of DNAPLs that provides unique data on the location, nature, and extent of DNAPL occurrences at a field site. Future activities will leverage the initial characterization data for DNAPLs at SRS to demonstrate efficient progression through the characterization phase leading to cleanup. The initial characterization data provides a tool to focus this program`s activities. As a result, solutions to the complex problem of DNAPL contamination will be tested and demonstrated in the most cost-effective manner. Where appropriate, the program will rely on identifying and utilizing innovative technologies developed by industry and universities.

  14. 77 FR 6039 - Special Local Regulations; Savannah Tall Ships Challenge, Savannah River, Savannah, GA

    Science.gov (United States)

    2012-02-07

    ...: If you have questions on this proposed rule, call or email Chief Petty Officer Benjamin Mercado... Benjamin.Mercado@uscg.mil . If you have questions on viewing or submitting material to the docket, call... Benjamin Mercado, Marine Safety Unit Savannah Office of Waterways Management, Coast Guard; telephone...

  15. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

  16. Westinghouse independent safety review of Savannah River production reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, W.D.; McShane, W.J. (Westinghouse Hanford Co., Richland, WA (USA)); Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear and Advanced Technology Div.); Toto, G. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear Services Div.); Fauske, H.K. (Fauske and Associates, Inc., Burr Ridge, IL (USA)); Call, D.W. (Westinghouse Savannah R

    1989-04-01

    Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K,L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone.

  17. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  18. Onsite transportation of radioactive materials at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R.

    2015-03-03

    The Savannah River Site (SRS) Transportation Safety Document (TSD) defines the onsite packaging and transportation safety program at SRS and demonstrates its compliance with Department of Energy (DOE) transportation safety requirements, to include DOE Order 460.1C, DOE Order 461.2, Onsite Packaging and Transfer of Materials of National Security Interest, and 10 CFR 830, Nuclear Safety Management (Subpart B).

  19. Numerical Weather Forecasting at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R.L.

    1999-01-26

    Facilities such as the Savannah River Site (SRS), which contain the potential for hazardous atmospheric releases, rely on the predictive capabilities of dispersion models to assess possible emergency response actions. The operational design in relation to domain size and forecast time is presented, along with verification of model results over extended time periods with archived surface observations.

  20. SAVANNAH RIVER SITE ENVIRONMENTAL REPORT FOR 2009

    Energy Technology Data Exchange (ETDEWEB)

    Mamatey, A.; Fanning, R.

    2010-08-19

    The Savannah River Site Environmental Report for 2009 (SRNS-STI-2010-00175) is prepared for the U.S. Department of Energy (DOE) according to requirements of DOE Order 231.1A,'Environment, Safety and Health Reporting,' and DOE Order 5400.5, 'Radiation Protection of the Public and Environment.' The annual SRS Environmental Report has been produced for more than 50 years. Several hundred copies are distributed each year to government officials, universities, public libraries, environmental and civic groups, news media, and interested individuals. The report's purpose is to: (1) present summary environmental data that characterize site environmental management performance; (2) confirm compliance with environmental standards and requirements; and (3) highlight significant programs and efforts. SRS maintained its record of environmental excellence in 2009, as its operations continued to result in minimal impact to the offsite public and the surrounding environment. The site's radioactive and chemical discharges to air and water were well below regulatory standards for environmental and public health protection; its air and water quality met applicable requirements; and the potential radiation dose from its discharges was less than the national dose standards. The largest radiation dose that an offsite, hypothetical, maximally exposed individual could have received from SRS operations during 2009 was estimated to be 0.12 millirem (mrem). (An mrem is a standard unit of measure for radiation exposure.) The 2009 SRS dose is just 0.12 percent of the DOE all-pathway dose standard of 100 mrem per year, and far less than the natural average dose of about 300 mrem per year (according to Report No. 160 of the National Council of Radiation Protection and Measurements) to people in the United States. This 2009 all-pathway dose of 0.12 mrem was the same as the 2008 dose. Environmental monitoring is conducted extensively within a 2,000-square-mile network

  1. Environmental information document: Savannah River Laboratory Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, B.F.; Looney, B.B.; Simmons, R.V.; Bledsoe, H.W.

    1987-03-01

    This document provides environmental information on postulated closure options for the Savannah River Laboratory Seepage Basins at the Savannah River Plant and was developed as background technical documentation for the Department of Energy`s proposed Environmental Impact Statement (EIS) on waste management activities for groundwater protection at the plant. The results of groundwater and atmospheric pathway analyses, accident analysis, and other environmental assessments discussed in this document are based upon a conservative analysis of all foreseeable scenarios as defined by the National Environmental Policy Act (CFR, 1986). The scenarios do not necessarily represent actual environmental conditions. This document is not meant to be used as a closure plan or other regulatory document to comply with required federal or state environmental regulations.

  2. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  3. Recovery of plutonium from electrorefining anode heels at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J H; Gray, L W; Karraker, D G

    1987-03-01

    In a joint effort, the Savannah River Laboratory (SRL), Savannah River Plant (SRP), and the Rocky Flats Plant (RFP) have developed two processes to recover plutonium from electrorefining anode heel residues. Aqueous dissolution of anode heel metal was demonstrated at SRL on a laboratory scale and on a larger pilot scale using either sulfamic acid or nitric acid-hydrazine-fluoride solutions. This direct anode heel metal dissolution requires the use of a geometrically favorable dissolver. The second process developed involves first diluting the plutonium in the anode heel residues by alloying with aluminum. The alloyed anode heel plutonium can then be dissolved using a nitric acid-fluoride-mercury(II) solution in large non-geometrically favorable equipment where nuclear safety is ensured by concentration control.

  4. Savannah River Site Geographic Information System management plan

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, D.E.

    1992-02-01

    A plan for managing the development of Geographic Information System (GIS) applications at the Savannah River Site (SRS) in a coordinated, integrated fashion has been developed. Included in the plan are discussions on the guidance for GIS activities at the site, the overall strategy for managing GIS applications development, the specific administrative and programmatic tasks with projected completion schedules, and the organizational structure in place to direct this GIS effort. The Department of Energy-Savannah River Field Office (DOE-SR) has encouraged all primary subcontracting organizations at SRS involved with the mapping of spatial data to coordinate their efforts and be more cost effective. This plan provides a description of organized activities in 1992 for establishing a coordinated approach for developing and implementing GIS technology.

  5. Worker Alienation and Compensation at the Savannah River Site.

    Science.gov (United States)

    Ashwood, Loka; Wing, Steve

    2016-05-01

    Corporations operating U.S. nuclear weapons plants for the federal government began tracking occupational exposures to ionizing radiation in 1943. However, workers, scholars, and policy makers have questioned the accuracy and completeness of radiation monitoring and its capacity to provide a basis for workers' compensation. We use interviews to explore the limitations of broad-scale, corporate epidemiological surveillance through worker accounts from the Savannah River Site nuclear weapons plant. Interviewees report inadequate monitoring, overbearing surveillance, limited venues to access medical support and exposure records, and administrative failure to report radiation and other exposures at the plant. The alienation of workers from their records and toil is relevant to worker compensation programs and the accuracy of radiation dose measurements used in epidemiologic studies of occupational radiation exposures at the Savannah River Site and other weapons plants.

  6. Environmental audit of the Savannah River Ecology Laboratory (SREL)

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents the results of the environmental audit conducted at the Savannah River Ecology Laboratory (SREL) at the Savannah River Site (SRS), principally in Aiken and Barnwell Counties, South Carolina. The audit was conducted by the US Department of Energy`s (DOE`s), Office of Environmental Audit (EH-24), beginning September 13, 1993, and ending September 23, 1993. The scope of the audit at SREL was comprehensive, addressing environmental activities in the technical areas of air; surface water/drinking water; groundwater/soil, sediment, and biota; waste management; toxic and chemical materials; inactive Waste sites; radiation; quality assurance; and environmental management. Specifically assessed was the compliance of SREL operations and activities with Federal, state, and local regulations; DOE Orders; and best management practices.

  7. Reptiles and amphibians of the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, J.W.; Patterson, K.K.

    1978-11-01

    Taxonomic, distributional, and ecological information on the reptiles and amphibians of the Savannah River Plant (SRP) is provided. The purpose of such a presentation is to give a professional biologist an initial familiarity with herpetology on the SRP, and to provide sufficient comprehensive information to an ecologist, regardless of his experience in herpetology, to permit him to undertake studies that in some manner incorporate the herpetofauna of the SRP. (ERB)

  8. New computer-controlled precipitator at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Moore, E N; Robbins, C C; Murdock, D W

    1988-01-01

    A new plutonium triflouride preciptation facility was successfully started up on the first attempt May 13, 1987 at the Savannah River Plant (SRP). This new facility provided a 75% reduction in radiation exposure, a substantial improvement in process performance, and elimination of the major SRP process bottleneck. This was accomplished through sound engineering, improved process control, process automation, and extensive testing of components, assemblies, and entire system prior to ''hot'' startup.

  9. Assessment of plutonium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Evans, A.G.; Geary, L.A.; Murphy, C.E. Jr.; Pinder, J.E.; Strom, R.N.

    1992-12-31

    Plutonium in the Savannah River Site Environment is published as a part of the Radiological Assessment Program (RAP). It is the fifth in a series of eight documents on individual radioisotopes released to the environment as a result of Savannah River Site (SRS) operations. These are living documents, each to be revised and updated on a two-year schedule. This document describes the sources of plutonium in the environment, its release from SRS, environmental transport and ecological concentration of plutonium, and the radiological impact of SRS releases to the environment. Plutonium exists in the environment as a result of above-ground nuclear weapons tests, the Chernobyl accident, the destruction of satellite SNAP 9-A, plane crashes involving nuclear weapons, and small releases from reactors and reprocessing plants. Plutonium has been produced at SRS during the operation of five production reactors and released in small quantities during the processing of fuel and targets in chemical separations facilities. Approximately 0.6 Ci of plutonium was released into streams and about 12 Ci was released to seepage basins, where it was tightly bound by clay in the soil. A smaller quantity, about 3.8 Ci, was released to the atmosphere. Virtually all releases have occurred in F- and H-Area separation facilities. Plutonium concentration and transport mechanisms for the atmosphere, surface water, and ground water releases have been extensively studied by Savannah River Technology Center (SRTC) and ecological mechanisms have been studied by Savannah River Ecology Laboratory (SREL). The overall radiological impact of SRS releases to the offsite maximum individual can be characterized by a total dose of 15 mrem (atmospheric) and 0.18 mrem (liquid), compared with the dose of 12,960 mrem from non-SRS sources during the same period of time (1954--1989). Plutonium releases from SRS facilities have resulted in a negligible impact to the environment and the population it supports.

  10. Radioactive releases at the Savannah River Site, 1954--1988

    Energy Technology Data Exchange (ETDEWEB)

    Hetrick, C.S.; Martin, D.K.

    1988-01-01

    Radioactive Releases at the Savannah River Site, 1954--1988 (WSRC-RP-89-737) is the continuation of a series of reports, previously titled Releases of Radioactivity at the Savannah River Plant (DPSU-1-YR-25). The series reflects the use of air and liquid effluent sample analyses in determining the amount of radioactivity released from Savannah River Site (SRS) operations. The identification and characterization of these source terms since plant startup in 1954 have aided Site personnel in confining and limiting the amount of radioactivity released to the environment from SRS facilities. Data contained in this report are used for a variety of purposes, including the calculation of offsite dose estimates and aiding special environmental studies. This document is an effluent/source term report. The report is divided into four summary sections. Summary A details volumes of air and water released from emission sources since plant startup. Summary B lists annual radioactive release data from these emission sources, grouped by nuclide and area. Summary C provides yearly totals of radioactive releases by radionuclide, under the headings Atmospheric,'' Liquid to streams,'' or Liquid to Seepage Basins'' accordingly. Monthly radioactive releases from each emission source from 1986 to 1988 are found in Summary D. Where appropriate, headings in the summary tables have been changed to clarify and simplify emission data (see Appendix B). Additionally, any new discharge points, such as the liquid discharge from the Effluent Treatment Facility (ETF), are included in this report. A listing of 1988 source term and onsite discharge designations is provided in Appendix C. 36 refs.

  11. Assessment of mercury in the Savannah River Site environment

    Energy Technology Data Exchange (ETDEWEB)

    Kvartek, E.J.; Carlton, W.H.; Denham, M.; Eldridge, L.; Newman, M.C.

    1994-09-01

    Mercury has been valued by humans for several millennia. Its principal ore, cinnabar, was mined for its distinctive reddish-gold color and high density. Mercury and its salts were used as medicines and aphrodisiacs. At SRS, mercury originated from one of the following: as a processing aid in aluminum dissolution and chloride precipitation; as part of the tritium facilities` gas handling system; from experimental, laboratory, or process support facilities; and as a waste from site operations. Mercury is also found in Par Pond and some SRS streams as the result of discharges from a mercury-cell-type chlor-alkali plant near the city of Augusta, GA. Reactor cooling water, drawn from the Savannah River, transported mercury onto the SRS. Approximately 80,000 kg of mercury is contained in the high level waste tanks and 10,000 kg is located in the SWDF. Additional quantities are located in the various seepage basins. In 1992, 617 wells were monitored for mercury contamination, with 47 indicating contamination in excess of the 0.002-ppm EPA Primary Drinking Water Standard. More than 20 Savannah River Ecology Laboratory (SREL) reports and publications pertinent to mercury (Hg) have been generated during the last two decades. They are divided into three groupings: SRS-specific studies, basic studies of bioaccumulation, and basic studies of effect. Many studies have taken place at Par Pond and Upper Three Runs Creek. Mercury has been detected in wells monitoring the groundwater beneath SRS, but not in water supply wells in excess of the Primary Drinking Water Limit of 0.002 ppm. There has been no significant release of mercury from SRS to the Savannah River. While releases to air are likely, based on process knowledge, modeling of the releases indicates concentrations that are well below the SCDHEC ambient standard.

  12. Environmental Survey preliminary report, Savannah River Plant, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Savannah River Plant (SRP), located at Aiken, South Carolina. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The following topics are discussed: general site information; air, soil, surface water and ground water; hydrogeology; waste management; toxic and chemical materials; release of tritium oxides; radioactivity in milk; contamination of ground water and wildlife; pesticide use; and release of radionuclides into seepage basins. 149 refs., 44 figs., 53 tabs.

  13. Savannah River Site environmental report for 1991. [Contains Glossary

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, M.W.; Karapatakis, L.K.; Mamatey, A.R.; Todd, J.L.

    1991-01-01

    This report describes environmental activities conducted on and in the vicinity of the Savannah River Site (SRS) in Aiken, S.C., from Jan. 1 to Dec. 31, 1991, with an update on compliance activities through April 1, 1992. The report is a single volume with a separate summary pamphlet highlighting the major findings for 1991. The report is divided into an executive summary and 14 chapters containing information on environmental compliance issues, environmental monitoring methods and programs, and environmental research activities for 1991, as well as historical data from previous years. Analytical results, figures, charts, and data tables relevant to the environmental monitoring program for 1991 at SRS are included.

  14. Savannah River Site K-Reactor Probabilistic Safety Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Brandyberry, M.D.; Bailey, R.T.; Baker, W.H.; Kearnaghan, D.P.; O`Kula, K.R.; Wittman, R.S.; Woody, N.D. [Westinghouse Savannah River Co., Aiken, SC (United States); Amos, C.N.; Weingardt, J.J. [Science Applications International Corp. (United States)

    1992-12-01

    This report gives the results of a Savannah River Site (SRS) K-Reactor Probabilistic Safety Assessment (PSA). Measures of adverse consequences to health and safety resulting from representations of severe accidents in SRS reactors are presented. In addition, the report gives a summary of the methods employed to represent these accidents and to assess the resultant consequences. The report is issued to provide useful information to the U. S. Department of Energy (DOE) on the risk of operation of SRS reactors, for insights into severe accident phenomena that contribute to this risk, and in support of improved bases for other DOE programs in Heavy Water Reactor safety.

  15. Savannah River Plant history plantwide activities, July 1954--December 1972

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1972-12-31

    This report recounts the yearly activities of the Savannah River Plant nonproduction agencies and is concerned mainly with Plant personnel and items of general interest. The ``History of Plantwide Activities`` is published as an accumulative document; at the end of each year a new writeup is added to the volume to bring it up to date. Writeups for 1955 and 1956 are based on the governmental fiscal year; those for 1957 and subsequent years are on a calendar year basis. The history of the period from prestartup through June 30, 1953, is presented in DPSP 53-368; the history from July 1953 through June 1954 is presented in DPSP 54-448.

  16. Inspection Report on "Employment Verification at Savannah River Site"

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-11-01

    We conducted a review at the Savannah River Site to determine if Site subcontractors verified the employment status of all employees in accordance with Federal requirements and, if unauthorized individuals accessed the site. During our field work, we reviewed 600 I-9 Forms from 21 subcontractors to verify whether Site subcontractors were using the I-9 Forms; and if the forms were accurate and complete. We also conducted a judgmental sample of individuals who accessed the Site during a six-month period to determine if there were any documentation anomalies.

  17. Adverse experiences with nitric acid at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Durant, W.S.; Craig, D.K.; Vitacco, M.J.; McCormick, J.A.

    1991-06-01

    Nitric acid is used routinely at the Savannah River Site (SRS) in many processes. However, the site has experienced a number of adverse situations in handling nitric acid. These have ranged from minor injuries to personnel to significant explosions. This document compiles many of these events and includes discussions of process upsets, fires, injuries, and toxic effects of nitric acid and its decomposition products. The purpose of the publication is to apprise those using the acid that it is a potentially dangerous material and can react in many ways as demonstrated by SRS experience. 10 refs.

  18. Waterfowl of the Savannah River Plant: Comprehensive cooling water study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J.J.; Kennamer, R.A.; Hoppe, R.T.

    1986-06-01

    Thirty-one species of waterfowl have been documented on the Savannah River Plant (SPR). The Savannah River Ecology Laboratory (SREL) has been conducting waterfowl research on the site for the past 15 years. This research has included work on waterfowl utilization of the SRP, wood duck reproductive biology, and waterfowl wintering ecology. Results are described.

  19. Ecological research at the Savannah River Ecology Laboratory. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-05-01

    Research is organized around two major programs: thermal and aquatic stress and mineral cycling. These programs are strengthened by a previously established foundation of basic ecological knowledge. Research in basic ecology continues to be a major component of all SREL environmental programs. Emphasis in all programs has been placed upon field-oriented research relating to regional and local problems having broad ecological significance. For example, extensive research has been conducted in the Par Pond reservoir system and the Savannah River swamp, both of which have received thermal effluent, heavy metals, and low levels of radioisotopes. Furthermore, the availability of low levels of plutonium and uranium in both terrestrial and aquatic environments on the Savannah River Plant (SRP) has provided an unusual opportunity for field research in this area. The studies seek to document the effects, to determine the extent of local environmental problems, and to establish predictable relationships which have general applicability. In order to accomplish this objective it has been imperative that studies be carried out in the natural, environmentally unaffected areas on the SRP as a vital part of the overall program. Progress is reported in forty-nine studies.

  20. Bats of the Savannah River Site and vicinity.

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Menzel; J.M. Menzel; J.C. Kilgo; W.M. Ford; T.C. Carter; J.W. Edwards

    2003-10-01

    The U.S. Department of Energy's Savannah River Site supports a diverse bat community. Nine species occur there regularly, including the eastern pipistrelle (Pipistrellus subflavus), southeastern myotis (Myotis austroriparius), evening bat (Nycticeius humeralis), Rafinesque's big-eared bat (Corynorhinus rafinesquii), silver-haired bat (Lasionycteris noctivagans), eastern red bat (Lasiurus borealis), Seminole bat (L. seminolus), hoary bat (L. cinereus), and big brown bat (Eptesicus fuscus). There are extralimital capture records for two additional species: little brown bat (M. lucifigus) and northern yellow bat (Lasiurus intermedius). Acoustical sampling has documented the presence of Brazilian free-tailed bats (Tadarida brasiliensis), but none has been captured. Among those species common to the Site, the southeastern myotis and Rafinesque's big-eared bat are listed in South Carolina as threatened and endangered, respectively. The presence of those two species, and a growing concern for the conservation of forest-dwelling bats, led to extensive and focused research on the Savannah River Site between 1996 and 2002. Summarizing this and other bat research, we provide species accounts that discuss morphology and distribution, roosting and foraging behaviors, home range characteristics, habitat relations, and reproductive biology. We also present information on conservation needs and rabies issues; and, finally, identification keys that may be useful wherever the bat species we describe are found.

  1. Savannah River Site Approved Site Treatment Plan, 1998 Annual Update

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, B. [Westinghouse Savannah River Company, AIKEN, SC (United States); Berry, M.

    1998-03-01

    The U.S. Department of Energy, Savannah River Operations Office (DOE- SR),has prepared the Site Treatment Plan (STP) for Savannah River Site (SRS) mixed wastes in accordance with RCRA Section 3021(b), and SCDHEC has approved the STP (except for certain offsite wastes) and issued an order enforcing the STP commitments in Volume I. DOE-SR and SCDHEC agree that this STP fulfills the requirements contained in the FFCAct, RCRA Section 3021, and therefore,pursuant to Section 105(a) of the FFCAct (RCRA Section 3021(b)(5)), DOE`s requirements are to implement the plan for the development of treatment capacities and technologies pursuant to RCRA Section 3021.Emerging and new technologies not yet considered may be identified to manage waste more safely, effectively, and at lower cost than technologies currently identified in the plan. DOE will continue to evaluate and develop technologies that offer potential advantages in public acceptance, privatization, consolidation, risk abatement, performance, and life-cycle cost. Should technologies that offer such advantages be identified, DOE may request a revision/modification of the STP in accordance with the provisions of Consent Order 95-22-HW.The Compliance Plan Volume (Volume I) identifies project activity schedule milestones for achieving compliance with Land Disposal Restrictions (LDR). Information regarding the technical evaluation of treatment options for SRS mixed wastes is contained in the Background Volume (Volume II) and is provided for information.

  2. Integration of Environmental Compliance at the Savannah River Site - 13024

    Energy Technology Data Exchange (ETDEWEB)

    Hoel, David [United States Department of Energy - Savannah River Operations Office (United States); Griffith, Michael [Savannah River Nuclear Solutions, LLC (United States)

    2013-07-01

    The Savannah River Site (SRS) is a large federal installation hosting diverse missions and multiple organizations with competing regulatory needs. Accordingly, there was a need to integrate environmental compliance strategies to ensure the consistent flow of information between Department of Energy-Savannah River (DOE-SR), the regulatory agencies and other interested parties. In order to meet this objective, DOE and major SRS contractors and tenants have committed to a strategy of collaboratively working together to ensure that a consistent, integrated, and fully coordinated approach to environmental compliance and regulator relationships is maintained. DOE-SR and Savannah River Nuclear Solutions, LLC, the SRS management and operations contractor, have established an environmental compliance integration process that provides for the consistent flow down of requirements to projects, facilities, SRS contractors, and subcontractors as well as the upward flow of information to assist in the early identification and resolution of environmental regulatory issues and enhancement of compliance opportunities. In addition, this process strongly fosters teamwork to collaboratively resolve complex regulatory challenges, promote pollution prevention and waste minimization opportunities to advance site missions in a manner that balances near-term actions with the long-term site vision, while being protective of human health and the environment. Communication tools are being utilized, some with enhancements, to ensure appropriate information is communicated to all levels with environmental responsibility at SRS. SRS internal regulatory integration is accomplished through a variety of informational exchange forums (e.g., Challenges, Opportunities and Resolution (COR) Team, DOE's Joint Site Regulatory Integration Team, and the Senior Environmental Managers Council (SEMC)). SRS communications and problem-solving with the regulatory agencies have been enhanced through formation

  3. SALT CORE SAMPLING EVOLUTION AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Nance, T; Daniel Krementz, D; William Cheng, W

    2007-11-29

    The Savannah River Site (SRS), a Department of Energy (DOE) facility, has over 30 million gallons of legacy waste from its many years of processing nuclear materials. The majority of waste is stored in 49 buried tanks. Available underground piping is the primary and desired pathway to transfer waste from one tank to another until the waste is delivered to the glass plant, DWPF, or the grout plant, Saltstone. Prior to moving the material, the tank contents need to be evaluated to ensure the correct destination for the waste is chosen. Access ports are available in each tank top in a number of locations and sizes to be used to obtain samples of the waste for analysis. Material consistencies vary for each tank with the majority of waste to be processed being radioactive salts and sludge. The following paper describes the progression of equipment and techniques developed to obtain core samples of salt and solid sludge at SRS.

  4. Socioeconomic baseline characterization for the Savannah River Plant area

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    This report presents the social and economic characteristics of the environs of the Savannah River Plant (SRP). The characterization is keyed to those areas of the social and economic environment that could be impacted by the construction and operation of major facilities at SRP. The data consists of past trends and existing characteristics of the area's land use; its demographic, social, and economic profile; regional government; community services; housing, transportation; and historical, scenic, and archeological resources. Published documents, reports, and brochures were the primary sources of all the data presented in this document. When current published data was unavailable, representatives of federal, state, and local agencies were contacted by telephone. Conversations were followed by letters of verification, which were reviewed and verified by the agency representative.

  5. Savannah River Site Environmental Implementation Plan. Volume 2, Protection programs

    Energy Technology Data Exchange (ETDEWEB)

    1989-08-01

    Formal sitewide environmental planning at the . Savannah River Site (SRS) began in 1986 with the development and adoption of the Strategic Environmental Plan. The Strategic Environmental Plan describes the philosophy, policy, and overall program direction of environmental programs for the operation of the SRS. The Strategic Environmental Plan (Volume 2) provided the basis for development of the Environmental Implementation Plan (EIP). The EIP is the detailed, comprehensive environmental master plan for operating contractor organizations at the SRS. The EIP provides a process to ensure that all environmental requirements and obligations are being met by setting specific measurable goals and objectives and strategies for implementation. The plan is the basis for justification of site manpower and funding requests for environmental projects and programs over a five-year planning period.

  6. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  7. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  8. Consolidated Incineration Facility, Savannah River Site. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This environmental assessment (EA) was prepared by the US Department of Energy (DOE) to assess the potential impacts associated with the siting, construction, and operation of the proposed Consolidated Incineration Facility (CIF), at the Savannah River Site, Aiken, South Carolina. The text of the document is unchanged from the EA issued in June 1992, with the following three exceptions: (1) Section 2.1 refers to recent solid waste forecast information; (2) Section 4.5.1 deletes the reference to dioxin emission standards; and (3) a footnote to Section 4.6.2 includes the results of a morr, conservative risk factor. An additional appendix has also been added to the EA. Appendix B presents comments received on the June 1992 EA and the Proposed FONSI from federal, state, and local agencies, interest groups, and individuals. Appendix B also contains both general and specific DOE responses to these comments.

  9. Beneficially reusing LLRW the Savannah River Site Stainless Steel Program

    Energy Technology Data Exchange (ETDEWEB)

    Boettinger, W.L.

    1993-09-09

    With 68 radioactively contaminated excess Process Water Heat Exchangers the Savannah River Site launched its program to turn potential LLRW metal liabilities into assets. Each Heat Exchanger contains approximately 100 tons of 304 Stainless Steel and could be disposed as LLRW by land burial. Instead the 7000 tons of metal will be recycled into LLRW, HLW, and TRU waste containers thereby eliminating the need for near term land disposal and also eliminating the need to add more clean metal to the waste stream. Aspects of the partnership between DOE and Private Industry necessary to accomplish this new mission are described. A life cycle cost analysis associated with past practices of using carbon steel containers to indefinitely store material (contributing to the creation of today`s legacy waste problems) is presented. The avoided cost calculations needed to support the economics of the ``Indifference`` decision process in assessing the Beneficial Reuse option relative to the Burial option are described.

  10. Management of New Production Reactor waste streams at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.; Newman, J.L.

    1992-12-31

    To ensure the adequacy of available facilities, the disposition of the several waste types generated in support of a heavy-water NPR operation at the Savannah River Site were projected through waste- treatment and disposal facilities after the year 2000. Volumes of high-level, low-level radioactive, TRU, hazardous, mixed and non-radioactive waste were predicted for early assessments of environmental impacts and to provide a baseline for future waste-minimization initiatives. Life-cycle unit costs for disposal of the waste, adjusted to reflect waste management capabilities in the NPR operating time frame, were developed to evaluate the economic effectiveness of waste-minimization activities in the NPR program.

  11. Management of New Production Reactor waste streams at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.; Newman, J.L.

    1992-01-01

    To ensure the adequacy of available facilities, the disposition of the several waste types generated in support of a heavy-water NPR operation at the Savannah River Site were projected through waste- treatment and disposal facilities after the year 2000. Volumes of high-level, low-level radioactive, TRU, hazardous, mixed and non-radioactive waste were predicted for early assessments of environmental impacts and to provide a baseline for future waste-minimization initiatives. Life-cycle unit costs for disposal of the waste, adjusted to reflect waste management capabilities in the NPR operating time frame, were developed to evaluate the economic effectiveness of waste-minimization activities in the NPR program.

  12. Quantitative studies of Savannah River aquatic insects, 1959--1985

    Energy Technology Data Exchange (ETDEWEB)

    Soltis, R. (ed.); Hart, D.; Nagy, T.

    1986-10-30

    As part of a long-term study of water quality patterns, scientists from the Academy of Natural Sciences have collected aquatic insects from artificial substrates placed at several stations in Savannah River. This report presents the first detailed compilation and analysis of this substantial data base, and examines patterns of variations of insect distribution and abundance (both spatial and temporal) during the last quarter century. Data on the number of individuals of various taxa found in the insect traps were obtained from tables in the Academy's cursory reports. Computer data files created from these records were subjected to extensive statistical analyses in order to examine variation among stations, seasons and years in the abundances of major taxa and various aggregate properties of the insect assemblage. Although a total of 83 taxa were collected over the 27-year study, 10 taxa accounted for nearly 80% of the individuals collected from the traps, hence there 10 taxa were analyzed more intensively.

  13. Quantitative studies of Savannah River aquatic insects, 1959--1985

    Energy Technology Data Exchange (ETDEWEB)

    Soltis, R. [ed.; Hart, D.; Nagy, T.

    1986-10-30

    As part of a long-term study of water quality patterns, scientists from the Academy of Natural Sciences have collected aquatic insects from artificial substrates placed at several stations in Savannah River. This report presents the first detailed compilation and analysis of this substantial data base, and examines patterns of variations of insect distribution and abundance (both spatial and temporal) during the last quarter century. Data on the number of individuals of various taxa found in the insect traps were obtained from tables in the Academy`s cursory reports. Computer data files created from these records were subjected to extensive statistical analyses in order to examine variation among stations, seasons and years in the abundances of major taxa and various aggregate properties of the insect assemblage. Although a total of 83 taxa were collected over the 27-year study, 10 taxa accounted for nearly 80% of the individuals collected from the traps, hence there 10 taxa were analyzed more intensively.

  14. SPENT FUEL MANAGEMENT AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Vormelker, P; Robert Sindelar, R; Richard Deible, R

    2007-11-03

    Spent nuclear fuels are received from reactor sites around the world and are being stored in the L-Basin at the Savannah River Site (SRS) in Aiken, South Carolina. The predominant fuel types are research reactor fuel with aluminum-alloy cladding and aluminum-based fuel. Other fuel materials include stainless steel and Zircaloy cladding with uranium oxide fuel. Chemistry control and corrosion surveillance programs have been established and upgraded since the early 1990's to minimize corrosion degradation of the aluminum cladding materials, so as to maintain fuel integrity and minimize personnel exposure from radioactivity in the basin water. Recent activities have been initiated to support additional decades of wet storage which include fuel inspection and corrosion testing to evaluate the effects of specific water impurity species on corrosion attack.

  15. Waste Tank Corrosion Program at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, J.R.; Hsu, T.C.; Hobbs, D.T.; Iyer, N.C.; Marra, J.E.; Zapp, P.E.

    1993-11-01

    The Savannah River Site (SRS) has approximately 30 million gallons of high level radioactive waste stored in 51 underground tanks. SRS has maintained an active corrosion research and corrosion control and monitoring program throughout the operating history of SRS nuclear waste storage tanks. This program is largely responsible for the successful waste storage experience at SRS. The program has consisted of extensive monitoring of the tanks and surrounding environment for evidence of leaks, extensive research to understand the potential corrosion processes, and development and implementation of corrosion chemistry control. Current issues associated with waste tank corrosion are primarily focused on waste processing operations and are being addressed by a number of active programs and initiatives.

  16. The Savannah River Site's Groundwater Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  17. Sanitary landfill groundwater quality assessment plan Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wells, D.G.; Cook, J.W.

    1990-06-01

    This assessment monitoring plan has been prepared in accordance with the guidance provided by the SCDHEC in a letter dated December 7, 1989 from Pearson to Wright and a letter dated October 9, 1989 from Keisler to Lindler. The letters are included a Appendix A, for informational purposes. Included in the plan are all of the monitoring data from the landfill monitoring wells for 1989, and a description of the present monitoring well network. The plan proposes thirty-two new wells and an extensive coring project that includes eleven soil borings. Locations of the proposed wells attempt to follow the SCDHEC guidelines and are downgradient, sidegradient and in the heart of suspected contaminant plumes. Also included in the plan is the current Savannah River Site Sampling and Analysis Plan and the well construction records for all of the existing monitoring wells around the sanitary landfill.

  18. New instrument calibration facility for the DOE Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wilkie, W.H.; Polz, E.J. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1993-12-31

    A new laboratory facility is being designed, constructed, and equipped at the Savannah River Site (SRS) as a fiscal year 1992 line item project. This facility will provide space and equipment for test, evaluation, repair, maintenance, and calibration of radiation monitoring instrumentation. The project will replace an obsolete facility and will allow implementation of program upgrades necessary to meet ANSI N323 requirements and National Voluntary Laboratory Accreditation Program (NVLAP) criteria for accreditation of federally owned secondary calibration laboratories. An outline of the project is presented including description, scope, cost, management organization, chronology, and current status. Selected design criteria and their impacts on the project are discussed. The upgraded SRS calibration program is described, and important features of the new facility and equipment that will accommodate this program are listed. The floor plan for the facility is shown, and equipment summaries and functional descriptions for each area are provided.

  19. Epidemiologic surveillance. Annual report for Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Epidemiologic surveillance at US Department of Energy (DOE) facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, the 1994 morbidity data for the Savannah River Site (SRS) are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 16-75 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and salary status; (2) the absences per person, diagnoses per absences, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

  20. Neutron dose and energy spectra measurements at Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Brackenbush, L.W.; Soldat, K.L.; Haggard, D.L.; Faust, L.G.; Tomeraasen, P.L.

    1987-08-01

    Because some workers have a high potential for significant neutron exposure, the Savannah River Plant (SRP) contracted with Pacific Northwest Laboratory (PNL) to verify the accuracy of neutron dosimetry at the plant. Energy spectrum and neutron dose measurements were made at the SRP calibrations laboratory and at several other locations. The energy spectra measurements were made using multisphere or Bonner sphere spectrometers,/sup 3/He spectrometers, and NE-213 liquid scintillator spectrometers. Neutron dose equivalent determinations were made using these instruments and others specifically designed to determine dose equivalent, such as the tissue equivalent proportional counter (TEPC). Survey instruments, such as the Eberline PNR-4, and the thermoluminescent dosimeter (TLD)-albedo and track etch dosimeters (TEDs) were also used. The TEPC, subjectively judged to provide the most accurate estimation of true dose equivalent, was used as the reference for comparison with other devices. 29 refs., 43 figs., 13 tabs.

  1. Savannah River Site Seismic Qualification Program boundary selection

    Energy Technology Data Exchange (ETDEWEB)

    Ketcham, D.R.; Nickell, C.G.; Monahon, T.M.

    1991-04-01

    The Savannah River Site Seismic Qualification Program utilizes methodology developed by the Seismic Qualification Utilities Group and endorsed by both the Nuclear Regulatory Commission and the Department of Energy. The systems selected for seismic upgrade prior to restart will ensure that following a seismic event, the reactor can be safely shut down, decay heat removal can be maintained, and the reactor status can be monitored for a minimum of seventy-two hours. Systems selected were reviewed to establish the boundaries of seismic qualification. Program implementation is being conducted in two phases. Phase on will be conducted prior to restart. It will include evaluating accident prevention systems and selected monitoring and mitigation systems and upgrading as necessary to ensure compliance with DOE requirements. Phase two will evaluate/upgrade other mitigation systems after restart to provide enhanced assurance of reactor safety.

  2. TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Foley, T.

    2010-02-10

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

  3. Intermediate-Scale Ion Exchange Removal of Technetium from Savannah River Site Tank 44 F Supernate Solution

    Energy Technology Data Exchange (ETDEWEB)

    King, W.D.

    2000-08-23

    As part of the Hanford River Protection Project waste Treatment facility design contracted to BNFL, Inc., a sample of Savannah River Site (SRS) Tank 4 F waste solution was treated for the removal of technetium (as pertechnetate ion). Interest in treating the SRS sample for Tc removal resulted from the similarity between the Tank 44 F supernate composition and Hanford Envelope A supernate solutions. The Tank 44 F sample was available as a by-product of tests already conducted at the Savannah River Technology Center (SRTC) as part of the Alternative Salt Disposition Program for treatment of SRS wastes. Testing of the SRS sample resulted in considerable cost-savings since it was not necessary to ship a sample of Hanford supernate to SRS.

  4. Savannah River Site chemical, metal, and pesticide (CMP) waste vitrification treatability studies

    Energy Technology Data Exchange (ETDEWEB)

    Cicero, C.A.

    1997-01-13

    Numerous Department of Energy (DOE) facilities, as well as Department of Defense (DOD) and commercial facilities, have used earthen pits for disposal of chemicals, organic contaminants, and other waste materials. Although this was an acceptable means of disposal in the past, direct disposal into earthen pits without liners or barriers is no longer a standard practice. At the Savannah River Site (SRS), approximately three million pounds of such material was removed from seven chemical, metal, and pesticide disposal pits. This material is known as the Chemical, Metal, and Pesticide (CMP) Pit waste and carries several different listed waste codes depending on the contaminants in the respective storage container. The waste is not classified as a mixed waste because it is believed to be non-radioactive; however, in order to treat the material in a non-radioactive facility, the waste would first have to be screened for radioactivity. The Defense Waste Processing Technology (DWPT) Section of the Savannah River Technology Center (SRTC) was requested by the DOE-Savannah River (SR) office to determine the viability of vitrification of the CMP Pit wastes. Radioactive vitrification facilities exist which would be able to process this waste, so the material would not have to be analyzed for radioactive content. Bench-scale treatability studies were performed by the DWPT to determine whether a homogeneous and durable glass could be produced from the CMP Pit wastes. Homogeneous and durable glasses were produced from the six pits sampled. The optimum composition was determined to be 68.5 wt% CMP waste, 7.2 wt% Na{sub 2}O, 9 wt% CaO, 7.2 wt% Li{sub 2}O and 8.1 wt% Fe{sub 2}O{sub 3}. This glass melted at 1,150 C and represented a two fold volume reduction.

  5. Integrated Project Management Planning for the Deactivation of the Savannah River Site F-Canyon Complex

    Energy Technology Data Exchange (ETDEWEB)

    Clark, T.G.

    2000-12-01

    This paper explains the planning process that is being utilized by the Westinghouse Savannah River Company to take the F-Canyon Complex facilities from operations to a deactivated condition awaiting final decommissioning.

  6. Characterizing the Environmental Availability of Trace Metals in Savannah River Site Soils

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, S.M.

    1999-03-18

    An eight step sequential extraction technique was used to characterize the environmental availability of trace metals from background and waste site soil samples collected from the US Department of Energy's Savannah River Site (SRS).

  7. Data Summary Report for Savannah River Integrator Operable Unit Fish Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Craig, B.

    2001-02-13

    This report presents the results of the verification and validation of the analytical data for the Savannah River Fish (SRF) investigation. The data were validated to determine if the records conform to the technical criteria associated with definitive data.

  8. Evaluation of Cone Penetrometer Data for Permeability Correlation at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Harris, M.K. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-02-01

    This report documents the results of an assessment of cone penetrometer technology (CPT) use at the Savannah River Site. The study is intended to provide valuable insight into methods of increasing the utility of CPT data for site characterization.

  9. Waterborne Release Monitoring and Surveillance Programs at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    1999-03-26

    This report documents the liquid release environmental compliance programs currently in place at the Savannah river Site (SRS). Included are descriptions of stream monitoring programs, which measure chemical parameters and radionuclides in site streams and the Savannah river and test representative biological communities within the streams for chemical and radiological uptake. This report also explains the field sampling and analytical capabilities that are available at SRS during both normal and emergency conditions.

  10. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K. (ed.)

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  11. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    2000-02-28

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.

  12. Management approaches for improving environmental restoration at the Savannah River Site: Projectization, performance, and communications; Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Pope, J.M.; Hoffman, W.D. (Westinghouse Savannah River Co., Aiken, SC (United States)); Goidell, L. (USDOE, Washington, DC (United States))

    1993-01-01

    The purpose of this paper is to communicate how new and established management techniques are applied to environmental restoration projects at the Savannah River Site. Specifically, the paper discusses application of four (4) management approaches: Total Quality Principles; Task Team Structure; Cost Time Management; SAFER (Streamlined Approach for Environmental Restoration). The objective is to share Savannah River Site experience and document case studies where certain approaches have enhanced projects at hand. Each management approach is demonstrated by its project application and impact on performance. The visibility given the project is discussed to emphasize communications as avenues for public information, technical exchange, and employee motivation.

  13. Management approaches for improving environmental restoration at the Savannah River Site: Projectization, performance, and communications; Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Pope, J.M.; Hoffman, W.D. [Westinghouse Savannah River Co., Aiken, SC (United States); Goidell, L. [USDOE, Washington, DC (United States)

    1993-02-01

    The purpose of this paper is to communicate how new and established management techniques are applied to environmental restoration projects at the Savannah River Site. Specifically, the paper discusses application of four (4) management approaches: Total Quality Principles; Task Team Structure; Cost Time Management; SAFER (Streamlined Approach for Environmental Restoration). The objective is to share Savannah River Site experience and document case studies where certain approaches have enhanced projects at hand. Each management approach is demonstrated by its project application and impact on performance. The visibility given the project is discussed to emphasize communications as avenues for public information, technical exchange, and employee motivation.

  14. Long Term Remote Monitoring of TCE Contaminated Groundwater at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Duran, C.; Gudavalli, R.; Lagos, L.; Tansel, B.; Varona, J.; Allen, M.

    2004-10-06

    The purpose of this study was to develop a mobile self powered remote monitoring system enhanced for field deployment at Savannah River Site (SRS). The system used a localized power source with solar recharging and has wireless data collection, analysis, transmission, and data management capabilities. The prototype was equipped with a Hydrolab's DataSonde 4a multi-sensor array package managed by a Supervisory Control and Data Acquisition (SCADA) system, with an adequate pumping capacity of water samples for sampling and analysis of Trichloroethylene (TCE) in contaminated groundwater wells at SRS. This paper focuses on a study and technology development efforts conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) to automate the sampling of contaminated wells with a multi-sensor array package developed using COTS (Commercial Off The shelf) parts. Bladder pumps will pump water from different wells to the sensors array, water quality TCE indicator parameters are measured (i.e. pH, redox, ORP, DO, NO3 -, Cl-). In order to increase user access and data management, the system was designed to be accessible over the Internet. Remote users can take sample readings and collect data remotely over a web. Results obtained at Florida International University in-house testing and at a field deployment at the Savannah River Site indicate that this long term monitoring technique can be a feasible solution for the sampling of TCE indicator parameters at remote contaminated sites.

  15. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  16. HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Danko, E

    2009-03-02

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies

  17. Striped Bass Spawning in Non-Estuarine Portions of the Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.; Paller, M.

    2007-04-17

    Historically, the estuarine portions of the Savannah River have been considered to be the only portion of the river in which significant amounts of striped bass (Morone saxatilis) spawning normally occur. A reexamination of data from 1983 through 1985 shows a region between River Kilometers 144 and 253 where significant numbers of striped bass eggs and larvae occur with estimated total egg production near that currently produced in the estuarine reaches. It appears possible that there are two separate spawning populations of striped bass in the Savannah River.

  18. VITRIFICATION OF HIGH LEVEL WASTE AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Peeler, D.

    2009-06-17

    The objective of this study was to experimentally measure the properties and performance of a series of glasses with compositions that could represent high level waste Sludge Batch 5 (SB5) as vitrified at the Savannah River Site Defense Waste Processing Facility. These data were used to guide frit optimization efforts as the SB5 composition was finalized. Glass compositions for this study were developed by combining a series of SB5 composition projections with a group of candidate frits. The study glasses were fabricated using depleted uranium and their chemical compositions, crystalline contents and chemical durabilities were characterized. Trevorite was the only crystalline phase that was identified in a few of the study glasses after slow cooling, and is not of concern as spinels have been shown to have little impact on the durability of high level waste glasses. Chemical durability was quantified using the Product Consistency Test (PCT). All of the glasses had very acceptable durability performance. The results of this study indicate that a frit composition can be identified that will provide a processable and durable glass when combined with SB5.

  19. A climatological description of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, C.H.

    1990-05-22

    This report provides a general climatological description of the Savannah River Site. The description provides both regional and local scale climatology. The regional climatology includes a general regional climatic description and presents information on occurrence frequencies of the severe meteorological phenomena that are important considerations in the design and siting of a facility. These phenomena include tornadoes, thunderstorms, hurricanes, and ice/snow storms. Occurrence probabilities given for extreme tornado and non-tornado winds are based on previous site specific studies. Local climatological conditions that are significant with respect to the impact of facility operations on the environment are described using on-site or near-site meteorological data. Summaries of wind speed, wind direction, and atmospheric stability are primarily based on the most recently generated five-year set of data collected from the onsite meteorological tower network (1982--86). Temperature, humidity, and precipitation summaries include data from SRL's standard meteorological instrument shelter and the Augusta National Weather Service office at Bush Field through 1986. A brief description of the onsite meteorological monitoring program is also provided. 24 refs., 15 figs., 22 tabs.

  20. Savannah River Reactor Operation: Indices of risk for emergency planning

    Energy Technology Data Exchange (ETDEWEB)

    O' Kula, K.R.; East, J.M.

