14 CFR 27.27 - Center of gravity limits.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must...
14 CFR 29.27 - Center of gravity limits.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of...
14 CFR 27.1519 - Weight and center of gravity.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Weight and center of gravity. 27.1519 Section 27.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 27.1519 Weight and center of gravity. The weight and center of gravity...
14 CFR 29.1519 - Weight and center of gravity.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Weight and center of gravity. 29.1519 Section 29.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Operating Limitations § 29.1519 Weight and center of gravity. The weight and center of gravity...
14 CFR 25.27 - Center of gravity limits.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 25.27 Section 25... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight General § 25.27 Center of gravity limits. The extreme forward and the extreme aft center of gravity limitations must be established for each...
Center of Gravity - Libya 1989
1989-05-01
Umbride Atlas of the Middle East and North Africa. Cambridge.Cambridge University Press, 1987 Clausewltz, Carl Von. UW.. Princeton, NJ: Princeton...Qaddafi, Muammar. OWdhafi’s Green B__, Henry M. Christman, ed. Buffalo, NY: Prometheus Books, 1988 Sicker, Martin. The Making of a Pariah State. New York
The Effect of Center of Gravity and Anthropometrics on Human Performance in Simulated Lunar Gravity
Mulugeta, Lealem; Chappell, Steven P.; Skytland, Nicholas G.
2009-01-01
NASA EVA Physiology, Systems and Performance (EPSP) Project at JSC has been investigating the effects of Center of Gravity and other factors on astronaut performance in reduced gravity. A subset of the studies have been performed with the water immersion technique. Study results show correlation between Center of Gravity location and performance. However, data variability observed between subjects for prescribed Center of Gravity configurations. The hypothesis is that Anthropometric differences between test subjects could be a source of the performance variability.
14 CFR 23.1519 - Weight and center of gravity.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Weight and center of gravity. 23.1519 Section 23.1519 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Limitations and Information § 23.1519 Weight and center of gravity. The weight and center of...
Effect of Changing the Center of Gravity on Human Performance in Simulated Lunar Gravity
Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.
2010-01-01
The presentation slides include: Moving Past Apollo, Testing in Analog Environments, NEEMO/NBL CG (center of gravity) Studies, Center of Gravity Test Design and Methods, CG Suited Locations and Results, CG Individual Considerations, CG Shirt-Sleeve Locations and Results.
System Finds Horizontal Location of Center of Gravity
Johnston, Albert S.; Howard, Richard T.; Brewster, Linda L.
2006-01-01
An instrumentation system rapidly and repeatedly determines the horizontal location of the center of gravity of a laboratory vehicle that slides horizontally on three air bearings (see Figure 1). Typically, knowledge of the horizontal center-of-mass location of such a vehicle is needed in order to balance the vehicle properly for an experiment and/or to assess the dynamic behavior of the vehicle. The system includes a load cell above each air bearing, electronic circuits that generate digital readings of the weight on each load cell, and a computer equipped with software that processes the readings. The total weight and, hence, the mass of the vehicle are computed from the sum of the load-cell weight readings. Then the horizontal position of the center of gravity is calculated straightforwardly as the weighted sum of the known position vectors of the air bearings, the contribution of each bearing being proportional to the weight on that bearing. In the initial application for which this system was devised, the center- of-mass calculation is particularly simple because the air bearings are located at corners of an equilateral triangle. However, the system is not restricted to this simple geometry. The system acquires and processes weight readings at a rate of 800 Hz for each load cell. The total weight and the horizontal location of the center of gravity are updated at a rate of 800/3 approx. equals 267 Hz. In a typical application, a technician would use the center-of-mass output of this instrumentation system as a guide to the manual placement of small weights on the vehicle to shift the center of gravity to a desired horizontal position. Usually, the desired horizontal position is that of the geometric center. Alternatively, this instrumentation system could be used to provide position feedback for a control system that would cause weights to be shifted automatically (see Figure 2) in an effort to keep the center of gravity at the geometric center.
46 CFR 170.200 - Estimated lightweight vertical center of gravity.
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Estimated lightweight vertical center of gravity. 170... Centers of Gravity § 170.200 Estimated lightweight vertical center of gravity. (a) Each tank vessel that... calculations required by §§ 170.170 and 172.065, the vertical center of gravity of a tank vessel in...
14 CFR 29.29 - Empty weight and corresponding center of gravity.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Empty weight and corresponding center of gravity. 29.29 Section 29.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity...
14 CFR 27.29 - Empty weight and corresponding center of gravity.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Empty weight and corresponding center of gravity. 27.29 Section 27.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must...
14 CFR 25.29 - Empty weight and corresponding center of gravity.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Empty weight and corresponding center of gravity. 25.29 Section 25.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must...
Alternatives to Center of Gravity Analysis
2013-04-04
20 Figure 11. SWOT Analysis ...SMTs for external and internal environment analysis to identify a basis for a company to recognize areas of opportunity, strategic options, and...Opportunities, and Threats ( SWOT ) analysis . SWOT identifies external and internal factors that impinge on the business (Figure 11). SWOT can be as
The Center of Gravity, Systemically Understood
2013-05-23
the concept still possesses usefulness, although the risk does exist that the term could slip into cognitive obscurity or simply remain the topic...aerial over flights and photography .”75 Because of the systemic approach that Abrams and his team took, the operation achieved great success while
14 CFR 23.29 - Empty weight and corresponding center of gravity.
2010-01-01
... gravity. 23.29 Section 23.29 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF... Flight General § 23.29 Empty weight and corresponding center of gravity. (a) The empty weight and corresponding center of gravity must be determined by weighing the airplane with— (1) Fixed ballast;...
Strain telemetry for load identification and center of gravity measurement
Ruddock, David Christopher
The location of the center of gravity is critical to the ability of an aircraft to sustain flight. When an aircraft is loaded improperly, its center of gravity can shift creating instability during takeoff, flight and landings. If the aircraft is properly instrumented, the effects of the loading process can be monitored to insure that the center of gravity location remains within an acceptable region of the aircraft. In aircraft applications, any additional weight or maintenance time can represent an unacceptable increase in operational costs. For purposes of limiting the weight impact of the load identification systems, several steps were taken in this study. Strain gages were used due to their small size and weight; a telemetry system was employed to eliminate the need for wires; and various techniques were implemented to eliminate the need for batteries in the telemetry system. With the batteries removed, the routine maintenance on the system is all but eliminated. Three telemetry systems were developed for potential use in telemetry for strain measurements. The first system used a voltage controlled oscillator (VCO) with a conventional Wheatstone bridge circuit and was only functional with the use of a battery. The second system used a resistor-capacitor circuit to produce strain measurement. This was powered through inductive coupling. The third system was a commercial telemetry system used in conjunction with solar cells. The identification of load through the use of strain gages was demonstrated through the use of a custom-made test fixture. Strain gages were installed on three supports which acted as the landing gear of the aircraft. A finite element model of the test rig was created to collaborate with the experimental data, as well as to aid in the determination of potential algorithms for the measurement of the load location. The results showed that telemetry systems can be an effective means for measuring strain and that strain measurement can be
An Air Campaign for a Second Korean War: A Strategy for Attacking the Centers of Gravity
1992-05-18
for a Second Korean War. The author argues that North Korea has three concentric centers of gravity--one each at the strategic, operational, and...tactical level. The strategic center is the national and military leadership; the operational center is the North Korean Integrated Air Defense System; the...Second Korean War. The author argues that North Korea has three concentric centers of gravity--one each at the strategic, operational, and tactical
Japanese Oceanographic Data Center Japan Land Gravity
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (4,381 records) were compiled by the Japanese Oceanographic Data Center. This data base was received in July 1988. The data are in the...
Romero-Franco, Natalia; Martínez-López, Emilio; Lomas-Vega, Rafael; Hita-Contreras, Fidel; Martínez-Amat, Antonio
2012-08-01
The purpose of this study was to determinate the effect of a 6-week specific-sprinter proprioceptive training program on core stability and gravity center control in sprinters. Thirty-three athletes (age = 21.82 ± 4.84 years, height = 1.76 ± 0.07 m, weight = 67.82 ± 08.04 kg, body mass index = 21.89 ± 2.37 kg · m(-2)) from sprint disciplines were divided into a control (n = 17) and experimental (n = 16) groups. A 30-minute proprioceptive training program was included in the experimental group training sessions, and it was performed for 6 weeks, 3 times each week. This program included 5 exercises with the BOSU and Swiss ball as unstable training tools that were designed to reproduce different moments of the technique of a sprint race. Stability with eyes open (EO) and eyes closed, postural stability, and gravity center control were assessed before and after the training program. Analyses of covariance (α = 0.05) revealed significant differences in stability in the medial-lateral plane with EO, gravity center control in the right direction and gravity center control in the back direction after the exercise intervention in the experimental athletes. Nevertheless, no other significant differences were demonstrated. A sprinter-specific proprioceptive training program provided postural stability with EO and gravity center control measures improvements, although it is not clear if the effect of training would transfer to the general population.
Mulugeta, Lealem; Chappell, Steven P.
2009-01-01
Drawing from the experiences of the Apollo missions, it is evident that the off nominal center of gravity (CG) induced by the portable life support system (PLSS) had significant impact on the locomotion stability of the crew. This in turn is believed to have been a major contributor to the high numbers of falls and high metabolic rates experienced by the crew, and thus significantly hampered the crew s performance. With this in mind, the EVA Physiology, Systems and Performance (EPSP) group at the NASA Johnson Space Center (JSC) has been conducting tests to assess how spacesuit CG location impacts human performance in simulated lunar and Mars gravity. The results acquired to date show correlations between CG location and performance. However, noticeable variations in the performance data have been observed across subjects for fixed CG configurations. Consequently, it was hypothesized that this variability may be attributed to the anthropometrics of the different test subjects. It was further hypothesized that trunk-to-height ratio (THR) may be directly correlated to performance in reduced gravity; i.e. subjects with increased THR may have increased performance. To test this hypothesis, lunar and Mars gravity test data acquired over three years during NASA Neural Buoyancy Lab (NBL) tests and NASA Extreme Environment Missions Operation (NEEMO) missions were analyzed against THR, height, trunk length, and subject body mass/weight. The results of the study supported the hypothesis relating THR and performance, while the other three anthropometric parameters did not provide consistent correlations with performance. This in turn suggests that human performance in reduced gravity may be more dependent on anthropometric proportions than on body segment lengths and mass/weight.
安藤, 勝英; 今栄, 貞吉; 篠原, しげ子; 山内, 賢
2000-01-01
The purpose of this study was to investigate the relation between the center of gravity and muscular strength of muscles of legs. The subjects were sixty-six male students of Keio University. As muscular strength of legs, Leg extension, Leg curl, and Squat were measured using ADR (Aero Dynamic Resistance). The center of gravity was measured using FPS (Foot Pressure System).The following is results:1. Leg extension and the center of gravity; no significant differences. 2. Leg curl and the cent...
Clustering-boundary-detection algorithm based on center-of-gravity of neighborhood
Directory of Open Access Journals (Sweden)
Wang Gui Zhi
2013-07-01
Full Text Available The cluster boundary is a useful model, in order to identify the boundary effectively, according to the uneven distribution of data points int the epsilon neighborhood of boundary objects, this paper proposes a boundary detection algorithm ---- S-BOUND. Firstly, all the points in the epsilon neighborhood of the data objects are projected onto the boundary of the convex hull of the neighborhood, and then calculate the center of gravity of the neighborhood. Finally, detect the boundary object according to the degree of deviation of the center of gravity of the neighborhood with the object. The experimental results show that the S-BOUND algorithm can accurately detect a variety of clustering boundary and remove the noises, the time of performance is also better.
Zhao, Hai-Xia; Jiang, Xiao-Wei; Cui, Jian-Xin
2014-11-01
Shifting path of industrial pollution gravity centers is the response of environmental special formation during the industry transfer process, in order to prove the responding of industrial pollution gravity centers to industry transfer in economically developed areas, this paper calculates the gravity centers of industrial wastewater, gas and solid patterns and reveals the shifting path and its driving mechanism, using the data of industrial pollution in the Pan-Yangtze River Delta from 2000 to 2010. The results show that the gravity center of the industrial waste in Pan-Yangtze River Delta shifts for sure in the last 10 years, and gravity center of solid waste shifts the maximum distance within the three wastes, which was 180.18 km, and shifting distances for waste gas and waste water were 109.51 km and 85.92 km respectively. Moreover, the gravity center of the industrial waste in Pan-Yangtze River Delta shifts westwards, and gravity centers of waste water, gas and solid shift for 0.40 degrees, 0.17 degrees and 0.03 degrees respectively. The shifting of industrial pollution gravity centers is driven by many factors. The rapid development of the heavy industry in Anhui and Jiangxi provinces results in the westward shifting of the pollutions. The optimization and adjustment of industrial structures in Yangtze River Delta region benefit to alleviating industrial pollution, and high-polluting industries shifted to Anhui and Jiangxi provinces promotes pollution gravity center shifting to west. While the development of massive clean enterprise, strong environmental management efforts and better environmental monitoring system slow the shifting trend of industrial pollution to the east in Yangtze River Delta. The study of industrial pollution gravity shift and its driving mechanism provides a new angle of view to analyze the relationship between economic development and environmental pollution, and also provides academic basis for synthetical management and control of
Identifying the Center of Gravity of Afghan Mentoring
2010-12-01
Transition Team Chief, Task Force Phoenix first used this phrase in 2008, in his final “ VTT Brief” to all incoming U.S. mentors in late 2008. 7. Leal...of VTT -Western Afghanistan. 14. Based on my personal observation of the corps- and brigade-level planning process from 26 April to 8 May 2009, and
Center of Gravity in the Asymmetric Environment: Applicable or Not
2006-06-01
the first meeting of the Comite Revolutionnaire occurred on the day the French were defeated at Dien Bien Phu. The atmosphere changed and became...the same type of persona that was to create big problems in the Battle of Algiers. 1. Massu’s First Clash with the FLN The FLN planned a general
Using Center of Gravity Analysis to Defeat Violent Extremist Organizations
2016-04-04
downing of Avianca Airlines Flight 203 that exploded over Bogota while en route to Medellin.3 Due to the systemic corruption present in the... Rivers commonly referenced as al-Qaeda in Iraq (AQI).2 Under the leadership of Abu Musab al-Zarqawi, AQI wreaked havoc in Iraq, attacking coalition
Behind the Mosaic: Insurgent Centers of Gravity and Counterinsurgency
2011-12-01
Echevarria, Antulio J. Clausewitz and Contemporary War. New York: Oxford University Press, 2007. ———. Globalization and the Nature of War. Carlisle: U.S...Mackinlay, John. Globalisation and Insurgency. New York: Oxford University Press, 2002. ———. The Insurgency Archipelago. New York: Columbia...Politics, and the Endgame in Iraq. New York: Random House, 2008. Westad, Odd Arne. The Global Cold War. New York: Cambridge University Press, 2005
Center of Gravity Concept: Informed by the Information Environment
2009-05-18
situations.81 The French philosopher Michel Foucault argues that power cannot be generated by one singular source, but “…is everywhere, not because it...develops this concept further by:“Power is not heterogeneous but can be defined only through the particular points through which it passes.” Michel Foucault ...Martin, Command in War, Cambridge, MA Harvard University Press, 1988. Foucault , Michel, The history of sexuality (translated by Robert Hurley), New
The Chinese Communist Party: A Strategic Center of Gravity Analysis
2012-03-08
voluntary organizations, if left unchecked, could potentially become breeding grounds of future discontent. Hence, following the 1989 Tiananmen Square...Dreyer advises it may be better for Party officials to allow minority regions to become more ―truly‖ autonomous versus their current ― repressive ...nationalist emotions spontaneously bubbling up in the popular psyche.‖304 The Party‘s continued success in completing this vital task serves to further
Chappell, Steve P.; Gernhardt, Michael L.
2009-01-01
Center of gravity (CG) is likely to be an important variable in astronaut performance during partial gravity extravehicular activity (EVA). The Apollo Lunar EVA experience revealed challenges with suit stability and control. The EVA Physiology, Systems and Performance Project (EPSP) in conjunction with the Constellation EVA Systems Project Office have developed plans to systematically understand the role of suit weight, CG and suit pressure on astronaut performance in partial gravity environments. This presentation based upon CG studies seeks to understand the impact of varied CG on human performance in lunar gravity.
A Difference Method of the Gravity Center with Double Pilots for the MC-CDMA System
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A carrier recovery method of the power spectrum center difference adapting to the mobile channel of the MC-CDMA system with serious Doppler shift using double pilots is presented. In the transmitter, two pilots of equal frequency distance to the carrier with one putting on the left position and the other on the right position of the carrier frequency are used. Even if a continuous sine wave is transmitted, the power spectrum is expanded to a Doppler band in the receiver owing to the multi-path transmission and the Doppler shift. The pilot spectrum is made to pass through two narrow band filters which are transformed to the base band with local carrier wave in the receiver. The frequency difference between the local carrier and the transmitter carrier is obtained when the difference of the gravity centers of the two pilot spectra is computed.
Portfolio Evaluation Based on Efficient Frontier Superiority Using Center of Gravity
Directory of Open Access Journals (Sweden)
Omar Samat
2010-01-01
Full Text Available Investing in portfolio of assets is the best way to reduce the investment risk. The most desired portfolio can be obtained when investors chose to invest in the portfolios that lay on the portfolio’s efficient frontier. However, the superiorities of the portfolios are difficult to differentiate especially when the efficient frontier curves are overlapping. This paper proposed the portfolio’s efficient frontier center of gravity (CoG and Euclidean distance to identify its superiority. A sample of 49 stocks of large-cap and small-cap were used to construct two hypothetical portfolios and its efficient frontiers. The Euclidean distance showed that the large-cap portfolio is superior and having wider feasible solutions compared to the small-cap portfolio. The results of new tool introduced are consistent with the conventional methods. Here the theoretical and practical implications are provided in light of the findings.
An international track wheelchair with a center of gravity directional controller.
Cooper, R A
1989-01-01
An international track wheelchair (ITWC) with a center of gravity directional controller (COGDC) is described in this paper. The rules for international track competition disallow devices designed solely for steering. Equipment has been disqualified for having steering handles, crown compensators, and other lever systems. However, the rules do allow tie-rod linkage and the use of springs for dampening caster flutter. The chair described in this paper exploits the physical properties of wheeled vehicles to achieve directional control on the track. This controller is effective, because turning is only required in one direction. Three such track wheelchairs have been developed and were used at the Paralympics in Seoul, Korea, in October of 1988.
Nigeria’s Center(s) of Gravity: A Complex and Violent Operational Environment
2008-02-28
There were several instances when deployed police turned a blind eye while stuffing of ballot boxes, underage voting, and false thumbprinting occurred...President Bush in December 2007.63 Also, Human Rights Watch recently noted “encouraging gestures of respect for the rule of law and the notion of...theft proceeds to fund the purchase of large caches of weapons.188 Drug trafficking by Nigeria became a major issue with the U.S. after the mid
Physical properties of the human head: mass, center of gravity and moment of inertia.
Yoganandan, Narayan; Pintar, Frank A; Zhang, Jiangyue; Baisden, Jamie L
2009-06-19
This paper presents a synthesis of biomedical investigations of the human head with specific reference to certain aspects of physical properties and development of anthropometry data, leading to the advancement of dummies used in crashworthiness research. As a significant majority of the studies have been summarized as reports, an effort has been made to chronologically review the literature with the above objectives. The first part is devoted to early studies wherein the mass, center of gravity (CG), and moment of inertia (MOI) properties are obtained from human cadaver experiments. Unembalmed and preserved whole-body and isolated head and head-neck experiments are discussed. Acknowledging that the current version of the Hybrid III dummy is the most widely used anthropomorphic test device in motor vehicle crashworthiness research for frontal impact applications for over 30 years, bases for the mass and MOI-related data used in the dummy are discussed. Since the development and federalization of the dummy in the United States, description of methods used to arrive at these properties form a part of the manuscript. Studies subsequent to the development of this dummy including those from the US Military are also discussed. As the head and neck are coupled in any impact, and increasing improvements in technology such as advanced airbags, and pre-tensioners and load limiters in manual seatbelts affect the kinetics of the head-neck complex, the manuscript underscores the need to pursue studies to precisely determine all the physical properties of the head. Because the most critical parameters (locations of CG and occipital condyles (OC), mass, and MOI) have not been determined on a specimen-by-specimen basis in any single study, it is important to gather these data in future experiments. These critical data will be of value for improving occupant safety, designing advanced restraint systems, developing second generation dummies, and assessing the injury mitigating
Cloud's center of gravity – a compact approach to analyze convective cloud development
Directory of Open Access Journals (Sweden)
I. Koren
2008-07-01
Full Text Available As cloud resolving models become more detailed, with higher resolution outputs, it is often complicated to isolate the physical processes that control the cloud attributes. Moreover, due to the high dimensionality and complexity of the model output, the analysis and interpretation of the results can be very complicated. Here we suggest a novel approach to convective cloud analysis that yields more insight into the physical and temporal evolution of clouds, and is compact and efficient. The different (3-D cloud attributes are weighted and projected onto a single point in space and in time, that has properties of, or similar to, the Center Of Gravity (COG. The location, magnitude and spread of this variable are followed in time. The implications of the COG approach are demonstrated for a study of aerosol effects on a warm convective cloud. We show that in addition to reducing dramatically the dimensionality of the output, such an approach often enhances the signal, adds more information, and makes the physical description of cloud evolution clearer, allowing unambiguous comparison of clouds evolving in different environmental conditions. This approach may also be useful for analysis of cloud data retrieved from surface or space-based cloud radars.
SLR Station Recovery, Center of Frame Motion, and Time Varying Gravity
Zelensky, Nikita P.; Lemoine, Frank G.; Chinn, Douglas S.; Melachroinos, Stavros; Wiser Beall, Jennifer; Larson, Jordan D.
2012-01-01
Weekly station position estimates, beginning with 1993, are derived from the ITRF2008-based SLR processing of up to four satellites: Lageos 1, Lageos2, Starlette, and Stella. Helmert parameters obtained from c omparison of weekly SLR station positions and the a-priori SLRF2008 station complement are evaluated for geocenter motion and scale. Two me thods for modeling time varying gravity are employed in the SLR satel lite POD processing, with GGM03S serving as the static gravity field. Both methods forward model atmosphere gravity derived from 6-hour ECM WF pressure data. The standard approach applies an annual 20x20 field estimated from 4 years of GRACE data, and the IERS2003 recommended linear rates for C20, C30, C40, C21, and S21. The alternate approach us es a new set of low-order/degree 4x4 coefficients estimated weekly fr om SLR & DORIS processing to 10 satellites from 1993-2012. This exper imental tvg4x4 model has been shown to improve the TOPEX, Jason-1, and Jason-2 altimeter satellite orbits,. In this paper we apply the more detailed time-variable gravity modeling to the SLR satellite POD pro cessing and subsequent reference frame analyses. For this study we will evaluate the orbit differences (periodic and secular) for the satel lites concerned, characterize the impact on the station coordinate solutions, and the impact on reference frame parameters (geocenter and s cale).
Santoso, Agus; Sismanto, Setiawan, Ary; Pramumijoyo, Subagyo
2016-05-01
Ancient eruption centers can be determined by detecting the position of the ancient volcanic material, it is important to understand the elements of ancient volcanic material by studying the area geologically and prove the existence of an ancient volcanic eruption centers using geophysics gravity method. The measuring instrument is Lacoste & Romberg gravimeter type 1115, the number of data are 900 points. The area 60×40 kilometers, the modeling 3D software is reaching depth of 15 km at the south of the island of Java subduction zone. It is suported by geological data in the field that are found as the following: 1. Pyroclastic Fall which is a product of volcanic eruptions, and lapilli tuff with felsic mineral. 2. Pyroclastic flow with Breccia, tuffaceous sandstone and tuff breccia. 3. Hot springs near Parangwedang Parangtritis. 4. Igneous rock with scoria structure in Parang Kusumo, structured amigdaloida which is the result of the eruption of lava/volcanic eruptions, and Pillow lava in the shows the flowing lava into the sea. Base on gravity anomaly shows that there are strong correlationship between those geological data to the gravity anomaly. The gravblox modeling (3D) shows the position of ancient of volcanic eruption in this area clearly.
Yoo, Won-Gyu
2015-10-01
[Purpose] This study developed a backpack with a low center of gravity (LCG) and investigated the effects of the LCG backpack on the trunk stability of mountaineers while ascending and descending. [Subjects and Methods] Ten males aged 20-32 years were recruited. The subjects ascended and descended a road with an inclination of 30 degrees wearing the standard or LCG backpack, and trunk acceleration was measured using a tri-axial accelerometer. [Results] The anterior-posterior (AP) and medial-lateral (ML) trunk acceleration while ascending and descending with the LCG backpack were significantly lower than those with the standard backpack. [Conclusion] The results suggest that the LCG backpack could prevent falling injuries during mountaineering and mountain-related activities.
Yoo, Won-gyu
2015-01-01
[Purpose] This study developed a backpack with a low center of gravity (LCG) and investigated the effects of the LCG backpack on the trunk stability of mountaineers while ascending and descending. [Subjects and Methods] Ten males aged 20–32 years were recruited. The subjects ascended and descended a road with an inclination of 30 degrees wearing the standard or LCG backpack, and trunk acceleration was measured using a tri-axial accelerometer. [Results] The anterior-posterior (AP) and medial-lateral (ML) trunk acceleration while ascending and descending with the LCG backpack were significantly lower than those with the standard backpack. [Conclusion] The results suggest that the LCG backpack could prevent falling injuries during mountaineering and mountain-related activities. PMID:26644687
DEFF Research Database (Denmark)
Skielboe, Andreas
Gravity governs the evolution of the universe on the largest scales, and powers some of the most extreme objects at the centers of galaxies. Determining the masses and kinematics of galaxy clusters provides essential constraints on the large-scale structure of the universe, and act as direct probes...
Center of Gravity Compensation for Dynamically-Balanced Two-Wheeled Wheelchair System
Acar, Cihan; Murakami, Toshiyuki
Two-wheeled systems have many advantages compared to statically stable systems. This paper describes a control strategy of dynamically-balanced two-wheeled wheelchair system that does not have any front casters. In this system, rider can sit the seat and control the motion of the system by adjusting CoG of his/her body. Unlike other commercial two-wheeled systems, CoG position of the upper body is mainly determined by the position of the user. Thus, there is a possibility that CoG position may not overlap with the wheel axis. In that case, sensor information cannot be used to measure the exact position of the CoG. This paper shows an estimation of method of the unknown CoG position for Two-Wheeled Dynamically-Balanced Wheelchair (TWDBW) is considered. Gravity torque observer with a compliance control is utilized to realize stable compensation according to the variable CoG position. Backstepping based nonlinear control design is applied to regulate and track the CoG motion of the upper body in the TWDBW. The validity of proposed method is verified by simulation and experimental results.
Institute of Scientific and Technical Information of China (English)
杜朝正
2016-01-01
Through the population gravity center model theory, the population gravity center migration trajectory in Heze during 2003-2012 was obtained using GIS technology, the population gravity center migration laws were studied, and the main influencing factors were analyzed. The research showed that, Heze`s population gravity center was closed to geometric center;the migration of total population gravity center was related to non-agricultural population gravity center, male gravity center and female gravity center, the migration trends were similar;the trend of the gravity center from southeast to northwest migration was obvious;the migration of population gravity center was affected by many factors, such as population migration, natural population growth rate, social economy in Heze City.%通过重心模型相关理论，借助ArcGIS软件技术绘制2003～2012年菏泽市人口重心迁移轨迹，研究人口重心迁移规律，并分析影响其移动的主要因素。研究表明，菏泽市人口重心与菏泽市几何中心相接近；菏泽市总人口的人口重心迁移与菏泽市非农业人口重心、男性人口重心、女性人口重心具有关联性，移动趋势相近；菏泽市人口重心迁移的总趋势是由东南向西北方向移动；人口重心迁移受人口的迁入迁出、人口的自然增长率、菏泽市的社会经济状况等多种因素影响。
Exponential Growth and the Shifting Global Center of Gravity of Science Production, 1900-2011
Zhang, Liang; Powell, Justin J. W.; Baker, David P.
2015-01-01
Long historical trends in scientific discovery led mid-20th century scientometricians to mark the advent of "big science"--extensive science production--and predicted that over the next few decades, the exponential growth would slow, resulting in lower rates of increase in production at the upper limit of a logistic curve. They were…
Locating the Center of Gravity: The Dance of Normal and Frictional Forces
Balta, Nuri
2012-01-01
Teaching physics concepts with the basic materials that are around us is one of the beauties of physics. Without expensive lab materials and long experiments, many physics concepts can be taught to students using simple tools. Demonstrations with these tools can be presented as discrepant events that surprise, amaze, or puzzle students. Greenslade…
Z-2 Suit Support Stand and MKIII Suit Center of Gravity Test
Nguyen, Tuan Q.
2014-01-01
NASA's next generation spacesuits are the Z-Series suits, made for a range of possible exploration missions in the near future. The prototype Z-1 suit has been developed and assembled to incorporate new technologies that has never been utilized before in the Apollo suits and the Extravehicular Mobility Unit (EMU). NASA engineers tested the Z-1 suit extensively in order to developed design requirements for the new Z-2 suit. At the end of 2014, NASA will be receiving the new Z-2 suit to perform more testing and to further develop the new technologies of the suit. In order to do so, a suit support stand will be designed and fabricated to support the Z-2 suit during maintenance, sizing, and structural leakage testing. The Z-2 Suit Support Stand (Z2SSS) will be utilized for these purposes in the early testing stages of the Z-2 suit.
Center of Gravity Determination and Implications for the War Against Radical Islamic Terrorism
2007-11-02
Friedrich Hegel emphasized the need for conflict to achieve qualitative change and Karl Marx emphasized the need to consciously take part in the historical...risks, and prospects for even a fraction of the success achieved. In 1847, Mark Engels boasted that Communism was 17 “a specter haunting Europe”91
America’s Two-Front War: The American Media Assault on our Center of Gravity
2006-04-14
satire ." Colin Powell (1991)3 Introduction Carl Von Clausewitz, noted German soldier, writer, and strategist, described war "as a remarkable trinity" in...military operations. Military operations in the 15 years since the first Persian Gulf War are now measured against that conflict in terms of quick...escaped up north to fight another day.92 The media may not have been satisfied with the way military events in the Persian Gulf were covered, but
The Global War on Terrorism: Idealogy as its Strategic Center of Gravity
2006-05-31
experiences of Lebanon, the Shia uprising after the Gulf War, and Somalia. As Quintan Wiktorowicz correctly points out: such an enemy cannot be eradicated...Kepel, 136-150, 363-366. 74 Quintan Wiktorowicz, Global Jihad (Falls Church, VA: Sound Room Publishers 2002), 5. 30 75 Progressive Muslim is...Brooks/Cole, 1991. Warden, John A., III, Col. USAF. “The Enemy as a System.” Airpower Journal 9 (Spring 1995): 40-55. Wiktorowicz, Quintan . Global Jihad. Falls Church, VA: Sound Room Publishers, 2002. 36
Bukley, Angie; Paloski, William; Clement, Gilles
2006-01-01
This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.
Barkin, Yury
2010-05-01
The summary. On the basis of geodynamic model of the forced relative displacement of the centers of mass of the core and the mantle of the Earth the secular variations of a gravity and heights of some gravimetry stations on a surface of the Earth have ben studied. At the account of secular drift of the center of mass of the Earth which on our geodynamic model is caused by the unidirectional drift of the core of the Earth relatively to the mantle, the full explanation is given to observable secular variations of a gravity at stations Ny-Alesund (Norway), Churchill (Canada), Medicine (Italy), Sayowa (Antarctica), Strastburg (France), Membach (Belgium), Wuhan (China) and Metsahovi (Finland). Two new methods of determination of secular drift of the center of mass of the Earth, alternative to classical method of a space geodesy are offered: 1) on the basis of gravimetry data about secular trends of a gravity at the stations located on all basic regions of the Earth; 2) on the basis of the comparative analysis of altimetry and coastal data about secular changes of sea level also in basic regions of ocean. 1. Secular drift of the center of mass of the core and the center of mass of the Earth. A secular drift of the center of mass of the Earth to the North relatively to special center O on an axis of rotation of the Earth for which the coefficient of third zonal harmonic J3' = 0, has been predicted in the author work [1]. A drift in a direction to a geographical point (pole P) 70°0 N and 104°3 E has been established for the first time theoretically - as a result of the analysis of the global directed redistribution of masses of the Earth, explaining the observed secular drift of the pole of an axis of rotation of the Earth and not tidal acceleration of its axial rotation [2]. In [1] velocity of drift it has been estimated in 1-2 cm/yr. For specified center O the figure of a planet is as though deprived of pure-shaped form (J3' = 0). And in this sense the point O can be
Quantization of emergent gravity
Yang, Hyun Seok
2015-02-01
Emergent gravity is based on a novel form of the equivalence principle known as the Darboux theorem or the Moser lemma in symplectic geometry stating that the electromagnetic force can always be eliminated by a local coordinate transformation as far as space-time admits a symplectic structure, in other words, a microscopic space-time becomes noncommutative (NC). If gravity emerges from U(1) gauge theory on NC space-time, this picture of emergent gravity suggests a completely new quantization scheme where quantum gravity is defined by quantizing space-time itself, leading to a dynamical NC space-time. Therefore the quantization of emergent gravity is radically different from the conventional approach trying to quantize a phase space of metric fields. This approach for quantum gravity allows a background-independent formulation where space-time and matter fields are equally emergent from a universal vacuum of quantum gravity.
Directory of Open Access Journals (Sweden)
Animesh Mukherjee
1991-01-01
Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.
美国战略重心东移的特点%The Characteristics of America Strategic Center of Gravity Eastward
Institute of Scientific and Technical Information of China (English)
徐明达
2015-01-01
Since the Obama administration took office, American began to implement the strategic center of gravity ,eastward policy. The strategic focus from Europe, the Middle East to the Asia Pacific Region. In a series of strategic initiatives, America gradually show characteristics of revealing its strategic focus eastward. This article from the strategic perspective, analyzes the characteristics of the strategic center of gravity eastward of USA.%自奥巴马政府上台以来，美国开始推行战略重心东移政策，将战略重点从欧洲、中东地区转向亚太。在一系列的战略举措中，美国渐渐展露出其战略重心东移的特点。本篇文章将从大战略的视角，对美国战略重心东移的特点进行剖析。
Kan, Nahomi; Maki, Takuya; Shiraishi, Kiyoshi
2016-10-01
We propose a model of gravity in which a General Relativity metric tensor and an effective metric generated from a single scalar formulated in geometric scalar gravity are mixed. We show that the model yields the exact Schwarzschild solution, along with accelerating behavior of scale factors in cosmological solutions.
Environmental applications of gravity surveying
Energy Technology Data Exchange (ETDEWEB)
Barrows, L.J. (Illinois State Univ., Normal, IL (United States)); Nesbit, L.C. (KEMRON Environmental Services, Novi, MI (United States)); Khan, W.A. (Environmental Science Engineering, Phoenix, AZ (United States))
1994-04-01
The Allis Park Sanitary Landfill Company developed a new landfill near Onway, Michigan in an area which has glacial alluvium and glacial till overlying limestone. There are several solution karst features in the region and some critics had maintained that a new karst collapse could rupture the liner system and allow escape of leachate into the groundwater. The gravity survey was conducted to determine the extent of any karst development at the site. The first portion of the survey was two profiles over some karst features located about five miles southeast of the proposed landfill. These showed negative gravity anomalies. The survey of the proposed landfill site resulted in a 50 microGal contour map of the area and also showed a negative anomaly. This could be due to either elevation variations on the till to limestone bedrock surface or to karst development within the limestone. Because there was no evidence of historic development of new karst features in the region, the gravity anomaly was not further investigated. In another gravity survey, a large retail department store had been remodeled and extended over an area previously occupied by an auto service center. The removal of a waste oil storage tank (UST) had not been documented and the environmental consultant (KEMRON, Inc.) proposed that a gravity survey be used to find the tank location. This proposal was based on calculations of the gravity effects of a UST. The survey resulted in a four-microGal contour map which showed a couple of anomalies which could be due to a tank or a backfilled tank excavation. During the survey, a store employee identified the previous location of the tank and explained that she had personally witnessed its removal. Based on the employee's eye-witness account of the tank removal and the coincidence of her indicated tank location with one of the gravity anomalies the authors recommended the site be granted clean closure.
Infrared Modifications Of Gravity
Rombouts, J
2005-01-01
In this thesis, we study theories that modify gravity at very large distances. Motivated by recent observations in cosmology, such as the dimming of type Ia supernovae and flattening of rotation curves of galaxies, we study two classes of theories that attempt to explain these observations as due to a change in the laws of gravity at large distances rather than due to the presence of new forms of exotic energy and matter. The first class of theories is massive gravity, obtained by adding a mass term to the action for the gravitational fluctuation in Einstein's general relativity. The second class of models we study are braneworlds that provide infrared modified gravity, in specific the Dvali-Gabadadze-Porrati model and its extension to higher codimensional branes. We stress in our discussion the field theoretical consistency, both classically and quantum-mechanically, of these models.
Gravity Plant Physiology Facility (GPPF) Team in the Spacelab Payload Operations Control Center (SL
1992-01-01
The primary payload for Space Shuttle Mission STS-42, launched January 22, 1992, was the International Microgravity Laboratory-1 (IML-1), a pressurized manned Spacelab module. The goal of IML-1 was to explore in depth the complex effects of weightlessness of living organisms and materials processing. Around-the-clock research was performed on the human nervous system's adaptation to low gravity and effects of microgravity on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Materials processing experiments were also conducted, including crystal growth from a variety of substances such as enzymes, mercury iodide, and a virus. The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Featured is the Gravity Plant Physiology Facility (GPPF) team in the SL POCC during the IML-1 mission.
Jain, Bhuvnesh
2010-01-01
Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the universe. We review recent developments in modified gravity theories, focusing on higher dimensional approaches and chameleon/f(R) theories. We classify these models in terms of the screening mechanisms that enable such theories to approach general relativity on small scales (and thus satisfy solar system constraints). We describe general features of the modified Friedman equation in such theories. The second half of this review describes experimental tests of gravity in light of the new theoretical approaches. We summarize the high precision tests of gravity on laboratory and solar system scales. We describe in some detail tests on astrophysical scales ranging from ~kpc (galaxy scales) to ~Gpc (large-scale structure). These tests rely on the growth and inter-relationship of perturbations in the metric potentials, density and velocity fields which can be measured using gravitational lensi...
Porrati, Massimo
2011-01-01
Recently proposed "critical" higher-derivative gravities in $AdS_D$ $D>3$ are expected to carry logarithmic representation of the Anti de Sitter isometry group. In this note, we quantize linear fluctuations of these critical gravities, which are known to be either identical with linear fluctuations of Einstein's gravity or else satisfy logarithmic boundary conditions at spacial infinity. We identify the scalar product uniquely defined by the symplectic structure implied by the classical action, and show that it does not posses null vectors. Instead, we show that the scalar product between any two Einstein modes vanishes, while the scalar product of an Einstein mode with a logarithmic mode is generically nonzero. This is the basic property of logarithmic representation that makes them neither unitary nor unitarizable.
Deser, S; Ong, Y C; Waldron, A
2014-01-01
The method of characteristics is a key tool for studying consistency of equations of motion; it allows issues such as predictability, maximal propagation speed, superluminality, unitarity and acausality to be addressed without requiring explicit solutions. We review this method and its application to massive gravity theories to show the limitations of these models' physical viability: Among their problems are loss of unique evolution, superluminal signals, matter coupling inconsistencies and micro-acausality (propagation of signals around local closed timelike/causal curves). We extend previous no-go results to the entire three-parameter range of massive gravity theories. It is also argued that bimetric models suffer a similar fate.
National Oceanic and Atmospheric Administration, Department of Commerce — The National Geophysical Data Center (NGDC) of NOAA, in cooperation with the National Geodetic Survey of NOAA, have published a Gravity CD-ROM containing observed...
Gamow, George
2003-01-01
A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw
Torsion formulation of gravity
Energy Technology Data Exchange (ETDEWEB)
Lledo, M A; Sommovigo, L, E-mail: Maria.Lledo@ific.uv.e, E-mail: Luca.Sommovigo@mfn.unipmn.i [Departament de Fisica Teorica, Universitat de Valencia, and IFIC (Centro mixto CSIC-UVEG) C/Dr Moliner, 50, E-46100 Burjassot (Valencia) (Spain)
2010-03-21
We explain precisely what it means to have a connection with torsion as a solution of the Einstein equations. While locally the theory remains the same, the new formulation allows for topologies that would have been excluded in the standard formulation of gravity. In this formulation it is possible to couple arbitrary torsion to gauge fields without breaking the gauge invariance.
Newburgh, Ronald
2010-01-01
It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.
Seeking the Light: Gravity Without the Influence of Gravity
Sack, Fred; Kern, Volker; Reed, Dave; Etheridge, Guy (Technical Monitor)
2002-01-01
All living things sense gravity like humans might sense light or sound. The Biological Research In Canisters (BRIC-14) experiment, explores how moss cells sense and respond to gravity and light. This experiment studies how gravity influences the internal structure of moss cells and seeks to understand the influences of the spaceflight environment on cell growth. This knowledge will help researchers understand the role of gravity in the evolution of cells and life on earth.
SATELLITE GRAVITY SURVEYING TECHNOLOGY AND RESEARCH OF EARTH'S GRAVITY FIELD
Institute of Scientific and Technical Information of China (English)
Ning Jinsheng
2003-01-01
This is a summarized paper. Two topics are discussed: Firstly, the concept, development and application of four kinds of satellite gravity surveying technology are introduced; Secondly, some problems of theory and method, which must be considered in the study of the Earth's gravity field based on satellite gravity data, are expounded.
Fundamentals of quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Klauder, J R [Department of Physics and Department of Mathematics, University of Florida, Gainesville FL 32611-8440 (United States)
2007-11-15
The outline of a recent approach to quantum gravity is presented. Novel ingredients include: (1) Affine kinematical variables; (2) Affine coherent states; (3) Projection operator approach toward quantum constraints; (4) Continuous-time regularized functional integral representation without/with constraints; and (5) Hard core picture of nonrenormalizability. The 'diagonal representation' for operator representations, introduced by Sudarshan into quantum optics, arises naturally within this program.
1987-04-21
and the spring thaw. Southwestern Front farces Included the 6th Irug (40,566 menI 46 tanks), the I1st Wuards Bring (70,811 men), Moble Girup Papau...theiatn preced seulplning httoialeamls. Odfertiaons CUReR the paucity of aircraft, technology , or doctrine, concentrated armored forces produced the...with respect to theoretical concepts provides Insights for operational planning on the contemperarg battlefield. Technological and doctrinal
Institute of Scientific and Technical Information of China (English)
刘扬; 赵美宁
2014-01-01
The carton forming machine of folding CAM the center of the optimization gravity of gravity problem. According to the motion law of follower, through Creo entity modeling module will CAM accurately entity modeling, using Creo behavior modeling module to analyze and optimize the CAM center of gravity. In guarantee its performance, on the basis of CAM weight reduction, reducing the CAM rotates in the beating, improve the stability of follower motion, improve the performance of the carton forming machine. Through the analysis of Creo software optimization, made the folding carton forming machine CAM center of gravity and the axis of rotation.%研究纸箱成型机中的折边凸轮的重心优化问题。根据从动件的运动规律，通过Creo的实体建模模块将凸轮进行精确的实体建模，再利用Creo的行为建模模块对凸轮重心进行分析和优化。在保证其性能的基础上，减轻了凸轮重量，减小了凸轮在转动时的跳动，提高了从动件运动的稳定性，改善了纸箱成型机的性能。通过Creo软件的分析优化，使得纸箱成型机的折边凸轮重心与旋转轴重合。
IT’S THEIR MESSAGE, STUPID! Targeting the True Center of Gravity in the U.S. War on Terrorism
2004-02-09
Strategy for Combating Terrorism, Washington DC, p 23. 6 Milan Vego, Operational Warfare, Newport RI, Naval War College Press, 2000, p 309. 7 Ibid. 5...or capital weapons, or a state to call its own? The answer to this question beckons back to Dr. Milan Vego’s generic definition of COG: a “source of...Harakat-ul- Mujahidin.12 In establishing a World Islamic Jihad against the Jews and Crusaders through publication of such edicts as 1998 “Fatwah
1989-05-01
damage repair comes from the conflict in Southeast Asia CSEA ) and data available from the Arab-Israeli 1973 Yom Kippur war. Battle damage experience data...Performance." Air Force Journal of Loglutics, Vol. VIII, No. 4. Fall 1984, p. 9. 3. Department of the A~r Forcei Headquarters U.S. Air Force. "R&M 2000...Key to Combat Strength." 1.jr Force Journal of Logistl, Winter 1988, pp. 5-6. 17. Kitfield, James. "Concern Over Composites." ° Forum, January-February
2011-06-01
See Also Alan Beyerchen, "Clausewitz, Nonlinearity and the Unpredictability of War," International Security, 17:3 (Winter, 1992), pp. 59. See...17 Timothy S. McWilliams and Kurtis P. Wheeler (ed.), Al-Anbar Awakening, Volume I. American Perspectives, U.S. Marines and...Robert F. Counterinsurgency and the Surge in Iraq: Balancing Doctrine and Strategy. Carlisle Barracks, PA: U.S. Army War College, 2009. McWilliams
Geometric scalar theory of gravity
Energy Technology Data Exchange (ETDEWEB)
Novello, M.; Bittencourt, E.; Goulart, E.; Salim, J.M.; Toniato, J.D. [Instituto de Cosmologia Relatividade Astrofisica ICRA - CBPF Rua Dr. Xavier Sigaud 150 - 22290-180 Rio de Janeiro - Brazil (Brazil); Moschella, U., E-mail: novello@cbpf.br, E-mail: eduhsb@cbpf.br, E-mail: Ugo.Moschella@uninsubria.it, E-mail: egoulart@cbpf.br, E-mail: jsalim@cbpf.br, E-mail: toniato@cbpf.br [Università degli Studi dell' Insubria - Dipartamento di Fisica e Matematica Via Valleggio 11 - 22100 Como - Italy (Italy)
2013-06-01
We present a geometric scalar theory of gravity. Our proposal will be described using the ''background field method'' introduced by Gupta, Feynman, Deser and others as a field theory formulation of general relativity. We analyze previous criticisms against scalar gravity and show how the present proposal avoids these difficulties. This concerns not only the theoretical complaints but also those related to observations. In particular, we show that the widespread belief of the conjecture that the source of scalar gravity must be the trace of the energy-momentum tensor — which is one of the main difficulties to couple gravity with electromagnetic phenomenon in previous models — does not apply to our geometric scalar theory. From the very beginning this is not a special relativistic scalar gravity. The adjective ''geometric'' pinpoints its similarity with general relativity: this is a metric theory of gravity. Some consequences of this new scalar theory are explored.
Cosmological tests of modified gravity
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
Institute of Scientific and Technical Information of China (English)
WU Ning
2006-01-01
It is well known that energy-momentum is the source of gravitational field. For a long time, it is generally believed that only stars with huge masses can generate strong gravitational field. Based on the unified theory of gravitational interactions and electromagnetic interactions, a new mechanism of the generation of gravitational field is studied. According to this mechanism, in some special conditions, electromagnetic energy can be directly converted into gravitational energy, and strong gravitational field can be generated without massive stars. Gravity impulse found in experiments is generated by this mechanism.
Teleparallel equivalent of Lovelock gravity
González, P. A.; Vásquez, Yerko
2015-12-01
There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.
Dubovsky, Sergei L.
2004-10-01
We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity is described by a consistent low-energy effective theory with cutoff ~ (mMPl)1/2. This theory is free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of arbitrary higher dimension operators without assuming any fine-tunings among the coefficients of these operators, besides those enforced by the symmetries. These theories can be thought of as generalizations of the ghost condensate model with a smaller residual symmetry group. We briefly discuss what kind of cosmology can one expect in massive gravity and argue that the allowed values of the graviton mass may be quite large, affecting growth of primordial perturbations, structure formation and, perhaps, enhancing the backreaction of inhomogeneities on the expansion rate of the Universe.
Bailey, Quentin G
2016-01-01
In this talk, the gravity sector of the effective field theory description of local Lorentz violation is discussed, including minimal and nonminimal curvature couplings. Also, recent experimental and observational analyses including solar-system ephemeris and short-range gravity tests are reviewed.
Observable Effects of Quantum Gravity
Chang, Lay Nam; Sun, Chen; Takeuchi, Tatsu
2016-01-01
We discuss the generic phenomenology of quantum gravity and, in particular, argue that the observable effects of quantum gravity, associated with new, extended, non-local, non-particle-like quanta, and accompanied by a dynamical energy-momentum space, are not necessarily Planckian and that they could be observed at much lower and experimentally accessible energy scales.
基于重力模型的中国金融中心体系识别%Discernment of Chinese Financial Center System: Gravity Model Approach
Institute of Scientific and Technical Information of China (English)
程婧瑶; 樊杰; 陈东
2013-01-01
The Financial Center (FC) is one of the most important topics in New Economic Geography, in which the discernment of FC is the primary task and basic work. This paper is focus on the formation and discernment of FC based on the Financial Geography Theory. Firstly, it's discussed that the relationship between FC and its information hinterland to find different effects of technical progress and deregulation on two types of financial center on the basis of information category. Then, geographic element is added to traditional methodology used to only containing scale elements by means of "gravity model approach". Finally, take mainland China as a case to explore the discernment method of FC system, and the results showed as followed: (l)Concerning Chinese FC system, two major regional FC system have formed, the southern system centralized with Shanghai and northern one with Beijing, containing 4 regional FCs and 27 local FCs.(2) Almost every province has 1 or 2 FCs, except Hebei and Inner Mongolia in the northern system, geographical proximity to Beijing.(3)Comparing to Northern system, Southern one have absolute advantage in financial scale, hinterland size, structure complexity and evolution trend, and have formed muti-layer structure inside.%金融中心是新经济地理学研究的重要领域,金融中心识别是金融中心研究的基础性工作.沿袭金融地理学的分析脉络,从“信息”的角度解释金融中心的形成与演化机制,探究金融中心与信息腹地的关系,以及技术进步和放松管制对不同类型金融中心的影响.引入“重力模型”,将空间要素纳入到金融中心体系识别框架中,对我国金融中心体系进行识别.通过模拟全国、省域两大尺度城市空间金融联系,确定金融中心及其腹地范围,识别并划分我国南、北两大区域金融中心体系,最终得到区域金融中心4个,省域金融中心27个.通过对两大区域体系的对比分析,结果显示
Geometric Formulation of Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WUNing; ZHANGDa-Hua; RUANTu-Nan
2003-01-01
DitTerential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantum gauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to study the relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curved space, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence between quantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gauge theory of gravity is studied.
Geometric Formulation of Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning; ZHANG Da-Hua; RUAN Tu-Nan
2003-01-01
Differential geometric formulation of quantum gauge theory of gravity is studied in this paper. The quantumgauge theory of gravity is formulated completely in the framework of traditional quantum field theory. In order to studythe relationship between quantum gauge theory of gravity and traditional quantum gravity which is formulated in curvedspace, it is important to set up the geometry picture of quantum gauge theory of gravity. The correspondence betweenquantum gauge theory of gravity and differential geometry is discussed and the geometry picture of quantum gaugetheory of gravity is studied.
Artificial gravity - The evolution of variable gravity research
Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard
1987-01-01
The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.
重心轨迹运动平衡训练和测试的实现及初步观察%Active control of the trajectory of the center of gravity in balance training
Institute of Scientific and Technical Information of China (English)
邹任玲; 胡秀枋; 徐秀林; 李放; 吴毅
2011-01-01
Objective To study the impact of active control of the trajectory of the center of gravity on the effectiveness of balance training and balance assessment. Methods Two groups of subjects ( group 1 30-45 years old, group 2 45-60 years old ) were evaluated and trained using both active center of gravity trajectory control and static balance methods. Results The percentages of success in controlling the center of gravity were the same when both groups were trained using static balance. Group 1's success percentage was higher than that of group 2 after active center of gravity trajectory training. Their affected lower limbs performed better in wave trace training than after static balance training, and performance improved with increased wave trace amplitude. Conclusions Wave tracing can stimulate the lower limbs of patients with active control force and improve their balance. The wave assessment is superior to static assessment, as it can objectively reflect ability in active center of gravity control and adjust the lower limbs of subjects whose static balance ability is at the same level.%目的 研究主动控制重心对平衡训练及平衡评估的影响.方法 设计重心轨迹运动平衡训练及评估系统,将受试者分别采用静态平衡和重心波浪轨迹运动两种方式进行测试评估.平衡训练的方法是将偏瘫患者在静态平衡和重心波浪轨迹运动两种方式进行训练.结果 2组受试者在静态平衡下,良好重心控制百分比结果相同,在重心轨迹运动站立平衡方式下,受试一组的良好重心控制百分比值均高于受试二组;偏瘫患者训练结果为波浪轨迹训练比静态平衡训练时的偏瘫侧下肢平均用力大,而且偏瘫侧下肢平均用力随着波浪轨迹幅度增大而增大.结论 运用波浪方式训练,能有效加强患者的偏瘫侧训练,提高平衡调节能力;运用波浪方式评估,能克服目前静态平衡时无法对患者主动控制重心训练评估
Dubovsky, S L
2004-01-01
We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group using the explicitly covariant language. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity can be described by a consistent low-energy effective theory with cutoff $\\sim\\sqrt{mM_{Pl}}$ free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz--Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of ...
Anticipatory postural adjustments in conditions of simulated reduced gravity.
Li, Xiaoyan; Aruin, Alexander S
2008-11-01
The study investigates the role of decreased gravity on anticipatory postural adjustments (APAs). Subjects performed fast bilateral arm-raising movements and load releases while in conditions of normal and reduced gravity. Reduced gravity conditions were simulated by changing the ratio between the body weight and mass. Electromyographic (EMG) activity of dorsal and ventral trunk and leg muscles, as well as ground reaction forces, were recorded and quantified within the time intervals typical of APAs. Anticipatory postural adjustments were seen in normal gravity conditions as well as in simulated reduced gravity conditions. However, in decreased gravity conditions, the magnitudes of the anticipatory integrals of electromyography muscle activity (EMG) were smaller compared to normal gravity. Moreover, there was a linear relation between EMG and simulated decreased gravity and between the displacement of the center of pressure (COP) and simulated gravity. The study provides new data on the effect of gravity in feed-forward postural control and stresses the importance of taking into consideration its role in the control of upright posture.
Teleparallel Equivalent of Lovelock Gravity
Gonzalez, P A
2015-01-01
There is a growing interest in modified gravity theories based on torsion due to these theories prove to exhibit interesting cosmological implications. In this work, inspired by the teleparallel formulation of General Relativity we present its extension to Lovelock Gravity known as the most natural extension of general relativity in higher-dimensional spacetimes. First, we review Teleparallel Equivalent of General Relativity and Teleparallel Equivalent of Gauss-Bonnet Gravity, and then we construct Teleparallel Equivalent of Lovelock Gravity. In order to achieve this goal we use the vielbein and the connection, without imposing the Weitzenb\\"ock connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to be null.
Gravity and the cells of gravity receptors in mammals
Ross, M. D.
Two new findings, that crystals located in the inner ear gravity receptors of mammals have the internal organization requisite for the piezoelectric property, and that sensory hair cells of these same receptors possess contractile-appearing striated organelles, have prompted the author to model mammalian gravity receptors in the ear on the principles of piezoelectricity and bioenergetics. This model is presented and a brief discussion of its implications for the possible effects of weightlessness follows.
PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity
Capozziello, S.; Troisi, A.
2005-01-01
Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.
Institute of Scientific and Technical Information of China (English)
黄娉婷; 张晓平
2012-01-01
区域重心模型能够直观地衡量经济属性的动态演变过程以及区域差异,反映城市空间结构的变化。研究采用1989—2009年天津市人口与工业总产值数据,引入重心测度模型,以人口重心为参照,对天津市工业重心在时空上的动态演变轨迹进行实证研究;结合各区县工业差异变动规律,对重心迁移的影响因素进行探析。结果表明：与人口重心在北辰区内缓慢移动不同,21年来天津市工业重心向东南方向迁移,由市中心移动到市区外围,且在东西方向的不均衡性显著大于南北方向。区位条件、政府政策、产业结构调整等因素会对工业布局产生影响,引起工业重心迁移。%Regional gravity center model can measure the dynamic development course of economic attributes and the regional differences intuitively and accurately.By using the population and total industrial output data of Tianjin from 1989 to 2009,the method of measuring gravity center is established,from which we could analysis the temporal and spatial evolution path of the gravity center of industry comparing with the location of population-gravity-center,to accomplish the empirical research.The paper finds out the regularity of the industrial variation in each area or county,and the factors that influence the migration of industrial gravity center are listed.The results show that the gravity center of population moves slowly in Beichen Area,while gravity center of industry moves to Dongli Area in the southeast direction in 21 years,and the imbalance in the direction of east-west is significantly higher than that of the north-south direction.Location,government policies,industrial structure are factors that can affect the distribution of industry and cause the movement of the center of gravity.
Empirical Foundations of Relativistic Gravity
Ni, W T
2005-01-01
In 1859, Le Verrier discovered the mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 141 years to 2000, the precisions of laboratory and space experiments, and astrophysical and cosmological observations on relativistic gravity have been improved by 3 orders of magnitude. In 1999, we envisaged a 3-6 order improvement in the next 30 years in all directions of tests of relativistic gravity. In 2000, the interferometric gravitational wave detectors began their runs to accumulate data. In 2003, the measurement of relativistic Shapiro time-delay of the Cassini spacecraft determined the relativistic-gravity parameter gammaγ with a 1.5-order improvement. In October 2004, Ciufolini and Pavlis reported a measurement of the Lense-Thirring effect on the LAGEOS and LAGEOS2 satellites to 10 percent of the value predicted by general relativity. In April 2004, Gravity Probe B was launched and has been accumulating science data for more than ...
Institute of Scientific and Technical Information of China (English)
白雪
2015-01-01
运用重心方法计算1984―2013年中国经济重心和人口重心的位置，分析其动态轨迹及演变机制，得到中国经济要素和人口要素的空间分布情况及区域差异。研究发现，中国经济和人口分布呈现明显的区域非均衡性，集聚方位均指向东南沿海，经济要素在该方向上的集聚程度更大；人口重心迁移速度更慢，波动幅度更小，意味着人口移动的限制因素更多，经济和人口的聚集存在时滞。最后，分别从人口跨区域流动壁垒的破除、落后地区的人力资本提升和人口潜力挖掘、当前国家重大区域战略布局调整，对实现经济要素和人口要素的区域均衡，促进不同要素的空间一致和耦合性优化提出建议。%Economy and population are the most important constituent parts of regional social and economic development. Population transfer and economic growth among regions are two interactional parts. Spatial distribution and regional differences of economic factors and population factors can be obtained by using gravity center method to calculate the position of economic and population gravity center in China during 1984-2013. There is obvious non-equilibrium in economy distribution and population distribution in China. The aggregation positions are mainly China’s South-East coastal areas. Economic factors have larger aggregation extent in that direction; the speed of population gravity center migration is lower and the fluctuation range is smaller, which means that there are more limiting factors of population movement and there exists time-lag in the aggregation of economy and population. Suggestions for the realization of regional equilibrium of economic factors and population factors as well as the promotion of spatial coherence and optimization can be proposed from the following three aspects:the elimination of bulwarks of cross-regional population flow, the promotion of human capital and potential
Kinetic Quantum Theory of Gravity
DeAquino, F
2002-01-01
Starting from the action function we have derived a theoretical background that leads to quantization of gravity and the deduction of a correlation between the gravitational and inertial masses, which depends on the kinetic momentum of the particle. We show that there is a reaffirmation of the strong equivalence principle and consequently the Einstein's equations are preserved. In fact such equations are deduced here directly from this kinetic approach to Gravity. Moreover, we have obtained a generalized equation for inertial forces, which incorporates the Mach's principle into Gravitation. Also, we have deduced the equation of Entropy; the Hamiltonian for a particle in an electromagnetic field and the reciprocal fine structure constant. It is possible to deduce the expression of the Casimir force and also to explain the Inflation Period and the Missing Matter without assuming the existence of vacuum fluctuations. This new approach for Gravity will allow us to understand some crucial matters in Cosmology.
Kinetic Quantum Theory of Gravity
DeAquino, F
2002-01-01
Gravity is here quantized starting from the generalization of the action function. This leads to an equation of correlation between gravitational and inertial masses, which depends on the particle's kinetic energy. We show that there is a reaffirmation of the strong equivalence principle and consequently the Einstein's equations are preserved. In fact such equations are deduced here directly from this kinetic approach to Gravity. Moreover, we have obtained a generalized equation for inertial forces, which incorporates the Mach's principle into Gravitation. Also, we have deduced the equation of Entropy; the Hamiltonian for a particle in an electromagnetic field and the reciprocal fine structure constant. It is possible to deduce the expression of the Casimir force and also to explain the Inflation Period and the Missing Matter without assuming the existence of vacuum fluctuations. This new approach for Gravity will allow us to understand some crucial matters in Cosmology.
A Possible Mechanism of Gravity
Lev, F M
2003-01-01
We consider systems of two free particles in de Sitter invariant quantum theory and calculate the mean value of the mass operator for such systems. It is shown that, in addition to the well known relativistic contribution (and de Sitter antigravity which is small when the de Sitter radius is large), there also exists a contribution caused by the fact that certain decomposition coefficients have different phases. Such a contribution is negative and proportional to the particle masses in the nonrelativistic approximation. In particular, for a class of two-body wave functions the mean value is described by standard Newtonian gravity and post Newtonian corrections in General Relativity. This poses the problem whether gravity can be explained without using the notion of interaction at all. We discuss a hypothesis that gravity is a manifestation of Galois fields in quantum physics.
Scalettar, Joyce; Mathias, Theoren
2014-01-01
Summary: In The Gravity of the Situation, you play the role of a squirrel who is born into a tribe of squirrels. This tribe is gathering nuts for the winter when it is discovered that our newly born protagonist can create nuts out of thin air. The leaders of the tribe are ecstatic when they discover this, and quickly tell the squirrel to begin creating nuts for their food stock. The moment our young friend releases one of his magically crafted nuts, a huge well of gravity engulfs the acorn st...
Center for low-gravity fluid mechanics and transport phenomena
Kassoy, D. R.; Sani, R. L.
1991-01-01
Research projects in several areas are discussed. Mass transport in vapor phase systems, droplet collisions and coalescence in microgravity, and rapid solidification of undercooled melts are discussed.
Cellular basis of gravity resistance in plants
Hoson, Takayuki; Matsumoto, Shouhei; Inui, Kenichi; Zhang, Yan; Soga, Kouichi; Wakabayashi, Kazuyuki; Hashimoto, Takashi
Mechanical resistance to the gravitational force is a principal gravity response in plants distinct from gravitropism. In the final step of gravity resistance, plants increase the rigidity of their cell walls via modifications to the cell wall metabolism and apoplastic environment. We studied cellular events that are related to the cell wall changes under hypergravity conditions produced by centrifugation. Hypergravity induced reorientation of cortical microtubules from transverse to longitudinal directions in epidermal cells of stem organs. In Arabidopsis tubulin mutants, the percentage of cells with longitudinal microtubules was high even at 1 g, and it was further increased by hypergravity. Hypocotyls of tubulin mutants also showed either left-handed or right-handed helical growth at 1 g, and the degree of twisting phenotype was intensified under hypergravity conditions. The left-handed helical growth mutants had right-handed microtubule arrays, whereas the right-handed mutant had left-handed arrays. There was a close correlation between the alignment angle of epidermal cell files and the alignment of cortical microtubules. Gadolinium ions suppressed both the twisting phenotype and reorientation of microtubules in tubulin mutants. These results support the hypothesis that cortical microtubules play an es-sential role in maintenance of normal growth phenotype against the gravitational force, and suggest that mechanoreceptors are involved in modifications to morphology and orientation of microtubule arrays by hypergravity. Actin microfilaments, in addition to microtubules, may be involved in gravity resistance. The nucleus of epidermal cells of azuki bean epicotyls, which is present almost in the center of the cell at 1 g, was displaced to the cell bottom by increasing the magnitude of gravity. Cytochalasin D stimulated the sedimentation by hypergravity of the nu-cleus, suggesting that the positioning of the nucleus is regulated by actin microfilaments, which is
Information Processing Structure of Quantum Gravity
Gyongyosi, Laszlo; Imre, Sandor
2014-05-01
The theory of quantum gravity is aimed to fuse general relativity with quantum theory into a more fundamental framework. Quantum gravity provides both the non-fixed causality of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity scenario, the causal structure is indefinite and the processes are causally non-separable. We provide a model for the information processing structure of quantum gravity. We show that the quantum gravity environment is an information resource-pool from which valuable information can be extracted. We analyze the structure of the quantum gravity space and the entanglement of the space-time geometry. We study the information transfer capabilities of quantum gravity space and define the quantum gravity channel. We characterize the information transfer of the gravity space and the correlation measure functions of the gravity channel. We investigate the process of stimulated storage for quantum gravity memories, a phenomenon that exploits the information resource-pool property of quantum gravity. The results confirm that the benefits of the quantum gravity space can be exploited in quantum computations, particularly in the development of quantum computers. The results are supported by the grant COST Action MP1006.
Institute of Scientific and Technical Information of China (English)
赵安周; 白凯; 卫海燕
2011-01-01
The gravity model,spatial statistical techniques and GIS technology were used to analyze spatial movement of gravity center and spatial differentiation among the provinces about the inbound tourism industry from 1995 to 2009.The results showed：（1） Inbound tourism gravity center of China moves to the southeast in 1995—2000,and it moves to the northeast in 2000—2009;（2） From the global spatial variation,the development level of inbound tourism in different provinces is positive correlated in spatial,the high-value provinces adjacent to other high ones,low-value provinces adjacent to the low ones;（3） From the local Moran,the international tourism revenue of the provinces exists the correlation and heterogeneity in spatial,the level of inbound tourism industry in eastern coastal provinces is better than that in the western provinces.%运用重心模型、空间相关分析和GIS等技术,选取1995—2009年31个省区的面板数据,分析了我国入境旅游重心的空间移动和不同省区入境旅游发展的空间分异.结果表明：（1）1995—2000年,中国入境旅游重心呈现东偏南移动的趋势,2000—2009年呈现东偏北移动趋势;（2）从全局空间分异上来看,各省区入境旅游发展表现出空间集聚性,国际旅游收入较高的省区在空间上趋于相邻,国际旅游收入较低的省区在空间上趋于相邻;（3）就局部Moran指数来看,我国各省区国际旅游收入之间存在一定的空间相关性和异质性,入境旅游
The Interpretation of Enceladus Gravity (Invited)
Stevenson, D. J.; Iess, L.; Parisi, M.; Ducci, M.; Asmar, S. W.
2013-12-01
The determination of the gravity field by Cassini is challenging because of the small mass and short duration of the gravitational interaction, even with data from three encounters. E19 data have been successfully integrated into the multiarc analysis, providing a stable and consistent gravity field. This required inclusion of the effect of atmospheric drag due to Enceladus' plumes. This presentation will deal only with the interpretation of these data. The dominant features of the non-central gravity are large values for the harmonic coefficients J2 and C22 and a much smaller but statistically significant negative J3. The value of J2/C22=3.55×0.05 is moderately in excess of the value of 10/3 that applies to a synchronously rotating body with no lateral variation in material properties. Given the obvious latitudinal variation of Enceladus' physical characteristics, primarily expressed by the activity centered on the South Pole, it is plausible that the deviation from 10/3 arises primarily because of a positive anomaly in J2 rather than any anomaly in C22. However, applying Radau-Darwin to the value of C22/q (where q is the usual dimensionless measure of the centrifugal effect on gravity) implies that the moment of inertia is about 0.34MR^2. The high heat output and indirect inference for liquid water suggests a fully differentiated Enceladus. For the known mean density and any plausible mantle density, this would require an unreasonably low core density of 2.5 g/cc or less. A more realistic interpretation is that both J2 and C22 are modestly non-hydrostatic, but that J2 is affected more because of a negative mass anomaly in the Southern hemisphere, consistent with the observed negative J3. One non-unique way to reconcile the observed gravity with a realistic MOI of 0.32 to 0.33MR^2 is to assume that the rocky core of Enceladus has retained some memory of a previous faster rotational state. Even if the ice shell is perfectly relaxed, this reconciles the data for a
Gravity Data for the State of Nevada
National Oceanic and Atmospheric Administration, Department of Commerce — Gravity data for the entire state of Nevada and adjacent parts of California, Utah, and Arizona are presented. About 80,000 gravity stations were compiled primarily...
Nonperturbative Studies of Quantum Gravity
Beirl, W; Riedler, J; Beirl, Wolfgang; Markum, Harald; Riedler, Juergen
1993-01-01
We investigate quantum gravity in the path integral formulation using the Regge calculus. Restricting the quadratic link lengths of the originally triangular lattice the path integral can be transformed to the partition function of a spin system with higher couplings on a Kagome lattice. Various measures acting as external field were considered. Extensions to matter fields and higher dimensions are discussed.
Gravity Data For The State of Ohio
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (6,591 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...
Gravity Data for portions of Ohio
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1,037 records) were compiled by Doctor Stierman. This data base was received in June 1992. Principal gravity parameters include Free-Air...
Preparation of dynamic gravity testing system
Bowin, Carl
Bowin's interest at WHOI is to obtain the most accurate gravity and gravity gradient measurements possible. The Navy's interest is to have the most accurate navigation possible. Neither can have one without the other. Through Zarak Corporation, Bowin has proposed to the Navy Air System Command to develop a dynamic navigational gravity/gravity gradient (NAV/GRAV) system utilizing superconducting squid gravity and tensor gravity gradient sensors for high precision performance. The proposed system development incorporates that inter-dependency, not only to provide the best estimates of both, but also to provide estimates of the quality of the results obtained. Zarak is pursuing funds for the development of superconducting gravity and gravity gradient sensors. Such sensors, when available, will then be utilized in this palletized system for higher accuracy navigation, gravity and gravity gradient determination. It is desired that initial testing utilize Vibrating String Accelerometers (VSA) gravity sensors and readout systems available at WHOI. This way the development and testing of the NAV/GRAV system can proceed using the VSA sensors while the superconducting gravity sensors are being fabricated. Initial dynamic systems tests will be in a van vehicle for convenience and practicality. The system units will be palletized, and therefore they shall be easily transferable, and thus also be usable in aircraft and ships. It is planned that WHOI will have loan of prototype systems for about two months each year for earth research use.
Modified gravity from the quantum part of the metric
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [KazNU, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan). Institute of Physicotechnical Problems and Material Science; Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany); Folomeev, Vladimir [IETP, Al-Farabi Kazakh National University, Almaty (Kazakhstan); NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan). Institute of Physicotechnical Problems and Material Science; Kleihaus, Burkhard; Kunz, Jutta [Universitaet Oldenburg, Institut fuer Physik, Oldenburg (Germany)
2014-01-15
It is shown that if a metric in quantum gravity can be decomposed as a sum of classical and quantum parts, then Einstein quantum gravity looks approximately like modified gravity with a nonminimal interaction between gravity and matter. (orig.)
Asymptotic symmetry algebra of conformal gravity
Irakleidou, M
2016-01-01
We compute asymptotic symmetry algebras of conformal gravity. Due to more general boundary conditions allowed in conformal gravity in comparison to those in Einstein gravity, we can classify the corresponding algebras. The highest algebra for non-trivial boundary conditions is five dimensional and it leads to global geon solution with non-vanishing charges.
Minimal theory of massive gravity
De Felice, Antonio
2016-01-01
We propose a new theory of massive gravity with only two propagating degrees of freedom. After defining the theory in the unitary gauge in the vielbein language, we shall perform a Hamiltonian analysis to count the number of physical degrees of freedom, and then study some phenomenologies. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham - Gabadadze - Tolley (dRGT) massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory.
Chiral gravity as a covariant formulation of massive gravity
Nibbelink, S G; Nibbelink, Stefan Groot; Peloso, Marco
2004-01-01
We present a covariant nonlinear completion of the Fierz-Pauli (FP) mass term for the graviton. The starting observation is that the FP mass is immediately obtained by expanding the cosmological constant term, i.e. the determinant of the vielbein, around Minkowski space to second order in the vielbein perturbations. Since this is an unstable expansion in the standard case, we consider an extended theory of gravity which describes two vielbeins that give rise to chiral spin--connections (consequently, fermions of a definite chirality only couple to one of the gravitational sectors). As for Einstein gravity with a cosmological constant, a single fine-tuning is needed to recover a Minkowski background; the two sectors then differ only by a constant conformal factor. The spectrum of this theory consists of a massless and a massive graviton, with FP mass term. The theory possesses interesting limits in which only the massive graviton is coupled to matter at the linearized level.
Cosmological Hints of Modified Gravity ?
Di Valentino, Eleonora; Silk, Joseph
2016-01-01
The recent measurements of Cosmic Microwave Background temperature and polarization anisotropies made by the Planck satellite have provided impressive confirmation of the $\\Lambda$CDM cosmological model. However interesting hints of slight deviations from $\\Lambda$CDM have been found, including a $95 \\%$ c.l. preference for a "modified gravity" structure formation scenario. In this paper we confirm the preference for a modified gravity scenario from Planck 2015 data, find that modified gravity solves the so-called $A_{lens}$ anomaly in the CMB angular spectrum, and constrains the amplitude of matter density fluctuations to $\\sigma_8=0.815_{-0.048}^{+0.032}$, in better agreement with weak lensing constraints. Moreover, we find a lower value for the reionization optical depth of $\\tau=0.059\\pm0.020$ (to be compared with the value of $\\tau= 0.079 \\pm 0.017$ obtained in the standard scenario), more consistent with recent optical and UV data. We check the stability of this result by considering possible degeneraci...
Ensemble average theory of gravity
Khosravi, Nima
2016-12-01
We put forward the idea that all the theoretically consistent models of gravity have contributions to the observed gravity interaction. In this formulation, each model comes with its own Euclidean path-integral weight where general relativity (GR) has automatically the maximum weight in high-curvature regions. We employ this idea in the framework of Lovelock models and show that in four dimensions the result is a specific form of the f (R ,G ) model. This specific f (R ,G ) satisfies the stability conditions and possesses self-accelerating solutions. Our model is consistent with the local tests of gravity since its behavior is the same as in GR for the high-curvature regime. In the low-curvature regime the gravitational force is weaker than in GR, which can be interpreted as the existence of a repulsive fifth force for very large scales. Interestingly, there is an intermediate-curvature regime where the gravitational force is stronger in our model compared to GR. The different behavior of our model in comparison with GR in both low- and intermediate-curvature regimes makes it observationally distinguishable from Λ CDM .
Institute of Scientific and Technical Information of China (English)
杜小沛; 纪莹; 陆海涛; 张婷婷; 邱伟
2016-01-01
目的：调查混合牙列期身体重心动摇与咬合力之间的关系。方法56名处于Hellman咬合发育Ⅲ期A阶段的健康小学生纳入研究。通过检查咬合平衡中点与中线的距离( X)关系,X≤5 mm被划分为正中组,X>5 mm被划分为偏移组。使用自动姿态分析系统测定了身体平衡相关开闭眼时的重心动摇距离、重心动摇面积。使用牙齿压力感应装置Dental Prescale®测定了咬合接触面积、平均咬合力、最大咬合压力,咬合力和咬合平衡。结果咬合接触面积和咬合力的测试结果男女分别为18.1 mm2、712.2 N和14.1 mm2、541.8 N,差异均具有统计学意义(P<0.05)。咬合平衡中点正中组与偏移组的咬合接触面积、咬合力之间差异具有统计学意义(P <0.05)。咬合平衡中点正中组开、闭眼时期的重心动摇距离、面积明显小于偏移组,咬合平衡与开、闭眼时期的重心动摇距离、面积有关且具有统计学意义(P<0.05)。重心动摇稳定组的咬合接触面积大于动摇组,两者差异具有统计学意义(P<0.05)。结论 Hellman咬合发育Ⅲ期A阶段儿童咬合平衡和人体重心动摇存在相关性,咬合接触面积与身体重心动摇相互影响。%Objective To investigate the relationship between gravity center movement and bite force during the mixed dentition period. Methods Fifty-six healthy children with Hellman's Dental AgeⅢ A were selected from an ele-mentary school. The body balance, distance and area of gravity center movement ( GCM) were measured with automatic posture analytical devices. Occlusal abilities were measured with pressure-sensitive sheets ( Dental Prescale® ) , including occlusal contacts area, average occlusal pressure, maximum occlusal pressure, occlusal force and occlusal balance. Re-sults The occlusal contact area and bite force test results of male and female group were 18. 1 mm2 , 712. 2 N and 14. 1 mm2, 541. 8 N, The differences were statistically
Observational Constraints on Transverse Gravity: a Generalization of Unimodular Gravity
Lopez-Villarejo, J J
2010-01-01
We explore the hypothesis that the set of symmetries enjoyed by the theory that describes gravity is not the full group of diffeomorphisms Diff(M), as in General Relativity, but a maximal subgroup of it, TransverseDiff(M), with its elements having a jacobian equal to unity; at the infinitesimal level, the parameter describing the coordinate change, xi^mu (x), is transverse, i.e., partial_mu(xi^mu)=0. Incidentally, this is the smaller symmetry one needs to propagate consistently a graviton, which is a great theoretical motivation for considering these theories. Also, the determinant of the metric, g, behaves as a "transverse scalar", so that these theories can be seen as a generalization of the better-known unimodular gravity. We present our results on the observational constraints on transverse gravity, in close relation with the claim of equivalence with general scalar-tensor theory. We also comment on the structure of the divergences of the quantum theory to the one-loop order.
Information Processing Structure of Quantum Gravity
Gyongyosi, Laszlo
2014-01-01
The theory of quantum gravity is aimed to fuse general relativity with quantum theory into a more fundamental framework. The space of quantum gravity provides both the non-fixed causality of general relativity and the quantum uncertainty of quantum mechanics. In a quantum gravity scenario, the causal structure is indefinite and the processes are causally non-separable. In this work, we provide a model for the information processing structure of quantum gravity. We show that the quantum gravity environment is an information resource-pool from which valuable information can be extracted. We analyze the structure of the quantum gravity space and the entanglement of the space-time geometry. We study the information transfer capabilities of quantum gravity space and define the quantum gravity channel. We reveal that the quantum gravity space acts as a background noise on the local environment states. We characterize the properties of the noise of the quantum gravity space and show that it allows the separate local...
Equivalence of modified gravity equation to the Clausius relation
Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D
2009-01-01
We show that the equations of motion for modified gravity theories are equivalent to the Clausius relation in thermodynamics. For modified gravity theories, we study $F(R)$-gravity, the scalar-Gauss-Bonnet gravity, $F(\\mathcal{G})$-gravity and the non-local gravity. In addition, we discuss the relation between the expression of the entropy and the contribution from the modified gravity as well as the matter to the definition of the energy flux (heat).
Effects of quantum gravity on black holes
Chen, Deyou; Yang, Haitang; Yang, Shuzheng
2014-01-01
In this review, we discuss effects of quantum gravity on black hole physics. After a brief review of the origin of the minimal observable length from various quantum gravity theories, we present the tunneling method. To incorporate quantum gravity effects, we modify the Klein-Gordon equation and Dirac equation by the modified fundamental commutation relations. Then we use the modified equations to discuss the tunneling radiation of scalar particles and fermions. The corrected Hawking temperatures are related to the quantum numbers of the emitted particles. Quantum gravity corrections slow down the increase of the temperatures. The remnants are observed as $M_{\\hbox{Res}}\\gtrsim \\frac{M_p}{\\sqrt{\\beta_0}}$. The mass is quantized by the modified Wheeler-DeWitt equation and is proportional to $n$ in quantum gravity regime. The thermodynamical property of the black hole is studied by the influence of quantum gravity effects.
Foundations of quantum gravity
Lindesay, James
2013-01-01
Exploring how the subtleties of quantum coherence can be consistently incorporated into Einstein’s theory of gravitation, this book is ideal for researchers interested in the foundations of relativity and quantum physics. The book examines those properties of coherent gravitating systems that are most closely connected to experimental observations. Examples of consistent co-gravitating quantum systems whose overall effects upon the geometry are independent of the coherence state of each constituent are provided, and the properties of the trapping regions of non-singular black objects, black holes, and a dynamic de Sitter cosmology are discussed analytically, numerically, and diagrammatically. The extensive use of diagrams to summarise the results of the mathematics enables readers to bypass the need for a detailed understanding of the steps involved. Assuming some knowledge of quantum physics and relativity, the book provides textboxes featuring supplementary information for readers particularly interested ...
High-resolution gravity model of Venus
Reasenberg, R. D.; Goldberg, Z. M.
1992-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
Renormalizable Quantum Gauge Theory of Gravity
Institute of Scientific and Technical Information of China (English)
WU Ning
2002-01-01
The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.
Geologic Interpretation of Gravity Anomalies
1990-04-19
the density of the crystalline rocks virtually depends only on their chemical -mineralogical composition and structural special features. 0 DOC...point out that deep analog of gabbro (a-2.9 - 3.1 g/cm3) is eclogite, in essence not differing from it by chemical composition, but which is...qrivity interpretation. Geophys.. vol. X XV, No 3, I II0. If is g hs e s D. The analitic bas’ic of gravity interpirrtation. Geophys., J sin g K
Effects of Gravity on ZBLAN Glass Crystallization
Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.; Workman, Gary
2004-01-01
The effects of gravity on the crystallization of ZrF(4)-BaF(2)-LaF(3)-AIF(3)-NaF glasses have been studied using the NASA KC-135 and a sounding rocket. Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.
Comparison of various isostatic marine gravity disturbances
Indian Academy of Sciences (India)
Robert Tenzer; Mohammad Bagherbandi; Lars E Sjöberg
2015-08-01
We present and compare four types of the isostatic gravity disturbances compiled at sea level over the world oceans and marginal seas. These isostatic gravity disturbances are computed by applying the Airy–Heiskanen (AH), Pratt–Hayford (PH) and Vening Meinesz–Moritz (VMM) isostatic models. In addition, we compute the complete crust-stripped (CCS) isostatic gravity disturbances which are defined based on a principle of minimizing their spatial correlation with the Moho geometry. We demonstrate that each applied compensation scheme yields a distinctive spatial pattern in the resulting isostatic marine gravity field. The AH isostatic gravity disturbances provide the smoothest gravity field (by means of their standard deviation). The AH and VMM isostatic gravity disturbances have very similar spatial patterns due to the fact that the same isostatic principle is applied in both these definitions expect for assuming a local (in the former) instead of a global (in the latter) compensation mechanism. The PH isostatic gravity disturbances are highly spatially correlated with the ocean-floor relief. The CCS isostatic gravity disturbances reveal a signature of the ocean-floor spreading characterized by an increasing density of the oceanic lithosphere with age.
Observations of gravity-capillary lump interactions
Masnadi, Naeem
2016-01-01
In this experimental study, we investigate the interaction of gravity-capillary solitary waves generated by two surface pressure sources moving side by side at constant speed. The nonlinear response of a water surface to a single source moving at a speed just below the minimum phase speed of linear gravity-capillary waves in deep water ($c_{min}\\approx23$ cm s$^{-1}$) consists of periodic generation of pairs of three-dimensional solitary waves (or lumps) in a V-shaped pattern downstream of the source. In the reference frame of the laboratory, these unsteady lumps propagate in a direction oblique to the motion of the source. In the present experiments, the strength of the two sources is adjusted to produce nearly identical responses and the free surface deformations are visualized using photography-based techniques. The first lumps generated by the two sources move in intersecting directions that make a half angle of approximately 15 degrees and collide in the center-plane between the sources. A steep depressi...
Gravity modelling of the Ramadas Caldera (Argentinean Puna, central Andes)
Energy Technology Data Exchange (ETDEWEB)
Casas, A. [Barcelona Univ. (Spain). Facultad de Geologia; Hernandez, E.; Marti, J. [Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Inst. de Ciencias de la Terra Jaume Almera; Petrinovic, I. [Universidad Nacional de Salta (Argentina)
1995-12-31
In order to identify and characterize the event area of abundant Upper Miocene proximal rhyolitic pyroclastic deposits and extrusive domes which concentrate in the Ramadas area, near Sant`Antonio de los Cobres (Salta) at the Puna Altiplano (Central Andes), a detailed gravity survey has been carried out. Regional Bouguer gravity data were augmented with new 173 gravity observations measured sufficiently close-spaced to resolve the short wavelength produced by the structure of interest. Besides, the geophysical survey was done in conjunction with geologic and geochemical studies which were critically important to our interpretation. After the separation of the regional trend, the residual anomaly map displays a circular gravity low reaching-80 m Gal centered over scarce outcrops of rhyolitic and pyroclastic. This gravity low is interpreted as produced by block subsidence along ring fractures during eruption and/or deflation of the chamber. As the accumulation of thick, low density rock types in the zone of collapse is responsible of the prominent negative gravity anomalies, them has been used to estimated the thickness of caldera infill. (author). 8 refs., 4 figs
Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer
Energy Technology Data Exchange (ETDEWEB)
Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M. [Dipartimento di Fisica e Astronomia and LENS, Universita di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); Bertoldi, A. [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud Campus Polytechnique, RD 128, F-91127 Palaiseau cedex (France); Bodart, Q. [Dipartimento di Fisica e Astronomia and LENS, Universita di Firenze, INFN Sezione di Firenze, via Sansone 1, I-50019 Sesto Fiorentino (Italy); European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Cacciapuoti, L. [European Space Agency, Research and Scientific Support Department, Keplerlaan 1, 2201 AZ Noordwijk (Netherlands); Angelis, M. de [Istituto di Fisica Applicata ' Nello Carrara' CNR, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Prevedelli, M. [Dipartimento di Fisica dell' Universita di Bologna, Via Irnerio 46, I-40126, Bologna (Italy)
2012-09-10
We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.
Gravity, Magnetism, and "Down": Non-Physics College Students' Conceptions of Gravity
Asghar, Anila; Libarkin, Julie C.
2010-01-01
This study investigates how students enrolled in entry-level geology, most of whom would graduate from college without university-level physics courses, thought about and applied the concept of gravity while solving problems concerning gravity. The repercussions of students' gravity concepts are then considered in the context of non-physics…
Energy Technology Data Exchange (ETDEWEB)
Bell, R.E.; Small, C.; Arko, R.A. [Columbia Univ., Palisades, NY (United States). Lamont-Doherty Earth Observatory
1999-04-01
The United States National Science Foundation (NSF) has agreed to support the development of a new generation gravity map of Antarctica (ADGRAW-Antarctic Digital Gravity Synthesis), funding the development of a web based access tool. The goal of this project is the creation of an on-line Antarctic gravity database which will facilitate access to improved high resolution satellite gravity models, in conjunction with shipboard, airborne, and land based gravity measurements for the continental regions. This database will complement parallel projects underway to develop new continental bedrock (BEDMAP) and magnetic (ADMAP) maps of Antarctica.
Directory of Open Access Journals (Sweden)
R. A. Arko
1999-06-01
Full Text Available The U.S. National Science Foundation (NSF has agreed to support the development of a new generation gravity map of Antarctica (ADGRAV - Antarctic Digital Gravity Synthesis, funding the development of a web based access tool. The goal of this project is the creation of an on-line Antarctic gravity database which will facilitate access to improved high resolution satellite gravity models, in conjunction with shipboard, airborne, and land based gravity measurements for the continental regions. This database will complement parallel projects underway to develop new continental bedrock (BEDMAP and magnetic (ADMAP maps of Antarctica.
SATELLITE GRAVITY SURVEYING TECHNOLOGY AND RESEARCH OF EARTH＇S GRAVITY FIELD
Institute of Scientific and Technical Information of China (English)
NingJinsheng
2003-01-01
This is a summarized paper.Two topics are discussed:Firstly,the comcept,development and application of four kinds of satellite gravity surveying technology are introduced；Secondly,some problems of theory and method,which must be considered in the study lf the Earth's gravity field based on satellite gravity data,are expounded.
Thermodynamic properties of modified gravity theories
Bamba, Kazuharu
2016-01-01
We review thermodynamic properties of modified gravity theories such as $F(R)$ gravity and $f(T)$ gravity, where $R$ is the scalar curvature and $T$ is the torsion scalar in teleparallelism. In particular, we explore the equivalence between the equations of motion for modified gravity theories and the Clausius relation in thermodynamics. In addition, thermodynamics of the cosmological apparent horizon is investigated in $f(T)$ gravity. We show both equilibrium and non-equilibrium descriptions of thermodynamics. It is demonstrated that the second law of thermodynamics in the universe can be met when the temperature of the outside of the apparent horizon is equivalent to that of the inside of it.
Comparison of Present SST Gravity Field Models
Institute of Scientific and Technical Information of China (English)
LUO Jia; SHI Chuang; ZOU Xiancai; WANG Haihong
2006-01-01
Taking the main land of Europe as the region to be studied, the potential of the new satellite gravity technique: satellite-to-satellite tracking (SST) and improving the accuracy of regional gravity field model with the SST models are investigated. The drawbacks of these models are discussed. With GPM98C as the reference, the gravity anomaly residuals of several other models, the latest SST global gravity field models (EIGEN series and GGM series), were computed and compared. The results of the comparison show that in the selected region, some systematic errors with periodical properties exist in the EIGEN and GGM's S series models in the high degree and order. Some information that was not shown in the classic gravity models is detected in the low and middle degree and order of EIGEN and GGM's S series models. At last, the effective maximum degrees and orders of SST models are suggested.
Gravity and the cells of gravity receptors in mammals
Ross, M. D.
1983-01-01
A model of the mammalian gravity receptor system is presented, with attention given to the effects of weightlessness. Two receptors are on each side of the head, with end organs in the saccule and utricle of the vestibular membranous labyrinth of the inner ear, embedded in the temporal bone. Each end organ has a macula, containing hair cells and supporting cells, and an otoconial complex, an otoconial membrane and mineral masses called otoconia. X ray powder diffraction examinations have revealed that the otoconia can behave like crystals, i.e., with piezoelectric properties, due to the mineral deposits. Bending of the hair cells because of acceleration can put pressure on the otoconial mineral, producing an electrical signal in the absence of a gravitational field. The possibility that pyroelectricity, as well as piezoelectricity, is present in the otoconial complexes, is discussed.
Lattice Models of Quantum Gravity
Bittner, E R; Holm, C; Janke, W; Markum, H; Riedler, J
1998-01-01
Standard Regge Calculus provides an interesting method to explore quantum gravity in a non-perturbative fashion but turns out to be a CPU-time demanding enterprise. One therefore seeks for suitable approximations which retain most of its universal features. The $Z_2$-Regge model could be such a desired simplification. Here the quadratic edge lengths $q$ of the simplicial complexes are restricted to only two possible values $q=1+\\epsilon\\sigma$, with Ising model. To test whether this simpler model still contains the essential qualities of the standard Regge Calculus, we study both models in two dimensions and determine several observables on the same lattice size. In order to compare expectation values, e.g. of the average curvature or the Liouville field susceptibility, we employ in both models the same functional integration measure. The phase structure is under current investigation using mean field theory and numerical simulation.
Growth of lead-tin telluride crystals under high gravity
Regel, L. L.; Turchaninov, A. M.; Shumaev, O. V.; Bandeira, I. N.; An, C. Y.; Rappl, P. H. O.
1992-04-01
The influence of high gravity environment on several growth habits of lead-tin telluride crystals began to be investigated. Preliminary experiments with Pb 0.8Sn 0.2te grown by the Bridgman technique had been made at the centrifuge facilities of the Y.A. Gagarin Cosmonauts Center in the USSR, using accelerations of 5 g, 5.2 g and 8 g. The Sn distribution for these crystals was compared with that obtained for growth at normal gravity and the results show the existence of significant compositional inhomogeneities along the axial direction. Convection currents at high gravity seem to help multiple nucleation and subsequent random orientation of growth. Analyses of carrier concentrations as well as morphological characteristics were also made.
Development of gravity-sensing organs in altered gravity
Wiederhold, M. L.; Gao, W. Y.; Harrison, J. L.; Hejl, R.
1997-01-01
Experiments are described in which the development of the gravity-sensing organs was studied in newt larvae reared in microgravity on the IML-2 mission and in Aplysia embryos and larvae reared on a centrifuge at 1 to 5 g. In Aplysia embryos, the statolith (single dense mass on which gravity and linear acceleration act) was reduced in size in a graded fashion at increasing g. In early post-metamorphic Aplysia or even in isolated statocysts from such animals, the number of statoconia produced is reduced at high g. Newt larvae launched before any of the otoconia were formed and reared for 15 days in microgravity had nearly adult labyrinths at the end of the IML-2 mission. The otoliths of the saccule and utricle were the same size in flight and ground-reared larvae. However, the system of aragonitic otoconia produced in the endolymphatic sac in amphibians was much larger and developed earlier in the flight-reared larvae. At later developmental stages, the aragonitic otoconia enter and fill the saccule. One flight-reared larva was maintained for nine months post-flight and the size of the saccular otolith, as well as the volume of otoconia within the endolymphatic sac, were considerably larger than in age-matched, ground-reared newts. This suggests that rearing in microgravity initiates a process that continues for several months after introduction to 1-g, which greatly increases the volume of otoconia. The flight-reared animal had abnormal posture, pointing its head upward, whereas normal ground-reared newts always keep their head horizontal. This suggests that rearing for even a short period in microgravity can have lasting functional consequences in an animal subsequently reared in 1-g conditions on Earth.
Schreiber, L; Robert, C; Diolaiti, E; Conan, J -M; Lombini, M
2009-01-01
Over the last few years increasing consideration has been given to the study of Laser Guide Stars (LGS) for the measurement of the disturbance introduced by the atmosphere in optical and near-infrared astronomical observations from the ground. A possible method for the generation of a LGS is the excitation of the Sodium layer in the upper atmosphere at approximately 90 km of altitude. Since the Sodium layer is approximately 10 km thick, the artificial reference source looks elongated, especially when observed from the edge of a large aperture. The spot elongation strongly limits the performance of the most common wavefront sensors. The centroiding accuracy in a Shack-Hartmann wavefront sensor, for instance, decreases proportionally to the elongation (in a photon noise dominated regime). To compensate for this effect a straightforward solution is to increase the laser power, i.e. to increase the number of detected photons per subaperture. The scope of the work presented in this paper is twofold: an analysis of...