    1990-10-01

    Periodically it is necessary to re-examine the implications of new source terms for neighboring offsite populations as Probabilistic Risk Assessment (PRA) and Severe Accident studies mature, and lead to a better understanding of the progression of hypothetical core melt accidents in the Savannah River Site (SRS) reactors. In this application multiple-system failure, low-frequency events, and consequently higher radiological source terms than from normal operation or design basis accidents (DBAs) are considered. Measures of consequence such as constant dose vs distance, boundary doses, and health effects to close-in populations are usually examined in this context. A set of source terms developed for the Safety Information Document (SID) for support of the Reactor Operation Environmental Impact Statement (EIS) forms the basis for the revised risk evaluation discussed herein. The intent of this review is not to completely substantiate the sufficiency of the current Emergency Planning Zone (EPZ). However, the two principal measures (200-rem red-bone marrow dose vs distance and 300-rem thyroid dose vs distance) for setting an EPZ are considered. Additional dose-at-distance calculations and consideration of DBA doses would be needed to complete a re-evaluation of the current EPZ. These subject areas are not addressed in the current document. Also, this report evaluates the sensitivity of individual risk estimates to the extent of offsite evacuation assumed from a K reactor severe accident and compares these risks to the Draft DOE Safety Guidelines. 14 refs., 8 figs., 4 tabs.

  1. Operational Readiness Review: Savannah River Replacement Tritium Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members.

  2. The Savannah River Site's groundwater monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  3. Application of UAVs at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.; Pendergast, M.M.

    1996-08-01

    Small, unmanned aerial vehicles (UAVs) equipped with sensors for physical, chemical, and radiochemical measurements of remote environments have been tested at the Savannah River Site (SRS). A miniature helicopter was used as an aerial platform for testing a variety of sensors with outputs integrated with the flight control system for real-time data acquisition and evaluation. The sensors included a precision magnetometer, two broad band infra-red radiometers, a 1-inch by 1-inch Nal(TI) scintillation detector, and an on-board color video camera. Included in the avionics package was an ultrasonic altimeter, a precision barometer, and a portable Global Positioning System. Two separate demonstration locations at SRS were flown that had been previously characterized by careful sampling and analyses and by aerial surveys at high altitudes. The Steed Pond demonstration site contains elevated levels of uranium in the soil and pond silt due to runoff from one of the site`s uranium fuel and target production areas. The soil at the other site is contaminated with oil bearing materials and contains some buried objects. The results and limitations of the UAV surveys are presented and improvements for future measurements are discussed.

  4. Law enforcement tools available at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hofstetter, K.J.

    2000-03-29

    A number of nuclear technologies developed and applied at the Savannah River Site in support of nuclear weapons material production and environmental remediation can be applied to problems in law enforcement. Techniques and equipment for high-sensitivity analyses of samples are available to identify and quantify trace elements and establish origins and histories of forensic evidence removed from crime scenes. While some of theses capabilities are available at local crime laboratories, state-of-the-art equipment and breakthroughs in analytical techniques are continually being developed at DOE laboratories. Extensive experience with the handling of radioactive samples at the DOE labs minimizes the chances of cross-contamination of evidence received from law enforcement. In addition to high-sensitivity analyses, many of the field techniques developed for use in a nuclear facility can assist law enforcement personnel in detecting illicit materials and operations, in retrieving of pertinent evidence and in surveying crime scenes. Some of these tools include chemical sniffers, hand-held detectors, thermal imaging, etc. In addition, mobile laboratories can be deployed to a crime scene to provide field screening of potential evidence. A variety of portable sensors can be deployed on vehicle, aerial, surface or submersible platforms to assist in the location of pertinent evidence or illicit operations. Several specific nuclear technologies available to law enforcement and their potential uses are discussed.

  5. Geochemistry of ground water at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Marine, I.W.

    1976-09-01

    Subsurface hydrogeologic systems underlying the Savannah River Plant (SRP) were studied to determine the origin and age of the contained fluids. Three distinct systems exist beneath SRP: the Coastal Plain sediments, crystalline metamorphic basement rock, and a Triassic rock basin surrounded by the crystalline rock. The water in the Coastal Plain sediments is low in dissolved solids (approximately 30 mg/l), acidic (pH approximately 5.5), and comparatively recent. Water in the crystalline rock is high in dissolved solids (approximately 6000 mg/l), alkaline (pH approximately 8), and approximately 840,000 years old as determined by helium dating techniques. Water in the Triassic rock is highest in dissolved solids (approximately 18,000 mg/l) and is probably older than the water in the surrounding crystalline rock; a quantitative age was not determined. The origin of the water in the crystalline and Triassic rock could not be determined with certainty; however, it is not relic sea water. A detailed geologic-hydrologic history of the SRP region is presented.

  6. Tritium in the Savannah River Site environment. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.E. Jr.; Bauer, L.R.; Hayes, D.W.; Marter, W.L.; Zeigler, C.C.; Stephenson, D.E.; Hoel, D.D.; Hamby, D.M.

    1991-05-01

    Tritium is released to the environment from many of the operations at the Savannah River Site. The releases from each facility to the atmosphere and to the soil and streams, both from normal operations and inadvertent releases, over the period of operation from the early 1950s through 1988 are presented. The fate of the tritium released is evaluated through environmental monitoring, special studies, and modeling. It is concluded that approximately 91% of the tritium remaining after decay is now in the oceans. A dose and risk assessment to the population around the site is presented. It is concluded that about 0.6 fatal cancers may be associated with the tritium released during all the years of operation to the population of about 625,000. This same population (based on the overall US cancer statistics) is expected to experience about 105,000 cancer fatalities from all types of cancer. Therefore, it is considered unlikely that a relationship between any of the cancer deaths occurring in this population and releases of tritium from the SRS will be found.

  7. Characterization recommendations for waste sites at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil.

  8. Mathematical model of the Savannah River Site waste tank farm

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.G. III.

    1991-07-15

    A mathematical model has been developed to simulate operation of the waste tank farm and the associated evaporator systems at the Savannah River Site. The model solves material balance equations to predict the volumes of liquid waste, salt, and sludge for all of the tanks within each of the evaporator systems. Additional logic is included to model the behavior of waste tanks not directly associated with the evaporators. Input parameters include the Material Management Plan forecast of canyon operations, specification of other waste sources for the evaporator systems, evaporator operating characteristics, and salt and sludge removal schedules. The model determines how the evaporators will operate, when waste transfers can be made, and waste accumulation rates. Output from the model includes waste tank contents, summaries of systems operations, and reports of space gain and the remaining capacity to store waste materials within the tank farm. Model simulations can be made to predict waste tank capacities on a daily basis for up to 20 years. The model is coded as a set of three computer programs designed to run on either IBM compatible or Apple Macintosh II personal computers.

  9. MOX Lead Assembly Fabrication at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, R.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Spiker, D.L.; Poon, A.P.

    1997-12-01

    The U. S. Department of Energy (DOE) announced its intent to prepare an Environmental Impact Statement (EIS) under the National Environmental Policy Act (NEPA) on the disposition of the nations weapon-usable surplus plutonium.This EIS is tiered from the Storage and Disposition of Weapons-Usable Fissile Material Programmatic Environmental Impact Statement issued in December 1996,and the associated Record of Decision issued on January, 1997. The EIS will examine reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. The three types of facilities are: a pit disassembly and conversion facility, a facility to immobilize surplus plutonium in a glass or ceramic form for disposition, and a facility to fabricate plutonium oxide into mixed oxide (MOX) fuel.As an integral part of the surplus plutonium program, Oak Ridge National Laboratory (ORNL) was tasked by the DOE Office of Fissile Material Disposition(MD) as the technical lead to organize and evaluate existing facilities in the DOE complex which may meet MD`s need for a domestic MOX fuel fabrication demonstration facility. The Lead Assembly (LA) facility is to produce 1 MT of usable test fuel per year for three years. The Savannah River Site (SRS) as the only operating plutonium processing site in the DOE complex, proposes two options to carry out the fabrication of MOX fuel lead test assemblies: an all Category I facility option and a combined Category I and non-Category I facilities option.

  10. LONG-TERM CHANGES IN MERCURY CONCENTRATIONS IN FISH FROM THE MIDDLE SAVANNAH RIVER

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M; Bill Littrell, B

    2007-01-02

    Total mercury levels were measured in largemouth bass (Micropterus salmoides), ''sunfishes'' (Lepomis spp)., and ''catfish'' (primarily Ameiurus spp.) from 1971 to 2004 in the middle reaches of the Savannah River, which drains the coastal plain of the southeastern U.S. Mercury levels were highest in 1971 but declined over the next ten years due to the mitigation of point sources of industrial pollution. Mercury levels began to increase in the 1980s as a possible consequence of mercury inputs from tributaries and associated wetlands where mercury concentrations were significantly elevated in water and fish. Mercury levels in Savannah River fish decreased sharply in 2001-2003 coincident with a severe drought in the Savannah River basin, but returned to previous levels in 2004 with the resumption of normal precipitation. Regression models showed that mercury levels in Savannah River fish changed significantly over time and were affected by river discharge. Despite temporal changes, there was little overall difference in Savannah River fish tissue mercury levels between 1971 and 2004.

  11. High temperature vitrification of surrogate Savannah River Site (SRS) mixed waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Applewhite-Ramsey, A.; Schumacher, R.F.; Spatz, T.L. [Westinghouse Savannah River Co., Aiken, SC (United States); Newsom, R.A.; Circeo, L.J. [Georgia Inst. of Technology, Atlanta, GA (United States); Danjaji, M.B. [Clark Atlanta Univ., Atlanta, GA (United States)

    1995-11-01

    The Savannah River Technology Center (SRTC) has been funded through the DOE Office of Technology Development (DOE-OTD) to investigate high-temperature vitrification technologies for the treatment of diverse low-level and mixed wastes. High temperature vitrification is a likely candidate for processing heterogeneous solid wastes containing low levels of activity. Many SRS wastes fit into this category. Plasma torch technology is one high temperature vitrification method. A trial demonstration of plasma torch processing is being performed at the Georgia Institute of Technology on surrogate SRS wastes. This effort is in cooperation with the Engineering Research and Development Association of Georgia Universities (ERDA) program. The results of phase 1 of these plasma torch trials will be presented.

  12. SOLUBILITY OF URANIUM AND PLUTONIUM IN ALKALINE SAVANNAH RIVER SITE HIGH LEVEL WASTE SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    King, W.; Hobbs, D.; Wilmarth, B.; Edwards, T.

    2010-03-10

    Five actual Savannah River Site tank waste samples and three chemically-modified samples were tested to determine solubility limits for uranium and plutonium over a one year time period. Observed final uranium concentrations ranged from 7 mg U/L to 4.5 g U/L. Final plutonium concentrations ranged from 4 {micro}g Pu/L to 12 mg Pu/L. Actinide carbonate complexation is believed to result in the dramatic solubility increases observed for one sample over long time periods. Clarkeite, NaUO{sub 2}(O)OH {center_dot} H{sub 2}O, was found to be the dominant uranium solid phase in equilibrium with the waste supernate in most cases.

  13. Restart of K-Reactor, Savannah River Site: Safety evaluation report

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    This Safety Evaluation Report (SER) focuses on those issues required to support the restart of the K-Reactor at the Savannah River Plant. This SER provides the safety criteria for restart and documents the results of the staff reviews of the DOE and operating contractor activities to meet these criteria. To develop the restart criteria for the issues discussed in this SER, the Savannah River Restart Office and Savannah River Special Projects Office staffs relied, when possible, on commercial industry codes and standards and on NRC requirements and guidelines for the commercial nuclear industry. However, because of the age and uniqueness of the Savannah River reactors, criteria for the commercial plants were not always applicable. In these cases, alternate criteria were developed. The restart criteria applicable to each of the issues are identified in the safety evaluations for each issue. The restart criteria identified in this report are intended to apply only to restart of the Savannah River reactors. Following the development of the acceptance criteria, the DOE staff and their support contractors evaluated the results of the DOE and operating contractor (WSRC) activities to meet these criteria. The results of those evaluations are documented in this report. Deviations or failures to meet the requirements are either justified in the report or carried as open or confirmatory items to be completed and evaluated in supplements to this report before restart. 62 refs., 1 fig.

  14. PLUTONIUM SOLUBILITY IN SIMULATED SAVANNAH RIVER SITE WASTE SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T.; Hobbs, D.; Edwards, T.

    2010-09-27

    To address the accelerated disposition of the supernate and salt portions of Savannah River Site (SRS) high level waste (HLW), solubility experiments were performed to develop a predictive capability for plutonium (Pu) solubility. A statistically designed experiment was used to measure the solubility of Pu in simulated solutions with salt concentrations and temperatures which bounded those observed in SRS HLW solutions. Constituents of the simulated waste solutions included: hydroxide (OH{sup -}), aluminate (Al(OH){sub 4}{sup -}), sulfate (SO{sub 4}{sup 2-}), carbonate (CO{sub 3}{sup 2-}), nitrate (NO{sub 3}{sup -}), and nitrite (NO{sub 2}{sup -}) anions. Each anion was added to the waste solution in the sodium form. The solubilities were measured at 25 and 80 C. Five sets of samples were analyzed over a six month period and a partial sample set was analyzed after nominally fifteen months of equilibration. No discernable time dependence of the measured Pu concentrations was observed except for two salt solutions equilibrated at 80 C which contained OH{sup -} concentrations >5 mol/L. In these solutions, the Pu solubility increased with time. This observation was attributed to the air oxidation of a portion of the Pu from Pu(IV) to the more soluble Pu(V) or Pu(VI) valence states. A data driven approach was subsequently used to develop a modified response surface model for Pu solubility. Solubility data from this study and historical data from the literature were used to fit the model. The model predicted the Pu solubility of the solutions from this study within the 95% confidence interval for individual predictions and the analysis of variance indicated no statistically significant lack of fit. The Savannah River National Laboratory (SRNL) model was compared with predicted values from the Aqueous Electrolyte (AQ) model developed by OLI Systems, Inc. and a solubility prediction equation developed by Delegard and Gallagher for Hanford tank waste. The agreement between

  15. Savannah River Site Waste Removal Program - Past, Present and Future

    Energy Technology Data Exchange (ETDEWEB)

    Saldivar, E.

    2002-02-25

    The Savannah River Site has fifty-one high level waste tanks in various phases of operation and closure. These tanks were originally constructed to receive, store, and treat the high level waste (HLW) created in support of the missions assigned by the Department of Energy (DOE). The Federal Facilities Agreement (FFA) requires the high level waste to be removed from the tanks and stabilized into a final waste form. Additionally, closure of the tanks following waste removal must be completed. The SRS HLW System Plan identifies the interfaces of safe storage, waste removal, and stabilization of the high level waste and the schedule for the closure of each tank. HLW results from the dissolution of irradiated fuel components. Desired nuclear materials are recovered and the byproducts are neutralized with NaOH and sent to the High Level Waste Tank Farms at the SRS. The HLW process waste clarifies in the tanks as the sludge settles, resulting in a layer of dense sludge with salt supernate settling above the sludge. Salt supernate is concentrated via evaporation into saltcake and NaOH liquor. This paper discusses the history of SRS waste removal systems, recent waste removal experiences, and the challenges facing future removal operations to enhance efficiency and cost effectiveness. Specifically, topics will include the evolution and efficiency of systems used in the 1960's which required large volumes of water to current systems of large centrifugal slurry pumps, with significant supporting infrastructure and safety measures. Interactions of this equipment with the waste tank farm operations requirements will also be discussed. The cost and time improvements associated with these present-day systems is a primary focus for the HLW Program.

  16. USED NUCLEAR MATERIALS AT SAVANNAH RIVER SITE: ASSET OR WASTE?

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V.

    2013-06-03

    The nuclear industry, both in the commercial and the government sectors, has generated large quantities of material that span the spectrum of usefulness, from highly valuable (“assets”) to worthless (“wastes”). In many cases, the decision parameters are clear. Transuranic waste and high level waste, for example, have no value, and is either in a final disposition path today, or – in the case of high level waste – awaiting a policy decision about final disposition. Other materials, though discardable, have intrinsic scientific or market value that may be hidden by the complexity, hazard, or cost of recovery. An informed decision process should acknowledge the asset value, or lack of value, of the complete inventory of materials, and the structure necessary to implement the range of possible options. It is important that informed decisions are made about the asset value for the variety of nuclear materials available. For example, there is a significant quantity of spent fuel available for recycle (an estimated $4 billion value in the Savannah River Site’s (SRS) L area alone); in fact, SRS has already blended down more than 300 metric tons of uranium for commercial reactor use. Over 34 metric tons of surplus plutonium is also on a path to be used as commercial fuel. There are other radiological materials that are routinely handled at the site in large quantities that should be viewed as strategically important and / or commercially viable. In some cases, these materials are irreplaceable domestically, and failure to consider their recovery could jeopardize our technological leadership or national defense. The inventories of nuclear materials at SRS that have been characterized as “waste” include isotopes of plutonium, uranium, americium, and helium. Although planning has been performed to establish the technical and regulatory bases for their discard and disposal, recovery of these materials is both economically attractive and in the national

  17. CRITICAL RADIONUCLIDE AND PATHWAY ANALYSIS FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.

    2011-08-30

    This report is an update to the analysis, Assessment of SRS Radiological Liquid and Airborne Contaminants and Pathways, that was performed in 1997. An electronic version of this large original report is included in the attached CD to this report. During the operational history (1954 to the present) of the Savannah River Site (SRS), many different radionuclides have been released to the environment from the various production facilities. However, as will be shown by this updated radiological critical contaminant/critical pathway analysis, only a small number of the released radionuclides have been significant contributors to potential doses and risks to offsite people. The analysis covers radiological releases to the atmosphere and to surface waters, the principal media that carry contaminants offsite. These releases potentially result in exposure to offsite people. The groundwater monitoring performed at the site shows that an estimated 5 to 10% of SRS has been contaminated by radionuclides, no evidence exists from the extensive monitoring performed that groundwater contaminated with these constituents has migrated off the site (SRS 2011). Therefore, with the notable exception of radiological source terms originating from shallow surface water migration into site streams, onsite groundwater was not considered as a potential exposure pathway to offsite people. In addition, in response to the Department of Energy's (DOE) Order 435.1, several Performance Assessments (WSRC 2008; LWO 2009; SRR 2010; SRR 2011) and a Comprehensive SRS Composite Analysis (SRNO 2010) have recently been completed at SRS. The critical radionuclides and pathways identified in these extensive reports are discussed and, where applicable, included in this analysis.

  18. GEOTECHNICAL ENGINEERING AT THE SAVANNAH RIVER SITE AND BECHTEL

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M; I. Arango, I; Michael Mchood, M

    2007-07-17

    The authors describe two aspects of geotechnical engineering; site characterization utilizing the CPT and recognition of aging as a factor affecting soil properties. These methods were pioneered by Professor Schmertmann and are practiced by the Bechtel Corporation in general and at the Savannah River Site in South Carolina, in particular. This paper describes a general subsurface exploration approach that we have developed over the years. It consists of ''phasing'' the investigation, employing the principles of the observational method suggested by Peck (1969) and others. In doing so, we have found that the recommendations proposed by Sowers in terms of borehole spacing and exploration cost, are reasonable for developing an investigation program, recognizing that through continuous review the final investigation program will evolve. At the SRS shallow subsurface soils are of Eocene and Miocene age. It was recognized that the age of these deposits would have a marked effect on their cyclic resistance. A field investigation and laboratory testing program was devised to measure and account for aging as it relates to the cyclic resistance of the site soils. Recently, a panel of experts (Youd et al., 2001) has made recommendations regarding the liquefaction assessment of soils. This paper will address some of those recommendations in the context of re-assessing the liquefaction resistance of the soils at the SRS. It will be shown that, indeed, aging plays a major role in the cyclic resistance of the soils at the SRS, and that aging should be accounted for in liquefaction potential assessments for soils older than Holocene age.

  19. The influence of Savannah River discharge and changing SRS cooling water requirements on the potential entrainment of ichthyoplankton at the SRS Savannah River intakes

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.H.

    1992-08-01

    Entrainment (i.e., withdrawal of fish larvae and eggs in cooling water) at the SRS Savannah River intakes is greatest when periods of high river water usage coincide with low river dischargeduring the spawning season. American shad and striped bass are the two species of greatest concern because of their recreational and/or commercial importance and because they produce drifting eggs and larvae vulnerable to entrainment. In the mid-reaches of the Savannah River, American shad and striped bass spawn primarily during April and May. An analysis of Savannah River discharge during April and May 1973--1989 indicated the potential for entrainment of 4--18% of the American shad and striped bass larvae and eggs that drifted past the SRS. This analysis assumed the concurrent operation of L-, K-, and P-Reactors. Additional scenarios investigated were: (1) shutting down L- and P-Reactors, and operating K-Reactor with a recycle cooling tower; and (2) shutting down L- and P-Reactors, eliminating minimum flows to Steel Creek, and operating K-Reactor with a recycle cooling tower. The former scenario reduced potential entrainment to 0.7--3.3%, and the latter scenario reduced potential entrainment to 0.20.8%. Thus, the currently favored scenario of operating K-Reactor with a cooling tower and not operating L- and P-Reactors represents a significant lessening of the impact of SRS operations.

  20. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Zullo, V.A.; Harris, W.B.; Price, V. [eds.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geology in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.

  1. Environmental assessment for DOE permission for off-loading activities to support the movement of commercial low level nuclear waste across the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    This environmental assessment investigates the potential environmental and safety effects which could result from the land transport of low level radioactive wastes across the Savannah River Plant. Chem-Nuclear Systems operates a low level radioactive waste burial facility adjacent to the Savannah River Plant and is seeking permission from the DOE to transport the waste across Savannah River Plant.

  2. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    The Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, manages archaeological resources on the Savannah River Site (SRS). An ongoing research program provides the theoretical, methodological, and empirical basis for assessing site significance within the compliance process specified by law. The SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research, and public education activities of the SRARP during Fiscal Year 1994.

  3. Preliminary site selection report for the new sanitary landfill at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Savannah River Site (SRS) has proposed a new sanitary landfill (NSL) for solid waste. A site selection team, comprised of representatives from Westinghouse Savannah River Company (WSRC) evaluated potential landfill sites. The site selection team conducted an initial screening of SRS to eliminate unsuitable areas. The screening was based on criteria that were principally environmental factors; however, the criteria also included avoiding areas with unacceptable features for construction or operation of the facility. This initial screening identified seven candidate sites for further evaluation.

  4. ROBOTICS IN HAZARDOUS ENVIRONMENTS - REAL DEPLOYMENTS BY THE SAVANNAH RIVER NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E.; Tibrea, S.; Nance, T.

    2010-09-27

    The Research & Development Engineering (R&DE) section in the Savannah River National Laboratory (SRNL) engineers, integrates, tests, and supports deployment of custom robotics, systems, and tools for use in radioactive, hazardous, or inaccessible environments. Mechanical and electrical engineers, computer control professionals, specialists, machinists, welders, electricians, and mechanics adapt and integrate commercially available technology with in-house designs, to meet the needs of Savannah River Site (SRS), Department of Energy (DOE), and other governmental agency customers. This paper discusses five R&DE robotic and remote system projects.

  5. Final Review of Safety Assessment Issues at Savannah River Site, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-12-15

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Though the meeting was prompted initially by suspected issues related to the treatment of surface roughness inherent in the SRS meteorological dataset and its treatment in the MELCOR Accident Consequence Code System Version 2 (MACCS2), various topical areas were discussed that are relevant to performing safety assessments at SRS; this final report addresses these topical areas.

  6. Critical Radionuclide and Pathway Analysis for the Savannah River Site, 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hartman, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-08

    During the operational history of Savannah River Site, many different radionuclides have been released from site facilities. However, as shown in this analysis, only a relatively small number of the released radionuclides have been significant contributors to doses to the offsite public. This report is an update to the 2011 analysis, Critical Radionuclide and Pathway Analysis for the Savannah River Site. SRS-based Performance Assessments for E-Area, Saltstone, F-Tank Farm, H-Tank Farm, and a Comprehensive SRS Composite Analysis have been completed. The critical radionuclides and pathways identified in those extensive reports are also detailed and included in this analysis.

  7. Soil gas waste site screening at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, D.E.; Looney, B.B.; Price, V.; Richers, D.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Pirkle, R.J. [Microseeps, Pittsburgh, PA (United States)

    1993-10-01

    The environmental restoration effort at Savannah River Site (SRS) has utilized soil gas sampling as a principal method for screening and characterizing waste sites. More than 98 waste sites have been evaluated using this technology at scattered locations across the 310 square mile area of the facility, generating over 6,000 soil gas samples arranged in clustered data sets of 25 to 2,000 samples each. Additionally, a regional background survey of soil gases has been carried out over a 500 square mile area which includes the SRS for the purpose of determining the background concentrations of species of interest which relate to waste site investigations. Although selected waste sites have been sampled using a Geoprobe soil gas sampling system to depths of 25 feet, for the most part the soil gas studies at SRS have been carried out at a depth of about 3 feet. In many cases this depth is several feet above the depth of waste burial. A series of ``groundsheet`` studies have been carried out which reveal that barometric pumping is the mechanism which is responsible for the presence near the surface of volatile components of the more deeply buried waste. These studies found that barometric pumping causes soil gases containing volatile contaminants to migrate through the ground surface into the atmosphere. The surveys monitored the presence of the C{sub 1}--C{sub 4} hydrocarbons, the C{sub 5}--C{sub 10} normal paraffins, the gasoline range aromatics (BTEX), and selected chlorinated hydrocarbons. In a large majority of the shallow surveys conducted, a free-gas method of soil gas technology was employed in which the soil gas sample was obtained directly from the pore space. At selected waste sites, soil cores were taken and soil gas was analyzed from a portion of the heated headspace over a soil/water slurry. At most waste sites, shallow (1 foot) soil cores were taken and analyzed for soil mercury using a pyrolysis screening technique commonly used in the minerals industry.

  8. Robotics Use in Source Recovery at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, C.W.

    2001-01-10

    The Department of Energy's Savannah River Site (SRS) in Aiken South Carolina has a state of the art Instrument Calibrations facility that supports calibration and repair of an inventory of approximately 8000 portable radiological monitoring instruments. The Instrument Calibrations facility began operations in 1996. The Low Scatter Irradiator (LSI) system is a key part of the facility. The LSI room is a shielded 40-foot by 40-foot by 40-foot room designed to minimize radiation scatter during calibrations and evaluations. Aluminum floor grating with one-inch spacing is part of the design to minimize scatter. A shielded source storage carousel is used to select calibration sources via a computer-controlled system. The carousel has eight source slots with seven sources used providing a selection of 60Cobalt, 137Cesium, and 252Californium sources of different intensities. One slot is used for a dummy source for system function testing. Sources are contained in an aluminum container known as the source rabbit. Air pressure is used to blow the selected source through a transfer tube to the top of the tube where it is held in place by a suction cup and a maintained air vacuum. During calibrations, instruments are placed on four LSI tracks that move instruments to the proper distance from the source for the desired calibrated exposure rate. Sources are returned to the carousel using gravity with multiple interlocks and safeguards built into the system to ensure that the source has dropped before entry into the LSI after a source exposure. Two room radiation monitors provide a remote reading to the operator from the computer console as another indicator of the source status. Due to the design of the LSI, it was assumed that a source could not become lodged in the transfer tube. That proved to be a false assumption when in May 2000, a source did not return to its home position. At this time, the LSI was being tested due to some apparent difficulties in sources being held

  9. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  10. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Franzreb, Kathleen, E.

    2004-12-31

    Franzreb, Kathleen, E. 2004. Habitat preferences of foraging red-cockaded woodpeckers at the Savannah River Site, South Carolina. In: Red-cockaded woodpecker; Road to Recovery. Proceedings of the 4th Red-cockaded woodpecker Symposium. Ralph Costa and Susan J. Daniels, eds. Savannah, Georgia. January, 2003. Chapter 9. Habitat Management and Habitat Relationships. Pp 553-561. Abstract: I constructed a foraging study to examine habitat use of red-cockaded woodpeckers at the Savannah River Site, South Carolina. Because much of the land had been harvested in the late 1940s and early 1950s prior to being sold to the Department of Energy, the available habitat largely consisted of younger trees (e.g., less than 40 years old). From 1992 to 1995, I examined the foraging behavior and reproductive success of 7 groups of red-cockaded woodpeckers.

  11. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-10-31

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

  12. Enhancement of the source term algorithm for emergency response at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, A.A.; O`Kula, K.R.; Taylor, R.P.; Kearnaghan, G.P.

    1992-12-31

    The purpose of this work is to use the results of the Savannah River Site K-Reactor Probabilistic Safety Assessment to determine the accident sequences and source terms for beyond design basis accidents. Additionally, the methodology necessary to allow the Reactor Accident Program to incorporate this information is to be discussed.

  13. Enhancement of the source term algorithm for emergency response at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, A.A.; O' Kula, K.R.; Taylor, R.P.; Kearnaghan, G.P.

    1992-01-01

    The purpose of this work is to use the results of the Savannah River Site K-Reactor Probabilistic Safety Assessment to determine the accident sequences and source terms for beyond design basis accidents. Additionally, the methodology necessary to allow the Reactor Accident Program to incorporate this information is to be discussed.

  14. Sensitivity Analyses of Site Selection for a Concrete Batch Plant at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.P.

    2001-07-10

    A site selection study was conducted to evaluate locations for an onsite concrete batch plant to support the construction of the proposed surplus plutonium disposition facilities at the Savannah River site. Presented in this report is a sensitivity analysis that demonstrates the robustness of the site evaluations.

  15. Analysis of Removal Alternatives for the Heavy Water Components Test Reactor at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Owen, M.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1996-08-01

    This engineering study was developed to evaluate different options for decommissioning of the Heavy Water Components Test Reactor (HWCTR) at the Savannah River Site. This document will be placed in the DOE-SRS Area reading rooms for a period of 30 days in order to obtain public input to plans for the demolition of HWCTR.

  16. The Savannah River Site`s Groundwater Monitoring Program. First quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-03

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  17. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan, Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-12-10

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report.

  18. Savannah River Site Ingestion Pathway Methodology Manual for Airborne Radioactive Releases

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, A.W. III

    2001-01-03

    This manual documents a recommended methodology for determining the ingestion pathway consequences of hypothetical accidental airborne radiological releases from facilities at the Savannah River Site. Both particulate and tritiated radioactive contaminants are addressed. Other approaches should be applied for evaluation of routine releases.

  19. Breeding bird populations and habitat associations within the Savannah River Site (SRS).

    Energy Technology Data Exchange (ETDEWEB)

    Gauthreaux, Sidney, A.; Steven J. Wagner.

    2005-06-29

    Gauthreaux, Sidney, A., and Steven J. Wagner. 2005. Breeding bird populations and habitat associations within the Savannah River Site (SRS). Final Report. USDA Forest Service, Savannah River, Aiken, SC. 48 pp. Abstract: During the 1970's and 1980's a dramatic decline occurred in the populations of Neotropical migratory birds, species that breed in North America and winter south of the border in Central and South America and in the Caribbean. In 1991 an international initiative was mounted by U. S. governmental land management agencies, nongovernmental conservation agencies, and the academic and lay ornithological communities to understand the decline of Neotropical migratory birds in the Americas. In cooperation with the USDA Forest Service - Savannah River (FS - SR) we began 1992 a project directed to monitoring population densities of breeding birds using the Breeding Bird Census (BBC) methodology in selected habitats within the Savannah River Site SRS. In addition we related point count data on the occurrence of breeding Neotropical migrants and other bird species to the habitat data gathered by the Forest Inventory and Analysis (FIA) program of the USDA Forest Service and data on habitat treatments within forest stands.

  20. The Savannah River Site's Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  1. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-17

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. Analytical results from third quarter 1991 are listed in this report.

  2. The Savannah River Site`s groundwater monitoring program. First quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results.

  3. Savannah River Ecology Laboratory annual technical progress report of ecological research, period ending July 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Vaitkus, M.R.; Wein, G.R. [eds.; Johnson, G.

    1993-11-01

    This progress report gives an overview of research programs at the Savannah River Site. Topics include; environmental operations support, wood stork foraging and breeding, defense waste processing, environmental stresses, alterations in the environment due to pollutants, wetland ecology, biodiversity, pond drawdown studies, and environmental toxicology.

  4. The Savannah River site`s groundwater monitoring program: second quarter 1997

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-11-01

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1997, EPD/EMS conducted extensive sampling of monitoring wells. A detailed explanation of the flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1997 are included in this report.

  5. Snakes of the Savannah River Plant with Information About Snakebite Prevention and Treatment.

    Science.gov (United States)

    Gibbons, Whit

    This booklet is intended to provide information on the snakes of South Carolina, to point out the necessary steps to avoid a snakebite, and to indicate the current medical treatment for poisonous snakebite. It includes a checklist of South Carolina reptiles and a taxonomic key for the identification of snakes in the Savannah River Plant. Three…

  6. Savannah River Plant - Project 8980 engineering and design history. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    This volume provides an engineering and design history of the 100 area of the Savannah River Plant. This site consisted of five separate production reactor sites, 100-R, P, L, K, and C. The document summarizes work on design of the reactors, support facilities, buildings, siting, etc. for these areas.

  7. Savannah River Plant, Project 8980: Engineering and design history of No. 400 Area. Volume 5

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    The description and development, selection and descriptions of processes, design, and specialized design problems are presented for the 400-D Area at the Savannah River Plant. These facilities were used for the production of high purity heavy water for use as a moderator and coolant in the 100 Areas. Also, deuterium gas and hydrogen sulfide were produced here.

  8. Freshwater bivalve mollusca (unionidae, sphaeriidae, corbiculidae) of the Savannah River Plant, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Britton, J.C.; Fuller, S.L.H.

    1980-11-01

    A guide to freshwater bivalve molluscs found at the Savannah River Plant is presented. A dichotomous taxonomic key is provided to common forms and to unreported species whose geographic distributions include nearby localities. Discussions of ecology, life history, larval hosts, and other pertinent information is provided. (ACR)

  9. CHARACTERIZATION OF GLOVEBOX GLOVES FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.

    2013-01-24

    A task was undertaken to characterize glovebox gloves that are currently used in the facilities at Savannah River Site (SRS) as well as some experimental and advanced compound gloves that have been proposed for use. Gloves from four manufacturers were tested for permeation in hydrogen and air, thermal stability, tensile properties, puncture resistance and dynamic mechanical response. The gloves were compared to each other within the type and also to the butyl rubber glove that is widely used at the SRS. The permeation testing demonstrated that the butyl compounds from three of the vendors behaved similarly and exhibited hydrogen permeabilities of .52‐.84 x10{sup ‐7} cc H{sub 2}*cm / (cm{sup 2}*atm). The Viton glove performed at the lower edge of this bound, while the more advanced composite gloves exhibited permeabilities greater than a factor of two compared to butyl. Thermogravimetric analysis was used to determine the amount of material lost under slightly aggressive conditions. Glove losses are important since they can affect the life of glovebox stripper systems. During testing at 90, 120, and 150°C, the samples lost most of the mass in the initial 60 minutes of thermal exposure and as expected increasing the temperature increased the mass loss and shortened the time to achieve a steady state loss. The ranking from worst to best was Jung butyl‐Hypalon with 12.9 %, Piercan Hypalon with 11.4 %, and Jung butyl‐Viton with 5.2% mass loss all at approximately 140°C. The smallest mass losses were experienced by the Jung Viton and the Piercan polyurethane. Tensile properties were measured using a standard dog bone style test. The butyl rubber exhibited tensile strengths of 11‐15 MPa and elongations or 660‐843%. Gloves made from other compounds exhibited lower tensile strengths (5 MPa Viton) to much higher tensile strengths (49 MPa Urethane) with a comparable range of elongation. The puncture resistance of the gloves was measured

  10. Savannah River Ecology Laboratory annual technical progress report of ecological research for the year ending July 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1995-07-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the US Department of Energy (DOE) at the Savannah River Site near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. Major additions to SREL Facilities were completed that will enhance the Laboratory`s work in the future. Following several years of planning, opening ceremonies were held for the 5000 ft{sup 2} multi-purpose conference center that was funded by the University of Georgia Research Foundation (UGARF). The center is located on 68 acres of land that was provided by the US Department of Energy. This joint effort between DOE and UGARF supports DOE`s new initiative to develop partnerships with the private sector and universities. The facility is being used for scientific meetings and environmental education programs for students, teachers and the general public. A 6000 ft{sup 2} office and library addition to S@s main building officially opened this year, and construction plans are underway on a new animal care facility, laboratory addition, and receiving building.

  11. Thermal and physical property determination for IONSIV/256 IE-911 crystalline silicotitanate and Savannah River Site waste simulant solutions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-08

    This document describes physical and thermophysical property determinations that were made in order to resolve questions associated with the decontamination of Savannah River Site waste streams using ion exchange on crystalline silicotitanate.

  12. Office of Inspector General audit report on Westinghouse Savannah River Company`s withdrawal of fees

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    As the operator of the Department`s Savannah River Site, Westinghouse Savannah River Company (Westinghouse) receives three types of fees: (1) award fees commensurate with the overall performance rating, (2) Performance Based Incentive (PBI) fees for achieving measurable goals or defined tasks as specified in annual operating plans, and (3) Cost Reduction Incentive Program (CRIP) fees for making improvements in site operations that reduce total contract costs. The Department`s Contracting Officer notifies Westinghouse when fees are earned, and Westinghouse withdraws the authorized amounts from the Department`s letter-of-credit account. The audit objective was to determine whether Westinghouse withdrew the appropriate amount of fees from the letter-of-credit account in Fiscal Years (FY) 1997 an 1998.

  13. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During fourth quarter 1989 (October--December), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. An explanation of flagging criteria for the fourth quarter is presented in the Flagging Criteria section of this document. All analytical results from fourth quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  14. Preliminary Review of Safety Assessment Issues at Savannah River Site, August 2011

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Rishel, Jeremy P.; Bixler, Nathan E.

    2011-09-19

    At the request of Savannah River Nuclear Solutions (SRNS) management, a review team composed of experts in atmospheric transport modeling for environmental radiation dose assessment convened at the Savannah River Site (SRS) on August 29-30, 2011. Several issues were presented at the meeting for discussion. This is a short summary that is organized in accordance with the primary issues discussed, which is not necessarily a chronological record. Issues include: SRS Meteorological Data and its Use in MACCS2; Deposition Velocities for Particles; Deposition Velocities for Tritium; MACCS2 Dispersion Coefficients; Use of Low Surface Roughness in Open Areas; Adequacy of Meteorological Tower and Instrumentation; Displacement Height; and Validity of MACCS2 Calculations at Close-in Distances. A longer report will be issued at a later date that expands upon these topics and recommendations.

  15. ADVANCES IN SE-79 ANALYSES ON SAVANNAH RIVER SITE RADIOACTIVE WASTE MATRICES

    Energy Technology Data Exchange (ETDEWEB)

    Diprete, D; C Diprete, C; Ned Bibler, N; Cj Bannochie, C; Michael Hay, M

    2009-03-16

    Waste cleanup efforts underway at the United States Department of Energy's (DOE) Savannah River Site (SRS) in South Carolina, as well as other DOE nuclear sites, have created a need to characterize {sup 79}Se in radioactive waste inventories. Successful analysis of {sup 79}Se in high activity waste matrices is challenging for a variety of reasons. As a result of these unique challenges, the successful quantification of {sup 79}Se in the types of matrices present at SRS requires an extremely efficient and selective separation of {sup 79}Se from high levels of interfering radionuclides. A robust {sup 79}Se radiochemical separation method has been developed at the Savannah River National Laboratory (SRNL) which is routinely capable of successfully purifying {sup 79}Se from a wide range of interfering radioactive species. In addition to a dramatic improvements in the Kd, ease, and reproducibility of the analysis, the laboratory time has been reduced from several days to only 6 hours.

  16. The Savannah River Site's Groundwater Monitoring Program, first quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  17. The Savannah River Site`s Groundwater Monitoring Program, first quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During first quarter 1989 (January--March), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the first quarter is presented in the Flagging Criteria section of this document. All analytical results from first quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  18. The Savannah River Site's Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  19. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During second quarter 1989 (April--June), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  20. The Savannah River Site`s Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site`s Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  1. The Savannah River Site's Groundwater Monitoring Program, third quarter 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Environmental Monitoring Section of the Environmental and Health Protection (EHP) Department administers the Savannah River Site's Groundwater Monitoring Program. During third quarter 1989 (July--September), EHP conducted routine sampling of monitoring wells and drinking water locations. EHP collected the drinking water samples from Savannah River Site (SRS) drinking water systems supplied by wells. EHP established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the third quarter is presented in the Flagging Criteria section of this document. All analytical results from third quarter 1989 are listed in this report, which is distributed to all waste-site custodians.

  2. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program: Fiscal year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Mark J.; Brooks, Richard D.; Sassaman, Kenneth E.; Crass, David C.; Stephenson, D. Keith; Green, William; Rinehart, Charles J.; Lewis, George S.; Fuglseth, Ty; Krawczynski, Keith; Warnock, D. Mark

    1991-10-01

    A cooperative agreement with the United States Department of Energy provides the necessary funding for the Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, to render services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of archaeological resources is usually determined by research potential, the SRARP is guided by research objectives. An ongoing research program provides the theoretical, methodological and empirical basis for assessing site significance within the compliance process specified by law. In accordance with the spirit of the law, the SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research and public education activities of the SRARP during Fiscal Year 1991.

  3. Population status of the American alligator on the Savannah River Plant, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, T.M.

    1981-04-01

    Estimates are presented of alligator numbers, size distribution, sex ratios, reproductive effort, and population trends for all major components of the entire Savannah River Plant (SRP) alligator population. Savannah River Plant operations have impacted the alligator population in many different ways. The formation of man-made reservoirs has dramatically increased the amount of aquatic habitat available to alligators and has therefore increased the carrying capacity of the SRP site for this species. The thermal alteration of aquatic habitats on the SRP has also impacted the resident alligator population. Temperature elevations of aquatic habitat to greater than 38/sup 0/C result in the loss of this habitat to alligators. Moderate thermal increases on the other hand are responded to by alligator movement. The current information available on the alligators of the SRP suggests the following future trends: low density populations distant from thermally altered areas will continue at a low density with the exception of localized increases.

  4. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program, fiscal year 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    The Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, is funded through a direct contract with the United States Department of Energy to provide services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of most archaeological resources is dependent upon research potential, the SRARP is guided by research objectives. An on-going research program provides the problems, methods and means of assessing site significance within the compliance process specified by law. In addition, the SRARP maintains an active program of public education to disseminate knowledge about prehistory and history, and to enhance public awareness about historic preservation. The following report summarizes the management, research and public education activities of the SRARP during Fiscal Year 1990.

  5. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program. Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    A cooperative agreement with the United States Department of Energy provides the necessary funding for the Savannah River Archaeological Research Program (SRARP) of the South Carolina Institute of Archaeology and Anthropology, University of South Carolina, to render services required under federal law for the protection and management of archaeological resources on the Savannah River Site (SRS). Because the significance of archaeological resources is usually determined by research potential, the SRARP is guided by research objectives. An ongoing research program provides the theoretical, methodological, and empirical basis for assessing site significance within the compliance process specified by law. In accordance with the spirit of the law, the SRARP maintains an active public education program for disseminating knowledge about prehistory and history, and for enhancing awareness of historic preservation. This report summarizes the management, research, and public education activities of the SRARP during Fiscal Year 1993.

  6. Environmental assessment for the reuse of TNX as a multi-purpose pilot plant campus at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental and safety impacts of DOE planning to allow asset reuse of the TNX Area at the Savannah River Site (SRS) located near Aiken, South Carolina. The proposed action would include providing for a location for the Centers of Excellence at or adjacent to SRS and entering into a cooperative agreement with a non-profit management and operations (management firm) contractor to operate and market the TNX facilities and equipment. The area (formerly TNX) would be called a Multi-Purpose Pilot Plant Campus (MPPC) and would be used: (1) as location for technology research, development, demonstration, and commercial operations; (2) to establish partnerships with industry to develop applied technologies for commercialization; and (3) serve as administrative headquarters for Centers of Excellence in the program areas of soil remediation, radioecology, groundwater contamination, and municipal solid waste minimization.

  7. Investigation of nonlinear dynamic soil property at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.C.

    2000-01-17

    This document summarizes laboratory dynamic soil testing investigations conducted by the University of Texas at Austin (UTA) for the Savannah River Site (SRS) (Stokoe et al., 1995a, Stokoe et al., 1995b, Sponseller and Stokoe, 1995). The purpose of the investigation is to provide an evaluation of past testing results in the context of new test data and the development of consistent site wide models of material strain dependencies based upon geologic formation, depth, and relevant index properties.

  8. 2003 Savannah River Site Annual Illness and Injury Surveillance Report, Revised September 2007

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Office of Health, Safety and Security, Office of Illness and Injury Prevention Programs

    2007-10-05

    Annual Illness and Injury Surveillance Program report for 2003 for the Savannah River Site. DOE is commitment to assuring the health and safety of its workers includes the conduct of epidemiologic surveillance activities that provide an early warning system for health problems among workers. The report monitors illnesses and health conditions that result in an absence of workdays, occupational injuries and illnesses, and disabilities and deaths among current workers.

  9. Savannah River Laboratory environmental transport and effects research. Annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, T.V. (comp.)

    1979-11-01

    Research in the environmental sciences by the Savannah River Laboratory during 1978 is described in 43 articles. These articles are in the fields of terrestrial ecology, geologic studies, aquatic transport, aquatic ecology, atmospheric transport, emergency response, computer methods development, ocean program, and fuel cycle program. Thirty-seven of the articles were abstracted individually for ERA/EDB; those in scope were also included in INIS.

  10. The Savannah River Site`s Groundwater Monitoring Program: Third quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-02-04

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. Table 1 lists those well series with constituents in the groundwater above Flag 2 during third quarter 1992, organized by location. Results from all laboratory analyses are used to generate this table. Specific conductance and pH data from the field also are included in this table.

  11. Exposure rate response analysis of criticality accident dectector at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Zino, J.F.

    1995-01-01

    This analysis investigated the exposure response behavior of gamma-ray ionization chambers used in the criticality accident systems at the Savannah River Site (SRS). The project consisted of performing exposure response measurements with a calibrated {sup 137}Cs source for benchmarking of the MCNP Monte Carlo code. MCNP was then used to extrapolate the ion chamber`s response to gamma-rays with energies outside the current domain of measured data for criticality fission sources.

  12. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-17

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the fourth quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program`s activities; and serves as an official document of the analytical results.

  13. The Savannah River Site`s Groundwater Monitoring Program: First quarter 1993, Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-08-01

    This report summarizes the Savannah River Site (SRS) Groundwater Monitoring Program conducted by the Environmental Protection Department`s Environmental Monitoring Section (EPD/EMS) during the first quarter of 1993. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program`s activities; and serves as an official document of the analytical results.