Consistency of canonical formulation of Horava gravity
Energy Technology Data Exchange (ETDEWEB)
Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Tainan, Taiwan (China)
2011-09-22
Both the non-projectable and projectable version of Horava gravity face serious challenges. In the non-projectable version, the constraint algebra is seemingly inconsistent. The projectable version lacks a local Hamiltonian constraint, thus allowing for an extra graviton mode which can be problematic. A new formulation (based on arXiv:1007.1563) of Horava gravity which is naturally realized as a representation of the master constraint algebra (instead of the Dirac algebra) studied by loop quantum gravity researchers is presented. This formulation yields a consistent canonical theory with first class constraints; and captures the essence of Horava gravity in retaining only spatial diffeomorphisms as the physically relevant non-trivial gauge symmetry. At the same time the local Hamiltonian constraint is equivalently enforced by the master constraint.
Validation of the EGSIEM combined monthly GRACE gravity fields
Li, Zhao; van Dam, Tonie; Chen, Qiang; Weigelt, Matthias; Güntner, Andreas; Jäggi, Adrian; Meyer, Ulrich; Jean, Yoomin; Altamimi, Zuheir; Rebischung, Paul
2016-04-01
Observations indicate that global warming is affecting the water cycle. Here in Europe predictions are for more frequent high precipitation events, wetter winters, and longer and dryer summers. The consequences of these changes include the decreasing availability of fresh water resources in some regions as well as flooding and erosion of coastal and low-lying areas in other regions. These weather related effects impose heavy costs on society and the economy. We cannot stop the immediate effects global warming on the water cycle. But there may be measures that we can take to mitigate the costs to society. The Horizon2020 supported project, European Gravity Service for Improved Emergency Management (EGSIEM), will add value to EO observations of variations in the Earth's gravity field. In particular, the EGSIEM project will interpret the observations of gravity field changes in terms of changes in continental water storage. The project team will develop tools to alert the public water storage conditions could indicate the onset of regional flooding or drought. As part of the EGSIEM project, a combined GRACE gravity product is generated, using various monthly GRACE solutions from associated processing centers (ACs). Since each AC follows a set of common processing standards but applies its own independent analysis method, the quality, robustness, and reliability of the monthly combined gravity fields should be significantly improved as compared to any individual solution. In this study, we present detailed and updated comparisons of the combined EGSIEM GRACE gravity product with GPS position time series, hydrological models, and existing GRACE gravity fields. The GPS residuals are latest REPRO2 station position residuals, obtained by rigorously stacking the IGS Repro 2 , daily solutions, estimating, and then restoring the annual and semi-annual signals.
Directory of Open Access Journals (Sweden)
Katsuya Hasegawa
2014-04-01
Full Text Available The ability to maintain the body relative to the external environment is important for adaptation to altered gravity. However, the physiological limits for adaptation or the disruption of body orientation are not known. In this study, we analyzed postural changes in mice upon exposure to various low gravities. Male C57BL6/J mice (n = 6 were exposed to various gravity-deceleration conditions by customized parabolic flight-maneuvers targeting the partial-gravity levels of 0.60, 0.30, 0.15 and μ g (<0.001 g. Video recordings of postural responses were analyzed frame-by-frame by high-definition cineradiography and with exact instantaneous values of gravity and jerk. As a result, the coordinated extension of the neck, spine and hindlimbs was observed during the initial phase of gravity deceleration. Joint angles widened to 120%–200% of the reference g level, and the magnitude of the thoracic-curvature stretching was correlated with gravity and jerk, i.e., the gravity deceleration rate. A certain range of jerk facilitated mouse skeletal stretching efficiently, and a jerk of −0.3~−0.4 j (g/s induced the maximum extension of the thoracic-curvature. The postural response of animals to low gravity may undergo differential regulation by gravity and jerk.
Institute of Scientific and Technical Information of China (English)
王介勇; 刘彦随
2009-01-01
通过构建粮食产量重心模型,定量分析了1990年～2005年中国粮食生产时空格局演进过程.结果表明:中国粮食产量重心呈现出"北上西进"的态势,粮食产量重心移动的速率不断增大,粮食产量增长的空间波动性逐渐增强,产量优势区的空间格局尚不稳定.从资源、经济、技术、政策等方面深入剖析了粮食产量重心移动的驱动机制.耕地资源的空间格局及其变动趋势是驱动粮食产量重心移动的客观基础,北方地下水资源开发利用是粮食产量重心移动的关键因素,食物消费结构变化是粮食产量重心移动的直接因素,科技进步、农村经济发展不平衡以及区域化的粮食支持政策是粮食产量重心移动的重要驱动力量.最后探讨了粮食产量重心移动的区域环境、经济及社会效应.%Grain security is a considerable challenge to the world in the 21 century, especially to China. The pattern of grain-output has changed greatly since the reform of the grain market, the accelerating urbanization and fast industrialization. In this paper, the model for the center of gravity of grain-output was built, and the change of grain-output pattern was analyzed from 1990 to 2005 with the model. The results showed that: 1) from 1990 to 1998, the grain-output center-of-gravity moved towards northeast at the speed of 7.6 km/year. In total, it moved 60.8km northward and 6.4km eastward; 2) In the period of 1998 to 2003, the grain-output center-of-gravity moved towards southwest at a speed of 16 km/year. Therefore, it moved 63.8km southward and 48.1km westward in all; 3) In the last period of 2003 to 2005, the grain-output center-of-gravity moved back to northeast at the speed odf 41.2 km/year. In other words, it moved 82.3 km northward and 46.8km eastward in all; 4) During the entire period of 1990 to 2005, the grain-output center-of-gravity moved remarkably from the south and east to the north and west of China, and
Hasegawa, Katsuya; de Campos, Priscila S; Zeredo, Jorge L; Kumei, Yasuhiro
2014-04-24
The ability to maintain the body relative to the external environment is important for adaptation to altered gravity. However, the physiological limits for adaptation or the disruption of body orientation are not known. In this study, we analyzed postural changes in mice upon exposure to various low gravities. Male C57BL6/J mice (n = 6) were exposed to various gravity-deceleration conditions by customized parabolic flight-maneuvers targeting the partial-gravity levels of 0.60, 0.30, 0.15 and μ g (high-definition cineradiography and with exact instantaneous values of gravity and jerk. As a result, the coordinated extension of the neck, spine and hindlimbs was observed during the initial phase of gravity deceleration. Joint angles widened to 120%-200% of the reference g level, and the magnitude of the thoracic-curvature stretching was correlated with gravity and jerk, i.e., the gravity deceleration rate. A certain range of jerk facilitated mouse skeletal stretching efficiently, and a jerk of -0.3~-0.4 j (g/s) induced the maximum extension of the thoracic-curvature. The postural response of animals to low gravity may undergo differential regulation by gravity and jerk.
The Universal Force Gravity - Creator of Worlds
Girifalco, Louis A
2008-01-01
"The Universal Force" conveys the excitement of science and nature's mysteries. It describes gravitation as seen by examining the achievements of those great scientists who have struggled with the seemingly simple facts and managed to extract some truth about the nature of gravity, its origins, and its effects. Gravity is intimately tied up with motion, and therefore with time and space, and is responsible for planetary systems, the evolution of stars and the existence of blackholes and the very beginning of the Universe. It is the universal force, and to look at gravity is to look a
Toward Joint Inversion of Gravity and Dyanamics
Jacoby, W. R.
To better understand geodynamic processes as seafloor spreading, plumes, subduction, and isostatic adjustment, gravity is inverted with "a prioriinformation from topography/bathymetry, seismic structure and dynamic models. Examples are subduction of the Juan de Fuca plate below Vancouver Island, the passive Black SeaTurkey margin and Iceland ridge-plume interaction. Gravity and other data are averaged 50 km wide strips. Mass balances are estimated (showing also that the free air anomaly is misleading for narrow structures). The mass balances represent plate forces and plate bending, affecting the gravity signals and the isostatic state of continental margins and ridge-plume effects, which are highly correlated in space and cannot be separated without a priori information from modelling. The examples from widely different tectonic situations demonstrate that the art of regional-scale gravity inversion requires extensive background knowledge and inclusion of dynamic processes. It is difficult to conceive any formal, globally applicable procedure taking care of this; it is even a question, what is data, what a priori information? They are not distinguishable if all are included as foreward routines. The "accuracy" of models cannot be perfectly determined, if the "real" mass distribution is not known if known, gravity inversion would be unnecessary. In reality only guesses are possible on the basis of observations and physical laws governing geodynamics. A priori information and gravity data limit the resolution of gravity inversion. Different model types are indistinguishable because adjustments within their parameter uncertainties permit a good fit. But gravity excludes wrong models (Karl Popper: science evolves by falsification of wrong models), and precise gravity guides and defines aims, targets and strategies for new observations.
Center of Gravity Analysis and Operational Design
DEFF Research Database (Denmark)
Barfoed, Jacob
USA er god at til vinde sine militære kampagner, men fejler i sikringen af den efterfølgende fred. Der er behov for en interagency strategisk analysemodel, der kan medvirke til at sikre sammenhæng mellem de politiske mål og den militære kampagne. Dette paper giver et bud på en sådan model....
Gravity and Development of Cardiopulmonary Reflex
Nagaoka, Shunji; Eno, Yuko; Ohira, Yoshinobu
Cardio-pulmonary reflex, which our cardiac activity is synchronized to the respiration by autonomic nervous system regulation, is called as "respiratory sinus arrhythmia" and commonly found in adult. The physiological function of the espiratory sinus arrhythmia is considered to maximize the gas exchange during respiration cycle. This respiration induced heart rate variability (RHRV) is only found in mammals and avian showing a remarkable postnatal development, whereas no RHRV in aquatic species such as fish or amphibian. To elucidate our hypothesis that gravity exposure may plays a key role in the postnatal development of RHRV as well as its evolutional origin in these ground animals, we have studied effects of hypergravity (2G) on the postnatal development of RHRV using rat. Pregnant Wister rats were kept in centrifugal cages system for 38 days from 6th days of pregnant mother to have neonates until 23 days old. Electrocardiograph was recorded from the neonates in 2 to 23 days old in 2G group with simultaneous control (1G) group. The RHRV analysis was performed by calculating a component of Fourier power spectral coincide with the respiration frequency. In both groups, averaged resting heart rate gradually increase from 2 to 23 days old. When comparing the heart rate between the two groups, the 2G group indicated significantly lower (240± 8 bpm) than 1G control (326±21 bpm, p¡0.001) in 2 days old, where as no significance in 23 days old. The RHRV of 2 days old neonates in both groups indicated very small magnitude but significantly lower in 2G group than 1G control (p¡0.01). The RHRV gradually increase during the first 2 weeks and then rapid increased to reached 45 fold of magnitude in 1G control, whereas 69 fold in 2G group. The results strongly suggested that the postnatal innervation from respiration to cardiovascular centers was gravity dependent.
Gravity Field Atlas of the S. Ocean
National Oceanic and Atmospheric Administration, Department of Commerce — This Gravity Field Atlas of the Southern Ocean from GEOSAT is MGG Report 7. In many areas of the global ocean, the depth of the seafloor is not well known because...
Energy Technology Data Exchange (ETDEWEB)
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Energy Technology Data Exchange (ETDEWEB)
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
The Gravity of Giraffe Physiology
Hargens, Alan R.; Holton, Emily M. (Technical Monitor)
1997-01-01
By virtue of its tallness and terrestrial environment, the giraffe is a uniquely sensitive African animal to investigate tissue adaptations to gravitational stress. One decade ago, we studied transcapillary fluid balance and local tissue adaptations to high cardiovascular and musculoskeletal loads in adult and fetal giraffes. Previous studies by Goetz, Pattersson, Van Citters, Warren and their colleagues revealed that arterial pressure near the giraffe heart is about twice that in humans, to provide more normal blood pressure and perfusion to the brain. Another important question is how giraffes avoid pooling of blood and tissue fluid (edema) in dependent tissue of the extremities. As monitored by radiotelemetry, the blood and tissue fluid pressures that govern transcapillary exchange vary greatly with exercise. These pressures, combined with a tight skin layer, move fluid upward against gravity. Other mechanisms that prevent edema include precapillary vasoconstriction and low permeability of capillaries to plasma proteins. Other anatomical adaptations in dependent tissues of giraffes represent developmental adjustments to high and variable gravitational forces. These include vascular wall hypertrophy, thickened capillary basement membrane and other connective tissue adaptations. Our results in giraffe suggest avenues of future gravitational research in other animals including humans.
The quantization of gravity an introduction
Wallace, D
2000-01-01
This is an introduction to quantum gravity, aimed at a fairly general audience and concentrating on what have historically two main approaches to quantum gravity: the covariant and canonical programs (string theory is not covered). The quantization of gravity is discussed by analogy with the quantization of the electromagnetic field. The conceptual and technical problems of both approaches are discussed, and the paper concludes with a discussion of evidence for quantum gravity from the rest of physics. The paper assumes some familiarity with non-relativistic quantum mechanics, special relativity, and the Lagrangian and Hamiltonian formulations of classical mechanics; some experience with classical field theory, quantum electrodynamics and the gauge principle in electromagnetism might be helpful but is not required. No knowledge of general relativity or of quantum field theory in general is assumed.
Toward a gauge field theory of gravity.
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Isomonodromic quantization of dimensionally reduced gravity
Korotkin, D.; Nicolai, H.
1996-01-01
We present a detailed account of the isomonodromic quantization of dimensionally reduced Einstein gravity with two commuting Killing vectors. This theory constitutes an integrable ``midi-superspace" version of quantum gravity with infinitely many interacting physical degrees of freedom. The canonical treatment is based on the complete separation of variables in the isomonodromic sectors of the model. The Wheeler-DeWitt and diffeomorphism constraints are thereby reduced to the Knizhnik-Zamolod...
Gravity and Nonequilibrium Thermodynamics of Classical Matter
Hu, B L
2010-01-01
Renewed interest in deriving gravity (more precisely, the Einstein equations) from thermodynamics considerations [1, 2] is stirred up by a recent proposal that 'gravity is an entropic force' [3] (see also [4]). Even though I find the arguments justifying such a claim in this latest proposal rather ad hoc and simplistic compared to the original one I would unreservedly support the call to explore deeper the relation between gravity and thermodynamics, this having the same spirit as my long-held view that general relativity is the hydrodynamic limit [5, 6] of some underlying theories for the microscopic structure of spacetime - all these proposals, together with that of [7, 8], attest to the emergent nature of gravity [9]. In this first paper of two we set the modest goal of studying the nonequilibrium thermodynamics of classical matter only, bringing afore some interesting prior results, without invoking any quantum considerations such as Bekenstein-Hawking entropy, holography or Unruh effect. This is for the ...
6D Interpretation of 3D Gravity
Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos
2017-02-01
We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.
The influence of gravity on REM sleep
Gonfalone, Alain; Jha,Sushil
2015-01-01
Alain A Gonfalone,1 Sushil K Jha2 1European Space Agency, Paris, France; 2School of Life Sciences, Jawaharlal Nehru University, New Delhi, India Abstract: It is suggested that environmental variables, and gravity in particular, are the main determinants of sleep duration. Assuming that the rapid eye movement (REM) sleep state depends on the influence of gravity allows a better understanding of sleep across the animal world. This paper is based on numerous results already published on sleep b...
Some aspects of holographic W-gravity
Li, Wei
2015-01-01
We use the Chern-Simons formulation of higher spin theories in three dimensions to study aspects of holographic W-gravity. Concepts which were useful in studies of pure bulk gravity theories, such as the Fefferman-Graham gauge and the residual gauge transformations, which induce Weyl transformations in the boundary theory and their higher spin generalizations, are reformulated in the Chern-Simons language. Flat connections that correspond to conformal and lightcone gauges in the boundary theory are considered.
Some aspects of holographic W-gravity
Li, Wei; Theisen, Stefan
2015-08-01
We use the Chern-Simons formulation of higher spin theories in three dimensions to study aspects of holographic W-gravity. Concepts which were useful in studies of pure bulk gravity theories, such as the Fefferman-Graham gauge and the residual gauge transformations, which induce Weyl transformations in the boundary theory and their higher spin generalizations, are reformulated in the Chern-Simons language. Flat connections that correspond to conformal and lightcone gauges in the boundary theory are considered.
Gravity as the breakdown of conformal invariance
Amelino-Camelia, Giovanni; Gubitosi, Giulia; Magueijo, Joao
2015-01-01
We propose that at the beginning of the universe gravity existed in a limbo either because it was switched off or because it was only conformally coupled to all particles. This picture can be reverse-engineered from the requirement that the cosmological perturbations be (nearly) scale-invariant without the need for inflation. It also finds support in recent results in quantum gravity suggesting that spacetime becomes two-dimensional at super-Planckian energies. We advocate a novel top-down approach to cosmology based on the idea that gravity and the Big Bang Universe are relics from the mechanism responsible for breaking the fundamental conformal invariance. Such a mechanism should leave clear signatures in departures from scale-invariance in the primordial power spectrum and the level of gravity waves generated.
Unification of Gravity and Electromagnetism and Cosmology
Ghose, Partha
2016-01-01
It is first argued that radiation by a uniformly accelerated charge in flat space-time indicates the need for a unified geometric theory of gravity and electromagnetism. Such a theory, based on a metric-affine $U_4$ manifold, is constructed with the torsion pseudo-vector $\\Gamma_\\mu$ linking gravity and electromagnetism. This conceptually simple extension results in (i) Einstein's equations being modified by a vacuum energy $\\Gamma_\\mu\\Gamma_\
Forward Modeling of Gravity, Gravity Gradients,and Magnetic Anomalies due to Complex Bodies
Institute of Scientific and Technical Information of China (English)
Luo Yao; Yao Changli
2007-01-01
On the basis of the results of improved analytical expression of computation of gravity anomalies due to a homogeneous polyhedral body composed of polygonal facets, and applying the forward theory with the coordinate transformation of vectors and tensors, we deduced both the analytical expressions for gravity gradient tensors and for magnetic anomalies of a polygon, and obtained new analytical expressions for computing vertical gradients of gravity anomalies and vertical component of magnetic anomalies caused by a polyhedral body. And also we developed explicitly the complete unified expressions for the calculation of gravity anomalies, gravity gradient, and magnetic anomalies due to the homogeneous polyhedron. Furthermore, we deduced new analytical expressions for computing vertical gradients of gravity anomalies due to a finite rectangular prism by applying the newly obtained expressions for gravity gradient tensors due to a polyhedral target body. Comparison with forward calculation of models shows the correctness of these new expressions. It will reduce forward calculation time of gravity-magnetic anomalies and improve computational efficiency by applying our unified expressions for joint forward modeling of gravity-magnetic anomalies due to homogeneous polyhedral bodies.
Gravity Analysis of the Jeffera Basin, Tunisia
Mickus, K.; Gabtni, H.; Jallouli, C.
2004-12-01
Southern Tunisia consists of two main tectonic provinces: 1) the Saharan Platform and 2) the folded Atlasic domain, separated by the North Saharan Flexure. The Saharan Platform, which contains the Ghadames Basin and the Telemzane Arch, consists of gently dipping Paleozoic strata overlain by Triassic to Cretaceous sediments. The Atlasic domain consists of a thicker sequence of mainly Mesozoic and younger rock with less complete sequences of Paleozoic strata. Within the Atlasic domain are the still actively subsiding Chotts and Jeffera basins. The Jeffera basin, which occurs to the east of the Telemzane Arch contains at least eight kilometers of Paleozoic and younger sediment that were formed during numerous subsidence episodes since Carboniferous time. The Jeffera basin is dominated by tilted fault blocks that were formed during numerous tectonic episodes. Several unpublished seismic reflection profiles and well data exist for the Jeffera basin, however a deep structural analysis of the basin has not been published. We examined the existing gravity data in conjunction with available well and geologic data to determine structural features within the basin. The Bouguer gravity anomaly map shows that the Jeffera basin is dominated by a narrow northwest-trending gravity minimum. However, a more detailed analysis consisting of wavelength filtering and edge enhancements indicate that the structure of the basin is more complicated than indicated by the Bouguer gravity anomaly map. A residual gravity anomaly map indicates that the Jeffera basin consists of at least three and maybe four subbasins. Additionally, the Jeffera Fault marks the boundary between northwest-trending gravity anomalies to its northeast and east-trending anomalies over the Saharan Platform. The above observation is amplified by the construction of the enhanced horizontal derivatives (EHG) of both the complete Bouguer gravity and the residual gravity anomaly maps. The EHG maps highlight the lateral
Monnereau, C.; Vignes-Adler, M.; Kronberg, B.
1999-06-01
The feasibility of experiments on the physics of foams in microgravity environment was investigated during a parabolic flight campaign. Transient foams from surfactant-free organic liquids and stable foams from a soapy solution of a Sodium Dodecyl Sulfate + Dodecanol mixture were investigated. In 0g, the transient foam is stabilized; whatever the liquid the foam bubbles are spherical and their diameter does not change during the flight. When the gravity constant is equal to 1.8 g, the bubbles of the stable foam become polyhedral and numerous topological transformations could be observed. La faisabilité d'expériences permettant d'étudier la physique de la mousse en microgravité a été démontrée au cours de vols paraboliques. Nous avons testé des mousses de liquides organiques sans tensioactif qui sont éphémères dans le champ terrestre, et des mousses à base d'une solution aqueuse d'un mélange de Dodécyl Sulfate de Sodium et de Dodécanol qui sont au contraire très stables. En microgravité, les mousses éphémères sont stabilisées; quel que soit le liquide, les bulles sont sphériques et leur diamètre reste égal à leur valeur initiale. Lorsqu'au cours de la parabole, la gravité devient égale à 1,8 g, les bulles de la mousse stable dont les films sont très rigides prennent une forme polyédrique ; de très nombreuses transformations topologiques de type T1 ont pu alors être observées.
Effects of Gravity on Processing Heavy Metal Fluoride Fibers
Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.
1997-01-01
The effects of gravity on the crystal nucleation of heavy metal fluoride fibers have been studied in preliminary experiments utilizing NASA's KC-135 reduced gravity aircraft and a microgravity sounding rocket flight. Commercially produced fibers were heated to the crystallization temperature in normal and reduced gravity. The fibers processed in normal gravity showed complete crystallization while the fibers processed in reduced gravity did not show signs of crystallization.
Equations of motion in relativistic gravity
Lämmerzahl, Claus; Schutz, Bernard
2015-01-01
The present volume aims to be a comprehensive survey on the derivation of the equations of motion, both in General Relativity as well as in alternative gravity theories. The topics covered range from the description of test bodies, to self-gravitating (heavy) bodies, to current and future observations. Emphasis is put on the coverage of various approximation methods (e.g., multipolar, post-Newtonian, self-force methods) which are extensively used in the context of the relativistic problem of motion. Applications discussed in this volume range from the motion of binary systems -- and the gravitational waves emitted by such systems -- to observations of the galactic center. In particular the impact of choices at a fundamental theoretical level on the interpretation of experiments is highlighted. This book provides a broad and up-do-date status report, which will not only be of value for the experts working in this field, but also may serve as a guideline for students with background in General Relativity who ...
Extreme neutron stars from Extended Theories of Gravity
Energy Technology Data Exchange (ETDEWEB)
Astashenok, Artyom V. [I. Kant Baltic Federal University, Institute of Physics and Technology, Nevskogo st. 14, Kaliningrad, 236041 (Russian Federation); Capozziello, Salvatore [Dipartimento di Fisica, Università di Napoli ' ' Federico II' ' , Via Cinthia, 9, Napoli, I-80126 Italy (Italy); Odintsov, Sergei D., E-mail: artyom.art@gmail.com, E-mail: capozziello@na.infn.it, E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain)
2015-01-01
We discuss neutron stars with strong magnetic mean fields in the framework of Extended Theories of Gravity. In particular, we take into account models derived from f(R) and f(G) extensions of General Relativity where functions of the Ricci curvature invariant R and the Gauss-Bonnet invariant G are respectively considered. Dense matter in magnetic mean field, generated by magnetic properties of particles, is described by assuming a model with three meson fields and baryons octet. As result, the considerable increasing of maximal mass of neutron stars can be achieved by cubic corrections in f(R) gravity. In principle, massive stars with M > 4M{sub ☉} can be obtained. On the other hand, stable stars with high strangeness fraction (with central densities ρ{sub c} ∼ 1.5–2.0 GeV/fm{sup 3}) are possible considering quadratic corrections of f(G) gravity. The magnetic field strength in the star center is of order 6–8 × 10{sup 18} G. In general, we can say that other branches of massive neutron stars are possible considering the extra pressure contributions coming from gravity extensions. Such a feature can constitute both a probe for alternative theories and a way out to address anomalous self-gravitating compact systems.
The measurement of surface gravity.
Crossley, David; Hinderer, Jacques; Riccardi, Umberto
2013-04-01
This review covers basic theory and techniques behind the use of ground-based gravimetry at the Earth's surface. The orientation is toward modern instrumentation, data processing and interpretation for observing surface, land-based, time-variable changes to the geopotential. The instrumentation side is covered in some detail, with specifications and performance of the most widely used models of the three main types: the absolute gravimeters (FG5, A10 from Micro-g LaCoste), superconducting gravimeters (OSG, iGrav from GWR instruments), and the new generation of spring instruments (Micro-g LaCoste gPhone, Scintrex CG5 and Burris ZLS). A wide range of applications is covered, with selected examples from tides and ocean loading, atmospheric effects on gravity, local and global hydrology, seismology and normal modes, long period and tectonics, volcanology, exploration gravimetry, and some examples of gravimetry connected to fundamental physics. We show that there are only a modest number of very large signals, i.e. hundreds of µGal (10(-8) m s(-2)), that are easy to see with all gravimeters (e.g. tides, volcanic eruptions, large earthquakes, seasonal hydrology). The majority of signals of interest are in the range 0.1-5.0 µGal and occur at a wide range of time scales (minutes to years) and spatial extent (a few meters to global). Here the competing effects require a careful combination of different gravimeter types and measurement strategies to efficiently characterize and distinguish the signals. Gravimeters are sophisticated instruments, with substantial up-front costs, and they place demands on the operators to maximize the results. Nevertheless their performance characteristics such as drift and precision have improved dramatically in recent years, and their data recording ability and ruggedness have seen similar advances. Many subtle signals are now routinely connected with known geophysical effects such as coseismic earthquake displacements, post
Goldstone models of modified gravity
Brax, Philippe; Valageas, Patrick
2017-02-01
We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different from its Λ -CDM counterpart while cosmological perturbations crucially depend on whether the coupling function is convex or concave. For concave functions, growth is hindered by the repulsiveness of the fifth force while it is enhanced in the convex case. In both cases, the departures from the Λ -CDM cosmology increase on smaller scales and peak for galactic structures. For concave functions, the formation of structure is largely altered below some characteristic mass, as smaller structures are delayed and would form later through fragmentation, as in some warm dark matter scenarios. For convex models, small structures form more easily than in the Λ -CDM scenario. This could lead to an over-abundance of small clumps. We use a thermodynamic analysis and show that although convex models have a phase transition between homogeneous and inhomogeneous phases, on cosmological scales the system does not enter the inhomogeneous phase. On the other hand, for galactic
Effect of gravity on vertical eye position.
Pierrot-Deseilligny, C
2009-05-01
There is growing evidence that gravity markedly influences vertical eye position and movements. A new model for the organization of brainstem upgaze pathways is presented in this review. The crossing ventral tegmental tract (CVTT) could be the efferent tract of an "antigravitational" pathway terminating at the elevator muscle motoneurons in the third nerve nuclei and comprising, upstream, the superior vestibular nucleus and y-group, the flocculus, and the otoliths. This pathway functions in parallel to the medial longitudinal fasciculus pathways, which control vertical eye movements made to compensate for all vertical head movements and may also comprise the "gravitational" vestibular pathways, involved in the central reflection of the gravity effect. The CVTT could provide the upgaze system with the supplement of tonic activity required to counteract the gravity effect expressed in the gravitational pathway, being permanently modulated according to the static positions of the head (i.e., the instantaneous gravity vector) between a maximal activity in the upright position and a minimal activity in horizontal positions. Different types of arguments support this new model. The permanent influence of gravity on vertical eye position is strongly suggested by the vertical slow phases and nystagmus observed after rapid changes in hypo- or hypergravity. The chin-beating nystagmus, existing in normal subjects with their head in the upside-down position, suggests that gravity is not compensated for in the downgaze system. Upbeat nystagmus due to brainstem lesions, most likely affecting the CVTT circuitry, is improved when the head is in the horizontal position, suggesting that this circuitry is involved in the counteraction of gravity between the upright and horizontal positions of the head. In downbeat nystagmus due to floccular damage, in which a permanent hyperexcitation of the CVTT could exist, a marked influence of static positions of the head is also observed. Finally
Measurement of absolute gravity acceleration in Firenze
de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.
2011-01-01
This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.
Measurement of absolute gravity acceleration in Firenze
Directory of Open Access Journals (Sweden)
M. de Angelis
2011-01-01
Full Text Available This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy. In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0 μGal and (980 492 048.3 ± 3.0 μGal for the European Laboratory for Non-Linear Spectroscopy (LENS and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.
Semiclassical analysis of loop quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Conrady, F.
2005-10-17
In this Ph.D. thesis, we explore and develop new methods that should help in determining an effective semiclassical description of canonical loop quantum gravity and spin foam gravity. A brief introduction to loop quantum gravity is followed by three research papers that present the results of the Ph.D. project. In the first article, we deal with the problem of time and a new proposal for implementing proper time as boundary conditions in a sum over histories: we investigate a concrete realization of this formalism for free scalar field theory. In the second article, we translate semiclassical states of linearized gravity into states of loop quantum gravity. The properties of the latter indicate how semiclassicality manifests itself in the loop framework, and how this may be exploited for doing semiclassical expansions. In the third part, we propose a new formulation of spin foam models that is fully triangulation- and background-independent: by means of a symmetry condition, we identify spin foam models whose triangulation-dependence can be naturally removed. (orig.)
Gravitomagnetism and the Lorentz Invariance of Gravity
Kopeikin, S M
2006-01-01
Experimental discovery of the gravitomagnetic fields generated by translational and/or rotational currents of matter is one of primary goals of modern gravitational physics. The rotational (intrinsic) gravitomagnetic field of the Earth is currently measured by the Gravity Probe B. The present paper makes use of a parametrized post-Newtonian (PN) expansion of the Einstein equations to demonstrate how the extrinsic gravitomagnetic field generated by the translational current of matter can be measured by observing the relativistic time delay caused by a moving gravitational lens. We prove that measuring the extrinsic gravitomagnetic field is equivalent to testing of the relativistic effect of the aberration of gravity caused by the Lorentz transformation of the gravitational field. We unfold that the recent Jovian deflection experiment is a null-type experiment testing the Lorentz invariance of the gravitational field (aberration of gravity), thus, confirming existence of the extrinsic gravitomagnetic field asso...
Method of Discriminant Gravity Tolerance using Heart Rate Variability
Yoshida, Yutaka; Yokoyama, Kiyoko; Takada, Hiroki; Iwase, Satoshi
When returning on the earth by the space flight, the space deconditioning may be developed. As this countermeasure, the artificial gravity load device using the centrifuge is proposed in the space station. But the gravity load might cause the faint, and safe gravity load is uncertainty. We proposed that discriminate strength of gravity tolerance using heart rate variability time series. Step function was inputted to AR model estimated from heart rate variability time series during rest or under light gravity load, and strength of the gravity tolerance was discriminated by the step response function. On the result, discriminant accuracy was 87.5% by using heart rate variability time series when gravity load of 1.0 G was added to the human lying on the supine. Therefore, possibility of discriminant of gravity tolerance was obtained by using heart rate variability time series when sympathetic hyperactivity. Discriminant of the gravity tolerance is expected before countermeasure of space deconditioning is executed.
Aspects of general higher-order gravities
Bueno, Pablo; Min, Vincent S; Visser, Manus R
2016-01-01
We study several aspects of higher-order gravities constructed from general contractions of the Riemann tensor and the metric in arbitrary dimensions. First, we use the fast-linearization procedure presented in arXiv:1607.06463 to obtain the equations satisfied by the metric perturbation modes on a maximally symmetric background in the presence of matter and to classify $\\mathcal{L}($Riemann$)$ theories according to their spectrum. Then, we linearize all theories up to quartic order in curvature and use this result to construct quartic versions of Einsteinian cubic gravity (ECG). In addition, we show that the most general cubic gravity constructed in a dimension-independent way and which does not propagate the ghost-like spin-2 mode (but can propagate the scalar) is a linear combination of $f($Lovelock$)$ invariants, plus the ECG term, plus a New ghost-free gravity term. Next, we construct the generalized Newton potential and the Post-Newtonian parameter $\\gamma$ for general $\\mathcal{L}($Riemann$)$ gravities...
Conformal classes of Brans-Dicke gravity
Quirós, I
1999-01-01
A classification of Brans-Dicke theories of gravitation, based on the behaviour of the dimensionless gravitational coupling constant, is given. It is noted that the discussion takes place in the current literature, about which of the two distinguished conformal frames in which scalar-tensor theories of gravity can be formulated: the Jordan frame and the Einstein frame, is the physical one, may, in most cases, be meaningless for both frames may belong to the same conformal class. It is also noted that the Jordan frame formulation of Brans-Dicke gravity with ordinary matter nonminimally coupled is scale-invariant, unlike the situation with the Jordan frame formulation of Brans-Dicke gravity with matter minimally coupled (the original formulation of Brans-Dicke theory), where the presence of nonzero mass ordinary matter breaks the scale-invariance of the theory.
Casimir effect in Extended Theories of Gravity
Lambiase, G; Stabile, An
2016-01-01
We study the Casimir vacuum energy density and the Casimir pressure for a massless scalar field confined between two nearby parallel plates in a slightly curved, static spacetime background, employing the weak field approximation in the framework of Extended Theories of Gravity (ETG). Following a perturbative approach upto second order, we find the gravity correction in the ETG to Casimir vacuum energy density and pressure. The corrections to the vacuum energy density in presence of curved spacetime in the framework of General Relativity (GR) are small and today they are still undetected with the current technology. However, future sensitivity improvement in gravitational interferometer experiments will give an useful tool to detect such effect induced by gravity. For these reason we retain interesting from a theoretical point of view generalize the outcomes of GR in the context of ETG. Finally, we find the general relation to constraining the free parameters of the ETG.
Simulation of Gravity Currents Using VOF Model
Institute of Scientific and Technical Information of China (English)
邹建锋; 黄钰期; 应新亚; 任安禄
2002-01-01
By the Volume of Fluid (VOF) multiphase flow model two-dimensional gravity currents with three phases including air are numerically simulated in this article. The necessity of consideration of turbulence effect for high Reynolds numbers is demonstrated quantitatively by LES (the Large Eddy Simulation) turbulence model. The gravity currents are simulated for h ≠ H as well as h = H, where h is the depth of the gravity current before the release and H is the depth of the intruded fluid. Uprising of swell occurs when a current flows horizontally into another lighter one for h ≠ H. The problems under what condition the uprising of swell occurs and how long it takes are considered in this article. All the simulated results are in reasonable agreement with the experimental results available.
Thermodynamics of black holes in rainbow gravity
Banerjee, Ritwick
2016-01-01
In this paper, we investigate the thermodynamic properties of black holes under the influence of rainbow gravity. In the metric of Schwarzschild, Reissner-Nordstrom and Reissner-Nordstrom-de-Sitter black hole surrounded by quintessence, we consider a rainbow function and derive the existence of remnant and critical masses of a black hole. Using the Hawking temperature relation we derive the heat capacity and the entropy of the rainbow gravity inspired black holes and closely study the relation between entropy and area of the horizon for different values of n of the rainbow function.
A Hamiltonian Formulation of Topological Gravity
Waelbroeck, Henri
2009-01-01
Topological gravity is the reduction of Einstein's theory to spacetimes with vanishing curvature, but with global degrees of freedom related to the topology of the universe. We present an exact Hamiltonian lattice theory for topological gravity, which admits translations of the lattice sites as a gauge symmetry. There are additional symmetries, not present in Einstein's theory, which kill the local degrees of freedom. We show that these symmetries can be fixed by choosing a gauge where the torsion is equal to zero. In this gauge, the theory describes flat space-times. We propose two methods to advance towards the holy grail of lattice gravity: A Hamiltonian lattice theory for curved space-times, with first-class translation constraints.
Gauge theories of gravity: the nonlinear framework
Tiemblo, A
2004-01-01
Nonlinear realizations of spacetime groups are presented as a versatile mathematical tool providing a common foundation for quite different formulations of gauge theories of gravity. We apply nonlinear realizations in particular to both the Poincar\\'e and the affine group in order to develop Poincar\\'e gauge theory (PGT) and metric-affine gravity (MAG) respectively. Regarding PGT, two alternative nonlinear treatments of the Poincar\\'e group are developed, one of them being suitable to deal with the Lagrangian and the other one with the Hamiltonian version of the same gauge theory. We argue that our Hamiltonian approach to PGT is closely related to Ashtekar's approach to gravity. On the other hand, a brief survey on MAG clarifies the role played by the metric--affine metric tensor as a Goldsone field. All gravitational quantities in fact --the metric as much as the coframes and connections-- are shown to acquire a simple gauge--theoretical interpretation in the nonlinear framework.
Spectral analysis of the full gravity tensor
Rummel, R.; van Gelderen, M.
1992-10-01
It is shown that, when the five independent components of the gravity tensor are grouped into (Gamma-zz), (Gamma-xz, Gamma-yz), and (Gamma-xx - Gamma-yy, 2Gamma-xy) sets and expanded into an infinite series of pure-spin spherical harmonic tensors, it is possible to derive simple eigenvalue connections between these three sets and the spherical harmonic expansion of the gravity potential. The three eigenvalues are (n + 1)(n + 2), -(n + 2) sq rt of n(n + 1), and sq rt of (n - 1)n(n + 1)(n + 2). The joint ESA and NASA Aristoteles mission is designed to measure with high precision the tensor components Gamma-zz, Gamma-yz, and Gamma-yy, which will make it possible to determine the global gravity field in six months time with a high precision.
Effective constraints of loop quantum gravity
Bojowald, M; Kagan, M; Skirzewski, A; Bojowald, Martin; Hernandez, Hector; Kagan, Mikhail; Skirzewski, Aureliano
2006-01-01
Within a perturbative cosmological regime of loop quantum gravity corrections to effective constraints are computed. This takes into account all inhomogeneous degrees of freedom relevant for scalar metric modes around flat space and results in explicit expressions for modified coefficients and of higher order terms. It also illustrates the role of different scales determining the relative magnitude of corrections. Our results demonstrate that loop quantum gravity has the correct classical limit, at least in its sector of cosmological perturbations around flat space, in the sense of perturbative effective theory.
Geoid of Nepal from airborne gravity survey
DEFF Research Database (Denmark)
Forsberg, René; Olesen, Arne Vestergaard; Einarsson, Indriði
2011-01-01
An airborne gravity survey of Nepal was carried out December 2010 in a cooperation between DTU-Space, Nepal Survey Department, and NGA, USA. The entire country was flown with survey lines spaced 6 nm with a King Air aircraft, with a varying flight altitude from 4 to 10 km. The survey operations...... were a major challenge due to excessive jet streams at altitude as well as occasional excessive mountain waves. Despite the large 400 mGal+ range of gravity anomaly changes from the Indian plains to the Tibetan Plateau, results appear accurate to a few mGal, with proper evaluation from cross...... as well as recent GPS-heights of Mt. Everest. The new airborne data also provide an independent validation of GOCE gravity field results at the local ~100 km resolution scale....
The Effects of Gravity on ZBLAN Glass
Tucker, Dennis S.; Workman, Gary; Smith, Guy; Tucker, Dennis S.
1999-01-01
Heavy metal fluoride glass fibers show promise in applications such as surgical lasers, spectroscopy and imaging fiber bundles. ZBLAN, which is within this class has been studied for a number of years. ZBLAN's theoretical attenuation coefficient is approximately 0.002 dB/km which is much better than that of fused silica at 0.2 dB/km. However, due to impurities and crystallites the attenuation coefficients achieved to date are considerably larger than those of fused silica. Impurities can be controlled with better processing techniques. Crystallization has been found to be a function of gravity. It is found that heating to the crystallization temperature in unit gravity results in crystallization while heating in reduced gravity does not. The exact mechanism for this phenomenon is not known but is speculated to be related to stress.
On the accuracy of recent Goddard gravity models
Lerch, F. J.; Klosko, S. M.; Wagner, C. A.; Patel, G. B.
1985-01-01
The Goddard Space Flight Center (GSFC) has occupied a central position within NASA with respect to the development of earth gravity models. The gravity models at Goddard, which are referred to as the Goddard earth models (GEM's) have been under development for more than 15 years. The fields have increased in size and (apparent) accuracy with the inclusion of new tracking data, better nongravitational force modeling, and more orbits over a wide range of inclinations and mean motions. The usefulness of the considered models depends largely on accuracy estimates. The present paper is concerned with a reevaluation of earlier accuracy assessments, taking into account the accuracies of the GEM 9 and the GEM-L2 models. It is found that GEM 9 is about 30 percent more accurate than originally estimated in 1979 from older gravimetry data.
X-ray clusters of galaxies in conformal gravity
Diaferio, Antonaldo
2008-01-01
We run adiabatic N-body/hydrodynamical simulations of isolated self-gravitating gas clouds to test whether conformal gravity, an alternative theory to General Relativity, is able to explain the properties of X-ray galaxy clusters without resorting to dark matter. We show that the gas clouds rapidly reach equilibrium with a density profile which is well fit by a beta-model whose normalization and slope are in approximate agreement with observations. However, conformal gravity fails to yield the observed thermal properties of the gas cloud: (i) the mean temperature is at least an order of magnitude larger than observed; (ii) the temperature profiles increase with the square of the distance from the cluster center, in clear disagreement with real X-ray clusters. These results depend on a gravitational potential whose parameters reproduce the velocity rotation curves of spiral galaxies. However, this parametrization stands on an arbitrarily chosen conformal factor. It remains to be seen whether a different confor...
Toward a Gravity Dual of Glueball Inflation
Anguelova, Lilia; Wijewardhana, L C Rohana
2015-01-01
We summarize and extend our work on nonsupersymmetric solutions of a 5d consistent truncation of type IIB supergravity, that is relevant for gauge/gravity duality. The fields in this 5d theory are the five-dimensional metric and a set of scalars. We find solutions of the 5d equations of motion, which represent dS_4 foliations over the fifth (radial) dimension. In each solution at least one scalar has a nontrivial radial profile. These scalars are interpreted as glueballs in the dual gauge theory, living in 4d de Sitter space. We explain why this lays a foundation for building gravity duals of glueball inflation models.
Thermodynamics of gravity favours Weak Censorship Conjecture
Acquaviva, Giovanni; Hamid, Aymen I M; Maharaj, Sunil D
2015-01-01
We use the formulation of thermodynamics of gravity as proposed by Clifton, Ellis and Tavakol on the gravitational collapse of dustlike matter, that violates the strong or weak cosmic censorship conjecture depending on the initial data. We transparently demonstrate that the gravitational entropy prefers the scenario where the stronger version is violated but the weak censorship conjecture is satisfied. This is a novel result, showing the weak cosmic censorship and hence the future asymptotically simple structure of spacetime, is being validated by the nature of gravity, without imposing any extra constraint on the form of matter.
Modifications of Einstein's theory of gravity at large distances
2015-01-01
In the last few years modified gravity theories have been proposed as extensions of Einstein's theory of gravity. Their main motivation is to explain the latest cosmological and astrophysical data on dark energy and dark matter. The study of general relativity at small scales has already produced important results (cf e.g. LNP 863 Quantum Gravity and Quantum Cosmology) while its study at large scales is challenging because recent and upcoming observational results will provide important information on the validity of these modified theories. In this volume, various aspects of modified gravity at large scales will be discussed: high-curvature gravity theories; general scalar-tensor theories; Galileon theories and their cosmological applications; F(R) gravity theories; massive, new massive and topologically massive gravity; Chern-Simons modifications of general relativity (including holographic variants) and higher-spin gravity theories, to name but a few of the most important recent developments. Edite...
Gravity-Off-loading System for Large-Displacement Ground Testing of Spacecraft Mechanisms
Han, Olyvia; Kienholz, David; Janzen, Paul; Kidney, Scott
2010-01-01
Gravity-off-loading of deployable spacecraft mechanisms during ground testing is a long-standing problem. Deployable structures which are usually too weak to support their own weight under gravity require a means of gravity-off-loading as they unfurl. Conventional solutions to this problem have been helium-filled balloons or mechanical pulley/counterweight systems. These approaches, however, suffer from the deleterious effects of added inertia or friction forces. The changing form factor of the deployable structure itself and the need to track the trajectory of the center of gravity also pose a challenge to these conventional technologies. This paper presents a novel testing apparatus for high-fidelity zero-gravity simulation for special application to deployable space structures such as solar arrays, magnetometer booms, and robotic arms in class 100,000 clean room environments
Time evolution in the presence of gravity
Pulido, A; Tresguerres, R; Pulido, Antonio; Tiemblo, Alfredo; Tresguerres, Romualdo
2001-01-01
We present a suggestion on the interpretation of canonical time evolution when gravitation is present, based on the nonlinear gauge approach to gravity. Essentially, our proposal consists of an internal-time concept, with the time variable taken from the dynamical fields characteristic of the nonlinear realization of the internal time-translational symmetry. Physical time evolution requires the latter symmetry to be broken. After disregarding other breaking mechanisms, we appeal to the Jordan-Brans-Dicke action, conveniently interpreted, to achieve that goal. We show that nontrivial time evolution follows, the special relativistic limit being recovered in the absence of gravity.
The Quantization of Gravity Dynamic Approach
Vergeles, S N
1996-01-01
On the basis of dynamic quantization method we build in this paper a new mathematically correct quantization scheme of gravity. In the frame of this scheme we develop a canonical formalism in tetrad-connection variables in 4-D theory of pure gravity. In this formalism the regularized quantized fields corresponding to the classical tetrad and connection fields are constructed. It is shown, that the regularized fields satisfy to general covariant equations of motion, which have the classical form. In order to solve these equations the iterative procedure is offered.
Eddington's theory of gravity and its progeny.
Bañados, Máximo; Ferreira, Pedro G
2010-07-01
We resurrect Eddington's proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington's theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe.
Nonlinear Properties of Vielbein Massive Gravity
Nibbelink, S G; Sexton, M; Nibbelink, Stefan Groot; Peloso, Marco; Sexton, Matthew
2006-01-01
We consider a special theory of massive gravity, which is obtained in a decoupling limit from a bi-gravity theory in the vielbein formulation, with only cosmological constant-like interactions between the two gravitational sectors. We investigate this theory using the Stueckelberg method, and construct a 't Hooft-Feynman gauge fixing in which the tensor, vector and scalar Stueckelberg fields are decoupled. We prove that this model has the softest possible ultraviolet behavior which can be expected from any generic (Lorentz invariant) theory of massive gravity, namely that it becomes strong only at the scale Lambda_3 = (m_g^2 M_P)^{1/3} . Finally, we confirm that also this model is plagued by a ghost instability, which, in the Stueckelberg formalism, arises from quartic scalar-vector and scalar-tensor interactions.
Effects of continuous exposure to high gravity on gravity preference in rats.
Mccoy, D. F.; Jankovich, J. P.
1972-01-01
Rats were chronically centrifuged in excess of 2.0 g for 6 or 12 mo. They were given four 24-hr gravity-preference tests in a spiral centrifuge in which they could adjust the gravity level imposed by locomoting inward or outward radially along a track. Chronically centrifuged rats (Group CC) spent as much time at 2.0 g as at 1.0 g while normally raised controls (Group NC) selecdonly 1.0 g. Group CC initially selected 2.0 g and a preference for 1.0 g developed over the four test sessions. These results suggest that hypergravity is not necessarily an aversive stimulus and that gravity preference may depend initially upon the reference level involved. The ultimate selection of 1.0 g by chronically centrifuged animals suggests that a preference for a familiar gravity environment is replaced by a preference for low-gravity stimuli.
On Poincaré gauge theory of gravity, its equations of motion, and Gravity Probe B
Energy Technology Data Exchange (ETDEWEB)
Hehl, Friedrich W., E-mail: hehl@thp.uni-koeln.de [Institute for Theoretical Physics, University of Cologne, 50923 Köln (Germany); Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Obukhov, Yuri N., E-mail: yo@thp.uni-koeln.de [Theoretical Physics Laboratory, Nuclear Safety Institute, Russian Academy of Sciences, B. Tulskaya 52, 115191 Moscow (Russian Federation); Puetzfeld, Dirk, E-mail: dirk.puetzfeld@zarm.uni-bremen.de [ZARM, University of Bremen, Am Fallturm, 28359 Bremen (Germany)
2013-10-30
We discuss the structure of the Poincaré gauge theory of gravity (PG) that can be considered as the standard theory of gravity with torsion. We reconfirm that torsion, in the context of PG, couples only to the elementary particle spin and under no circumstances to the orbital angular momentum of test particles. We conclude that, unfortunately, the investigations of Mao et al. (2007) and March et al. (2011)—who claimed a coupling of torsion to orbital angular momentum, in particular in the context of the Gravity Probe B (GPB) experiment—do not yield any information on torsion.
On unification of gravity and gauge interactions
Chamseddine, Ali; Mukhanov, Viatcheslav
2016-01-01
Considering a higher dimensional Lorentz group as the symmetry of the tangent space, we unify gravity and gauge interactions in a natural way. The spin connection of the gauged Lorentz group is then responsible for both gravity and gauge fields, and the action for the gauged fields becomes part of the spin curvature squared. The realistic group which unifies all known particles and interactions is the SO(1, 13) Lorentz group whose gauge part leads to SO(10) grand unified theory and contains d...
Cryofenix Mission- Study of Liquid Hydrogen Under Low Gravity
Leudiere, V.; Bianchi, S.; Lundin, M.; Andersson, G.; Loth, K.
2015-09-01
For the first time in Europe a cryogenic sounding rocket experiment was performed, canying liquid hydrogen. For this purpose was the well proven SSC Sounding rocket system MASER selected. The Cryofenix was launched from ESC, Esrange Space Center on February 22, 2015. The main objective for the mission was to study the global behaviour of liquid hydrogen under controlled gravity conditions. The controlled gravity during the mission was created by a cold gas thruster module. The experiment data obtained during the flight in terms of high resolution videos, pressure and temperature data are well in line with the expected results. The experiment data will support future development of liquid propellant management systems for Ariane.
Chappell, Steven P.; Norcross, Jason R.; Gernhardt, Michael L.
2010-01-01
The Apollo lunar EVA experience revealed challenges with suit stability and control-likely a combination of mass, mobility, and center of gravity (CG) factors. The EVA Physiology, Systems and Performence (EPSP) Project is systematically working with other NASA projects, labs, and facilities to lead a series of studies to understand the role of suit mass, weight, CG, and other parameters on astronaut performance in partial gravity environments.
Stability of the Einstein static universe in modified theories of gravity
Boehmer, Christian G.; Hollenstein, Lukas; Lobo, Francisco S. N.; Seahra, Sanjeev S.
2010-01-01
We present a brief overview of the stability analysis of the Einstein static universe in various modified theories of gravity, like f(R) gravity, Gauss-Bonnet or f(G) gravity, and Horava-Lifshitz gravity.
Viability of nonminimally coupled f (R) gravity
Bertolami, Orfeu; Páramos, Jorge
2016-03-01
In this work we explore the viability of nonminimally coupled matter-curvature gravity theories, namely the conditions required for the absence of tachyon instabilities and ghost degrees of freedom. We contrast our finds with recent claims of a pathological behaviour of this class of models, which resorted to, in our view, an incorrect analogy with k-essence.
Coffey, J. Steven; Wood-Steed, Ruth
2001-01-01
Illustrates how college and university student centers are becoming the institution's marketing tools. Explores how the Millennium Center at the University of Missouri in St. Louis exemplifies this new trend. (GR)
Gravity Perception and Response in Shoots of Cereal Grasses
Kaufman, P. B.; Song, I.; Bluncson, C.
1985-01-01
Two components of the gravitropic curvature response in cereal grass pulvini are studied. These two components are gravity perception and mechanism of response following the transduction phase. The effects of gravity, time lag, protein synthesis and enzyme production are included.
A New Model of Nonlocal Modified Gravity
Dimitrijevic, Ivan; Grujic, Jelena; Rakic, Zoran
2014-01-01
We consider a new modified gravity model with nonlocal term of the form $R^{-1} \\mathcal{F}(\\Box) R. $ This kind of nonlocality is motivated by investigation of applicability of a few unusual ans\\"atze to obtain some exact cosmological solutions. In particular, we find attractive and useful quadratic ansatz $\\Box R = q R^{2}.$
Extremal Black Hole in a Nonlinear Newtonian Theory of Gravity
Good, Michael R R
2008-01-01
This work investigates an upper-limit of charge for a black hole in a nonlinear Newtonian theory of gravity. The charge is accumulated via protons fired isotropically at the black hole. This theoretical study of gravity (known as `pseudo-Newtonian') is a forced merger of special relativity and Newtonian gravity. Whereas the source of Newton's gravity is purely mass, pseudo-Newtonian gravity includes effects of fields around the mass, giving a more complete picture of how gravity behaves. Interestingly, pseudo-Newtonian gravity predicts such relativistic phenomena as black holes and deviations from Kepler's laws, but of course, provides a less accurate picture than general relativity. Though less accurate, it offers an easier approach to understanding some results of general relativity, and merits interest due to its simplicity. The method of study applied here examines the predictions of pseudo-Newtonian gravity for a particle interacting with a highly charged black hole. A black hole with a suitable charge w...
Gravity Data for the State of New Mexico
National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (21,242 records) were compiled by the University of Texas at El Paso. This data base was received in October 1984. Principal gravity...
Constraining Gravity with LISA Detections of Binaries
Canizares, Priscilla; Sopuerta, Carlos F
2012-01-01
General Relativity (GR) describes gravitation well at the energy scales which we have so far been able to achieve or detect. However, we do not know whether GR is behind the physics governing stronger gravitational field regimes, such as near neutron stars or massive black-holes (MBHs). Gravitational-wave (GW) astronomy is a promising tool to test and validate GR and/or potential alternative theories of gravity. The information that a GW waveform carries not only will allow us to map the strong gravitational field of its source, but also determine the theory of gravity ruling its dynamics. In this work, we explore the extent to which we could distinguish between GR and other theories of gravity through the detection of low-frequency GWs from extreme-mass-ratio inspirals (EMRIs) and, in particular, we focus on dynamical Chern-Simons modified gravity (DCSMG). To that end, we develop a framework that enables us, for the first time, to perform a parameter estimation analysis for EMRIs in DCSMG. Our model is descr...
Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey
DEFF Research Database (Denmark)
Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd;
2016-01-01
using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been......Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... gravity data were 5-6 km. The airborne gravity survey database for landand marine areas has been compiled using ArcGIS geodatabase format in order to produce the update geological map of Sabah....
Gravity Independence of Microchannel Two-Phase Flow Project
National Aeronautics and Space Administration — Most of the amassed two-phase flow and heat transfer knowledge comes from experiments conducted in Earth’s gravity. Space missions span varying gravity levels,...
Scaling of Two-Phase Systems Across Gravity Levels Project
National Aeronautics and Space Administration — There is a defined need for long term earth based testing for the development and deployment of two-phase flow systems in reduced-gravity, including lunar gravity,...
The mechanics of gravity-driven faulting
Barrows, L.; Barrows, V.
2010-04-01
Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In elastic rebound, locked-in elastic strain energy is transformed into the earthquake (seismic waves plus work done in the fault zone). In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into the earthquake and half goes into an increase in locked-in elastic strain. In elastic rebound the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault. Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. Mechanical analysis has shown the intensity of the gravitational tectonic stress that is associated with the regional topography and lateral density variations that actually exist is comparable with the stress drops that are commonly associated with tectonic earthquakes; both are in the range of tens of bar to several hundred bar. The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the stress-causing topography and lateral density variations is equally split between the earthquake and the increase in locked-in elastic strain. The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on the fault. They must exist if gravity
The mechanics of gravity-driven faulting
Directory of Open Access Journals (Sweden)
L. Barrows
2010-04-01
Full Text Available Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In elastic rebound, locked-in elastic strain energy is transformed into the earthquake (seismic waves plus work done in the fault zone. In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into the earthquake and half goes into an increase in locked-in elastic strain. In elastic rebound the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault.
Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. Mechanical analysis has shown the intensity of the gravitational tectonic stress that is associated with the regional topography and lateral density variations that actually exist is comparable with the stress drops that are commonly associated with tectonic earthquakes; both are in the range of tens of bar to several hundred bar.
The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the stress-causing topography and lateral density variations is equally split between the earthquake and the increase in locked-in elastic strain.
The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on
The Energetics of Gravity Driven Faulting
Barrows, L.
2007-12-01
Faulting can result from either of two different mechanisms. These involve fundamentally different energetics. In displacement-bounded faulting, locked-in elastic strain energy is transformed into seismic waves plus work done in the fault zone. Elastic rebound is an example of displacement-bounded faulting. In force-driven faulting, the forces that create the stress on the fault supply work or energy to the faulting process. Half of this energy is transformed into seismic waves plus work done in the fault zone and half goes into an increase in locked-in elastic strain. In displacement-bounded faulting the locked-in elastic strain drives slip on the fault. In force-driven faulting it stops slip on the fault. Tectonic stress is reasonably attributed to gravity acting on topography and the Earth's lateral density variations. This includes the thermal convection that ultimately drives plate tectonics. The gravity collapse seismic mechanism assumes the fault fails and slips in direct response to the gravitational tectonic stress. Gravity collapse is an example of force-driven faulting. In the simplest case, energy that is released from the gravitational potential of the topography and internal stress-causing density variations is equally split between the seismic waves plus work done in the fault zone and the increase in locked-in elastic strain. The release of gravitational potential energy requires a change in the Earth's density distribution. Gravitational body forces are solely dependent on density so a change in the density distribution requires a change in the body forces. This implies the existence of volumetric body-force displacements. The volumetric body-force displacements are in addition to displacements generated by slip on the fault. They must exist if gravity participates in the energetics of the faulting process. From the perspective of gravitational tectonics, the gravity collapse mechanism is direct and simple. The related mechanics are a little more
Gravity Dual of Quantum Information Metric
Miyaji, Masamichi; Shiba, Noburo; Takayanagi, Tadashi; Watanabe, Kento
2015-01-01
We study a quantum information metric (or fidelity susceptibility) in conformal field theories with respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given by a volume of maximal time slice in an AdS spacetime when the perturbation is exactly marginal. We confirm our claim in several examples.
The strange equation of quantum gravity
2015-01-01
Appeared in the Classical and Quantum Gravity Focus issue: Milestones of general relativity. 7 pages; International audience; Disavowed by one its fathers, ill defined, never empirically tested, the Wheeler-DeWitt equation has nevertheless had a powerful influence on fundamental physics. A well deserved one.
Exact solutions of three dimensional black holes: Einstein gravity vs F(R) gravity
Hendi, S H; Saffari, R
2014-01-01
In this paper, we consider Einstein gravity in the presence of a class of nonlinear electrodynamics, called power Maxwell invariant (PMI). We take into account $(2+1)$-dimensional spacetime in Einstein-PMI gravity and obtain its black hole solutions. Then, we regard pure $F(R)$ gravity as well as $F(R)$-conformally invariant Maxwell theory to obtain exact solutions of the field equations with black hole interpretation. Finally, we investigate the conserved and thermodynamic quantities and discuss about the first law of thermodynamics for the mentioned gravitational models.
Quantum Gravity: A Brief History of Ideas and Some Prospects
Carlip, Steven; Ni, Wei-Tou; Woodard, Richard
2015-01-01
We present a bird's-eye survey on the development of fundamental ideas of quantum gravity, placing emphasis on perturbative approaches, string theory, loop quantum gravity, and black hole thermodynamics. The early ideas at the dawn of quantum gravity as well as the possible observations of quantum gravitational effects in the foreseeable future are also briefly discussed.
Asymptotic freedom of Yang-Mills theory with gravity
Folkerts, Sarah; Pawlowski, Jan M
2011-01-01
We study the high energy behaviour of Yang-Mills theory under the inclusion of gravity. In the weak-gravity limit, the running gauge coupling receives no contribution from the gravitational sector, if all symmetries are preserved. This holds true with and without cosmological constant. We also show that asymptotic freedom persists in general field-theory-based gravity scenarios including gravitational shielding as well as asymptotically safe gravity.
Asymptotic freedom of Yang-Mills theory with gravity
Energy Technology Data Exchange (ETDEWEB)
Folkerts, Sarah, E-mail: Sarah.Folkerts@physik.uni-muenchen.de [Institut f. Theoretische Physik, Universitaet Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); Litim, Daniel F. [Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Pawlowski, Jan M. [Institut f. Theoretische Physik, Universitaet Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Inst. EMMI, GSI, Planckstr. 1, 64291 Darmstadt (Germany)
2012-03-19
We study the behaviour of Yang-Mills theory under the inclusion of gravity. In the weak-gravity limit, the running gauge coupling receives no contribution from the gravitational sector, if all symmetries are preserved. This holds true with and without cosmological constant. We also show that asymptotic freedom persists in general field-theory-based gravity scenarios including gravitational shielding as well as asymptotically safe gravity.
The perception of verticality in lunar and Martian gravity conditions
Winkel, K.N. de; Clément, G.; Groen, E.L.; Werkhoven, P.J.
2012-01-01
Although the mechanisms of neural adaptation to weightlessness and re-adaptation to Earth-gravity have received a lot of attention since the first human space flight, there is as yet little knowledge about how spatial orientation is affected by partial gravity, such as lunar gravity of 0.16. g or Ma
Einstein Gravity and Beyond: Aspects of Higher-Curvature Gravity and Black Holes
Chatterjee, Saugata
This thesis explores the different aspects of higher curvature gravity. The "membrane paradigm" of black holes in Einstein gravity is extended to black holes in f(R) gravity and it is shown that the higher curvature effects of f( R) gravity causes the membrane fluid to become non-Newtonian. Next a modification of the null energy condition in gravity is provided. The purpose of the null energy condition is to filter out ill-behaved theories containing ghosts. Conformal transformations, which are simple redefinitions of the spacetime, introduces serious violations of the null energy condition. This violation is shown to be spurious and a prescription for obtaining a modified null energy condition, based on the universality of the second law of thermodynamics, is provided. The thermodynamic properties of the black holes are further explored using merger of extremal black holes whose horizon entropy has topological contributions coming from the higher curvature Gauss-Bonnet term. The analysis refutes the prevalent belief in the literature that the second law of black hole thermodynamics is violated in the presence of the Gauss-Bonnet term in four dimensions. Subsequently a specific class of higher derivative scalar field theories called the galileons are obtained from a Kaluza-Klein reduction of Gauss-Bonnet gravity. Galileons are null energy condition violating theories which lead to violations of the second law of thermodynamics of black holes. These higher derivative scalar field theories which are non-minimally coupled to gravity required the development of a generalized method for obtaining the equations of motion. Utilizing this generalized method, it is shown that the inclusion of the Gauss-Bonnet term made the theory of gravity to become higher derivative, which makes it difficult to make any statements about the connection between the violation of the second law of thermodynamics and the galileon fields.
Dykowski, Przemyslaw; Krynski, Jan
2015-04-01
The establishment of modern gravity control with the use of exclusively absolute method of gravity determination has significant advantages as compared to the one established mostly with relative gravity measurements (e.g. accuracy, time efficiency). The newly modernized gravity control in Poland consists of 28 fundamental stations (laboratory) and 168 base stations (PBOG14 - located in the field). Gravity at the fundamental stations was surveyed with the FG5-230 gravimeter of the Warsaw University of Technology, and at the base stations - with the A10-020 gravimeter of the Institute of Geodesy and Cartography, Warsaw. This work concerns absolute gravity determinations at the base stations. Although free of common relative measurement errors (e.g. instrumental drift) and effects of network adjustment, absolute gravity determinations for the establishment of gravity control require advanced corrections due to time dependent factors, i.e. tidal and ocean loading corrections, atmospheric corrections and hydrological corrections that were not taken into account when establishing the previous gravity control in Poland. Currently available services and software allow to determine high accuracy and high temporal resolution corrections for atmospheric (based on digital weather models, e.g. ECMWF) and hydrological (based on hydrological models, e.g. GLDAS/Noah) gravitational and loading effects. These corrections are mostly used for processing observations with Superconducting Gravimeters in the Global Geodynamics Project. For the area of Poland the atmospheric correction based on weather models can differ from standard atmospheric correction by even ±2 µGal. The hydrological model shows the annual variability of ±8 µGal. In addition the standard tidal correction may differ from the one obtained from the local tidal model (based on tidal observations). Such difference at Borowa Gora Observatory reaches the level of ±1.5 µGal. Overall the sum of atmospheric and
Centre of Gravity Plethysmography--A Means of Detecting Mass Transfer of Fluid within the Body.
Buck, Michael
1988-01-01
Describes the monitoring of the redistribution of blood by using a technique which detects changes in the center of gravity of the body. Provides information about the principles and application, construction of apparatus, operating routines, and use of the computer as a recorder. Includes suggested investigations, demonstrations, and diagrams.…
Gravity Field, Topography, and Interior Structure of Amalthea
Anderson, J. D.; Anabtawi, A.; Jacobson, R. A.; Johnson, T. V.; Lau, E. L.; Moore, W. B.; Schubert, G.; Taylor, A. H.; Thomas, P. C.; Weinwurm, G.
2002-12-01
A close Galileo flyby of Jupiter's inner moon Amalthea (JV) occurred on 5 November 2002. The final aimpoint was selected by the Galileo Radio Science Team on 5 July 2002. The closest approach distance for the selected aimpoint was 221 km from the center of mass, the latitude was - 45.23 Deg and the west longitude was 266.41 Deg (IAU/IAG/COSPAR cartographic coordinate system). In order to achieve an acceptable impact probability (0.15%), and yet fly close to Amalthea, the trajectory was selected from a class of trajectories running parallel to Amalthea's long axis. The Deep Space Network (DSN) had the capability to generate continuous coherent radio Doppler data during the flyby. Such data can be inverted to obtain information on Amalthea's gravity field. Amalthea is irregular and neither a triaxial ellipsoid nor an equilibrium body. It has a volume of about 2.4 x 106 km3, and its best-fit ellipsoid has dimensions 131x73x67 km. Its mass can be determined from the 2002 flyby, and in combination with the volume, a density can be obtained accurate to about 5%, where the error is dominated by the volume uncertainty. Similarly, gravity coefficients (Cnm Snm) can be detected up to fourth degree and order, and the second degree field (quadrupole) can be measured. Topography data are available from Voyager imaging and from images taken with Galileo's solid state imaging system at various times between February and June 1997. By combining the gravity and topography data, new information can be obtained on Amalthea's interior. For example if the gravity coefficients agree with those calculated from the topography, assuming constant density, we can conclude that Amalthea is homogeneous. On the other hand, if the gravity coefficients are smaller than predicted from topography, we can conclude that there is a concentration of mass toward Amalthea's center. We are presenting preliminary pre-publication results at the Fall meeting. This work was sponsored by the Galileo Project
Novel Probes of Gravity and Dark Energy
Jain, Bhuvnesh; Thompson, Rodger; Upadhye, Amol; Battat, James; Brax, Philippe; Davis, Anne-Christine; de Rham, Claudia; Dodelson, Scott; Erickcek, Adrienne; Gabadadze, Gregory; Hu, Wayne; Hui, Lam; Huterer, Dragan; Kamionkowski, Marc; Khoury, Justin; Koyama, Kazuya; Li, Baojui; Linder, Eric; Schmidt, Fabian; Scoccimarro, Roman; Starkman, Glenn; Stubbs, Chris; Takada, Masahiro; Tolley, Andrew; Trodden, Mark; Uzan, Jean-Philippe; Vikram, Vinu; Weltman, Amanda; Wyman, Mark; Zaritsky, Dennis; Zhao, Gongbo
2013-01-01
The discovery of cosmic acceleration has stimulated theorists to consider dark energy or modifications to Einstein's General Relativity as possible explanations. The last decade has seen advances in theories that go beyond smooth dark energy -- modified gravity and interactions of dark energy. While the theoretical terrain is being actively explored, the generic presence of fifth forces and dark sector couplings suggests a set of distinct observational signatures. This report focuses on observations that differ from the conventional probes that map the expansion history or large-scale structure. Examples of such novel probes are: detection of scalar fields via lab experiments, tests of modified gravity using stars and galaxies in the nearby universe, comparison of lensing and dynamical masses of galaxies and clusters, and the measurements of fundamental constants at high redshift. The observational expertise involved is very broad as it spans laboratory experiments, high resolution astronomical imaging and sp...
Ghost and singularity free theories of gravity
Buoninfante, L; Mazumdar, A
2016-01-01
Albert Einstein's General Relativity (GR) from 1916 has become the widely accepted theory of gravity and been tested observationally to a very high precision at different scales of energy and distance. At the same time, there still remain important questions to resolve. The presence of cosmological and black hole singularities are examples of problems at the classical level which strongly suggest the incompleteness of GR at short distances (high energy). Furthermore, at the quantum level GR is not UV complete, namely it is not perturbatively renormalizable. These two kind of questions, classical and quantum, could be closely related as both concern short-distance (high energy) physics. Most of the work try to solve these problems modifying GR by considering finite higher order derivative terms. Fourth Order Gravity, for example, turns out to be renormalizable, but at the same time it introduces ghost. To avoid both UV divergence and presence of ghost one could consider an infinite set of higher derivative ter...
Holographic Theory of Gravity and Cosmology
Ng, Y Jack
2016-01-01
According to the holographic principle, the maximum amount of information stored in a region of space scales as the area of its two-dimensional surface, like a hologram. We show that the holographic principle can be understood heuristically as originated from quantum fluctuations of spacetime. Applied to cosmology, this consideration leads to a dynamical cosmological constant $\\Lambda$ of the observed magnitude, in agreement with the result obtained for the present and recent cosmic eras, by using unimodular gravity and causal-set theory. By generalizing the concept of entropic gravity, we find a critical acceleration parameter related to $\\Lambda$ in galactic dynamics, and we construct a phenomenological model of dark matter which we call "modified dark matter" (MDM). We provide successful observational tests of MDM at both the galactic and cluster scales. We also discuss the possibility that the quanta of both dark energy and dark matter obey the quantum Boltzmann statistics or infinite statistics as descri...
Experimental Indications of Electro-Gravity
Datta, T; Dimofte, A; Bleiweiss, M C; Cai, Z; Yin, Ming; Dimofte, Andreea; Cai, Zhihua
2005-01-01
Recent results from our on going experimental investigation of the influence of space dependant electric fields on the weight of test particles are reported. Test particles were gold coated metal spheres of same size but of different masses. Data collected from a number of runs over several years continue to indicate an intriguing effect. For experimental parameters in question this effect is manifested as a ppm level sample mass dependent force additional to expected electrostatic forces. A force that is proportional to mass is the unique signature of gravity furthermore it is non-zero only when the field is applied; hence these observations may be further evidence in support of electro-gravity.
Reissner Nordstrom Metric in Unimodular Theory of Gravity
Chaturvedi, Pankaj; Singh, Dharm Veer
2016-01-01
We study the modified Reissner Nordstrom metric in the unimodular gravity. So far the spherically symmetric Einstein field equation in unimodular gravity has been studied in the absence of any source. We consider static electric and magnetic charge as source. We solve for Maxwell equations in unimodular gravitational background. We show that in unimodular gravity the electromagnetic field strength tensor is modified. We also show that the solution in unimodular gravity differs from the usual R-N metric in Einstein gravity with some corrections. We further study the thermodynamical properties of the R-N black-hole solution in this theory.
Regulation of flexible arms under gravity
Energy Technology Data Exchange (ETDEWEB)
De Luca, A. [Univ. di Roma, Rome (Italy). Dipt. di Informatica e Sistemistica; Siciliano, B. [Univ. di Napoli Federico, Napoli (Italy). Dipt. di Informatica e Sistemistica
1993-08-01
A simple controller is presented for the regulation problem of robot arms with flexible links under gravity. It consists of a joint PD feedback plus a constant feedforward. Global asymptotic stability of the reference equilibrium state is shown under a structural assumption about link elasticity and a mild condition on the proportional gain. The result holds also in the absence of internal damping of the flexible arm. A numerical case study is presented.
f(Lovelock) theories of gravity
Bueno, Pablo; A., Oscar Lasso; Ramirez, Pedro F
2016-01-01
f(Lovelock) gravities are simple generalizations of the usual f(R) and Lovelock theories in which the gravitational action depends on some arbitrary function of the corresponding dimensionally-extended Euler densities. In this paper we study several aspects of these theories in general dimensions. We start by identifying the generalized boundary term which makes the gravitational variational problem well-posed. Then, we show that these theories are equivalent to certain scalar-tensor theories and how this relation is characterized by the Hessian of f. We also study the linearized equations of the theory on general maximally symmetric backgrounds. Remarkably, we find that these theories do not propagate the usual ghost-like massive gravitons characteristic of higher-derivative gravities on such backgrounds. In some non-trivial cases, the additional scalar associated to the trace of the metric perturbation is also absent, being the usual graviton the only dynamical field. In those cases, the linearized equation...
Localizing the Angular Momentum of Linear Gravity
Butcher, Luke M; Hobson, Michael; 10.1103/PhysRevD.86.084012
2012-01-01
In a previous article [Phys. Rev. D 82 104040 (2010)], we derived an energy-momentum tensor for linear gravity that exhibited positive energy density and causal energy flux. Here we extend this framework by localizing the angular momentum of the linearized gravitational field, deriving a gravitational spin tensor which possesses similarly desirable properties. By examining the local exchange of angular momentum (between matter and gravity) we find that gravitational intrinsic spin is localized, separately from orbital angular momentum, in terms of a gravitational spin tensor. This spin tensor is then uniquely determined by requiring that it obey two simple physically motivated algebraic conditions. Firstly, the spin of an arbitrary (harmonic-gauge) gravitational plane wave is required to flow in the direction of propagation of the wave. Secondly, the spin tensor of any transverse-traceless gravitational field is required to be traceless. (The second condition ensures that local field redefinitions suffice to ...
Finsler geometric extension of Einstein gravity
Pfeifer, Christian
2011-01-01
We construct gravitational dynamics for Finsler spacetimes in terms of an action integral on the unit tangent bundle. These spacetimes are generalizations of Lorentzian metric manifolds which satisfy necessary causality properties. A coupling procedure for matter fields to Finsler gravity completes our new theory that consistently becomes equivalent to Einstein gravity in the limit of metric geometry. We provide a precise geometric definition of observers and their measurements, and show that the transformations by means of which different observers communicate form a groupoid that generalizes the usual Lorentz group. Moreover, we discuss the implementation of Finsler spacetime symmetries. We use our results to analyze a particular spacetime model that leads to Finsler geometric refinements of the linearized Schwarzschild solution.
Finsler geometric extension of Einstein gravity
Pfeifer, Christian; Wohlfarth, Mattias N. R.
2012-03-01
We construct gravitational dynamics for Finsler spacetimes in terms of an action integral on the unit tangent bundle. These spacetimes are generalizations of Lorentzian metric manifolds which satisfy necessary causality properties. A coupling procedure for matter fields to Finsler gravity completes our new theory that consistently becomes equivalent to Einstein gravity in the limit of metric geometry. We provide a precise geometric definition of observers and their measurements and show that the transformations, by means of which different observers communicate, form a groupoid that generalizes the usual Lorentz group. Moreover, we discuss the implementation of Finsler spacetime symmetries. We use our results to analyze a particular spacetime model that leads to Finsler geometric refinements of the linearized Schwarzschild solution.
The extended loop representation of quantum gravity
Di Bartolo, C; Griego, J R
1995-01-01
A new representation of Quantum Gravity is developed. This formulation is based on an extension of the group of loops. The enlarged group, that we call the Extended Loop Group, behaves locally as an infinite dimensional Lie group. Quantum Gravity can be realized on the state space of extended loop dependent wavefunctions. The extended representation generalizes the loop representation and contains this representation as a particular case. The resulting diffeomorphism and hamiltonian constraints take a very simple form and allow to apply functional methods and simplify the loop calculus. In particular we show that the constraints are linear in the momenta. The nondegenerate solutions known in the loop representation are also solutions of the constraints in the new representation. The practical calculation advantages allows to find a new solution to the Wheeler-DeWitt equation. Moreover, the extended representation puts in a precise framework some of the regularization problems of the loop representation. We sh...
Exploration Of Gravity At Different Scales
Núñez-Nikitin, A I
2005-01-01
Part of this thesis is to study of quasinormal modes in the context of AdS/CFT correspondence. A definition for quasinormal modes in an asymptotically Anti-de-Sitter space-time with boundary conditions dictated by the AdS/CFT correspondence is proposed. Asymptotic formulas for quasinormal frequencies in the massive scalar and gravitational perturbations in a five-dimensional AdS-Schwarzschild background are suggested. An exact expression for the vector perturbations is found. Motivated by the large distance modification of gravity, that may give an alternative explanation of the accelerated Universe, we study the viability of alternative theories of gravity introducing arbitrary dependence on the curvature invariants. We find that such theories are not viable because they always predict additional states which either have a negative norm or mediate an experimentally excluded additional gravitational force. The theory that could circumvent these difficulties has to implement some new physics that is not reduci...
Conceptual Aspects of Gauge/Gravity Duality
de Haro, Sebastian; Butterfield, Jeremy
2015-01-01
We give an introductory review of gauge/gravity duality, and associated ideas of holography, emphasising the conceptual aspects. The opening Sections gather the ingredients, viz. anti-de Sitter spacetime, conformal field theory and string theory, that we need for presenting, in Section 5, the central and original example: Maldacena's AdS/CFT correspondence. Sections 6 and 7 develop the ideas of this example, also in applications to condensed matter systems, QCD, and hydrodynamics. Sections 8 and 9 discuss the possible extensions of holographic ideas to de Sitter spacetime and to black holes. Section 10 discusses the bearing of gauge/gravity duality on two philosophical topics: the equivalence of physical theories, and the idea that spacetime, or some features of it, are emergent.
Conceptual Aspects of Gauge/Gravity Duality
De Haro, Sebastian; Mayerson, Daniel R.; Butterfield, Jeremy N.
2016-11-01
We give an introductory review of gauge/gravity duality, and associated ideas of holography, emphasising the conceptual aspects. The opening sections gather the ingredients, viz. anti-de Sitter spacetime, conformal field theory and string theory, that we need for presenting, in Sect. 5, the central and original example: Maldacena's AdS/CFT correspondence. Sections 6 and 7 develop the ideas of this example, also in applications to condensed matter systems, QCD, and hydrodynamics. Sections 8 and 9 discuss the possible extensions of holographic ideas to de Sitter spacetime and to black holes. Section 10 discusses the bearing of gauge/gravity duality on two philosophical topics: the equivalence of physical theories, and the idea that spacetime, or some features of it, are emergent.
Cosmological Solutions of $f(T)$ Gravity
Paliathanasis, Andronikos; Leach, P G L
2016-01-01
In the cosmological scenario in $f\\left( T\\right) $ gravity, we find analytical solutions for an isotropic and homogeneous universe containing a dust fluid and radiation and for an empty anisotropic Bianchi I universe. The method that we apply is that of movable singularities of differential equations. For the isotropic universe, the solutions are expressed in terms of a Laurent expansion, while for the anisotropic universe we find a family of exact Kasner-like solutions in vacuum. Finally, we discuss when a nonlinear $f\\left( T\\right) $-gravity theory provides solutions for the teleparallel equivalence of general relativity and derive conditions for exact solutions of general relativity to solve the field equations of an $f(T)$ theory.
Cosmological solutions of f (T ) gravity
Paliathanasis, Andronikos; Barrow, John D.; Leach, P. G. L.
2016-07-01
In the cosmological scenario in f (T ) gravity, we find analytical solutions for an isotropic and homogeneous universe containing a dust fluid and radiation and for an empty anisotropic Bianchi I universe. The method that we apply is that of movable singularities of differential equations. For the isotropic universe, the solutions are expressed in terms of a Laurent expansion, while for the anisotropic universe we find a family of exact Kasner-like solutions in vacuum. Finally, we discuss when a nonlinear f (T ) -gravity theory provides solutions for the teleparallel equivalence of general relativity and derive conditions for exact solutions of general relativity to solve the field equations of an f (T ) theory.
EGSIEM: Combination of GRACE monthly gravity models on normal equation level
Meyer, Ulrich; Jean, Yoomin; Jäggi, Adrian; Mayer-Gürr, Torsten; Neumayer, Hans; Lemoine, Jean-Michel
2016-04-01
One of the three geodetic services to be realized in the frame of the EGSIEM project is a scientific combination service. Each associated processing center (AC) will follow a set of common processing standards but will apply its own, independent analysis method. Therefore the quality, robustness and reliability of the combined monthly gravity fields is expected to improve significantly compared to the individual solutions. The Monthly GRACE gravity fields of all ACs are combined on normal equation level. The individual normal equations are weighted depending on pairwise comparisons of the individual gravity field solutions. To derive these weights and for quality control of the individual contributions first a combination of the monthly gravity fields on solution level is performed. The concept of weighting and of the combination on normal equation level is introduced and the formats used for normal equation exchange and gravity field solutions is described. First results of the combination on normal equation level are presented and compared to the corresponding combinations on solution level. EGSIEM has an open data policy and all processing centers of GRACE gravity fields are invited to participate in the combination.
Gravity and topography. [of planet Mars
Esposito, P. B.; Banerdt, W. B.; Lindal, G. F.; Sjogren, W. L.; Slade, M. A.; Bills, B. G.; Smith, D. E.; Balmino, G.
1992-01-01
The paper summarizes the fundamental gravity field constants for Mars and a brief historical review of early determinations and current-day accurate estimates. These include the planetary gravitational constant, global figure, dynamical oblateness, mean density, and rotational period. Topographic results from data acquired from the 1967 opposition to the most recent, 1988, opposition are presented. Both global and selected local topographic variations and features are discussed. The inertia tensor and the nonhydrostatic component of Mars are examined in detail. The dimensionless moment of inertia about the rotational axis is 0.4 for a body of uniform density and 0.37621 if Mars were in hydrostatic equilibrium. By comparing models of both gravity and topography, inferences are made about the degree and depth of compensation in the interior and stresses in the lithosphere.
A special fermionic generalization of lineal gravity
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The central extension of the (1+1)-dimensional Poincaré algebra by including fermionic charges which obey not supersymmetric algebra, but a special graded algebra containing in the right hand side a central element only is obtained. The corresponding theory being the fermionic extension of the lineal gravity is proposed. We considered the algebra of generators, the field transformations and found Lagrangian and equation of motion, then we derived the Casimir operator and obtained the constant black hole mass.
Asymptotic dynamics of three-dimensional gravity
Donnay, Laura
2016-01-01
These are the lectures notes of the course given at the Eleventh Modave Summer School in Mathematical Physics, 2015, aimed at PhD candidates and junior researchers in theoretical physics. We review in details the result of Coussaert-Henneaux-van Driel showing that the asymptotic dynamics of $(2+1)$- dimensional gravity with negative cosmological constant is described at the classical level by Liouville theory. Boundary conditions implement the asymptotic reduction in two steps: the first set reduces the $SL(2,\\mathbb R)\\times SL(2,\\mathbb R)$ Chern-Simons action, equivalent to the Einstein action, to a non-chiral $SL(2,\\mathbb R)$ Wess-Zumino-Witten model, while the second set imposes constraints on the WZW currents that reduce further the action to Liouville theory. We discuss the issues of considering the latter as an effective description of the dual conformal field theory describing AdS$_3$ gravity beyond the semi-classical regime.
Eddington's Theory of Gravity and Its Progeny
Bañados, Máximo; Ferreira, Pedro G.
2010-07-01
We resurrect Eddington’s proposal for the gravitational action in the presence of a cosmological constant and extend it to include matter fields. We show that the Newton-Poisson equation is modified in the presence of sources and that charged black holes show great similarities with those arising in Born-Infeld electrodynamics coupled to gravity. When we consider homogeneous and isotropic space-times, we find that there is a minimum length (and maximum density) at early times, clearly pointing to an alternative theory of the big bang. We thus argue that the modern formulation of Eddington’s theory, Born-Infeld gravity, presents us with a novel, nonsingular description of the Universe.
Modeling of Earth's Gravity Fields Visualization Based on Quad Tree
Institute of Scientific and Technical Information of China (English)
LUO Zhicai; LI Zhenhai; ZHONG Bo
2010-01-01
The problems of the earth's gravity fields' visualization are both focus and puzzle currently. Aiming at multiresolution rendering, modeling of the Earth's gravity fields' data is discussed in the paper by using LOD algorithm based on Quad Tree. First,this paper employed the method of LOD based on Quad Tree to divide up the regional gravity anomaly data, introduced the combined node evaluation system that was composed of viewpoint related and roughness related systems, and then eliminated the T-cracks that appeared among the gravity anomaly data grids with different resolutions. The test results demonstrated that the gravity anomaly data grids' rendering effects were living, and the computational power was low. Therefore, the proposed algorithm was a suitable method for modeling the gravity anomaly data and has potential applications in visualization of the earth's gravity fields.
The equilibrium of dense plasma in a gravity field
Vasilev, B V
2000-01-01
The equilibrium of dense plasma in a gravity field and problem of a gravity-induced electric polarization in this matter are discussed. The calculation for metals performed before shows that both - the gravity-induced compressive strain and the gravity-induced electric field - are inversely proportional to their Young moduli. The calculation for high dense plasma, where Young modulus is equal to zero, shows that there is another effect: each cell of this plasma inside a celestial body in own gravity field obtains the small positive electric charge. It happens as heavy ions sag on to light electron clouds. A celestial body stays electrically neutral as a whole, because the negative electric charge concentrates on its surface. The gravity-induced positive volume charge is very small, its order of magnitude equals to $10^{-18}e$ per atom only. But it is sufficient for the complete conterbalancing of the gravity force.
Novel Probes of Gravity and Dark Energy
Energy Technology Data Exchange (ETDEWEB)
Jain, Bhuvnesh; et al.
2013-09-20
The discovery of cosmic acceleration has stimulated theorists to consider dark energy or modifications to Einstein's General Relativity as possible explanations. The last decade has seen advances in theories that go beyond smooth dark energy -- modified gravity and interactions of dark energy. While the theoretical terrain is being actively explored, the generic presence of fifth forces and dark sector couplings suggests a set of distinct observational signatures. This report focuses on observations that differ from the conventional probes that map the expansion history or large-scale structure. Examples of such novel probes are: detection of scalar fields via lab experiments, tests of modified gravity using stars and galaxies in the nearby universe, comparison of lensing and dynamical masses of galaxies and clusters, and the measurements of fundamental constants at high redshift. The observational expertise involved is very broad as it spans laboratory experiments, high resolution astronomical imaging and spectroscopy and radio observations. In the coming decade, searches for these effects have the potential for discovering fundamental new physics. We discuss how the searches can be carried out using experiments that are already under way or with modest adaptations of existing telescopes or planned experiments. The accompanying paper on the Growth of Cosmic Structure describes complementary tests of gravity with observations of large-scale structure.
The physics of orographic gravity wave drag
Directory of Open Access Journals (Sweden)
Miguel A C Teixeira
2014-07-01
Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.
Cosmological consequences of Modified Gravity (MOG)
Toth, Viktor T
2010-01-01
As an alternative to the LCDM concordance model, Scalar-Tensor-Vector Modified Gravity (MOG) theory reproduces key cosmological observations without postulating the presence of an exotic dark matter component. MOG is a field theory based on an action principle, with a variable gravitational constant and a repulsive vector field with variable range. MOG yields a phenomenological acceleration law that includes strong tensorial gravity partially canceled by a repulsive massive vector force. This acceleration law can be used to model the CMB acoustic spectrum and the matter power spectrum yielding good agreement with observation. A key prediction of MOG is the presence of strong baryonic oscillations, which will be detectable by future surveys. MOG is also consistent with Type Ia supernova data. We also describe on-going research of the coupling between MOG and continuous matter, consistent with the weak equivalence principle and solar system observations.
The Origin of Structures in Generalized Gravity
Hwang, J
1998-01-01
In a class of generalized gravity theories with general couplings between the scalar field and the scalar curvature in the Lagrangian, we can describe the quantum generation and the classical evolution of both the scalar and tensor structures in a simple and unified manner. An accelerated expansion phase based on the generalized gravity in the early universe drives microscopic quantum fluctuations inside a causal domain to expand into macroscopic ripples in the spacetime metric on scales larger than the local horizon. Following their generation from quantum fluctuations, the ripples in the metric spend a long period outside the causal domain. During this phase their evolution is characterized by their conserved amplitudes. The evolution of these fluctuations may lead to the observed large scale structures of the universe and anisotropies in the cosmic microwave background radiation.
Low Gravity Rapid Thermal Analysis of Glass
Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.
2004-01-01
It has been observed by two research groups that ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass crystallization is suppressed in microgravity. The mechanism for this phenomenon is unknown at the present time. In order to better understand the mechanism, an experiment was performed on NASA's KC135 reduced gravity aircraft to obtain quantitative crystallization data. An apparatus was designed and constructed for performing rapid thermal analysis of milligram quantities of ZBLAN glass. The apparatus employs an ellipsoidal furnace allowing for rapid heating and cooling. Using this apparatus nucleation and crystallization kinetic data was obtained leading to the construction of time-temperature-transformation curves for ZBLAN in microgravity and unit gravity.
Cause of winter gravity wave spectrum saturation
Institute of Scientific and Technical Information of China (English)
WU; Yongfu; XU; Jiyao
2005-01-01
This paper utilizes horizontal velocity measurements observed from 19 chaff rockets and nearly simultaneous temperature measurements collected from 19 falling sphere rockets to study the cause of winter gravity wave spectrum saturation. Results suggest that strong horizontal velocity shears larger than 0.04 s-1 are observed to be present at various heights near the winter mesopause. On one single chaff rocket flight, an extremely strong horizontal velocity shear as high as 0.33 s-1 is observed at 87.4 km and is believed to be the strongest value ever measured in the mesosphere. These strong horizontal velocity shears, together with Brunt-V(a)is(a)l(a) frequency squared obtained from the temperature profile, act collectively to yield two dynamical instability regions of Richardson number smaller than 1/4, suggesting that the saturated gravity wave spectrum observed by the chaff rockets in winter is a result of dynamical instability.
Tests of Modified Gravity with Dwarf Galaxies
Jain, Bhuvnesh
2011-01-01
In modified gravity theories that seek to explain cosmic acceleration, dwarf galaxies in low density environments can be subject to enhanced forces. The class of scalar-tensor theories, which includes f(R) gravity, predict such a force enhancement (massive galaxies like the Milky Way can evade it through a screening mechanism that protects the interior of the galaxy from this "fifth" force). We study observable deviations from GR in the disks of late-type dwarf galaxies moving under gravity. The fifth-force acts on the dark matter and HI gas disk, but not on the stellar disk owing to the self-screening of main sequence stars. We find four distinct observable effects in such disk galaxies: 1. A displacement of the stellar disk from the HI disk. 2. Warping of the stellar disk along the direction of the external force. 3. Enhancement of the rotation curve measured from the HI gas compared to that of the stellar disk. 4. Asymmetry in the rotation curve of the stellar disk. We estimate that the spatial effects can...
Mechanical Nature of Gravity and Tectonic Forces
Institute of Scientific and Technical Information of China (English)
Liu Ruixun; Lü Guxian; Wang Fangzheng; Wei Changshan; Guo Chusun
2004-01-01
There are two models of ultrahigh pressure metamorphism (UHPM) zone in Dabie: the model of under thrusting-returning which even arrives at the mantle and the superimposed model of tectonics in the crust. There are two points of view in the argument about formation depth of ultrahigh pressure metamorphism: (1) the depth can be calculated by hydrostatic equation; (2) the high pressure was composed of gravity, tectonic and other forces instead of merely gravity force. Some misunderstandings of mechanical conceptions presented in the paper showing the hydrostatic viewpoints should be open to question. The main conceptions are: (1) the confining pressure was only formed by gravity, and the differential stress was only formed by tectonic force; (2) the differential stress is not big enough to lead to form ultrahigh pressure metamorphism; (3) once tectonic overpressure goes beyond the limited strength of rocks the tectonic force would disappear and the rocks would be broken or rheomorphied at the same time. A short discussion in basic mechanics is made in this paper for a perfect process for discussing the argument.
Constraining Gravity with LISA Detections of Binaries
Canizares, P.; Gair, J. R.; Sopuerta, C. F.
2013-01-01
General Relativity (GR) describes gravitation well at the energy scales which we have so far been able to achieve or detect. However, we do not know whether GR is behind the physics governing stronger gravitational field regimes, such as near neutron stars or massive black-holes (MBHs). Gravitational-wave (GW) astronomy is a promising tool to test and validate GR and/or potential alternative theories of gravity. The information that a GW waveform carries not only will allow us to map the strong gravitational field of its source, but also determine the theory of gravity ruling its dynamics. In this work, we explore the extent to which we could distinguish between GR and other theories of gravity through the detection of low-frequency GWs from extreme-mass-ratio inspirals (EMRIs) and, in particular, we focus on dynamical Chern-Simons modified gravity (DCSMG). To that end, we develop a framework that enables us, for the first time, to perform a parameter estimation analysis for EMRIs in DCSMG. Our model is described by a 15-dimensional parameter space, that includes the Chern-Simons (CS) parameter which characterises the deviation between the two theories, and our analysis is based on Fisher information matrix techniques together with a (maximum-mismatch) criterion to assess the validity of our results. In our analysis, we study a 5-dimensional parameter space, finding that a GW detector like the Laser Interferometer Space Antenna (LISA) or eLISA (evolved LISA) should be able to discriminate between GR and DCSMG with fractional errors below 5%, and hence place bounds four orders of magnitude better than current Solar System bounds.
Establishment of National Gravity Base Network of Iran
Hatam Chavari, Y.; Bayer, R.; Hinderer, J.; Ghazavi, K.; Sedighi, M.; Luck, B.; Djamour, Y.; Le Moign, N.; Saadat, R.; Cheraghi, H.