  14. The Savannah River Site`s Groundwater Monitoring Program. Second quarter 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This document contains information concerning the groundwater monitoring program at Savannah River Plant. The EPD/EMS (environmental protection department/environmental monitoring section) is responsible for monitoring constituents in the groundwater at approximately 135 waste sites in 16 areas at SRS. This report consolidates information from field reports, laboratory analysis, and quality control. The groundwater in these areas has been contaminated with radioactive materials, organic compounds, and heavy metals.

  15. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-26

    This report contains appendix 2 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, Laboratory permeability, and compaction characteristics representative of Kaolin clays from the aiken, South Carolina vicinity. Included in this report are daily field reports Nos. 1 to 54. (KJD)

  16. Geologic setting of the New Production Reactor within the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Price, V. [Westinghouse Savannah River Co., Aiken, SC (United States); Fallaw, W.C. [Furman Univ., Greenville, SC (United States). Dept. of Geology; McKinney, J.B. [Exploration Resources, Inc., Athens, GA (United States)

    1991-12-31

    The geology and hydrology of the reference New Production Reactor (NPR) site at Savannah River Site (SRS) have been summarized using the available information from the NPR site and areas adjacent to the site, particularly the away from reactor spent fuel storage site (AFR site). Lithologic and geophysical logs from wells drilled near the NPR site do not indicate any faults in the upper several hundred feet of the Coastal Plain sediments. However, the Pen Branch Fault is located about 1 mile south of the site and extends into the upper 100 ft of the Coastal Plain sequence. Subsurface voids, resulting from the dissolution of calcareous portions of the sediments, may be present within 200 ft of the surface at the NPR site. The water table is located within 30 to 70 ft of the surface. The NPR site is located on a groundwater divide, and groundwater flow for the shallowest hydraulic zones is predominantly toward local streams. Groundwater flow in deeper Tertiary sediments is north to Upper Three Runs Creek or west to the Savannah River Swamp. Groundwater flow in the Cretaceous sediments is west to the Savannah River.

  17. Nuclear incident monitor criticality alarm instrument for the Savannah River Site: Technical manual

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, J.B.

    1996-05-21

    The Savannah River Site is a Department of Energy facility. The facility stores, processes, and works with fissionable material at a number of locations. Technical standards and US Department of Energy orders, require these locations to be monitored by criticality alarm systems under certain circumstances. The Savannah River Site calls such instruments Nuclear Incident Monitors or NIMs. The Sole purpose of the Nuclear Incident Monitor is to provide an immediate evacuation signal in the case of an accidental criticality in order to minimize personnel exposure to radiation. The new unit is the third generation Nuclear Incident Monitor at the Savannah River Site. The second generation unit was developed in 1979. It was designed to eliminate vacuum-tube circuits, and was the first solid state NIM at SRS. The major design objectives of the second generation NIM were to improve reliability and reduce maintenance costs. Ten prototype units have been built and tested. This report describes the design of the new NIM and the testing that took place to verify its acceptability.

  18. EFFECTIVE HALF-LIFE OF CESIUM-137 IN VARIOUS ENVIRONMENTAL MEDIA AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.; Paller, M.; Baker, R.

    2013-12-12

    During the operational history of the Savannah River Site (SRS), many different radionuclides have been released from site facilities into the SRS environment. However, only a relatively small number of pathways, most importantly {sup 137}Cs in fish and deer, have contributed significantly to doses and risks to the public. The “effective” half-lives (T{sub e}) of {sup 137}Cs (which include both physical decay and environmental dispersion) in Savannah River floodplain soil and vegetation and in fish and white-tailed deer from the SRS were estimated using long-term monitoring data. For 1974–2011, the T{sub e}s of {sup 137}Cs in Savannah River floodplain soil and vegetation were 17.0 years (95% CI = 14.2–19.9) and 13.4 years (95% CI = 10.8–16.0), respectively. These T{sub e}s were greater than in a previous study that used data collected only through 2005 as a likely result of changes in the flood regime of the Savannah River. Field analyses of {sup 137}Cs concentrations in deer collected during yearly controlled hunts at the SRS indicated an overall T{sub e} of 15.9 years (95% CI = 12.3–19.6) for 1965–2011; however, the T{sub e} for 1990–2011 was significantly shorter (11.8 years, 95% CI = 4.8–18.8) due to an increase in the rate of {sup 137}Cs removal. The shortest T{sub e}s were for fish in SRS streams and the Savannah River (3.5–9.0 years), where dilution and dispersal resulted in rapid {sup 137}Cs removal. Long-term data show that T{sub e}s are significantly shorter than the physical half-life of {sup 137}Cs in the SRS environment but that they can change over time. Therefore, it is desirable have a long period of record for calculating Tes and risky to extrapolate T{sub e}s beyond this period unless the processes governing {sup 137}Cs removal are clearly understood.

  19. BIOTIC INTEGRITY OF STREAMS IN THE SAVANNAH RIVER SITE INTEGRATOR OPERABLE UNITS, 1996 TO 2003

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M; Susan Dyer, S

    2004-11-08

    The Savannah River Site (SRS) has been divided into six Integrator Operable Units (IOUs) that correspond to the watersheds of the five major streams on the SRS (Upper Three Runs, Fourmile Branch, Pen Branch, Steel Creek, and Lower Three Runs) and the portions of the Savannah River and Savannah River Swamp associated with the SRS. The streams are the primary integrators within each IOU because they potentially receive, through surface or subsurface drainage, soluble contaminants from all waste sites within their watersheds. If these contaminants reach biologically significant levels, they would be expected to effect the numbers, types, and health of stream organisms. In this study, biological sampling was conducted within each IOU as a measure of the cumulative ecological effects of the waste sites within the IOUs. The use of information from biological sampling to assess environmental quality is often termed bioassessment. The IOU bioassessment program included 38 sites in SRS streams and nine sites in the Savannah River. Sampling was conducted in 1996 to 1998, 2000, and 2003. Four bioassessment methods were used to evaluate ecological conditions in the IOU streams: the Index of Biotic Integrity, the Fish Health Assessment Index, measurement of fish tissue contaminant levels, and two benthic macroinvertebrate indices. The Index of Biotic Integrity (IBI) is an EPA supported method based on comparison of ecologically important and sensitive fish assemblage variables between potentially disturbed and reference (i.e., undisturbed) sites. It is designed to assess the ability of a stream to support a self-sustaining biological community and ecological processes typical of undisturbed, natural conditions. Since many types of contaminants can bioaccumulate, fish tissue contaminant data were used to determine the types of chemicals fish were exposed to and their relative magnitudes among IOUs. The Fish Health Assessment Index (HAI) is an EPA supported method for assessing

  20. Estimating salinity intrusion effects due to climate change on the Lower Savannah River Estuary

    Science.gov (United States)

    Conrads, Paul A.; Roehl, Edwin A.; Daamen, Ruby C.; Cook, John B.; Sexton, Charles T.; Tufford, Daniel L.; Carbone, Gregory J.; Dow, Kristin

    2010-01-01

    The ability of water-resource managers to adapt to future climatic change is especially challenging in coastal regions of the world. The East Coast of the United States falls into this category given the high number of people living along the Atlantic seaboard and the added strain on resources as populations continue to increase, particularly in the Southeast. Increased temperatures, changes in regional precipitation regimes, and potential increased sea level may have a great impact on existing hydrological systems in the region. The Savannah River originates at the confluence of the Seneca and Tugaloo Rivers, near Hartwell, Ga., and forms the state boundary between South Carolina and Georgia. The J. Strom Thurmond Dam and Lake, located 238 miles upstream from the Atlantic Ocean, is responsible for most of the flow regulation that affects the Savannah River from Augusta, Ga., to the coast. The Savannah Harbor experiences semi-diurnal tides of two low and two high tides in a 24.8-hour period with pronounced differences in tidal range between neap and spring tides occurring on a 14-day and 28-day lunar cycle. Salinity intrusion results from the interaction of three principal forces - streamflow, mean tidal water levels, and tidal range. To analyze, model, and simulate hydrodynamic behaviors at critical coastal streamgages in the Lower Savannah River Estuary, data-mining techniques were applied to over 15 years of hourly streamflow, coastal water-quality, and water-level data. Artificial neural network (ANN) models were trained to learn the variable interactions that cause salinity intrusions. Streamflow data from the 9,850 square-mile Savannah River Basin were input into the model as time-delayed variables. Tidal inputs to the models were obtained by decomposing tidal water-level data into a “periodic” signal of tidal range and a “chaotic” signal of mean water levels. The ANN models were able to convincingly reproduce historical behaviors and generate

  1. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, C.L.

    1994-09-01

    As a result of operations at the Savannah River Site (SRS), over 50 radionuclides have been released to the atmosphere and to onsite streams and seepage basins. Now, many of these radionuclides are available to aquatic and/or terrestrial organisms for uptake and cycling through the food chain. Knowledge about the uptake and cycling of these radionuclides is now crucial in evaluating waste management and clean-up alternatives for the site. Numerous studies have been conducted at the SRS over the past forty years to study the uptake and distribution of radionuclides in the Savannah River Site environment. In many instances, bioconcentration factors have been calculated to quantify the uptake of a radionuclide by an organism from the surrounding medium (i.e., soil or water). In the past, it has been common practice to use bioconcentration factors from the literature because site-specific data were not readily available. However, because of the variability of bioconcentration factors due to experimental or environmental conditions, site-specific data should be used when available. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at the Savannah River Site (SRS). An extensive literature search yielded site-specific bioconcentration factors for cesium, strontium, cobalt, plutonium, americium, curium, and tritium. These eight radionuclides have been the primary radionuclides studied at SRS because of their long half lives or because they are major contributors to radiological dose from exposure. For most radionuclides, it was determined that the site-specific bioconcentration factors were higher than those reported in literature. This report also summarizes some conditions that affect radionuclide bioavailability to and bioconcentration by aquatic and terrestrial organisms.

  2. DOE Research Set-Aside Areas of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.E.; Janecek, L.L.

    1997-08-31

    Designated as the first of seven National Environmental Research Parks (NERPs) by the Atomic Energy Commission (now the Department of Energy), the Savannah River Site (SRS) is an important ecological component of the Southeastern Mixed Forest Ecoregion located along the Savannah River south of Aiken, South Carolina. Integral to the Savannah River Site NERP are the DOE Research Set-Aside Areas. Scattered across the SRS, these thirty tracts of land have been set aside for ecological research and are protected from public access and most routine Site maintenance and forest management activities. Ranging in size from 8.5 acres (3.44 ha) to 7,364 acres (2,980 ha), the thirty Set-Aside Areas total 14,005 acres (5,668 ha) and comprise approximately 7% of the Site`s total area. This system of Set-Aside Areas originally was established to represent the major plant communities and habitat types indigenous to the SRS (old-fields, sandhills, upland hardwood, mixed pine/hardwood, bottomland forests, swamp forests, Carolina bays, and fresh water streams and impoundments), as well as to preserve habitats for endangered, threatened, or rare plant and animal populations. Many long-term ecological studies are conducted in the Set-Asides, which also serve as control areas in evaluations of the potential impacts of SRS operations on other regions of the Site. The purpose of this document is to give an historical account of the SRS Set-Aside Program and to provide a descriptive profile of each of the Set-Aside Areas. These descriptions include a narrative for each Area, information on the plant communities and soil types found there, lists of sensitive plants and animals documented from each Area, an account of the ecological research conducted in each Area, locator and resource composition maps, and a list of Site-Use permits and publications associated with each Set-Aside.

  3. Natural resource management activities at the Savannah River Site. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    This environmental assessment (EA) reviews the environmental consequences of ongoing natural resource management activities on the Savannah River Site (SRS). Appendix A contains the Natural Resources Management Plant (NRMP). While several SRS organizations have primary responsibilities for different elements of the plan, the United States Department of Agriculture (USDA), Forest Service, Savannah River Forest Station (SRFS) is responsible for most elements. Of the river scenarios defined in 1985, the High-Intensity Management alternative established the upper bound of environmental consequences; it represents a more intense level of resource management than that being performed under current resource management activities. This alternative established compliance mechanisms for several natural resource-related requirements and maximum practical timber harvesting. Similarly, the Low-Intensity Management alternative established the lower bound of environmental consequences and represents a less intense level of resource management than that being performed under current resource management activities. This alternative also established compliance mechanisms, but defined a passively managed natural area. The Proposed Action of this EA describes the current level of multiple-natural resource management. This EA reviews the proposed action, and the high and low intensity alternative scenarios.

  4. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management`s operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  5. Savannah River Site Interim Waste Management Program Plan FY 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Chavis, D.M.

    1992-05-01

    The primary purpose of the Waste Management Program Plan is to provide an annual report of how Waste Management's operations are conducted, what facilities are being used to manage wastes, what forces are acting to change current waste management systems, and what plans are in store for the coming fiscal year. In addition, this document projects activities for several years beyond the coming fiscal year in order to adequately plan for safe handling, storage, and disposal of radioactive wastes generated at the Savannah River Site and for developing technology for improved management of wastes. In this document, work descriptions and milestone schedules are current as of December 1991.

  6. ASME N510 test results for Savannah River Site AACS filter compartments

    Energy Technology Data Exchange (ETDEWEB)

    Paul, J.D.; Punch, T.M. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-02-01

    The K-Reactor at the Savannah River Site recently implemented design improvements for the Airborne Activity Confinement System (AACS) by procuring, installing, and testing new Air Cleaning Units, or filter compartments, to ASME AG-11, N509, and N510 requirements. Specifically, these new units provide documentable seismic resistance to a Design Basis Accident earthquake, provide 2 inch adsorber beds with 0.25 second residence time, and meet all AG-1, N509, and N510 requirements for testability and maintainability. This paper presents the results of the Site acceptance testing and discusses an issue associated with sample manifold qualification testing.

  7. Clay Cap Test Program for the Mixed Waste Management Facility closure at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Newell, J.W. (Main (Charles T.), Inc., Charlotte, NC (USA))

    1989-01-01

    A 58 acre low-level radioactive waste disposal facility at the Savannah River Site, a Department of Energy facility near Aiken, South Carolina, requires closure with a RCRA clay cap. A three-foot thick can requiring 300,000 cubic yards of local Tertiary Kaolin clay with an in-situ permeability of less than or equal to 1 {times} 10{sup -7} centimeters per second is to be constructed. The Clay Cap Test Program was conducted to evaluate the source, lab permeability, in-situ permeability, compaction characteristics, representative kaolin clays from the Aiken, SC vicinity. 11 refs., 8 figs., 1 tab.

  8. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2010-03-15

    The Savannah River Site disposes of low-activity radioactive waste within subsurface-engineered facilities. One of the tools used to establish the capacity of a given site to safely store radioactive waste (i.e., that a site does not exceed its Waste Acceptance Criteria) is the Performance Assessment (PA). The objective of this document is to provide the geochemical values for the PA calculations. This work is being conducted as part of the on-going maintenance program that permits the PA to periodically update existing calculations when new data become available.

  9. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V.

    2013-06-03

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These “123 agreements” are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  10. Assessment of Neptunium, Americium, and Curium in the Savannah River Site Environment

    Energy Technology Data Exchange (ETDEWEB)

    Carlton, W.H. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1997-12-17

    A series of documents has been published in which the impact of various radionuclides released to the environment by Savannah River Site (SRS) operations has been assessed. The quantity released, the disposition of the radionuclides in the environment, and the dose to offsite individuals has been presented for activation products, carbon cesium, iodine, plutonium, selected fission products, strontium, technetium, tritium, uranium, and the noble gases. An assessment of the impact of nonradioactive mercury also has been published.This document assesses the impact of radioactive transuranics released from SRS facilities since the first reactor became operational late in 1953. The isotopes reported here are 239Np, 241Am, and 244Cm.

  11. Corrosion Control Measures For Liquid Radioactive Waste Storage Tanks At The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. J.; Subramanian, K. H.

    2012-11-27

    The Savannah River Site has stored radioactive wastes in large, underground, carbon steel tanks for approximately 60 years. An assessment of potential degradation mechanisms determined that the tanks may be vulnerable to nitrate- induced pitting corrosion and stress corrosion cracking. Controls on the solution chemistry and temperature of the wastes are in place to mitigate these mechanisms. These controls are based upon a series of experiments performed using simulated solutions on materials used for construction of the tanks. The technical bases and evolution of these controls is presented in this paper.

  12. Insect community structure and function in Upper Three Runs, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Morse, J.C.; English, W.R. [Clemson Univ., SC (United States). Dept. of Entomology; Looney, B.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-07-08

    A project to document the insect species in the upper reaches of Upper Three Runs at the Savannah River site was recently completed. This research was supported by the US Department of Energy under the National Environmental Research Park Program. The work was performed by the Department of Entomology at Clemson University in clemson, SC, by John C. Morse (principal investigator), William R. English and their colleagues. The major output from this study was the dissertation of Dr. William R. English entitled ``Ecosystem Dynamics of a South Carolina Sandhills Stream.`` He investigated selected environmental resources and determined their dynamics and the dynamics of the aquatic invertebrate community structure in response to them.

  13. US EPA record of decision review for landfills: Sanitary landfill (740-G), Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    This report presents the results of a review of the US Environmental Protection Agency (EPA) Record of Decision System (RODS) database search conducted to identify Superfund landfill sites where a Record of Decision (ROD) has been prepared by EPA, the States or the US Army Corps of Engineers describing the selected remedy at the site. ROD abstracts from the database were reviewed to identify site information including site type, contaminants of concern, components of the selected remedy, and cleanup goals. Only RODs from landfill sites were evaluated so that the results of the analysis can be used to support the remedy selection process for the Sanitary Landfill at the Savannah River Site (SRS).

  14. The effects of PAT on the Savannah River ecosystem, particularly fisheries

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, R.

    1994-03-01

    The main purpose of this study was to determine whether or not the pre-startup activities at K-Reactor, i.e., Power Ascension Testing (PAT), have caused damage because of temperature rises in the Savannah River. Therefore, the biological studies were mainly aimed at providing information as to changes that might cause the damage of the fish population, and to other important organisms in the ecosystem. To determine if deleterious effects had occurred, one had to review the past studies to determine the condition and diversity of aquatic life before these PAT studies started. Therefore old reports were reviewed and a current study made in 1992.

  15. Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Cummins, C.L.; Schwartzman, A.L.

    1996-12-31

    Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS.

  16. Independent Technical Review of In-Tank Precipitation (ITP) at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-06-01

    An Independent Technical Review of In-Tank Precipitation (ITP) and Extended Sludge Processing (ESP) at the Savannah River Site (SRS) was carried out in March, 1993. The review focused on ITP/ESP equipment and chemical processes, integration of ITP/ESP within the High Level Waste (HLW) and Defense Waste Processing Facility (DWPF) systems, and management and regulatory concerns. Following the ITR executive summary, this report includes: Chapter I--summary assessment; Chapter II--recommendations; and Chapter III--technical evaluations.

  17. SRP baseline hydrogeologic investigation: Aquifer characterization. Groundwater geochemistry of the Savannah River Site and vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Strom, R.N.; Kaback, D.S.

    1992-03-31

    An investigation of the mineralogy and chemistry of the principal hydrogeologic units and the geochemistry of the water in the principal aquifers at Savannah River Site (SRS) was undertaken as part of the Baseline Hydrogeologic Investigation. This investigation was conducted to provide background data for future site studies and reports and to provide a site-wide interpretation of the geology and geochemistry of the Coastal Plain Hydrostratigraphic province. Ground water samples were analyzed for major cations and anions, minor and trace elements, gross alpha and beta, tritium, stable isotopes of hydrogen, oxygen, and carbon, and carbon-14. Sediments from the well borings were analyzed for mineralogy and major and minor elements.

  18. Core melt progression and consequence analysis methodology development in support of the Savannah River Reactor PSA

    Energy Technology Data Exchange (ETDEWEB)

    O' Kula, K.R.; Sharp, D.A. (Westinghouse Savannah River Co., Aiken, SC (United States)); Amos, C.N.; Wagner, K.C.; Bradley, D.R. (Science Applications International Corp., Albuquerque, NM (United States))

    1992-01-01

    A three-level Probabilistic Safety Assessment (PSA) of production reactor operation has been underway since 1985 at the US Department of Energy's Savannah River Site (SRS). The goals of this analysis are to: Analyze existing margins of safety provided by the heavy-water reactor (HWR) design challenged by postulated severe accidents; Compare measures of risk to the general public and onsite workers to guideline values, as well as to those posed by commercial reactor operation; and Develop the methodology and database necessary to prioritize improvements to engineering safety systems and components, operator training, and engineering projects that contribute significantly to improving plant safety. PSA technical staff from the Westinghouse Savannah River Company (WSRC) and Science Applications International Corporation (SAIC) have performed the assessment despite two obstacles: A variable baseline plant configuration and power level; and a lack of technically applicable code methodology to model the SRS reactor conditions. This paper discusses the detailed effort necessary to modify the requisite codes before accident analysis insights for the risk assessment were obtained.

  19. Environmental Assessment for the new Whole Body Counter facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The U.S. Department of Energy proposes to construct and operate a new in-vivo counting facility at the Savannah River Site for the monitoring of employees for internal radionuclides. The proposed facility, titled the new Whole Body Counter (WBC) facility, would house both the existing and additional new invivo counting equipment and facility support operations. The proposed facility would be sited and located in an area of the SRS in which background radiation levels are sufficiently low to assure accurate in-vivo counts and a location that would assure ease of access for occupational workers. This Environmental Assessment has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, and the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CPR Parts 1500-1508). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. The proposed action has independent utility to the Savannah River operations and will be necessary to support plant activities regardless of the makeup of the future mission at the site. As such, the proposed new WBC facility is treated as part of the preliminary Reconfiguration Programmatic Environmental Impact Statement ``No Action`` alternative.

  20. TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, R.

    2012-07-31

    Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

  1. RESEARCH AND DEVELOPMENT ACTIVITIES AT SAVANNAH RIVER SITE'S H CANYON FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, Lindsay; Fuller, Kenneth

    2013-07-09

    The Savannah River Site's (SRS) H Canyon Facility is the only large scale, heavily shielded, nuclear chemical separations plant still in operation in the U.S. The facility's operations historically recovered uranium-235 (U-235) and neptunium-237 (Np-237) from aluminum-clad, enriched-uranium fuel tubes from Site nuclear reactors and other domestic and foreign research reactors. Today the facility, in conjunction with HB Line, is working to provide the initial feed material to the Mixed Oxide Facility also located on SRS. Many additional campaigns are also in the planning process. Furthermore, the facility has started to integrate collaborative research and development (R&D) projects into its schedule. H Canyon can serve as the appropriate testing location for many technologies focused on monitoring the back end of the fuel cycle, due to the nature of the facility and continued operation. H Canyon, in collaboration with the Savannah River National Laboratory (SRNL), has been working with several groups in the DOE complex to conduct testing demonstrations of novel technologies at the facility. The purpose of conducting these demonstrations at H Canyon will be to demonstrate the capabilities of the emerging technologies in an operational environment. This paper will summarize R&D testing activities currently taking place in H Canyon and discuss the possibilities for future collaborations.

  2. Ecological studies on the American alligator (Alligator mississippiensis) on the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Seigel, R.A.; Brandt, L.A.; Knight, J.L.; Novak, S.S.

    1986-06-01

    The American alligator (Alligator mississippiensis) is the largest vertebrate of the Savannah River Plant (SRP), reaching a maximum length of 3.7 meters (12 feet) and weighing up to 175 kg (385 pounds). Currently, populations in coastal South Carolina are considered Threatened, whereas populations in inland areas (such as the SRP) are still Endangered. Because of their legal status and economic and ecological importance, it is important to determine the environmental impacts of SRP operations on the local alligator population. The major objectives under the Endangered Species Program of the Comprehensive Cooling Water Study (CCWS) were as follows: (1) document and compare the present status and distribution of alligators on the SRP to previous surveys, in order to determine long-term changes in population abundance; (2) establish baseline population and ecological parameters of the Steel Creek population so that the ecological effects of L-Reactor operations can be determined, and (3) conduct ecological research on the immediate impacts of thermal effluents on American alligators. Gladden et al., (1985) summarized data on previous population surveys, temporal changes in the Par Pond population, preliminary results of the Steel Creek surveys and Savannah River Ecology Laboratory (SREL) research on the effects of thermal effluents. This report summarizes the current status of the SRP population, presents data on the abundance, movement patterns and activity cycles of the Steel Creek population, and presents additional data on the effect of cooling water releases on alligator ecology and behavior.

  3. Technical assessment of the bedrock waste storage at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R.F.; Corey, J.C.

    1976-11-01

    An assessment of the safety and feasibility of ultimate storage of radioactive wastes produced at the Savannah River Plant (SRP) in horizontal tunnels excavated in the bedrock beneath the plant site is presented. Results indicate that a cavern with an excavated volume of 130 million gallons could contain 80 million gallons of concentrated radioactive SRP wastes with minimal risks if the cavern is located in the impermeable Triassic Basin underlying the Savannah River site. The cavern could be placed so that it would lie wholly within the boundaries of the plantsite. The document summarizes the general geological, hydrological, and chemical knowledge of the geological structures beneath the plantsite; develops evaluation guidelines; and utilizes mathematical models to conduct risk analyses. The risk models are developed from known soil and salt solution mechanics; from past, present, and future geological behavior of the onsite rock formations; and from known waste handling technology. The greatest risk is assessed to exist during transfer of the radioactive wastes to the cavern. When the cavern is filled and sealed, further population risks are asessed to be very low.

  4. Selecting the seismic HRA approach for Savannah River Plant PRA revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Papouchado, K.; Salaymeh, J. [eds.] [Westinghouse Savannah River Co., Aiken, SC (United States); Wingo, H.E.; Benhardt, H.C.; van Buijtenen, C.M.; Mitts, T.M. [Battelle Pacific Northwest Labs., Richland, WA (United States)

    1993-10-01

    The Westinghouse Savannah River Company (WSRC) has prepared a level I probabilistic risk assessment (PRA), Rev. 0 of reactor operations for externally-initiated events including seismic events. The SRS PRA, Rev. 0 Seismic HRA received a critical review that expressed skepticism with the approach used for human reliability analysis because it had not been previously used and accepted in other published PRAs. This report provides a review of published probabilistic risk assessments (PRAs), the associated methodology guidance documents, and the psychological literature to identify parameters important to seismic human reliability analysis (HRA). It also describes a recommended approach for use in the Savannah River Site (SRS) PRA. The SRS seismic event PRA performs HRA to account for the contribution of human errors in the accident sequences. The HRA of human actions during and after a seismic event is an area subject to many uncertainties and involves significant analyst judgment. The approach recommended by this report is based on seismic HRA methods and associated issues and concerns identified from the review of these referenced documents that represent the current state-of-the- art knowledge and acceptance in the seismic HRA field.

  5. Groundwater quality assessment/corrective action feasibility plan. Savannah River Laboratory Seepage Basins

    Energy Technology Data Exchange (ETDEWEB)

    Stejskal, G.F.

    1989-11-15

    The Savannah River Laboratory (SRL) Seepage Basins are located in the northeastern section of the 700 Area at the Savannah River Site. Currently the four basins are out of service and are awaiting closure in accordance with the Consent Decree settled under Civil Act No. 1:85-2583. Groundwater monitoring data from the detection monitoring network around the SRL Basins was recently analyzed using South Carolina Hazardous Waste Management Regulations R.61-79.264.92 methods to determine if groundwater in the immediate vicinity of the SRL Basins had been impacted. Results from the data analysis indicate that the groundwater has been impacted by both volatile organic constituents (VOCs) and inorganic constituents. The VOCs, specifically trichloroethylene and tetrachloroethylene, are currently being addressed under the auspices of the SRS Hazardous Waste Permit Application (Volume III, Section J.6.3). The impacts resulting from elevated levels of inorganic constituent, such as barium, calcium, and zinc in the water table, do not pose a threat to human health and the environment. In order to determine if vertical migration of the inorganic constituents has occurred three detection monitoring wells are proposed for installation in the upper portion of the Congaree Aquifer.

  6. Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

  7. Annual review of cultural resource investigations by the Savannah River Archaeological Research Program. Fiscal year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, M.J.; Brooks, R.D.; Sassaman, K.E.; Crass, D.C. [and others

    1995-10-01

    The Savannah River Archaeological Research Program (SRARP) continued through FY95 with the United States Department of Energy to fulfill a threefold mission of cultural resource management, research, and public education at the Savannah River Site. Over 2,300 acres of land on the SRS came under cultural resources review in FY95. This activity entailed 30 field surveys, resulting in the recording of 86 new sites. Twenty-two existing sites within survey tract boundaries were revisited to update site file records. Research conducted by SRARP was reported in 11 papers and monographs published during FY95. SRARP staff also presented research results in 18 papers at professional meetings. Field research included several testing programs, excavations, and remote sensing at area sites, as well as data collection abroad. Seven grants were acquired by SRARP staff to support off-site research. In the area of heritage education, the SRARP expanded its activities in FY95 with a full schedule of classroom education, public outreach, and on-site tours. Volunteer excavations at the Tinker Creek site were continued with the Augusta Archaeological Society and other avocational groups, and other off-site excavations provided a variety of opportunities for field experience. Some 80 presentations, displays and tours were provided for schools, historical societies, civic groups, and environmental and historical awareness day celebrations. Additionally, SRARP staff taught four anthropology courses at area colleges.

  8. Savannah River Technology Center monthly report, March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M.

    1993-03-01

    This report outlines progress and accomplishments in the following categories: Reactor; Tritium; Separations; Environmental; Waste Management; and General. Reactor topics are a summary of the Applied Physics Group`s work for the K-15.1 cycle; FLOWTRAN-TF code test certification, documentation, and reactor support; analysis of Mark 16B material from the L-Reactor Dissassembly Basin; the Reactor Tank inspection program T-Weld project; and Consistency Matrix support. Tritium topics are Leak Test Systems for the Container Management Facility; Replacement Tritium Facility technical issues tracking; transmission electron microscopy specimen preparation; the tritium aging effect on LaNi4.95A10.05 compressor material; and the life storage program. Separations topics are the F-Canyon Safety Analysis Report Addendum; an H-Canyon dissolver model; non-reactor assistance to the Nuclear Regulatory Commission; and onsite packaging criteria draft documentation. Environmental topics are Pond C studies with an underwater HPGe detector; the PREDICT run for the 1992 Annual Environmental Report; an integrated demonstration for cleanup of organic soils and groundwater at non-arid sites; and radio frequency soil heating -- fiberoptic temperature measurement probes. Waste Management topics are adding sodium titanate to in-tank precipitation simulants; lab-scale stripper column defoaming tests; the development of an extended sludge processing batch one model; and a canister temperature study. General topics are video image capture system -- drum inspection; old solvent tank characterization; plutonium storage containers; a glove box docking port; the development of SRS engineering and scientific software catalog; Nuclear Incident Monitor and criticality analysis for separations equipment development; and Nuclear Regulatory Commission assistance. Publications and other items of interest are cited at the end of this report.

  9. Savannah River Technology Center monthly report, July 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, J.M.

    1995-07-01

    Progress is reported in the context of: tritium, separations, environmental, waste management, and general affairs. Emphasized topics include: metal hydrides, valves, sampling, water contamination, Par pond, F and H canyon tanks, tritium transport models, landfill stabilization, pumps, waste storage, and chemical analyzers.

  10. Savannah River Technology Center monthly report: August 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    Short summaries are given for 45 projects concerned with tritium, separations, environmental, and general topics. Included in the general topics are the following: Burst test qualification analysis of Defense Waste Processing Facility canister-plug weld; Design and development of sampling plans for non-radioactive hazardous waste; Thermal fluids laboratory melter feed test; FRR spent fuel dry storage development; SRTC buildings fire hazards analysis; and SRTC plutonium vulnerability study.

  11. Savannah River Technology Center monthly report: June 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    Short summaries are given for 53 projects concerned with tritium, separations, environmental, waste management and general topics. Included in the general topics are the following: High-level waste integrated flowsheet model; Scoping thermal analysis of failed equipment storage vault thermal model; Decision support system for in-tank precipitation benzene stripper experiment; Development of a liquid level bubbler for Defense Waste Processing Facility canyon vessels; Thermal testing of 9973 and 9975 series packagings; and Technical review of CD-1 cask for first time use.

  12. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  13. Radiological environmental dose assessment methods and compliance dose results for 2015 operations at the savannah river site

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Dixon, K. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    This report presents the environmental dose assessment methods and the estimated potential doses to the offsite public from 2015 Savannah River Site (SRS) atmospheric and liquid radioactive releases. Also documented are potential doses from special-case exposure scenarios - such as the consumption of deer meat, fish, and goat milk.

  14. Subsurface stratigraphy and structure of A/M area at the Savannah River Site, Aiken County, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Fallaw, W.C.; Sims, W.R.; Haselow, J.S.

    1991-08-01

    This report is a study of the stratigraphy and structure of the A/M Area Hazardous Waste Management Facility Post-Closure Care Permit process on the Savannah River Site. The data from the lithologic and geophysical logs of 93 wells is the basis of this analysis.

  15. Subsurface stratigraphy and structure of A/M area at the Savannah River Site, Aiken County, South Carolina. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Fallaw, W.C.; Sims, W.R.; Haselow, J.S.

    1991-08-01

    This report is a study of the stratigraphy and structure of the A/M Area Hazardous Waste Management Facility Post-Closure Care Permit process on the Savannah River Site. The data from the lithologic and geophysical logs of 93 wells is the basis of this analysis.

  16. The Savannah River Site's Groundwater Monitoring Program second quarter 1999 (April through June 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-12-16

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  17. Steady-state and loss-of-pumping accident analyses of the Savannah River new production reactor representative design

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, R.J.; Maloney, K.J.

    1990-10-01

    This document contains the steady-state and loss-of-pumping accident analysis of the representative design for the Savannah River heavy water new production reactor. A description of the reactor system and computer input model, the results of the steady-state analysis, and the results of four loss-of-pumping accident calculations are presented. 5 refs., 37 figs., 4 tabs.

  18. The terrestrial carbon inventory on the Savannah River Site: Assessing the change in Carbon pools 1951-2001.

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhaohua; Trettin, Carl, C.; Parresol, Bernard, R.

    2011-11-30

    The Savannah River Site (SRS) has changed from an agricultural-woodland landscape in 1951 to a forested landscape during that latter half of the twentieth century. The corresponding change in carbon (C) pools associated land use on the SRS was estimated using comprehensive inventories from 1951 and 2001 in conjunction with operational forest management and monitoring data from the site.

  19. The Savannah River Site's Groundwater Monitoring Program First Quarter 1998 (January through March 1998)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-05-26

    This report summarizes the Groundwater Monitoring Program conducted by the Savannah River Site during first quarter 1998. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  20. The Savannah River Site's Groundwater Monitoring Program First Quarter 1999 (January through March 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    1999-12-08

    This report summarizes the Groundwater Monitoring Program conducted by Savannah River Site during first quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official record of the analytical results.

  1. The Savannah River Site's Groundwater Monitoring Program - Fourth Quarter 1999 (October through December 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    2000-10-12

    This report summarizes the Groundwater Monitoring Program conducted by the Savannah River site during fourth quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official records of the analytical results.

  2. The Savannah River Site's Groundwater Monitoring Program - Third Quarter 1999 (July through September 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchison, J.B.

    2000-09-05

    This report summarizes the Savannah River Site Groundwater Monitoring Program during the third quarter 1999. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program activities; and serves as an official record of the analytical results.

  3. Deployment of Performance Management Methodology as part of Liquid Waste Program at Savannah River Site - 12178

    Energy Technology Data Exchange (ETDEWEB)

    Prod' homme, A.; Drouvot, O.; Gregory, J. [AREVA, Paris (France); Barnes, B.; Hodges, B.; Hart, M. [SRR, Aiken, SC (United States)

    2012-07-01

    In 2009, Savannah River Remediation LLC (SRR) assumed the management lead of the Liquid Waste (LW) Program at the Savannah River Site (SRS). The four SRR partners and AREVA, as an integrated subcontractor are performing the ongoing effort to safely and reliably: - Close High Level Waste (HLW) storage tanks; - Maximize waste throughput at the Defense Waste Processing Facility (DWPF); - Process salt waste into stable final waste form; - Manage the HLW liquid waste material stored at SRS. As part of these initiatives, SRR and AREVA deployed a performance management methodology based on Overall Equipment Effectiveness (OEE) at the DWPF in order to support the required production increase. This project took advantage of lessons learned by AREVA through the deployment of Total Productive Maintenance and Visual Management methodologies at the La Hague reprocessing facility in France. The project also took advantage of measurement data collected from different steps of the DWPF process by the SRR team (Melter Engineering, Chemical Process Engineering, Laboratory Operations, Plant Operations). Today the SRR team has a standard method for measuring processing time throughout the facility, a reliable source of objective data for use in decision-making at all levels, and a better balance between engineering department goals and operational goals. Preliminary results show that the deployment of this performance management methodology to the LW program at SRS has already significantly contributed to the DWPF throughput increases and is being deployed in the Saltstone facility. As part of the liquid waste program on Savannah River Site, SRR committed to enhance production throughput of DWPF. Beyond technical modifications implemented at different location of the facility, SRR deployed performance management methodology based on OEE metrics. The implementation benefited from the experience gained by AREVA in its own facilities in France. OEE proved to be a valuable tool in order

  4. Analysis and evaluation of VOC removal technologies demonstrated at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Chesnut, D.A.; Wagoner, J.; Nitao, J.J.; Boyd, S.; Shaffer, R.J.; Kansa, E.J.; Buscheck, T.A. [Lawrence Livermore National Lab., CA (United States); Pruess, K. [Lawrence Berkeley Lab., CA (United States); Falta, R.W. [Clemson Univ., SC (United States)

    1993-09-01

    Volatile Organic Compounds, or VOCs, are ubiquitous subsurface contaminants at industrial as well as DOE sites. At the Savannah River Plant, the principles VOCs contaminating the subsurface below A-Area and M-Area are Trichloroethylene (C{sub 2}HCl{sub 3}, or TCE) and Tetrachloroethylene (C{sub 2}Cl{sub 4}, or PCE). These compounds were used extensively as degreasing solvents from 1952 until 1979, and the waste solvent which did not evaporate (on the order of 2{times}10{sup 6} pounds) was discharged to a process sewer line leading to the M-Area Seepage Basin (Figure I.2). These compounds infiltrated into the soil and underlying sediments from leaks in the sewer line and elsewhere thereby contaminating the vadose zone between the surface and the water table as well as the aquifer.

  5. Solvent Extraction Batch Distribution Coefficients with Savannah River Site Dissolved Salt Cake

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.D.

    2002-03-07

    Researchers characterized high-level waste derived from dissolved salt cake from the Savannah River Site (SRS) tank farm and measured the cesium distribution coefficients (DCs) for extraction, scrub, and stripping steps of the caustic-side solvent extraction (CSSX) flowsheet. The measurements used two SRS high-level waste samples derived entirely or in part from salt cake. The chemical compositions of both samples are reported. Dissolved salt cake waste contained less Cs-137 and more dianions than is typical of supernate samples. Extraction and scrub DCs values for both samples exceeded process requirements and agreed well with model predictions. Strip DCs values for the Tank 46F sample also met process requirements. However, strip DCs values could not be calculated for the Tank 38H sample due to the poor material balance for Cs-137. Potential explanations for the poor material balance are discussed and additional work to determine the cause is described.

  6. Solvent Extraction Batch Distribution Coefficients with Savannah River Site Dissolved Salt Cake

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.D.

    2002-05-22

    Researchers characterized high-level waste derived from dissolved salt cake from the Savannah River Site (SRS) tank farm and measured the cesium distribution coefficients (DCs) for extraction, scrub, and stripping steps of the caustic-side solvent extraction (CSSX) flowsheet. The measurements used two SRS high-level waste samples derived entirely or in part from salt cake. The chemical compositions of both samples are reported. Dissolved salt cake waste contained less Cs-137 and more dianions than is typical of supernate samples. Extraction, scrub, and strip DCs values for both samples exceeded process requirements and agreed well with model predictions. The results indicate no significant problems processing dissolved salt cake compared to supernate. During the course of testing, researchers observed sorption of cesium on glass sample vials containing strip solutions. The problem was detected in the material balance calculated for each organic/aqueous contact. Methods and recommendations for avoiding this problem are discussed.

  7. Dismantlement and decontamination of a plutonium-238 facility at the Savannah river site

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.H.; Hootman, H.E. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1994-01-01

    Very little documented decontamination and decommissioning (D&D) experience exists on which to project cleanup costs and schedules for plutonium facilities at DOE sites. A plutonium-238 processing facility at Savannah River Site (SRS) has been undergoing D&D intermittently since 1984. Although this cleanup effort was not originally intended to quantify results, some key data have been accumulated, and the project has demonstrated effective methods of performing D&D work under conditions of high contamination. Some data is presented here; however, more specific tests and data may be obtained during the remainder of this project. This project has been recommended as a candidate test facility for a DOE planned {open_quotes}Integrated D&D Demonstration{close_quotes} managed by EM-50 to develop and demonstrate technology for D&D and surplus facilities deactivation.

  8. Rapid Bioassessment Methods for Assessing Stream Macroinvertebrate Community on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.

    1999-11-22

    Macroinvertebrate sampling was performed at 16 locations in the Savannah River Site (SRS) streams using Hester-Dendy multiplate samplers and EPA Rapid Bioassessment Protocols (RBP). Some of the sampling locations were unimpacted, while other locations had been subject to various forms of perturbation by SRS activities. In general, the data from the Hester-Dendy multiplate samplers were more sensitive at detecting impacts than were the RBP data. We developed a Biotic Index for the Hester-Dendy data which incorporated eight community structure, function, and balance parameters. when tested using a data set that was unrelated to the data set that was used in developing the Biotic Index, the index was very successful at detecting impact.

  9. High-level waste processing at the Savannah River Site: An update

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.E.; Bennett, W.M.; Elder, H.H.; Lee, E.D.; Marra, S.L.; Rutland, P.L.

    1997-09-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) in Aiken, SC mg began immobilizing high-level radioactive waste in borosilicate glass in 1996. Currently, the radioactive glass is being produced as a ``sludge-only`` composition by combining washed high-level waste sludge with glass frit. The glass is poured in stainless steel canisters which will eventually be disposed of in a permanent, geological repository. To date, DWPF has produced about 100 canisters of vitrified waste. Future processing operations will, be based on a ``coupled`` feed of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of the processing activities completed to date, operational/flowsheet problems encountered, and programs underway to increase production rates.

  10. The Savannah River Site`s Groundwater Monitoring Program. Fourth quarter, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program`s activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  11. Review of the source term algorithm for emergency response at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, A.A.; O' Kula, K.R.; Hunter, C.H.

    1992-01-01

    The purpose of this work was to verify the Source Term Setup Module of the Reactor Accident Program (RAP) which is used to perform environmental consequence assessments during emergency response situations at the Savannah River Site (SRS). The Source Term Setup Module is that portion of the program that estimates the source term based on either an input number of melted assemblies or a derived number of melted assemblies based on the Total Stack Activity Monitor (TSAM) response. In order to verify the code, the following items were completed: a review of isotope and fuel specific data by examining the original literature, a complete derivation of all equations employed in the module, and a comparison study of hand calculations with computer results.

  12. Probabilistic risk assessment support of emergency preparedness at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    O`Kula, K.R.; Baker, W.H.; Simpkins, A.A.; Taylor, R.P. [Westinghouse Savannah River Co., Aiken, SC (United States); Wagner, K.C.; Amos, C.N. [Science Applications International Corp., Albuquerque, NM (United States)

    1992-12-31

    Integration of the Probabilistic Risk Assessment (PRA) for K Reactor operation into related technical areas at the Savannah River Site (SRS) includes coordination with several onsite organizations responsible for maintaining and upgrading emergency preparedness capabilities. Major functional categories of the PRA application are scenario development and source term algorithm enhancement. Insights and technologies from the SRS PRA have facilitated development of: (1) credible timelines for scenarios; (2) algorithms tied to plant instrumentation to provide best-estimate source terms for dose projection; and (3) expert-system logic models to implement informed counter-measures to assure onsite and offsite safety following accidental releases. The latter methodology, in particular, is readily transferable to other reactor and non-reactor facilities at SRS and represents a distinct advance relative to emergency preparedness capabilities elsewhere in the DOE complex.

  13. Probabilistic risk assessment support of emergency preparedness at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    O' Kula, K.R.; Baker, W.H.; Simpkins, A.A.; Taylor, R.P. (Westinghouse Savannah River Co., Aiken, SC (United States)); Wagner, K.C.; Amos, C.N. (Science Applications International Corp., Albuquerque, NM (United States))

    1992-01-01

    Integration of the Probabilistic Risk Assessment (PRA) for K Reactor operation into related technical areas at the Savannah River Site (SRS) includes coordination with several onsite organizations responsible for maintaining and upgrading emergency preparedness capabilities. Major functional categories of the PRA application are scenario development and source term algorithm enhancement. Insights and technologies from the SRS PRA have facilitated development of: (1) credible timelines for scenarios; (2) algorithms tied to plant instrumentation to provide best-estimate source terms for dose projection; and (3) expert-system logic models to implement informed counter-measures to assure onsite and offsite safety following accidental releases. The latter methodology, in particular, is readily transferable to other reactor and non-reactor facilities at SRS and represents a distinct advance relative to emergency preparedness capabilities elsewhere in the DOE complex.

  14. Review of the source term algorithm for emergency response at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, A.A.; O`Kula, K.R.; Hunter, C.H.

    1992-12-31

    The purpose of this work was to verify the Source Term Setup Module of the Reactor Accident Program (RAP) which is used to perform environmental consequence assessments during emergency response situations at the Savannah River Site (SRS). The Source Term Setup Module is that portion of the program that estimates the source term based on either an input number of melted assemblies or a derived number of melted assemblies based on the Total Stack Activity Monitor (TSAM) response. In order to verify the code, the following items were completed: a review of isotope and fuel specific data by examining the original literature, a complete derivation of all equations employed in the module, and a comparison study of hand calculations with computer results.

  15. The Savannah River Site's Groundwater Monitoring Program: Fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  16. The Savannah River Site`s Groundwater Monitoring Program: Fourth quarter 1991

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-06-02

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During fourth quarter 1991, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from fourth quarter 1991 are listed in this report.

  17. The Savannah River Site`s Groundwater Monitoring Program. First quarter, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-18

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program`s activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  18. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).

  19. Numerical simulations in support of the in situ bioremediation demonstration at Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Travis, B.J.; Rosenberg, N.D.