2009-04-01
A gravity base network is supposed to be a set of benchmarks uniformly distributed across the country and the absolute gravity values at the benchmarks are known to the best accessible accuracy. The gravity at the benchmark stations are either measured directly with absolute devices or transferred by gravity difference measurements by gravimeters from known stations. To decrease the accumulation of random measuring errors arising from these transfers, the number of base stations distributed across the country should be as small as possible. This is feasible if the stations are selected near to the national airports long distances apart but faster accessible and measurable by a gravimeter carried in an airplane between the stations. To realize the importance of such a network, various applications of a gravity base network are firstly reviewed. A gravity base network is the required reference frame for establishing 1st , 2nd and 3rd order gravity networks. Such a gravity network is used for the following purposes: a. Mapping of the structure of upper crust in geology maps. The required accuracy for the measured gravity values is about 0.2 to 0.4 mGal. b. Oil and mineral explorations. The required accuracy for the measured gravity values is about 5 µGal. c. Geotechnical studies in mining areas for exploring the underground cavities as well as archeological studies. The required accuracy is about 5 µGal and better. d. Subsurface water resource explorations and mapping crustal layers which absorb it. An accuracy of the same level of previous applications is required here too. e. Studying the tectonics of the Earth's crust. Repeated precise gravity measurements at the gravity network stations can assist us in identifying systematic height changes. The accuracy of the order of 5 µGal and more is required. f. Studying volcanoes and their evolution. Repeated precise gravity measurements at the gravity network stations can provide valuable information on the gradual
A Spin Gauge Formulation of Gravity and a New View of Gravity-Matter Interactions
Ivancevic, Nicolas
2011-01-01
A first-order formulation of gravity is developed in which the fundamental fields consist of an SL(2,C) connection and two spinor-valued 1-forms. It is shown that the first term of an expansion of the Einstein-Hilbert action leads to an action for these fields which consists of dynamic L2 inner products of their covariant derivatives, resembling reasonable generalisations of the terms found in the actions of typical gauge theories on Minkowski spacetime. If additional terms corresponding to other forces and matter, formulated in the same manner, are then included, this approach may shed new light on interactions of gravity with matter and other force carriers.
High energy QCD scattering, the shape of gravity on an IR brane, and the Froissart bound
Giddings, Steven B
2003-01-01
High-energy scattering in non-conformal gauge theories is investigated using the AdS/CFT dual string/gravity theory. It is argued that strong-gravity processes, such as black hole formation, play an important role in the dual dynamics. Further information about this dynamics is found by performing a linearized analysis of gravity for a mass near an infrared brane; this gives the far field approximation to black hole or other strong-gravity effects, and in particular allows us to estimate their shape. From this shape, one can infer a total scattering cross-section that grows with center of mass energy as ln^2 E, saturating the Froissart bound.
de Rham, Claudia
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali-Gabadadze-Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware-Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
2014-01-01
We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...
Speed of Gravity Measured for First Time
2003-01-01
Taking advantage of a rare cosmic alignment, scientists have made the first measurement of the speed at which the force of gravity propagates, giving a numerical value to one of the last unmeasured fundamental constants of physics. "Newton thought that gravity's force was instantaneous. Einstein assumed that it moved at the speed of light, but until now, no one had measured it," said Sergei Kopeikin, a physicist at the University of Missouri-Columbia. VLA Image of Jupiter VLA Image of Jupiter CREDIT: NRAO/AUI/NSF "We have determined that gravity's propagation speed is equal to the speed of light within an accuracy of 20 percent," said Ed Fomalont, an astronomer at the National Radio Astronomy Observatory (NRAO) in Charlottesville, VA. The scientists presented their findings to the American Astronomical Society's meeting in Seattle, WA. The landmark measurement is important to physicists working on unified field theories that attempt to combine particle physics with Einstein's general theory of relativity and electromagnetic theory. "Our measurement puts some strong limits on the theories that propose extra dimensions, such as superstring theory and brane theories," Kopeikin said. "Knowing the speed of gravity can provide an important test of the existence and compactness of these extra dimensions," he added. Superstring theory proposes that the fundamental particles of nature are not pointlike, but rather incredibly small loops or strings, whose properties are determined by different modes of vibration. Branes (a word derived from membranes) are multidimensional surfaces, and some current physical theories propose space-time branes embedded to five dimensions. The scientists used the National Science Foundation's Very Long Baseline Array (VLBA), a continent-wide radio-telescope system, along with the 100-meter radio telescope in Effelsberg, Germany, to make an extremely precise observation when the planet Jupiter passed nearly in front of a bright quasar on
DEFF Research Database (Denmark)
Rapetti Serra, David Angelo
2011-01-01
framework we self-consistently and simultaneously constrain cosmology and observable-mass scaling relations accounting for survey biases, parameter covariances and systematic uncertainties. Allowing the linear growth index and the dark energy equation of state to take any constant values, we find......Using measurements of the abundance of galaxy clusters we obtain constraints on dark energy and gravity at cosmological scales. Our data set consists of 238 cluster detections drawn from the ROSAT All-Sky Survey and X-ray follow-up observations of 94 of those clusters. Using a new statistical...... no evidence for departures from GR+LCDM. If time permits, I will also present preliminary results on testing an alternative gravity model using our cluster data sets. Our results highlight the power of X-ray cluster studies to constrain cosmology...
Barriot, J. P.; Balmino, G.
1992-09-01
A novel method is presented for mapping line-of-sight gravity data (LOSGD) joining planetary probes and observers during Doppler tracking operations, with a view to geodetic and geophysical applications. LOSGD are in this case mapped as gravity anomalies along a radial direction, at constant altitude, using an inversion procedure in conjunction with a Tikhonov-Arsenine regularization method. The application of different regularization-parameter choices to a synthetic case is followed by application to the real case of Pioneer-Venus orbiter data for Venus' Gula Mons.
Quantum Cosmology of f( R, T) gravity
Xu, Min-Xing; Harko, Tiberiu; Liang, Shi-Dong
2016-08-01
Modified gravity theories have the potential of explaining the recent acceleration of the Universe without resorting to the mysterious concept of dark energy. In particular, it has been pointed out that matter-geometry coupling may be responsible for the recent cosmological dynamics of the Universe, and matter itself may play a more fundamental role in the description of the gravitational processes that usually assumed. In the present paper we study the quantum cosmology of the f( R, T) theory of gravity, in which the effective Lagrangian of the gravitational field is given by an arbitrary function of the Ricci scalar, and the trace of the matter energy-momentum tensor, respectively. For the background geometry we adopt the Friedmann-Robertson-Walker metric, and we assume that matter content of the Universe consists of a perfect fluid. In this framework we obtain the general form of the gravitational Hamiltonian, of the quantum potential, and of the canonical momenta, respectively. This allows us to formulate the full Wheeler-de Witt equation describing the quantum properties of this modified gravity model. As a specific application we consider in detail the quantum cosmology of the f(R,T)=F^0(R)+θ RT model, in which F^0(R) is an arbitrary function of the Ricci scalar, and θ is a function of the scale factor only. The Hamiltonian form of the equations of motion, and the Wheeler-de Witt equations are obtained, and a time parameter for the corresponding dynamical system is identified, which allows one to formulate the Schrödinger-Wheeler-de Witt equation for the quantum-mechanical description of the model under consideration. A perturbative approach for the study of this equation is developed, and the energy levels of the Universe are obtained by using a twofold degenerate perturbation approach. A second quantization approach for the description of quantum time is also proposed and briefly discussed.
Gravity and magnetic studies of the Geysers-Clear Lake geothermal region, California, USA
Isherwood, William F.
1976-01-01
Gravity and magnetic fields in The Geysers-Clear Lake region are interpreted in relation to the known geology and other available geophysical data. New gravity data provide additional detail with the area of geothermal steam production. Computer techniques were used for removal of the regional gravity field, anomaly enhancement, and modeling subsurface structures. The gravity field was separated into three components: (1) a regional field presumed to be due to deep crustal structure related to the continental margin; (2) a residual gravity low of approximately 30 mgal centered over Mount Hannah and having an approximate diameter of 20 km, which is caused, according to our model, by a magma chamber whose top lies within 10 km of the surface; and (3) a closed residual low over the original steam production field. This low is probably related to effects within 1.5 km of the surface and was modeled as a steam-saturated reservoir structure. Local magnetic highs correlate with surface outcrops of serpentinite and relief on the volcanic rocks. Upward continuation of the aeromagnetic data suggests that the serpentinite body along the Collayomi fault may extend to a depth of more than 3 km near Boggs Mountain, but that other serpentinite bodies are probably more shallow. A long-wavelength magnetic high (centered at ~39°03'N 122°33'W) and a magnetic low (centered at ~38°:43'N 122°47'W) give half-width depth estimates of about 10 km. The center of the Mount Hannah gravity low lies in an area between these features and appears devoid of deep magnetic expression.
The Gravity Fields of the Saturnian Satellites
Iess, L.
2011-12-01
In its tour of the Saturnian system, begun on July 1st, 2004, the Cassini spacecraft had many close flybys of Saturn's main satellites. However, due to impossibility to carry out simultaneously remote sensing observations and microwave tracking from ground, only a small fraction of those flybys could be exploited for gravity measurements. So far, the quadrupole field has been mapped only for Titan, Rhea and Enceladus, while for Hyperion and Iapetus the mass was the only accessible parameter. For Titan and Enceladus, the only satellites targeted more than once for gravity observations, also a rough geoid to degree and order 3 has been determined. Satellite gravity investigations rely upon accurate measurements of the spacecraft range rate, enabled by coherent, two-way radio links at X and Ka band (8.4 and 32.5 GHz). The use of hydrogen masers frequency standards at the ground station and the consid-erable suppression of plasma noise at X and Ka band frequen-cies provide range rate accuracies of 10-30 micron/s at integra-tion times of 60 s. Thanks to the higher frequency of the radio link, these measurement accuracies are in the average a factor of 10 better than those attained by Galileo in its tour of the Jovian system. However, in order to attain a reliable determination of the low degree field, good measurements must be combined with appropriate flyby geometries and adequate sampling, a condition that necessarily requires multiple flybys. We review the main results obtained so far by Cassini for Titan, Rhea and Enceladus, and discuss the methods of analysis used by the Radio Science Team.
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael; Guzmán, María José
2016-11-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudoinverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first-class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms and the (local) Lorentz transformations of the vielbein. In particular, the Arnowitt, Deser, and Misner algebra of general relativity is recovered as a subalgebra.
Hamiltonian formulation of teleparallel gravity
Ferraro, Rafael
2016-01-01
The Hamiltonian formulation of the teleparallel equivalent of general relativity (TEGR) is developed from an ordinary second-order Lagrangian, which is written as a quadratic form of the coefficients of anholonomy of the orthonormal frames (vielbeins). We analyze the structure of eigenvalues of the multi-index matrix entering the (linear) relation between canonical velocities and momenta to obtain the set of primary constraints. The canonical Hamiltonian is then built with the Moore-Penrose pseudo-inverse of that matrix. The set of constraints, including the subsequent secondary constraints, completes a first class algebra. This means that all of them generate gauge transformations. The gauge freedoms are basically the diffeomorphisms, and the (local) Lorentz transformations of the vielbein. In particular, the ADM algebra of general relativity is recovered as a sub-algebra.
Phenomenology in minimal theory of massive gravity
Energy Technology Data Exchange (ETDEWEB)
Felice, Antonio De [Yukawa Institute for Theoretical Physics, Kyoto University,606-8502, Kyoto (Japan); Mukohyama, Shinji [Yukawa Institute for Theoretical Physics, Kyoto University,606-8502, Kyoto (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,277-8583, Chiba (Japan)
2016-04-15
We investigate the minimal theory of massive gravity (MTMG) recently introduced. After reviewing the original construction based on its Hamiltonian in the vielbein formalism, we reformulate it in terms of its Lagrangian in both the vielbein and the metric formalisms. It then becomes obvious that, unlike previous attempts in the literature of Lorentz-violating massive gravity, not only the potential but also the kinetic structure of the action is modified from the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory. We confirm that the number of physical degrees of freedom in MTMG is two at fully nonlinear level. This proves the absence of various possible pathologies such as superluminality, acausality and strong coupling. Afterwards, we discuss the phenomenology of MTMG in the presence of a dust fluid. We find that on a flat homogeneous and isotropic background we have two branches. One of them (self-accelerating branch) naturally leads to acceleration without the genuine cosmological constant or dark energy. For this branch both the scalar and the vector modes behave exactly as in general relativity (GR). The phenomenology of this branch differs from GR in the tensor modes sector, as the tensor modes acquire a non-zero mass. Hence, MTMG serves as a stable nonlinear completion of the self-accelerating cosmological solution found originally in dRGT theory. The other branch (normal branch) has a dynamics which depends on the time-dependent fiducial metric. For the normal branch, the scalar mode sector, even though as in GR only one scalar mode is present (due to the dust fluid), differs from the one in GR, and, in general, structure formation will follow a different phenomenology. The tensor modes will be massive, whereas the vector modes, for both branches, will have the same phenomenology as in GR.
Classical limit of quantum gravity in an accelerating universe
Energy Technology Data Exchange (ETDEWEB)
Schuller, Frederic P. [Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo N2L 2Y5 (Canada)]. E-mail: fschuller@perimeterinstitute.ca; Wohlfarth, Mattias N.R. [II. Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)]. E-mail: mattias.wohlfarth@desy.de
2005-04-21
A one-parameter deformation of Einstein-Hilbert gravity with an inverse Riemann curvature term is derived as the classical limit of quantum gravity compatible with an accelerating universe. This result is based on the investigation of semi-classical theories with sectional curvature bounds which are shown not to admit static spherically symmetric black holes if otherwise of phenomenological interest. We discuss the impact on the canonical quantization of gravity, and observe that worldsheet string theory is not affected.
Arctic marine gravity and bathymetry from 3 years of Cryosat-2 SAR altimetry (DTU13 Gravity)
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Stenseng, Lars; Knudsen, Per
in sea surface height precision. Over the Arctic Ocean the Cryosat-2 generally operates in SAR altimetry mode for cryospheric studies. We have tested the standard ESA L2 SAR altimetric data for the first 3 years and developed robust empirical retrackers for ice-covered regions and processing 3 years of L......The accuracy of the Arctic marine gravity field has for many been severely limited by the availability and accuracy of altimeter data in the Arctic Ocean. Until recently only ERS-1 provided non-repeat (0.9 year) geodetic mission altimetry in the Arctic Ocean and only up to 82N. With the launch......1 SAR altimetry in the Arctic Ocean for gravity field determination. Extensive testing, interpretation and improvement of methods to handles the new class of data has been investigated and the first result from a new Arctic Ocean wide gravity field will be presented as well as initial test...
Getting the Swing of Surface Gravity
Thomas, Brian C
2012-01-01
Sports are a popular and effective way to illustrate physics principles. Baseball in particular presents a number of opportunities to motivate student interest and teach concepts. Several articles have appeared in this journal on this topic, illustrating a wide variety of areas of physics. In addition, several websites and an entire book are available. In this paper we describe a student-designed project that illustrates the relative surface gravity on the Earth, Sun and other solar-system bodies using baseball. We describe the project and its results here as an example of a simple, fun, and student-driven use of baseball to illustrate an important physics principle.
Variations of fundamental constants and multidimensional gravity
Bronnikova, K. A.; Skvortsova, M. V.
We try to explain the recently reported large-scale spatial variations of the fine structure constant α, in agreement with other cosmological observations, in the framework of curvature-nonlinear multidimensional gravity. The original theory is reduced to a scalar-tensor theory in four dimensions, and the corresponding isotropic cosmologies are considered in both Einstein and Jordan conformal frames. In the Jordan frame one obtains simultaneous variations of α and the gravitational constant G, equal in magnitude. Long-wave small inhomogeneous perturbations of isotropic models allow for explaining spatial variations of α.
A new quasidilaton theory of massive gravity
Mukohyama, Shinji
2014-01-01
We present a new quasidilaton theory of Poincare invariant massive gravity, based on the recently proposed framework of matter coupling that makes it possible for the kinetic energy of the quasidilaton scalar to couple to both physical and fiducial metrics simultaneously. We find a scaling-type exact solution that expresses a self-accelerating de Sitter universe, and then analyze linear perturbations around it. It is shown that in a range of parameters all physical degrees of freedom have non-vanishing quadratic kinetic terms and are stable in the subhorizon limit, while the effective Newton's constant for the background is kept positive.
Directory of Open Access Journals (Sweden)
Galin Tihanov
2012-11-01
Full Text Available I propose to take the grotesque, both as a discursive genre and a cultural attitude and practice, as a point of departure that allows us to comment more widely on Bakhtin‘s Rabelais book and its significance for current debates on subjectivity. In carnival, the epic reverberates in humanity‘s boundless memory ―of cosmic perturbations in the distant past, while the novelistic lives in the grotesque fluctuation and removal of distance, and in the irreverent and joyful celebration of resilience through laughter. Like the epic, carnival is about the maintaining of traditional practices, but in an open and charitably insecure, ―novelistic‖ way. The book on Rabelais seems to be the point where, on reconciling and synthesizing culture and life in the acts of the human body, reworking and redrawing the boundaries of cultural taboos, and championing a symbiosis between the epic and the novelistic, Bakhtin sponsors a new sense of tradition inscribed in the irreverent life of folk (community culture. This celebration of the people re-opens the vexing question about the political implications of Bakhtin‘s pronouncements on the epic and the novelistic, on communitarian and individual culture, and on their desired synthesis. But it also enables us to locate Bakhtin‘s style of thinking and his specific brand of decentred, indeed dislocated, humanism.
Wavelet approach to the determination of gravity tide parameters
Institute of Scientific and Technical Information of China (English)
柳林涛; 许摩泽; 孙和平; 郝兴华
2000-01-01
A new approach is proposed for the determination of gravity tide parameters. Three pairs of compactly supported wavelet filters are introduced in the approach. They can efficiently extract the objective tides from the gravity observation series. The new approach guarantees a direct and precise analysis on the tidal gravity records of any sampling length. The new approach is applied to the harmonic analysis on Wuhan superconducting gravimeter records. The results clearly show the resonant effects of the Earth Nearly Diurnal Free Wobble (NDFW).
Classical limit of quantum gravity in an accelerating universe
Schuller, F P; Schuller, Frederic P.; Wohlfarth, Mattias N.R.
2005-01-01
A one-parameter deformation of Einstein-Hilbert gravity with an inverse curvature term is derived as the classical limit of quantum gravity compatible with an accelerating universe. This result is based on the investigation of semi-classical theories with sectional curvature bounds which are shown not to admit static black holes if otherwise of phenomenological interest. Consequences for classical gravity and the canonical quantization program are briefly discussed.
Brax, Philippe; Davis, Anne-Christine
2015-01-01
We analyse the speed of gravitational waves in coupled Galileon models with an equation of state $\\omega_\\phi=-1$ now and a ghost-free Minkowski limit. We find that the gravitational waves propagate much faster than the speed of light unless these models are small perturbations of cubic Galileons and the Galileon energy density is sub-dominant to a dominant cosmological constant. In this case, the binary pulsar bounds on the speed of gravitational waves can be satisfied and the equation of state can be close to -1 when the coupling to matter and the coefficient of the cubic term of the Galileon Lagrangian are related. This severely restricts the allowed cosmological behaviour of Galileon models and we are forced to conclude that Galileons with a stable Minkowski limit cannot account for the observed acceleration of the expansion of the universe on their own. Moreover any sub-dominant Galileon component of our universe must be dominated by the cubic term. For such models with gravitons propagating faster than ...
Quasilinear reformulation of Lovelock gravity
Willison, Steven
2015-01-01
Here we give an extended review of the quasilinear reformulation of the Lovelock gravitational field equations in harmonic gauge presented in 1409.6656 [gr-qc]. This is important in order to establish rigorously well-posedness of the theory perturbed about certain backgrounds. The resulting system is not quasidiagonal, therefore analysis of causality is complicated in general. The conditions for the equations to be Leray hyperbolic are elucidated. The relevance to some recent results regarding the stability analysis of black holes is presented.
Symplectic Structure of Intrinsic Time Gravity
Directory of Open Access Journals (Sweden)
Eyo Eyo Ita
2016-08-01
Full Text Available The Poisson structure of intrinsic time gravity is analysed. With the starting point comprising a unimodular three-metric with traceless momentum, a trace-induced anomaly results upon quantization. This leads to a revision of the choice of momentum variable to the (mixed index traceless momentric. This latter choice unitarily implements the fundamental commutation relations, which now take on the form of an affine algebra with SU(3 Lie algebra amongst the momentric variables. The resulting relations unitarily implement tracelessness upon quantization. The associated Poisson brackets and Hamiltonian dynamics are studied.
Quantum gravity extension of the inflationary scenario.
Agullo, Ivan; Ashtekar, Abhay; Nelson, William
2012-12-21
Since the standard inflationary paradigm is based on quantum field theory on classical space-times, it excludes the Planck era. Using techniques from loop quantum gravity, the paradigm is extended to a self-consistent theory from the Planck scale to the onset of slow roll inflation, covering some 11 orders of magnitude in energy density and curvature. This preinflationary dynamics also opens a small window for novel effects, e.g., a source for non-Gaussianities, which could extend the reach of cosmological observations to the deep Planck regime of the early Universe.
Halo Scale Predictions of Symmetron Modified Gravity
Clampitt, Joseph; Khoury, Justin
2011-01-01
We offer predictions of symmetron modified gravity in the neighborhood of realistic dark matter halos. The predictions for the fifth force are obtained by solving the nonlinear symmetron equation of motion in the spherical NFW approximation. In addition, we compare the three major known screening mechanisms: Vainshtein, Chameleon, and Symmetron around such dark matter sources, emphasizing the significant differences between them and highlighting observational tests which exploit these differences. Finally, we demonstrate the host halo environmental screening effect ("blanket screening") on smaller satellite halos by solving for the modified forces around a density profile which is the sum of satellite and approximate host components.
Directory of Open Access Journals (Sweden)
Nico Jenkins
2011-03-01
Full Text Available At the beginning of Martin Heidegger’s lecture “Time and Being,” presented to the University of Freiburg in 1962, he cautions against, it would seem, the requirement that philosophy make sense, or be necessarily responsible (Stambaugh, 1972. At that time Heidegger's project focused on thinking as thinking and in order to elucidate his ideas he drew comparisons between his project and two paintings by Paul Klee as well with a poem by Georg Trakl. In front of Klee's Saints from the Window and Death of Fire—though we wouldn’t absolutely understand what we were seeing—he writes, “we should want to stand…a long while.” In a similar manner, of Trakl’s poem “Septet of Death”—although it is likely we are unsure in what we hear—Heidegger states that, “we should want to hear…[it] often.” Heidegger further states that in appreciating these, “we “should abandon any claim that [they] be immediately intelligible” (1. So also we must we approach, Heidegger continues, the realm of theoretical physics, in which the difficult work of Werner Heisenberg, be listened to “without protest” and without “any claim that he be immediately understood.” These works, like his own project, merit the time they take to be originally (misunderstood.
Cosmological solutions of emergent noncommutative gravity.
Klammer, Daniela; Steinacker, Harold
2009-06-01
Matrix models of the Yang-Mills type lead to an emergent gravity theory, which does not require fine-tuning of a cosmological constant. We find cosmological solutions of the Friedmann-Robertson-Walker type. They generically have a big bounce, and an early inflationlike phase with graceful exit. The mechanism is purely geometrical; no ad hoc scalar fields are introduced. The solutions are stabilized through vacuum fluctuations and are thus compatible with quantum mechanics. This leads to a Milne-like universe after inflation, which appears to be in remarkably good agreement with observation and may provide an alternative to standard cosmology.
Nonlinear dynamics of hydrostatic internal gravity waves
Energy Technology Data Exchange (ETDEWEB)
Stechmann, Samuel N.; Majda, Andrew J. [New York University, Courant Institute of Mathematical Sciences, NY (United States); Khouider, Boualem [University of Victoria, Department of Mathematics and Statistics, Victoria, BC (Canada)
2008-11-15
Stratified hydrostatic fluids have linear internal gravity waves with different phase speeds and vertical profiles. Here a simplified set of partial differential equations (PDE) is derived to represent the nonlinear dynamics of waves with different vertical profiles. The equations are derived by projecting the full nonlinear equations onto the vertical modes of two gravity waves, and the resulting equations are thus referred to here as the two-mode shallow water equations (2MSWE). A key aspect of the nonlinearities of the 2MSWE is that they allow for interactions between a background wind shear and propagating waves. This is important in the tropical atmosphere where horizontally propagating gravity waves interact together with wind shear and have source terms due to convection. It is shown here that the 2MSWE have nonlinear internal bore solutions, and the behavior of the nonlinear waves is investigated for different background wind shears. When a background shear is included, there is an asymmetry between the east- and westward propagating waves. This could be an important effect for the large-scale organization of tropical convection, since the convection is often not isotropic but organized on large scales by waves. An idealized illustration of this asymmetry is given for a background shear from the westerly wind burst phase of the Madden-Julian oscillation; the potential for organized convection is increased to the west of the existing convection by the propagating nonlinear gravity waves, which agrees qualitatively with actual observations. The ideas here should be useful for other physical applications as well. Moreover, the 2MSWE have several interesting mathematical properties: they are a system of nonconservative PDE with a conserved energy, they are conditionally hyperbolic, and they are neither genuinely nonlinear nor linearly degenerate over all of state space. Theory and numerics are developed to illustrate these features, and these features are
Contribution of satellite laser ranging to combined gravity field models
Maier, A.; Krauss, S.; Hausleitner, W.; Baur, O.
2012-02-01
In the framework of satellite-only gravity field modeling, satellite laser ranging (SLR) data is typically exploited to recover long-wavelength features. This contribution provides a detailed discussion of the SLR component of GOCO02S, the latest release of combined models within the GOCO series. Over a period of five years (January 2006 to December 2010), observations to LAGEOS-1, LAGEOS-2, Ajisai, Stella, and Starlette were analyzed. We conducted a series of closed-loop simulations and found that estimating monthly sets of spherical harmonic coefficients beyond degree five leads to exceedingly ill-posed normal equation systems. Therefore, we adopted degree five as the spectral resolution for real data analysis. We compared our monthly coefficient estimates of degree two with SLR and Gravity Recovery and Climate Experiment (GRACE) time series provided by the Center for Space Research (CSR) at Austin, Texas. Significant deviations in C20 were noted between SLR and GRACE; the agreement is better for the non-zonal coefficients. Fitting sinusoids together with a linear trend to our C20 time series yielded a rate of (-1.75 ± 0.6) × 10-11/yr; this drift is equivalent to a geoid change from pole to equator of 0.35 ± 0.12 mm/yr or an apparent Greenland mass loss of 178.5 ± 61.2 km3/yr. The mean of all monthly solutions, averaged over the five-year period, served as input for the satellite-only model GOCO02S. The contribution of SLR to the combined gravity field model is highest for C20, and hence is essential for the determination of the Earth's oblateness.
Julia, B L
2001-01-01
Compactifications on tori may seem to have revealed their beauty long ago but the mystery of 11d Supergravity remains and fresh attempts at a conceptual breakthrough are worth the effort and quite timely. We shall concentrate here on the analogy with Instanton Mathematics and discuss some open questions and work in progress.
Electronic states of germanium grown under micro-gravity condition
Energy Technology Data Exchange (ETDEWEB)
Sugahara, A. [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)]. E-mail: sugahara@tsurugi.phys.sci.osaka-u.ac.jp; Ogawa, T. [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fujii, K. [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Ohyama, T. [Liberal Arts, Fukui University of Technology, 3-6-1 Gakuen, Fukui, Fukui 910-8505 (Japan); Nakata, J. [Kyoto Semiconductor Corp. 418-9 Yodo Saime-cho, Fushimi-ku, Kyoto 613-0915 (Japan)
2006-04-01
Magneto-optical absorption measurements of Sb-doped germaniums grown under micro-gravity condition were carried out to investigate the influence of the gravity on crystal growth, using far-infrared laser and microwave. For comparison, we prepared two germanium crystals grown in the same conditions except the gravity conditions. In spite of the quite short growth period, the germanium grown under micro-gravity has a quite good quality. The lineshape analysis of Zeeman absorption peaks due to donor electrons indicates the existence of residual thermal acceptors.
On the biological role of gravity.
Gazenko, O G; Gurjian, A A
1965-01-01
The paper is dedicated to the memory of Galileo Galilei whose work is a great contribution to the development of a new branch of science--gravitation biology. Penetration of man into outer space necessitates a study of the role of gravity in the onto- and phylogenetic development of living organisms. This allows one to get insight into the biological action of weightlessness under the conditions of long-term space flight. The paper summarizes some results of the investigation of weightlessness effects in experiments on animals and during flights of Soviet and American astronauts. The rearing of animals in a special centrifuge under the conditions of prolonged action of accelerations simulating an increased gravity affects noticeably the formation of vegetative (height, weight, metabolism) and animal (vestibulo-tonic reflexes) functions as well as reactivity of the organism. Experiments employing the rearing of animals in a centrifuge represent one of the most promising methods of studying the urgent problem--biological action of increased and decreased gravitation conditions.
Jiang, Tao; Wang, Yan Ming
2016-12-01
One of the challenges for geoid determination is the combination of heterogeneous gravity data. Because of the distinctive spectral content of different data sets, spectral combination is a suitable candidate for its solution. The key to have a successful combination is to determine the proper spectral weights, or the error degree variances of each data set. In this paper, the error degree variances of terrestrial and airborne gravity data at low degrees are estimated by the aid of a satellite gravity model using harmonic analysis. For higher degrees, the error covariances are estimated from local gravity data first, and then used to compute the error degree variances. The white and colored noise models are also used to estimate the error degree variances of local gravity data for comparisons. Based on the error degree variances, the spectral weights of satellite gravity models, terrestrial and airborne gravity data are determined and applied for geoid computation in Texas area. The computed gravimetric geoid models are tested against an independent, highly accurate geoid profile of the Geoid Slope Validation Survey 2011 (GSVS11). The geoid computed by combining satellite gravity model GOCO03S and terrestrial (land and DTU13 altimetric) gravity data agrees with GSVS11 to ±1.1 cm in terms of standard deviation along a line of 325 km. After incorporating the airborne gravity data collected at 11 km altitude, the standard deviation is reduced to ±0.8 cm. Numerical tests demonstrate the feasibility of spectral combination in geoid computation and the contribution of airborne gravity in an area of high quality terrestrial gravity data. Using the GSVS11 data and the spectral combination, the degree of correctness of the error spectra and the quality of satellite gravity models can also be revealed.
Review of lattice supersymmetry and gauge-gravity duality
Energy Technology Data Exchange (ETDEWEB)
Joseph, Anosh [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics (DAMTP)
2015-12-15
We review the status of recent investigations on validating the gauge-gravity duality conjecture through numerical simulations of strongly coupled maximally supersymmetric thermal gauge theories. In the simplest setting, the gauge-gravity duality connects systems of D0-branes and black hole geometries at finite temperature to maximally supersymmetric gauged quantum mechanics at the same temperature. Recent simulations show that non-perturbative gauge theory results give excellent agreement with the quantum gravity predictions, thus proving strong evidence for the validity of the duality conjecture and more insight into quantum black holes and gravity.
Effect of Crustal Density Structures on GOCE Gravity Gradient Observables
Directory of Open Access Journals (Sweden)
Robert Tenzer and Pavel Novák
2013-01-01
Full Text Available We investigate the gravity gradient components corrected for major known anomalous density structures within the _ crust. Heterogeneous mantle density structures are disregarded. The gravimetric forward modeling technique is utilized to compute the gravity gradients based on methods for a spherical harmonic analysis and synthesis of a gravity field. The _ gravity gradient components are generated using the global geopotential model GOCO-03s. The topographic and stripping gravity corrections due to the density contrasts of the ocean and ice are computed from the global topographic/bathymetric model DTM2006.0 (which also includes the ice-thickness dataset. The discrete data of sediments and crust layers taken from the CRUST2.0 global crustal model are then used to apply the additional stripping corrections for sediments and remaining anomalous crustal density structures. All computations are realized globally on a one arc-deg geographical grid at a mean satellite elevation of 255 km. The global map of the consolidated crust-stripped gravity gradients reveals distinctive features which are attributed to global tectonics, lithospheric plate configuration, lithosphere structure and mantle dynamics (e.g., glacial isostatic adjustment, mantle convection. The Moho signature, which is the most pronounced signal in these refined gravity gradients, is superimposed over a weaker gravity signal of the lithospheric mantle. An interpretational quality of the computed (refined gravity gradient components is mainly limited by a low accuracy and resolution of the CRUST2.0 sediment and crustal layer data and unmodeled mantle structures.
Autonomous orbit determination via Kalman filtering of gravity gradients
Sun; Chen,De; Macabiau, Christophe; Han
2016-01-01
International audience; Spaceborne gravity gradients are proposed in this paper to provide autonomous orbit determination capabilities for near Earth satellites. The gravity gradients contain useful position information which can be extracted by matching the observations with a precise gravity model. The extended Kalman filter is investigated as the principal estimator. The stochastic model of orbital motion, the measurement equation and the model configuration are discussed for the filter de...
Generalised Boundary for Higher Derivative Theories of Gravity
Teimouri, Ali; Edholm, James; Mazumdar, Anupam
2016-01-01
In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.
Generalised boundary terms for higher derivative theories of gravity
Teimouri, Ali; Talaganis, Spyridon; Edholm, James; Mazumdar, Anupam
2016-08-01
In this paper we wish to find the corresponding Gibbons-Hawking-York term for the most general quadratic in curvature gravity by using Coframe slicing within the Arnowitt-Deser-Misner (ADM) decomposition of spacetime in four dimensions. In order to make sure that the higher derivative gravity is ghost and tachyon free at a perturbative level, one requires infinite covariant derivatives, which yields a generalised covariant infinite derivative theory of gravity. We will be exploring the boundary term for such a covariant infinite derivative theory of gravity.
Embeddings of the "New Massive Gravity"
Dalmazi, D.; Mendonça, E. L.
2016-07-01
Here we apply different types of embeddings of the equations of motion of the linearized "New Massive Gravity" in order to generate alternative and even higher-order (in derivatives) massive gravity theories in D=2+1. In the first part of the work we use the Weyl symmetry as a guiding principle for the embeddings. First we show that a Noether gauge embedding of the Weyl symmetry leads to a sixth-order model in derivatives with either a massive or a massless ghost, according to the chosen overall sign of the theory. On the other hand, if the Weyl symmetry is implemented by means of a Stueckelberg field we obtain a new scalar-tensor model for massive gravitons. It is ghost-free and Weyl invariant at the linearized level around Minkowski space. The model can be nonlinearly completed into a scalar field coupled to the NMG theory. The elimination of the scalar field leads to a nonlocal modification of the NMG. In the second part of the work we prove to all orders in derivatives that there is no local, ghost-free embedding of the linearized NMG equations of motion around Minkowski space when written in terms of one symmetric tensor. Regarding that point, NMG differs from the Fierz-Pauli theory, since in the latter case we can replace the Einstein-Hilbert action by specific f(R,Box R) generalizations and still keep the theory ghost-free at the linearized level.
Matters of Gravity, the newsletter of the APS Topical Group on Gravitation, Spring 2003
Pullin, J
2003-01-01
Contents: Community news: GGR activities, by Richard Price We hear that..., by Jorge Pullin Institute of Physics Gravitational Physics Group, by Elizabeth Winstanley Center for gravitational wave astronomy, by Mario Diaz Research briefs: LIGO's first preliminary science run, by Gary Sanders Quantization of area: the plot thickens, by John Baez Convergence of G measurements -Mysteries remain, by Riley Newman Conference reports: Brane world gravity, by Elizabeth Winstanley Massive black holes focus session, by Steinn Sigurdsson GWDAW 2002, by Peter Saulson Source simulation focus session, by Pablo Laguna RRI workshop on loop quantum gravity, by Fernando Barbero Lazarus/Kudu Meeting, by Warren G. Anderson
Einstein's theory of gravity and the problem of missing mass.
Ferreira, Pedro G; Starkman, Glenn D
2009-11-01
The observed matter in the universe accounts for just 5% of the observed gravity. A possible explanation is that Newton's and Einstein's theories of gravity fail where gravity is either weak or enhanced. The modified theory of Newtonian dynamics (MOND) reproduces, without dark matter, spiral-galaxy orbital motions and the relation between luminosity and rotation in galaxies, although not in clusters. Recent extensions of Einstein's theory are theoretically more complete. They inevitably include dark fields that seed structure growth, and they may explain recent weak lensing data. However, the presence of dark fields reduces calculability and comes at the expense of the original MOND premise, that the matter we see is the sole source of gravity. Observational tests of the relic radiation, weak lensing, and the growth of structure may distinguish modified gravity from dark matter.
Phenomenology in minimal theory of massive gravity
De Felice, Antonio
2015-01-01
We investigate the minimal theory of massive gravity (MTMG) recently introduced. After reviewing the original construction based on its Hamiltonian in the vielbein formalism, we reformulate it in terms of its Lagrangian in both the vielbein and the metric formalisms. It then becomes obvious that, unlike previous attempts in the literature, not only the potential but also the kinetic structure of the action is modified from the de Rham-Gabadadze-Tolley (dRGT) massive gravity theory. We confirm that the number of physical degrees of freedom in MTMG is two at fully nonlinear level. This proves the absence of various possible pathologies such as superluminality, acausality and strong coupling. Afterwards, we discuss the phenomenology of MTMG in the presence of a dust fluid. We find that on a flat homogeneous and isotropic background we have two branches. One of them (self-accelerating branch) naturally leads to acceleration without the genuine cosmological constant or dark energy. For this branch both the scalar ...
A Simple Theory of Quantum Gravity
Horndeski, Gregory W
2015-01-01
A novel theory of Quantum Gravity is presented in which the real gravitons manifest themselves as holes in space. In general, these holes propagate at the speed of light through an expanding universe with boundary denoted by U, which is comprised of pulsating cells. These holes can form bound and semi-bound states. The geometry of U is non-Euclidean on a small scale, but there are indications that it can become Euclidean on a large scale. The motions of elementary particles through U are governed by probability 4 and 7-vectors, which are related to the momentum vectors in Minkowski space. The connection of this theory to Newtonian gravity is discussed, and an expression for the gravitational redshift of photons is derived which relates the redshift to the probability that a photon absorbs a virtual graviton. The theory also provides a possible explanation of dark matter and dark energy as gravitational phenomena, which do not require the introduction of any new particles. A quantum cosmology is presented in w...
Motion in alternative theories of gravity
Esposito-Farese, Gilles
2009-01-01
Although general relativity (GR) passes all present experimental tests with flying colors, it remains important to study alternative theories of gravity for several theoretical and phenomenological reasons that we recall in these lecture notes. The various possible ways of modifying GR are presented, and we notably show that the motion of massive bodies may be changed even if one assumes that matter is minimally coupled to the metric as in GR. This is illustrated with the particular case of scalar-tensor theories of gravity, whose Fokker action is discussed, and we also mention the consequences of the no-hair theorem on the motion of black holes. The finite size of the bodies modifies their motion with respect to pointlike particles, and we give a simple argument showing that the corresponding effects are generically much larger in alternative theories than in GR. We also discuss possible modifications of Newtonian dynamics (MOND) at large distances, which have been proposed to avoid the dark matter hypothesi...
Fabrication of gravity-driven microfluidic device
Yamada, H.; Yoshida, Y.; Terada, N.; Hagihara, S.; Komatsu, T.; Terasawa, A.
2008-12-01
We have studied the micro total analysis system as a blood test. A microfluidic device with a three-pronged microchannel and artificial capillary vessels was fabricated. The microchannel is to transport blood, focus blood cells, and line them up. The vessels are to observe red blood cell deformation. An excimer laser was used to form grooves and so on. Numbers of thermosetting resin film and fluororesin were piled up on a cover glass. A laser fabricated part of the channel at the each film every lamination, and then a three-dimensional structure microchannel was fabricated. The channel sizes have widths of 50-150 μm and depths of 45 μm. Through holes used as artificial capillary vessels are made in the fluororesin having a minimum diameter of 5 μm and a length of 100 μm. As blood and a physiological saline are injected into the microchannel, the device stands upward facing the channel, and blood cells go into the vessels by the force of gravity and sheath flow of the saline. By gravity various groove patterns were made changing the width and length for measurement of blood focusing. Moreover, the red blood cell deformation was observed in the vessels with a microscope.
Flammability Limits of Gases Under Low Gravity Conditions
Strehlow, R. A.
1985-01-01
The purpose of this combustion science investigation is to determine the effect of zero, fractional, and super gravity on the flammability limits of a premixed methane air flame in a standard 51 mm diameter flammability tube and to determine, if possible, the fluid flow associated with flame passage under zero-g conditions and the density (and hence, temperature) profiles associated with the flame under conditions of incipient extinction. This is accomplished by constructing an appropriate apparatus for placement in NASA's Lewis Research Center Lear Jet facility and flying the prescribed g-trajectories while the experiment is being performed. Data is recorded photographically using the visible light of the flame. The data acquired is: (1) the shape and propagation velocity of the flame under various g-conditions for methane compositions that are inside the flammable limits, and (2) the effect of gravity on the limits. Real time accelerometer readings for the three orthogonal directions are displayed in full view of the cameras and the framing rate of the cameras is used to measure velocities.
The f(R gravity function of the Linde quintessence
Directory of Open Access Journals (Sweden)
Sergei V. Ketov
2015-02-01
Full Text Available We calculate the f(R gravity function in the dual gravity description of the quintessence model with a quadratic (Linde scalar potential and a positive cosmological constant. We find that in the large curvature regime relevant to chaotic inflation in Early Universe, the dual f(R gravity is well approximated by the (matter loop-corrected Starobinsky inflationary model. In the small curvature regime relevant to dark energy in the Present Universe, the f(R gravity function reduces to the Einstein–Hilbert one with a positive cosmological constant.
The Crustal Thickness of the Philippine Sea Plate Derived from Gravity Data
Directory of Open Access Journals (Sweden)
Horng-Yuan Yen
2015-01-01
Full Text Available We constructed a new free-air gravity anomaly map of the Philippine Sea Plate (PSP using ship-tracked gravity data from the National Geophysical Data Center (NGDC. Our results show that the isogals trend correlates well with the tectonic structures in the PSP. After removing the gravity induced by sea water from the free-air gravity data, we obtained the regional Bouguer gravity anomaly, which is later used to compute the Moho geometry in the PSP by applying the Parker-Oldenburg iterative method. Our results indicate that in the southern part of the West Philippine Basin (WPB the crustal thickness is nearly homogeneous with a value of about 5 km, which implies that the WPB is quite stable. The low-amplitude and near-zero free-air gravity anomalies clearly indicate that the whole WPB, except at trenches and island arcs, is nearly in a state of isostatic equilibrium. The average crustal thickness of the Palau Kyushu Ridge (PKR is more than 10 km. In the eastern PSP the crustal thickness gradually increases eastward. Our results also imply that a relatively thin and low density mantle exists beneath the Parece Vela Basin (PVB as a consequence of back-arc spreading and serpentinized upwells of the thin crustal thickness.
Cosmological Dynamics of de Sitter Gravity
Institute of Scientific and Technical Information of China (English)
AO Xi-Chen; LI Xin-Zhou; XI Ping
2011-01-01
@@ A new cosmological model based on the de Sitter gravity is investigated by dynamical analysis and numerical discussions.Via some transformations, the evolution equations of this model can form an autonomous system with 8 physical critical points.Among these critical points there exist one positive attractor and one negative attractor.The positive attractor describes the asymptotic behavior of late-time universe, which indicates that the universe will enter the exponential expansion phase, finally.Some numerical calculations are also carried out,which convince us of this conclusion derived from the dynamical analysis.%A new cosmological model based on the de Sitter gravity is investigated by dynamical analysis and numerical discussions.Via some transformations, the evolution equations of this model can form an autonomous system with 8 physical critical points.Among these critical points there exist one positive attractor and one negative attractor.The positive attractor describes the asymptotic behavior of late-time universe, which indicates that the universe will enter the exponential expansion phase, finally.Some numerical calculations are also carried out,which convince us of this conclusion derived from the dynamical analysis.
LHC Signals of Pure Gravity Mediation
Directory of Open Access Journals (Sweden)
Feldstein Brian
2013-05-01
Full Text Available Evidence is mounting that natural supersymmetry at the weak scale is not realized in nature. This evidence comes from collider searches, a lack of new flavor changing neutral current effects, and now also the size of the measured Higgs mass. On the other hand, string theory suggests that supersymmetry might be present at some energy scale, and gauge coupling unification and dark matter imply that that energy scale may be relatively low. The simplest model to address all of these hints is arguably “pure gravity mediation”, in which the scalar superpartner masses are taken to be perhaps 100 TeV, with gauginos automatically acquiring loop factor suppressed masses of order TeV. The gauginos might then be the only superpartners accessible to the LHC. Unification and LSP dark matter are maintained (with a wino LSP at the cost of a 10−5 or 10−6 fine tuning. Here I will discuss the structure and LHC phenomenology of pure gravity mediation.
Lorentz covariance of loop quantum gravity
Rovelli, Carlo
2010-01-01
The kinematics of loop gravity can be given a manifestly Lorentz-covariant formulation: the conventional SU(2)-spin-network Hilbert space can be mapped to a space K of SL(2,C) functions, where Lorentz covariance is manifest. K can be described in terms of a certain subset of the "projected" spin networks studied by Livine, Alexandrov and Dupuis. It is formed by SL(2,C) functions completely determined by their restriction on SU(2). These are square-integrable in the SU(2) scalar product, but not in the SL(2,C) one. Thus, SU(2)-spin-network states can be represented by Lorentz-covariant SL(2,C) functions, as two-component photons can be described in the Lorentz-covariant Gupta-Bleuler formalism. As shown by Wolfgang Wieland in a related paper, this manifestly Lorentz-covariant formulation can also be directly obtained from canonical quantization. We show that the spinfoam dynamics of loop quantum gravity is locally SL(2,C)-invariant in the bulk, and yields states that are preciseley in K on the boundary. This c...
Propagation peculiarities of mean field massive gravity
Directory of Open Access Journals (Sweden)
S. Deser
2015-10-01
Full Text Available Massive gravity (mGR describes a dynamical “metric” on a fiducial, background one. We investigate fluctuations of the dynamics about mGR solutions, that is about its “mean field theory”. Analyzing mean field massive gravity (m‾GR propagation characteristics is not only equivalent to studying those of the full non-linear theory, but also in direct correspondence with earlier analyses of charged higher spin systems, the oldest example being the charged, massive spin 3/2 Rarita–Schwinger (RS theory. The fiducial and mGR mean field background metrics in the m‾GR model correspond to the RS Minkowski metric and external EM field. The common implications in both systems are that hyperbolicity holds only in a weak background-mean-field limit, immediately ruling both theories out as fundamental theories; a situation in stark contrast with general relativity (GR which is at least a consistent classical theory. Moreover, even though both m‾GR and RS theories can still in principle be considered as predictive effective models in the weak regime, their lower helicities then exhibit superluminal behavior: lower helicity gravitons are superluminal as compared to photons propagating on either the fiducial or background metric. Thus our approach has uncovered a novel, dispersive, “crystal-like” phenomenon of differing helicities having differing propagation speeds. This applies both to m‾GR and mGR, and is a peculiar feature that is also problematic for consistent coupling to matter.
Gravity study of the Pitcairn-Easter hotline
Maia, M.; Dehghani, G. A.; Diament, M.; Francheteau, J.; Stoffers, P.
1994-11-01
Shipboard free air gravity and bathymetric anomalies with an extension of 400 km were identified across the Pitcairn-Easter hotline in the South Pacific. The anomalies are associated with one of the positive geoid undulations observed in the area from satellite data. Several smaller topographic features, volcano-tectonic ridges oriented N 65 deg E, are superimposed on the topographic hig. Admittance computations and direct modeling show that the swell topography is compensated by a low density zone within the lithosphere, 4 to 8 km below the crust. The volcano tectonic ridges are locally compensated in a classical Airy sense. The swell and the associated ridges were probably created by the action of a thermal anomaly resulting from the interaction of the Easter Island hotspot and of the Easter Microplate accretion centers.
Zwei-Dreibein Gravity : A Two-Frame-Field Model of 3D Massive Gravity
Bergshoeff, Eric A.; de Haan, Sjoerd; Hohm, Olaf; Merbis, Wout; Townsend, Paul K.
2013-01-01
We present a generally covariant and parity-invariant two-frame field ("zwei-dreibein") action for gravity in three space-time dimensions that propagates two massive spin-2 modes, unitarily, and we use Hamiltonian methods to confirm the absence of unphysical degrees of freedom. We show how zwei-drei
Modeling Human Perception of Orientation in Altered Gravity
Directory of Open Access Journals (Sweden)
Torin K. Clark
2015-05-01
Full Text Available Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal otolith interaction model based upon the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: a static roll tilt in hyper-gravity, b static pitch tilt in hyper-gravity, c static roll tilt in hypo-gravity, and d static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments.
Specific gravity and API gravity of biodiesel and ultra-low sulfur diesel (ULSD) blends
Biodiesel is an alternative fuel made from vegetable oils and animal fats. In 2006, the U. S. Environmental Protection Agency mandated a maximum sulfur content of 15 ppm in on-road diesel fuels. Processing to produce the new ultra-low sulfur petrodiesel (ULSD) alters specific gravity (SG) and othe...
Gravity-driven clustering of inertial particles in turbulence.
Park, Yongnam; Lee, Changhoon
2014-06-01
We report a different kind of particle clustering caused purely by gravity, discovered in our simulation of particle-laden turbulence. Clustering in a vertical strip pattern forms when strong gravity acts on heavy particles. This phenomenon is explained by the skewness of the flow velocity gradient in the gravitational direction experienced by particles, which causes horizontal convergence of particles.
Mechanics of Apparent Horizon in Two Dimensional Dilaton Gravity
Cai, Rong-Gen
2016-01-01
In this article, we give a definition of apparent horizon in a two dimensional general dilaton gravity theory. With this definition, we construct the mechanics of the apparent horizon by introducing a quasi-local energy of the theory. Our discussion generalizes the apparent horizons mechanics in general spherically symmetric spactimes in four or higher dimensions to the two dimensional dilaton gravity case.
Random coupling of acoustic-gravity waves in the atmosphere
Millet, Christophe; Lott, Francois; Haynes, Christophe
2016-11-01
In numerical modeling of long-range acoustic propagation in the atmosphere, the effect of gravity waves on low-frequency acoustic waves is often ignored. As the sound speed far exceeds the gravity wave phase speed, these two types of waves present different spatial scales and their linear coupling is weak. It is possible, however, to obtain relatively strong couplings via sound speed profile changes with altitude. In the present study, this scenario is analyzed for realistic gravity wave fields and the incident acoustic wave is modeled as a narrow-banded acoustic pulse. The gravity waves are represented as a random field using a stochastic multiwave parameterization of non-orographic gravity waves. The parameterization provides independent monochromatic gravity waves, and the gravity wave field is obtained as the linear superposition of the waves produced. When the random terms are retained, a more generalized wave equation is obtained that both qualitatively and quantitatively agrees with the observations of several highly dispersed stratospheric wavetrains. Here, we show that the cumulative effect of gravity wave breakings makes the sensitivity of ground-based acoustic signals large, in that small changes in the parameterization can create or destroy an acoustic wavetrain.
Extensions and limits of gravity in three dimensions
Parra Rodriguez, Lorena
2015-01-01
General Relativity (GR) has resisted the test of time even a hundred years after its conception. However, GR loses precision and predictability not only at strong gravity regimes but also there are some unexplained phenomena in the weak gravity regimes. There have been a lot of efforts in studying p
Gravity dependence at the bottom of the main sequence
Viti, Serena; Jones, Hugh R. A.
1999-11-01
We investigate the effects of gravity on the infrared spectra of objects around the M dwarf to brown dwarf transition. We focus on observations of the very low-mass objects TVLM 513-46546 and GJ 569B from 1 to 2.5 mu m. These objects have very similar spectral types and colours but they differ by more than a magnitude in luminosity; this indicates that their surface gravities differ by around 0.5 dex. We compare their spectra and present line identifications in the infrared. We investigate at low resolution the sensitivity of some of the atomic features to changes in surface gravities and make comparisons with recent atmospheric models. We identify seven surface gravity sensitive features. We find that the difference in surface gravity between the spectra are consistent with GJ 569B having a lower surface gravity than TVLM by at least 0.5 dex which suggests GJ 569B is a brown dwarf. Because of the relatively few surface gravity features which can be identified at low resolution, confirmation of this result should be made with observations at higher resolution which would enable more gravity sensitive features to be identified with better precision.
Eddy diffusivities of inertial particles under gravity
Afonso, Marco Martins; Muratore-Ginanneschi, Paolo
2011-01-01
The large-scale/long-time transport of inertial particles of arbitrary mass density under gravity is investigated by means of a formal multiple-scale perturbative expansion in the scale-separation parametre between the carrier flow and the particle concentration field. The resulting large-scale equation for the particle concentration is determined, and is found to be diffusive with a positive-definite eddy diffusivity. The calculation of the latter tensor is reduced to the resolution of an auxiliary differential problem, consisting of a coupled set of two differential equations in a (6+1)-dimensional coordinate system (3 space coordinates plus 3 velocity coordinates plus time). Although expensive, numerical methods can be exploited to obtain the eddy diffusivity, for any desirable non-perturbative limit (e.g. arbitrary Stokes and Froude numbers). The aforementioned large-scale equation is then specialized to deal with two different relevant perturbative limits: i) vanishing of both Stokes time and sedimenting...
The Problem of Time in Quantum Gravity
Anderson, Edward
2010-01-01
The problem of time in quantum gravity occurs because `time' is taken to have a different meaning in each of general relativity and ordinary quantum theory. This incompatibility creates serious problems with trying to replace these two branches of physics with a single framework in regimes in which neither quantum theory nor general relativity can be neglected, such as in black holes or in the very early universe. Strategies for resolving the Problem of Time have evolved somewhat since Kuchar and Isham's well-known reviews from the early 90's. These come in the following divisions I) time before quantization, such as hidden time or matter time. II) Time after quantization, such as emergent semiclassical time. III) Timeless strategies of Type 1: naive Schrodinger interpretation, conditional probabilities interpretation and various forms of records theories, and Type 2 `Rovelli': in terms of evolving constants of the motion, complete observables and partial observables. IV) I argue for histories theories to be ...
New aspects of gravity responses in plant cells.
Hoson, Takayuki; Soga, Kouichi
2003-01-01
Plants show two distinct responses to gravity: gravity-dependent morphogenesis (gravimorphogenesis) and gravity resistance. In gravitropism, a typical mechanism of gravimorphogenesis, gravity is utilized as a signal to establish an appropriate form. The response has been studied in a gravity-free environment, where plant seedlings were found to perform spontaneous morphogenesis, termed automorphogenesis. Automorphogenesis consists of a change in growth direction and spontaneous curvature in dorsiventral directions. The spontaneous curvature is caused by a difference in the capacity of the cell wall to expand between the dorsal and the ventral sides of organs, which originates from the inherent structural anisotropy. Gravity resistance is a response that enables the plant to develop against the gravitational force. To resist the force, the plant constructs a tough body by increasing the cell wall rigidity that suppresses growth. The mechanical properties of the cell wall are changed by modification of the cell wall metabolism and cell wall environment, especially pH. In gravitropism, gravity is perceived by amyloplasts in statocytes, whereas gravity resistance may be mediated by mechanoreceptors on the plasma membrane.
Impact of Gravity on Vacuum Stability
Branchina, Vincenzo; Zappala, Dario
2016-01-01
In a pioneering paper on the role of gravity on false vacuum decay, Coleman and De Luccia showed that a strong gravitational field can stabilize the false vacuum, suppressing the formation of true vacuum bubbles. This result is obtained for the case when the energy density difference between the two vacua is small, the so called thin wall regime, but is considered of more general validity. Here we show that when this condition does not hold, however, {\\it even a very strong gravitational field (Planckian physics) cannot suppress the formation of true vacuum bubbles}. Contrary to common expectations then, gravitational physics at the Planck scale {\\it does not stabilize the false vacuum}. These results are of crucial importance for the stability analysis of the electroweak vacuum and for searches of new physics beyond the Standard Model.
Determination of Antarctic geoid by using global gravity field
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
With Chinese latest global gravity field model WDM94, the authors providethe geoid height and mean free-air gravity anomaly of Antarctica (The range of latitude is from—60° to—90°). In order to conclude and analyze the characters of Antarctic geoid roundly, the authors collect the latest oversea global gravity field model OSU91 (to degree and order 360) and JGMOSU (to degree and order 360), get the corresponding geoid height and mean free-air gravity anomaly. The results arecompared with the results got from WDM94, thus we get the difference. The standard deviation of geoid height between WDM94 and OSU91 is ± 1.90 re;the deviation of geoid between WDM9 and JGMOSU is ± 2.09 m. The standard deviation of mean gravity anomaly are±8.97 mGal and ± 9.32 mGal respectively.
Crossing of the phantom divide in modified gravity
Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D
2009-01-01
We reconstruct an explicit model of modified gravity in which a crossing of the phantom divide can be realized. It is shown that the Big Rip singularity appears in the model of modified gravity, whereas that the (finite-time) Big Rip singularity in modified gravity is transformed to the infinite-time singularity in the corresponding scalar field theory obtained through the conformal transformation. Furthermore, we investigate the relations between the scalar field theories realizing a crossing of the phantom divide and the corresponding modified gravitational theories by using the inverse conformal transformation. It is demonstrated that the scalar field theories describing the non-phantom phase (phantom one with the Big Rip) can be represented as the theories of real (complex) $F(R)$ gravity through the inverse (complex) conformal transformation. We also study a viable model of modified gravity in which the transition from the de Sitter universe to the phantom phase can occur.
Dynamics of Gravity in a Higgs Phase
Arkani-Hamed, N; Luty, M A; Mukohyama, S; Wiseman, T; Arkani-Hamed, Nima; Cheng, Hsin-Chia; Luty, Markus A.; Mukohyama, Shinji; Wiseman, Toby
2007-01-01
We investigate the universal low-energy dynamics of the simplest Higgs phase for gravity, `ghost condensation.' We show that the nonlinear dynamics of the `ghostone' field dominate for all interesting gravitational sources. Away from caustic singularities, the dynamics is equivalent to the irrotational flow of a perfect fluid with equation of state p \\propto \\rho^2, where the fluid particles can have negative mass. We argue that this theory is free from catastrophic instabilities due to growing modes, even though the null energy condition is violated. Numerical simulations show that solutions generally have singularities in which negative energy regions shrink to zero size. We exhibit partial UV completions of the theory in which these singularities are smoothly resolved, so this does not signal any inconsistency in the effective theory. We also consider the bounds on the symmetry breaking scale M in this theory. We argue that the nonlinear dynamics cuts off the Jeans instability of the linear theory, and all...
Kruglov, S I
2015-01-01
The new model of modified $F(R)$ gravity theory with the function $F(R) = R+(a/\\gamma) \\arcsin(\\gamma R)$ is suggested and investigated. Constant curvature solutions corresponding to the extremum of the effective potential are obtained. We consider both the Jordan and Einstein frames, and the potential and the mass of the scalar degree of freedom are found. It was shown that the de Sitter space-time is unstable but the flat space-time is stable. We calculate the slow-roll parameters $\\epsilon$, $\\eta$, and the $e$-fold number of the model. Critical points of autonomous equations for the de Sitter phase and the matter dominated epoch are obtained and learned.
Extended Scalar-Tensor Theories of Gravity
Crisostomi, Marco; Tasinato, Gianmassimo
2016-01-01
We determine new consistent scalar-tensor theories of gravity, with potentially interesting cosmological applications. We develop a general method to find the conditions for the existence of a primary constraint, which is necessary to prevent the propagation of an additional dangerous mode associated with higher order equations of motion. We then classify the most general, consistent scalar-tensor theories that are at most quadratic in the second derivatives of the scalar field. In addition, we investigate the possible connection between these theories and (beyond) Horndeski through conformal and disformal transformations. Finally, we point out that these theories can be associated with new operators in the effective field theory of dark energy, which might open up new possibilities to test dark energy models in future surveys.
Physiological targets of artificial gravity: the sensory-motor system
Groen, E.L.; Clarke, A.; Bles, W.; Wuyts, F.; Paloski, W.; Clément, G.
2007-01-01
This chapter describes the pros and cons of artificial gravity applications in relation to human sensory-motor functioning in space. Spaceflight creates a challenge for sensory-motor functions that depend on gravity, which include postural balance, locomotion, eye-hand coordination, and spatial orie
Novel Tests of Gravity Below Fifty Microns
Johnson, Jeremy; Martinez, Gabriela; Guerrero, Ian; Dunkley, Noah; Sanchez, Anthony; Isachsen, Hilde; Shaw, Duncan; Hoyle, C. D.
2017-01-01
Theories which attempt to unify the Standard Model and General Relativity often include features which violate the Weak Equivalence Principle (WEP) and gravitational Inverse-Square Law (ISL). A violation of either the WEP or ISL at any length scale would bring into question our fundamental understanding of gravity. Motivated by these considerations, undergraduates and faculty at Humboldt State University are building an experiment to probe gravitational interactions below the 50-micron length scale. The experiment employs a torsion pendulum with equal masses of different material arranged as a ``composition dipole.'' We measure the twist of the torsion pendulum as an attractor mass is oscillated nearby in a parallel-plate configuration, providing a time varying torque on the pendulum. The size and distance dependence of the torque variation will provide a means to determine any deviation from the WEP or ISL at untested scales. PHY-1065697, PHY-1306783, and PHY-1606988.
Gravity Effects of Solar Eclipse and Inducted Gravitational Field
Tang, K.; Wang, Q.; Zhang, H.; Hua, C.; Peng, F.; Hu, K.
2003-12-01
During solar eclipses in recent decades, gravity anomalies were observed and difficult to be explained by Newton's gravitational theory. During the solar eclipse of 1995, India scientists Mishra et al. recorded a gravity valley in amplitude of 12 μ Gal; they interpreted that qualitatively as atmospheric effects. During the total solar eclipse of March 1997, we conducted a comprehensive geophysical observation at Mohe geophysical observatory of China (with latitude of 53.490 N and longitude of 122.340 E. From the data we recorded, we found two valleys about 5 to 7 μ Gal. Unnikrishnan et al. inferred this gravity anomaly was caused by the environment changes. We know that the observation had been conducting in a room inside a small building with a stable coal heating system; the temperature variation inside the experimental room was less 10C during the eclipse. Moreover, the measured atmospheric pressure change was less 1hPa during the eclipse. It is reasonable to believe that surrounding environment of the observatory excluded the significant gravity variations caused by temperature, pressure variation and local moving of persons and vehicles. To further study the gravity effects related to solar eclipses, our scientific team took more observations during Zambia total solar eclipse of June 2001 and Australia total solar eclipse of December 2002. After data corrections, we found respectively two gravity anomalies, with 3 to 4μ Gal for Zambia eclipse and 1.5μ Gal for Australia eclipse. As many scientists have pointed out that pressure-gravity factor is lower than 0.3μ Gal/hPa, it means that any gravity anomaly great than 0.5μ Gal could not be inferred as the results of atmospheric pressure change. The two more gravity anomalies recorded during the solar eclipses provided us strong evidences that some gravity anomalies could not simply be inferred as atmospheric pressure change. We have tried to explain those anomalies by the induced gravitational field.
Gravitational collapse of massless scalar field in $f(R)$ gravity
Zhang, Cheng-Yong; Wang, Bin
2016-01-01
We study the spherically symmetric gravitational collapse of massless scalar matter field in asymptotic flat spacetime in $f(R)$ gravity. In the Einstein frame of $f(R)$ gravity, an additional scalar field arises due to the conformal transformation. We find that besides the usual competition between gravitational energy and kinetic energy in the process of gravitational collapse, the new scalar field brought by the conformal transformation adds one more competing force in the dynamical system. The dynamical competition can be controlled by tuning the amplitudes of the initial perturbations of the new scalar field and the matter field. To understand the physical reasons behind these phenomena, we analyze the gravitational potential behavior and calculate the Ricci scalar at center with the change of initial amplitudes of perturbations. We find rich physics on the formation of black holes through gravitational collapse in $f(R)$ gravity.
The Effects of Gravity on the Crystallization Behavior of Heavy Metal Fluoride Glasses
Tucker, Dennis S.; Smith, Guy A.
2004-01-01
Heavy metal fluoride glasses are used in such applications as fiber lasers and laser amplifiers. ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) is one of the more commonly used heavy metal fluoride glasses. ZBLAN is an infrared transmitter and has a theoretical attenuation coefficient of 0.002 db/km. However, due to impurities and small crystallites this attenuation coefficient has not been achieved to date. ZBLAN is a fragile glass which can lead to rapid crystallization, if the glass is not cooled rapidly to below the glass transition temperature or if the glass is reheated near the crystallization temperature for any period of time. Studies carried on at Marshall Space Flight Center and the University of Alabama in Huntsville since 1993 have shown that heating ZBLAN glass at the crystallization temperature in reduced gravity results in a suppression of crystallization when compared to ZBLAN processed in unit gravity. These studies utilized NASA's KC-135 aircraft and the Conquest sounding rocket. In the first series of experiments, short lengths of ZBLAN fiber were heated to the crystallization temperature in reduced gravity on board the KC- 135 and the Conquest sounding rocket and compared with fibers heated in unit gravity. The fibers processed in reduced gravity showed no evidence of crystallization when studied with x-ray diffraction and scanning electron microscopy. However, the fibers processed in unit gravity were completely crystallized. Subsequent experiments included heating small pieces of ZBLAN glass at the crystallization temperature while viewing with a video camera to follow the crystallization phenomenon. In this experiment crystallization was observed in reduced gravity, however, it was suppressed when compared to heating in unit gravity. In the most recent experiment on board the KC-135, rapid thermal analysis of ZBLAN was performed. A mechanism to explain the observations has been proposed. This mechanism is based on shear thinning whereby, the glass
The Gravity Dual of Boundary Causality
Engelhardt, Netta
2016-01-01
In gauge/gravity duality, points which are not causally related on the boundary cannot be causally related through the bulk; this is the statement of boundary causality. By the Gao-Wald theorem, the averaged null energy condition in the bulk is sufficient to ensure this property. Here we proceed in the converse direction: we derive a necessary as well as sufficient condition for the preservation of boundary causality under perturbative (quantum or stringy) corrections to the bulk. The condition that we find is a (background-dependent) constraint on the amount by which light cones can "open" over all null bulk geodesics. We show that this constraint is weaker than the averaged null energy condition.
Economics of data center optics
Huff, Lisa
2016-03-01
Traffic to and from data centers is now reaching Zettabytes/year. Even the smallest of businesses now rely on data centers for revenue generation. And, the largest data centers today are orders of magnitude larger than the supercomputing centers of a few years ago. Until quite recently, for most data center managers, optical data centers were nice to dream about, but not really essential. Today, the all-optical data center - perhaps even an all-single mode fiber (SMF) data center is something that even managers of medium-sized data centers should be considering. Economical transceivers are the key to increased adoption of data center optics. An analysis of current and near future data center optics economics will be discussed in this paper.
Gravity study of Libya;Evaluation and Integration with Geological Data
Ben Suleman, abdunnur; Saheel, Ahmed
2016-04-01
Libya is located on the Mediterranean foreland of the African Shield and covers an area of approximately 1.8 million square kilometers. Since Early Paleozoic time, Libya has been a site of deposition of large sheets of continental clastics and several transgressions and regressions by the seas with consequent accumulations of a wide variety of sedimentary rocks. Several tectonic cycles affected the area and shaped the geological setting of the country. However, the regional geology and the structural framework have been highly influenced by the Caledonian, Hercynian, and Alpine tectonic events. As a result, a total of seven sedimentary basins, namely Ghadames, Murzuq, Al Kufra, Al Butnan, Sirt, and the Offshore Pelagian Basin, were developed and were separated by intervening uplifts and platforms ( Gargaf, Tibesti, Nafusah and Cyrenaica platform). Apart from Sirt and the offshore basins, all the above mentioned basins are active since Early Paleozoic time and received several thousand feet of sediments. The capability of providing regional information on the structure of sedimentary basins makes gravity mapping, in conjunction with geological information, potentially powerful tools. In this study we used gravity mapping as our primary tool of investigation however, we also used all available geological information to better understand the regional tectonics. The gravity dataset that were used in the Gravity compilation project of Libya is not homogenous. As a result, some irregularities, apparent spikes or misties, and large shifts were obtained and were taken into consideration. Evaluation of gravity Maps of Libya and their integration with geological data provide a better understanding of the role that gravity mapping plays in the geological exploration of sedimentary basins. Results confirm the known Sirt Basin regional tectonic elements and the possible presence of NW-SE lateral wrench tectonics, crossing Ajdabiya Trough at the center of Sirt Basin. The
DEFF Research Database (Denmark)
Olesen, Arne Vestergaard; Andersen, Ole Baltazar; Tscherning, C.C.
2002-01-01
for the use of gravity data especially, when computing geoid models in coastal regions. The presence of reliable marine gravity data for independent control offers an opportunity to study procedures for the merging of airborne and satellite data around Greenland. Two different merging techniques, both based......The National Survey and Cadastre - Denmark (KMS) has for several years produced gravity anomaly maps over the oceans derived from satellite altimetry. During the last four years, KMS has also conducted airborne gravity surveys along the coast of Greenland dedicated to complement the existing...... onshore gravity coverage and fill in new data in the very-near coastal area, where altimetry data may contain gross errors. The airborne surveys extend from the coastline to approximately 100 km offshore, along 6000 km of coastline. An adequate merging of these different data sources is important...
Perturbations of cosmological and black hole solutions in massive gravity and bi-gravity
Kobayashi, Tsutomu; Siino, Masaru; Yamaguchi, Masahide; Yoshida, Daisuke
2016-10-01
We investigate perturbations of a class of spherically symmetric solutions in massive gravity and bi-gravity. The background equations of motion for the particular class of solutions we are interested in reduce to a set of the Einstein equations with a cosmological constant. Thus, the solutions in this class include all the spherically symmetric solutions in general relativity, such as the Friedmann-Lemaître-Robertson-Walker solution and the Schwarzschild (-de Sitter) solution, though the one-parameter family of two parameters of the theory admits such a class of solutions. We find that the equations of motion for the perturbations of this class of solutions also reduce to the perturbed Einstein equations at first and second order. Therefore, the perturbative stability of the solutions coincides with that of the corresponding solutions in general relativity at least up to the second-order perturbations.
Compact stars in alternative theories of gravity. Einstein-Dilaton-Gauss-Bonnet gravity
Pani, Paolo; Cardoso, Vitor; Read, Jocelyn
2011-01-01
We develop a theoretical framework to study slowly rotating compact stars in a rather general class of alternative theories of gravity, with the ultimate goal of investigating constraints on alternative theories from electromagnetic and gravitational-wave observations of compact stars. Our Lagrangian includes as special cases scalar-tensor theories (and indirectly f(R) theories) as well as models with a scalar field coupled to quadratic curvature invariants. As a first application of the formalism, we discuss (for the first time in the literature) compact stars in Einstein-Dilaton-Gauss-Bonnet gravity. We show that compact objects with central densities typical of neutron stars cannot exist for certain values of the coupling constants of the theory. In fact, the existence and stability of compact stars sets more stringent constraints on the theory than the existence of black hole solutions. This work is a first step in a program to systematically rule out (possibly using Bayesian model selection) theories tha...
Gravity Fields and Interiors of the Saturnian Satellites
Rappaport, N. J.; Armstrong, J. W.; Asmar, Sami W.; Iess, L.; Tortora, P.; Somenzi, L.; Zingoni, F.
2006-01-01
This viewgraph presentation reviews the Gravity Science Objectives and accomplishments of the Cassini Radio Science Team: (1) Mass and density of icy satellites (2) Quadrupole field of Titan and Rhea (3) Dynamic Love number of Titan (4) Moment of inertia of Titan (in collaboration with the Radar Team) (5) Gravity field of Saturn. The proposed measurements for the extended tour are: (1) Quadrupole field of Enceladus (2) More accurate measurement of Titan k2 (3) Local gravity/topography correlations for Iapetus (4) Verification/disproof of "Pioneer anomaly".
The Other Side of Gravity and Geometry: Antigravity and Anticurvature
Directory of Open Access Journals (Sweden)
M. I. Wanas
2012-01-01
Full Text Available Gravity is one of the four known fundamental interactions used to study and interpret physical phenomenae. It governs diverse phenomenae, especially those connected with large-scale structures. From more than one decade, existing gravity theories have suffered from some problems, when confronting their predictions with the results of some experiments and observations. This situation has led to many suggestions, none of which is final, so far. Here, we show that the assumption of existence of another side of gravity, a repulsive gravity or antigravity, together with its attractive side, may give a satisfactory solution to gravity problems. We caught here two pieces of evidence for the existence of antigravity in nature. The first is on the laboratory scale, the COW experiment, and the second is on the cosmic scale, SN type Ia observation. On the other hand, we show how gravity theories can predict antigravity, using a new defined geometric object called Parameterized anticurvature. This shows clearly how Einstein's geometrization philosophy can solve recent gravity problems in a satisfactory and easy way. Also, it may throw some light on the mystery of physical nature of “Dark Energy.”
Resource Letter PTG-1: Precision Tests of Gravity
Will, Clifford M
2010-01-01
This resource letter provides an introduction to some of the main current topics in experimental tests of general relativity as well as to some of the historical literature. It is intended to serve as a guide to the field for upper-division undergraduate and graduate students, both theoretical and experimental, and for workers in other fields of physics who wish learn about experimental gravity. The topics covered include alternative theories of gravity, tests of the principle of equivalence, solar-system and binary-pulsar tests, searches for new physics in gravitational arenas, and tests of gravity in new regimes, involving astrophysics and gravitational radiation.
Intercomparison of stratospheric gravity wave observations with AIRS and IASI
Directory of Open Access Journals (Sweden)
L. Hoffmann
2014-08-01
Full Text Available Gravity waves are an important driver for the atmospheric circulation and have substantial impact on weather and climate. Satellite instruments offer excellent opportunities to study gravity waves on a global scale. This study focuses on observations from the Atmospheric Infrared Sounder (AIRS onboard the National Aeronautics and Space Administration's Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI onboard the European MetOp satellites. The main aim of this study is an intercomparison of stratospheric gravity wave observations of both instruments. In particular, we analyzed AIRS and IASI 4.3 μm brightness temperature measurements, which directly relate to stratospheric temperature. Three case studies showed that AIRS and IASI provide a clear and consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on a five-year period of measurements (2008–2012 showed similar spatial and temporal patterns of gravity wave activity. However, the statistical comparisons also revealed systematic differences of variances between AIRS and IASI (about 45% that we attribute to the different spatial measurement characteristics of both instruments. We also found differences between day- and nighttime data (about 30% that are partly due to the local time variations of the gravity wave sources. While AIRS has been used successfully in many previous gravity wave studies, IASI data are applied here for the first time for that purpose. Our study shows that gravity wave observations from different hyperspectral infrared sounders such as AIRS and IASI can be directly related to each other, if instrument-specific characteristics such as different noise levels and spatial resolution and sampling are carefully considered. The ability to combine observations from different satellites provides an opportunity to create a long-term record, which is an exciting prospect for future climatological
Intercomparison of stratospheric gravity wave observations with AIRS and IASI
Directory of Open Access Journals (Sweden)
L. Hoffmann
2014-12-01
Full Text Available Gravity waves are an important driver for the atmospheric circulation and have substantial impact on weather and climate. Satellite instruments offer excellent opportunities to study gravity waves on a global scale. This study focuses on observations from the Atmospheric Infrared Sounder (AIRS onboard the National Aeronautics and Space Administration Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI onboard the European MetOp satellites. The main aim of this study is an intercomparison of stratospheric gravity wave observations of both instruments. In particular, we analyzed AIRS and IASI 4.3 μm brightness temperature measurements, which directly relate to stratospheric temperature. Three case studies showed that AIRS and IASI provide a clear and consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on a 5-year period of measurements (2008–2012 showed similar spatial and temporal patterns of gravity wave activity. However, the statistical comparisons also revealed systematic differences of variances between AIRS and IASI that we attribute to the different spatial measurement characteristics of both instruments. We also found differences between day- and nighttime data that are partly due to the local time variations of the gravity wave sources. While AIRS has been used successfully in many previous gravity wave studies, IASI data are applied here for the first time for that purpose. Our study shows that gravity wave observations from different hyperspectral infrared sounders such as AIRS and IASI can be directly related to each other, if instrument-specific characteristics such as different noise levels and spatial resolution and sampling are carefully considered. The ability to combine observations from different satellites provides an opportunity to create a long-term record, which is an exciting prospect for future climatological studies of stratospheric
Research recommendations of the ESA Topical Team on Artificial Gravity
Clément, Gilles; Bukley, Angie
Many experts believe that artificial gravity will be required for an interplanetary mission. However, despite its attractiveness as an efficient, multi-system countermeasure and its potential for simplifying operational activities, much still needs to be learned regarding the human response to rotating environments before artificial gravity can be successfully implemented. The European Space Agency (ESA) Topical Team on Artificial Gravity recommended a comprehensive program to determine the gravity threshold required to reverse or prevent the detrimental effects of microgravity and to evaluate the effects of centrifugation on various physiological functions. Part of the required research can be accomplished using animal models on a dedicated centrifuge in low Earth orbit. Studies of human responses to centrifugation could be performed during ambulatory, short- and long-duration bed rest, and in-flight studies. Artificial-gravity scenarios should not be a priori discarded in Moon and Mars mission designs. One major step is to determine the relationship between the artificial gravity dose level, duration, and frequency and the physiological responses of the major body functions affected by spaceflight. Once its regime characteristics are defined and a dose-response curve is established, artificial gravity should serve as the standard against which all other countermeasure candidates are evaluated, first on Earth and then in space.
Gravity research on plants: use of single cell experimental models
Directory of Open Access Journals (Sweden)
Youssef eChebli
2011-09-01
Full Text Available Future space missions and implementation of permanent bases on Moon and Mars will greatly depend on the availability of ambient air and sustainable food supply. Therefore, understanding the effects of altered gravity conditions on plant metabolism and growth is vital for space missions and extra-terrestrial human existence. In this mini-review we summarize how plant cells are thought to perceive changes in magnitude and orientation of the gravity vector. The particular advantages of several single celled model systems for gravity research are explored and an overview over recent advancements and potential use of these systems is provided.
Software Analysis of New Space Gravity Data for Geophysics and Climate Research
Deese, Rupert; Ivins, Erik R.; Fielding, Eric J.
2012-01-01
Both the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellites are returning rich data for the study of the solid earth, the oceans, and the climate. Current software analysis tools do not provide researchers with the ease and flexibility required to make full use of this data. We evaluate the capabilities and shortcomings of existing software tools including Mathematica, the GOCE User Toolbox, the ICGEM's (International Center for Global Earth Models) web server, and Tesseroids. Using existing tools as necessary, we design and implement software with the capability to produce gridded data and publication quality renderings from raw gravity data. The straight forward software interface marks an improvement over previously existing tools and makes new space gravity data more useful to researchers. Using the software we calculate Bouguer anomalies of the gravity tensor's vertical component in the Gulf of Mexico, Antarctica, and the 2010 Maule earthquake region. These maps identify promising areas of future research.
Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg
2015-09-01
In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.
Effects of gravity on transpiration of plant leaves.
Hirai, Hiroaki; Kitaya, Yoshiaki
2009-04-01
To clarify effects of gravity on the water vapor exchange between plants and the ambient air, we evaluated the transpiration rate of plant leaves at 0.01, 1.0, and 2.0 g for 20 s each during parabolic airplane flights. The transpiration rates of a strawberry leaf and a replica leaf made of wet cloth were determined using a chamber method with humidity sensors. Absolute humidity at 3 and 8 mm below the lower surface of leaves was measured to evaluate the effect of gravity on humidity near leaves and estimate their transpiration rate. The transpiration rate of the replica leaf decreased by 42% with decreasing gravity levels from 1.0 to 0.01 g and increased by 31% with increasing gravity levels from 1.0 to 2.0 g. Absolute humidity near the intact strawberry leaf was 5 g m(-3) at ambient absolute humidity of 2.3 g m(-3) and gravity of 1.0 g. The absolute humidity increased by 2.5 g m(-3) with decreasing gravity levels from 1.0 to 0.01 g. The transpiration rate of the intact leaf decreased by 46% with decreasing gravity levels from 1.0 to 0.01 g and increased by 32% with increasing gravity levels from 1.0 to 2.0 g. We confirmed that the transpiration rate of leaves was suppressed by retarding the water vapor transfer due to restricted free air convection under microgravity conditions.
Characteristic of gravity waves resolved in ECMWF
Preusse, Peter; Eckermann, Stephen; Ern, Manfred; Riese, Martin
Gravity waves (GWs) influence the circulation of the atmosphere on global scale. Because of insufficient measurements and the difficulty to involve all relevant scales in a single model run, they are one of the chief uncertainties in climate and weather prediction. More information, in particular on global scale, is required. Can we employ global models such as the ECMWF high-resolution GCM to infer quantities of resolved GWs? Does this give us insight for the characteristics and relative importance of real GW sources? And can we use such data safely for, e.g., planning measurement campaigns on GWs? Also trajectory studies of cloud formation (cirrus in the UTLS, PSCs) and related dehydration and denitrification rely heavily on realistic temperature structures due to GWs. We here apply techniques developed for an ESA study proving the scientifc break-through which could be reached by a novel infrared limb imager. The 3D temperature structure of mesoscale GWs is exploited to determine amplitudes and 3D wave vectors of GWs at different levels (25km, 35km and 45km altitude) in the stratosphere. Similar to real observations, GW momentum flux is largest in the winter polar vortex and exhibits a second maximum in the summer subtropics. Based on the 3D wavevectors backward ray-tracing is employed to characterize specific sources. For instance, we find for the northern winter strong GW momentum flux (GWMF) associated with mountain waves from Norway and Greenland as well as waves emitted in the lower troposphere from a storm approaching Norway. Waves from these sources spread up to several thousand km in the stratosphere. Together these three events form a burst in the total hemispheric GWMF of a factor of 3. Strong mountain wave events are also found e.g. at Tierra del Fuego and the Antarctic Peninsula, regions which are in the focus of observational and modeling studies for a decade. Gravity waves in the tropical region are associated with deep convection in the upper
Effect of Crustal Density Structures on GOCE Gravity Gradient Observables
Directory of Open Access Journals (Sweden)
Robert Tenzer Pavel Novák
2013-01-01
Full Text Available We investigate the gravity gradient components corrected for major known anomalous density structures within the Earth¡¦s crust. Heterogeneous mantle density structures are disregarded. The gravimetric forward modeling technique is utilized to compute the gravity gradients based on methods for a spherical harmonic analysis and synthesis of a gravity field. The Earth¡¦s gravity gradient components are generated using the global geopotential model GOCO-03s. The topographic and stripping gravity corrections due to the density contrasts of the ocean and ice are computed from the global topographic/bathymetric model DTM2006.0 (which also includes the ice-thickness dataset. The discrete data of sediments and crust layers taken from the CRUST2.0 global crustal model are then used to apply the additional stripping corrections for sediments and remaining anomalous crustal density structures. All computations are realized globally on a one arc-deg geographical grid at a mean satellite elevation of 255 km. The global map of the consolidated crust-stripped gravity gradients reveals distinctive features which are attributed to global tectonics, lithospheric plate configuration, lithosphere structure and mantle dynamics (e.g., glacial isostatic adjustment, mantle convection. The Moho signature, which is the most pronounced signal in these refined gravity gradients, is superimposed over a weaker gravity signal of the lithospheric mantle. An interpretational quality of the computed (refined gravity gradient components is mainly limited by a low accuracy and resolution of the CRUST2.0 sediment and crustal layer data and unmodeled mantle structures.
Studies of Gravity Wave Propagation in the Middle Atmosphere.
2014-09-26
34 . . . . . • * * . , . • :’ . . . , ",.,,- -. ’’’ " . ’-- o p - %"""" * " AFOSR.TR. 85-0505 physical dynamics,inc. PD-NW-85-330R L n STUDIES OF GRAVITY WAVE PROPAGATION IN...8217.. , .,- - -. ( %’. , .;: :..............,....... .-... . ~.b .. .. - ..... ,......... ..-. ....-.. PD-NW-85-330R STUDIES OF GRAVITY WAVE PROPAGATION...Include SewftY CsuiclUon STUDIES OF GRAVITY WAVE PROPAGATION IN THE MIDD E 12. PERSONAL AUTHORE) TMOPHU. r Timothy J. Dunkerton a13a. TYPE OF REPORT I3k
Global Ray Tracing Simulations of the SABER Gravity Wave Climatology
2009-01-01
amplitudes, vertical wave- D08126 PREUSSE ET AL.: GRAVITY WAVES BY SATELLITE AND RAYTRACER 2 of 25 D08126 lengths and phases of the two strongest wave...with the wind ‘‘drift’’ large D08126 PREUSSE ET AL.: GRAVITY WAVES BY SATELLITE AND RAYTRACER 3 of 25 D08126 distances downstream in taking much...factor (IMF) attributed to the single SCEs in generating the composite. D08126 PREUSSE ET AL.: GRAVITY WAVES BY SATELLITE AND RAYTRACER 4 of 25 D08126
Kim, Jinsoo; Lee, Youngcheol; Cha, Sungyeoul; Choi, Chuluong; Lee, Seongkyu
2013-07-12
This paper proposes a smartphone-based network real-time kinematic (RTK) positioning and gravity-surveying application (app) that allows semi-real-time measurements using the built-in Bluetooth features of the smartphone and a third-generation or long-term evolution wireless device. The app was implemented on a single smartphone by integrating a global navigation satellite system (GNSS) controller, a laptop, and a field-note writing tool. The observation devices (i.e., a GNSS receiver and relative gravimeter) functioned independently of this system. The app included a gravity module, which converted the measured relative gravity reading into an absolute gravity value according to tides; meter height; instrument drift correction; and network adjustments. The semi-real-time features of this app allowed data to be shared easily with other researchers. Moreover, the proposed smartphone-based gravity-survey app was easily adaptable to various locations and rough terrain due to its compact size.
Temporal variation of gravity field prior to the Ludian Ms6.5 and Kangding Ms6.3 earthquakes
Directory of Open Access Journals (Sweden)
Hongtao Hao
2015-11-01
Full Text Available Using mobile gravity data from the central area of Sichuan and Yunnan Provinces, the relationship between gravity variation and earthquakes was studied based on the Ludian Ms6.5 earthquake that occurred on August 3rd, 2014, and the Kangding Ms6.3 earthquake that occurred on November 22nd, 2014; the mechanism of gravity variation was also explored. The results are as follows: (1 Prior to both earthquakes, gravity variation exhibited similar characteristics as those observed before both the Tangshan and Wenchuan earthquakes, in which typical precursor anomalies were positive gravity variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the earthquake. (2 A relatively accurate prediction of the occurrence locations of the two earthquakes was made by the Gravity Network Center of China (GNCC based on these precursor anomalies. In the gravity study report on the 2014 earthquake trends submitted at the end of 2013, the Daofu-Shimian section at the junction of the Xianshuihe and Longmenshan fault zones was noted as an earthquake-risk region with a predicted magnitude of 6.5, which covered the epicenter of the Kangding Ms6.3 earthquake. In another report on earthquake trends in southwestern China submitted in mid-2014, the Lianfeng, Zhaotong fault zone was also classified as an earthquake-risk region with a magnitude of 6.0, and the central area of this region basically overlapped with the epicenter of the Ludian Ms6.5 earthquake. (3 The gravity variation characteristics are reasonably consistent with crustal movements, and deep material migration is likely the primary cause of gravity variation.
Stratospheric gravity wave observations of AIRS and HIRDLS
Meyer, Catrin I.; Hoffmann, Lars; Ern, Manfred; Trinh, Thai
2016-04-01
The Atmospheric InfraRed Sounder (AIRS) aboard NASA's Aqua satellite provides stratospheric temperature observations for a variety of scientific analyses. However, the horizontal resolution of the operational temperature retrievals is generally not sufficient for studies of gravity waves. The AIRS high-resolution retrieval discussed here provides stratospheric temperature profiles for each individual satellite footprint and therefore has nine times better horizontal sampling than the operational data. The retrieval configuration is optimized so that the results provide a trade-off between spatial resolution and retrieval noise that is considered optimal for gravity wave analysis. To validate the AIRS data we performed an intercomparison with stratospheric temperature measurements of the High Resolution Dynamics Limb Sounder (HIRDLS). Selected case studies of gravity wave events are analyzed. AIRS and HIRDLS utilize rather different measurement geometries (nadir and limb) and have different sensitivities to gravity wave horizontal and vertical wavelengths, as indicated by their observational filters. Nevertheless, the wave structures found in the stratosphere in AIRS and HIRDLS data are often in remarkably good agreement. The three-dimensional temperature fields from AIRS allow us to derive the horizontal orientation of the phase fronts, which is a limiting factor for gravity wave analyses based on limb measurements today. In addition, a statistical comparison focuses on temperature variances due to stratospheric gravity wave activity at 20-60 km altitude. The analysis covers monthly zonal averages and time series for the HIRDLS measurement time period (January 2005-March 2008). We found good agreement in the seasonal and latitudinal patterns of gravity wave activity. Time series of gravity wave variances show a strong annual cycle at high latitudes with maxima during wintertime and minima during summertime. Largest variability is found at 60°S during austral
Emergent perspective of gravity and dark energy
Institute of Scientific and Technical Information of China (English)
T.Padmanabhan
2012-01-01
There is sufficient amount of internal evidence in the nature of gravitational theories to indicate that gravity is an emergent phenomenon like,e.g,elasticity.Such an emergent nature is most apparent in the structure of gravitational dynamics.It is,however,possible to go beyond the field equations and study the space itself as emergent in a well-defined manner in (and possibly only in) the context of cosmology.In the first part of this review,I describe various pieces of evidence which show that gravitational field equations are emergent.In the second part,I describe a novel way of studying cosmology in which I interpret the expansion of the universe as equivalent to the emergence of space itself.In such an approach,the dynamics evolves towards a state of holographic equipartition,characterized by an equality in the number of bulk and surface degrees of freedom in a region bounded by the Hubble radius.This principle correctly reproduces the standard evolution of a Friedmann universe.Further,(a) it demands the existence of an early inflationary phase as well as late time acceleration for its successful implementation and (b) allows us to link the value of late time cosmological constant to the e-folding factor during inflation.
On the existence of convectively produced gravity waves
Palm, Stephen P.; Melfi, S. H.
1992-01-01
The Boundary Layer Lidar System (BLLS), together with the gustprobe system onboard the NASA Electra has acquired a unique data set which, for the first time, clearly depicts a gravity wave above a convectively driven planetary boundary layer (PBL). In addition, we believe that the data show the development of a trapped gravity wave over a period of about an hour. If this is the case, it would certainly be the first time that such a process has been seen in the atmosphere. We also conclude that the gravity wave, while being initiated by the convection in the PBL, ultimately acts to organize and control scales in the PBL.
Cosmological solutions of massive gravity on de Sitter
Langlois, David
2012-01-01
In the framework of the recently proposed models of massive gravity, but defined with respect to a de Sitter reference metric, we obtain new homogeneous and isotropic solutions for arbitrary spatial curvature. These solutions can be classified into three branches. In the first two, the massive gravity terms behave like a cosmological constant. In the third branch, the massive gravity effects can be described by a time evolving effective fluid with rather remarkable features, including the property to behave as a cosmological constant at low energy, when the Hubble parameter decreases below a critical value.
Gravity evolution and earthquake activities of the northeastern edge of Qinghai-Xizang block
Institute of Scientific and Technical Information of China (English)
祝意青; 李辉; 朱桂芝; 徐云马
2004-01-01
The relationship between temporal-spatial evolution of gravity and earthquake activity during 1992～2001 has beenanalyzed systematically byintegrally adjusting the gravity observation data of the northeastern edge of Qinghai-Xizang (Qingzang) block. The result shows that the gravity observation data of the northeastern edge of Qingzangblock obtained by using the uniform starting datum can completely reflect the precursory gravity informationappearing during the seismogenic process. In the genesis stage of an earthquake, regional gravity anomaly appearsin a large area, resulting in related local gravity anomaly. The dynamic image of gravity field can clearly reflect theorderly evolution and earthquake activity.
Emergent gravity in spaces of constant curvature
Alvarez, Orlando; Haddad, Matthew
2017-03-01
In physical theories where the energy (action) is localized near a submanifold of a constant curvature space, there is a universal expression for the energy (or the action). We derive a multipole expansion for the energy that has a finite number of terms, and depends on intrinsic geometric invariants of the submanifold and extrinsic invariants of the embedding of the submanifold. This is the second of a pair of articles in which we try to develop a theory of emergent gravity arising from the embedding of a submanifold into an ambient space equipped with a quantum field theory. Our theoretical method requires a generalization of a formula due to by Hermann Weyl. While the first paper discussed the framework in Euclidean (Minkowski) space, here we discuss how this framework generalizes to spaces of constant sectional curvature. We focus primarily on anti de Sitter space. We then discuss how such a theory can give rise to a cosmological constant and Planck mass that are within reasonable bounds of the experimental values.
Embeddings of the "New Massive Gravity"
Dalmazi, D
2016-01-01
Using different types of embeddings of equations of motion we investigate the existence of generalizations of the "New Massive Gravity" (NMG) model with the same particle content (massive gravitons). By using the Weyl symmetry as a guiding principle for the embeddings we show that the Noether gauge embedding approach leads us to a sixth order model in derivatives with either a massive or a massless ghost. If the Weyl symmetry is implemented by means of a Stueckelberg field we obtain a new scalar-tensor model for massive gravitons. It is ghost free and Weyl invariant at linearized level. The model can be nonlinearly completed into a scalar field coupled to the NMG theory. The elimination of the scalar field leads to a nonlocal modification of the NMG. We also prove to all orders in derivatives that there is no local, ghost free embedding of the linearized NMG equations of motion around Minkowski space when written in terms of one symmetric tensor. Regarding that point, NMG differs from the Fierz-Pauli theory, ...
Observable physical modes of modified gravity
Hojjati, Alireza; Silvestri, Alessandra; Zhao, Gong-Bo
2013-01-01
At linear order in cosmological perturbations, departures from the growth in the cosmological standard model can be quantified in terms of two functions of redshift z and Fourier number k. Previous studies have performed principal component forecasts for several choices of these two functions, based on expected capabilities of upcoming large structure surveys. It is typically found that there will be many well-constrained degrees of freedom. However, not all and, probably most, of these degrees of freedom were physical if the parametrization had allowed for an arbitrary k-dependence. In this paper, we restrict the k-dependence to that allowed in local theories of gravity under the quasi-static approximation, i.e. ratios of polynomials in k, and identify the best constrained features in the (z,k)-dependence of the commonly considered functions $\\mu$ and $\\gamma$ as measured by an LSST-like weak lensing survey. We find that about 10 eigenmodes of modified growth can be constrained with a better than a percent a...