    1994-06-01

    This report assesses the performance of the in situ bioremediation technology demonstrated at the Savannah River Integrated Demonstration (SRID) site in 1992--1993. The goal of the technology demonstration was to stimulate naturally occurring methanotrophic bacteria at the SRID site with injection of methane, air and air-phase nutrients (nitrogen and phosphate) such that significant amounts of the chlorinated solvent present in the subsurface would be degraded. Our approach is based on site-specific numerical simulations using the TRAMP computer code. In this report, we discuss the interactions among the physical and biochemical processes involved in in situ bioremediation. We also investigate improvements to technology performance, make predictions regarding the performance of this technology over long periods of time and at different sites, and compare in situ bioremediation with other remediation technologies.

  20. Dry Deposition Velocity Estimation for the Savannah River Site: Part 1 – Parametric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.

    2012-01-16

    Values for the dry deposition velocity of airborne particles were estimated with the GENII Version 2.10 computer code for the Savannah River site using assumptions about surface roughness parameters and particle size and density. Use of the GENII code is recommended by the U.S. Department of Energy for this purpose. Meteorological conditions evaluated include atmospheric stability classes D, E, and F and wind speeds of 0.5, 1.0, 1.5, and 3.0 m/s. Local surface roughness values ranging from 0.03 to 2 meters were evaluated. Particles with mass mean diameters of 1, 5, and 10 microns and densities of 1, 3, and 5 g/cm3 were evaluated.

  1. The Savannah River Site's Groundwater Monitoring Program: Second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  2. Gamma well-logging in burial ground of Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Winn, W.G.; Hofstetter, K.J.; MacMurdo, K.W. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1995-12-31

    Gamma well-logging measurements were conducted in an inactive radioactive waste burial ground of the Savannah River site to appraise whether any evidence existed for downward movement of radioactivity toward the water table. Similar measurements on the same wells were conducted in 1980, providing a baseline from which to measure any changes in their radioactive plumes. In particular, the recent measurements sought to detect significant changes in depth location and radiation magnitude of the plumes, as well as the existence of any new plumes. By comparing measurements on a number of these wells, which were distributed on a grid pattern, it was anticipated that the general status of this section of the burial ground could be established.

  3. Point and Fixed Plot Sampling Inventory Estimates at the Savannah River Site, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Parresol, Bernard, R.

    2004-02-01

    This report provides calculation of systematic point sampling volume estimates for trees greater than or equal to 5 inches diameter breast height (dbh) and fixed radius plot volume estimates for trees < 5 inches dbh at the Savannah River Site (SRS), Aiken County, South Carolina. The inventory of 622 plots was started in March 1999 and completed in January 2002 (Figure 1). Estimates are given in cubic foot volume. The analyses are presented in a series of Tables and Figures. In addition, a preliminary analysis of fuel levels on the SRS is given, based on depth measurements of the duff and litter layers on the 622 inventory plots plus line transect samples of down coarse woody material. Potential standing live fuels are also included. The fuels analyses are presented in a series of tables.

  4. The Savannah River Site`s Groundwater Monitoring Program. Second quarter, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-10

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1991 EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Beginning in 1991, the flagging criteria are based on EPA drinking water standards and method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1991 are listed in this report.

  5. A summary of ecological investigations at the burial ground complex, Savannah River Site - 1994

    Energy Technology Data Exchange (ETDEWEB)

    Friday, G.P.; Hartman, G.D.; Mackey, H.E. Jr.; Riley, R.S.; Roach, J.L.; Specht, W.L.; Westbury, H.M.; Wike, L.D.

    1994-11-01

    This report summarizes the results of three ecological investigations that were conducted in 1994 at the Burial Ground Complex (BGC) at the Savannah River Site (SRS). The three topics of study included remote sensing, aquatic toxicity testing, and qualitative surveys of herpetofauna and small mammals. Interim reports from each investigation are included in the appendices (A, B, and C). The objectives of the remote sensing effort were to compile historical aerial photography of the BGC and to develop a land use/cover map of the complex using recent aerial imagery. The goal of the aquatic toxicity testing was to determine if surface waters were toxic to aquatic biota whereas the objectives of the vertebrate surveys were to identify the species diversity and relative abundances of amphibians, reptiles, and small mammals inhabiting the study area.

  6. Seismic Hazard Characterization at the DOE Savannah River Site (SRS): Status report

    Energy Technology Data Exchange (ETDEWEB)

    Savy, J.B.

    1994-06-24

    The purpose of the Seismic Hazard Characterization project for the Savannah River Site (SRS-SHC) is to develop estimates of the seismic hazard for several locations within the SRS. Given the differences in the geology and geotechnical characteristics at each location, the estimates of the seismic hazard are to allow for the specific local conditions at each site. Characterization of seismic hazard is a critical factor for the design of new facilities as well as for the review and potential retrofit of existing facilities at SRS. The scope of the SRS seismic hazard characterization reported in this document is limited to the Probabilistic Seismic Hazard Analysis (PSHA). The goal of the project is to provide seismic hazard estimates based on a state-of-the-art method which is consistent with developments and findings of several ongoing studies which are deemed to bring improvements in the state of the seismic hazard analyses.

  7. The Savannah River Site`s Groundwater Monitoring Program, second quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  8. The Savannah River Site's Groundwater Monitoring Program, second quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During second quarter 1990 (April through June) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. An explanation of flagging criteria for the second quarter is presented in the Flagging Criteria section of this document. All analytical results from second quarter 1990 are listed in this report.

  9. Transporter Development for the Tritium Extraction Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J.

    1998-12-17

    The Commercial Light Water Reactor-Tritium Extraction Facility (CLWR-TEF) is planned for location at the Savannah River Site (SRS) as part of the US Department of Energy CLWR tritium production alternative. This new facility will rely on processes and equipment that are significantly different from those proven in the past or currently in use at SRS. For instance, the CLWR-TEF reference design employs remote modules to provide an inert processing atmosphere, secondary confinement for tritium and the primary confinement for particulate contamination. The primary component of this modular system is the Transporter. A Transporter mock-up was developed to demonstrate concept feasibility of the required processing functions (sealing, attachment/alignment and materials handling). The module design, the seal door selection, and the planned test program are discussed.

  10. Studying wildlife at local and landscape scales: Bachman's Sparrows at the Savannah River Site

    Science.gov (United States)

    Dunning, J.B.; Danielson, B.J.; Watts, B.D.; Liu, L.; Krementz, D.G.; Dunning, John B.=; Kilgo, John C.

    2000-01-01

    In the late 1980s and early 1990s, mutual research interests between land managers at the Savannah River Site and biologists at the University of Georgia resulted in a landscape-ecology study of the Bachman's Sparrow (Aimophila aestivalis). This species had been declining throughout its range for several decades and was considered a species of management concern by the U.S. Forest Service. The reasons for its decline were obscure, but the distribution of suitable habitat across complex landscapes was a possible factor. Thus the species seemed well suited for a pioneer study on landscape influences on avian population dynamics. A cooperative research program developed from these mutual interests, including quantifying the landscape and local habitat patterns shown by the sparrow, spatially explicit modeling of population response to landscape change, and demographic field studies of reproductive success, survivorship and dispersal. These studies are summarized, and the value of the research to both management and research interests is discussed.

  11. The Savannah River Site`s Groundwater Monitoring Program: Second quarter 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-10-07

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During second quarter 1992, EPD/EMS conducted extensive sampling of monitoring wells. EPD/EMS established two sets of criteria to assist in the management of sample results. The flagging criteria do not define contamination levels; instead, they aid personnel in sample scheduling, interpretation of data, and trend identification. Since 1991, the flagging criteria have been based on the federal Environmental Protection Agency (EPA) drinking water standards and on method detection limits. A detailed explanation of the current flagging criteria is presented in the Flagging Criteria section of this document. Analytical results from second quarter 1992 are listed in this report.

  12. Mobile robots in research and development programs at the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Martin, T.P.; Byrd, J.S.; Fisher, J.J.

    1987-01-01

    Mobile robots for deployment in nuclear applications at the Savannah River Plant (SRP) have been developed. Teleoperated mobile vehicles have been successfully used for several onsite applications. Development work using two research vehicles is underway to demonstrate semi-autonomous intelligent expert robot system operation in process areas. A description of the mechanical equipment, control systems, and operating modes of these vehicles is presented, including the integration of onboard sensors. A control hierarchy that uses modest computational methods is being developed at SRL to allow vehicles to autonomously navigate and perform tasks in known environments, without the need for large computer systems. Knowledge-based expert systems are being evaluated to simplify operator control, to assist in navigation functions, and to analyze sensory information.

  13. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  14. Climate Change Resilience Planning at the Department of Energy's Savannah River Site

    Science.gov (United States)

    Werth, D. W.; Johnson, A.

    2015-12-01

    The Savannah River National Laboratory (SRNL) is developing a site sustainability plan for the Department of Energy's Savannah River Site (SRS) in South Carolina in accordance with Executive Order 13693, which charges each DOE agency with "identifying and addressing projected impacts of climate change" and "calculating the potential cost and risk to mission associated with agency operations". The plan will comprise i) projections of climate change, ii) surveys of site managers to estimate the effects of climate change on site operations, and iii) a determination of adaptive actions. Climate change projections for SRS are obtained from multiple sources, including an online repository of downscaled global climate model (GCM) simulations of future climate and downscaled GCM simulations produced at SRNL. Taken together, we have projected data for temperature, precipitation, humidity, and wind - all variables with a strong influence on site operations. SRNL is working to engage site facility managers and facilitate a "bottom up" approach to climate change resilience planning, where the needs and priorities of stakeholders are addressed throughout the process. We make use of the Vulnerability Assessment Scoring Tool, an Excel-based program designed to accept as input various climate scenarios ('exposure'), the susceptibility of assets to climate change ('sensitivity'), and the ability of these assets to cope with climate change ('adaptive capacity'). These are combined to produce a series of scores that highlight vulnerabilities. Working with site managers, we have selected the most important assets, estimated their expected response to climate change, and prepared a report highlighting the most endangered facilities. Primary risks include increased energy consumption, decreased water availability, increased forest fire danger, natural resource degradation, and compromised outdoor worker safety in a warmer and more humid climate. Results of this study will aid in driving

  15. Safety Evaluation Report Restart of K-Reactor Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    In April 1991, the Department of Energy (DOE) issued DOE/DP-0084T, Safety Evaluation Report Restart of K-Reactor Savannah River Site.'' The Safety Evaluation Report (SER) documents the results of DOE reviews and evaluations of the programmatic aspects of a large number of issues necessary to be satisfactorily addressed before restart. The issues were evaluated for compliance with the restart criteria included in the SER. The results of those evaluations determined that the restart criteria had been satisfied for some of the issues. However, for most of the issues at least part of the applicable restart criteria had not been found to be satisfied at the time the evaluations were prepared. For those issues, open or confirmatory items were identified that required resolution. In August 1991, DOE issued DOE/DP-0090T, Safety Evaluation Report Restart of K-Reactor Savannah River Site Supplement 1.'' That document was the first Supplement to the April 1991 SER, and documented the resolution of 62 of the open items identified in the SER. This document is the second Supplement to the April 1991 SER. This second SER Supplement documents the resolution of additional open times identified in the SER, and includes a complete list of all remaining SER open items. The resolution of those remaining open items will be documented in future SER Supplements. Resolution of all open items for an issue indicates that its associated restart criteria have been satisfied, and that DOE concludes that the programmatic aspects of the issue have been satisfactorily addressed.

  16. ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, J.; Holland, M.; Reeves, G.; Nichols, S.; Kruzner, A.

    2011-07-08

    The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptunium standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.

  17. Geochemical and physical properties of wetland soils at the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, K.L; Rogers, V.A.; Conner, S.P.; Cummings, C.L.; Gladden, J.B.; Weber, J.M.

    1996-05-01

    The Savannah River Site (SRS), located in Aiken, Allendale, and Barnwell Counties, South Carolina, is a nuclear production facility operated for the U.S. Department of Energy (DOE) by Westinghouse Savannah River Company (WSRC). To facilitate future human health and ecological risk assessments, treatability studies, remedial investigations, and feasibility studies for its wetland areas, SRS needs a database of background geochemical and physical properties of wetland soils. These data are needed for comparison to data collected from wetland soils that may have been affected by SRS operations. SRS contains 36,000 acres of wetlands and an additional 5,000 acres of bottom land soils subject to flooding. Recent studies of wetland soils near various waste units at SRS show that some wetlands have been impacted by releases of contaminants resulting from SRS operations (WSRC, 1992). Waste waters originating from the operations facilities typically have been discharged into seepage basins located in upland soils, direct discharge of waste water to wetland areas has been minimal. This suggests that impacted wetland areas have been affected indirectly as a result of transport mechanisms such as surface runoff, groundwater seeps, fluvial or sediment transport, and leaching. Looney et al. (1990) conducted a study to characterize the geochemical and physical properties of upland soils and shallow sediments on the SRS. A primary objective of the upland study was to collect the data needed to assess the qualitative and quantitative impacts of SRS operations on the environment. By comparing the upland soils data to data collected from waste units located in similar soils, SRS impacts could be assessed. The data were also intended to aid in selection of remediation alternatives. Because waste units at SRS have historically been located in upland areas, wetland soils were not sampled. (Abstract Truncated)

  18. A QUICK KEY TO THE SUBFAMILIES AND GENERA OF ANTS OF THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D

    2007-09-04

    This taxonomic key was devised to support development of a Rapid Bioassessment Protocol using ants at the Savannah River Site. The emphasis is on 'rapid' and, because the available keys contained a very large number of genera not known to occur at the Savannah River Site, we found that the available keys were unwieldy. Because these keys contained many more genera than we would ever encounter and because this larger number of genera required more couplets in the key and often required examination of characters that are difficult to assess without higher magnifications (60X or higher), more time was required to process samples. In developing this set of keys I emphasized character states that are easier for nonspecialists to recognize. I recognize that the character sets used may lead to some errors but I believe that the error rate will be small and, for the purpose of rapid bioassessment, this error rate will be acceptable provided that overall sample sizes are adequate. Oliver and Beattie (1996a, 1996b) found that for rapid assessment of biodiversity the same results were found when identifications were done to morphospecies by people with minimal expertise as when the same data sets were identified by subject matter experts. Basset et al. (2004) concluded that it was not as important to correctly identify all species as it was to be sure that the study included as many functional groups as possible. If your study requires high levels of accuracy, it is highly recommended that, when you key out a specimen and have any doubts concerning the identification, you should refer to keys in Bolton (1994) or to the other keys used to develop this area specific taxonomic key.

  19. Safety analysis -- 200 Area Savannah River Plant, F-Canyon Operations. Supplement 4

    Energy Technology Data Exchange (ETDEWEB)

    Beary, M.M.; Collier, C.D.; Fairobent, L.A.; Graham, R.F.; Mason, C.L.; McDuffee, W.T.; Owen, T.L.; Walker, D.H.

    1986-02-01

    The F-Canyon facility is located in the 200 Separations Area and uses the Purex process to recover plutonium from reactor-irradiated uranium. The irradiated uranium is normally in the form of solid or hollow cylinders called slugs. These slugs are encased in aluminum cladding and are sent to the F-Canyon from the Savannah River Plant (SRP) reactor areas or from the Receiving Basin for Offsite Fuels (RBOF). This Safety Analysis Report (SAR) documents an analysis of the F-Canyon operations and is an update to a section of a previous SAR. The previous SAR documented an analysis of the entire 200 Separations Area operations. This SAR documents an analysis of the F-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the conclusions of this SAR is found in the Systems Analysis. Some F-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the F-Canyon can be operated without undue risk to onsite or offsite populations and to the environment. In this report, risk is defined as the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological dose are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  20. A Three-Year Study of Ichyoplankton in Coastal Plains Reaches of the Savannah River Site and its Tributaries

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.

    2007-03-05

    Altering flow regimes of rivers has large effects on native floras and faunas because native species are adapted to the natural flow regime, many species require lateral connectivity with floodplain habitat for feeding or spawning, and the change in regime often makes it possible for invasive species to replace natives (Bunn & Arthington 2002). Floodplain backwaters, both permanent and temporary, are nursery areas for age 0+ fish and stable isotope studies indicate that much of the productivity that supports fish larvae is autochthonous to these habitats (Herwig et al. 2004). Limiting access by fish to floodplain habitat for feeding, spawning and nursery habitat is one of the problems noted with dams that regulate flow in rivers and is considered to be important as an argument to remove dams and other flow regulating structures from rivers (Shuman 1995; Bednarek 2001). While there have been a number of studies in the literature about the use of floodplain habitat for fish reproduction (Copp 1989; Killgore & Baker 1996; Humphries, et al. 1999; Humphries and Lake 2000; Crain et al. 2004; King 2004) there have been only a few studies that examined this aspect of stream ecology in more than a cursory way. The study reported here was originally designed to determine whether the Department of Energy's (DOE) Savannah River Site was having a negative effect on fish reproduction in the Savannah River but its experimental design allowed examination of the interactions between the river, the floodplain and the tributaries entering the Savannah River across this floodplain. This study is larger in length of river covered than most in the literature and because of its landscape scale may be in important indicator of areas where further study is required.

  1. Dry Deposition Velocity Estimation for the Savannah River Site: Part 2 -- Parametric and Site-Specific Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Rishel, Jeremy P.; Cook, Kary M.

    2013-09-12

    Values for the dry deposition velocity of airborne particles were estimated with the GENII Version 2.10.1 computer code for the Savannah River site using assumptions about surface roughness parameters and particle size and density. Use of the GENII code is recommended by the U.S. Department of Energy for this purpose. Meteorological conditions evaluated include atmospheric stability classes D, E, and F and wind speeds of 0.5, 1.0, 1.5, and 2.0 m/s. Local surface roughness values ranging from 0.03 to 2 meters were evaluated. Particles with mass mean diameters of 1, 5, and 10 microns and densities of 1, 3, 4, and 5 g/cm3 were evaluated. Site specific meteorology was used to predict deposition velocity for Savannah River conditions for a range of distances from 670 to 11,500 meters.

  2. Sediment toxicity in Savannah Harbor

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Savannah Harbor, located near the mouth of the Savannah River, Georgia and South Carolina, is impacted by industrial and municipal effluents. Contaminants released...

  3. Savannah River Site Footprint Reduction Results under the American Recovery and Reinvestment Act - 13302

    Energy Technology Data Exchange (ETDEWEB)

    Flora, Mary [Savannah River Nuclear Solutions Bldg. 730-4B, Aiken, SC 29808 (United States); Adams, Angelia [United States Department of Energy Bldg. 730-B, Aiken, SC 29808 (United States); Pope, Robert [United States Environmental Protection Agency Region IV Atlanta, GA 30303 (United States)

    2013-07-01

    The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, managed and operated by Savannah River Nuclear Solutions. Construction of SRS began in the early 1950's to enhance the nation's nuclear weapons capability. Nuclear weapons material production began in the early 1950's, eventually utilizing five production reactors constructed to support the national defense mission. Past operations have resulted in releases of hazardous constituents and substances to soil and groundwater, resulting in 515 waste sites with contamination exceeding regulatory thresholds. More than 1,000 facilities were constructed onsite with approximately 300 of them considered radiological, nuclear or industrial in nature. In 2003, SRS entered into a Memorandum of Agreement with its regulators to accelerate the cleanup using an Area Completion strategy. The strategy was designed to focus cleanup efforts on the 14 large industrial areas of the site to realize efficiencies of scale in the characterization, assessment, and remediation activities. This strategy focuses on addressing the contaminated surface units and the vadose zone and addressing groundwater plumes subsequently. This approach streamlines characterization and remediation efforts as well as the required regulatory documentation, while enhancing the ability to make large-scale cleanup decisions. In February 2009, Congress approved the American Reinvestment and Recovery Act (ARRA) to create jobs and promote economic recovery. At SRS, ARRA funding was established in part to accelerate the completion of environmental remediation and facility deactivation and decommissioning (D and D). By late 2012, SRS achieved 85 percent footprint reduction utilizing ARRA funding by accelerating and coupling waste unit remediation with D and D of remnant facilities. Facility D and D activities were sequenced and

  4. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Wein, G.; Rosier, B.

    1998-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  5. Savannah River Ecology Laboratory, annual technical progress report of ecological research for the year ending June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Wein, G.; Rosier, B.

    1997-12-31

    This report provides an overview of the research programs and program components carried out by the Savannah River Ecology Laboratory. Research focused on the following: advanced analytical and spectroscopic techniques for developing novel waste isolation and stabilization technologies as well as cost-effective remediation strategies; ecologically sound management of damaged and remediation of ecological systems; ecotoxicology, remediation, and risk assessment; radioecology, including dose assessments for plants and animals exposed to environmental radiation; and other research support programs.

  6. Evaluation of Alternate Materials and Methods for Strontium and Alpha Removal from Savannah River Site High-Level Waste Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.T.

    2000-11-07

    A literature survey indicated a number of alternate materials and methods for the removal of strontium and alpha-emitting radionuclides (actinides). We evaluated the use of alternate materials versus proposed flowsheets for salt processing at the Savannah River Site (SRS). From this evaluation we recommend the following materials for further testing to determine the rate and extent of removal. We do not recommend testing of liquid/liquid extraction and polymer filtration methods at this time.

  7. Characterization and reclamation assessment for the Central Shops Diesel Storage Facility, Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Fliermans, C.B.; Hazen, T.C.; Bledsoe, H.

    1993-10-01

    The contamination of subsurface terrestrial environments by organic contaminants is a global phenomenon. The remediation of such environments requires innovative assessment techniques and strategies for successful clean-ups. Central Shops Diesel Storage Facility at Savannah River Site was characterized to determine the extent of subsurface diesel fuel contamination using innovative approaches and effective bioremediation techniques for clean-up of the contaminant plume have been established.

  8. Patterns of fish assemblage structure and dynamics in waters of the Savannah River Plant. Comprehensive Cooling Water Study final report

    Energy Technology Data Exchange (ETDEWEB)

    Aho, J.M.; Anderson, C.S.; Floyd, K.B.; Negus, M.T.; Meador, M.R.

    1986-06-01

    Research conducted as part of the Comprehensive Cooling Water Study (CCWS) has elucidated many factors that are important to fish population and community dynamics in a variety of habitats on the Savannah River Plant (SRP). Information gained from these studies is useful in predicting fish responses to SRP operations. The overall objective of the CCWS was (1) to determine the environmental effects of SRP cooling water withdrawals and discharges and (2) to determine the significance of the cooling water impacts on the environment. The purpose of this study was to: (1) examine the effects of thermal plumes on anadromous and resident fishes, including overwintering effects, in the SRP swamp and associated tributary streams; (2) assess fish spawning and locate nursery grounds on the SRP; (3) examine the level of use of the SRP by spawning fish from the Savannah River, this objective was shared with the Savannah River Laboratory, E.I. du Pont de Nemours and Company; and (4) determine impacts of cooling-water discharges on fish population and community attributes. Five studies were designed to address the above topics. The specific objectives and a summary of the findings of each study are presented.

  9. Computation Of The Residual Radionuclide Activity Within Three Natural Waterways At The Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Hiergesell, R. A.; Phifer, M. A.

    2014-01-07

    In 2010 a Composite Analysis (CA) of the U.S. Department of Energy’s (DOE’s) Savannah River Site (SRS) was completed. This investigation evaluated the dose impact of the anticipated SRS End State residual sources of radionuclides to offsite members of the public. Doses were assessed at the locations where SRS site streams discharge into the Savannah River at the perimeter of the SRS. Although the model developed to perform this computation indicated that the dose constraint of 0.3 mSv/yr (30 mrem/yr), associated with CA, was not approached at the Points of Assessment (POAs), a significant contribution to the total computed dose was derived from the radionuclides (primarily Cs-137) bound-up in the soil and sediment of the drainage corridors of several SRS streams. DOE’s Low Level Waste Federal Review Group (LFRG) reviewed the 2010 CA and identified several items to be addressed in the SRS Maintenance Program. One of the items recognized Cs-137 in the Lower Three Runs (LTR) Integrator Operable Unit (IOU), as a significant CA dose driver. The item made the recommendation that SRS update the estimated radionuclide inventory, including Cs-137, in the LTR IOU. That initial work has been completed and its radionuclide inventory refined. There are five additional streams at SRS and the next phase of the response to the LFRG concern was to obtain a more accurate inventory and distribution of radionuclides in three of those streams, Fourmile Branch (FMB), Pen Branch (PB) and Steel Creek (SC). Each of these streams is designated as an IOU, which are defined for the purpose of this investigation as the surface water bodies and associated wetlands, including the channel sediment, floodplain sed/soil, and related biota. If present, radionuclides associated with IOUs are adsorbed to the streambed sediment and soils of the shallow floodplains that lie immediately adjacent to stream channels. The scope of this effort included the evaluation of any previous sampling and

  10. Climate Change Projection for the Department of Energy's Savannah River Site

    Science.gov (United States)

    Werth, D. W.

    2014-12-01

    As per recent Department of Energy (DOE) sustainability requirements, the Savannah River National Laboratory (SRNL) is developing a climate projection for the DOE's Savannah River Site (SRS) near Aiken, SC. This will comprise data from both a statistical and a dynamic downscaling process, each interpolated to the SRS. We require variables most relevant to operational activities at the site (such as the US Forest Service's forest management program), and select temperature, precipitation, wind, and humidity as being most relevant to energy and water resource requirements, fire and forest ecology, and facility and worker safety. We then develop projections of the means and extremes of these variables, estimate the effect on site operations, and develop long-term mitigation strategies. For example, given that outdoor work while wearing protective gear is a daily facet of site operations, heat stress is of primary importance to work planning, and we use the downscaled data to estimate changes in the occurrence of high temperatures. For the statistical downscaling, we use global climate model (GCM) data from the Climate Model Intercomparison Project, version 5 (CMIP-5), which was used in the IPCC Fifth Assessment Report (AR5). GCM data from five research groups was selected, and two climate change scenarios - RCP 4.5 and RCP 8.5 - are used with observed data from site instruments and other databases to produce the downscaled projections. We apply a quantile regression downscaling method, which involves the use of the observed cumulative distribution function to correct that of the GCM. This produces a downscaled projection with an interannual variability closer to that of the observed data and allows for more extreme values in the projections, which are often absent in GCM data. The statistically downscaled data is complemented with dynamically downscaled data from the NARCCAP database, which comprises output from regional climate models forced with GCM output from the

  11. Evaluation of radcal gamma thermometers for in-core monitoring of Savannah River Site production reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W.; Crowley, J.L. [DELTA M Corp., Oak Ridge, TN (United States); Croft, W.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1991-12-31

    The Savannah River Site (SRS) recently obtained a quantity of Radcal Gamma Thermometer Assemblies (RGTAs) for in-core monitoring of local power in their production reactors. The RGTAs, manufactured by DELTA M Corporation in Oak Ridge, Tennessee, contained seven Self Calibrating Gamma Thermometer (SCGT) sensors within a 7.26 mm diameter, 3.06 m length with a total length of 5.6 m. All RGTAs contained an isolated segmented heater cable for in-situ calibration. Each SCGT sensor was subjected to a 40 point calibration at discrete power levels from 0.5 to 6 watts per gram (w/g) under both joule and cable power. Calibration equations were developed from this to predict reactor power at each sensor. Additionally three units were calibrated at combined joule and cable heating conditions from 0.5 to 2.5 w/g cable and 0.5 to 6 w/g joule. A statistical analysis of all data was used to derive prediction equations that enable SRS engineers to precisely track any changes in sensor calibration throughout the lifetime of the instruments. This paper presents the detailed configuration of the 36 units manufactured for SRS, reviews the calibration results, and discusses the utility and accuracy of the statistically derived prediction equations for in-situ calibration.

  12. Evaluation of radcal gamma thermometers for in-core monitoring of Savannah River Site production reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, R.W.; Crowley, J.L. (DELTA M Corp., Oak Ridge, TN (United States)); Croft, W.D. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1991-01-01

    The Savannah River Site (SRS) recently obtained a quantity of Radcal Gamma Thermometer Assemblies (RGTAs) for in-core monitoring of local power in their production reactors. The RGTAs, manufactured by DELTA M Corporation in Oak Ridge, Tennessee, contained seven Self Calibrating Gamma Thermometer (SCGT) sensors within a 7.26 mm diameter, 3.06 m length with a total length of 5.6 m. All RGTAs contained an isolated segmented heater cable for in-situ calibration. Each SCGT sensor was subjected to a 40 point calibration at discrete power levels from 0.5 to 6 watts per gram (w/g) under both joule and cable power. Calibration equations were developed from this to predict reactor power at each sensor. Additionally three units were calibrated at combined joule and cable heating conditions from 0.5 to 2.5 w/g cable and 0.5 to 6 w/g joule. A statistical analysis of all data was used to derive prediction equations that enable SRS engineers to precisely track any changes in sensor calibration throughout the lifetime of the instruments. This paper presents the detailed configuration of the 36 units manufactured for SRS, reviews the calibration results, and discusses the utility and accuracy of the statistically derived prediction equations for in-situ calibration.

  13. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    2014-01-08

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the fact that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.

  14. SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE

    Energy Technology Data Exchange (ETDEWEB)

    Magoulas, V.

    2013-05-27

    For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

  15. Summary Of Cold Crucible Vitrification Tests Results With Savannah River Site High Level Waste Surrogates

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, Sergey; Marra, James; Lebedev, Vladimir

    2014-01-13

    The cold crucible inductive melting (CCIM) technology successfully applied for vitrification of low- and intermediate-level waste (LILW) at SIA Radon, Russia, was tested to be implemented for vitrification of high-level waste (HLW) stored at Savannah River Site, USA. Mixtures of Sludge Batch 2 (SB2) and 4 (SB4) waste surrogates and borosilicate frits as slurries were vitrified in bench- (236 mm inner diameter) and full-scale (418 mm inner diameter) cold crucibles. Various process conditions were tested and major process variables were determined. Melts were poured into 10L canisters and cooled to room temperature in air or in heat-insulated boxes by a regime similar to Canister Centerline Cooling (CCC) used at DWPF. The products with waste loading from ~40 to ~65 wt.% were investigated in details. The products contained 40 to 55 wt.% waste oxides were predominantly amorphous; at higher waste loadings (WL) spinel structure phases and nepheline were present. Normalized release values for Li, B, Na, and Si determined by PCT procedure remain lower than those from EA glass at waste loadings of up to 60 wt.%.

  16. Site Selection for the Salt Disposition Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Gladden, J.B.; Rueter, K.J.; Morin, J.P.

    2000-11-15

    A site selection study was conducted to identify a suitable location for the construction and operation of a new Salt Disposition Facility (SDF) at the Savannah River Site (SRS). The facility to be sited is a single processing facility and support buildings that could house either of three technology alternatives being developed by the High Level Waste Systems Engineering Team: Small Tank Tetraphenylborate Precipitation, Crystalline Silicotitanate Non-Elutable Ion Exchange or Caustic Side Solvent Extraction. A fourth alternative, Direct Disposal in grout, is not part of the site selection study because a location has been identified that is unique to this technology (i.e., Z-Area). Facility site selection at SRS is a formal, documented process that seeks to optimize siting of new facilities with respect to facility-specific engineering requirements, sensitive environmental resources, and applicable regulatory requirements. In this manner, the prime objectives of cost minimization, environmental protection, and regulatory compliance are achieved. The results from this geotechnical characterization indicated that continued consideration be given to Site B for the proposed SDF. Suitable topography, the lack of surface hydrology and floodplain issues, no significant groundwater contamination, the presence of minor soft zones along the northeast portion of footprint, and no apparent geological structure in the Gordon Aquitard support this recommendation.

  17. Disposal of low-level radioactive waste at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Sauls, V.W. [Dept. of Energy, Aiken, SC (United States). Savannah River Field Office

    1993-03-01

    An important objective of the Savannah River Site`s low-level radioactive waste management program is to isolate the waste from the environment both now and well into the future. A key element in achieving this is the disposal of low-level radioactive waste in sealed concrete vaults. Historically the Site has disposed of low-level radioactive waste via shallow land burial. In 1987, it was decided that better isolation from the environment was required. At that time several options for achieving this isolation were studied and below grade concrete vaults were chosen as the best method. This paper discusses the performance objectives for the vaults, the current design of the vaults and plans for the design of future vaults, the cost to construct the vaults, and the performance assessment on the vaults. Construction of the first set of vaults is essentially complete and readiness reviews before the start of waste receipt are being performed. Startup is to begin late in calendar year 1992 and continue through early CY 1993. The performance assessment is under way and the first draft is to be completed in early 1993.

  18. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store this stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.

  19. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. (Sandia National Labs., Albuquerque, NM (United States))

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  20. Retention and chemical speciation of uranium in an oxidized wetland sediment from the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dien; Seaman, John C.; Chang, Hyun-Shik; Jaffe, Peter R.; Koster van Groos, Paul; Jiang, De-Tong; Chen, Ning; Lin, Jinru; Arthur, Zachary; Pan, Yuanming; Scheckel, Kirk G.; Newville, Matthew; Lanzirotti, Antonio; Kaplan, Daniel I.

    2014-05-01

    Uranium speciation and retention mechanism onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction desorption tests and U L{sub 3}-edge X-ray absorption near-edge structure (XANES) spectroscopy of contaminated wetland sediments. U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH <4 and pH >8. Sequential extraction tests indicated that the U(VI) species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and NOM fraction (Na-pyrophosphate extractable). Uranium L3- edge XANES spectra of the U-retained sediments were nearly identical to that of uranyl acetate. The primary oxidation state of U in these sediments was as U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species. The molecular mechanism responsible for the high U retention in the SRS wetland sediments is likely related to the chemical bonding of U to organic carbon.

  1. Savannah River Plant, Project 8980: Engineering and design history of power and electrical facilities. Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    1957-01-01

    This section of the Engineering-and Design History presents a comprehensive account of the planning and extensive evaluation of the problems involved in reaching basic decisions for the design and installation of power facilities at the Savannah River Plant. The problems were complicated by the urgency of Pro. viding early start-up of facilities at a time when critical material shortages were acute, combined with basic requirements for reliable operation and unusual degrees of flexibility to meet a variety of production demands. Part I describes in detail the steam and water facilities, alternative schemes, and other considerations which were evaluated as a prelude to the final design of equipment and facilities. Included are discussions relating to steam boiler installations, electric power generation, diesel engine plants, mater supply for cooling, process and domestic use, and the numerous water treatment procedures employed for specific application. A comprehensive description of the development and design of electric power facilities is presented in Part II of this volume.

  2. Savannah River Site A/M Area Southern Sector Characterization Cone Penetrometer Report

    Energy Technology Data Exchange (ETDEWEB)

    Raabe, B.A. [Westinghouse Savannah River Company, Aiken, SC (United States)

    1993-05-01

    The Savannah River Site (SRS) is located in the Atlantic Coastal Plaingeologic province. This area is characterized by low relief, predominantly unconsolidated sediments of Cretaceous though Tertiary age. A multiple aquifer system underlies the A/M Area and affects the definition and distribution of a contaminant plume. The water table and uppermost confined aquifer (Steed Pond Aquifer) are contaminated with elevated concentrations of trichloroethylene(TCE) and tetrachloroethylene (PCE) and their associated compounds. The deeper aquifers in this area have less widely spread chlorinated hydrocarbon contamination.Cone penetrometer testing was selected as the method of investigation because it is minimally invasive, offers advanced technological capabilities in gathering lithologic data, and offers groundwater sampling capabilities. CPT testing utilizes a hydraulic push tool system. The probe collects real-time data that is processed by computer into soil/lithology classifications. The system can also be used to collect sediment and soil vapor samples although these features were not utilized during this project. Advantages of the CPT system include a small borehole diameter which minimizes cross-contamination of lithologic units, virtual elimination of drill cuttings and fluids that require disposal, collection of various types of undisturbed sediment and water samples and plotting of hydrostratigraphic and lithologic data while in the field.

  3. The Savannah River Site`s groundwater monitoring program. Third quarter 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-06

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site`s (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  4. RADBALL TECHNOLOGY TESTING IN THE SAVANNAH RIVER SITE HEALTH PHYSICS INSTRUMENT CALIBRATION LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2010-07-08

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{trademark}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBallTM technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  5. Cesium-137 in deer: Savannah River Plant vs. southeastern coastal plain herds

    Energy Technology Data Exchange (ETDEWEB)

    Watts, J.R.; Rabon, E.W.; Dicks, A.S.

    1979-01-01

    The /sup 137/Cs content in deer killed during programmed hunts at the Savannah River Plant (SRP) has averaged 9.0 pCi/g. This value, based on measurements of 13,907 deer taken over 14 years (1965 to 1978), similar to the value obtained for 552 deer from other southeastern Coastal Plain locations, indicating the /sup 137/Cs content is due to fallout from the atmospheric testing of nuclear weapons rather than from SRP operations. The computerized SRP data base for each harvested deer includes age, sex, weight, cesium content, kill location, date, and the hunter's name. Analysis of these data enables the estimation of population dose from ingestion of the edible meat. Consumption of all edible meat from deer killed at SRP from 1965 to 1978 gives a whole body population dose of 196 man-rem from /sup 137/Cs. Assuming an annual consumption rate of 20 kg gives an average individual whole body dose of 13 mrem, about 10% of local annual background level. The radiation dose from /sup 40/K of natural potassium content of deer is comparable to the radiation dose from /sup 137/Cs.

  6. Endangered, threatened, and rare vascular flora of the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Knox, J.N.; Sharitz, R.R.

    1990-01-01

    This report summarizes information on the 30 endangered, threatened, or rare plants found on the Savannah River Site, Aiken, South Carolina. Of these 30 species, eight are under review by the US Fish and Wildlife Service as possible candidates for the proposed threatened and endangered list. Twenty-seven of the species are on the state of South Carolina's list prepared by the South Carolina Advisory Committee on Rare, Threatened, and Endangered Vascular Plants. These 27 plants include regionally threatened species, statewide threatened species, and rare species. Approximately two-thirds of these plants are found in wetland habitats. Also included in this report are summaries of 29 plant species that are likely to occur on the SRS, but have not been found there. Fourteen of these plants are on the federal list and range in status from endangered to possible candidates for deletion from the list. Twenty-eight are on the state of South Carolina list; approximately two-thirds of these also occur in wetland habitats. 31 refs., 45 figs., 2 tabs.

  7. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Berkman, E. (Emerald Exploration Consultants, Inc., Austin, TX (United States))

    1991-04-01

    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  8. High resolution seismic survey, Pen Branch Fault, Savannah River Site, South Carolina. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Berkman, E. [Emerald Exploration Consultants, Inc., Austin, TX (United States)

    1991-04-01

    An investigation of the Pen Branch Fault at the Savannah River Site by a series of short, high resolution seismic reflection lines was conducted. The purpose was to acquire, process, and interpret 19.9 miles of data, optimized for the upper 300 ft of geologic strata, in sufficient density such that processing performed in the conventional stepwise approach, followed by detailed interpretation, would define small scale spatial variability and structural features in the vicinity of the fault leading to definition of the location of the fault, the shallowest extent of the fault, and the quantification of the sense and magnitude of motion. The depth of optimization for the last two lines was modified to the 300 ft of geologic strata immediately above basement. Three older seismic surveys, other geophysical data, and associated borehole and geologic data were reviewed. The equipment and the acquisition, processing, and interpretation procedures are discussed in the report. The report includes a detailed line by line description and discussion of the interpretation. Figures include reference maps, contour displays of the stacking and interval velocities, diagrammatic references sketches of the interpreted layering and sedimentary features, index sketches, and specific color prints made on the workstation during the course of the interpretation. A volume of manuals on seismic devices and related equipment is included.

  9. Groundwater modeling of the proposed new production reactor site, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.B.; Haselow, J.S.; Andersen, P.F.; Spalding, C.P.; Davis, D.H.

    1990-01-05

    This report addresses groundwater modeling performed to support the Environmental Impact Statement (EIS) that is being prepared by the Department of Energy (DOE). The EIS pertains to construction and operation of a new production reactor (NPR) that is under consideration for the Savannah River Site (SRS). Three primary issues are addressed by the modeling analysis: (1) groundwater availability, (2) changes in vertical hydraulic gradients as a result of groundwater pumpage, and (3) migration of potential contaminants from the NPR site. The modeling indicates that the maximum pumpage to be used, 1000 gpm, will induce only minor drawdown across SRS. Pumpage of this magnitude will have a limited effect on the upward gradient from the Cretaceous into the Tertiary near Upper Three Runs Creek. Potentiometric surface maps generated from modeled results indicate that horizontal flow in the water table is either towards Four Mile Creek to the north or to Pen Branch on the south. Particle tracking analysis indicates that the primary flow paths are vertical into the Lower Tertiary Zone, with very little lateral migration. Total travel times from the NPR site to the edge of the model (approximately 3 miles) is on the order of 50 years. The flow direction of water in the Lower Tertiary Zone is relatively well defined due to the regional extent of the flow system. The Pen Branch Fault does not influence contaminant migration for this particular site because it is in the opposite direction of Lower Tertiary Zone groundwater flow. 20 refs., 27 figs., 2 tabs.

  10. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-04-14

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  11. Variation in Bachman's Sparrow home-range size at the Savannah River Site, South Carolina

    Science.gov (United States)

    Stober, J.M.; Krementz, D.G.

    2006-01-01

    Using radiotelemetry, we studied variation in home-range size of the Bachman's Sparrow (Aimophila aestivalis) at the Savannah River Site (SRS), South Carolina, during the 1995 breeding season. At SRS, sparrows occurred primarily in two habitats: mature pine habitats managed for Red-cockaded Woodpecker (Picoides borealis) and pine plantations 1 to 6 years of age. The mean 95% minimum convex polygon home-range size for males and females combined (n = 14) was 2.95 ha + 0.57 SE, across all habitats. Mean homerange size for males in mature pine stands (4.79 ha + 0.27, n = 4) was significantly larger than that in 4-year-old (3.00 ha + 0.31, n = 3) and 2-year-old stands (1.46 ha + 0.31, it = 3). Home-range sizes of paired males and females (it = 4 pairs) were similar within habitat type; mean distances between consecutive locations differed by habitat type and sex. We hypothesize that a gradient in food resources drives home-range dynamics.

  12. Microcrustaceans (Branchipoda and Copepoda) of Wetland Impoundments on the Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    DeBiase, Adrienne E; Taylor, Barbara E

    2005-09-21

    The United States Department of Energy’s Savannah River Site (SRS) in Aiken, Allendale, and Barnwell Counties, South Carolina, contains an abundance of freshwater wetlands and impoundments. Four large impoundments, as well as several small, abandoned farm and mill ponds, and about 400 Carolina bays and other small, isolated depression wetland ponds are located within the 893 km2 area of the SRS. Crustaceans of the orders Branchiopoda and Copepoda are nearly ubiquitous in these water bodies. Although small in size, these organisms are often very abundant. They consequently play an important trophic role in freshwater food webs supporting fish, larval salamanders, larval insects, and numerous other animals, aquatic and terrestrial. This report provides an introduction to the free-living microcrustaceans of lentic water bodies on the SRS and a comprehensive list of species known to occur there. Occurrence patterns are summarized from three extensive survey studies, supplemented with other published and unpublished records. In lieu of a key, we provide a guide to taxonomic resources and notes on undescribed species. Taxa covered include the orders Cladocera, Anostraca, Laevicaudata, and Spinicaudata of the Subclass Branchiopoda and the Superorders Calanoida and Cyclopoida of Subclass Copepoda. Microcrustaceans of the Superorder Harpacticoida of the Subclass Copepoda and Subclass Ostracoda are also often present in lentic water bodies. They are excluded from this report because they have not received much study at the species level on the SRS.

  13. CHARACTERIZATION OF VITRIFIED SAVANNAH RIVER SITE SB4 WASTE SURROGATE PRODUCED IN COLD CRUCIBLE

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2008-08-05

    Savannah River Site (SRS) sludge batch 4 (SB4) waste surrogate with high aluminum and iron content was vitrified with commercially available Frit 503-R4 (8 wt.% Li{sub 2}O, 16 wt.% B2O3, 76 wt.% SiO{sub 2}) by cold crucible inductive melting using lab- (56 mm inner diameter), bench- (236 mm) and large-scale (418 mm) cold crucible. The waste loading ranged between 40 and 60 wt.%. The vitrified products obtained in the lab-scale cold crucible were nearly amorphous with traces of unreacted quartz in the product with 40 wt.% waste loading and traces of spinel phase in the product with 50 wt.% waste loading. The glassy products obtained in the bench-scale cold crucible are composed of major vitreous and minor iron-rich spinel phase whose content at {approx}60 wt.% waste loading may achieve {approx}10 vol.%. The vitrified waste obtained in the large-scale cold crucible was also composed of major vitreous and minor spinel structure phases. No nepheline phase has been found. Average degree of crystallinity was estimated to be {approx}12 vol.%. Anionic motif of the glass network is built from rather short metasilicate chains and boron-oxygen constituent based on boron-oxygen triangular units.

  14. Geochemical and physical properties of soils and shallow sediments at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.B.; Eddy, C.A.; Ramdeen, M.; Pickett, J. (Savannah River Lab., Aiken, SC (USA)); Rogers, V. (Soil Conservation Service, Aiken, SC (USA). Savannah River Site Savannah River Lab., Aiken, SC (USA)); Scott, M.T.; Shirley, P.A. (Sirrine Environmental Consultants, Greenville, SC (USA))

    1990-08-31

    A program to characterize the geochemical and physical properties of the unimpacted soils and shallow sediments at the Savannah River Site (SRS) has been completed. The maximum, minimum, median, standard deviation, and mean values for metals, radionuclides, inorganic anions, organic compounds, and agricultural indicator parameters are summarized for six soil series that were identified as representative of the 29 soil series at SRS. The soils from unimpacted areas of SRS are typical of soils found in moderately aggressive weathering environments, including the southeastern United States. Appendix 8 organic compounds were detected in all samples. Since these constituents are not generally present in soil, this portion of the investigation was intended to assess possible laboratory artifacts. An additional objective of the SRS Soil Study was to determine if the composition of the split spoon sampler biased chemical analysis of the soils. Twenty-five duplicate samples were analyzed for a number of metals, radiological and agricultural parameters, and organics by two laboratories currently contracted with to analyze samples during waste site characterization. In all cases, the absolute values of the average differences are relatively small compared to the overall variability in the population. 31 refs., 14 figs., 48 tabs.

  15. Test and evaluation results of the /sup 252/Cf shuffler at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Crane, T.W.

    1981-03-01

    The /sup 252/Cf Shuffler, a nondestructive assay instrument employing californium neutron source irradiation and delayed-neutron counting, was developed for measuring /sup 235/U content of scrap and waste items generated at the Savannah River Plant (SRP) reactor fuel fabrication facility. The scrap and waste items include high-purity uranium-aluminum alloy ingots as well as pieces of castings, saw and lathe chips from machining operations, low-purity items such as oxides of uranium or uranium intermixed with flux materials found in recovery operations, and materials not recoverable at SRP such as floor sweepings or residues from the uranium scrap recovery operation. The uranium contains about 60% /sup 235/U with the remaining isotopes being /sup 236/U, /sup 238/U, and /sup 234/U in descending order. The test and evaluation at SRP concluded that the accuracy, safety, reliability, and ease of use made the /sup 252/Cf Shuffler a suitable instrument for routine use in an industrial, production-oriented plant.