An Efficient Representation of Euclidean Gravity I
Lee, Jungjai; Yang, Hyun Seok
2011-01-01
We explore how the topology of spacetime fabric is encoded into the local structure of Riemannian metrics using the gauge theory formulation of Euclidean gravity. In part I, we provide a rigorous mathematical foundation to prove that a general Einstein manifold arises as the sum of SU(2)_L Yang-Mills instantons and SU(2)_R anti-instantons where SU(2)_L and SU(2)_R are normal subgroups of the four-dimensional Lorentz group Spin(4) = SU(2)_L x SU(2)_R. Our proof relies only on the general properties in four dimensions: The Lorentz group Spin(4) is isomorphic to SU(2)_L x SU(2)_R and the six-dimensional vector space of two-forms splits canonically into the sum of three-dimensional vector spaces of self-dual and anti-self-dual two-forms. Consolidating these two, it turns out that the splitting of Spin(4) is deeply correlated with the decomposition of two-forms on four-manifold which occupies a central position in the theory of four-manifolds.
Testing Alternative Theories of Gravity using LISA
Will, Clifford M
2004-01-01
We investigate the possible bounds which could be placed on alternative theories of gravity using gravitational wave detection from inspiralling compact binaries with the proposed LISA space interferometer. Specifically, we estimate lower bounds on the coupling parameter \\omega of scalar-tensor theories of the Brans-Dicke type and on the Compton wavelength of the graviton \\lambda_g in hypothetical massive graviton theories. In these theories, modifications of the gravitational radiation damping formulae or of the propagation of the waves translate into a change in the phase evolution of the observed gravitational waveform. We obtain the bounds through the technique of matched filtering, employing the LISA Sensitivity Curve Generator (SCG), available online. For a neutron star inspiralling into a 10^3 M_sun black hole in the Virgo Cluster, in a two-year integration, we find a lower bound \\omega > 3 * 10^5. For lower-mass black holes, the bound could be as large as 2 * 10^6. The bound is independent of LISA arm...
Vulnerability of aged concrete gravity dams
Energy Technology Data Exchange (ETDEWEB)
Gogoi, I. [Assam Engineering Institute, Guwahati (India). Dept. of Civil Engineering; Maity, D. [Indian Institute of Technology, Guwahati (India). Dept. of Civil Engineering
2004-07-01
This paper presented an analysis procedure to predict the effects of aging on the behavior of concrete gravity dams. A time dependent isotropic damage index was determined, presenting the performance of the dam with increasing age. Results revealed that the degradation process is dependent on the design life of the structure. The influence of damage along the dam height was greater than damage observed along its width. In order to consider the time dependent degradation of concrete owing to environmental factors and mechanical loading, an algorithm was presented in order to forecast the behavior of existing dams and to assess the necessity of retrofitting or decommissioning. It was concluded that dam behavior during seismic excitation is influenced by the effects of both the dam reservoir system and initial earthquake damage. With increasing age, dam displacement increases, but hydrodynamic pressures and stresses exerted by reservoirs decrease. It was recommended that more accurate behavior could be determined if further research into the coupled effect of foundation-dam-reservoir interaction with material non-linearity was considered. 15 refs.,15 figs.
A case study of gravity waves in noctilucent clouds
Directory of Open Access Journals (Sweden)
P. Dalin
2004-06-01
Full Text Available We present a case study of a noctilucent cloud (NLC display appearing on 10-11 August 2000 over Northern Sweden. Clear wave structures were visible in the clouds and time-lapse photography was used to derive the parameters characterising the gravity waves which could account for the observed NLC modulation. Using two nearby atmospheric radars, the Esrange MST Radar data and Andoya MF radar, we have identified gravity waves propagating upward from the upper stratosphere to NLC altitudes. The wave parameters derived from the radar measurements support the suggestion that gravity waves are responsible for the observed complex wave dynamics in the NLC.
Gravity dual of dynamically broken supersymmetry
Cottrell, William; Hashimoto, Akikazu
2013-01-01
We study a renormalization group flow of ABJM theory embedded into the warped A_8 geometry and explore the dependence of the vacuum structure on the parameters of the theory. This model has a product group gauge structure U(N)xU(n+l) and comes equipped with discrete parameters N, l and k, a continuous parameter b related to the ratio of the Yang-Mills coupling for the two gauge groups, and one dimensionful parameter gYM^2 setting the overall scale. A supersymmetric supergravity solution exists when Q=N-l(l-k)/2k-k/24 is positive and is interpretable as a RG flow from a Yang-Mills like UV fixed point to a superconformal IR fixed point with free energy of order Q^3/2. The fate of the theory when Q is taken to be negative is less clear. We explore the structure of the possible gravity solution for small negative Q by considering the linearized gravitational back reaction from adding a small number of anti-branes on the Q=0 background. Following the work of Bena, et.al., we find that a sensible solution satisfyin...
Bouguer Gravity Anomaly Map of Bangladesh (grav8bg)
U.S. Geological Survey, Department of the Interior — This coverage includes arcs and arc labels that hold the Bouguer Gravity anomaly value for contours and type contours of the original map of Bangladesh with the same...
Seismic performance evaluation of concrete gravity dams
Energy Technology Data Exchange (ETDEWEB)
Yamaguchi, Y.; Sasaki, T.; Kanenawa, K. [Public Works Research Institute, Tsukuba City (Japan); Hall, R.; Yule, D. [United States Army Engineer Research and Development Center, Vicksburg, MS (United States); Matheu, E. [Louisiana State Univ., Baton Rouge, LA (United States); Chudgar, A. [United States Army Corps of Engineers, Washington, DC (United States)
2004-07-01
This paper addresses technical issues related to seismic design practices and current evaluation methods in Japan and the United States. Nonlinear analysis procedures can identify the ultimate capacity of existing concrete dams, taking into account the most critical nonlinear phenomena controlling the response. A numerical model of a non-overflow monolith of Koyna Dam, subject to earthquake motion, is used as a case study to compare the different approaches for seismic evaluation of concrete gravity dams currently employed in the two countries. The complexity of nonlinear analysis procedures and the scarcity of appropriate calibration strategies force analysts to frequently interpret results using their own judgment. It was concluded that the influence of the input parameters and ground excitation on the nonlinear dynamic response should be investigated in order to identify the most critical conditions. It was also suggested that methodologies for qualitative damage estimation based on results from linear analyses could be used to develop a systematic assessment tool and reference framework for the adequate interpretation of results. 14 refs., 2 tabs., 13 figs.
Braneworld gravity: influence of the moduli fields
Barceló, Carlos; Visser, Matt
2000-10-01
We consider the case of a generic braneworld geometry in the presence of one or more moduli fields (e.g. the dilaton) that vary throughout the bulk spacetime. Working in an arbitrary conformal frame, using the generalized junction conditions of gr-qc/0008008 and the Gauss-Codazzi equations, we derive the effective ``induced'' on-brane gravitational equations. As usual in braneworld scenarios, these equations do not form a closed system in that the bulk can exchange both information and stress-energy with the braneworld. We work with an arbitrary number of moduli fields described by an arbitrary sigma model, with arbitrary curvature couplings, arbitrary self interactions, and arbitrary dimension for the bulk. (The braneworld is always codimension one.) Among the novelties we encounter are modifications of the on-brane stress-energy conservation law, anomalous couplings between on-brane gravity and the trace of the on-brane stress-energy tensor, and additional possibilities for modifying the on-brane effective cosmological constant. After obtaining the general stress-energy ``conservation'' law and the ``induced Einstein equations'' we particularize the discussion to two particularly attractive cases: for a (n-2)-brane in ([n-1] + 1) dimensions we discuss both the effect of (1) generic variable moduli fields in the Einstein frame, and (2) the effect of a varying dilaton in the string frame.
Role of the plant cell wall in gravity resistance.
Hoson, Takayuki; Wakabayashi, Kazuyuki
2015-04-01
Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants.
Cosmological data analysis of f(R) gravity models
Girones, Z; Mena, O; Pena-Garay, C; Rius, N
2009-01-01
A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the LambdaCDM model.
Cosmological data analysis of f(R) gravity models
Energy Technology Data Exchange (ETDEWEB)
Gironés, Z.; Marchetti, A.; Mena, O.; Peña-Garay, C.; Rius, N., E-mail: girones@ific.uv.es, E-mail: alida.marchetti@unimi.it, E-mail: omena@ific.uv.es, E-mail: carlos.penya@ific.uv.es, E-mail: nuria@ific.uv.es [Depto. de Física Teórica, IFIC, Universidad de Valencia-CSIC, Edificio de Institutos de Paterna, Apt. 22085, 46071 Valencia (Spain)
2010-11-01
A class of well-behaved modified gravity models with long enough matter domination epoch and a late-time accelerated expansion is confronted with SNIa, CMB, SDSS, BAO and H(z) galaxy ages data, as well as current measurements of the linear growth of structure. We show that the combination of geometrical probes and growth data exploited here allows to rule out f(R) gravity models, in particular, the logarithmic of curvature model. We also apply solar system tests to the models in agreement with the cosmological data. We find that the exponential of the inverse of the curvature model satisfies all the observational tests considered and we derive the allowed range of parameters. Current data still allows for small deviations of Einstein gravity. Future, high precision growth data, in combination with expansion history data, will be able to distinguish tiny modifications of standard gravity from the ΛCDM model.
Scalar theory of gravity as a pressure force
Arminjon, Mayeul
1997-01-01
The theory starts from a tentative interpretation of gravity as Archimedes' thrust exerted on matter at the scale of elementary particles by an imagined perfect fluid ("ether"): the gravity acceleration is expressed by a formula in which the "ether pressure" p_e plays the role of the Newtonian potential. The instantaneous propagation of Newtonian gravity is obtained with an incompressible ether, giving a field equation for p_e. For a compressible ether, this equation holds in the static case. The extension to non-static situations follows the lines of acoustics and leads to gravitational (pressure) waves. To account for metric effects, the modern version of the Lorentz-Poincare interpretation of special relativity is used. Einstein's equivalence principle (EP) is seen as a correspondence between the metric effects of gravity and those of uniform motion with respect to the ether: a gravitational contraction (dilation) of space (time) standards is assumed. This implies geodesic motion for test particles in a st...
Cosmology of the Galileon from Massive Gravity
de Rham, Claudia
2011-01-01
We covariantize the decoupling limit of massive gravity proposed in arXiv:1011.1232 and study the cosmology of this theory as a proxy, which embodies key features of the fully non-linear covariant theory. We first confirm that it exhibits a self-accelerating solution, similar to what has been found in arXiv:1010.1780, where the Hubble parameter corresponds to the graviton mass. For a certain range of parameters fluctuations relative to the self-accelerating background are stable and form an attractor solution. We also show that a degravitating solution can not be constructed in this covariantized proxy theory in a meaningful way. As for cosmic structure formation, we find that the helicity-0 mode of the graviton causes an enhancement relative to LCDM. For consistency we also compare proxy theories obtained starting from different frames in the decoupling limit and discuss the possibility of obtaining a non-representative proxy theory by choosing the wrong starting frame.
Cosmology of the Galileon from massive gravity
de Rham, Claudia; Heisenberg, Lavinia
2011-08-01
We covariantize the decoupling limit of massive gravity proposed in [de Rham, G. Gabadadze, and A. J. Tolley, Phys. Rev. Lett. 106, 231101 (2011).PRLTAO0031-900710.1103/PhysRevLett.106.231101] and study the cosmology of this theory as a proxy, which embodies key features of the fully nonlinear covariant theory. We first confirm that it exhibits a self-accelerating solution, similar to what has been found in [C. de Rham, G. Gabadadze, L. Heisenberg, and D. Pirtskhalava, Phys. Rev. DPRVDAQ1550-7998 83, 103516 (2011).10.1103/PhysRevD.83.103516], where the Hubble parameter corresponds to the graviton mass. For a certain range of parameters fluctuations relative to the self-accelerating background are stable and form an attractor solution. We also show that a degravitating solution can not be constructed in this covariantized proxy theory in a meaningful way. As for cosmic structure formation, we find that the helicity-0 mode of the graviton causes an enhancement relative to ΛCDM. For consistency we also compare proxy theories obtained starting from different frames in the decoupling limit and discuss the possibility of obtaining a nonrepresentative proxy theory by choosing the wrong starting frame.
On the cosmology of massive gravity
De Felice, Antonio; Lin, Chunshan; Mukohyama, Shinji
2013-01-01
We present a review of cosmological solutions in non-linear massive gravity, focusing on the stability of perturbations. Although homogeneous and isotropic solutions have been found, these are now known to suffer from either Higuchi ghost or a new non-linear ghost instability. We discuss two approaches to alleviate this issue. By relaxing the symmetry of the background by e.g. breaking isotropy in the hidden sector, it is possible to accommodate a stable cosmological solution. Alternatively, extending the theory to allow for new dynamical degrees of freedom can also remove the conditions which lead to the instability. As examples for this case, we study the stability of self-accelerating solutions in the quasi-dilatonic extension and generic cosmological solutions in the varying mass extension. While the quasi-dilaton case turns out to be unstable, the varying mass case allows stable regimes of parameters. Viable self-accelerating solutions in the varying mass theory yet remain to be found.
Braneworld gravity Influence of the moduli fields
Barcelo, C; Barcelo, Carlos; Visser, Matt
2000-01-01
We consider the case of a generic braneworld geometry in the presence of one or more moduli fields (e.g., the dilaton) that vary throughout the bulk spacetime. Working in an arbitrary conformal frame, using the generalized junction conditions of gr-qc/0008008 and the Gauss--Codazzi equations, we derive the effective ``induced'' on-brane gravitational equations. As usual in braneworld scenarios, these equations do not form a closed system in that the bulk can exchange both information and stress-energy with the braneworld. We work with an arbitrary number of moduli fields described by an arbitrary sigma model, with arbitrary curvature couplings, arbitrary self interactions, and arbitrary dimension for the bulk. (The braneworld is always codimension one.) Among the novelties we encounter are modifications of the on-brane stress-energy conservation law, anomalous couplings between on-brane gravity and the trace of the on-brane stress-energy tensor, and additional possibilities for modifying the on-brane effectiv...
Dynamics of gravity in a Higgs phase
Arkani-Hamed, Nima; Cheng, Hsin-Chia; Luty, Markus A.; Mukohyama, Shinji; Wiseman, Toby
2007-01-01
We investigate the universal low-energy dynamics of the simplest Higgs phase for gravity, `ghost condensation.' We show that the nonlinear dynamics of the `ghostone' field dominate for all interesting gravitational sources. Away from caustic singularities, the dynamics is equivalent to the irrotational flow of a perfect fluid with equation of state pproptoρ2, where the fluid particles can have negative mass. We argue that this theory is free from catastrophic instabilities due to growing modes, even though the null energy condition is violated. Numerical simulations show that solutions generally have singularities in which negative energy regions shrink to zero size. We exhibit partial UV completions of the theory in which these singularities are smoothly resolved, so this does not signal any inconsistency in the effective theory. We also consider the bounds on the symmetry breaking scale M in this theory. We argue that the nonlinear dynamics cuts off the Jeans instability of the linear theory, and allows M lesssim 100 GeV.
Noncommutative Gravity and the *-Lie algebra of diffeomorphisms
Aschieri, P
2007-01-01
We construct functions and tensors on noncommutative spacetime by systematically twisting the corresponding commutative structures. The study of the deformed diffeomorphisms (and Poincare) Lie algebra allows to construct a noncomutative theory of gravity.
Noncommutative Gravity and the *-Lie algebra of diffeomorphisms
Aschieri, Paolo
2008-07-01
We construct functions and tensors on noncommutative spacetime by systematically twisting the corresponding commutative structures. The study of the deformed diffeomorphisms (and Poincaré) Lie algebra allows to construct a noncomutative theory of gravity.
Dynamics of galaxies and clusters in \\textit{refracted gravity}
Matsakos, Titos
2016-01-01
We investigate the proof of concept and the implications of \\textit{refracted gravity}, a novel modified gravity aimed to solve the discrepancy between the luminous and the dynamical mass of cosmic structures without resorting to dark matter. Inspired by the behavior of electric fields in matter, refracted gravity introduces a gravitational permittivity that depends on the local mass density and modifies the standard Poisson equation. The resulting gravitational field can become more intense than the Newtonian field and can mimic the presence of dark matter. We show that the refracted gravitational field correctly describes (1) the rotation curves and the Tully-Fisher relation of disk galaxies; and (2) the observed temperature profile of the X-ray gas of galaxy clusters. According to these promising results, we conclude that refracted gravity deserves further investigation.
Batista-Rodríguez, J. A.; Pérez-Flores, M. A.; Urrutia-Fucugauchi, J.
2013-09-01
We present a three-dimensional multi-formation inversion model for the gravity anomaly over Chicxulub Crater, constrained with available marine seismic data and land boreholes. We used eight formations or rock units as initial model, corresponding to: sea water, Paleogene sediments, suevitic and bunte breccias, melt, Cretaceous carbonates and upper and lower crust. The model response fits 91.5% of the gravity data. Bottom topography and thickness plots for every formation are shown, as well as vertical cross-sections for the 3-D model. The resulting 3-D model shows slightly circular features at crater bottom topography, which are more prominent at the base of the breccias unit. These features are interpreted as normal faults oriented towards the crater center, revealing a circular graben-like structure, whose gravity response correlates with the rings observed in the horizontal gravity gradient. At the center of the model is the central uplift of upper and lower crust, with the top covered by an irregular melt layer. Top of the upper crust shows two protuberances that can be correlated with the two positive peaks of the gravity anomaly. Top of Cretaceous seems to influence most of the response to the gravity anomaly, associated with a high density contrast.
Spectral dimension in graph models of causal quantum gravity
Giasemidis, Georgios
2013-01-01
The phenomenon of scale dependent spectral dimension has attracted special interest in the quantum gravity community over the last eight years. It was first observed in computer simulations of the causal dynamical triangulation (CDT) approach to quantum gravity and refers to the reduction of the spectral dimension from 4 at classical scales to 2 at short distances. Thereafter several authors confirmed a similar result from different approaches to quantum gravity. Despite the contribution from different approaches, no analytical model was proposed to explain the numerical results as the continuum limit of CDT. In this thesis we introduce graph ensembles as toy models of CDT and show that both the continuum limit and a scale dependent spectral dimension can be defined rigorously. First we focus on a simple graph ensemble, the random comb. It does not have any dynamics from the gravity point of view, but serves as an instructive toy model to introduce the characteristic scale of the graph, study the continuum li...
Solar-system tests of the relativistic gravity
Ni, Wei-Tou
2016-01-01
In 1859, Le Verrier discovered the Mercury perihelion advance anomaly. This anomaly turned out to be the first relativistic-gravity effect observed. During the 156 years to 2016, the precisions and accuracies of laboratory and space experiments, and of astrophysical and cosmological observations on relativistic gravity have been improved by 3-4 orders of magnitude. The improvements have been mainly from optical observations at first followed by radio observations. The achievements for the past 50 years are from radio Doppler tracking and radio ranging together with lunar laser ranging. At the present, the radio observations and lunar laser ranging experiments are similar in the accuracy of testing relativistic gravity. We review and summarize the present status of solar-system tests of relativistic gravity. With planetary laser ranging, spacecraft laser ranging and interferometric laser ranging (laser Doppler ranging) together with the development of drag-free technology, the optical observations will improve...
Gravity influences the visual representation of object tilt in parietal cortex.
Rosenberg, Ari; Angelaki, Dora E
2014-10-22
Sensory systems encode the environment in egocentric (e.g., eye, head, or body) reference frames, creating inherently unstable representations that shift and rotate as we move. However, it is widely speculated that the brain transforms these signals into an allocentric, gravity-centered representation of the world that is stable and independent of the observer's spatial pose. Where and how this representation may be achieved is currently unknown. Here we demonstrate that a subpopulation of neurons in the macaque caudal intraparietal area (CIP) visually encodes object tilt in nonegocentric coordinates defined relative to the gravitational vector. Neuronal responses to the tilt of a visually presented planar surface were measured with the monkey in different spatial orientations (upright and rolled left/right ear down) and then compared. This revealed a continuum of representations in which planar tilt was encoded in a gravity-centered reference frame in approximately one-tenth of the comparisons, intermediate reference frames ranging between gravity-centered and egocentric in approximately two-tenths of the comparisons, and in an egocentric reference frame in less than half of the comparisons. Altogether, almost half of the comparisons revealed a shift in the preferred tilt and/or a gain change consistent with encoding object orientation in nonegocentric coordinates. Through neural network modeling, we further show that a purely gravity-centered representation of object tilt can be achieved directly from the population activity of CIP-like units. These results suggest that area CIP may play a key role in creating a stable, allocentric representation of the environment defined relative to an "earth-vertical" direction.
Experimental simulation of gravity currents in erodible bed
Bateman, A.; La Roca, M.; Medina, V.
2009-04-01
Gravity currents are commonly met in nature, when a flow of denser fluid moves into a less dense one. A typical example of a gravity current is given by the sea water which flows into the bottom of a river during the summer, in correspondence of the estuary, when the river's discharge attains low values. In this case, dangerous consequences can occur, because of the polluting of the aquifer caused by the salty water. Density currents also occurs in lakes and reservoirs, because of a change in temperature or because a flood, both can produce some environmental impacts that are of interest to the local water Agency of the different countries. Of particular relevance is also the interaction of the gravity current with the movement of the sediments from the bottom of the bed. The international state of the art is particularly concerned with experimental and numerical investigation on gravity currents on fixed and porous bed [1-2-3], while, to the authors' knowledge, the interaction of a gravity current with an erodible bed is still an open field of investigation. In this paper experiments concerning with the propagation of a gravity current over fixed and erodible bed are presented. The experiments, conducted at the laboratory of Hydraulics of the Universitat Politecnica de Catalunya (actually in the Prof. Bateman's blue room), were concerned with a transparent tank 2 m long, 0.2 m wide and 0.3 m deep, partly filled with salty water and partly with fresh water, up to a depth of 0.28 m. The salty water, whose density was in the range 1050John E. Simpson. Gravity Currents [3] J.J. Monaghan, R.A.F. Cas, A.M. Kos, M. Hallworth, Gravity currents descending a ramp in a stratified tank, The Journal of Fluid Mechanics, Vol. 379, 1999
The Other Side of Gravity and Geometry: Antigravity and Anticurvature
2012-01-01
Gravity is one of the four known fundamental interactions used to study and interpret physical phenomenae. It governs diverse phenomenae, especially those connected with large-scale structures. From more than one decade, existing gravity theories have suffered from some problems, when confronting their predictions with the results of some experiments and observations. This situation has led to many suggestions, none of which is final, so far. Here, we show that the assumption of existence of ...
Comprehensive Evaluation of Tahe Medium Gravity Crude
Institute of Scientific and Technical Information of China (English)
Li Li; Zou Ying; Weng Huixin
2008-01-01
The comprehensive evaluation of Tahe medium gravity crude has demonstrated that this type of crude belongs to a intermediate base sour crude, featuring high vanadium content (103ppm), high carbon residue content, low pour point, and low acid value. Based on the crude processing conditions at SINOPEC Luoyang Petrochemical Branch Company, a proposal on the appropriate process flow scheme for processing Tahe crude oil has been raised with the main ideas presented as follows. The IBP-175 ℃ fraction is not an ideal feedstock for catalytic reforming; the 75-250℃ fraction is a qualified feedstock for zeolite de-waxing; the 140-230℃ fraction can be used to manufacture the No. 3 jet fuel through appropriate distillation range adjustment and product refining; the 175-350℃ fraction can be directly used to manufacture No.-10 diesel through proper refining; the atmospheric resid boiling over 350℃ is not suited to be used as the RFCC feedstock; the 350-520℃ vacuum distillate oil can be used as the FCC feedstock; and the vacuum residuum boiling over 520℃ is a good feedstock for manufacture of asphalt.
Application of gravity model on the Korean urban bus network
Hong, Inho; Jung, Woo-Sung
2016-11-01
Mobility models have been studied to describe the underlying mechanism of human mobility. The mobility patterns in various transportation systems were understood with the gravity model by estimating the traffic as a simple function of population and distance. Compared to most studies on large-scale systems, we focused on the validity and characteristics of gravity model for intraurban mobility. Several variations of gravity model are applied on the urban bus systems of five medium-sized cities in Korea. The gravity model successfully estimates the intraurban traffic without universal exponents for cities. From the change of exponents by predictor types, we figure out the effect by a non-trivial relation between traffic and population in the urban areas.
Time delays across saddles as a test of modified gravity
Magueijo, Joao
2012-01-01
Modified gravity theories can produce strong signals in the vicinity of the saddles of the total gravitational potential. In a sub-class of these models this translates into diverging time-delays for echoes crossing the saddles. Such models arise from the possibility that gravity might be infrared divergent or confined, and if suitably designed they are very difficult to rule out. We show that Lunar Laser Ranging during an eclipse could probe the time-delay effect within meters of the saddle, thereby proving or excluding these models. Very Large Baseline Interferometry, instead, could target delays across the Jupiter-Sun saddle. Such experiments would shed light on the infrared behaviour of gravity and examine the puzzling possibility that there might be well-hidden regions of strong gravity and even singularities inside the solar system.
Needs of physiological and psychological research using artificial gravity
Suzuki, M.; Toyobe, M.; Hamami, H.; Tayama, M.; Fujii, T.; Sato, T.; Nitta, K.; Kibe, S.
In the next century, mankind will expand its activity to the moon and Mars. At that time, humans will be exposed to a low and micro-gravity environment in long term which causes physiological and psychological problems. The authors propose an artificial gravity space station for a research laboratory on human physiology and psychology at various gravity levels. The baseline specifications and the configuration of the space station are shown. Reviewing the history of manned space flight, the necessity of the research on an artificial gravity space station is discussed, including themes of research to be conducted on the station and the application of its results. Technical issues for realization of the space station such as environmental factors, system function and assembly scenario are also discussed.
Discussion of the Entanglement Entropy in Quantum Gravity
Ma, Chen-Te
2016-01-01
Quantum gravity needs to be satisfied by the holographic principle, and the entanglement entropy already has holographic evidences via anti-de Sitter/ Conformal field theory correspondence. Thus, we explore principles of quantum gravity via the entanglement entropy. We compute the entanglement entropy in two dimensional Einstein-Hilbert action to understand quantum geometry and area law. Then we also discuss two dimensional conformal field theory because we expect strongly coupled conformal field theory can describe perturbative quantum gravity theory. We find universal terms of the entanglement entropy is independent of a choice of an entangling surface in two dimensional conformal field theory for one interval and some cases of multiple intervals. To extend our discussion to generic multiple intervals, we use a geometric method to determine the entanglement entropy. Finally, we argue translational invariance possibly be a necessary condition in quantum gravity theory from ruing out volume law of the entangl...
On the parameterization scheme of gravity wave drag effect on the mean zonal flow of mesosphere
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Based on McFarlane's parameterization scheme of gravity wave drag, a refined gravity-wave-drag scheme is presented. Both the drag effect of the momentum flux and the dissipation effect of gravity wave breaking on the mean zonal flow are included in the refined parameterization scheme. The dissipation effect can be formulated with the gravity wave numbers and the mean quantities. The refined parameterization scheme may represent a complete drag effect of stationary gravity wave breaking on the mean zonal flow.
Mashhoon, Bahram
2017-01-01
Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...
National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...
National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...
Cosmology of the proxy theory to massive gravity
Heisenberg, Lavinia; Yamamoto, Kazuhiro
2014-01-01
In this paper, we scrutinize very closely the cosmology in the proxy theory to massive gravity obtained in Phys. Rev. D84 (2011) 043503. This proxy theory was constructed by covariantizing the decoupling limit Lagrangian of massive gravity and represents a subclass of Horndeski scalar-tensor theory. Thus, this covariantization unifies two important classes of modified gravity theories, namely massive gravity and Horndeski theories. We go beyond the regime which was studied in Phys. Rev. D84 (2011) 043503 and show that the theory does not admit any homogeneous and isotropic self-accelerated solutions. We illustrate that the only attractor solution is flat Minkowski solution, hence this theory is less appealing as a dark energy model. We also show that the absence of de Sitter solutions is tightly related to the presence of shift symmetry breaking interactions.
Cosmology of the proxy theory to massive gravity
Heisenberg, Lavinia; Kimura, Rampei; Yamamoto, Kazuhiro
2014-05-01
In this paper, we scrutinize very closely the cosmology in the proxy theory to massive gravity obtained in de Rham and Heisenberg [Phys. Rev. D 84, 043503 (2011)]. This proxy theory was constructed by covariantizing the decoupling limit Lagrangian of massive gravity, and it represents a subclass of Horndeski scalar-tensor theory. Thus, this covariantization unifies two important classes of modified gravity theories, namely, massive gravity and Horndeski theories. We go beyond the regime which was studied in de Rham and Heisenberg [Phys. Rev. D 84, 043503 (2011)] and show that the theory does not admit any homogeneous and isotropic self-accelerated solutions. We illustrate that the only attractor solution is the flat Minkowski solution; hence, this theory is less appealing as a dark energy model. We also show that the absence of de Sitter solutions is tightly related to the presence of shift symmetry breaking interactions.
A comparison of stable platform and strapdown airborne gravity
DEFF Research Database (Denmark)
Glennie, C.L.; Schwarz, K.P.; Bruton, A.M.
2000-01-01
To date, operational airborne gravity results have been obtained using either a damped two-axis stable platform gravimeter system such as the LaCoste and Romberg (LCR) S-model marine gravimeter or a strapdown inertial navigation system (INS), showing comparable accuracies. In June 1998 three flight...... flown along existing shipborne gravity profiles to allow for an independent source of comparison of the results. The results and analysis of these flight tests are presented. The measurement method and error models for both the-stable platform and strapdown INS gravity systems are presented...... test's were undertaken which tested an LCR gravimeter and a strapdown INS gravity system side by side. To the authors' knowledge, this was the first time such a comparison flight was undertaken. The flights occurred in Disko Bay, off the west coast of Greenland. Several of the flight lines were partly...
Joint analysis of the seismic data and velocity gravity model
Belyakov, A. S.; Lavrov, V. S.; Muchamedov, V. A.; Nikolaev, A. V.
2016-03-01
We performed joint analysis of the seismic noises recorded at the Japanese Ogasawara station located on Titijima Island in the Philippine Sea using the STS-2 seismograph at the OSW station in the winter period of January 1-15, 2015, over the background of a velocity gravity model. The graphs prove the existence of a cause-and-effect relation between the seismic noise and gravity and allow us to consider it as a desired signal.
Teleparallel equivalent theory of (1+ 1)-dimensional gravity
Institute of Scientific and Technical Information of China (English)
Gamal G.L. Nashed
2010-01-01
A theory of (1 +1)-dimensional gravity is constructed on the basis of the teleparallel equivalent of general relativity. The fundamental field variables are the tetrad fields ei~' and the gravity is attributed to the torsion. A dilatonic spherically symmetric exact solution of the gravitational field equations characterized by two parameters M and Q is derived. The energy associated with this solution is calculated using the two-dimensional gravitational energy-momentum formula.
Gravitational luminosity of a hot plasma in R^2 gravity
Niri, B Nadiri; Corda, C
2016-01-01
The R^{2}-gravity contribution to energy loss of a hot plasma due to the gravitational bremsstrahlung is calculated in the linearized theory on the basis of classical Coulomb scattering of plasma constituents in small-angle scattering approximation. The explicit dependence of the gravitational luminosity on the plasma temperature is derived and its relevance to the Einstein gravity is demonstrated. The result when applied to the Sun as a hot plasma, shows very good agreement with available data.
Directory of Open Access Journals (Sweden)
HUANG Motao
2016-11-01
Full Text Available Centred on the support requirement of flying track control for a long range spacecraft, a detail research is made on the computation of external disturbing gravity field, the survey accuracy of gravity anomaly on the earth' surface and the program of surveying line layout for marine gravity survey. Firstly, the solution expression of navigation error for a long range spacecraft is analyzed and modified, and the influence of the earth's gravity field on flying track of spacecraft is evaluated. Then with a given limited quota of biased error of spacecraft drop point, the accuracy requirement for calculating the external disturbing gravity field is discussed and researched. Secondly, the data truncation error and the propagated data error are studied and estimated, and the quotas of survey resolution and computation accuracy for gravity anomaly on the earth' surface are determined. Finally, based on the above quotas, a corresponding program of surveying line layout for marine gravity survey is proposed. A numerical test has been made to prove the reasonableness and validity of the suggested program.
LINEAR GRAVITY WAVES ON MAXWELL FLUIDS OF FINITE DEPTH
Institute of Scientific and Technical Information of China (English)
ZHANG Qinghe; SUN Yabin
2004-01-01
Linear surface gravity waves on Maxwell viscoelastic fluids with finite depth are studied in this paper. A dispersion equation describing the spatial decay of the gravity wave in finite depth is derived. A dimensionless memory (time) number θ is introduced. The dispersion equation for the pure viscous fluid will be a specific case of the dispersion equation for the viscoelastic fluid as θ = 0. The complex dispersion equation is numerically solved to investigate the dispersion relation. The influences of θ and water depth on the dispersion characteristics and wave decay are discussed. It is found that the role of elasticity for the Maxwell fluid is to make the surface gravity wave on the Maxwell fluid behave more like the surface gravity wave on the inviscid fluid.
Atom Interferometry for detection of Gravity Waves-a Project
National Aeronautics and Space Administration — Atom interferometers are more sensitive to inertial effects. This is because atoms in their inertial frame are ideal test masses for detection of gravity effects...
Quantization of Two-Dimensional Gravity with Dynamical Torsion
Lavrov, P M
1999-01-01
We consider two-dimensional gravity with dynamical torsion in the Batalin - Vilkovisky and Batalin - Lavrov - Tyutin formalisms of gauge theories quantization as well as in the background field method.
Design of a gravity corer for near shore sediment sampling
Digital Repository Service at National Institute of Oceanography (India)
Bhat, S.T.; Sonawane, A; Nayak, B.U.
For the purpose of geotechnical investigation a gravity corer has been designed and fabricated to obtain undisturbed sediment core samples from near shore waters. The corer was successfully operated at 75 stations up to water depth 30 m. Simplicity...
Absolute Gravity Datum in the Age of Cold Atom Gravimeters
Childers, V. A.; Eckl, M. C.
2014-12-01
The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant
Energy Technology Data Exchange (ETDEWEB)
Healey, D.L. [Geological Survey, Denver, CO (USA)
1983-12-31
A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.
On chains of centered valuations
Directory of Open Access Journals (Sweden)
Rachid Chibloun
2003-01-01
Full Text Available We study chains of centered valuations of a domain A and chains of centered valuations of A [X1,…,Xn] corresponding to valuations of A. Finally, we make some applications to chains of valuations centered on the same ideal of A [X1,…,Xn] and extending the same valuation of A.
Towards Nonperturbation Theory of Emergent Gravity
Kar, Supriya
2016-01-01
We investigate an emergent gravity in $(4+1)$ dimensions underlying a geometric torsion ${\\cal H}_3$ in $1.5$ order formulation. We show that an emergent pair-symmetric $4$th order curvature tensor underlying a NS field theory governs a torsion free geometry and is identified as the Riemann type tensor. Interestingly a pair anti-symmetric $4$th order tensor is shown to incorporate a dynamical correction underlying a ${\\cal H}_3$ gauge potential and is identified with a non-perturbative correction. The non-perturbative term in the emergent action is shown to be described by a $U(1)$ gauge invariant ${\\cal F}_4$ in a second order theory underlying an onshell ${\\cal H}_3$ in a first order. A complete emergent theory is elegantly described with an axion, and hence a quintessence, coupling to the Riemann type geometries. The curvatures are appropriately worked out to obtain a $12D$ emergent $F$ theory. Further investigation reveals that a pair of $(M{\\bar M})_{10}$-brane are created across an event horizon. We obt...
Consistent Extension of Hořava Gravity
Blas, D; Sibiryakov, SLPHE, Lausanne
2010-01-01
We propose a natural extension of Horava's model for quantum gravity, which is free from the notorious pathologies of the original proposal. The new model endows the scalar graviton mode with a regular quadratic action and remains power-counting renormalizable. At low energies, it reduces to a Lorentz-violating scalar-tensor gravity theory. The deviations with respect to general relativity can be made weak by an appropriate choice of parameters.
Thermodynamics of cosmological horizons in $f(T)$ gravity
Bamba, Kazuharu
2011-01-01
We explore thermodynamics of the apparent horizon in $f(T)$ gravity with both equilibrium and non-equilibrium descriptions. We find the same dual equilibrium/non-equilibrium formulation for $f(T)$ as for $f(R)$ gravity. In particular, we show that the second law of thermodynamics can be satisfied for the universe with the same temperature of the outside and inside the apparent horizon.
Crossing of Phantom Divide in $F(R)$ Gravity
Bamba, Kazuharu; Nojiri, Shin'ichi; Odintsov, Sergei D
2010-01-01
An explicit model of $F(R)$ gravity with realizing a crossing of the phantom divide is reconstructed. In particular, it is shown that the Big Rip singularity may appear in the reconstructed model of $F(R)$ gravity. Such a Big Rip singularity could be avoided by adding $R^2$ term or non-singular viable $F(R)$ theory to the model because phantom behavior becomes transient.
Quantitative interpretation of airborne gravity gradiometry data for mineral exploration
Martinez, Cericia D.
In the past two decades, commercialization of previously classified instrumentation has provided the ability to rapidly collect quality gravity gradient measurements for resource exploration. In the near future, next-generation instrumentation are expected to further advance acquisition of higher-quality data not subject to pre-processing regulations. Conversely, the ability to process and interpret gravity gradiometry data has not kept pace with innovations occurring in data acquisition systems. The purpose of the research presented in this thesis is to contribute to the understanding, development, and application of processing and interpretation techniques available for airborne gravity gradiometry in resource exploration. In particular, this research focuses on the utility of 3D inversion of gravity gradiometry for interpretation purposes. Towards this goal, I investigate the requisite components for an integrated interpretation workflow. In addition to practical 3D inversions, components of the workflow include estimation of density for terrain correction, processing of multi-component data using equivalent source for denoising, quantification of noise level, and component conversion. The objective is to produce high quality density distributions for subsequent geological interpretation. I then investigate the use of the inverted density model in orebody imaging, lithology differentiation, and resource evaluation. The systematic and sequential approach highlighted in the thesis addresses some of the challenges facing the use of gravity gradiometry as an exploration tool, while elucidating a procedure for incorporating gravity gradient interpretations into the lifecycle of not only resource exploration, but also resource modeling.
Gravity wave turbulence revealed by horizontal vibrations of the container.
Issenmann, B; Falcon, E
2013-01-01
We experimentally study the role of forcing on gravity-capillary wave turbulence. Previous laboratory experiments using spatially localized forcing (vibrating blades) have shown that the frequency power-law exponent of the gravity wave spectrum depends on the forcing parameters. By horizontally vibrating the whole container, we observe a spectrum exponent that does not depend on the forcing parameters for both gravity and capillary regimes. This spatially extended forcing leads to a gravity spectrum exponent in better agreement with the theory than by using a spatially localized forcing. The role of the vessel shape has been also studied. Finally, the wave spectrum is found to scale linearly with the injected power for both regimes whatever the forcing type used.
Simulation of Gravity Feed Oil for Areoplane Fuel Transfer System
Lv, Y. G.; Liu, Z. X.; Huang, S. Q.; Xu, T.
Generally, it has two different ways for fuel transfer for areoplane, the simplest one is by gravity, and another is by pumps. But the simplest one mighte change to the vital method in some situation, such as electrical and mechanical accident. So the study of gravity feed oil is aslo important. Past calculations assumed that, under gravity feed, only one fuel tank in aircraft supplies the fuel needed for preventing extremely serious accident to happen. Actually, gravity feed oil is a transient process, all fuel tanks compete for supplying oil and there must have several fuel tanks offering oil simultaneously. The key problems to calculate gravity feed oil are the sumulation of the multiple-branch and transient process. Firstly, we presented mathematical models for oil flow through pipes, non-working pupms and check valves, ect. Secondly, On the basis of flow network theory and time difference method, we established a new calculation method for gravity feed oil of aeroplane fuel system. This model can solve the multiple-branch and transient process simulation of gravity feed oil. Our method takes into consideration all fuel tanks and therefore, we believe, our method is intrinsically superior to traditional methods and is closer to understanding the real seriousness of the oil supply situation. Finally, we give a numerical example using the new method for a certain type of aircraft under gravity feed. achieved the variations of oil level and flow mass per second of each oil tanks which showed in Figures below. These variations show preliminarily that our proposed method of calculations is satisfactory.
Thermodynamics of cosmological horizons in f(T) gravity
Energy Technology Data Exchange (ETDEWEB)
Bamba, Kazuharu; Geng, Chao-Qiang, E-mail: bamba@kmi.nagoya-u.ac.jp, E-mail: geng@phys.nthu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300 (China)
2011-11-01
We explore thermodynamics of the apparent horizon in f(T) gravity with both equilibrium and non-equilibrium descriptions. We find the same dual equilibrium/non-equilibrium formulation for f(T) as for f(R) gravity. In particular, we show that the second law of thermodynamics can be satisfied for the universe with the same temperature outside and inside the apparent horizon.
Former Soviet Union (FSU) Gravity Data
National Oceanic and Atmospheric Administration, Department of Commerce — Gridded gravity anomaly data for the Former Soviet Union (FSU) and Eastern Europe has been received by the National Geophysical Data Center(NGDC). The data file...
Influence of gravity and light on the developmental polarity of Ceratopteris richardii fern spores
Edwards, E. S.; Roux, S. J.
1998-01-01
The polarity of germinating single-celled spores of the fern Ceratopteris richardii Brogn. is influenced by gravity during a time period prior to the first cellular division designated a "polarity-determination window". After this window closes, control of polarity is seen in the downward (with respect to gravity) migration of the nucleus along the proximal face of the spore and the subsequent downward growth of the primary rhizoid. When spores are germinated on a clinostat the direction of nuclear migration and subsequent primary rhizoid growth is random. However, in each case the direction of nuclear migration predicts the direction of rhizoid elongation. Although it is the most obvious movement, the downward migration is not the first movement of the nucleus. During the polarity-determination window, the nucleus moves randomly within a region centered behind the trilete marking. While the polarity of many fern spores has been reported to be controlled by light, spores of C. richardii are the first documented to have their polarity influenced by gravity. Directional white light also affects the polarity of these spores, but this influence is slight and is secondary to that of gravity.
New views on the low-energy side of gravity
Piazza, Federico
2009-01-01
Common wisdom associates all the unraveled and theoretically challenging aspects of gravity with its UV-completion. However, there appear to be few difficulties afflicting the effective framework for gravity already at low energy, that are likely to be detached from the high-energy structure. Those include the black hole information paradox, the cosmological constant problem and the rather involved and fine tuned model building required to explain our cosmological observations. I review some ...
Renormalization of 3d quantum gravity from matrix models
Ambjørn, Jan; Loll, R
2004-01-01
Lorentzian simplicial quantum gravity is a non-perturbatively defined theory of quantum gravity which predicts a positive cosmological constant. Since the approach is based on a sum over space-time histories, it is perturbatively non-renormalizable even in three dimensions. By mapping the three-dimensional theory to a two-matrix model with ABAB interaction we show that both the cosmological and the (perturbatively) non-renormalizable gravitational coupling constant undergo additive renormalizations consistent with canonical quantization.
Hendi, Seyed Hossein; Panah, Behzad Eslam
2015-01-01
In this paper, we are considering two first order corrections to both gravity and gauge sides of the Einstein-Maxwell gravity: Gauss-Bonnet gravity and quadratic Maxwell invariant as corrections. We obtain horizonless magnetic solutions by implying a metric which representing a topological defect. We analyze the geometric properties of the solutions and investigate the effects of both corrections, and find that these solutions may be interpreted as the magnetic branes. We study the singularity condition and find a nonsingular spacetime with a conical geometry. We also investigate the effects of different parameters on deficit angle of spacetime near the origin.
Energy Technology Data Exchange (ETDEWEB)
Hendi, Seyed Hossein [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Panahiyan, Shahram; Panah, Behzad Eslam [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)
2015-06-15
In this paper, we consider two first order corrections to both the gravity and the gauge sides of the Einstein-Maxwell gravity: Gauss-Bonnet gravity and quadratic Maxwell invariant as corrections. We obtain horizonless magnetic solutions by implying a metric representing a topological defect. We analyze the geometric properties of the solutions and investigate the effects of both corrections, and find that these solutions may be interpreted as magnetic branes. We study the singularity condition and find a nonsingular spacetime with a conical geometry. We also investigate the effects of different parameters on the deficit angle of spacetime near the origin. (orig.)
Neuroplastic reactivity of fish induced by altered gravity conditions: a review of recent results
Rahmann, H.; Anken, R. H.
A review is being presented concerning behavioural, biochemical, histochemical and electronmicroscopical data on the influence of altered gravitational forces on the swimming performance and on the neuronal differentiation of the brain of cichlid fish larvae and adult swordtail fish that had been exposed to hyper-gravity (3g in laboratory centrifuges), hypo-gravity (>10^-2g in a fast-rotating clinostat) and to near weightlessness (10^-4g aboard the spacelab D-2 mission). After long-term alterations of gravity (and parallel light deprivation), initial disturbances in the swimming behaviour followed by a stepwise regain of normal swimming modes are induced. Parallely, neuroplastic reactivities on different levels of investigation were found, such as adaptive alterations of activities of various enzymes in whole brain as well as in specific neuronal integration centers and an intraneuronal reactivity on ultrastructural level in individual brain parts and in the sensory epithelia of the inner ear. Taken together, these data reveal distinct adaptive neuroplastic reactions of fish to altered gravity conditions.
Institute of Scientific and Technical Information of China (English)
左学兵; 雷翔栋
2012-01-01
AP1000是目前世界上处于领先地位的第三代核电技术,模块化施工是其在施工方法先进性的重要体现.CA01,CA20大型结构模块构成了AP1000辅助厂房和安全壳内的主体结构,它们具有外形尺寸大、结构复杂、单钩起重重量大等特点,对模块的整体吊装工作提出了极高的要求.以海阳二号核岛CA20为例着重介绍如何从模块重心计算及吊装平衡的角度保证模块的精确吊装.%AP1000 is an advanced third-generation nuclear power technology in the world, and modular construction is an important embodiment of advanced construction methods. Large structural modules CA01 and CA20 constitute the main structure of AP1000 containment building and auxiliary building. These modules are featured by large size, complicated structure and heavy load, which brings an extremely high demand on lifting. Take Haiyang Nuclear Plant Unit 2 CA20 as an example, this paper focuses on the calculation of the center of gravity for the modules and design of the balance scheme to ensure precise lifting.