  16. Demonstration of innovative monitoring technologies at the Savannah River Integrated Demonstration Site

    Energy Technology Data Exchange (ETDEWEB)

    Rossabi, J. [Westinghouse Savannah River Co., Aiken, SC (United States); Jenkins, R.A.; Wise, M.B. [Oak Ridge National Lab., TN (United States)] [and others

    1993-12-31

    The Department of Energy`s Office of Technology Development initiated an Integrated Demonstration Program at the Savannah River Site in 1989. The objective of this program is to develop, demonstrate, and evaluate innovative technologies that can improve present-day environmental restoration methods. The Integrated Demonstration Program at SRS is entitled ``Cleanup of Organics in Soils and Groundwater at Non-Arid Sites.`` New technologies in the areas of drilling, characterization, monitoring, and remediation are being demonstrated and evaluated for their technical performance and cost effectiveness in comparison with baseline technologies. Present site characterization and monitoring methods are costly, time-consuming, overly invasive, and often imprecise. Better technologies are required to accurately describe the subsurface geophysical and geochemical features of a site and the nature and extent of contamination. More efficient, nonintrusive characterization and monitoring techniques are necessary for understanding and predicting subsurface transport. More reliable procedures are also needed for interpreting monitoring and characterization data. Site characterization and monitoring are key elements in preventing, identifying, and restoring contaminated sites. The remediation of a site cannot be determined without characterization data, and monitoring may be required for 30 years after site closure.

  17. DISTRIBUTION AND RANGE OF RADIONUCLIDE SORPTION COEFFICIENTS IN A SAVANNAH RIVER SITE SUBSURFACE: STOCHASTIC MODELING CONSIDERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.; et. al

    2010-01-11

    The uncertainty associated with the sorption coefficient, or K{sub d} value, is one of the key uncertainties in estimating risk associated with burying low-level nuclear waste in the subsurface. The objective of this study was to measure >648 K{sub d} values and provide a measure of the range and distribution (normal or log-normal) of radionuclide K{sub d} values appropriate for the E-Area disposal site, within the Savannah River Site, near Aiken South Carolina. The 95% confidence level for the mean K{sub d} was twice the mean in the Aquifer Zone (18-30.5 m depth), equal to the mean for the Upper Vadose Zone (3.3-10 m depth), and half the mean for the Lower Vadose Zone (3.10-18 m depth). The distribution of K{sub d} values was log normal in the Upper Vadose Zone and Aquifer Zone, and normal in the Lower Vadose Zone. To our knowledge, this is the first report of natural radionuclide Kd variability in the literature. Using ranges and distribution coefficients that are specific to the hydrostratigraphic unit improved model accuracy and reduced model uncertainty. Unfortunately, extension of these conclusions to other sites is likely not appropriate given that each site has its own sources of hydrogeological variability. However, this study provides one of the first examples of the development stochastic ranges and distributions of K{sub d} values for a hydrological unit for stochastic modeling.

  18. Classification of hydrostratigraphic units at the Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Aadland, R.K.; Bledsoe, H.W.

    1990-12-01

    A detailed synthesis of the hydrologic, geophysical and core data from wells penetrating the updip Mesozoic-Cenozoic Coastal Plain sequence at and near the Savannah River Site (SRS) was conducted to define and classify the hydrostratigraphic units. The purpose of the study was to give the SRS a single unified hydrostratigraphic classification that defines and addresses the hydrogeologic characteristics of the aquifers underlying the site. The characterization, areal distribution and classification of the aquifer and aquifer systems gives SRS the tools to evaluate ground water movement and contaminant transport in a comprehensive regional context. An alpha-numeric nomenclature has been temporarily adopted in this report for classifying the aquifers and aquifer systems at SRS. Formal geographic names for the aquifers and aquifer systems will be proposed in the near future but must be agreed upon and ratified by the South Carolina Hydrostratigraphic Subcommittee which was in part organized for the purpose. The classification utilizes a hierarchy of terms ranked at three levels: Aquifer Systems that transmit ground water regionally; Aquifer Units which are mappable units > 400 square miles in area; and Aquifer Zones that differentiate aquifers internally on the basis of locally significant characteristics.

  19. FORM AND AGING OF PLUTONIUM IN SAVANNAH RIVER SITE WASTE TANK 18

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2012-02-24

    This report provides a summary of the effects of aging on and the expected forms of plutonium in Tank 18 waste residues. The findings are based on available information on the operational history of Tank 18, reported analytical results for samples taken from Tank 18, and the available scientific literature for plutonium under alkaline conditions. These findings should apply in general to residues in other waste tanks. However, the operational history of other waste tanks should be evaluated for specific conditions and unique operations (e.g., acid cleaning with oxalic acid) that could alter the form of plutonium in heel residues. Based on the operational history of other tanks, characterization of samples from the heel residues in those tanks would be appropriate to confirm the form of plutonium. During the operational period and continuing with the residual heel removal periods, Pu(IV) is the dominant oxidation state of the plutonium. Small fractions of Pu(V) and Pu(VI) could be present as the result of the presence of water and the result of reactions with oxygen in air and products from the radiolysis of water. However, the presence of Pu(V) would be transitory as it is not stable at the dilute alkaline conditions that currently exists in Tank 18. Most of the plutonium that enters Savannah River Site (SRS) high-level waste (HLW) tanks is freshly precipitated as amorphous plutonium hydroxide, Pu(OH){sub 4(am)} or hydrous plutonium oxide, PuO{sub 2(am,hyd)} and coprecipitated within a mixture of hydrous metal oxide phases containing metals such as iron, aluminum, manganese and uranium. The coprecipitated plutonium would include Pu{sup 4+} that has been substituted for other metal ions in crystal lattice sites, Pu{sup 4+} occluded within hydrous metal oxide particles and Pu{sup 4+} adsorbed onto the surface of hydrous metal oxide particles. The adsorbed plutonium could include both inner sphere coordination and outer sphere coordination of the plutonium. PuO{sub 2

  20. FORM AND AGING OF PLUTONIUM IN SAVANNAH RIVER SITE WASTE TANK 18

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2012-02-24

    This report provides a summary of the effects of aging on and the expected forms of plutonium in Tank 18 waste residues. The findings are based on available information on the operational history of Tank 18, reported analytical results for samples taken from Tank 18, and the available scientific literature for plutonium under alkaline conditions. These findings should apply in general to residues in other waste tanks. However, the operational history of other waste tanks should be evaluated for specific conditions and unique operations (e.g., acid cleaning with oxalic acid) that could alter the form of plutonium in heel residues. Based on the operational history of other tanks, characterization of samples from the heel residues in those tanks would be appropriate to confirm the form of plutonium. During the operational period and continuing with the residual heel removal periods, Pu(IV) is the dominant oxidation state of the plutonium. Small fractions of Pu(V) and Pu(VI) could be present as the result of the presence of water and the result of reactions with oxygen in air and products from the radiolysis of water. However, the presence of Pu(V) would be transitory as it is not stable at the dilute alkaline conditions that currently exists in Tank 18. Most of the plutonium that enters Savannah River Site (SRS) high-level waste (HLW) tanks is freshly precipitated as amorphous plutonium hydroxide, Pu(OH){sub 4(am)} or hydrous plutonium oxide, PuO{sub 2(am,hyd)} and coprecipitated within a mixture of hydrous metal oxide phases containing metals such as iron, aluminum, manganese and uranium. The coprecipitated plutonium would include Pu{sup 4+} that has been substituted for other metal ions in crystal lattice sites, Pu{sup 4+} occluded within hydrous metal oxide particles and Pu{sup 4+} adsorbed onto the surface of hydrous metal oxide particles. The adsorbed plutonium could include both inner sphere coordination and outer sphere coordination of the plutonium. PuO{sub 2

  1. Reprocessing of seismic shear wave and tidem data collected at the A&M areas of the Savannah River Plant. Final report, September 1992--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The upper aquifers in the A&M area of the Savannah River Site are known to be contaminated by chlorinated solvents. Remediation plans depend critically on continuity of a confining zone known as the Crouch Branch Confining Unit (C8CU), which occurs at depths between about 250 feet and 300 feet. Under DOE Contract No: DE-AC21-92MC29, administered by Morgantown Energy Technology Center (METC) surface and borehole geophysical methods were tested and further developed between 1993 and 1995 to map the lithology (clay content) and stratigraphy of the CBCU. It was found that time domain electromagnetics (TDEM) soundings were effective in mapping lithology and changes in lithology, and shear (S-) wave reflection surveys were effective in mapping stratigraphy. An integrated interpretation of the two methods yielded a rather complete image of lithology and stratigraphy of the CBCU.

  2. MECHANISMS OF PHASE FORMATION IN THE VITRIFICATION OF HIGH-FERROUS SAVANNAH RIVER SITE SB2 HLW SLUDGE SURROGATE - 9300

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J

    2008-08-27

    Phase formation mechanisms associated with the vitrification of high-ferrous Savannah River Site (SRS) Sludge Batch 2 (SB2) high level waste surrogate were studied by infrared spectroscopy (IRS) and X-ray diffraction (XRD). Two mixtures at 50 wt% waste loading with commercially available Frit 320 (Li{sub 2}O - 8 wt %, B{sub 2}O{sub 3} - 8 wt %, Na{sub 2}O - 12 wt %, SiO{sub 2} - 72 wt %) and batch chemicals (LiOH {center_dot} H{sub 2}O, H{sub 3}BO{sub 3}, NaNO{sub 3}, SiO{sub 2}) to represent the frit formulation were prepared as slurries with a water content of {approx}50 wt%. The mixtures were air-dried at a temperature of 115 C and heat-treated at 500, 700, 900, 1000, 1100, 1200, and 1300 C for 1 hr at each temperature. Infrared spectra and XRD patterns of the products produced at each temperature were recorded. In both mixtures prepared using frit and batch chemicals to represent the frit, phase formation reactions were completed within the temperature range between 900 and 1000 C. However, residual quartz was still present in glass produced from the mixture with batch chemicals even at 1100 C. Although, the phase composition and structure of the glassy products obtained from both mixtures at temperatures over 1000 C were similar, the products obtained from the mixture using actual frit were more homogeneous than those from the mixture with batch chemicals. Thus, the use of frit rather than batch chemicals reduced the temperature range of phase formation and provided for production of higher quality glass.

  3. Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research, June 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Paul M.; Janecek, Laura; Rosier, Brenda

    2001-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) in South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE) SRS near Aiken, South Carolina. The Laboratory's research mission during the 2001 fiscal year was fulfilled with the publication of one book and 83 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 77 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members and graduate students received awards. These are described in the section Special Accomplishments of Faculty, Staff, Students, and Administration on page 54. Notable scientific accomplishments include work conducted on contaminant transport, global reptile decline, phytoremediation, and radioecology. Dr. Domy Adriano authored the second edition of his book ''Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals'', which was recently published by Springer-Verlag. The book provides a comprehensive treatment of many important aspects of trace elements in the environment. The first edition of the book, published in 1986, has become a widely acclaimed and cited reference. International attention was focused on the problem of reptile species decline with the publication of an article on this topic in the journal ''Bioscience'' in August, 2000. The article's authors included Dr. Whit Gibbons and a number of other SREL herpetologists who researched the growing worldwide problem of decline of reptile species. Factors related

  4. Savannah River Ecology Laboratory, Annual Technical Progress Report of Ecological Research, June 30, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Paul M. Bertsch, (Director)

    2002-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of The University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) near Aiken, South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE). The Laboratory's research mission during the 2002 fiscal year was fulfilled with the publication of 76 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 50 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members, staff, and graduate students received awards. These are described in the section titled Special Accomplishments of Faculty, Staff, Students, and Administration on page 51. Notable scientific accomplishments include work conducted on contaminant transport, stable isotopes, sandhills ecology, and phytoremediation: (1) A collaborative study between Dr. Tom Hinton at SREL and scientists at SRTC demonstrated the feasibility of using illite clay to sequester 137Cs in sediments along the P and R reactor cooling canal system, where approximately 3,000 acres of land are contaminated. Overall, the study showed significant decreases in cesium concentrations and bioavailability following the addition of illite with no sign of harm to the ecosystem. While the cesium remains sequestered from the biosphere, its radioactivity decays and the process progresses from contaminant immobilization to remediation. (2) SREL's stable isotope laboratory is now fully functional. Stable isotope distributions in nature can provide important insights into many historical and current environmental processes. Dr. Christopher Romanek is leading SREL's research

  5. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-22

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data, referred to a geochemical data packages (Kaplan, 2007; Kaplan, 2010; McDowell-Boyer et al., 2000). This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculations and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, ks value, and the cementitious leachate impact factor.

  6. Environmental Assessment for the Health Protection Instrument Calibration Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The purpose of this Environmental Assessment (EA) is to review the possible environmental consequences associated with the construction and operation of a Health Protection Instrument Calibration Facility on the Savannah River Site (SRS). The proposed replacement calibration facility would be located in B Area of SRS and would replace an inadequate existing facility currently located within A Area of SRS (Building 736-A). The new facility would provide laboratories, offices, test equipment and the support space necessary for the SRS Radiation Monitoring Instrument Calibration Program to comply with DOE Orders 5480.4 (Environmental Protection, Safety and Health Protection Standards) and 5480.11 (Radiation Protection for Occupational Workers). The proposed facility would serve as the central site source for the evaluation, selection, inspection, testing, calibration, and maintenance of all SRS radiation monitoring instrumentation. The proposed facility would be constructed on a currently undeveloped portion in B Area of SRS. The exact plot associated with the proposed action is a 1.2 hectare (3 acre) tract of land located on the west side of SRS Road No. 2. The proposed facility would lie approximately 4.4 km (2.75 mi) from the nearest SRS site boundary. The proposed facility would also lie within the confines of the existing B Area, and SRS safeguards and security systems. Archaeological, ecological, and land use reviews have been conducted in connection with the use of this proposed plot of land, and a detailed discussion of these reviews is contained herein. Socioeconomic, operational, and accident analyses were also examined in relation to the proposed project and the findings from these reviews are also contained in this EA.

  7. Compliance of the Savannah River Site D-Area cooling system with environmental regulations

    Energy Technology Data Exchange (ETDEWEB)

    Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wike, L.D.; Wilde, E.W. (eds.)

    1990-08-01

    This document presents information relating to a demonstration under Section 316(a) of the Clean Water Act for the 400-D Area cooling system at the Savannah River Site (SRS) near Aiken, South Carolina. The demonstration was mandated because the National Pollution Discharge Elimination System (NPDES) permit for SRS (SC0000175), granted on January 1, 1984, specified in-stream temperature limits in SRS streams of 32.2{degree}C and a {Delta}T limit of 2.8{degree}C above ambient. To achieve compliance with in-stream temperature limits, the Department of Energy (DOE) and the South Carolina Department of Health and Environmental Control (SCDHEC) entered into a Consent Order (84-4-W) which temporarily superseded the temperature requirements and identified a process for attaining compliance. The preferred option for achieving thermal compliance in Beaver Dam Creek consisted of increased flow, with mixing of the raw water basin overflow with the cooling water discharge during the summer months. Although this action can achieve instream temperatures of less than 32.2{degree}C, {Delta}T's still exceed 2.8{degree}C. Therefore, a 316 (a) Demonstration was initiated to determine whether a balanced indigenous biological community can be supported in the receiving stream with {Delta}T's in excess of 2.8{degree}C. A Biological Monitoring Program for Beaver Dam Creek was approved by SCDHEC in June 1988 and implemented in September 1988. The program monitored the water quality, habitat formers, zooplankton, macroinvertebrates, fish, other vertebrate wildlife and threatened and endangered species in Beaver Dam Creek for an 18-month period (September 1988-February 1990). This document summarizes information collected during the monitoring program and evaluates the data to determine whether Beaver Dam Creek presently supports a balanced indigenous biological community. 97 refs., 32 figs., 51 tabs.

  8. Soil greenhouse gas fluxes during wetland forest retreat along the Lower Savannah River, Georgia (USA)

    Science.gov (United States)

    Krauss, Ken W.; Whitbeck, Julie L.

    2012-01-01

    Tidal freshwater forested wetlands (tidal swamps) are periodically affected by salinity intrusion at seaward transitions with marsh, which, along with altered hydrology, may affect the balance of gaseous carbon (C) and nitrogen (N) losses from soils. We measured greenhouse gas emissions (CO2, CH4, N2O) from healthy, moderately degraded, and degraded tidal swamp soils undergoing sea-level-rise-induced retreat along the lower Savannah River, Georgia, USA. Soil CO2 flux ranged from 90.2 to 179.1 mg CO2 m-2 h-1 among study sites, and was the dominant greenhouse gas emitted. CO2 flux differed among sites in some months, while CH4 and N2O fluxes were 0.18 mg CH4 m-2 h-1 and 1.23 μg N2O m-2 h-1, respectively, with no differences among sites. Hydrology, soil temperature, and air temperature, but not salinity, controlled the annual balance of soil CO2 emissions from tidal swamp soils. No clear drivers were found for CH4 or N2O emissions. On occasion, large ebbing or very low tides were even found to draw CO2 fluxes into the soil (dark CO2 uptake), along with CH4 and N2O. Overall, we hypothesized a much greater role for salinity and site condition in controlling the suite of greenhouse gases emitted from tidal swamps than we discovered, and found that CO2 emissions–not CH4 or N2O–contributed most to the global warming potential from these tidal swamp soils.

  9. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-22

    The Savannah River Site (SRS) disposes of low-level radioactive waste (LLW) and stabilizes high-level radioactive waste (HLW) tanks in the subsurface environment. Calculations used to establish the radiological limits of these facilities are referred to as Performance Assessments (PA), Special Analyses (SA), and Composite Analyses (CA). The objective of this document is to revise existing geochemical input values used for these calculations. This work builds on earlier compilations of geochemical data (2007, 2010), referred to a geochemical data packages. This work is being conducted as part of the on-going maintenance program of the SRS PA programs that periodically updates calculations and data packages when new information becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, the approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., bias the recommended input values to reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). This document provides 1088 input parameters for geochemical parameters describing transport processes for 64 elements (>740 radioisotopes) potentially occurring within eight subsurface disposal or tank closure areas: Slit Trenches (ST), Engineered Trenches (ET), Low Activity Waste Vault (LAWV), Intermediate Level (ILV) Vaults, Naval Reactor Component Disposal Areas (NRCDA), Components-in-Grout (CIG) Trenches, Saltstone Facility, and Closed Liquid Waste Tanks. The geochemical parameters described here are the distribution coefficient, Kd value, apparent solubility concentration, ks value, and the cementitious leachate impact factor.

  10. Nonproliferation impacts assessment for the management of the Savannah River Site aluminum-based spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    On May 13, 1996, the US established a new, 10-year policy to accept and manage foreign research reactor spent nuclear fuel containing uranium enriched in the US. The goal of this policy is to reduce civilian commerce in weapons-usable highly enriched uranium (HEU), thereby reducing the risk of nuclear weapons proliferation. Two key disposition options under consideration for managing this fuel include conventional reprocessing and new treatment and packaging technologies. The Record of Decision specified that, while evaluating the reprocessing option, ``DOE will commission or conduct an independent study of the nonproliferation and other (e.g., cost and timing) implications of chemical separation of spent nuclear fuel from foreign research reactors.`` DOE`s Office of Arms Control and Nonproliferation conducted this study consistent with the aforementioned Record of Decision. This report addresses the nonproliferation implications of the technologies under consideration for managing aluminum-based spent nuclear fuel at the Savannah River Site. Because the same technology options are being considered for the foreign research reactor and the other aluminum-based spent nuclear fuels discussed in Section ES.1, this report addresses the nonproliferation implications of managing all the Savannah River Site aluminum-based spent nuclear fuel, not just the foreign research reactor spent nuclear fuel. The combination of the environmental impact information contained in the draft EIS, public comment in response to the draft EIS, and the nonproliferation information contained in this report will enable the Department to make a sound decision regarding how to manage all aluminum-based spent nuclear fuel at the Savannah River Site.

  11. Formulation of SYNROC-D additives for Savannah River Plant high-level radioactive waste. [ADSYN code

    Energy Technology Data Exchange (ETDEWEB)

    Ryerson, F.J.; Burr, K.; Rozsa, R.

    1981-12-01

    SYNROC-D is a multiphase ceramic waste form consisting of nepheline, zirconolite, perovskite, and spinel. It has been formulated for the immobilization of high-level radioactive wastes now stored at Savannah River Plant (SRP) near Aiken, South Carolina. This report utilizes existing experimental data to develop a method for calculating additives to these waste products. This method calculates additions based on variations of mineral compositions as a function of sludge composition and radionuclide partitioning among the SYNROC phases. Based on these calculations, a FORTRAN program called ADSYN has been developed to determine the proper reagent proportions to be added to the SRP sludges.

  12. Environmental Assessment and Finding of No Significant Impact: Implementation of the Wetland Mitigation Bank Program at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-04-28

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1205) for the proposed implementation of a wetland mitigation bank program at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  13. Environmental Assessment and Finding of No Significant Impact: Pond B Dam Repair Project at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-09-27

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1285) for the proposed repair of the Pond B dam at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  14. Finding of no significant impact for the tritium facility modernization and consolidation project at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1222) for the proposed modernization and consolidation of the existing tritium facilities at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issueing this Finding of No Significant Impact (FONSI).

  15. Desorption Behavior of Trichloroethene and Tetrachloroethene in U.S. Department of Energy Savannah River Site Unconfined Aquifer Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert G.; Szecsody, Jim E.; Mitroshkov, Alexandre V.; Brown, Christopher F.

    2006-06-21

    The DOE Savannah River Site (SRS) is evaluating the potential applicability of the monitored natural attenuation (MNA) process as a contributor to the understanding of the restoration of its unconfined groundwater aquifer known to be contaminated with the chlorinated hydrocarbon compounds trichloroethylene (TCE) and tetrachloroethylene (PCE). This report discusses the results from aqueous desorption experiments on SRS aquifer sediments from two different locations at the SRS (A/M Area; P-Area) with the objective of providing technically defensible TCE/PCE distribution coefficient (Kd) data and data on TCE/PCE reversible and irreversible sorption behavior needed for further MNA evaluation.

  16. A comparison of geospatially modeled fire behavior and potential application to fire and fuels management for the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Laurie; Hollingsworth, LaWen; Shea, Dan

    2011-12-20

    This study evaluates modeled fire behavior for the Savannah River Site in the Atlantic Coastal Plain of the southeastern U.S. using three data sources: FCCS, LANDFIRE, and SWRA. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the U.S. using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern U.S. using satellite imagery.

  17. Local and Regional Economic Benefits from Forest Products Production Activities at the Savannah River Site: 1955-Present

    Energy Technology Data Exchange (ETDEWEB)

    Teeter, L.; Blake, J.I.

    2002-01-01

    SRS was established in 1951 as a nuclear materials production facility; however, decline in the defense mission budget at SRS has created a major economic impact on the community in the Central Savannah River Area. SRS has been offsetting these effects by producing revenue (80 million dollars to date) from the sale of forest products since 1955 primarily trees, but also pine straw. Revenue has been re-invested into the infrastructure development, restoration and management of natural resources. Total asset value of the forest-land has increased from 21 million to over 500 million dollars in the same period.

  18. CHANGES IN 137 CS CONCENTRATIONS IN SOIL AND VEGETATION ON THE FLOODPLAIN OF THE SAVANNAH RIVER OVER A 30 YEAR PERIOD

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.; Jannik, T.; Fledderman, P.

    2007-12-12

    {sup 137}Cs released during 1954-1974 from nuclear production reactors on the Savannah River Site, a US Department of Energy nuclear materials production site in South Carolina, contaminated a portion of the Savannah River floodplain known as Creek Plantation. {sup 137}Cs activity concentrations have been measured in Creek Plantation since 1974 making it possible to calculate effective half-lives for {sup 137}Cs in soil and vegetation and assess the spatial distribution of contaminants on the floodplain. Activity concentrations in soil and vegetation were higher near the center of the floodplain than near the edges as a result of frequent inundation coupled with the presence of low areas that trapped contaminated sediments. {sup 137}Cs activity was highest near the soil surface, but depth related differences diminished with time as a likely result of downward diffusion or leaching. Activity concentrations in vegetation were significantly related to concentrations in soil. The plant to soil concentration ratio (dry weight) averaged 0.49 and exhibited a slight but significant tendency to decrease with time. The effective half-lives for {sup 137}Cs in shallow (0-7.6 cm) soil and in vegetation were 14.9 (95% CI = 12.5-17.3) years and 11.6 (95% CI = 9.1-14.1) years, respectively, and rates of {sup 137}Cs removal from shallow soil and vegetation did not differ significantly among sampling locations. Potential health risks on the Creek Plantation floodplain have declined more rapidly than expected on the basis of radioactive decay alone because of the relatively short effective half-life of {sup 137}Cs.

  19. Speciation of iodine isotopes inside and outside of a contaminant plume at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Schwehr, Kathleen A. [Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A and M University, OCSB 3029, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Otosaka, Shigeyoshi [Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A and M University, OCSB 3029, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Research Group for Environmental Science, Japan Atomic Energy Agency, Tokai Mura, Ibaraki 319 1195 (Japan); Merchel, Silke [Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden (Germany); Kaplan, Daniel I. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Zhang, Saijin; Xu, Chen; Li, Hsiu-Ping; Ho, Yi-Fang [Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A and M University, OCSB 3029, 200 Seawolf Parkway, Galveston, TX 77553 (United States); Yeager, Chris M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Santschi, Peter H. [Laboratory for Oceanographic and Environmental Research, Department of Marine Sciences, Texas A and M University, OCSB 3029, 200 Seawolf Parkway, Galveston, TX 77553 (United States)

    2014-11-01

    A primary obstacle in understanding the fate and transport of the toxic radionuclide {sup 129}I (a thyroid seeker) is an accurate method to distinguish it from the stable isotope, {sup 127}I, and to quantify the various species at environmentally relevant concentrations (∼ 10{sup −8} M). A pH-dependent solvent extraction and combustion method was paired with accelerator mass spectrometry (AMS) to measure ambient levels of {sup 129}I/{sup 127}I isotope ratios and iodine speciation (iodide (I{sup −}), iodate (IO{sub 3}{sup −}), and organo-I (OI)) in aquatic systems. The method exhibited an overall uncertainty of 10% or less for I{sup −} and IO{sub 3}{sup −}, and less than 30% for OI species concentrations and enabled {sup 129}I measurements as low as 0.001 Bq/L (1 Bq/L = 10{sup −13} M). The method was used to analyze groundwater from the Savannah River Site (SRS), South Carolina, USA, along a pH, redox potential (Eh), and organic carbon gradient (8–60 μM DOC). The data confirmed that the {sup 129}I/{sup 127}I ratios and species distribution were strongly pH dependent and varied in a systematic manner from the strongly acidic source. While {sup 129}I speciation in plume samples containing total I concentrations > 1.7 Bq/L was similar whether measured by AMS or GC–MS ([I{sup −}] ≫ [IO{sub 3}{sup −}] = [OI]), AMS enabled {sup 129}I speciation measurements at much lower concentrations than what was possible with GC–MS. AMS analyses demonstrated that groundwater samples minimally impacted by the plume were still orders of magnitude higher than ambient {sup 129}I concentrations typically found elsewhere in the USA groundwaters and rivers. This is likely due to past atmospheric releases of volatile {sup 129}I species by SRS nuclear reprocessing facilities near the study site. Furthermore, the results confirmed the existence of {sup 129}I not only as I{sup −}, but also as OI and IO{sub 3}{sup −} species. - Highlights: • Total {sup 129}I in a

  20. NEPTUNIUM IV AND V SORPTIN TO END-MEMBER SUBSURFACE SEDIMENTS TO THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.

    2009-11-13

    Migration of Np through the subsurface is expected to be primarily controlled by sorption to sediments. Therefore, understanding and quantifying Np sorption to sediments and sediments from the Savannah River Site (SRS) is vital to ensure safe disposal of Np bearing wastes. In this work, Np sorption to two sediments representing the geological extremes with respect to sorption properties expected in the SRS subsurface environment (named 'subsurface sandy sediment' and 'subsurface clayey sediment') was examined under a variety of conditions. First a series of baseline sorption tests at pH 5.5 under an oxic atmosphere was performed to understand Np sorption under typical subsurface conditions. These experiments indicated that the baseline K{sub d} values for the subsurface sandy and subsurface clayey sediments are 4.26 {+-} 0.24 L kg{sup -1} and 9.05 {+-} 0.61 L kg{sup -1}, respectively. These Np K{sub d} values of SRS sediments are the first to be reported since Sheppard et al. (1979). The previous values were 0.25 and 0.16 L kg{sup -1} for a low pH sandy sediment. To examine a possible range of K{sub d} values under various environmental scenarios, the effects of natural organic matter (NOM, also a surrogate for cellulose degradation products), the presence of various chemical reductants, and an anaerobic atmosphere on Np sorption were examined. The presence of NOM resulted in an increase in the Np K{sub d} values for both sediments. This behavior is hypothesized to be the result of formation of a ternary Np-NOM-sediment complex. Slight increases in the Np sorption (K{sub d} 13-24 L kg{sup -1}) were observed when performing experiments in the presence of chemical reductants (dithionite, ascorbic acid, zero-valent iron) or under anaerobic conditions. Presumably, the increased sorption can be attributed to a slight reduction of Np(V) to Np(IV), the stronger sorbing form of Np. The most significant result of this study is the finding that Np weakly

  1. DEMONSTRATION AND EVALUATION OF POTENTIAL HIGH LEVEL WASTE MELTER DECONTAMINATION TECHNOLOGIES FOR SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Weger, Hans, Ph.D.; Kodanda, Raja Tilek Meruva; Mazumdar, Anindra; Srivastava, Rajiv Ph.D.; Ebadian, M.A. Ph.D.

    2003-02-27

    Four hand-held tools were tested for failed high-level waste melter decontamination and decommissioning (D&D). The forces felt by the tools during operation were measured using a tri-axial accelerometer since they will be operated by a remote manipulator. The efficiency of the tools was also recorded. Melter D&D consists of three parts: (1) glass fracturing: removing from the furnace the melted glass that can not be poured out through normal means, (2) glass cleaning: removing the thin layer of glass that has formed over the surface of the refractory material, and (3) K-3 refractory breakup: removing the K-3 refractory material. Surrogate glass, from a formula provided by the Savannah River Site, was melted in a furnace and poured into steel containers. K-3 refractory material, the same material used in the Defense Waste Processing Facility, was utilized for the demonstrations. Four K-3 blocks were heated at 1150 C for two weeks with a glass layer on top to simulate the hardened glass layer on the refractory surface in the melter. Tools chosen for the demonstrations were commonly used D&D tools, which have not been tested specifically for the different aspects of melter D&D. A jackhammer and a needle gun were tested for glass fracturing; a needle gun and a rotary grinder with a diamond face wheel (diamond grinder) were tested for glass cleaning; and a jackhammer, diamond grinder, and a circular saw with a diamond blade were tested for refractory breakup. The needle gun was not capable of removing or fracturing the surrogate glass. The diamond grinder only had a removal rate of 3.0 x 10-4 kg/s for K-3 refractory breakup and needed to be held firmly against the material. However, the diamond grinder was effective for glass cleaning, with a removal rate of 3.9 cm2/s. The jackhammer was successful in fracturing glass and breaking up the K-3 refractory block. The jackhammer had a glass-fracturing rate of 0.40 kg/s. The jackhammer split the K-3 refractory block into two

  2. Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but

  3. Long-Term Assessment of Critical Radionuclides and Associated Environmental Media at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. T.; Baker, R. A.; Lee, P. L.; Eddy, T. P.; Blount, G. C.; Whitney, G. R.

    2012-11-06

    During the operational history of the Savannah River Site (SRS), many different radionuclides have been released from site facilities. However, only a relatively small number of the released radionuclides have been significant contributors to doses and risks to the public. At SRS dose and risk assessments indicate tritium oxide in air and surface water, and Cs-137 in fish and deer have been, and continue to be, the critical radionuclides and pathways. In this assessment, indepth statistical analyses of the long-term trends of tritium oxide in atmospheric and surface water releases and Cs-137 concentrations in fish and deer are provided. Correlations also are provided with 1) operational changes and improvements, 2) geopolitical events (Cold War cessation), and 3) recent environmental remediation projects and decommissioning of excess facilities. For example, environmental remediation of the F- and H-Area Seepage Basins and the Solid Waste Disposal Facility have resulted in a measurable impact on the tritium oxide flux to the onsite Fourmile Branch stream. Airborne releases of tritium oxide have been greatly affected by operational improvements and the end of the Cold War in 1991. However, the effects of SRS environmental remediation activities and ongoing tritium operations on tritium concentrations in the environment are measurable and documented in this assessment. Controlled hunts of deer and feral hogs are conducted at SRS for approximately six weeks each year. Before any harvested animal is released to a hunter, SRS personnel perform a field analysis for Cs-137 concentrations to ensure the hunter's dose does not exceed the SRS administrative game limit of 0.22 millisievert (22 mrem). However, most of the Cs-137 found in SRS onsite deer is not from site operations but is from nuclear weapons testing fallout from the 1950's and early 1960's. This legacy source term is trended in the SRS deer, and an assessment of the ''effective'' half-life of Cs-137 in deer

  4. SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

    2011-01-12

    This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be

  5. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, a significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full

  6. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D

    2006-02-28

    The Savannah River Site disposes of certain types of radioactive waste within subsurface-engineered facilities. One of the tools used to establish the capacity of a given site to safely store radioactive waste (i.e., that a site does not exceed its Waste Acceptance Criteria) is the Performance Assessment (PA). The objective of this document is to provide the geochemical values for the PA calculations. This work is being conducted as part of the on-going maintenance program that permits the PA to periodically update existing calculations when new data becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). The geochemical parameters describe transport processes for 38 elements (>90 radioisotopes) potentially occurring within eight disposal units (Slit Trenches, Engineered Trenches, Low Activity Waste (LAW) Vault, Intermediate Level (ILV) Vaults, TRU-Pad-1, Naval Reactor Waste Pads, Components-in-Grout Trenches, and Saltstone Facility). This work builds upon well-documented work from previous PA calculations (McDowell-Boyer et al. 2000). The new geochemical concepts introduced in this data package are: (1) In the past, solubility products were used only in a few conditions (element existing in a specific environmental setting). This has been expanded to >100 conditions. (2) Radionuclide chemistry in cementitious environments is described through the use of both the Kd and apparent solubility concentration limit. Furthermore, the solid phase is assumed to age during the assessment period (thousands of years), resulting in three main types of controlling

  7. SITE SPECIFIC REFERENCE PERSON PARAMETERS AND DERIVED CONCENTRATION STANDARDS FOR THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.

    2013-03-14

    The purpose of this report is twofold. The first is to develop a set of behavioral parameters for a reference person specific for the Savannah River Site (SRS) such that the parameters can be used to determine dose to members of the public in compliance with Department of Energy (DOE) Order 458.1 “Radiation Protection of the Public and the Environment.” A reference person is a hypothetical, gender and age aggregation of human physical and physiological characteristics arrived at by international consensus for the purpose of standardizing radiation dose calculations. DOE O 458.1 states that compliance with the annual dose limit of 100 mrem (1 mSv) to a member of the public may be demonstrated by calculating the dose to the maximally exposed individual (MEI) or to a representative person. Historically, for dose compliance, SRS has used the MEI concept, which uses adult dose coefficients and adult male usage parameters. Beginning with the 2012 annual site environmental report, SRS will be using the representative person concept for dose compliance. The dose to a representative person will be based on 1) the SRS-specific reference person usage parameters at the 95th percentile of appropriate national or regional data, which are documented in this report, 2) the reference person (gender and age averaged) ingestion and inhalation dose coefficients provided in DOE Derived Concentration Technical Standard (DOE-STD-1196-2011), and 3) the external dose coefficients provided in the DC_PAK3 toolbox. The second purpose of this report is to develop SRS-specific derived concentration standards (DCSs) for all applicable food ingestion pathways, ground shine, and water submersion. The DCS is the concentration of a particular radionuclide in water, in air, or on the ground that results in a member of the public receiving 100 mrem (1 mSv) effective dose following continuous exposure for one year. In DOE-STD-1196-2011, DCSs were developed for the ingestion of water, inhalation of

  8. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  9. Sanitary landfill local-scale flow and transport modeling in support of alternative concentrations limit demonstrations, Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, V.A.; Beach, J.A.; Statham, W.H.; Pickens, J.F. [INTERA, Inc., Austin, TX (United States)

    1993-02-19

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility located near Aiken, South Carolina which is currently operated and managed by Westinghouse Savannah River Company (WSRC). The Sanitary Landfill (Sanitary Landfill) at the SRS is located approximately 2,000 feet Northwest of Upper Three Runs Creek (UTRC) on an approximately 70 acre site located south of Road C between the SRS B-Area and UTRC. The Sanitary Landfill has been receiving wastes since 1974 and operates as an unlined trench and fill operation. The original landfill site was 32 acres. This area reached its capacity around 1987 and a Northern Expansion of 16 acres and a Southern Expansion of 22 acres were added in 1987. The Northern Expansion has not been used for waste disposal to date and the Southern Expansion is expected to reach capacity in 1992 or 1993. The waste received at the Sanitary Landfill is predominantly paper, plastics, rubber, wood, metal, cardboard, rags saturated with degreasing solvents, pesticide bags, empty cans, and asbestos in bags. The landfill is not supposed to receive any radioactive wastes. However, tritium has been detected in the groundwater at the site. Gross alpha and gross beta are also evaluated at the landfill. The objectives of this modeling study are twofold: (1) to create a local scale Sanitary Landfill flow model to study hydraulic effects resulting from capping the Sanitary Landfill; and (2) to create a Sanitary Landfill local scale transport model to support ACL Demonstrations for a RCRA Part B Permit Renewal.

  10. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    Construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site (SRS) began during FY-1984. The Savannah River Ecology Laboratory (SREL) has completed 15 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Through the long-term census taking of biota at the DWPF site and Rainbow Bay, SREL has been evaluating the impact of construction on the biota and the effectiveness of mitigation efforts. similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

  11. Health protection at the Savannah River Site: A guide to records series of the Department of Energy and its contractors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    As part of the Department of Energy`s (DOE) Epidemiologic Records Inventory Project, History Associates Incorporated (HAI) prepared this guide to the records series pertaining to health protection activities at the DOE`s Savannah River Site (SRS). Since its inception in the early 1950s, the SRS, formerly known as the Savannah River Plant (SRP), has demonstrated significant interest in safeguarding facilities, protecting employees` health, and monitoring the environment. The guide describes records that concern health protection program administration, radiological monitoring of the plant and the environment, calibration and maintenance of monitoring instruments, internal and external dosimetry practices, medical surveillance of employees, occupational safety and training measures, site visitation, and electronic information systems. The introduction to the guide describes the Epidemiologic Records Inventory Project and HAI`s role in the project. It provides brief histories of the DOE, SRS, and the SRS organizational units responsible for health protection activities. This introduction also summarizes HAI`s methodology in developing criteria and conducting its verification of the SRS inventory of active and inactive SRS Health Protection records. Furthermore, it furnishes information on the production of the guide, the content of the records series descriptions, the location of the records, and the procedures for accessing records repositories.

  12. Demographics of the spawning aggregations of four catostomid species in the Savannah River, South Carolina and Georgia, USA

    Science.gov (United States)

    Grabowski, T.B.; Ratterman, N.L.; Isely, J.J.

    2008-01-01

    Differences in the life history strategies employed by otherwise ecologically similar species of a fish assemblage may be an important factor in the coexistence of these species and is an essential consideration in the conservation and management of these assemblages. We collected scales to determine age and growth of four species of the catostomid assemblage (northern hogsucker Hypentelium nigricans, spotted sucker Minytrema melanops, notchlip redhorse Moxostoma collapsum and robust redhorse Moxostoma robustum) of the Savannah River, Georgia-South Carolina in spring 2004 and 2005. Robust redhorse was the largest species; reaching sexual maturity at an older age and growing faster as a juvenile than the other species. Spotted sucker did not achieve the same size as robust redhorse, but reached sexual maturity at younger ages. Notchlip redhorse was intermediate between the abovementioned two species in age at maturity and size. Northern hogsucker was the smallest species of the assemblage and reached the sexual maturity at the age of three. Both robust redhorse and spotted sucker were sexually dimorphic in size-at-age. The range of life history strategies employed by Savannah River catostomids encompasses the range of life history strategies exhibited within the family as a whole. ?? 2007 Blackwell Munksgaard.

  13. Savannah River Plant engineering, design, and construction history of ``S`` projects and other work, January 1961--December 1964. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1970-03-01

    The work described in this volume of ``S`` Projects History is an extension of the type of work described in Volume I. E.I. du Pont de flemours & Company had entered into Contract AT (07-2)-l with the United States Atomic Energy Commission to develop, design, construct, install, and operate facilities to produce heavy water, fissionable materials, and related products. Under this contract,, Du Pont constructed and operated the Savannah River Plant. The engineering, design, and construction for most of the larger ``S`` projects was performed by the Engineering DeDartment. For some of the large and many of the smaller projects the Engineering Department was responsible only for the construction because the Atomic Energy Division (AED) of the Explosives Department handled the other phases. The Engineering Department Costruction Division also performed the physical work for many of the plant work orders. This volume includes a general description of the Du Pont Engineering Department activities pertaining to the engineering, design, and construction of the ``S`` projects at the Savannah River Plant; brief summaries of the projects and principal work requests; and supplementary informaticn on a few subjects in Volume I for which final data was not available at the closing date. Projects and other plant engineering work which were handled entirely by the Explosives Department -- AED are not included in this history.

  14. Ecological studies on the American alligator (Alligator mississippiensis) on the Savannah River Plant. Comprehensive Cooling Water Study: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Seigel, R.A.; Brandt, L.A.; Knight, J.L.; Novak, S.S.

    1986-06-01

    The American alligator (Alligator mississippiensis) is the largest vertebrate of the Savannah River Plant (SRP), reaching a maximum length of 3.7 meters (12 feet) and weighing up to 175 kg (385 pounds). Currently, populations in coastal South Carolina are considered Threatened, whereas populations in inland areas (such as the SRP) are still Endangered. Because of their legal status and economic and ecological importance, it is important to determine the environmental impacts of SRP operations on the local alligator population. The major objectives under the Endangered Species Program of the Comprehensive Cooling Water Study (CCWS) were as follows: (1) document and compare the present status and distribution of alligators on the SRP to previous surveys, in order to determine long-term changes in population abundance; (2) establish baseline population and ecological parameters of the Steel Creek population so that the ecological effects of L-Reactor operations can be determined, and (3) conduct ecological research on the immediate impacts of thermal effluents on American alligators. Gladden et al., (1985) summarized data on previous population surveys, temporal changes in the Par Pond population, preliminary results of the Steel Creek surveys and Savannah River Ecology Laboratory (SREL) research on the effects of thermal effluents. This report summarizes the current status of the SRP population, presents data on the abundance, movement patterns and activity cycles of the Steel Creek population, and presents additional data on the effect of cooling water releases on alligator ecology and behavior.

  15. Plutonium isotopes in the terrestrial environment at the Savannah River Site, USA: a long-term study.

    Science.gov (United States)

    Armstrong, Christopher R; Nuessle, Patterson R; Brant, Heather A; Hall, Gregory; Halverson, Justin E; Cadieux, James R

    2015-02-01

    This work presents the findings of a long-term plutonium (Pu) study at Savannah River Site (SRS) conducted between 2003 and 2013. Terrestrial environmental samples were obtained at the Savannah River National Laboratory (SRNL) in the A-Area. Plutonium content and isotopic abundances were measured over this time period by α particle and thermal ionization mass spectrometry (3STIMS). We detail the complete process of the sample collection, radiochemical separation, and measurement procedure specifically targeted to trace plutonium in bulk environmental samples. Total plutonium activities were determined to be not significantly above atmospheric global fallout. However, the (238)Pu/(239+240)Pu activity ratios attributed to SRS are substantially different than fallout due to past (238)Pu production on the site. The (240)Pu/(239)Pu atom ratios are reasonably consistent from year to year and are lower than fallout indicating an admixture of weapons-grade material, while the (242)Pu/(239)Pu atom ratios are higher than fallout values, again due to actinide production activities. Overall, the plutonium signatures obtained in this study reflect a distinctive mixture of weapons-grade, heat source, and higher burn-up plutonium with fallout material. This study provides a unique opportunity for developing and demonstrating a blue print for long-term low-level monitoring of trace plutonium in the environment.

  16. In-service Inspection of Radioactive Waste Tanks at the Savannah River Site – 15410

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, Bruce [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maryak, Matthew [Savannah River Remediation, LLC., Aiken, SC (United States); Baxter, Lindsay [Univ. of Notre Dame, IN (United States); Harris, Stephen [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Elder, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-12

    Liquid radioactive wastes from the Savannah River Site (SRS) separation process are stored in large underground carbon steel tanks. The high level wastes are processed in several of the tanks and then transferred by piping to other site facilities for further processing before they are stabilized in a vitrified or grout waste form. Based on waste removal and processing schedules, many of the tanks will be required to be in service for times exceeding the initial intended life. Until the waste is removed from storage, transferred, and processed, the materials and structures of the tanks must maintain a confinement function by providing a barrier to the environment and by maintaining acceptable structural stability during design basis events, which include loadings from both normal service and abnormal (e.g., earthquake) conditions. A structural integrity program is in place to maintain the structural and leak integrity functions of these waste tanks throughout their intended service life. In-service inspection (ISI) is an essential element of a comprehensive structural integrity program for the waste tanks at the Savannah River Site (SRS). The ISI program was developed to determine the degree of degradation the waste tanks have experienced due to service conditions. As a result of the inspections, an assessment can be made of the effectiveness of corrosion controls for the waste chemistry, which precludes accelerated localized and general corrosion of the waste tanks. Ultrasonic inspections (UT) are performed to detect and quantify the degree of general wall thinning, pitting and cracking as a measure of tank degradation. The results from these inspections through 2013, for the 27 Type III/IIIA tanks, indicate no reportable in-service corrosion degradation in the primary tank (i.e., general, pitting, or cracking). The average wall thickness for all tanks remains above the manufactured nominal thickness minus 0.25 millimeter and the largest pit identified is

  17. Richard B. Russell Dam and Lake, Savannah River, Georgia and South Carolina Final Foundation Report, Concrete Dam, Embankments and Powerhouse. Volume 1. Text and Plates

    Science.gov (United States)

    1989-10-03

    OF NEGOTIATIONS J EARTH EFINK0TS - BORING LOGS (POST-EBANMENT J-i GROUTING EFFICIENCY ANALYSIS) KP K-I xii RICHARD B. RUSSELL PDJECT SAVANNAH RIVER...umnta. Tablas 4, 5, end 6 show the results of croe-ols u-hoe.an laboraory soni velocity meamreammnts. The 44 cross-hole ameasmnts ranged from 12.600 to

  18. United States Department of Agriculture Forest Service 1996 annual report wetlands research related to the Pen Branch restoration effort on the Savannah River site

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.A. [Westinghouse Savannah River Company, Aiken, SC (United States); Kolka, R.K. [USDA Forest Service, Charleston, SC (United States); Trettin, C.C. [USDA Forest Service, Charleston, SC (United States)

    1997-01-01

    This report documents the role of the USDA Forest Service and their collaborators (SRTC, SREL, and several universities) in wetlands monitoring and research on the Savannah River Site. This report describes the rationales, methods, and results (when available) of these studies and summarizes and integrates the available information through 1996.

  19. RECOMMENDED TRITIUM OXIDE DEPOSITION VELOCITY FOR USE IN SAVANNAH RIVER SITE SAFETY ANALYSES

    Energy Technology Data Exchange (ETDEWEB)

    Lee, P.; Murphy, C.; Viner, B.; Hunter, C.; Jannik, T.

    2012-04-03

    The Defense Nuclear Facilities Safety Board (DNFSB) has recently questioned the appropriate value for tritium deposition velocity used in the MELCOR Accident Consequence Code System Ver. 2 (Chanin and Young 1998) code when estimating bounding dose (95th percentile) for safety analysis (DNFSB 2011). The purpose of this paper is to provide appropriate, defensible values of the tritium deposition velocity for use in Savannah River Site (SRS) safety analyses. To accomplish this, consideration must be given to the re-emission of tritium after deposition. Approximately 85% of the surface area of the SRS is forested. The majority of the forests are pine plantations, 68%. The remaining forest area is 6% mixed pine and hardwood and 26% swamp hardwood. Most of the path from potential release points to the site boundary is through forested land. A search of published studies indicate daylight, tritiated water (HTO) vapor deposition velocities in forest vegetation can range from 0.07 to 2.8 cm/s. Analysis of the results of studies done on an SRS pine plantation and climatological data from the SRS meteorological network indicate that the average deposition velocity during daylight periods is around 0.42 cm/s. The minimum deposition velocity was determined to be about 0.1 cm/s, which is the recommended bounding value. Deposition velocity and residence time (half-life) of HTO in vegetation are related by the leaf area and leaf water volume in the forest. For the characteristics of the pine plantation at SRS the residence time corresponding to the average, daylight deposition velocity is 0.4 hours. The residence time corresponding to the night-time deposition velocity of 0.1 cm/s is around 2 hours. A simple dispersion model which accounts for deposition and re-emission of HTO vapor was used to evaluate the impact on exposure to the maximally exposed offsite individual (MOI) at the SRS boundary (Viner 2012). Under conditions that produce the bounding, 95th percentile MOI exposure

  20. REMOVING SLUDGE HEELS FROM SAVANNAH RIVER SITE WASTE TANKS BY OXALIC ACID DISSOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M; David Herman, D; Fernando Fondeur, F; John Pareizs, J; Michael Hay, M; Bruce Wiersma, B; Kim Crapse, K; Thomas Peters, T; Samuel Fink, S; Donald Thaxton, D

    2009-03-01

    The Savannah River Site (SRS) will remove sludge as part of waste tank closure operations. Typically the bulk sludge is removed by mixing it with supernate to produce a slurry, and transporting the slurry to a downstream tank for processing. Experience shows that a residual heel may remain in the tank that cannot be removed by this conventional technique. In the past, SRS used oxalic acid solutions to disperse or dissolve the sludge heel to complete the waste removal. To better understand the actual conditions of oxalic acid cleaning of waste from carbon steel tanks, the authors developed and conducted an experimental program to determine its effectiveness in dissolving sludge, the hydrogen generation rate, the generation rate of other gases, the carbon steel corrosion rate, the impact of mixing on chemical cleaning, the impact of temperature, and the types of precipitates formed during the neutralization process. The test samples included actual SRS sludge and simulated SRS sludge. The authors performed the simulated waste tests at 25, 50, and 75 C by adding 8 wt % oxalic acid to the sludge over seven days. They conducted the actual waste tests at 50 and 75 C by adding 8 wt % oxalic acid to the sludge as a single batch. Following the testing, SRS conducted chemical cleaning with oxalic acid in two waste tanks. In Tank 5F, the oxalic acid (8 wt %) addition occurred over seven days, followed by inhibited water to ensure the tank contained enough liquid to operate the mixer pumps. The tank temperature during oxalic acid addition and dissolution was approximately 45 C. The authors analyzed samples from the chemical cleaning process and compared it with test data. The conclusions from the work are: (1) Oxalic acid addition proved effective in dissolving sludge heels in the simulant demonstration, the actual waste demonstration, and in SRS Tank 5F. (2) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 100% of the iron, and {approx} 40% of the manganese

  1. SAVANNAH RIVER SITE TANK CLEANING: CORROSION RATE FOR ONE VERSUS EIGHT PERCENT OXALIC ACID SOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Subramanian, K.

    2011-01-20

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed

  2. Utilization of Savannah Harbor river sediment as the primary raw material in production of fired brick.

    Science.gov (United States)

    Mezencevova, Andrea; Yeboah, Nortey N; Burns, Susan E; Kahn, Lawrence F; Kurtis, Kimberly E

    2012-12-30

    A laboratory-scale study was conducted to assess the feasibility of the production of fired bricks from sediments dredged from the Savannah Harbor (Savannah, GA, USA). The dredged sediment was used as the sole raw material, or as a 50% replacement for natural brick-making clay. Sediment bricks were prepared using the stiff mud extrusion process from raw mixes consisted of 100% dredged sediment, or 50% dredged sediment and 50% brick clay. The bricks were fired at temperatures between 900 and 1000 °C. Physical and mechanical properties of the dredged sediment brick were found to generally comply with ASTM criteria for building brick. Water absorption of the dredged sediment bricks was in compliance with the criteria for brick graded for severe (SW) or moderate (MW) weathering. Compressive strength of 100% dredged sediment bricks ranged from 8.3 to 11.7 MPa; the bricks sintered at 1000 °C met the requirements for negligible weathering (NW) building brick. Mixing the dredged sediment with natural clay resulted in an increase of the compressive strength. The compressive strength of the sediment-clay bricks fired at 1000 °C was 29.4 MPa, thus meeting the ASTM requirements for the SW grade building brick. Results of this study demonstrate that production of fired bricks is a promising and achievable productive reuse alternative for Savannah Harbor dredged sediments.

  3. Aiken for armageddon: The Savannah River Site and Aiken, SC, 1950-1955. Master`s thesis

    Energy Technology Data Exchange (ETDEWEB)

    Turner, J.S.

    1998-01-30

    Constructed between November 1950 and March 1955, the Savannah River Site (SRS) nuclear production facility was a product of the Cold War and its accompanying arms race. The first Soviet atomic detonation in 1949 shook the foundations of American Cold War diplomacy. Although the diplomatic situation with the Soviets had never been amicable since the end of World War 2, the atomic bomb had provided a psychological edge for American policy makers. Worried about the military balance of power in the aftermath of the unanticipated Soviet test, President Harry S. Truman authorized research for construction of a hydrogen or fusion weapon. The program required a new nuclear weapons facility to produce the hydrogen isotope tritium in sufficient quantities to create a large stockpile of fusion weapons.

  4. STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138

    Energy Technology Data Exchange (ETDEWEB)

    Burket, P

    2009-02-24

    This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

  5. DEVELOPMENT OF AN IMPROVED SODIUM TITANATE FOR THE PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D

    2007-11-15

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90 and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction, for {sup 137}Cs removal. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239 and Pu-240. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  6. DEVELOPMENT OF AN IMPROVED SODIUM TITANATE FOR THE PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs D. T.; Poirier, M. R.; Barnes, M. J.; Stallings, M. E.; Nyman, M. D.

    2005-11-22

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 137}Cs, {sup 90}Sr and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include caustic side solvent extraction, for {sup 137}Cs removal, and sorption of {sup 90}Sr and alpha-emitting radionuclides onto monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu and {sup 240}Pu. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for {sup 90}Sr and alpha-emitting radionuclides compared to the baseline MST material.

  7. DEVELOPMENT OF AN IMPROVED SODIUM TITANATE FOR THE PRETREATMENT OF NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D

    2008-01-22

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90 and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction, for Cs-137 removal. The MST and separated Cs-137 will be encapsulated into a borosilicate glass waste form for eventual entombment at the federal repository. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239 and Pu-240. This paper describes recent results to produce an improved sodium titanate material that exhibits increased removal kinetics and capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  8. Technical summary of groundwater quality protection program at Savannah River Plant. Volume 1. Site geohydrology, and solid and hazardous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, E.J.; Gordon, D.E. (eds.)

    1983-12-01

    The program for protecting the quality of groundwater underlying the Savannah River Plant (SRP) is described in this technical summary report. The report is divided into two volumes. Volume I contains a discussion of the general site geohydrology and of both active and inactive sites used for disposal of solid and hazardous wastes. Volume II includes a discussion of radioactive waste disposal. Most information contained in these two volumes is current as of December 1983. The groundwater quality protection program has several elements which, taken collectively, are designed to achieve three major goals. These goals are to evaluate the impact on groundwater quality as a result of SRP operations, to restore or protect groundwater quality by taking corrective action as necessary, and to ensure disposal of waste materials in accordance with regulatory guidelines.

  9. Vegetation establishment success in restored carolina bay depressions on the Savannah River Site, South Carolina - phase one.

    Energy Technology Data Exchange (ETDEWEB)

    Sharitz, Rebecca, A.; Mulhouse, John, M.

    2004-05-01

    Successful wetlands restoration must re-establish or enhance three parameters: wetland hydrology, hydric soils, and hydrophytic vegetation (Mitsch and Gosselink 2000). On the Savannah River Site, South Carolina, restoration of small Carolina bay depression-wetlands was initiated in FY 2001 to provide wetland acreage for mitigation banking (US DOE 1997). Sixteen small depressions that had historically been drained for agricultural purposes were selected for restoration, and an additional four were initially chosen to serve as non-restored controls. Restoration treatments included plugging the existing ditches to increase water volume retention and wetland hydroperiod and clear-cutting removal of woody vegetation in the interiors. Planned endpoints of the restoration were herbaceous meadow and forested savanna bay interiors, and pine savanna and pine/hardwood forested bay margins (Barton and Singer 2001). To promote forested savanna interiors, saplings of bald cypress and swamp tupelo were planted following removal of the woody species.

  10. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

  11. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program.

  12. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Husler, R.O. (Westinghouse Savannah River Co., Aiken, SC (United States)); Weir, T.J. (Pentek, Inc., Coraopolis, PA (United States))

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  13. Continuous tidal streamflow, water level, and specific conductance data for Union Creek and the Little Back, Middle, and Front Rivers, Savannah River Estuary, November 2008 to March 2009

    Science.gov (United States)

    Lanier, Timothy H.; Conrads, Paul A.

    2010-01-01

    In the Water Resource Development Act of 1999, the U.S. Congress authorized the deepening of the Savannah Harbor. Additional studies were then identified by the Georgia Ports Authority and other local and regional stakeholders to determine and fully describe the potential environmental effects of deepening the channel. One need that was identified was the validation of a three-dimensional hydrodynamic model developed to evaluate mitigation scenarios for a potential harbor deepening and the effects on the Savannah River estuary. The streamflow in the estuary is very complex due to reversing tidal flows, interconnections of streams and tidal creeks, and the daily flooding and draining of the marshes. The model was calibrated using very limited streamflow data and no continuous streamflow measurements. To better characterize the streamflow dynamics and mass transport of the estuary, two index-velocity sites were instrumented with continuous acoustic velocity, water level, and specific conductance sensors on the Little Back and Middle Rivers for the 5-month period of November 2008 through March 2009. During the same period, a third acoustic velocity meter was installed on the Front River just downstream from U.S. Geological Survey streamgaging station 02198920 (Savannah River at GA 25, at Port Wentworth, Georgia) where water level and specific conductance data were being collected. A fourth index-velocity site was instrumented with continuous acoustic velocity, water level, and specific conductance sensors on Union Creek for a 2-month period starting in November 2008. In addition to monitoring the tidal cycles, streamflow measurements were made at the four index-velocity sites to develop ratings to compute continuous discharge for each site. The maximum flood (incoming) and ebb (outgoing) tides measured on Little Back River were –4,570 and 7,990 cubic feet per second, respectively. On Middle River, the maximum flood and ebb tides measured were –9,630 and 13

  14. THE IMPACT OF OZONE ON THE LOWER FLAMMABLE LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Sherburne, Carol [Savannah River Site (SRS), Aiken, SC (United States). Savannah River Remediation, LLC; Osterberg, Paul [Fauske and Associates, LLC, Burr Ridge, IL (United States); Johnson, Tom [Fauske and Associates, LLC, Burr Ridge, IL (United States); Frawely, Thomas [Fauske and Associates, LLC, Burr Ridge, IL (United States)

    2013-01-23

    The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since information was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.

  15. Alkaline-Side Extraction of Cesium from Savannah River Tank Waste Using a Calixarene-Crown Ether Extractant

    Energy Technology Data Exchange (ETDEWEB)

    Bonnesen, P.V.; Delmau, L.H.; Haverlock, T.J.; Moyer, B.A.

    1998-12-01

    Results are presented supporting the viability of the alkaline-side CSEX process as a potential replacement for the In-Tank Precipitation process for removal of cesium from aqueous high-level waste (HLW) at the Savannah River Site (SRS). Under funding from the USDOE Efficient Separations and Crosscutting program, a flowsheet was suggested in early June of 1998, and in the following four months, this flowsheet underwent extensive testing, both in batch tests at ORNL and ANL and in two centrifugal-contactor tests at ANL. To carry out these tests, the initial ESP funding was augmented by direct funds from Westinghouse Savannah River Corporation. The flowsheet employed a solvent containing a calixarene-crown hybrid compound called BoBCalixC6 that was invented at ORNL and can now be obtained commercially for government use from IBC Advanced Technologies. This special extractant is so powerful and selective that it can be used at only 0.01 M, compensating for its expense, but a modifier is required for use in an aliphatic diluent, primarily to increase the cesium distribution ratio D{sub Cs} in extraction. The modifier selected is a relatively economical fluorinated alcohol called Cs3, invented at ORNL and so far available. only from ORNL. For the flowsheet, the modifier is used at 0.2 M in the branched aliphatic kerosene Isopar{reg_sign} L. Testing at ORNL and ANL involved simulants of the SRS HLW. After extraction of the Cs from the waste simulant, the solvent is scrubbed with 0.05 M HNO{sub 3} and stripped with a solution comprised of 0.0005 M HNO{sub 3} and 0.0001 M CsNO{sub 3}. The selection of these conditions is justified in this report, both on the basis of experimental data and underlying theory.

  16. A QUICK KEY TO THE SUBFAMILIES AND GENERA OF ANTS OF THE SAVANNAH RIVER SITE, AIKEN, SC

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D

    2006-10-04

    This taxonomic key was devised to support development of a Rapid Bioassessment Protocol using ants at the Savannah River Site. The emphasis is on ''rapid'' and, because the available keys contained a large number of genera not known to occur at the Savannah River Site, we found that the available keys were unwieldy. Because these keys contained more genera than we would likely encounter and because this larger number of genera required both more couplets in the key and often required examination of characters that are difficult to assess without higher magnifications (60X or higher) more time was required to process samples. In developing this set of keys I recognize that the character sets used may lead to some errors but I believe that the error rate will be small and, for the purpose of rapid bioassessment, this error rate will be acceptable provided that overall sample sizes are adequate. Oliver and Beattie (1996a, 1996b) found that for rapid assessment of biodiversity the same results were found when identifications were done to morphospecies by people with minimal expertise as when the same data sets were identified by subject matter experts. Basset et al. (2004) concluded that it was not as important to correctly identify all species as it was to be sure that the study included as many functional groups as possible. If your study requires high levels of accuracy, it is highly recommended that when you key out a specimen and have any doubts concerning the identification, you should refer to keys in Bolton (1994) or to the other keys used to develop this area specific taxonomic key.

  17. Laboratory And Lysimeter Experimentation And Transport Modeling Of Neptunium And Strontium In Savannah River Site Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I.; Powell, B. A.; Miller, Todd J.

    2012-09-24

    The Savannah River Site (SRS) conducts performance assessment (PA) calculations to determine the appropriate amount of low-level radiological waste that can be safely disposed on site. Parameters are included in these calculations that account for the interaction between the immobile solid phase and the mobile aqueous phase. These parameters are either the distribution coefficient (K{sub d} value) or the apparent solubility value (K{sub sp}). These parameters are readily found in the literature and are used throughout the DOE complex. One shortcoming of K{sub d} values is that they are only applicable to a given set of solid and aqueous phase conditions. Therefore, a given radionuclide may have several K{sub d} values as it moves between formations and comes into contact with different solids and different aqueous phases. It is expected that the K{sub d} construct will be appropriate to use for a majority of the PA and for a majority of the radionuclides. However, semi-mechanistic models would be more representative in isolated cases where the chemistry is especially transitory or the radionuclide chemistry is especially complex, bringing to bear multiple species of varying sorption tendencies to the sediment. Semi-mechanistic models explicitly accommodate the dependency of K{sub d} values, or other sorption parameters, on contaminant concentration, competing ion concentrations, pH-dependent surface charge on the adsorbent, and solute species distribution. Incorporating semi-mechanistic concepts into geochemical models is desirable to make the models more robust and technically defensible. Furthermore, these alternative models could be used to augment or validate a Kd?based DOE Order 435.1 Performance Assessment. The objectives of this study were to: 1) develop a quantitative thermodynamically-based model for neptunium sorption to SRS sediments, and 2) determine a sorption constant from an SRS 11-year lysimeter study. The modeling studies were conducted with

  18. Office of Inspector General inspection report on ``Inspection of an allegation regarding the voluntary separation program at the Savannah River Operations Office``

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    In April 1996, the Savannah River Operations Office received approval from DOE Headquarters to offer Westinghouse Savannah River Company (WSRC) and Bechtel Savannah River, Inc. (BSRI) employees early termination incentives to facilitate downsizing of the contractor workforce thereby minimizing involuntary separations. In 1996, 217 individuals at the Savannah River Site (SRS) accepted a Voluntary Separation Program (VSP) incentive. The Office of Inspector General (OIG) received an allegation that a former senior manager of the WSRC was provided an opportunity to terminate employment through a VSP. The complainant wrote that after separating from WSRC, and receiving a large bonus for doing so, the former senior manager returned to work at the Savannah River Site (SRS) without observing a required waiting period of one year. The inspection determined that the former senior manager terminated employment with WSRC under the VSP program. It was found that the former senior manager`s departure from WSRC was delayed for six months, until December 31, 1996, in order for a replacement to be relocated from Pittsburgh, Pennsylvania, to SRS and be familiarized with the position. The underlying principle of the VSP was to allow WSRC and BSRI employees to voluntarily leave the SRS workforce, and, if necessary, only be replaced by current SRS employees. The Office of Inspector General concluded that WSRC allowed the former senior manager to participate in the VSP, and then replaced the senior manager with an individual from Westinghouse`s headquarters in Pittsburgh. Consequently, WSRC did not meet the test of prudent business judgment required by its contract with DOE. It was recommended that both the former senior manager`s VSP bonus payment of $99,762, as well as $36,892 in travel and relocation costs expended to move the replacement from Pittsburgh to SRS, be recovered from WSRC. They also recommended that the Manager, Savannah River Operations Office, determine whether any

  19. Summary Report for the Environmental Protection Agency MERL/FRMAC/RAP Mission Alignment Exercise held at the Savannah River Site on June 9-13 2014

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shanks, Sonoya Toyoko [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fournier, Sean Donovan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Leonard, Elliott J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    From June 9th thru June 13th 2014, members of the Federal Radiological Monitoring and Assessment Center (FRMAC), the Environmental Protection Agency (EPA) and the Department of Energy Radiological Assistance Program (DOE RAP) Region-3 participated in a joint nuclear incident emergency response exercise at the Savannah River Site (SRS) near Aiken, South Carolina. The purpose of this exercise was to strengthen the interoperability relationship between the FRMAC, RAP, and the EPA Mobile Environmental Radiation Laboratory (MERL) stationed in Montgomery, Alabama. The exercise was designed to allowed members of the DOE RAP Region-3 team to collect soil, water, vegetation and air samples from SRS and submit them through an established FRMAC hotline. Once received and processed through the hotline, FRMAC delivered the samples to the EPA MERL for sample preparation and laboratory radiological analysis. Upon completion of laboratory analysis, data was reviewed and submitted back to FRMAC via an electronic data deliverable (EDD). As part of the exercise, an evaluation was conducted to identify gaps and potential improvements in each step of the processes. Additionally, noteworthy practices and potential future areas of interoperability between FRMAC and EPA were acknowledged. The exercise also provided a unique opportunity for FRMAC personnel to observe EPA sample receipt and sample preparation processes and to gain familiarity with the MERL laboratory instrumentation and radiation detection capabilities. The observations and lessons-learned from this exercise will be critical for developing a more efficient, integrated response for future interactions between the FRMAC and EPA assets.

  20. RADIONUCLIDE DATA PACKAGE FOR PERFORMANCE ASSESSMENT CALCULATIONS RELATED TO THE E-AREA LOW-LEVEL WASTE FACILITY AT THE SAVANNAH RIVER SITE.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J

    2007-03-20

    The Savannah River Site disposes of low-level radioactive waste within on-site engineered disposal facilities. The Savannah River Site must demonstrate that these disposals meet the requirements of DOE Order 435 . 1 through a process known as performance assessment (PA). The objective of this document is to provide the radionuclide -specific data needed for the PA calculations . This work is part of an on-going program to periodically review and update existing PA work as new data becomes available. Revision of the E -Area Low-Level Waste Facility PA is currently underway. The number of radionuclides selected to undergo detailed analysis in the PA is determined by a screening process. The basis of this process is described. Radionuclide-specific data for half-lives, decay modes, daughters, dose conversion factors and groundwater concentration limits are presented with source references and methodologies.

  1. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  2. Update to agency for toxic substances and disease registry 2012 report on assessment of biota exposure to mercury originating from Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhne, W. [Savannah River Site (SRS), Aiken, SC (United States)

    2015-08-10

    The purpose of this report is to 1) update previous Savannah River National Laboratory (SRNL) assessment reports (Kvartek et al. 1994 and Halverson et al. 2008) on the fate of mercury in the Savannah River Site (SRS) environment and 2) address comments and recommendations from the review of SRS by the Agency for Toxic Substances and Disease Registry (ATSDR) concerning the evaluation of exposures to contaminants in biota originating from the SRS. The ATSDR reviewed and evaluated data from SRS, South Carolina Department of Health & Environmental Control (SCDHEC) and the Georgia Department of Natural Resources (GDNR) concerning the non-radioactive contaminant mercury. This report will provide a response and update to conclusions and recommendations made by the ATSDR.

  3. Interpretation of Geological Correlation Borings 1, 2, 3 in the A/M Area of the Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, D.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Cumbest, R.J.; Aadland, R.K.; Syms, F.H.; Stephenson, D.E.; Sherrill, J.C.

    1997-06-01

    The Geophysical Correlation Boring (GCB) Program was organized to provide a comprehensive correlation capability between geological core and advanced borehole geophysical data, surface high resolution reflection seismic information and, when available, borehole geochemical and cone penetrometer data. This report provides results and initial geological interpretations of borings one, two, and three (GCB-1, GCB-2, GCB-3) located within the Upper Three Runs Watershed (A/M Area) of the Savannah River Site.

  4. Deerskins and Cotton. Ecological impacts of historical land use in the Central Savannah River Area of the Southeastern US before 1950.

    Energy Technology Data Exchange (ETDEWEB)

    D.L. White

    2004-01-01

    White, D.L. 2004. Deerskins and Cotton. Ecological impacts of historical land use in the Central Savannah River Area of the Southeastern US before 1950. Final Report. USDA Forest Service, Savannah River, Aiken, SC. 324 pp. Abstract: The history of land use for an area is the history of the way in which humans have manipulated or altered the environment. Most land use activities can be viewed as disturbance to ecosystems. Within a given climatic regime, the interaction of the disturbance regime with vegetation, soil, and landform factors largely determines the distribution and composition of plant and associated animal communities. For these reasons, a greater understanding of the ecological impacts of both human and non-human related disturbance is needed to improve our ability to make natural resource management decisions. This document outlines the land use history of the Savannah River Site and surrounding areas from about 1780 thru 1950, when the site was converted to a government facility for the purposes of national defense.

  5. A study of post-thermal recovery of the macroinvertebrate community of Four Mile Creek, June 1985--September 1987. [Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, D.; Starkel, W.; Specht, W.

    1989-11-01

    Four Mile Creek is one of several streams at the Savannah River Site which has received thermal effluents ({le}70{degrees}C water) from nuclear production operations. From 1955--mid-1985, Four Mile Creek received thermal effluent from C-Reactor as well as non-thermal discharges from F and H Separation Areas. Total discharges from all of these facilities was about ten times higher than the natural flow of the creek (Firth et al. 1986). All water being discharged into Four Mile Creek was originally pumped from the Savannah River. This study reports the results of the artificial substrate sampling of macroinvertebrate communities of Four Mile Creek from June 1985 through September 1987, when sampling was terminated. Macroinvertebrate taxa richness, densities, and biomass data from this study are compared to Four Mile data collected prior to the shutdown of C-Reactor (Kondratieff and Kondratieff 1985 and Firth et al. 1986), and to comparable macroinvertebrate data from other Savannah River Site streams. 29 refs., 11 figs., 4 tabs.

  6. Microhabitat use and seasonal movements of hatchery-reared and wild shortnose sturgeon in the Savannah River, South Carolina--Georgia

    Science.gov (United States)

    Trested, D.G.; Ware, K.M.; Bakal, R.; Isely, J.J.

    2011-01-01

    Radio and acoustic telemetry were used to monitor the seasonal movement of hatchery-reared and wild shortnose sturgeon (622-927 mm total length) in the Savannah River. Diploid, and sterile hatchery-reared shortnose sturgeon, and wild shortnose sturgeon showed apparent similar seasonal patterns of movement within the river. We were unable to detect any significant differences in the seasonal mean river location, minimum daily distance moved, absolute distance moved, displacement or mean territory size among treatments. Fish moved throughout the brackish and freshwater interface area of the Savannah River during the summer months. Coinciding with decreasing fall temperatures, fish of all treatment groups moved downriver into brackish areas of the upper estuary, residing in the Front, Middle, and Back Rivers, where they remained through winter. Upriver movements of some hatchery-reared and wild groups began in early February as river temperatures began to increase. Shortnose sturgeon from each group selected apparent similar thermal, salinity and water depth conditions throughout the year. Hatchery-reared fish may be useful as surrogates for wild fish in behavioural studies. Triploid or surgically-sterilized fish may be used in situ behavioural studies where genetic contamination is a concern. It may be possible to monitor habitats used by released hatchery-reared fish to locate or verify remnant populations of rare or endangered species in systems where they are thought to be extirpated.

  7. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2009-11-23

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of

  8. Routine dose estimates for the removal of soil from a basin to the burial ground at the Savannah River Site.

    Science.gov (United States)

    Simpkins, Ali A

    2004-02-01

    Worker dose estimates have been made for various exposure scenarios resulting from the relocation of soil from the H Area Retention Basin to the Old Radioactive Waste Burial Ground at the Savannah River Site. Estimates were performed by hand calculations and using RESRAD and MAXDOSE-SR. Doses were estimated for the following pathways: (1) shine and inhalation as a result of standing on contaminated soil at the H Area Retention Basin and the Old Radioactive Waste Burial Ground; (2) exposure to off-unit receptors due to soil disturbances from excavation type activities at the H Area Retention Basin and the Old Radioactive Waste Burial Ground; (3) exposure to off-unit receptors due to soil disturbances from dumping of soil from bucket and from roll-off pan; and (4) exposure to off-unit receptors from wind driven dust from contaminated area. The highest dose estimates (0.25 mSv h(-1)) resulted from the receptor standing on the H Area Retention Basin.

  9. Thermal and Physical Property Determinations for Ionsiv IE-911 Crystalline Silicotitanate and Savannah River Site Waste Simulant Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.; Steele, W.V.

    1999-08-01

    This document describes physical and thermophysical property determinations that were made in order to resolve questions associated with the decontamination of Savannah River Site (SRS) waste streams using ion exchange on crystalline silicotitanate (CST). The research will aid in the understanding of potential issues associated with cooling of feed streams within SRS waste treatment processes. Toward this end, the thermophysical properties of engineered CST, manufactured under the trade name, Ionsive{reg_sign} IE-911 by UOP, Mobile, AL, were determined. The heating profiles of CST samples from several manufacturers' production runs were observed using differential scanning calorimetric (DSC) measurements. DSC data were obtained over the region of 10 to 215 C to check for the possibility of a phase transition or any other enthalpic event in that temperature region. Finally, the heat capacity, thermal conductivity, density, viscosity, and salting-out point were determined for SRS waste simulants designated as Average, High NO{sub 3}{sup {minus}} and High OH{sup {minus}} simulants.

  10. Environmental assessment for the expansion and operation of the Central Shops Borrow Pit at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The Department of Energy (DOE) prepared this Environmental Assessment (EA) to assess the potential environmental impacts of the proposed expansion and operation of an existing borrow pit at the Savannah River Site (SRS), located near Aiken, South Carolina. A borrow pit is defined as an excavated area where material has been dug for use as fill at another location. The proposed action would entail the areal enlargement, continued operation, and eventual close-out of the established facility known as the Central Shops Borrow Pit. Operations at SRS supporting waste site closure and the construction and maintenance of site facilities and infrastructure require readily available suitable soil for use as fill material. With the recent depletion of the other existing on-site sources for such material, DOE proposes to expand the existing facility. The National Environmental Policy Act requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described herein, DOE will either publish a Finding of No Significant Impact or prepare an Environmental Impact Statement (EIS).

  11. Safety analysis, 200 Area, Savannah River Plant: Separations area operations. Receiving Basin for Offsite Fuel (Supplement 3)

    Energy Technology Data Exchange (ETDEWEB)

    Allen, P M

    1983-09-01

    Analysis of the Savannah River Plant RBOF and RRF included an evaluation of the reliability of process equipment and controls, administrative controls, and engineered safety features. The evaluation also identified potential scenarios and radiological consequences. Risks were calculated in terms of 50-year population dose commitment per year (man-rem/year) to the onsite and offsite population within an 80 Km radius of RBOF and RRF, and to an individual at the plant boundary. The total 50-year onsite and offsite population radiological risks of operating the RBOF and RRF were estimated to be 1.0 man-rem/year. These risks are significantly less than the population dose of 54,000 man/rem/yr for natural background radiation in a 50-mile radius. The 50-year maximum offsite individual risk from operating the facility was estimated to be 2.1 {times} 10{sup 5} rem/yr. These risks are significantly lower than 93 mrem/yr an individual is expected to receive from natural background radiation in this area. The analysis shows. that the RBOF and RRF can be operated without undue risk to onsite personnel or to the general public.

  12. RadBall{sup TM} Technology Testing in the Savannah River Site's Health Physics Instrument Calibration Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, Eduardo B; Foley, Trevor Q; Jannik, G Timothy; Harpring, Larry J; Gordon, John R; Blessing, Ronald; Coleman, J Rusty; Holmes, Christopher J; Oldham, Mark; Adamovics, John; Stanley, Steven J, E-mail: Eduardo.Farfan@srnl.doe.go

    2010-11-01

    The UK's National Nuclear Laboratory (NNL) has developed a radiation-mapping device that can locate and quantify radioactive hazards within contaminated areas of the nuclear industry. The device, known as RadBall{sup TM}, consists of a colander-like outer collimator that houses a radiation-sensitive polymer sphere. The collimator has over two hundred small holes; thus, specific areas of the polymer sphere are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner that produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation data provides information on the spatial distribution of sources in a given area forming a 3D characterization of the area of interest. The RadBall{sup TM} technology has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK and facilities of the Savannah River National Laboratory (SRNL). This paper summarizes the tests completed at SRNL Health Physics Instrument Calibration Laboratory (HPICL).

  13. Savannah River Site mixed waste Proposed Site Treatment Plan (PSTP). Volumes 1 and 2 and reference document: Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Helmich, E.; Noller, D.K.; Wierzbicki, K.S.; Bailey, L.L.

    1995-07-13

    The DOE is required by the Resource Conservation and Recovery Act to prepare site treatment plans describing the development of treatment capacities and technologies for treating mixed waste. This proposed plan contains Savannah River Site`s preferred options and schedules for constructing new facilities, and otherwise obtaining treatment for mixed wastes. The proposed plan consists of 2 volumes. Volume 1, Compliance Plan, identifies the capacity to be developed and the schedules as required. Volume 2, Background, provides a detailed discussion of the preferred options with technical basis, plus a description of the specific waste streams. Chapters are: Introduction; Methodology; Mixed low level waste streams; Mixed transuranic waste; High level waste; Future generation of mixed waste streams; Storage; Process for evaluation of disposal issues in support of the site treatment plans discussions; Treatment facilities and treatment technologies; Offsite waste streams for which SRS treatment is the Preferred Option (Naval reactor wastes); Summary information; and Acronyms and glossary. This revision does not contain the complete revised report, but only those pages that have been revised.

  14. Creating a fuels baseline and establishing fire frequency relationships to develop a landscape management strategy at the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Parresol, Bernard R; Shea, Dan; Ottmar, Roger

    2006-03-15

    USDA Forest Service Proceedings RMRS-P-41. pp 351-366. Abstract—The Savannah River Site is a Department of Energy Nuclear Defense Facility and a National Environmental Research Park located in the upper coastal plain of South Carolina. Prescribed burning is conducted on 15,000 to 20,000 ac annually. We modifi ed standard forest inventory methods to incorporate a complete assessment of fuel components on 622 plots, assessing coarse woody debris, ladder fuels, and the litter and duff layers. Because of deficiencies in south-wide data on litter-duff bulk densities, which are the fuels most often consumed in prescribed fires, we developed new bulk density relationships. Total surface fuel loading across the landscape ranged from 0.8 to 48.7 tons/ac. The variables basal area, stand age, and site index were important in accounting for variability in ladder fuel, coarse woody debris, and litter-duff for pine types. For a given pine stand condition, litter-duff loading decreased in direct proportion to the number of burns in the preceding thirty years. Ladder fuels for loblolly and longleaf increased in direct proportion to the years since the last prescribed burn. The pattern of fuel loading on the SRS reflects stand dynamics, stand management and fire management. It is suggested that the Forest Inventory and Analysis Program can easily modify sampling protocols to incorporate collection of fuels data.

  15. Microcrustaceans (Branchiopoda and Copepoda) of Wetland Ponds and Impoundments on the Savannah River Site, Aiken, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Adrienne E. DeBiase; Barbara E. Taylor

    2005-09-21

    The United States Department of Energy's Savannah River Site (SRS) in Aiken, Allendale, and Barnwell Counties, South Carolina, contains an abundance of freshwater wetlands and impoundments. Four large impoundments, as well as several small, abandoned farm and mill ponds, and about 400 Carolina bays and other small, isolated depression wetland ponds are located within the 893 km2 area of the SRS. Crustaceans of the orders Branchiopoda and Copepoda are nearly ubiquitous in these water bodies. Although small in size, these organisms are often very abundant. They consequently play an important trophic role in freshwater food webs supporting fish, larval salamanders, larval insects, and numerous other animals, aquatic and terrestrial. This report provides an introduction to the free-living microcrustaceans of lentic water bodies on the SRS and a comprehensive list of species known to occur there. Occurrence patterns are summarized from three extensive survey studies, supplemented with other published and unpublished records. In lieu of a key, we provide a guide to taxonomic resources and notes on undescribed species. Taxa covered include the orders Cladocera, Anostraca, Laevicaudata, and Spinicaudata of the Subclass Branchiopoda and the Superorders Calanoida and Cyclopoida of Subclass Copepoda. Microcrustaceans of the Superorder Harpacticoida of the Subclass Copepoda and Subclass Ostracoda are also often present in lentic water bodies. They are excluded from this report because they have not received much study at the species level on the SRS.

  16. Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site.

    Science.gov (United States)

    Dong, Wenming; Tokunaga, Tetsu K; Davis, James A; Wan, Jiamin

    2012-02-07

    The mobility of an acidic uranium waste plume in the F-Area of Savannah River Site is of great concern. In order to understand and predict uranium mobility, U(VI) adsorption experiments were performed as a function of pH using background F-Area aquifer sediments and reference goethite and kaolinite (major reactive phases of F-Area sediments), and a component-additivity (CA) based surface complexation model (SCM) was developed. Our experimental results indicate that the fine fractions (≤45 μm) in sediments control U(VI) adsorption due to their large surface area, although the quartz sands show a stronger adsorption ability per unit surface area than the fine fractions at pH 4.0. Our CA model combines an existing U(VI) SCM for goethite and a modified U(VI) SCM for kaolinite along with estimated relative surface area abundances of these component minerals. The modeling approach successfully predicts U(VI) adsorption behavior by the background F-Area sediments. The model suggests that exchange sites on kaolinite dominate U(VI) adsorption at pH 6.0.

  17. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Husler, R.O. [Westinghouse Savannah River Co., Aiken, SC (United States); Weir, T.J. [Pentek, Inc., Coraopolis, PA (United States)

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  18. Biological monitoring of Upper Three Runs Creek, Savannah River Site, Aiken County, South Carolina, March 1990--July 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    In anticipation of the fall 1988 start up of effluent discharges into Upper Three Runs Creek by the F/H Area Effluent Treatment Facility of the Savannah River Site, Aiken, SC, a two and one half year biological study was initiated in June 1987. Upper Three Runs Creek is an intensively studied fourth order stream known for its high species richness. Designed to assess the potential impact of F/H area effluent on the creek, the study included qualitative and quantitative macroinvertebrate stream surveys at five sites (see map), chronic toxicity testing of the effluent, water chemistry and bioaccumulation analysis. In a March 1990 study of the potential impact of F/H Area effluent on the macroinvertebrate communities of Upper Three Runs Creek was extended, with reductions in the number of sites to be sampled and in the frequency of water chemistry sampling. This report presents the results of macroinvertebrate stream surveys at three sites, chronic toxicity testing of the effluent and water chemistry analysis of the three stream sites and the effluent from March 1990 to July 1991.

  19. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-12-31

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 {times} 10{sup {minus}7} cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to ``self-heal`` if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  20. State of the art design: A closure system for the largest hazardous waste landfill at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.F.; Serrato, M.G.; McMullin, S.R.

    1992-01-01

    This paper discusses the cover system proposed for a 55-acre, hazardous waste closure of the sanitary landfill at the Savannah River Site, near Aiken, South Carolina. The proposed cover system has been designed to accommodate a significant amount of post-closure settlement while maintaining a permeability of 1 [times] 10[sup [minus]7] cm/s or less throughout its 30-year, regulatory lifetime. A composite cover consisting of a geomembrane (GM) underlain by a geosynthetic clay liner (GCL) was selected because of its extremely low permeability, ability to elongate without tearing, and capacity to self-heal'' if punctured. These characteristics will enable the cover system to accommodate differential settlement without cracking or tearing, this providing long-term protection with minimal maintenance. Also, to improve the ability of the cover system to span voids that may develop in the underlying waste, a geogrid has been included in the foundation layer. A gas vent layer has been included to allow for the safe collection and venting of landfill gases.

  1. DOWNSTREAM IMPACTS OF SLUDGE MASS REDUCTION VIA ALUMINUM DISSOLUTION ON DWPF PROCESSING OF SAVANNAH RIVER SITE HIGH LEVEL WASTE - 9382

    Energy Technology Data Exchange (ETDEWEB)

    Pareizs, J; Cj Bannochie, C; Michael Hay, M; Daniel McCabe, D

    2009-01-14

    The SRS sludge that was to become a major fraction of Sludge Batch 5 (SB5) for the Defense Waste Processing Facility (DWPF) contained a large fraction of H-Modified PUREX (HM) sludge, containing a large fraction of aluminum compounds that could adversely impact the processing and increase the vitrified waste volume. It is beneficial to reduce the non-radioactive fraction of the sludge to minimize the number of glass waste canisters that must be sent to a Federal Repository. Removal of aluminum compounds, such as boehmite and gibbsite, from sludge can be performed with the addition of NaOH solution and heating the sludge for several days. Preparation of SB5 involved adding sodium hydroxide directly to the waste tank and heating the contents to a moderate temperature through slurry pump operation to remove a fraction of this aluminum. The Savannah River National Laboratory (SRNL) was tasked with demonstrating this process on actual tank waste sludge in our Shielded Cells Facility. This paper evaluates some of the impacts of aluminum dissolution on sludge washing and DWPF processing by comparing sludge processing with and without aluminum dissolution. It was necessary to demonstrate these steps to ensure that the aluminum removal process would not adversely impact the chemical and physical properties of the sludge which could result in slower processing or process upsets in the DWPF.

  2. The Savannah River Site`s Groundwater Monitoring Program, First Quarter 1996, Volumes I and II

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, C.D. [Westinghouse Savannah River Company, AIKEN, SC (United States)

    1996-10-22

    This report summarizes the Savanna River Site (SRS) Groundwater Monitoring Program conducted by EPD/EMS during the first quarter 1996. It includes the analytical data, field data, data review, quality control, and other documentation for this program. It also provides a record of the program`s activities and serves as an official record of the analytical results.

  3. Achieving Accelerated Cleanup of Cesium Contaminated Stream at the Savannah River Site; Collaboration between Stakeholders, Regulators, and the Federal Government - 13182

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, Chris; Flora, Mary; Socha, Ron; Burch, Joseph [Savannah River Nuclear Solutions, LLC, Bldg. 730-4B, Aiken, SC 29808 (United States); Freeman, Candice; Hennessey, Brian [United States Department of Energy, Bldg. 730-B, Aiken, SC 29808 (United States)

    2013-07-01

    The Savannah River Site (SRS) is a 310-square-mile United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina that contains six primary stream/river systems. The Lower Three Runs Stream (LTR) is one of the primary streams within the site that is located in the southeast portion of the Savannah River Site and is a large black water stream system that originates in the northeast portion of SRS and follows a southerly direction before it enters the Savannah River. During reactor operations, secondary reactor cooling water, storm sewer discharges, and miscellaneous wastewater was discharged and contaminated a 36 kilometer stretch of Lower Three Runs Stream that narrows providing a limited buffer of US DOE property along the stream and flood plain. Based on data collected during 2009 and 2010 under Recover Act Funding, the stream was determined to be contaminated with cesium-137 at levels that exceeded acceptable risk based limits. As efficiencies were realized within the SRS Recovery Act Program, funding was made available to design, permit and execute remediation of the LTR. This accelerated Project allowed for the remediation of 36 kilometers of LTR in only nine months from inception to completion, contributing significantly to the Foot Print Reduction of SRS. The scope consisted of excavation and disposal of more than 2064 cubic meters of contaminated soil, and installing 11 kilometers of fence and 2,000 signs at 1000 locations. Confirmatory sampling and analysis, and radiological surveying were performed demonstrating that soil concentrations met the cleanup goals. The project completed with a very good safety record considering the harsh conditions including, excessive rain in the early stages of the project, high summer temperatures, swampy terrain, snakes, wild boar, insects and dense vegetation. The regulatory approval process was compressed by over 75% and required significant efforts from SRS

  4. Early avian research at the Savannah River Site, South Carolina: historical highlights and possibilities for the future

    Science.gov (United States)

    Meyers, J.M.; Odum, E.P.; Dunning, John B.=; Kilgo, John C.

    2000-01-01

    Avian biology and collection of baseline population data was a major part of the first decade (1951-1961) of field research at the Savannah River Site (SRS). Baseline inventories involving organisms and land-use types were part of the mission in the early contracts between the Atomic Energy Commission (now the Department of Energy) and the University of Georgia prior to the establishment of the Savannah River Ecology Laboratory (SREL) as a National Environmental Research Park Laboratory. About 27% of the SREL publications during this first decade dealt with birds. Since that time, research on the SRS landscape has expanded and broadened with less than 10% of the publications dealing with birds. SRS changed also from an agriculturally dominated area with ca. 40% open areas (fields, crops, pastures) to a timber-managed area with ca. 80% forests, 12% open areas, and 2% open water impoundments. Baseline breeding bird populations of the SRS in the 1950s were typical for the region with avian species richness and density increasing with the age and succession of the vegetation (0-26 species and densities of 0-741 pairs/km2 for the habitats surveyed). During the first decade at the SRS, the resident game bird population of Northern Bobwhites (Colinus virginianus) increased and the Mourning Dove (Zenaida rnacroura) population, a migratory upland game bird, remained stable. Current avian research efforts, as well as new opportunities to reexamine the breeding bird populations and the landscape of SRS, will provide a better understanding of the potential causes of declines of neotropical migratory birds, declines of resident and migratory game birds, and how habitat influences invasions and extinctions of breeding birds in the region. Emphasis for future research and monitoring should be on neotropical migratory bird populations in decline (Yellow-billed Cuckoo, Coccyzus americanus; Eastern Wood-Pewee, Contopus virens; Wood Thrush, Hylocichla mustelina; Prairie Warbler

  5. Assessment of susceptibility of Type 304 stainless steel to intergranular stress corrosion cracking in simulated Savannah River Reactor environments

    Energy Technology Data Exchange (ETDEWEB)

    Ondrejcin, R.S.; Caskey, C.R. Jr.

    1989-12-01

    Intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel rate tests (CERT) of specimens machined was evaluated by constant extension from Savannah River Plant (SRP) decontaminated process water piping. Results from 12 preliminary CERT tests verified that IGSCC occurred over a wide range of simulated SRP envirorments. 73 specimens were tested in two statistical experimental designs of the central composite class. In one design, testing was done in environments containing hydrogen peroxide; in the other design, hydrogen peroxide was omitted but oxygen was added to the environment. Prediction equations relating IGSCC to temperature and environmental variables were formulated. Temperature was the most important independent variable. IGSCC was severe at 100 to 120C and a threshold temperature between 40C and 55C was identified below which IGSCC did not occur. In environments containing hydrogen peroxide, as in SRP operation, a reduction in chloride concentration from 30 to 2 ppB also significantly reduced IGSCC. Reduction in sulfate concentration from 50 to 7 ppB was effective in reducing IGSCC provided the chloride concentration was 30 ppB or less and temperature was 95C or higher. Presence of hydrogen peroxide in the environment increased IGSCC except when chloride concentration was 11 ppB or less. Actual concentrations of hydrogen peroxide, oxygen and carbon dioxide did not affect IGSCC. Large positive ECP values (+450 to +750 mV Standard Hydrogen Electrode (SHE)) in simulated SRP environments containing hydrogen peroxide and were good agreement with ECP measurements made in SRP reactors, indicating that the simulated environments are representative of SRP reactor environments. Overall CERT results suggest that the most effective method to reduce IGSCC is to reduce chloride and sulfate concentrations.

  6. DESORPTION BEHAVIOR OF TRICHLOROETHENE AND TETRACHLOROETHENE IN U.S. DEPARTMENT OF ENERGY SAVANNAH RIVER SITE UNCONFINED AQUIFER SEDIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K; Robert G. Riley, R; James E. Szecsody, J; A. V. Mitroshkov, A; C. F. Brown, C; Brian02 Looney, B

    2007-01-10

    Sorption is governed by the physico-chemical processes that partition solutes between the aqueous and solid phases in aquifers. For environmental systems, a linear equilibrium relationship between the amount of contaminant in the alternative phases is often assumed. In this traditional approach, the distribution coefficient, or K{sub d}, is a ratio of contaminant associated with the solid phase to the contaminant in the water phase. Recent scientific literature has documented time-dependant behaviors in which more contaminant mass is held in the solid phase than predicted by the standard model. Depending on the specific conceptualization, this has been referred to as nonlinear sorption, time-variable sorption, or ''irreversible sorption''. The potential impact of time-variable sorption may be beneficial or detrimental depending on the specific conditions and remediation goals. Researchers at the Pacific Northwest National Laboratory (PNNL) have been studying this process to evaluate how various soil types will affect this process for sites contaminated with chlorinated solvents. The results described in this report evaluate sorption-desorption of trichloroethylene (TCE) and tetrachloroethylene (PCE) in Savannah River Site (SRS) soils. The results of this study will be combined with ongoing PNNL research to provide a more comprehensive look at this process and its impact on contaminant plume stability and sustainability. Importantly, while the results of the study documented differences in sorption properties between two tested SRS soils, the data indicated that ''irreversible sorption'' is not influencing the sorption-desorption behaviors of TCE and PCE for these soils.

  7. PROJECT STRATEGY FOR THE REMEDIATION AND DISPOSITION OF LEGACY TRANSURANIC WASTE AT THE SAVANNAH RIVER SITE, South Carolina, USA

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M.

    2010-12-17

    This paper discusses the Savannah River Site Accelerated Transuranic (TRU) Waste Project that was initiated in April of 2009 to accelerate the disposition of remaining legacy transuranic waste at the site. An overview of the project execution strategy that was implemented is discussed along with the lessons learned, challenges and improvements to date associated with waste characterization, facility modifications, startup planning, and remediation activities. The legacy waste was generated from approximately 1970 through 1990 and originated both on site as well as at multiple US Department of Energy sites. Approximately two thirds of the waste was previously dispositioned from 2006 to 2008, with the remaining one third being the more hazardous waste due to its activity (curie content) and the plutonium isotope Pu-238 quantities in the waste. The project strategy is a phased approach beginning with the lower activity waste in existing facilities while upgrades are made to support remediation of the higher activity waste. Five waste remediation process lines will be used to support the full remediation efforts which involve receipt of the legacy waste container, removal of prohibited items, venting of containers, and resizing of contents to fit into current approved waste shipping containers. Modifications have been minimized to the extent possible to meet the accelerated goals and involve limited upgrades to address life safety requirements, radiological containment needs, and handling equipment for the larger waste containers. Upgrades are also in progress for implementation of the TRUPACT III for the shipment of Standard Large Boxes to the Waste Isolation Pilot Plant, the US TRU waste repository. The use of this larger shipping container is necessary for approximately 20% of the waste by volume due to limited size reduction capability. To date, approximately 25% of the waste has been dispositioned, and several improvements have been made to the overall processing

  8. Environmental assessment for the natural fluctuation of water level in Par Pond and reduced water flow in Steel Creek below L-Lake at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The Savannah River Operations Office Strategic Plan directs Savannah River Site (SRS) to find ways to reduce operating costs, and to determine what site infrastructure must be maintained and what infrastructure is surplus. Because of the mission change, L-Lake, Par Pond, and the river water system are no longer needed to support current missions and therefore provide an opportunity for operating cost reduction. If SRS determines that L-Lake, Par Pond, and the river water system are no longer needed to support future missions and are considered surplus, appropriate NEPA documentation will be prepared. The purpose of the proposed action in this Environmental Assessment is to begin an examination of the need for the Site`s river water system by (1) developing data needed to evaluate the potential environmental impacts of further reducing or eliminating the flow demands from the Site`s river water system and; (2) evaluating the potential of reducing operating costs by allowing the water level in Par Pond to fluctuate naturally through reduced pumping. This action also includes reducing the current flow rates from L-Lake to Steel Creek to natural stream flows while maintaining full pool. The recently approved Par Pond CERCLA Interim Action Proposed Plan (IAPP) committed to evaluate in a NEPA document the environmental consequences of this proposed action. This document evaluated the remediation of human health and ecological risks associated with the three year drawdown of Par Pond. Should any of the parameters sampled in the reservoir and streams (e.g., water quality, biota, etc.) exceed established threshold levels during the implementation of the proposed action, water would again be pumped into the reservoir to minimize any impacts by bringing the water level back to an appropriate level about 58.2 m (195 ft).

  9. Effects of thermal discharges on the distribution and abundance of adult fishes in the Savannah River and selected tributaries: Annual report, November 1984-August 1985

    Energy Technology Data Exchange (ETDEWEB)

    Paller, M.H.; Saul, B.M.

    1986-01-01

    A study of the juvenile and adult fish community in streams draining the SRP and in the Savannah River in the area of the SRP was conducted between September 1984 and September 1985. The major objectives were to examine the abundance and distribution of fishes near the Savannah River Plant in relation to thermal discharges into the river, creeks, and floodplain swamps and to determine the rate of impingement of adult and juvenile fishes on the intake screens at the SRP pumphouses. The most abundant fishes (excluding minnows) taken by electrofishing were the redbreast sunfish (41.6%), spotted sucker (8.8%), spotted sunfish (8.2%), largemouth bass (5.7%), bluegill (5.6%), and American eel (5.4%). The most abundant fishes taken by hoop netting were the flat bullhead (38.0%), channel catfish (11.9%), bluegill (9.4%), white catfish (7.9%), black crappie (6.5%), and redbreast sunfish (5.5%). Dominant species in the intake canals were the bluegill, redbreast sunfish, and black crappie. Dominant species in the nonthermal river were the redbreast sunfish, spotted sunfish, spotted sucker, largemouth bass, channel catfish, white catfish, and flat bullhead. Dominant species in the nonthermal creeks were fairly similar to river species except that the catfishes were not as well represented. The thermal river and creek habitats differed from the nonthermal habitats in having higher percentages (although often lower numbers) of channel catfish, white catfish, largemouth bass, and coastal shiner and a lower percentage of flat bullhead.

  10. Land and Water Use Characteristics and Human Health Input Parameters for use in Environmental Dosimetry and Risk Assessments at the Savannah River Site. 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G. Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hartman, Larry [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Stagich, Brooke [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-26

    Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) regulatory guides. Within the regulatory guides, default values are provided for many of the dose model parameters, but the use of applicant site-specific values is encouraged. Detailed surveys of land-use and water-use parameters were conducted in 1991 and 2010. They are being updated in this report. These parameters include local characteristics of meat, milk and vegetable production; river recreational activities; and meat, milk and vegetable consumption rates, as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors (to be used in human health exposure calculations at SRS) are documented. The intent of this report is to establish a standardized source for these parameters that is up to date with existing data, and that is maintained via review of future-issued national references (to evaluate the need for changes as new information is released). These reviews will continue to be added to this document by revision.

  11. Independent University Study to Assess the Performance of a Humate Amendment for Copper Detoxification at the H-12 Outfall at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Harmon, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-06

    The overarching objective of this study was to evaluate the effectiveness of the copper detoxification process that is in place at the Savannah River Site H-12 Outfall. The testing was performed in two phases; Phase 1 assessed the safety and potential for intrinsic toxicity of the humate amendment being used at the H-12 Outfall, Borregro HA-1, as well as an alternative amendment sodium humic acid. The second phase assessed the effectiveness of Borregro HA-1 in mitigating and reducing toxic effects of copper.

  12. Cancer and birth defects surveillance system for communities around the Savannah River Site. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J.B.

    1993-05-01

    This technical report presents the age-adjusted total, and race and sex specific geographic patterns of cancer mortality for South Carolina (SC) counties utilizing the 1953--1987 average annual age-adjusted mortality rates (AAMRs). The mortality information was obtained from the State Cancer Control Map and Data Program produced by the National Cancer Institute , Centers for Disease Control and the American Cancer Society. The AAMRs for selected primary sites are classified as significantly different or not significantly different from the corresponding United States and SC mortality rates. Categories for classification of the rates are determined using 95% confidence intervals. Geographic patterns of significantly high county AAMRs are identified and discussed. Individual county rates are not emphasized. The terminology, mortality rates used throughout this report pertains to the 1953--1987 AAMRS.

  13. Cancer and birth defects surveillance system for communities around the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J.B.

    1993-05-01

    This technical report presents the age-adjusted total, and race and sex specific geographic patterns of cancer mortality for South Carolina (SC) counties utilizing the 1953--1987 average annual age-adjusted mortality rates (AAMRs). The mortality information was obtained from the State Cancer Control Map and Data Program produced by the National Cancer Institute , Centers for Disease Control and the American Cancer Society. The AAMRs for selected primary sites are classified as significantly different or not significantly different from the corresponding United States and SC mortality rates. Categories for classification of the rates are determined using 95% confidence intervals. Geographic patterns of significantly high county AAMRs are identified and discussed. Individual county rates are not emphasized. The terminology, mortality rates used throughout this report pertains to the 1953--1987 AAMRS.

  14. Long-Term Assessment of Critical Radionuclides and Associated Environmental Media at the Savannah River Site - 13038

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, G.T.; Baker, R.A.; Lee, P.L. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States); Eddy, T.P.; Blount, G.C. [Savannah River Nuclear Solutions, Savannah River Site, Aiken, SC 29808 (United States); Whitney, G.R. [US Department of Energy, Savannah River Operations, Aiken, SC 29808 (United States)

    2013-07-01

    During the operational history of the Savannah River Site (SRS), many different radionuclides have been released from site facilities. However, only a relatively small number of the released radionuclides have been significant contributors to doses and risks to the public. At SRS dose and risk assessments indicate tritium oxide in air and surface water, and Cs-137 in fish and deer have been, and continue to be, the critical radionuclides and pathways. In this assessment, statistical analyses of the long-term trends of tritium oxide in atmospheric and surface water releases and Cs-137 concentrations in fish and deer are provided. Correlations also are provided with 1) operational changes and improvements, 2) geopolitical events (Cold War cessation), and 3) recent environmental remediation projects and decommissioning of excess facilities. For example, environmental remediation of the F- and H-Area Seepage Basins and the Solid Waste Disposal Facility have resulted in a measurable impact on the tritium oxide flux to the onsite Fourmile Branch stream. Airborne releases of tritium oxide have been greatly affected by operational improvements and the end of the Cold War in 1991. However, the effects of SRS environmental remediation activities and ongoing tritium operations on tritium concentrations in the environment are measurable and documented in this assessment. Controlled hunts of deer and feral hogs are conducted at SRS for approximately six weeks each year. Before any harvested animal is released to a hunter, SRS personnel perform a field analysis for Cs-137 concentrations to ensure the Hunter's dose does not exceed the SRS administrative game limit of 0.22 milli-sievert (22 mrem). However, most of the Cs-137 found in SRS onsite deer is not from site operations but is from nuclear weapons testing fallout from the 1950's and early 1960's. This legacy source term is trended in the SRS deer, and an assessment of the 'effective' half-life of Cs

  15. ASSESSMENT OF THE POTENTIAL FOR HYDROGEN GENERATION DURING DEACTIVATION AND DECOMMISSIONING OF REACTOR VESSELS AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.; Serrato, M.; Langton, C.

    2010-11-10

    The R- and P-reactor vessels at the Savannah River Site (SRS) are being prepared for deactivation and decommissioning (D&D). D&D activities will consist primarily of physically isolating and stabilizing the reactor vessel by filling it with a grout material. The reactor vessels contain aluminum alloy materials, which pose a concern in that aluminum corrodes rapidly when it comes in contact with the alkaline grout. A product of the corrosion reaction is hydrogen gas and therefore potential flammability issues were assessed. A model was developed to calculate the hydrogen generation rate as the reactor is being filled with the grout material. Three options existed for the type of grout material for D&D of the reactor vessels. The grout formulation options included ceramicrete (pH 6-8), a calcium aluminate sulfate (CAS) based cement (pH 10), or Portland cement grout (pH 12.4). Corrosion data for aluminum in concrete were utilized as input for the model. The calculations considered such factors as the surface area of the aluminum components, the open cross-sectional area of the reactor vessel, the rate at which the grout is added to the reactor vessel, and temperature. Given the hydrogen generation rate, the hydrogen concentration in the vapor space of the reactor vessel above the grout was calculated. This concentration was compared to the lower flammability limit for hydrogen. The assessment concluded that either ceramicrete or the CAS grout may be used to safely grout the P-reactor vessel. The risk of accumulation of a flammable mixture of hydrogen between the grout-air interface and the top of the reactor is very low. Portland cement grout, on the other hand, for the same range of process parameters did not provide a margin of safety against the accumulation of flammable gas in the reactor vessel during grouting operations in the P-reactor vessel. Therefore, it was recommended that this grout not be utilized for this task. On the other hand, the R-reactor vessel

  16. MOVING BEYOND PUMP AND TREAT TOWARD ENHANCED ATTENUATION AND COMBINED REMEDIES T-AREA, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B; Brian Riha, B; Warren Hyde, W; Jay Noonkester, J; Gerald Blount, G

    2008-04-03

    Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site, is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site has received approval to discontinue the active treatments and implement a full scale test of enhanced attenuation--an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council. Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination) and stimulates long-term attenuation capacity in the distal plume (via cometabolism). For T-Area, the enhanced attenuation development

  17. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.; Brigmon, R.

    2009-10-20

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant

  18. Bioremediation of Petroleum and Radiological Contaminated Soils at the Savannah River Site: Laboratory to Field Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    BRIGMON, ROBINL.

    2004-06-07

    In the process of Savannah River Site (SRS) operations limited amounts of waste are generated containing petroleum, and radiological contaminated soils. Currently, this combination of radiological and petroleum contaminated waste does not have an immediate disposal route and is being stored in low activity vaults. SRS developed and implemented a successful plan for clean up of the petroleum portion of the soils in situ using simple, inexpensive, bioreactor technology. Treatment in a bioreactor removes the petroleum contamination from the soil without spreading radiological contamination to the environment. This bioreactor uses the bioventing process and bioaugmentation or the addition of the select hydrocarbon degrading bacteria. Oxygen is usually the initial rate-limiting factor in the biodegradation of petroleum hydrocarbons. Using the bioventing process allowed control of the supply of nutrients and moisture based on petroleum contamination concentrations and soil type. The results of this work have proven to be a safe and cost-effective means of cleaning up low level radiological and petroleum-contaminated soil. Many of the other elements of the bioreactor design were developed or enhanced during the demonstration of a ''biopile'' to treat the soils beneath a Polish oil refinery's waste disposal lagoons. Aerobic microorganisms were isolated from the aged refinery's acidic sludge contaminated with polycyclic aromatic hydrocarbons (PAHs). Twelve hydrocarbon-degrading bacteria were isolated from the sludge. The predominant PAH degraders were tentatively identified as Achromobacter, Pseudomonas Burkholderia, and Sphingomonas spp. Several Ralstonia spp were also isolated that produce biosurfactants. Biosurfactants can enhance bioremediation by increasing the bioavailability of hydrophobic contaminants including hydrocarbons. The results indicated that the diversity of acid-tolerant PAH-degrading microorganisms in acidic oil wastes may

  19. Intensive archaeological survey of the F/H Surface Enhancement Project Area, Savannah River Site, Aiken and Barnwell Counties, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Sassaman, K.E.; Gillam, J.C.

    1993-08-01

    Twelve archaeological sites and four artifact occurrences were located by intensive survey of two tracts of land for the F and H Surface Enhancement Project on the Savannah River Site, Aiken and Barnwell Counties, South Carolina. Fieldwork in the 480-acre project area included surface reconnaissance of 3.6 linear kilometers of transects, 140 shovel tests along 4.2 linear kilometers of transects, an additional 162 shovel tests at sites and occurrences, and the excavation of six l {times} 2 m test units. All but one of the sites contained artifacts of the prehistoric era; the twelfth site consists of the remains of a twentieth-century home place. The historic site and six of the prehistoric sites consist of limited and/or disturbed contexts of archaeological deposits that have little research potential and are therefore considered ineligible for nomination to the National Register of Historic Places (NRHP). The remaining five sites have sufficient content and integrity to yield information important to ongoing investigations into upland site use. These sites (38AK146, 38AK535, 38AK539, 38AK541, and 38AK543) are thus deemed eligible for nomination to the NRHP and the Savannah River Archaeological Research Program (SRARP) recommends that they be preserved through avoidance or data recovery.

  20. Factors in exposure assessment: Ethnic and socio-economic differences in fishing and consumption of fish caught along the Savannah River

    Energy Technology Data Exchange (ETDEWEB)

    Burger, J. [Rutgers-the State Univ., Piscataway, NJ (United States). Nelson Biological Lab.]|[Environmental and Occupational health Sciences Inst., Piscataway, NJ (United States); Stephens, W.L.; Boring, C.S. [Environmental and Occupational health Sciences Inst., Piscataway, NJ (United States)]|[Savannah River Ecology Lab., Aiken, SC (United States); Kuklinski, M. [Environmental and Occupational health Sciences Inst., Piscataway, NJ (United States); Gibbons, J.W. [Savannah River Ecology Lab., Aiken, SC (United States); Gochfeld, M. [Environmental and Occupational Health Sciences Inst., Piscataway, NJ (United States)]|[Univ. of Medicine and Dentistry of New Jersey, Newark, NJ (United States). Robert Wood Johnson Medical School

    1999-06-01

    South Carolina has issued fish consumption advisories for the Savannah River based on mercury and radionuclide levels. The authors examine differences in fishing rates and fish consumption of 258 people interviewed while fishing along the Savannah River, as a function of age, education, ethnicity, employment history, and income, and test the assumption that the average consumption of fish is less than the recreational value of 19 kg/year assumed by risk assessors. Ethnicity and education contributed significantly to explaining variations in number of fish meals per month, serving size, and total quantity of fish consumed per year. Blacks fished more often, ate more fish meals of slightly larger serving sizes, and consumed more fish per year than did Whites. Although education and income were correlated, education contributed most significantly to behavior; people who did not graduate from high school ate fish more often, ate more fish per year, and ate more whole fish than people who graduated from high school. Computing consumption of fish for each person individually indicates that (1) people who eat fish more often also eat larger portions, (2) a substantial number of people consume more than the amount of fish used to compute risk to recreational fishermen, (3) some people consume more than the subsistence level default assumption (50 kg/year) and (4) Blacks consume more fish per year than Whites, putting them at greater risk from contaminants in fish. Overall, ethnicity, age, and education contributed to variations in fishing behavior and consumption.

  1. Savannah River bus project

    Energy Technology Data Exchange (ETDEWEB)

    Summers, W.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1998-08-01

    The H2Fuel Bus is the world`s first hybrid hydrogen electric transit bus. It was developed through a public/private partnership involving several leading technology and industrial organizations in the Southeast, with primary funding and program management provided by the Department of Energy. The primary goals of the project are to gain valuable information on the technical readiness and economic viability of hydrogen buses and to enhance the public awareness and acceptance of emerging hydrogen technologies. The bus has been operated by the transit agency in Augusta, Georgia since April, 1997. It employs a hybrid IC engine/battery/electric drive system, with onboard hydrogen fuel storage based on the use of metal hydrides. Initial operating results have demonstrated an overall energy efficiency (miles per Btu) of twice that of a similar diesel-fueled bus and an operating range twice that of an all-battery powered electric bus. Tailpipe emissions are negligible, with NOx less than 0.2 ppm. Permitting, liability and insurance issues were addressed on the basis of extensive risk assessment and safety analyses, with the inherent safety characteristic of metal hydride storage playing a major role in minimizing these concerns. Future plans for the bus include continued transit operation and use as a national testbed, with potential modifications to demonstrate other hydrogen technologies, including fuel cells.

  2. Savannah River Site

    Data.gov (United States)

    Federal Laboratory Consortium — Our Mission: SRS's mission is to safely and efficiently operate SRS to protect the public health and the environment while supporting the nation's nuclear deterrent...

  3. Virtual Savannah

    DEFF Research Database (Denmark)

    Eskildsen, Søren; Rodil, Kasper; Rehm, Matthias

    2012-01-01

    It is a daunting task to visualize square kilometers of African savannah and currently in zoos it is impossible to present true African ecology to visitors. Virtual Savannah is a dynamic virtual world that introduces school children to a 3D representation of the wildlife sanctuaries Serengeti...... and Masai Mara. The objective is to substitute supplementary textual information currently used in schools and provide the teacher with information about each pupil. The Virtual Savannah was tested in situ on 19 pupils age 10-11 with the purpose of logging all interaction with animals, GUI...... and the navigation. The test depicted how they managed to search the virtual world for answers in patterns related to restrictions in the system and using graphical points of interest as reference points. Collecting information about the complete interaction provides teachers with a tool to assess the individual...

  4. Dissolution of Simulated and Radioactive Savannah River Site High-Level Waste Sludges with Oxalic Acid & Citric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    STALLINGS, MARY

    2004-07-08

    This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalic acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated

  5. TREATABILITY STUDY FOR EDIBLE OIL DEPLOYMENT FOR ENHANCED CVOC ATTENUATION FOR T-AREA, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Riha, B.; Looney, B.; Noonkester, J.; Hyde, W.; Walker, R.

    2012-05-15

    Groundwater beneath T-Area, a former laboratory and semiworks operation at the Department of Energy (DOE) Savannah River Site (SRS), is contaminated by chlorinated solvents (cVOCs). Since the contamination was detected in the 1980s, the cVOCs at T-Area have been treated by a combination of soil vapor extraction and groundwater pump and treat. The site received approval to temporarily discontinue the active groundwater treatment and implement a treatability study of enhanced attenuation - an engineering and regulatory strategy that has recently been developed by DOE and the Interstate Technology and Regulatory Council (ITRC 2007). Enhanced attenuation uses active engineering solutions to alter the target site in such a way that the contaminant plume will passively stabilize and shrink and to document that the action will be effective, timely, and sustainable. The paradigm recognizes that attenuation remedies are fundamentally based on a mass balance. Thus, long-term plume dynamics can be altered either by reducing the contaminant loading from the source or by increasing the rate of natural attenuation processes within all, or part of, the plume volume. The combination of technologies that emerged for T-Area included: (1) neat (pure) vegetable oil deployment in the deep vadose zone in the former source area, (2) emulsified vegetable oil deployment within the footprint of the groundwater plume, and (3) identification of attenuation mechanisms and rates for the distal portion of the plume. In the first part, neat oil spreads laterally forming a thin layer on the water table to intercept and reduce future cVOC loading (via partitioning) and reduce oxygen inputs (via biostimulation). In the second and third parts, emulsified oil forms active bioremediation reactor zones within the plume footprint to degrade existing groundwater contamination (via reductive dechlorination and/or cometabolism) and stimulates long-term attenuation capacity in the distal plume (via

  6. Virtual Savannah

    DEFF Research Database (Denmark)

    Rodil, Kasper; Eskildsen, Søren; Rehm, Matthias

    2012-01-01

    Virtual Savannah is constructed to visualize parts of a curriculum, which the educational service at Aalborg Zoo has difficulties in teaching children visiting the zoo. It contains rich media like audio, text, video and picture galleries about African ecology, but some of this episodic information...

  7. Loading 076 assemblies in two IV-04 transport casks for transport to the U.S. Savannah River Site (SC); Trasferimento di 72 elementi irraggiati MTR dalla piscina dell`impianto EUREX a due contenitori IU-04 per il trasporto al Savannah River Site-Department of Energy (USA)

    Energy Technology Data Exchange (ETDEWEB)

    Gili, Michele [ENEA, Centro Ricerche Saluggia, Vercelli (Italy). Dipt. Energia

    1997-09-01

    The National Agency for New Technologies and the Environments has signed with the US Department of Energy a contract for the transfer of 150 irradiated MTR fuel assemblies stored in the EUREX plant pool at The National Agency for New Technologies and the Environments Research Centre of Saluggia. The first scheduled transport has been made in february 1997 and has involved the successful loading of 76 assemblies in two IU-04 (Pegase) transport casks. The loaded casks have been shipped to the U.S. Savannah River Site (SC).

  8. 77 FR 19278 - Leaf River Energy Center LLC; Notice of Application

    Science.gov (United States)

    2012-03-30

    ... Energy Regulatory Commission Leaf River Energy Center LLC; Notice of Application On March 20, 2012, Leaf River Energy Center LLC (Leaf River), 53 Riverside Avenue, Westport, Connecticut 06880, filed with the...-000, to authorize Leaf River to reallocate the aggregate total facility certificated storage...

  9. FURTHER DEVELOPMENT OF MODIFIED MONOSODIUM TITANATE, AN IMPROVED SORBENT FOR PRETREATMENT OF HIGH LEVEL NUCLEAR WASTE AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, K.; Hobbs, D.; Fondeur, F.; Fink, S.

    2011-01-12

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove Cs-137, Sr-90, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes planned at SRS include caustic side solvent extraction, for Cs-137 removal, and sorption of Sr-90 and alpha-emitting radionuclides onto monosodium titanate (MST). The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes Pu-238, Pu-239, and Pu-240. This paper describes recent results from the development of an improved titanate material that exhibits increased removal kinetics and effective capacity for Sr-90 and alpha-emitting radionuclides compared to the baseline MST material.

  10. Report of an investigation into deterioration of the Plutonium Fuel Form Fabrication Facility (PuFF) at the DOE Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This investigations of the Savannah River Site's Plutonium Fuel Form fabrication facility located in Building 235-F was initiated in April 1991. The purpose of the investigation was to determine whether, as has been alleged, operation of the facility's argon inert gas system was terminated with the knowledge that continued inoperability of the argon system would cause accelerated corrosion damage to the equipment in the plutonium 238 processing cells. The investigation quickly established that the decision to discontinue operation of the argon system, by not repairing it, was merely one of the measures, and not the most important one, which led to the current deteriorated state of the facility. As a result, the scope of the investigation was broadened to more identify and assess those factors which contributed to the facility's current condition. This document discusses the backgrounds, results, and recommendations of this investigation.

  11. Savannah River Site Waste Isolation Pilot Plant Disposal Program - Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221-HET

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    2001-01-24

    This document, along with referenced supporting documents provides a defensible and auditable record of acceptable knowledge for one of the waste streams from the FB-Line. This heterogeneous debris transuranic waste stream was generated after January 25, 1990 and before March 20, 1997. The waste was packaged in 55-gallon drums, then shipped to the transuranic waste storage facility in ''E'' area of the Savannah River Site. This acceptable knowledge report includes information relating to the facility's history, configuration, equipment, process operations and waste management practices. Information contained in this report was obtained from numerous sources including: facility safety basis documentation, historical document archives, generator and storage facility waste records and documents, and interviews with cognizant personnel.

  12. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. FY 1989--1990 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  13. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY-1991 and FY-1992

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Chazel, A.C.; Pechmann, J.H.K.; Estes, R.A.

    1993-06-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980`s. The Savannah River Ecology Laboratory (SREL) has completed 14 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites? (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site? (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams? (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of ``refuge ponds`` as alternative breeding sites for amphibians that formerly bred at Sun Bay? Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

  14. Low-flow frequency and flow duration of selected South Carolina streams in the Savannah and Salkehatchie River Basins through March 2014

    Science.gov (United States)

    Feaster, Toby D.; Guimaraes, Wladmir B.

    2016-07-14

    An ongoing understanding of streamflow characteristics of the rivers and streams in South Carolina is important for the protection and preservation of the State’s water resources. Information concerning the low-flow characteristics of streams is especially important during critical flow periods, such as during the historic droughts that South Carolina has experienced in the past few decades.In 2008, the U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control, initiated a study to update low-flow statistics at continuous-record streamgaging stations operated by the U.S. Geological Survey in South Carolina. This report presents the low-flow statistics for 28 selected streamgaging stations in the Savannah and Salkehatchie River Basins in South Carolina. The low-flow statistics include daily mean flow durations for the 5-, 10-, 25-, 50-, 75-, 90-, and 95-percent probability of exceedance and the annual minimum 1-, 3-, 7-, 14-, 30-, 60-, and 90-day mean flows with recurrence intervals of 2, 5, 10, 20, 30, and 50 years, depending on the length of record available at the streamgaging station. The low-flow statistics were computed from records available through March 31, 2014.Low-flow statistics are influenced by length of record, hydrologic regime under which the data were collected, analytical techniques used, and other factors, such as urbanization, diversions, and droughts that may have occurred in the basin. To assess changes in the low-flow statistics from the previously published values, a comparison of the low-flow statistics for the annual minimum 7-day average streamflow with a 10-year recurrence interval (7Q10) from this study was made with the most recently published values. Of the 28 streamgaging stations for which recurrence interval computations were made, 14 streamgaging stations were suitable for comparing to low-flow statistics that were previously published in U.S. Geological Survey reports. These

  15. LAND AND WATER USE CHARACTERISTICS AND HUMAN HEALTH INPUT PARAMETERS FOR USE IN ENVIRONMENTAL DOSIMETRY AND RISK ASSESSMENTS AT THE SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Jannik, T.; Karapatakis, D.; Lee, P.; Farfan, E.

    2010-08-06

    Operations at the Savannah River Site (SRS) result in releases of small amounts of radioactive materials to the atmosphere and to the Savannah River. For regulatory compliance purposes, potential offsite radiological doses are estimated annually using computer models that follow U.S. Nuclear Regulatory Commission (NRC) Regulatory Guides. Within the regulatory guides, default values are provided for many of the dose model parameters but the use of site-specific values by the applicant is encouraged. A detailed survey of land and water use parameters was conducted in 1991 and is being updated here. These parameters include local characteristics of meat, milk and vegetable production; river recreational activities; and meat, milk and vegetable consumption rates as well as other human usage parameters required in the SRS dosimetry models. In addition, the preferred elemental bioaccumulation factors and transfer factors to be used in human health exposure calculations at SRS are documented. Based on comparisons to the 2009 SRS environmental compliance doses, the following effects are expected in future SRS compliance dose calculations: (1) Aquatic all-pathway maximally exposed individual doses may go up about 10 percent due to changes in the aquatic bioaccumulation factors; (2) Aquatic all-pathway collective doses may go up about 5 percent due to changes in the aquatic bioaccumulation factors that offset the reduction in average individual water consumption rates; (3) Irrigation pathway doses to the maximally exposed individual may go up about 40 percent due to increases in the element-specific transfer factors; (4) Irrigation pathway collective doses may go down about 50 percent due to changes in food productivity and production within the 50-mile radius of SRS; (5) Air pathway doses to the maximally exposed individual may go down about 10 percent due to the changes in food productivity in the SRS area and to the changes in element-specific transfer factors; and (6

  16. 77 FR 62499 - Leaf River Energy Center LLC; Notice of Application

    Science.gov (United States)

    2012-10-15

    ... Energy Regulatory Commission Leaf River Energy Center LLC; Notice of Application Take notice that on September 24, 2012, Leaf River Energy Center LLC (Leaf River), 53 Riverside Avenue, Westport, Connecticut... necessity to expand the certificated storage capacities of three of its four existing caverns at its...

  17. Post-test evaluation of the geology, geochemistry, microbiology, and hydrology of the in situ air stripping demonstration site at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Eddy Dilek, C.A.; Looney, B.B.; Hazen, T.C.; Nichols, R.L.; Fliermans, C.B.; Parker, W.H.; Dougherty, J.M.; Kaback, D.S.; Simmons, J.L.

    1993-07-01

    A full-scale demonstration of the use of horizontal wells for in situ air stripping for environment restoration was completed as part of the Savannah River Integrated Demonstration Program. The demonstration of in situ air stripping was the first in a series of demonstrations of innovative remediation technologies for the cleanup of sites contaminated with volatile organic contaminants. The in situ air stripping system consisted of two directionally drilled wells that delivered gases to and extract contamination from the subsurface. The demonstration was designed to remediate soils and sediments in the unsaturated and saturated zones as well as groundwater contaminated with volatile organic compounds. The demonstration successfully removed significant quantities of solvent from the subsurface. The field site and horizontal wells were subsequently used for an in situ bioremediation demonstration during which methane was added to the injected air. The field conditions documented herein represent the baseline status of the site for evaluating the in situ bioremediation as well as the post-test conditions for the in situ air stripping demonstration. Characterization activities focused on documenting the nature and distribution of contamination in the subsurface. The post-test characterization activities discussed herein include results from the analysis of sediment samples, three-dimensional images of the pretest and post-test data, contaminant inventories estimated from pretest and post-test models, a detailed lithologic cross sections of the site, results of aquifer testing, and measurements of geotechnical parameters of undisturbed core sediments.

  18. Visualization and Time-Series Analysis of Ground-Water Data for C-Area, Savannah River Site, South Carolina, 1984-2004

    Science.gov (United States)

    Conrads, Paul A.; Roehl, Edwin A.; Daamen, Ruby C.; Chapelle, Francis H.; Lowery, Mark A.; Mundry, Uwe H.

    2007-01-01

    In 2004, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, initiated a study of historical ground-water data of C-Area on the Savannah River Site in South Carolina. The soils and ground water at C-Area are contaminated with high concentrations of trichloroethylene and lesser amounts of tetrachloroethylene. The objectives of the investigation were (1) to analyze the historical data to determine if data-mining techniques could be applied to the historical database to ascertain whether natural attenuation of recalcitrant contaminants, such as volatile organic compounds, is occurring and (2) to determine whether inferential (surrogate) analytes could be used for more cost-effective monitoring. Twenty-one years of data (1984-2004) were collected from 396 wells in the study area and converted from record data to time-series data for analysis. A Ground-Water Data Viewer was developed to allow users to spatially and temporally visualize the analyte data. Overall, because the data were temporally and spatially sparse, data analysis was limited to only qualitative descriptions.

  19. Sequestration and remobilization of radioiodine (129I) by soil organic matter and possible consequences of the remedial action at Savannah River Site.

    Science.gov (United States)

    Xu, Chen; Miller, Eric J; Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Schwehr, Kathleen A; Kaplan, Daniel I; Otosaka, Shigeyoshi; Roberts, Kimberly A; Brinkmeyer, Robin; Yeager, Chris M; Santschi, Peter H

    2011-12-01

    In order to investigate the distributions and speciation of (129)I (and (127)I) in a contaminated F-Area groundwater plume of the Savannah River Site that cannot be explained by simple transport models, soil resuspension experiments simulating surface runoff or stormflow and erosion events were conducted. Results showed that 72-77% of the newly introduced I(-) or IO(3)(-) were irreversibly sequestered into the organic-rich riparian soil, while the rest was transformed by the soil into colloidal and truly dissolved organo-iodine, resulting in (129)I remobilization from the soil greatly exceeding the 1 pCi/L drinking water permit. This contradicts the conventional view that only considers I(-) or IO(3)(-) as the mobile forms. Laboratory iodination experiments indicate that iodine likely covalently binds to aromatic structures of the soil organic matter (SOM). Under very acidic conditions, abiotic iodination of SOM was predominant, whereas under less acidic conditions (pH ≥5), microbial enzymatically assisted iodination of SOM was predominant. The organic-rich soil in the vadose zone of F-Area thus acts primarily as a "sink," but may also behave as a potentially important vector for mobile radioiodine in an on-off carrying mechanism. Generally the riparian zone provides as a natural attenuation zone that greatly reduces radioiodine release.

  20. Spatial and temporal segregation of spawning habitat by catostomids in the Savannah River, Georgia and South Carolina, U.S.A.

    Science.gov (United States)

    Grabowski, T.B.; Isely, J.J.

    2007-01-01

    Spawning aggregations of five species of catostomids were observed on the two mid-channel gravel bars of the Savannah River, Georgia and South Carolina, in 2004 and 2005 to assess the degree of spatial and temporal overlap in the use of this habitat and determine the habitat preferences leading to segregation. Spawning catostomids showed a considerable amount of temporal overlap in their use of these mid-channel gravel bars. The observed temporal overlap was consistent between 2004 and 2005 and corresponded to temperatures at which species were present. The distribution of catostomids was not uniform at the upstream gravel bar. Carpsuckers Carpiodes sp., spotted sucker Minytrema melanops and robust redhorse Moxostoma robustum both demonstrated some spatial overlap with notchlip redhorse Moxostoma collapsum; however, their overall distributions were different from one another. Northern hogsucker Hypentelium nigricans was present across the gravel bars, apparently as an egg predator. Spawning catostomids segregated based on flow, depth, slope and substratum size. Whether due to limited habitat availability or changes in the timing of reproduction due to altered cues, temporal and spatial overlap occurs between spawning catostomids despite the apparent partitioning of available spawning habitat. It is unclear, however, if this overlap results in excessive mortality in the early life-history stages of these species. Results suggest spatial overlap among catostomid species was minimized due to species spawning in areas within a narrow range of conditions. Intraspecific interactions such as nest site superimposition or disturbance may be a concern. ?? 2007 The Fisheries Society of the British Isles.

  1. Westinghouse Savannah River Company: Report from the DOE Voluntary Protection Program onsite reviews, February 24--March 7, 1997, and June 15--19, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This report summarizes the Department of Energy Voluntary Protection Program (DOE-VPP) Initial and Update Review Teams` findings from the onsite evaluations of the Westinghouse Savannah River Site (SRS), conducted February 24--March 7, 1997, and June 15-19, 1998. The site was evaluated against the program requirements contained in US Department of Energy Voluntary Protection Program, Part 1: Program Elements to determine its success in implementing the five tenets of DOE-VPP. The Initial Review Team concluded that WSRC met or surpassed all DOE-VPP requirements, with the exception of 12 minor findings and 5 recommendations. WSRC was asked to resolve the findings within 90 days. During a follow-up visit in January 1996, representatives of the Team verified that all 90-day actions were completed. The Update Team detected though that the program did not demonstrate thorough and meaningful employee involvement. The ability to attain and sustain VPP-level performance on employee involvement is a significant challenge. Large companies with multiple layers of management and geographically disperse personnel have particular difficulty.

  2. Technical summary of groundwater quality protection program at the Savannah River Site, 1952--1986. Volume 1, Site geohydrology and waste sites

    Energy Technology Data Exchange (ETDEWEB)

    Heffner, J.D. [ed.] [Exploration Resources, Inc., Athens, GA (United States)

    1991-11-01

    This report provides information regarding the status of and groundwater quality at the waste sites at the Department of Energy`s (DOE) Savannah River Site (SRS). Specific information provided for each waste site at SRS includes its location, size, inventory (when known), and history. Many waste sites at SRS are considered to be of little environmental concern because they contain nontoxic or inert material such as construction rubble and debris. Other waste sites, however, either are known to have had an effect on groundwater quality or are suspected of having the potential to affect groundwater. Monitoring wells have been installed at most of these sites; monitoring wells are scheduled for installation at the remaining sites. Results of the groundwater analyses from these monitoring wells, presented in the appendices, are used in the report to help identify potential contaminants of concern, if any, at each waste site. The list of actions proposed for each waste site in Christensen and Gordon`s 1983 report are summarized, and an update is provided for each site. Planned actions for the future are also outlined.

  3. A survey of cavity-nesting bees and wasps in loblolly pine stands of the Savannah River Site, Aiken County, South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Horn, S.; Hanula, J., L.

    2004-03-10

    Horn, Scott, and James L. Hanula. 2004. A survey of cavity-nesting bees and wasps in loblolly pine stands of the Savannah River Site, Aiken County, South Carolina. 39(3): 464-469. Abstract: In recent years concern over widespread losses in biodiversity has grown to include a possible decline of many native pollinators, primarily bees. Factors such as habitat fragmentation, agricultural practices, use of pesticides, the introduction of invasive species, or changes in land use may negatively impact these vital organisims. Most reported studies show that human impacts on pollinators are overwhelmingly negative. Reductions in pollinator populations may profoundly impact plant population dynamics and ecosystem function. Little baseline data exists on the diversity and relative abundance of bees and wasps in southern forests. The objective of this study was to develop a simple, effective method of surveying cavity-nesting bees and wasps and to determine species diversity in mature forests of loblolly pine, the most widely planted tree species in the southern United States.

  4. Cancer and birth defects surveillance system for communities around the Savannah River Site: Phase 2 -- Birth defects. Technical progress report, year 01

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J.B.

    1995-10-01

    The Savannah River Region Health Information System Birth Defects Registry (SRRHIS-BDR) began on September 30, 1994. As with the SRRHIS Cancer Registry, surveillance of the 12 Georgia counties was subcontracted to Emory University School of Public Health. Collaborative efforts between the Medical University of South Carolina (MUSC) and Emory University staffs have been characterized by warm relationships and commitment to developing a state of the art registry. As a result of early planning efforts, the authors were able to actually activate the data collection. As of the end of September 1995, partial data from the 1994 birth cohort and up-to-date data for the 1995 birth cohort had been collected on the South Carolina side. The Georgia Staff started later and have not yet caught up to the 1994 level. South Carolina was able to start earlier because they were fortunate to quickly recruit an abstractor. Also, by the end of the first year, an innovative automated data entry system for laptop computers was developed by the computer staff to facilitate and improve data collection.

  5. Ecological studies related to the construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY-1994 and FY-1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Savannah River Ecology Laboratory initiated ecological studies related to the construction of the DWPF on the SRS in FY-1979. Two areas have been used for biological surveys and long-term monitoring: the DWPF construction site (S-Area and Z-Area), and two control sites (Rainbow Bay and Tinker Creek). The Rainbow Bay study area and S-Area are located within 5 km of each other on the SRS, and both once contained Carolina bays which were very similar ecologically. One goal of the SREL`s faunal studies is to compare the natural variation in amphibian populations at the Rainbow Bay control site to the variation observed at the human-altered site (Sun Bay, formerly on the DWPF construction site). Pre-construction biological surveys included data on vegetation, birds, mammals, amphibians, reptiles, fish and several invertebrate groups. No species on the Federal Endangered or Threatened lists were found on either site, but several plants and animals of threatened or special-concern status in South Carolina were present and the gopher frog (Rana areolata) currently is being considered for federal listing. Continuing studies are directed towards assessing construction impacts on the biota and towares modeling the effects of alteration of wetland hydroperiod on the biota. Primary emphasis is being paced on evaluation the effectiveness of mitigation measures undertaken by DOE.

  6. Development and testing of a contamination potential mapping system for a portion of the General Separations Area, Savannah River Site, South Carolina

    Science.gov (United States)

    Rine, J.M.; Berg, R.C.; Shafer, J.M.; Covington, E.R.; Reed, J.K.; Bennett, C.B.; Trudnak, J.E.

    1998-01-01

    A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to integrate diverse subsurface geologic data, soils data, and hydrology utilizing a stack-unit mapping approach to construct mapping layers. This is the first time that such an approach has been used to delineate the hydrogeology of a coastal plain environment. Unit surface elevation maps were constructed for the tops of six Tertiary units derived from over 200 boring logs. Thickness or isopach maps were created for five hydrogeologic units by differencing top and basal surface elevations. The geologic stack-unit map was created by stacking the five isopach maps and adding codes for each stack-unit polygon. Stacked-units were rated according to their hydrogeologic properties and ranked using a logarithmic approach (utility theory) to establish a contamination potential index. Colors were assigned to help display relative importance of stacked-units in preventing or promoting transport of contaminants. The sensitivity assessment included the effects of surface soils on contaminants which are particularly important for evaluating potential effects from surface spills. Hydrogeologic/hydrologic factors did not exhibit sufficient spatial variation to warrant incorporation into contamination potential assessment. Development of this contamination potential mapping system provides a useful tool for site planners, environmental scientists, and regulatory agencies.A methodology was developed to evaluate and map the contamination potential or aquifer sensitivity of the upper groundwater flow system of a portion of the General Separations Area (GSA) at the Department of Energy's Savannah River Site (SRS) in South Carolina. A Geographic Information System (GIS) was used to

  7. Using ASCEM Modeling and Visualization to Inform Stakeholders of Contaminant Plume Evolution and Remediation Efficacy at F-Basin Savannah River, SC – 15156

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wainwright, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Molins, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davis, J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Arora, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faybishenko, B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Krishnan, H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hubbard, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Denham, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Eddy-Dilek, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Moulton, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lipnikov, K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gable, C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Miller, T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Freshley, M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-28

    Communication with stakeholders, regulatory agencies, and the public is an essential part of implementing different remediation and monitoring activities, and developing site closure strategies at contaminated sites. Modeling of contaminant plume evolution plays a critical role in estimating the benefit, cost, and risk of particular options. At the same time, effective visualization of monitoring data and modeling results are particularly important for conveying the significance of the results and observations. In this paper, we present the results of the Advanced Simulation Capability for Environmental Management (ASCEM) project, including the discussion of the capabilities of newly developed ASCEM software package, along with its application to the F-Area Seepage Basins located in the U.S. Department of Energy Savannah River Site (SRS). ASCEM software includes state-of-the-art numerical methods for simulating complex flow and reactive transport, as well as various toolsets such as a graphical user interface (GUI), visualization, data management, uncertainty quantification, and parameter estimation. Using this software, we have developed an advanced visualization of tritium plume migration coupled with a data management system, and simulated a three-dimensional model of flow and plume evolution on a high-performance computing platform. We evaluated the effect of engineered flow barriers on a nonreactive tritium plume, through advanced plume visualization and modeling of tritium plume migration. In addition, we developed a geochemical reaction network to describe complex geochemical processes at the site, and evaluated the impact of coupled hydrological and geochemical heterogeneity. These results are expected to support SRS’s monitoring activities and operational decisions.

  8. Evaluation of Flygt Mixers for Application in Savannah River Site Tank 19 Test Results from Phase B: Mid-Scale Testing at PNNL

    Energy Technology Data Exchange (ETDEWEB)

    Powell, M.R.; Combs, W.H.; Farmer, J.R.; Gladki, H.; Hatchell, B.K.; Johnson, M.A.; Poirier, M.R.; Rodwell, P.O.

    1999-03-30

    Pacific Northwest National Laboratory (PNNL) performed mixer tests using 3-kW (4-hp) Flygt mixers in 1.8- and 5.7-m-diameter tanks at the 336 building facility in Richland, Washington to evaluate candidate scaling relationships for Flygt mixers used for sludge mobilization and particle suspension. These tests constituted the second phase of a three-phase test program involving representatives from ITT Flygt Corporation, the Savannah River Site (SRS), the Oak Ridge National Laboratory (ORNL), and PNNL. The results of the first phase of tests, which were conducted at ITT Flygt's facility in a 0.45-m-diameter tank, are documented in Powell et al. (1999). Although some of the Phase B tests were geometrically similar to selected Phase A tests (0.45-m tank), none of the Phase B tests were geometrically, cinematically, and/or dynamically similar to the planned Tank 19 mixing system. Therefore, the mixing observed during the Phase B tests is not directly indicative of the mixing expected in Tank 19 and some extrapolation of the data is required to make predictions for Tank 19 mixing. Of particular concern is the size of the mixer propellers used for the 5.7-m tank tests. These propellers were more than three times larger than required by geometric scaling of the Tank 19 mixers. The implications of the lack of geometric similarity, as well as other factors that complicate interpretation of the test results, are discussed in Section 5.4.

  9. A design study for the isolation of the 281-3H retention basin at the Savannah River Site using the viscous liquid barrier technology

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Persoff, P.; Apps, J.; James, A.; Oldenburg, C.; McGrath, A.; Myer, L.; Pellerin, L.; Pruess, K. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1996-11-01

    This report is a description of the design study for a pilot-scale field demonstration of the Viscous Liquid Barrier (VLB) technology, a new subsurface containment technology for waste isolation using a new generation of barrier liquids. The demonstration site was Retention Basin 281-3H, a shallow catchment basin at the Savannah River Site, which is contaminated mainly by radionuclides ({sup 137}Cs, {sup 90}Sr, and {sup 238}Pu). The goals of the field demonstration were (a) to demonstrate the ability to create a continuous subsurface barrier in order to isolate the contaminants, and (b) to demonstrate the continuity, performance, and integrity of the barrier. The site was characterized, and preliminary hydraulic conductivity data were obtained from core samples. Based on the site characteristics and the functional requirements, a conceptual model was developed, the barrier specifications were defined, and lance injection was selected as the emplacement method. The injection strategy for the subsurface conditions at the site was determined using numerical simulations. An appropriate variant of Colloidal Silica (CS) was selected as the barrier liquid based on its relative insensitivity to interactions with the site soils, and the formulation for optimum site performance was determined. A barrier verification strategy, including hydraulic, pneumatic, tracer, and geophysical methods, was developed. A lance water injection test was conducted in order to obtain representative estimates of the hydraulic conductivity and its distribution for the design of the barrier emplacement. The water injection test demonstrated the lack of permeable zones for CS injection, and a decision not to proceed with the barrier emplacement was reached.

  10. Evaluation of Flygt Mixers for Application in Savannah River Site Tank Summary of Test Results from Phase A, B, and C Testing

    Energy Technology Data Exchange (ETDEWEB)

    BK Hatchell; H Gladki; JR Farmer; MA Johnson; MR Poirier; MR Powell; PO Rodwell

    1999-10-21

    Staff from the Savannah River Site (SRS), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), and ITT Flygt Corporation in Trumbull, Connecticut, are conducting a joint mixer testing program to evaluate the applicability of Flygt mixers to SRS Tank 19 waste retrieval and waste retrieval in other U.S. Department of Energy (DOE) tanks. This report provides the results of the Phase C Flygt mixer testing and summarizes the key findings from the Phase A and B tests. Phase C Flygt mixer testing used full-scale, Model 4680 Flygt mixers (37 kW, 51-cm propeller) installed in a fall-scale tank (25.9-m diameter) at SRS. Phase A testing used a 0.45-m tank and Flygt mixers with 7.8-cm diameter propellers. Phase B testing used Model 4640 Flygt mixers (3 kW, 37-cm propeller) installed in 1.8-m and 5.7-m tanks. Powell et al. (1999z4 1999b) provide detailed descriptions of the Phase A and B tests. In Phase C, stationary submerged jet mixers manufactured by ITT Flygt Corporation were tested in the 25.9-m diameter tank at the SRS TNX facility. The Model 4680 mixers used in Phase C have 37-kW (50-hp) electric motors that drive 51-cm (20-in.) diameter propellers at 860 rpm. Fluid velocity was measured at selected locations with as many as four Model 4680 mixers operating simultaneously in the 25.9-m tank, which was filled with water to selected levels. Phase C involved no solids suspension or sludge mobilization tests.

  11. Plutonium immobilization and remobilization by soil mineral and organic matter in the far-field of the Savannah River Site, U.S.

    Science.gov (United States)

    Xu, Chen; Athon, Matthew; Ho, Yi-Fang; Chang, Hyun-Shik; Zhang, Saijin; Kaplan, Daniel I; Schwehr, Kathleen A; DiDonato, Nicole; Hatcher, Patrick G; Santschi, Peter H

    2014-03-18

    To study the effects of natural organic matter (NOM) on Pu sorption, Pu(IV) and (V) were amended at environmentally relevant concentrations (10(-14) M) to two soils of contrasting particulate NOM concentrations collected from the F-Area of the Savannah River Site. More Pu(IV) than (V) was bound to soil colloidal organic matter (COM). A de-ashed humic acid (i.e., metals being removed) scavenged more Pu(IV,V) into its colloidal fraction than the original HA incorporated into its colloidal fraction, and an inverse trend was thus observed for the particulate-fraction-bound Pu for these two types of HAs. However, the overall Pu binding capacity of HA (particulate + colloidal-Pu) decreased after de-ashing. The presence of NOM in the F-Area soil did not enhance Pu fixation to the organic-rich soil when compared to the organic-poor soil or the mineral phase from the same soil source, due to the formation of COM-bound Pu. Most importantly, Pu uptake by organic-rich soil decreased with increasing pH because more NOM in the colloidal size desorbed from the particulate fraction in the elevated pH systems, resulting in greater amounts of Pu associated with the COM fraction. This is in contrast to previous observations with low-NOM sediments or minerals, which showed increased Pu uptake with increasing pH levels. This demonstrates that despite Pu immobilization by NOM, COM can convert Pu into a more mobile form.

  12. V5 AND V10 CONTACTOR TESTING WITH THE NEXT GENERATION (CSSX) SOLVENT FOR THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, M.; Peters, T.; Pierce, R.; Fondeur, F.; Steeper, T.; Williams, M.; Giddings, B.; Hickman, B.; Fink, S.

    2012-01-17

    A solvent extraction system for removal of cesium (Cs) from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A Modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive, called a suppressor, is used to improve stripping performance. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008. Subsequent development efforts by ORNL identified an improved solvent system that can raise the expected decontamination factor (DF) in MCU from {approx}200 to more than 40,000. The improved DF is attributed to an improved distribution ratio for cesium [D(Cs)] in extraction from {approx}15 to {approx}60, an increased solubility of the calixarene in the solvent from 0.007 M to >0.050 M, and use of boric acid (H{sub 3}BO{sub 3}) stripping that also yields improved D(Cs) values. Additionally, the changes incorporated into the Next Generation CSSX Solvent (NGS) are intended to reduce solvent entrainment by virtue of more favorable physical properties. The MCU and Salt Waste Processing Facility (SWPF) facilities are actively pursuing the changeover from the current CSSX solvent to the NGS solvent. To support this integration of the NGS into the MCU and SWPF facilities, the Savannah River Remediation (SRR)/ARP/MCU Life Extension Project requested that the Savannah River National Laboratory (SRNL) perform testing of the new solvent for the removal of Cs from the liquid salt waste stream. Additionally, SRNL was tasked with characterizing both strip (20-in long, 10 micron pore size) and extraction (40-in long, 20 micron pore size) coalescers. SRNL designed a pilot-scale experimental

  13. V5 AND V10 CONTACTOR TESTING WITH THE NEXT GENERATION (CSSX) SOLVENT FOR THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Restivo, M.; Peters, T.; Pierce, R.; Fondeur, F.; Steeper, T.; Williams, M.; Giddings, B.; Hickman, B.; Fink, S.

    2012-01-17

    A solvent extraction system for removal of cesium (Cs) from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A Modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive, called a suppressor, is used to improve stripping performance. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008. Subsequent development efforts by ORNL identified an improved solvent system that can raise the expected decontamination factor (DF) in MCU from {approx}200 to more than 40,000. The improved DF is attributed to an improved distribution ratio for cesium [D(Cs)] in extraction from {approx}15 to {approx}60, an increased solubility of the calixarene in the solvent from 0.007 M to >0.050 M, and use of boric acid (H{sub 3}BO{sub 3}) stripping that also yields improved D(Cs) values. Additionally, the changes incorporated into the Next Generation CSSX Solvent (NGS) are intended to reduce solvent entrainment by virtue of more favorable physical properties. The MCU and Salt Waste Processing Facility (SWPF) facilities are actively pursuing the changeover from the current CSSX solvent to the NGS solvent. To support this integration of the NGS into the MCU and SWPF facilities, the Savannah River Remediation (SRR)/ARP/MCU Life Extension Project requested that the Savannah River National Laboratory (SRNL) perform testing of the new solvent for the removal of Cs from the liquid salt waste stream. Additionally, SRNL was tasked with characterizing both strip (20-in long, 10 micron pore size) and extraction (40-in long, 20 micron pore size) coalescers. SRNL designed a pilot-scale experimental

  14. 25 Years Of Environmental Remediation In The General Separations Area Of The Savannah River Site: Lessons Learned About What Worked And What Did Not Work In Soil And Groundwater Cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Blount, Gerald [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Thibault, Jeffrey [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Millings, Margaret [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Prater, Phil [Savannah River Site (SRS), Aiken, SC (United States)

    2015-03-16

    The Savannah River Site (SRS) is owned and administered by the US Department of Energy (DOE). SRS covers an area of approximately 900 square kilometers. The General Separation Area (GSA) is located roughly in the center of the SRS and includes: radioactive material chemical separations facilities, radioactive waste tank farms, a variety of radioactive seepage basins, and the radioactive waste burial grounds. Radioactive wastes were disposed in the GSA from the mid-1950s through the mid-1990s. Radioactive operations at the F Canyon began in 1954; radioactive operations at H Canyon began in 1955. Waste water disposition to the F and H Seepage Basins began soon after operations started in the canyons. The Old Radioactive Waste Burial Ground (ORWBG) began operations in 1952 to manage solid waste that could be radioactive from all the site operations, and ceased receiving waste in 1972. The Mixed Waste Management Facility (MWMF) and Low Level Radioactive Waste Disposal Facility (LLRWDF) received radioactive solid waste from 1969 until 1995. Environmental legislation enacted in the 1970s, 1980s, and 1990s led to changes in waste management and environmental cleanup practices at SRS. The US Congress passed the Clean Air Act in 1970, and the Clean Water Act in 1972; the Resource Conservation and Recovery Act (RCRA) was enacted in 1976; the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) was enacted by Congress in 1980; the Federal Facilities Compliance Act (FFCA) was signed into law in 1992. Environmental remediation at the SRS essentially began with a 1987 Settlement Agreement between the SRS and the State of South Carolina (under the South Carolina Department of Health and Environmental Control - SCDHEC), which recognized linkage between many SRS waste management facilities and RCRA. The SRS manages several of the larger groundwater remedial activities under RCRA for facilities recognized early on as environmental problems. All subsequent

  15. Thermoregulation and temperature relations of alligators and other large ectotherms inhabiting thermally stressed habitats. Annual progress report, 1 July 1976--30 September 1977. [Ecology of Par Pond, Savannah River Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Spotila, J.R.

    1977-06-01

    Progress is reported on studies of the biophysical and thermal relationships between large ectotherms and their aquatic environment. Data are reported from laboratory and field studies on alligators, turtles, and fish. Mathematical models of the effect of body size and physical characteristics on temperature regulation of ectotherms and of thermal stress in aquatic organisms were developed. Results are included of field studies on the physiological and behavioral adjustments of turtles in response to changes in water temperature produced by thermal effluents in PAR Pond at the Savannah River Ecology Laboratory (SREL).

  16. The Iowa Flood Center's River Stage Sensors—Technical Details

    Science.gov (United States)

    Niemeier, J. J.; Kruger, A.; Ceynar, D.; Fahim Rezaei, H.

    2012-12-01

    The Iowa Flood Center (IFC), along with support from the Iowa Department of Transportation (DOT) and the Iowa Department of Natural Resources (DNR) have developed a bridge-mounted river stage sensor. Each sensor consists of an ultrasonic distance measuring module, cellular modem, a GPS unit that provides accurate time and an embedded controller that orchestrates the sensors' operation. A sensor is powered by a battery and solar panel along with a solar charge controller. All the components are housed in/on a sturdy metal box that is then mounted on the side of a bridge. Additionally, each sensor incorporates a water-intrusion sensor and an internal temperature sensor. In operation, the microcontroller wakes, and turns on the electronics every 15 minutes and then measures the distance between the ultrasonic sensor and the water surface. Several measurements are averaged and transmitted along with system health information (battery voltage, state of water intrusion sensor, and internal temperature) via cellular modem to remote servers on the internet. The microcontroller then powers the electronics down and enters a sleep/power savings mode. The sensor's firmware allows the remote server to adjust the measurement rate to 5, 15, and 60 minutes. Further, sensors maintain a 24-day buffer of previous measurements. If a sensor could not successfully transmit its data because of cellular network connection problems, it will transmit the backlog on subsequent transmissions. We paid meticulous attention to all engineering aspects and sensors are very robust and have operated essentially continuously through two Iowa winters and summers, including the 2012 record-breaking warm summer.

  17. Biomonitoring of Environmental Status and Trends (BEST) Program: Environmental Contaminants, Health Indicators, and Reproductive Biomarkers in Fish from the Mobile, Apalachicola-Chattahoochee-Flint, Savannah, and Pee Dee River Basins

    Science.gov (United States)

    Hinck, Jo Ellen; Blazer, Vicki; Denslow, Nancy D.; Echols, Kathy R.; Gale, Robert W.; May, Tom W.; Claunch, Rachael; Wieser, Carla; Anderson, Patrick J.; Coyle, James J.; Gross, Timothy S.; Tillitt, Donald E.

    2007-01-01

    Largemouth bass (Micropterus salmoides) and common carp (Cyprinus carpio) were collected from 13 sites in 4 river basins in the southeastern United States to document spatial trends in accumulative contaminants, health indicators, and reproductive biomarkers. Organochlorine residues, 2,3,7,8- tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ), and elemental contaminants were measured in composite samples of whole fish, grouped by species and gender, from each site. Fish were field-examined for external and internal anomalies, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Mercury concentrations in bass samples from all sites exceeded toxicity thresholds for mammals [>0.1 micrograms per gram wet weight (ug/g ww)], fish (>0.2 ug/g ww), and birds (>0.3 ug/g ww) and were greatest (>0.5 ug/g ww) in samples from the Alabama River at Eureka Landing, Alabama; the Mobile River at Bucks, Alabama; the Apalachicola River at Blountstown, Florida; the Savannah River at Sylvania, Georgia; and the Pee Dee River at Bucksport, South Carolina. Selenium concentrations were relatively high (>0.75 ug/g ww) in fish from the Tombigbee River at Lavaca, Alabama; the Mobile River at Bucks; and the Chattahoochee River at Omaha, Georgia compared to those from other sites. Concentrations of 2,2-bis (p-chlorophenyl)- 1,1-dichloroethylene (p,p'-DDE) were high in fish from the Chattahoochee River at Omaha and the Mobile River near Bucks, which was near a 2,2-bis (p-chlorophenyl)-1,1- dichloroethylene (DDT) formulating facility that historically discharged into the lower Mobile River. Toxaphene concentrations in fish from the Flint River near Albany, Georgia (60-100 nanograms per gram (ng/g) ww) may pose a risk to fish. Concentrations of other formerly used (total chlordanes, dieldrin, endrin, aldrin, mirex, and hexachlorobenzene) and currently used (pentachlorobenzene, pentachloroanisole

  18. Dichloroethene and Vinyl Chloride Degradation Potential in Wetland Sediments at Twin Lakes and Pen Branch, Savannah River National Laboratory, South Carolina

    Science.gov (United States)

    Bradley, Paul M.

    2007-01-01

    A series of 14C-radiotracer-based microcosm experiments was conducted to assess the mechanisms and products of degradation of dichloroethene (DCE) and vinyl chloride (VC) in wetland sediments at the Department of Energy (DOE) Savannah River National Laboratory. This project investigated the potential for biotic and abiotic DCE and VC degradation in wetland sediments from the Twin Lakes area of the C-BRP investigative unit and from the portion of Pen Branch located directly down gradient from the CMP investigative unit. Substantial degradation of [1,2-14C] DCE and [1,2-14C] VC to 14CO2 was observed in all viable sediment microcosms prepared under oxic conditions. These results indicate that microbial mineralization processes, involving direct oxidation or cometabolic oxidation, are the primary mechanisms of DCE and VC biodegradation in Twin Lake and Pen Branch sediments under oxic conditions. Substantial degradation of [1,2-14C] DCE and [1,2-14C] VC was observed in all viable sediment microcosms incubated under anoxic conditions. Production of 14CO2 was observed in all sediment microcosms under anoxic conditions. In general, the accumulation of mineralization products (14CO2 and 14CH4) was comparable to the accumulation of those reduced daughter products (14C-VC, 14C-ethene or 14C-ethane) traditionally identified with chloroethene reductive dechlorination. These results indicate that microbial mineralization processes can be an important component of DCE and VC degradation in Twin Lake and Pen Branch sediments under anoxic conditions. These results demonstrate that an evaluation of the efficiency of in situ DCE and VC biodegradation in Twin Lakes and Pen Branch that is based solely on the observed accumulation of reduced daughter products may underestimate substantially the total extent of contaminant biodegradation and, thus, the contribution of biodegradation to overall contaminant attenuation. No evidence of abiotic degradation of [1,2-14C] DCE or [1,2-14C] VC

  19. THE EFFECT OF THE PRESENCE OF OZONE ON THE LOWER FLAMMABILITY LIMIT OF HYDROGEN IN VESSELS CONTAINING SAVANNAH RIVER SITE HIGH LEVEL WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Sherburne, C.

    2012-01-12

    The Enhanced Chemical Cleaning (ECC) process uses ozone to effect the oxidation of metal oxalates produced during the dissolution of sludge in the Savannah River Site (SRS) waste tanks. The ozone reacts with the metal oxalates to form metal oxide and hydroxide precipitants, and the CO{sub 2}, O{sub 2}, H{sub 2}O and any unreacted O{sub 3} gases are discharged into the vapor space. In addition to the non-radioactive metals in the waste, however, the SRS radioactive waste also contains a variety of radionuclides, hence, hydrogen gas is also present in the vapor space of the ECC system. Because hydrogen is flammable, the impact of this resultant gas stream on the Lower Flammability Limit (LFL) of hydrogen must be understood for all possible operating scenarios of both normal and off-normal situations, with particular emphasis at the elevated temperatures and pressures of the typical ECC operating conditions. Oxygen is a known accelerant in combustion reactions, but while there are data associated with the behavior of hydrogen/oxygen environments, recent, relevant studies addressing the effect of ozone on the flammability limit of hydrogen proved scarce. Further, discussions with industry experts verified the absence of data in this area and indicated that laboratory testing, specific to defined operating parameters, was needed to comprehensively address the issue. Testing was thus designed and commissioned to provide the data necessary to support safety related considerations for the ECC process. A test matrix was developed to envelope the bounding conditions considered credible during ECC processing. Each test consists of combining a gas stream of high purity hydrogen with a gas stream comprised of a specified mixture of ozone and oxygen in a temperature and pressure regulated chamber such that the relative compositions of the two streams are controlled. The gases are then stirred to obtain a homogeneous mixture and ignition attempted by applying 10J of energy to a

  20. Environmental Assessment and Finding of No Significant Impact: Interim Measures for the Mixed Waste Management Facility Groundwater at the Burial Ground Complex at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-12-08

    The U. S. Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed interim measures for the Mixed Waste Management Facility (MW) groundwater at the Burial Ground Complex (BGC) at the Savannah River Site (SRS), located near Aiken, South Carolina. DOE proposes to install a small metal sheet pile dam to impound water around and over the BGC groundwater seepline. In addition, a drip irrigation system would be installed. Interim measures will also address the reduction of volatile organic compounds (VOCS) from ''hot-spot'' regions associated with the Southwest Plume Area (SWPA). This action is taken as an interim measure for the MWMF in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC) to reduce the amount of tritium seeping from the BGC southwest groundwater plume. The proposed action of this EA is being planned and would be implemented concurrent with a groundwater corrective action program under the Resource Conservation and Recovery Act (RCRA). On September 30, 1999, SCDHEC issued a modification to the SRS RCRA Part B permit that adds corrective action requirements for four plumes that are currently emanating from the BGC. One of those plumes is the southwest plume. The RCRA permit requires SRS to submit a corrective action plan (CAP) for the southwest plume by March 2000. The permit requires that the initial phase of the CAP prescribe a remedy that achieves a 70-percent reduction in the annual amount of tritium being released from the southwest plume area to Fourmile Branch, a nearby stream. Approval and actual implementation of the corrective measure in that CAP may take several years. As an interim measure, the actions described in this EA would manage the release of tritium from the southwest plume area until the final actions under the CAP can be implemented. This proposed action is expected to reduce the

  1. Pu(V) transport through Savannah River Site soils - an evaluation of a conceptual model of surface- mediated reduction to Pu (IV).

    Science.gov (United States)

    Powell, Brian A; Kaplan, Daniel I; Serkiz, Steven M; Coates, John T; Fjeld, Robert A

    2014-05-01

    Over the last fifteen years the Savannah River Site (SRS) in South Carolina, USA, was selected as the site of three new plutonium facilities: the Mixed Oxide Fuel Fabrication Facility, Pit Disassembly and Conversion Facility, and the Pu Immobilization Plant. In order to assess the potential human and environmental risk associated with these recent initiatives, improved understanding of the fate and transport of Pu in the SRS subsurface environment is necessary. The hypothesis of this study was that the more mobile forms of Pu, Pu(V) and Pu(VI), would be reduced to the less mobile Pu(III/IV) oxidation states under ambient SRS subsurface conditions. Laboratory-scale dynamic flow experiments (i.e., column studies) indicated that Pu(V) was very mobile in SRS sediments. At higher pH values the mobility of Pu decreased and the fraction of Pu that became irreversibly sorbed to the sediment increased, albeit, only slightly. Conversely, these column experiments showed that Pu(IV) was essentially immobile and was largely irreversibly sorbed to the sediment. More than 100 batch sorption experiments were also conducted with four end-member sediments, i.e., sediments that include the chemical, textural, and mineralogical properties likely to exist in the SRS. These tests were conducted as a function of initial Pu oxidation state, pH, and contact time and consistently demonstrated that although Pu(V) sorbed initially quite weakly to sediments, it slowly, over the course of Pu(IV). This is consistent with our hypothesis that Pu(V) is reduced to the more strongly sorbing form of Pu, Pu(IV). These studies provide important experimental support for a conceptual geochemical model for dissolved Pu in a highly weathered subsurface environment. That is that, irrespective of the initial oxidation state of the dissolved Pu introduced into a SRS sediment system, Pu(IV) controls the environmental transport within a couple weeks and Pu strongly binds to the sediment, limiting its mobility.

  2. Savannah River Laboratory monthly report

    Energy Technology Data Exchange (ETDEWEB)

    1985-12-01

    Efforts in the area of nuclear reactors and scientific computations are reported, including: robotics; reactor irradiation of nonend-bonded target slugs; computer link with Los Alamos National Laboratory; L-reactor thermal mitigation; aging of carbon in SRP reactor airborne activity confinement systems; and reactor risk assessment for earthquakes. Activities in chemical processes and environmental technology are reported, including: solids formation in a plutonium product stream; revised safety analysis reporting for F and H-Canyon operations; organic carbon analysis of DWPF samples; applications of Fourier transform infrared spectrometry; water chemistry analyzer for SRP reactors; and study of a biological community in Par Pond. Defense waste and laboratory operations activities include: Pu-238 waste incinerator startup; experimental canister frit blaster; saltstone disposal area design; powder metallurgy core diameter measurement; and a new maintenance shop facility. Nuclear materials planning encompasses decontamination and decommissioning of SRP facilities and a comprehensive compilation of environmental and nuclear safety issues. (LEW)

  3. Isotopic Systematics (U, nitrate and Sr) of the F-Area Acidic Contamination Plume at the Savannah River Site: Clues to Contaminant History and Mobility

    Science.gov (United States)

    Christensen, J. N.; Conrad, M. E.; Bill, M.; Denham, M.; Wan, J.; Rakshit, S.; Stringfellow, W. T.; Spycher, N.

    2010-12-01

    Seepage basins in the F-Area of the Savannah River Site were used from 1955 to 1989 for the disposal of low-level radioactive acidic (ave. pH ˜2.9) waste solutions from site operations involving irradiated uranium billets and other materials used in the production of radionuclides. These disposal activities resulted in a persistent acidic groundwater plume (pH as low as 3.2) beneath the F-Area including contaminants such as tritium, nitrate, 90Sr, 129I and uranium and that has impinged on surface water (Four Mile Branch) about 600 m from the basins. After cessation of disposal in 1989, the basins were capped in 1991. Since that time, remediation has consisted of a pump-and-treat system that has recently been replaced with in situ treatment using a funnel-and-gate system with injection of alkaline solutions in the gates to neutralize pH. In order to delineate the history of contamination and the current mobility and fate of contaminants in F-Area groundwater, we have undertaken a study of variations in the isotopic compositions of U (234U/238U, 235U/238U, 236U/238U), Sr (87Sr/86Sr) and nitrate (δ15N, δ18O) within the contaminant plume. This data can be used to trace U transport within the plume, evaluate chemical changes of nitrate, and potentially track plume/sediment chemical interaction and trace the migration of 90Sr. We have analyzed a suite of groundwater samples from monitoring wells, as well as pore-water samples extracted from aquifer sediment cores to map out the isotopic variation within the plume. The isotopic compositions of U from well samples and porewater samples are all consistent with the variable burn-up of depleted U. The variation in U isotopic composition requires at least three different endmembers, without any significant influence of background natural U. The δ15N and δ18O of nitrate from F-Area plume groundwater are distinct both from natural and unaltered synthetic nitrate, and likely represents fractionation due to waste volume

  4. TECHNICAL BASIS FOR DOE STANDARD 3013 EQUIVALENCY SUPPORTING REDUCED TEMPERATURE STABILIZATION OF OXALATE-DERIVED PLUTONIUM OXIDE PRODUCED BY THE HB-LINE FACILITY AT SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, J.; Livingston, R.; Berg, J.; Veirs, D.

    2012-07-02

    The HB-Line (HBL) facility at the Savannah River Site (SRS) is designed to produce high-purity plutonium dioxide (PuO{sub 2}) which is suitable for future use in production of Mixed Oxide (MOX) fuel. The MOX Fuel Fabrication Facility (MFFF) requires PuO{sub 2} feed to be packaged per the U.S. Department of Energy (DOE) Standard 3013 (DOE-STD-3013) to comply with the facility's safety basis. The stabilization conditions imposed by DOE-STD-3013 for PuO{sub 2} (i.e., 950 C for 2 hours) preclude use of the HBL PuO{sub 2} in direct fuel fabrication and reduce the value of the HBL product as MFFF feedstock. Consequently, HBL initiated a technical evaluation to define acceptable operating conditions for production of high-purity PuO{sub 2} that fulfills the DOE-STD-3013 criteria for safe storage. The purpose of this document is to demonstrate that within the defined operating conditions, the HBL process will be equivalent for meeting the requirements of the DOE-STD-3013 stabilization process for plutonium-bearing materials from the DOE complex. The proposed 3013 equivalency reduces the prescribed stabilization temperature for high-purity PuO{sub 2} from oxalate precipitation processes from 950 C to 640 C and places a limit of 60% on the relative humidity (RH) at the lowest material temperature. The equivalency is limited to material produced using the HBL established flow sheet, for example, nitric acid anion exchange and Pu(IV) direct strike oxalate precipitation with stabilization at a minimum temperature of 640 C for four hours (h). The product purity must meet the MFFF acceptance criteria of 23,600 {micro}g/g Pu (i.e., 2.1 wt %) total impurities and chloride content less than 250 {micro}g/g of Pu. All other stabilization and packaging criteria identified by DOE-STD-3013-2012 or earlier revisions of the standard apply. Based on the evaluation of test data discussed in this document, the expert judgment of the authors supports packaging the HBL product under a 3013

  5. Environmental Assessment for the Closure of the High-Level Waste Tanks in F- & H-Areas at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1996-07-31

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the closure of 51 high-level radioactive waste tanks and tank farm ancillary equipment (including transfer lines, evaporators, filters, pumps, etc) at the Savannah River Site (SRS) located near Aiken, South Carolina. The waste tanks are located in the F- and H-Areas of SRS and vary in capacity from 2,839,059 liters (750,000 gallons) to 4,921,035 liters (1,300,000 gallons). These in-ground tanks are surrounded by soil to provide shielding. The F- and H-Area High-Level Waste Tanks are operated under the authority of Industrial Wastewater Permits No.17,424-IW; No.14520, and No.14338 issued by the South Carolina Department of Health and Environmental Control (SCDHEC). In accordance with the Permit requirements, DOE has prepared a Closure Plan (DOE, 1996) and submitted it to SCDHEC for approval. The Closure Plan identifies all applicable or relevant and appropriate regulations, statutes, and DOE Orders for closing systems operated under the Industrial Wastewater Permits. When approved by SCDHEC, the Closure Plan will present the regulatory process for closing all of the F- and H-Area High Level Waste Tanks. The Closure Plan establishes performance objectives or criteria to be met prior to closing any tank, group of tanks, or ancillary tank farm equipment. The proposed action is to remove the residual wastes from the tanks and to fill the tanks with a material to prevent future collapse and bind up residual waste, to lower human health risks, and to increase safety in and around the tanks. If required, an engineered cap consisting of clay, backfill (soil), and vegetation as the final layer to prevent erosion would be applied over the tanks. The selection of tank system closure method will be evaluated against the following Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) criteria described in 40

  6. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    Energy Technology Data Exchange (ETDEWEB)

    KETUSKY, EDWARD

    2005-10-31

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

  7. Analysis of Savannah Survey Sediment Collections of 30 Sep 04

    Energy Technology Data Exchange (ETDEWEB)

    Wimer, N; Hutcheon, I; Esser, B; Ramon, E

    2004-12-03

    This report summarizes laboratory radiochemical analyses of sediment samples collected by the Defense Threat Reduction Agency during the DoD Savannah Survey operations of Sep 04. The analytic goal was to determine if Wassaw Sound sediment collections of 30 Sep 04 display evidence for local anthropogenic uranium, as distinct from the recognized regional background stemming from the Savannah River Site (SRS). Radiochemical methods were selected to maximize detection sensitivity for such anthropogenic uranium. Within the suite of twelve collections, there would be evidence for a localized source if individual collections were to differ from the population as a whole. If in fact non-natural uranium were observed, definitive determination of whether the source was SRS effluent or a localized release would likely involve additional field sampling. These collections were logged by the LLNL Forensics Science Center, photographed, and laboratory chain-of-custody was begun. The inventory received at LLNL is reported in Table 1. The separate collections were not assigned any relative priority among them. LLNL has separately reviewed detailed records of the item in question, and determined what materials are involved and what radiochemical assays are of value. Attempting quantitative estimates of source-item material release, transport, and collection levels would be quite uncertain. Rather, present assays examine for departure from natural background isotopic compositions. To summarize the findings, analyses for all collections displayed natural uranium isotopic composition--considering the {sup 238}U/{sup 235}U and {sup 236}U/{sup 235}U ratios--within measurement uncertainties, which were quite low. No one collection or set of collections stood apart from the others in its uranium isotopes. These {sup 238}U/{sup 235}U data uncertainty levels also determined with 99.5% confidence (a three-standard-deviation determination) that no more than 0.46% of the total uranium present

  8. 25 Years Of Environmental Remediation In The General Separations Area Of The Savannah River Site: Lessons Learned About What Worked And What Did Not Work In Soil And Groundwater Cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Blount, Gerald [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Thibault, Jeffrey [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Millings, Margaret [Savannah River Nuclear Solutions (SRNS), Aiken, SC (United States); Prater, Phil [Savannah River Site (SRS), Aiken, SC (United States)

    2015-03-16

    The Savannah River Site (SRS) is owned and administered by the US Department of Energy (DOE). SRS covers an area of approximately 900 square kilometers. The General Separation Area (GSA) is located roughly in the center of the SRS and includes: radioactive material chemical separations facilities, radioactive waste tank farms, a variety of radioactive seepage basins, and the radioactive waste burial grounds. Radioactive wastes were disposed in the GSA from the mid-1950s through the mid-1990s. Radioactive operations at the F Canyon began in 1954; radioactive operations at H Canyon began in 1955. Waste water disposition to the F and H Seepage Basins began soon after operations started in the canyons. The Old Radioactive Waste Burial Ground (ORWBG) began operations in 1952 to manage solid waste that could be radioactive from all the site operations, and ceased receiving waste in 1972. The Mixed Waste Management Facility (MWMF) and Low Level Radioactive Waste Disposal Facility (LLRWDF) received radioactive solid waste from 1969 until 1995. Environmental legislation enacted in the 1970s, 1980s, and 1990s led to changes in waste management and environmental cleanup practices at SRS. The US Congress passed the Clean Air Act in 1970, and the Clean Water Act in 1972; the Resource Conservation and Recovery Act (RCRA) was enacted in 1976; the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA) was enacted by Congress in 1980; the Federal Facilities Compliance Act (FFCA) was signed into law in 1992. Environmental remediation at the SRS essentially began with a 1987 Settlement Agreement between the SRS and the State of South Carolina (under the South Carolina Department of Health and Environmental Control - SCDHEC), which recognized linkage between many SRS waste management facilities and RCRA. The SRS manages several of the larger groundwater remedial activities under RCRA for facilities recognized early on as environmental problems. All subsequent

  9. INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Bryan, L.; Mathews, T.

    2012-03-30

    source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in

  10. INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE

    Energy Technology Data Exchange (ETDEWEB)

    Looney, B.; Bryan, L.; Mathews, T.

    2012-03-30

    source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in

  11. Final Report for the Intermountain Center for River Rehabilitation and Restoration (ICRRR)

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, John C. [Utah State Univ., Logan, UT (United States)

    2016-08-19

    The Intermountain Center for River Rehabilitation and Restoration (ICRRR) was created in 2006 by the Department of Watershed Sciences to help meet the challenge of reversing national trends in freshwater ecosystem degradation. The ICRRR was disbanded in 2015, and its activities were transferred to other research centers within the Department of Watershed Sciences. The mission of the ICRRR was to advance the science and practice of river restoration and environmental management and to transfer that knowledge to the public and private sectors by undertaking targeted research, teaching, and extension/outreach activities. The ICRRR had two foci: restoration practices of small streams and rehabilitation of intermediate and large rivers. The ICRRR focused its work in the western United States.

  12. Oak Park and River Forest High School Random Access Information Center; A PACE Program. Report II.

    Science.gov (United States)

    Oak Park - River Forest High School, Oak Park, IL.

    The specifications, planning, and initial development phases of the Random Access Center at the Oak Park and River Forest High School in Oak Park, Illinois, are described with particular attention to the ways that the five functional specifications and the five-part program rationale were implemented in the system design. Specifications, set out…

  13. Biomonitoring of Environmental Status and Trends (BEST) Program: Environmental contaminants, health indicators, and reproductive biomarkers in fish from the Mobile, Apalachicola-Chattahoochee-Flint, Savannah, and Pee Dee River Basins

    Science.gov (United States)

    Hinck, Jo Ellen; Blazer, Vicki; Denslow, Nancy D.; Echols, Kathy R.; Gale, Robert W.; May, Tom W.; Claunch, Rachael; Wieser, Carla; Anderson, Patrick J.; Coyle, James J.; Gross, Timothy S.; Tillitt, Donald E.

    2007-01-01

    Largemouth bass (Micropterus salmoides) and common carp (Cyprinus carpio) were collected from 13 sites in 4 river basins in the southeastern United States to document spatial trends in accumulative contaminants, health indicators, and reproductive biomarkers. Organochlorine residues, 2,3,7,8- tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ), and elemental contaminants were measured in composite samples of whole fish, grouped by species and gender, from each site. Fish were field-examined for external and internal anomalies, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Mercury concentrations in bass samples from all sites exceeded toxicity thresholds for mammals [>0.1 micrograms per gram wet weight (ug/g ww)], fish (>0.2 ug/g ww), and birds (>0.3 ug/g ww) and were greatest (>0.5 ug/g ww) in samples from the Alabama River at Eureka Landing, Alabama; the Mobile River at Bucks, Alabama; the Apalachicola River at Blountstown, Florida; the Savannah River at Sylvania, Georgia; and the Pee Dee River at Bucksport, South Carolina. Selenium concentrations were relatively high (>0.75 ug/g ww) in fish from the Tombigbee River at Lavaca, Alabama; the Mobile River at Bucks; and the Chattahoochee River at Omaha, Georgia compared to those from other sites. Concentrations of 2,2-bis (p-chlorophenyl)- 1,1-dichloroethylene (p,p'-DDE) were high in fish from the Chattahoochee River at Omaha and the Mobile River near Bucks, which was near a 2,2-bis (p-chlorophenyl)-1,1- dichloroethylene (DDT) formulating facility that historically discharged into the lower Mobile River. Toxaphene concentrations in fish from the Flint River near Albany, Georgia (60-100 nanograms per gram (ng/g) ww) may pose a risk to fish. Concentrations of other formerly used (total chlordanes, dieldrin, endrin, aldrin, mirex, and hexachlorobenzene) and currently used (pentachlorobenzene, pentachloroanisole

  14. Geochemical disturbance of soil cover in the nonferrous mining centers of the Selenga River basin.

    Science.gov (United States)

    Timofeev, Ivan V; Kosheleva, Natalia E

    2016-07-04

    The anthropogenic geochemical transformation of soil cover in large nonferrous mining centers of the Selenga River basin was assessed. The results of the geochemical survey of 2010-2012 revealed the spatial distribution patterns and abundances of 18 hazardous heavy metals and metalloids in the soils of Erdenet (Mongolia) and Zakamensk (Buryat republic, Russian Federation). In both cities, mining activities disturbed soil cover which accumulates Mo, Cu, As, Sb, W in Erdenet and Bi, W, Cd, Be, Pb, Mo, Sb in Zakamensk. Maximum accumulation of elements in Erdenet is restricted to the industrial zone. In Zakamensk, it has spread on ½ of the territory with the degree of multielemental pollution exceeding the extremely dangerous level by 16 times. The effect of mining centers on the state of the river system is local and does not spread to the Selenga River. Downstream from Erdenet, an artificial pool intercepts heavy metal and metalloid flows of the Erdenetii-Gol River. By contrast, downstream from the tailing dumps of the Dzhida tungsten-molybdenum plant the concentrations of ore elements W and Mo and their accessories Bi and Cd in the Modonkul River exceed background values by 146, 20, 57, and 21 times, respectively, decreasing by an order of magnitude 30 km downstream.

  15. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  16. DOE ORDER 435.1, IMPLEMENTATION AND COMPLIANCE DECLARATION AT THE SAVANNAH RIVER SITE AND ACROSS THE DOE COMPLEX IN CONTRAST TO CURRENT PUSHBACK EFFORTS FROM THE ''TOP-TO-BOTTOM'' REVIEW

    Energy Technology Data Exchange (ETDEWEB)

    GOLDSTON, WELFORD T.; SMITH, WINCHESTER IV

    2003-02-27

    DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site. DOE-SR and the site contractors worked closely together to implement each of the new requirements across the SRS, crossing many barriers and providing innovative solutions to the many problems that surfaced throughout the year. The results are that SRS declared compliance with all of the requirements of the Order within the prescribed timeframe. The challenge included all waste types in SRS facilities and programs that handle LLW, MLLW, TRU, and HLW. This paper will describe the implementation details for development of Radioactive Waste Management Basis for each facility, Identification of Wastes with No Path to Disposal, Waste Incidental to Reprocessing Determinations, Low Level Waste 90-Day Staging and One Year Limits for Storage Programs, to name a few of the requirements that were addressed by the SRS 435.1 Implementation Team. This paper will trace the implementation, problems (both technical and administrative), and the current pushback efforts associated with the DOE ''Top-to-Bottom'' review.

  17. Characterization of groundwater flow and transport in the General Separations Area, Savannah River Plant: Effect of groundwater withdrawals on the Tuscaloosa-Congaree aquifer head reversal in H Area. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spalding, C.P.; Duffield, G.M.; Shaw, S.T. [GeoTrans, Inc., Herndon, VA (United States)

    1988-01-01

    The Savannah River Plant (SRP) has maintained a number of sites used for land disposal of various waste materials. The General Separations Area at SRP, located between the Upper Three Runs and Four Mile Creeks, has served as an active area for waste storage for about thirty years. The Tuscaloosa aquifer, which lies beneath the General Separations Area, is a water source for SRP and the surrounding area. The isolation of the Tuscaloosa aquifer has been maintained by an upward hydraulic gradient from the Tuscaloosa aquifer to the overlying Congaree aquifer. This upward gradient is referred to as a hydraulic head reversal in the General Separations Area, i.e., hydraulic heads in the upper Tuscaloosa are higher than hydraulic heads in the Congaree. This head reversal has declined in recent years due to increased groundwater pumping in the upper and lower Tuscaloosa formations. The objective of this investigation is to assess the effects of pumping within the General Separations Area on the Congaree/upper Tuscaloosa head reversal. Methods of maintaining future Tuscaloosa aquifer isolation through the optimization of groundwater withdrawal location and rate were studied. Steady-state and transient groundwater flow models were used to characterize past and potential future groundwater conditions. Future groundwater conditions were simulated for a variety of pumping scenarios.

  18. [Shifting path of industrial pollution gravity centers and its driving mechanism in Pan-Yangtze River Delta].

    Science.gov (United States)

    Zhao, Hai-Xia; Jiang, Xiao-Wei; Cui, Jian-Xin

    2014-11-01

    Shifting path of industrial pollution gravity centers is the response of environmental special formation during the industry transfer process, in order to prove the responding of industrial pollution gravity centers to industry transfer in economically developed areas, this paper calculates the gravity centers of industrial wastewater, gas and solid patterns and reveals the shifting path and its driving mechanism, using the data of industrial pollution in the Pan-Yangtze River Delta from 2000 to 2010. The results show that the gravity center of the industrial waste in Pan-Yangtze River Delta shifts for sure in the last 10 years, and gravity center of solid waste shifts the maximum distance within the three wastes, which was 180.18 km, and shifting distances for waste gas and waste water were 109.51 km and 85.92 km respectively. Moreover, the gravity center of the industrial waste in Pan-Yangtze River Delta shifts westwards, and gravity centers of waste water, gas and solid shift for 0.40 degrees, 0.17 degrees and 0.03 degrees respectively. The shifting of industrial pollution gravity centers is driven by many factors. The rapid development of the heavy industry in Anhui and Jiangxi provinces results in the westward shifting of the pollutions. The optimization and adjustment of industrial structures in Yangtze River Delta region benefit to alleviating industrial pollution, and high-polluting industries shifted to Anhui and Jiangxi provinces promotes pollution gravity center shifting to west. While the development of massive clean enterprise, strong environmental management efforts and better environmental monitoring system slow the shifting trend of industrial pollution to the east in Yangtze River Delta. The study of industrial pollution gravity shift and its driving mechanism provides a new angle of view to analyze the relationship between economic development and environmental pollution, and also provides academic basis for synthetical management and control of

  19. Investigation on the Combined Use of Ground Penetrating Radar, Cone Penetrometer and High Resolution Seismic Data for Near Surface and Vadose Zone Characterization in the A/M Area of the Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, D.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Cumbest, R.J.; Aadland, R.K.; Syms, F.H.; Stephenson, D.E.; Sherrill, J.C.

    1997-06-01

    This study compares data from Cone Penetrometer Tests (CPT), high resolution surface reflection seismic (HRS) data and ground penetrating radar (GPR) data in the upper 120 feet (40 meters) of the A/M Area, Upper Three Runs Watershed at the Savannah River Site in South Carolina. The CPT, GPR, and HRS data were obtained along the Silverton Road in the western sector of the A/M Area groundwater plume, and adjacent to Geophysical Correlation Boring {number_sign}1 (GCB-1). This location allows for multiple correlations to be made between the various data sources, and supports shallow investigations for near surface affects of the Crackerneck Fault, a major structural feature in the area. Borehole geophysical data from GCB-1 were used to provide subsurface constraints on the CPT, GPR, and HRS data. core data, natural gamma ray, spectral gamma data, multi-level induction resistivity, density and sonic data were utilized to distinguish clays, sands and silts. The CPT data provided tip bearing and sleeve stress, as an indicator of stratigraphy. Reflection seismic data provided continuous subsurface profiles of key marker horizons. Ground Penetrating Radar provided information on shallow subsurface geological features. Conclusions from this study suggest that there is a high degree of correlation between the CPT and borehole geophysical data, specifically, the Friction Ratio and gamma/spectral gamma curves. The Upland/Tobacco Road, Tobacco Road/Dry Branch, Dry Branch/Santee, Santee/Warley Hill and the Warley Hill/Congaree contacts are discernible. From these contacts it is possible to map structural relationships in the shallow subsurface that are tied to regional data. Because formation contacts are discernible, CPT, HRS, GPR, and geophysical log intra-formational anomalies are mappable. These features allow for stratigraphic and facies mapping using the GPR and HRS data for continuity and the CPT and geophysical data for lithofacies analysis. It is possible to use the

  20. 76 FR 10522 - Naval Surface Warfare Center, Upper Machodoc Creek and the Potomac River, Dahlgren, VA; Danger Zone

    Science.gov (United States)

    2011-02-25

    ... and the Potomac River, Dahlgren, VA; Danger Zone AGENCY: U.S. Army Corps of Engineers, DoD. ACTION... danger zone in the vicinity of Naval Surface Warfare Center, Dahlgren, in King George County, Virginia..., and expands the boundaries of a portion of the danger zone. The amendment is necessary to protect...