Study of two-phase flows in reduced gravity
Roy, Tirthankar
Study of gas-liquid two-phase flows under reduced gravity conditions is extremely important. One of the major applications of gas-liquid two-phase flows under reduced gravity conditions is in the design of active thermal control systems for future space applications. Previous space crafts were characterized by low heat generation within the spacecraft which needed to be redistributed within the craft or rejected to space. This task could easily have been accomplished by pumped single-phase loops or passive systems such as heat pipes and so on. However with increase in heat generation within the space craft as predicted for future missions, pumped boiling two-phase flows are being considered. This is because of higher heat transfer co-efficients associated with boiling heat transfer among other advantages. Two-phase flows under reduced gravity conditions also find important applications in space propulsion as in space nuclear power reactors as well as in many other life support systems of space crafts. Two-fluid model along with Interfacial Area Transport Equation (IATE) is a useful tool available to predict the behavior of gas-liquid two-phase flows under reduced gravity conditions. It should be noted that considerable differences exist between two-phase flows under reduced and normal gravity conditions especially for low inertia flows. This is because due to suppression of the gravity field the gas-liquid two-phase flows take a considerable time to develop under reduced gravity conditions as compared to normal gravity conditions. Hence other common methods of analysis applicable for fully developed gas-liquid two-phase flows under normal gravity conditions, like flow regimes and flow regime transition criteria, will not be applicable to gas-liquid two-phase flows under reduced gravity conditions. However the two-fluid model and the IATE need to be evaluated first against detailed experimental data obtained under reduced gravity conditions. Although lot of studies
Matters of Gravity, a newsletter for the gravity community, Number 5
Pullin, J
1995-01-01
Table of contents: -Editorial and Correspondents Gravity news: -LISA Recommended to ESA as Possible New Cornerstone Mission, Peter Bender. -LIGO Project News, Stan Whitcomb. Research briefs: -Some Recent Work in General Relativistic Astrophysics, John Friedman. -Pair Creation of Black Holes, Gary Horowitz. -Conformal Field Equations and Global Properties of Spacetimes, Bernd Schmidt Conference reports: -Aspen Workshop on Numerical Investigations of Singularities in GR, Susan Scott -Second Annual Penn State Conference: Quantum Geometry, Abhay Ashtekar -First Samos Meeting, Spiros Cotsakis and Dieter Brill -Aspen Conference on Gravitational Waves and Their Detection, Syd Meshkov
Gravity and Magnetotelluric Modeling of the Santo Domingo Basin, Northern New Mexico
Zamudio, K. D.; Keithline, N.; Blum, C.; Cunningham, E.; Fromont, A.; Jorgensen, M.; Lee, R.; McBride, K.; Saez Berrios, P.; Harper, C.; Pellerin, L.; McPhee, D.; Ferguson, J. F.
2015-12-01
The Santo Domingo Basin, one of a series of basins within the Rio Grande Rift, is located between Santa Fe and Albuquerque, NM, and has been the focus of research by the Summer of Geophysical Experience (SAGE) program since 2000. Gravity, magnetotelluric (MT), and seismic data have been collected throughout the region, although we are concentrating on gravity and MT data collected during SAGE 2014 and 2015. The study area is located in the center of the Santo Domingo basin, an extensional, Miocene age, rift basin, in an area that was minimally involved in the preceding local Laramide orogenic activity. Rift sediments (~3.5 km thick) are underlain by Eocene age sediments that were shed from adjacent uplifts. Up to 3 km of Mesozoic and Paleozoic sediments are preserved above the Precambrian basement. Geologic outcrop, borehole and seismic reflection data, and known density values were used in the construction of a ~100 km-long, generalized geologic cross section from which a gravity response was calculated. The modeled gravity response makes fairly definitive predictions about the geometry of the basin as well as the stratigraphy and faulting within and bounding the basin. MT data was collected at ten stations within the basin. The MT sounding curves exhibit one-dimensional behavior at short periods (1000 ohm-m) at ~ 3.5-4 km. Conductivities of the major stratigraphic units have been determined from well logs and previous MT modeling. Forward and inverse MT models constrained by the gravity-modeled geologic cross section are used to develop a conductivity model consistent with the geology, and are a step towards a better unified treatment of MT, seismic and gravity data.
Phillips, W. P.
1981-01-01
Subsonic longitudinal andd laternal directional characteristics were obtained for several modified configurations of the 140 A/B orbiter (0.010 scale). These modifications, designed to extend longitudinal trim capability forward of the 65 percent fuselage length station, consisted of modified wing planform fillet and a canard. Tests were performed in the Langley Low Turbulence Pressure Tunnel at Reynolds numbers from about 4.2 million to 14.3 million based on the fuselage reference length.
AIUB-RL02: an improved time-series of monthly gravity fields from GRACE data
Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G.
2016-05-01
The new release AIUB-RL02 of monthly gravity models from GRACE GPS and K-Band range-rate data is based on reprocessed satellite orbits referring to the reference frame IGb08. The release is consistent with the IERS2010 conventions. Improvements with respect to its predecessor AIUB-RL01 include the use of reprocessed (RL02) GRACE observations, new atmosphere and ocean dealiasing products (RL05), an upgraded ocean tide model (EOT11A), and the interpolation of shallow ocean tides (admittances). The stochastic parametrization of AIUB-RL02 was adapted to include daily accelerometer scale factors, which drastically reduces spurious signal at the 161 d period in C20 and at other low degree and order gravity field coefficients. Moreover, the correlation between the noise in the monthly gravity models and solar activity is considerably reduced in the new release. The signal and the noise content of the new AIUB-RL02 monthly gravity fields are studied and calibrated errors are derived from their non-secular and non-seasonal variability. The short-period time-variable signal over the oceans, mostly representing noise, is reduced by 50 per cent with respect to AIUB-RL01. Compared to the official GFZ-RL05a and CSR-RL05 monthly models, the AIUB-RL02 stands out by its low noise at high degrees, a fact emerging from the estimation of seasonal variations for selected river basins and of mass trends in polar regions. Two versions of the monthly AIUB-RL02 gravity models, with spherical harmonics resolution of degree and order 60 and 90, respectively, are available for the time period from March 2003 to March 2014 at the International Center for Global Earth Models or from ftp://ftp.unibe.ch/aiub/GRAVITY/GRACE (last accessed 22 March 2016).
AIUB-CHAMP02S: The influence of GNSS model changes on gravity field recovery using spaceborne GPS
Prange, L.; Jäggi, A.; Dach, R.; Bock, H.; Beutler, G.; Mervart, L.
2010-01-01
The gravity field model AIUB-CHAMP02S, which is based on six years of CHAMP GPS data, is presented here. The gravity field parameters were derived using a two step procedure: In a first step a kinematic trajectory of a low Earth orbiting (LEO) satellite is computed using the GPS data from the on-board receiver. In this step the orbits and clock corrections of the GPS satellites as well as the Earth rotation parameters (ERPs) are introduced as known. In the second step this kinematic orbit is represented by a gravitational force model and orbit parameters. In order to ensure full model consistency the GPS satellite orbits and clock corrections, which have been used for the generation of the kinematic LEO trajectories, were taken from the Center for Orbit Determination in Europe (CODE), located at AIUB (Dach et al., 2009). In recent years many changes have taken place in the processing chain of global navigation satellite system (GNSS) data, e.g., the implementation of absolute antenna phase center modeling. Therefore a reprocessing of the GPS data to obtain state-of-the-art GPS satellite orbits and clock corrections was performed. From these updated GPS products new kinematic orbits of the CHAMP satellite were derived for the years 2002-2007. From the updated CHAMP trajectories spherical harmonic (SH) coefficients of the Earth’s gravity field were determined in exactly the same way as from the original LEO orbit. This allowed us to study the impact of the improved LEO orbits on the derived gravity field parameters and the generation of the multi-year gravity field model AIUB-CHAMP02S. The change of the IGS standards creates an inconsistency to existing global gravity field models, which mainly affects the zonal coefficients of low even degrees. The inconsistency is caused by the change to the absolute antenna phase center model and can be reduced by estimating the phase center variation of the CHAMP GPS antenna.
Influence of gravity on the solidification of a drop
Energy Technology Data Exchange (ETDEWEB)
Sanz, A.; Meseguer, J.; Mayo, L.
1987-03-01
In this paper the influence of gravity on the solidification of a drop formed at the end of a rod is analyzed. Although similar studies (but ignoring gravity effects) already exist, a theoretical analysis including gravity effects allows one to improve the experimental procedure to measure on Earth relevant properties of crystals (mainly the receding contact angle phi/sub i/) which are of importance in shaped crystal growth processes. One of the main results here obtained are the shapes of the solidified drops, which are strongly dependent on the value of phi/sub i/. Therefore, fitting theoretical shapes to experimental ones is a way to perform accurate measurements of phi/sub i/.
The influence of gravity on structure and function of animals
Ross, M. D.
1984-01-01
Gravity is the only environmental parameter that has remained constant during the period of evolution of living matter on earth. Thus, it must have been a major force in shaping living things. The influence of gravitational loading on evolution of the vertebrate skeleton is well recognized, and scale effects have been studied. This paper, however, considers in addition four pivotal events in early evolution that would seem to have been significant for the later success and diversifcation of animal life. These are evolution of the cytoskeleton, cell motility (flagellae and cilia), gravity detecting devices (accelerometers), and biomineralization. All are functionally calcium dependent in eukaryotes and all occurred or were foreshadowed in prokaryotes. A major question is why calcium was selected as an ion of great importance to the structure and function of living matter; another is whether gravity played a role in its selection.
Role of actin in auxin transport and transduction of gravity
Hu, S.; Basu, S.; Brady, S.; Muday, G.
Transport of the plant hormone auxin is polar and the direction of the hormone movement appears to be controlled by asymmetric distribution of auxin transport protein complexes. Changes in the direction of auxin transport are believed to drive asymmetric growth in response to changes in the gravity vector. To test the possibility that asymmetric distribution of the auxin transport protein complex is mediated by attachment to the actin cytoskeleton, a variety of experimental approaches have been used. The most direct demonstration of the role of the actin cytoskeleton in localization of the protein complex is the ability of one protein in this complex to bind to affinity columns containing actin filaments. Additionally, treatments of plant tissues with drugs that fragment the actin c toskeleton reducey polar transport. In order to explore this actin interaction and the affect of gravity on auxin transport and developmental polarity, embryos of the brown alga, Fucus have been examined. Fucus zygotes are initially symmetrical, but develop asymmetry in response to environmental gradients, with light gradients being the best- characterized signal. Gravity will polarize these embryos and gravity-induced polarity is randomized by clinorotation. Auxin transport also appears necessary for environmental controls of polarity, since auxin efflux inhibitors perturb both photo- and gravity-polarization at a very discrete temporal window within six hours after fertilization. The actin cytoskeleton has previously been shown to reorganize after fertilization of Fucus embryos leading to formation of an actin patch at the site of polar outgrowth. These actin patches still form in Fucus embryos treated with auxin efflux inhibitors, yet the position of these patches is randomized. Together, these results suggest that there are connections between the actin cytoskeleton, auxin transport, and gravity oriented growth and development. (Supported by NASA Grant: NAG2-1203)
Interaction of modulated gravity water waves of finite depth
Giannoulis, Ioannis
2016-10-01
We consider the capillary-gravity water wave problem of finite depth with a flat bottom of one or two horizontal dimensions. We derive the modulation equations of leading and next-to-leading order in the hyperbolic scaling for three weakly amplitude-modulated plane wave solutions of the linearized problem in the absence of quadratic and cubic resonances. We justify the derived system of macroscopic equations in the case of gravity waves using the stability of the finite depth water wave problem on the time scale O (1 / ɛ).
Aerodynamic heating of ballistic missile including the effects of gravity
Indian Academy of Sciences (India)
S N Maitra
2000-10-01
The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating ratesto the wetted area and to the nose of the missile are also investigated. Finally four numerical examples are cited to estimate the errors, in heat transfers and heating ratesto both wetted area and nose region of the missile, arising out of neglecting the gravitational forces.
Exploration of Anomalous Gravity Effects by rf-Pumped Magnetized High-T(c) Superconducting Oxides
Robertson, Tony; Litchford, Ron; Peters, Randall; Thompson, Byran; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
A number of anomalous gravitational effects have been reported in the scientific literature during recent years, but there has been no independent confirmation with regard to any of these claims. Therefore, the NASA Marshall Space Flight Center, in response to the propulsion challenges specified by NASA's Breakthrough Propulsion Physics (BPP) program, proposed to explore the possibility of observing anomalous gravitation behavior through the manipulation of Josephson junction effects in magnetized high-Tc superconducting oxides. The technical goal was to critically test this revolutionary physical claim and provide a rigorous, independent, empirical confirmation (or refutation) of anomalous effects related to the manipulation of gravity by radio frequency (rf)-pumped magnetized type-2 superconductors. Because the current empirical evidence for gravity modification is anecdotal, our objective was to design, construct, and meticulously implement a discriminating experiment, which would put these observations on a more firm footing within the scientific community. Our approach is unique in that we advocate the construction of an extremely sensitive torsion balance with which to measure gravity modification effects by rf-pumped type-2 superconductor test masses. This paper reviews the anecdotal evidence for anomalous gravity effects, describes the design and development of a simplified torsion balance experiment for empirically investigating these claims, and presents the results of preliminary experiments.
Tests of Local Lorentz Invariance Violation of Gravity in the Standard-Model Extension with Pulsars
Shao, Lijing
2014-01-01
Standard-model extension (SME) is an effective field theory introducing all possible Lorentz-violating (LV) operators to the standard model (SM) and general relativity (GR). In the pure-gravity sector of minimal SME (mSME), nine coefficients describe dominant observable deviations from GR. We systematically implemented twenty-seven tests from thirteen pulsar systems to tightly constrain eight linear combinations of these coefficients with extensive Monte Carlo simulations. It constitutes the first detailed and systematic test of the pure-gravity sector of mSME with the state-of-the-art pulsar observations. No deviation from GR was detected. The limits of LV coefficients are expressed in the canonical Sun-centered celestial-equatorial frame for convenience of further studies. They are all improved by significant factors of tens to hundreds with existing ones. As a consequence, Einstein's equivalence principle is verified substantially further by pulsar experiments in terms of local Lorentz invariance in gravit...
Signatures of fractal clustering of aerosols advected under gravity.
Vilela, Rafael D; Tél, Tamás; de Moura, Alessandro P S; Grebogi, Celso
2007-06-01
Aerosols under chaotic advection often approach a strange attractor. They move chaotically on this fractal set but, in the presence of gravity, they have a net vertical motion downwards. In practical situations, observational data may be available only at a given level, for example, at the ground level. We uncover two fractal signatures of chaotic advection of aerosols under the action of gravity. Each one enables the computation of the fractal dimension D(0) of the strange attractor governing the advection dynamics from data obtained solely at a given level. We illustrate our theoretical findings with a numerical experiment and discuss their possible relevance to meteorology.
Interactions of light and gravity in Chara internodal cells
Staves, Mark P.; Whitsit, Kimberly; Yeung, Edward
2005-08-01
The "shoots" of Chara corallina are composed of large (ca. 2-5 cm length and 0.5 mm diameter) internodal cells alternating with smaller, node-forming cells. We find that these shoots are both negatively gravitropic as well as positively phototropic. Differential growth in response to both gravity and light typically takes place in the two most apical (youngest) internodal cells, however the plants can be manipulated so that all curvature takes place in a single cell. We grew Chara in aquaria filled with artificial pond water with their rhizoids in 35 mm film canisters containing soil. Thus, it was easy to reorient the axis of the plant with respect to gravity. Experimental plants were allowed to develop to a stage where they had one or two visible internodal cells. In the absence of light, internodal cells are negatively gravitropic. If gravistimulated (horizontal) internodal cells are illuminated with white light from above, gravity and light act together and more rapid curvature ensues. If however, gravistimulated internodal cells are illuminated from below, gravity and light act antagonistically and light can overcome the gravity signal. We find that gravistimulated cells illuminated from below will bend up (i.e. negatively gravitropic and negatively phototropic) at light intensities below ca. 1 μmol m-2 s-1 whereas they curve downward (positively gravitropic and positively phototropic) at higher light intensities. Preliminary studies indicate that both blue and green light stimulate phototropism whereas red light is not effective. Chara thus provides a system in which a single, statolith-free cell responds to both light and gravity and in which the interactions of the light- and gravity-induced signal transduction pathways can be investigated.
Extinguishment of a Diffusion Flame Over a PMMA Cylinder by Depressurization in Reduced-Gravity
Goldmeer, Jeffrey Scott
1996-01-01
Extinction of a diffusion flame burning over horizontal PMMA (Polymethyl methacrylate) cylinders in low-gravity was examined experimentally and via numerical simulations. Low-gravity conditions were obtained using the NASA Lewis Research Center's reduced-gravity aircraft. The effects of velocity and pressure on the visible flame were examined. The flammability of the burning solid was examined as a function of pressure and the solid-phase centerline temperature. As the solid temperature increased, the extinction pressure decreased, and with a centerline temperature of 525 K, the flame was sustained to 0.1 atmospheres before extinguishing. The numerical simulation iteratively coupled a two-dimensional quasi-steady, gas-phase model with a transient solid-phase model which included conductive heat transfer and surface regression. This model employed an energy balance at the gas/solid interface that included the energy conducted by the gas-phase to the gas/solid interface, Arrhenius pyrolysis kinetics, surface radiation, and the energy conducted into the solid. The ratio of the solid and gas-phase conductive fluxes Phi was a boundary condition for the gas-phase model at the solid-surface. Initial simulations modeled conditions similar to the low-gravity experiments and predicted low-pressure extinction limits consistent with the experimental limits. Other simulations examined the effects of velocity, depressurization rate and Phi on extinction.
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-03-01
The effect of micro-gravity on bio-functions and vital reaction was studied using the facility of Underground Gravity-free Experiment Center Co. On the effect on osteoblast shape and gene expression, although fluorochrome reacting with Ca was well taken into cells, no significant difference in Ca content in cells was observed before/after falling. Expression of genes related to cell propagation was controlled under micro-gravity. Protoplast fusion of Lentinus was unaffected by micro-gravity. The mRNA fragments of gravity sensitive mutant of rice plant were affected by micro-gravity. Paramecium was set swimming in solutions with different specific gravities. The reaction behavior of Paramecium was affected by the difference in specific gravity between cell bodies and solutions. The water content metabolism functions of a mouse with needle stimulus, in particular excretory, were slightly promoted by micro- gravity. The cortisol level in blood of a falling mouse group rose showing strong stress. As the preliminary study on the geotaxis of insects, motion of bagworm was observed. 12 refs., 38 figs., 4 tabs.
2015-09-30
1 A multiscale nested modeling framework to simulate the interaction of surface gravity waves with nonlinear internal gravity waves...Minnesota LONG-TERM GOALS Our long-term goal is to develop a multiscale nested modeling framework that simulates, with the finest resolution...frameworks such as the proposed HYCOM-LZSNFS-SUNTANS-LES nested model are crucial for understanding multiscale processes that are unresolved, and hence
Analysis of gravity data in Central Valleys, Oaxaca, southern, Mexico
Gonzalez, T.; Ferrusquia, I.
2015-12-01
The region known as Central Valleys is located in the state of Oaxaca, southern, Mexico (16.3o- 17.7 o N Lat. and 96 o - 97 o W Long.) In its central portion is settled the capital of the state. There are very few published detailed geological studies.. Geomorphological and geological features, indicates that Central Valleys and surrounding mountains conform a graben structure. Its shape is an inverted Y, centred on Oaxaca City. The study area was covered by a detailed gravity survey with a homogenous distribution of stations. The Bouguer gravity map is dominated by a large gravity low, oriented NW-SE. In order to know the characteristics of anomalies observed gravity, data transformations were used. The use of spectral methods has increased in recent years, especially for the estimation of the depth of the source. Analysis of the gravity data sheds light on the regional depth of the Graben basement and the spatial distribution of the volcanic rocks
Fourth-order gravity gradient torque of spacecraft orbiting asteroids
Wang, Yue; Xu, Shijie
2014-01-01
The dynamical behavior of spacecraft around asteroids is a key element in design of such missions. An asteroid's irregular shape, non-spherical mass distribution and its rotational sate make the dynamics of spacecraft quite complex. This paper focuses on the gravity gradient torque of spacecraft around non-spherical asteroids. The gravity field of the asteroid is approximated as a 2nd degree and order-gravity field with harmonic coefficients C20 and C22. By introducing the spacecraft's higher-order inertia integrals, a full fourth-order gravity gradient torque model of the spacecraft is established through the gravitational potential derivatives. Our full fourth-order model is more precise than previous fourth-order model due to the consideration of higher-order inertia integrals of the spacecraft. Some interesting conclusions about the gravity gradient torque model are reached. Then a numerical simulation is carried out to verify our model. In the numerical simulation, a special spacecraft consisted of 36 po...
Gravitons from a loop representation of linearised gravity
Varadarajan, M
2002-01-01
Loop quantum gravity is based on a classical formulation of 3+1 gravity in terms of a real SU(2) connection. Linearization of this classical formulation about a flat background yields a description of linearised gravity in terms of a {\\em real} $U(1)\\times U(1)\\times U(1)$ connection. A `loop' representation, in which holonomies of this connection are unitary operators, can be constructed. These holonomies are not well defined operators in the standard graviton Fock representation. We generalise our recent work on photons and U(1) holonomies to show that Fock space gravitons are associated with distributional states in the $U(1)\\times U(1)\\times U(1)$ loop representation. Our results may illuminate certain aspects of the much deeper (and as yet unkown,) relation between gravitons and states in nonperturbative loop quantum gravity. This work leans heavily on earlier seminal work by Ashtekar, Rovelli and Smolin (ARS) on the loop representation of linearised gravity using {\\em complex} connections. In the last p...
Effects of artificial gravity on the cardiovascular system: Computational approach
Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.
2016-09-01
Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected
Extended Theories of Gravity in cosmological and astrophysical applications
Wojnar, Aneta
2016-01-01
The main subjects of the PhD dissertation concern cosmological models considered in Palatini f(R) gravity and scalar-tensor theories. We introduce a simple generalization of the LCDM model based on Palatini modified gravity with quadratic Starobinsky term. A matter source is provided by generalized Chaplygin gas. The statistical analysis of our model is investigated. We use dynamical system approach to study the evolution of the Universe. The model reaches a very good agreement with the newest experimental data and yields an inflationary epoch caused by a singularity of the type III. The present-day accelerated expansion is also provided by the model. We also show that the Lie and Noether symmetry approaches are very useful tools in cosmological considerations. We examine two other models of Extended Theories of Gravity (ETGs): the novel hybrid metric-Palatini gravity and a minimally coupled to gravity scalar field. The first one is applied to homogeneous and isotropic model while in the scalar-tensor theory ...
Higher derivative gravity: Field equation as the equation of state
Dey, Ramit; Liberati, Stefano; Mohd, Arif
2016-08-01
One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. The extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher-curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism-invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.
Higher derivative gravity: field equation as the equation of state
Dey, Ramit; Mohd, Arif
2016-01-01
One of the striking features of general relativity is that the Einstein equation is implied by the Clausius relation imposed on a small patch of locally constructed causal horizon. Extension of this thermodynamic derivation of the field equation to more general theories of gravity has been attempted many times in the last two decades. In particular, equations of motion for minimally coupled higher curvature theories of gravity, but without the derivatives of curvature, have previously been derived using a thermodynamic reasoning. In that derivation the horizon slices were endowed with an entropy density whose form resembles that of the Noether charge for diffeomorphisms, and was dubbed the Noetheresque entropy. In this paper, we propose a new entropy density, closely related to the Noetheresque form, such that the field equation of any diffeomorphism invariant metric theory of gravity can be derived by imposing the Clausius relation on a small patch of local causal horizon.
The interpretation of gravity anomaly on lunar Apennines
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The lunar Apennines,located in the southeast of Mare Imbrium,is the largest range on the Moon. The gravity anomalies on profiles across the mountains reveal evidence of a great fault zone characteristic. The deep crustal structures of lunar Apennines are analyzed on the basis of topographic data from Chang’E-1 satellite and gravity data from Lunar Prospector. The inverted crust-mantle models indicate the presence of a lithosphere fault beneath the mountains. Inverted results of gravity and the hypothe-sis of lunar thermal evolution suggest that the lunar lithosphere might be broken ～3.85 Ga ago due to a certain dynamic lateral movement and compression of lunar lithosphere. This event is associated with the history of magma filling and lithosphere deformation in the mountain zone and adjacent area. Moreover,the formation and evolution of Imbrium basin impose this effect on the process.
The interpretation of gravity anomaly on lunar Apennines
Institute of Scientific and Technical Information of China (English)
CHEN Chao; CHEN Bo; PING JinSong; LIANG Qing; HUANG Qian; ZHAO WenJin; ZHANG ChangDa
2009-01-01
The lunar Apennines, located in the southeast of Mare Imbrium, is the largest range on the Moon. The gravity anomalies on profiles across the mountains reveal evidence of a great fault zone characteristic.The deep crustal structures of lunar Apennines are analyzed on the basis of topographic data from Chang'E-1 satellite and gravity data from Lunar Prospector. The inverted crust-mantle models indicate the presence of a lithosphere fault beneath the mountains. Inverted results of gravity and the hypothesis of lunar thermal evolution suggest that the lunar lithosphere might be broken ～3.85 Ga ago due to a certain dynamic lateral movement and compression of lunar lithosphere. This event is associated with the history of magma filling and lithosphere deformation in the mountain zone and adjacent area. Moreover, the formation and evolution of Imbrium basin impose this effect on the process.
Cosmological implications of modified gravity induced by quantum metric fluctuations
Liu, Xing; Liang, Shi-Dong
2016-01-01
We investigate the cosmological implications of modified gravities induced by the quantum fluctuations of the gravitational metric. If the metric can be decomposed as the sum of the classical and of a fluctuating part, of quantum origin, then the corresponding Einstein quantum gravity generates at the classical level modified gravity models with a nonminimal coupling between geometry and matter. As a first step in our study, after assuming that the expectation value of the quantum correction can be generally expressed in terms of an arbitrary second order tensor constructed from the metric and from the thermodynamic quantities characterizing the matter content of the Universe, we derive the (classical) gravitational field equations in their general form. We analyze in detail the cosmological models obtained by assuming that the quantum correction tensor is given by the coupling of a scalar field and of a scalar function to the metric tensor, and by a term proportional to the matter energy-momentum tensor. For...
Galactic space-times in modified theories of gravity
Dey, Dipanjan; Sarkar, Tapobrata
2014-01-01
We study Bertrand space-times (BSTs), which have been proposed as viable models of space-times seeded by galactic dark matter, in modified theories of gravity. We first critically examine the issue of galactic rotation curves in General Relativity, and establish the usefulness of BSTs to fit experimental data in this context. We then study BSTs in metric $f(R)$ gravity and in Brans-Dicke theories. For the former, the nature of the Newtonian potential is established, and we also compute the effective equation of state and show that it can provide good fits to some recent experimental results. For the latter, we calculate the Brans-Dicke scalar analytically in some limits and numerically in general, and find interesting constraints on the parameters of the theory. Our results provide evidence for the physical nature of Bertrand space-times in modified theories of gravity.
Gravity survey of the Mt. Toondina impact structure, South Australia
Plescia, J. B.; Shoemaker, E. M.; Shoemaker, C. S.
1991-06-01
The Mt. Toondina impact structure is located in northern South Australia, about 45 km south of the town of Oodnadatta. Only the central uplift is exposed. The outcrops at Mt. Toondina reveal a remarkable structural anomaly surrounded by a broad expanse of nearly flat-lying beds of the Bulldog Shale of Early Cretaceous age. A gravity survey was undertaken in 1989 to determine the diameter of the impact structure, define the form of the central uplift, and understand the local crustal structure. Data were collected along two orthogonal lines across the structure. In addition to the profiles, a significant number of measurements were made on and around the central uplift. The 1989 gravity data combined with 1963 gravity data and the seismic reflection data provide an excellent data base to interpret the subsurface structure of the Mt. Toondina feature.
Towards the Unification of Gravity and other Interactions: What has been Missed?
Pavsic, Matej
2010-01-01
Faced with the persisting problem of the unification of gravity with other fundamental interactions we investigate the possibility of a new paradigm, according to which the basic space of physics is a multidimensional space ${\\cal C}$ associated with matter configurations. We consider general relativity in ${\\cal C}$. In spacetime, which is a 4-dimensional subspace of ${\\cal C}$, we have not only the 4-dimensional gravity, but also other interactions, just as in Kaluza-Klein theories. We then consider a finite dimensional description of extended objects in terms of the center of mass, area, and volume degrees of freedom, which altogether form a 16-dimensional manifold whose tangent space at any point is Clifford algebra Cl(1,3). The latter algebra is very promising for the unification, and it provides description of fermions.
Institute of Scientific and Technical Information of China (English)
XU; Jiyao(徐寄遥); MA; Ruiping(马瑞平); A.K.Smith
2002-01-01
A nonlinear, compressible, non-isothermal gravity wave model that involves photochemistry is used to study the effects of gravity wave on atmospheric chemical species distributions in this paper. The changes in the distributions of oxygen compound and hydrogen compound density induced by gravity wave propagation are simulated. The results indicate that when a gravity wave propagates through a mesopause region, even if it does not break, it can influence the background distributions of chemical species. The effect of gravity wave on chemical species at night is larger than in daytime.
Effect of gravity convection on interface morphology during solidification
Institute of Scientific and Technical Information of China (English)
DUAN MengMeng; CHEN ChangLe; LI ZhanYao; JIN QuanWei
2007-01-01
An experimental apparatus consisting of a crystal growth room and a crystal growth observation system was developed for the study of the effect of the gravity convection perpendicular to the growth direction on the growth process by use of model alloy succinonitrile (SCN)-5wt%ethanol. It was found that the convection improves the stability of the interface and causes the downstream alternation of the cell growth direction because of the dual effect of the Stokes force and the gravity. The second dendrite arm facing the flow comes into being earlier than that at another side when the interface transforms cell to dendrite. Then the dendrite at the side facing the flow comes into being earlier. The second dendrite arm facing the flow grows faster and is more developed than that at another side. In addition, the primary dendrite arm spacing increases and the dendrite tip radius decreases under the gravity convection.
Effect of gravity convection on interface morphology during solidification
Institute of Scientific and Technical Information of China (English)
2007-01-01
An experimental apparatus consisting of a crystal growth room and a crystal growth observation system was developed for the study of the effect of the gravity convection perpendicular to the growth direction on the growth process by use of model alloy succinonitrile (SCN)-5wt%ethanol. It was found that the convection improves the stability of the interface and causes the downstream alternation of the cell growth direction because of the dual effect of the Stokes force and the gravity. The second dendrite arm facing the flow comes into being earlier than that at an- other side when the interface transforms cell to dendrite. Then the dendrite at the side facing the flow comes into being earlier. The second dendrite arm facing the flow grows faster and is more developed than that at another side. In addition, the primary dendrite arm spacing increases and the dendrite tip radius decreases un- der the gravity convection.
Bowie Lecture: Time Variable Gravity Measurements Come of Age
Watkins, M. M.
2004-12-01
The Earth and planetary science and geodesy communities have long recognized measurements of the static gravity field as primary for understanding bulk properties and formation histories. Use of the time varying field, however, to measure the cycling of volatiles has been only coarsely demonstrated over the past two decades. The GRACE mission has now realized the promise of those early studies and demonstrated that gravity field measurement is now a valid remote sensing concept for the Earth and eventually other planets in the solar system. We will discuss the latest GRACE results for the measurement of the Earth's water cycle on land, the oceans, and ice sheets, and outline prospects and capabilities of follow-on missions. We will conclude with an overview of the recent exciting results of both current and proposed planetary missions, especially at Mars, for time varying gravity measurements outside the Earth as well.
Cosmic acceleration and the challenge of modifying gravity
Trodden, Mark
2010-01-01
I briefly discuss the challenges presented by attempting to modify general relativity to obtain an explanation for the observed accelerated expansion of the universe. Foremost among these are the questions of theoretical consistency - the avoidance of ghosts in particular - and the constraints imposed by precision local tests of gravity within the solar system. For those models that clear these highly constraining hurdles, modern observational cosmology offers its own suite of tests, improving with upcoming datasets, that offer the possibility of ruling out modified gravity approaches or providing an intriguing hint of new infrared physics. In the second half of the talk, I discuss a recent approach to extracting cosmology from higher-dimensional induced gravity models.
Beneficiation of the gold bearing ore by gravity and flotation
Gül, Alim; Kangal, Olgaç; Sirkeci, Ayhan A.; Önal, Güven
2012-02-01
Gold concentration usually consists of gravity separation, flotation, cyanidation, or the combination of these processes. The choice among these processes depends on the mineralogical characterization and gold content of the ore. Recently, the recovery of gold using gravity methods has gained attention because of low cost and environmentally friendly operations. In this study, gold pre-concentrates were produced by the stepwise gravity separation and flotation techniques. The Knelson concentrator and conventional flotation were employed for the recovery of gold. Gold bearing ore samples were taken from Gümüşhane Region, northern east part of Turkey. As a result of stepwise Knelson concentration experiments, a gold concentrate assaying around 620 g/t is produced with 41.4wt% recovery. On the other hand, a gold concentrate about 82 g/t is obtained with 89.9wt% recovery from a gold ore assaying 6 g/t Au by direct flotation.
Stability of anisotropic compact objects in f(T) gravity
Bhatti, M. Zaeem-Ul-Haq; Yousaf, Z.; Hanif, Sonia
2017-03-01
We exhibit the dynamical instability of cylindrical compact object in the gravitational field of f(T) gravity, which is the simplest modification of teleparallel theory (TPT). We explore the field equations and conservation laws to provide the extra degrees of freedom governed by f(T) gravity. We investigate the behavior of small perturbations on geometric and material profile in the background of collapsing fluid configuration. The un/stable eras are studied under Newtonian (N) and post-Newtonian (pN) approximations. Our results show that the stiffness parameter has major role in determining the un/stable epochs of cylindrical object. The dark source terms of f(T) gravity lead to relatively more unstable configuration during its evolutionary process.
Atom interferometer as a selective sensor of rotation or gravity
Dubetsky, B
2006-01-01
In the presence of Earth gravity and gravity-gradient forces, centrifugal and Coriolis forces caused by the Earth rotation, the phase of the time-domain atom interferometers is calculated with accuracy up to the terms proportional to the fourth degree of the time separation between pulses. We considered double-loop atom interferometers and found appropriate condition to eliminate their sensitivity to acceleration to get atomic gyroscope, or to eliminate the sensitivity to rotation to increase accuracy of the atomic gravimeter. Consequent use of these interferometers allows one to measure all components of the acceleration and rotation frequency projection on the plane perpendicular to gravity acceleration. Atom interference on the Raman transition driving by non-counterpropagating optical fields is proposed to exclude stimulated echo processes which can affect the accuracy of the atomic gyroscopes. Using non-counterpropagating optical fields allows one to get new type of the Ramsey fringes arising in the unid...
Magnetic brane solutions of Lovelock gravity with nonlinear electrodynamics
Hendi, Seyed Hossein; Panahiyan, Shahram
2015-01-01
In this paper, we consider logarithmic and exponential forms of nonlinear electrodynamics as a source and obtain magnetic brane solutions of the Lovelock gravity. Although these solutions have no curvature singularity and no horizon, they have a conic singularity with a deficit angle. We investigate the effects of nonlinear electrodynamics and the Lovelock gravity on the value of deficit angle and find that various terms of Lovelock gravity do not affect deficit angle. Next, we generalize our solutions to spinning cases with maximum rotating parameters in arbitrary dimensions and calculate the conserved quantities of the solutions. Finally, we consider nonlinear electrodynamics as a correction of the Maxwell theory and investigate the properties of the solutions.
On the addition of torsion to chiral gravity
Santamaria, Ricardo Couso; Garbarz, Alan; Giribet, Gaston
2011-01-01
Three-dimensional gravity in Anti-de Sitter space is considered, including torsion. The derivation of the central charges of the algebra that generates the asymptotic isometry group of the theory is reviewed, and a special point of the theory, at which one of the central charges vanishes, is compared with the chiral point of topologically massive gravity. This special point corresponds to a singular point in Chern-Simons theory, where one of the two coupling constants of the SL(2,R) actions vanishes. A prescription to approach this point in the space of parameters is discussed, and the canonical structure of the theory is analyzed.
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
Critical behavior of charged black holes in Gauss-Bonnet gravity`s rainbow
Hendi, Seyed Hossein; Panah, Behzad Eslam; Faizal, Mir; Momennia, Mehrab
2016-01-01
Following an earlier study regarding Gauss-Bonnet-Maxwell black holes in the presence of gravity's rainbow [S. H. Hendi and M. Faizal, Phys. Rev. D 92, 044027 (2015)], in this paper, we will consider all constants as energy dependent ones. The geometrical and thermodynamical properties of this generalization are studied and the validation of the first law of thermodynamics is examined. Next, through the use of proportionality between cosmological constant and thermodynamical pressure, van der Waals-like behavior of these black holes in extended phase space is investigated. An interesting critical behavior for sets of rainbow functions in this case is reported. Also, the critical behavior of uncharged and charged solutions is analyzed and it is shown that the generalization to a charged case puts an energy dependent restriction on values of different parameters.
Validation of GOCE Satellite Gravity Gradient Observations by Orbital Analysis
Visser, P.
The upcoming European Space Agency ESA Gravity Field and Steady-State Ocean Circular Explorer GOCE mission foreseen to be launched in 2007 will carry a highly sensitive gradiometer consisting of 3 orthogonal pairs of ultra-sensitive accelerometers A challenging calibration procedure has been developed to calibrate the gradiometer not only before launch by a series of on-ground tests but also after launch by making use of on-board cold-gas thrusters to provoke a long series of gradiometer shaking events which will provide observations for its calibration This calibration can be checked by a combined analysis of GPS Satellite-to-Satellite Tracking SST and Satellite Gravity Gradient SGG observations An assessment has been made of how well SGG calibration parameters can be estimated in a combined orbit and gravity field estimation from these observations
Detailed Gravity and Magnetic Survey of the Taylorsville Triassic Basin
Energy Technology Data Exchange (ETDEWEB)
Leftwich, John; Nowroozi, Ali, A.
1999-10-01
This work reports the progress on collecting existing gravity data in a rectangular area covering the Richmond and Taylorsville Basins and its vicinity. The area covers one-degree latitude and one degree longitude, starting at 37 North, 77 West and ending at 38 North, 78 West. Dr. David Daniels of the United State Geological Survey supplied us with more than 4900 Bouguer gravity anomalies in this area. The purpose of this report is to present the data in form of several maps and discuss its relation to the geology of the Triassic Basins and its vicinity. Johnson and others (1985) also presented a map of the Bouguer gravity anomaly of this area. However, their map covers a smaller area, and it is based on smaller number of observations.
An Explanation of the Effects of Gravity on the Crystallization of ZBLAN Glass
Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)
2001-01-01
The effects of gravity on crystallization of ZBLAN glasses have been studied utilizing NASA's KC-135 aircraft and a sounding rocket. Fibers were heated to the crystallization temperature in unit and reduced gravity. The fibers processed in unit gravity exhibited crystallization, while fibers processed in reduced gravity showed no signs of crystallization. An explanation based on shear thinning of liquids is presented to explain these results.
Gravity Currents in a Vegetated Valley of Trapezoidal Shape
Directory of Open Access Journals (Sweden)
Evangelos Keramaris
2016-01-01
Full Text Available In this study lock-exchange experiments are performed in a tank of rectangular upper cross section and a lower vegetated valley of trapezoidal shape to study the effect of drag resistance, due to vegetation, on gravity currents. Many natural and man-made channels are approximately trapezoidal. For the simulation of the vegetation the bed is covered by flexible grass vegetation (height of vegetation, hv=2.0cm of different submergence ratio hν/H (hν=height of vegetation, H=water depth. The motion of the gravity current is monitored with a digital video of high definition, the front velocity is measured and the height of the front is captured. Twenty four experiments are performed, twelve inside the trapezoidal section (H/Htr=0.4, 0.6 or 0.8 and twelve over the trapezoidal section (H/Htr=1.2, 1.4 or 1.6. The initial Reynolds number, based on the height of the valley and the reduced gravity, is greater than 10000 for all cases indicating that the gravity currents are turbulent. Results are compared with those of similar experiments without vegetation (Keramaris and Prinos, 2010 and hence the effect of the vegetation drag resistance on the motion of the current is investigated. The main conclusion of this study is that the shape of the tank plays a significant role in the propagation of gravity currents. The presence of trapezoidal increases the velocity of gravity currents in comparison with triangular or orthogonal shape.
Conformal Loop quantization of gravity coupled to the standard model
Pullin, Jorge; Gambini, Rodolfo
2016-03-01
We consider a local conformal invariant coupling of the standard model to gravity free of any dimensional parameter. The theory is formulated in order to have a quantized version that admits a spin network description at the kinematical level like that of loop quantum gravity. The Gauss constraint, the diffeomorphism constraint and the conformal constraint are automatically satisfied and the standard inner product of the spin-network basis still holds. The resulting theory has resemblances with the Bars-Steinhardt-Turok local conformal theory, except it admits a canonical quantization in terms of loops. By considering a gauge fixed version of the theory we show that the Standard model coupled to gravity is recovered and the Higgs boson acquires mass. This in turn induces via the standard mechanism masses for massive bosons, baryons and leptons.
Observational signatures of modified gravity on ultra-large scales
Baker, Tessa
2015-01-01
Extremely large surveys with future experiments like Euclid and the SKA will soon allow us to access perturbation modes close to the Hubble scale, with wavenumbers $k \\sim {\\cal H}$. If a modified gravity theory is responsible for cosmic acceleration, the Hubble scale is a natural regime for deviations from General Relativity (GR) to become manifest. The majority of studies to date have concentrated on the consequences of alternative gravity theories for the subhorizon, quasi-static regime, however. We investigate how modifications to the gravitational field equations affect perturbations around the Hubble scale, and how this translates into deviations of ultra large-scale relativistic observables from their GR behaviour. Adopting a model-independent ethos that relies only on the broad physical properties of gravity theories, we find that the deviations of the observables are small unless modifications to GR are drastic. The angular dependence and redshift evolution of the deviations is highly parameterisatio...
Genetic analysis of gravity signal transduction in roots
Masson, Patrick; Strohm, Allison; Baldwin, Katherine
To grow downward into the soil, roots use gravity as a guide. Specialized cells, named stato-cytes, enable this directional growth response by perceiving gravity. Located in the columella region of the cap, these cells sense a reorientation of the root within the gravity field through the sedimentation of, and/or tension/pressure exerted by, dense amyloplasts. This process trig-gers a gravity signal transduction pathway that leads to a fast alkalinization of the cytoplasm and a change in the distribution of the plasma membrane-associated auxin-efflux carrier PIN3. The latter protein is uniformly distributed within the plasma membrane on all sides of the cell in vertically oriented roots. However, it quickly accumulates at the bottom side upon gravis-timulation. This process correlates with a preferential transport of auxin to the bottom side of the root cap, resulting in a lateral gradient across the tip. This gradient is then transported to the elongation zone where it promotes differential cellular elongation, resulting in downward curvature. We isolated mutations that affect gravity signal transduction at a step that pre-cedes cytoplasmic alkalinization and/or PIN3 relocalization and lateral auxin transport across the cap. arg1 and arl2 mutations identify a common genetic pathway that is needed for all three gravity-induced processes in the cap statocytes, indicating these genes function early in the pathway. On the other hand, adk1 affects gravity-induced PIN3 relocalization and lateral auxin transport, but it does not interfere with cytoplasmic alkalinization. ARG1 and ARL2 encode J-domain proteins that are associated with membranes of the vesicular trafficking path-way whereas ADK1 encodes adenosine kinase, an enzyme that converts adenosine derived from nucleic acid metabolism and the AdoMet cycle into AMP, thereby alleviating feedback inhibi-tion of this important methyl-donor cycle. Because mutations in ARG1 (and ARL2) do not completely eliminate
Loop expansion and the bosonic representation of loop quantum gravity
Bianchi, E.; Guglielmon, J.; Hackl, L.; Yokomizo, N.
2016-10-01
We introduce a new loop expansion that provides a resolution of the identity in the Hilbert space of loop quantum gravity on a fixed graph. We work in the bosonic representation obtained by the canonical quantization of the spinorial formalism. The resolution of the identity gives a tool for implementing the projection of states in the full bosonic representation onto the space of solutions to the Gauss and area matching constraints of loop quantum gravity. This procedure is particularly efficient in the semiclassical regime, leading to explicit expressions for the loop expansions of coherent, heat kernel and squeezed states.
Loop expansion and the bosonic representation of loop quantum gravity
Bianchi, Eugenio; Hackl, Lucas; Yokomizo, Nelson
2016-01-01
We introduce a new loop expansion that provides a resolution of the identity in the Hilbert space of loop quantum gravity on a fixed graph. We work in the bosonic representation obtained by the canonical quantization of the spinorial formalism. The resolution of the identity gives a tool for implementing the projection of states in the full bosonic representation onto the space of solutions to the Gauss and area matching constraints of loop quantum gravity. This procedure is particularly efficient in the semiclassical regime, leading to explicit expressions for the loop expansions of coherent, heat kernel and squeezed states.
Gravity inferred subsurface structure of Gadwal Schist belt, Andhra Pradesh
Indian Academy of Sciences (India)
G Ramadass; I B Ramaprasada Rao; N Srinivasulu
2001-03-01
Detailed gravity data collected across the Gadwal schist belt in the state of Andhra Pradesh show an 8.4 mgal residual gravity anomaly associated with meta-sediments/volcanics of the linear NNW-SSE trending schist belt that shows metamorphism from green schist to amphibolite facies. This schist belt is flanked on either side by the peninsular gneissic complex. The elevation and slab Bouguer corrected residual gravity profile data were interpreted using 2-D prism models. The results indicate a synformal structure having a width of 1.8 km at the surface, tapering at a depth of about 2.6 km with a positive density contrast of 0.15 gm/cc with respect to the surrounding peninsular gneissic complex.
Global Gravity Inversion of Bodies with Arbitrary Shape
Tricarico, Pasquale
2013-01-01
Gravity inversion allows us to constrain the interior mass distribution of a planetary body using the observed shape, rotation, and gravity. Traditionally, techniques developed for gravity inversion can be divided into Monte Carlo methods, matrix inversion methods, and spectral methods. Here we employ both matrix inversion and Monte Carlo in order to explore the space of exact solutions, in a method which is particularly suited for arbitrary shape bodies. We expand the mass density function using orthogonal polynomials, and map the contribution of each term to the global gravitational field generated. This map is linear in the density terms, and can be pseudo-inverted in the under-determined regime using QR decomposition, to obtain a basis of the affine space of exact interior structure solutions. As the interior structure solutions are degenerate, assumptions have to be made in order to control their properties, and these assumptions can be transformed into scalar functions and used to explore the solutions ...
Drawdown behavior of gravity drainage wells
Energy Technology Data Exchange (ETDEWEB)
Aasen, J.A.; Ramey, H.J. Jr.
1993-10-01
An analytical solution for drawdown in gravity drainage wells is developed. The free-surface flow is viewed as incompressible, and anisotropy effects are included. The well is a line source well, and the reservoir is infinitely large. The model is valid for small drawdowns. The uniform wellbore potential inner boundary condition is modelled using the proper Green`s function. The discontinuity at the wellbore is solved by introducing a finite skin radius, and the formulation produces a seepage face. The calculated wellbore flux distribution and wellbore pressures are in fair agreement with results obtained using a numerical gravity drainage simulator. Three distinct flow periods are observed. The wellbore storage period is caused by the moving liquid level, and the duration is short. During the long intermediate flow period, the wellbore pressure is nearly constant. In this period the free surface moves downwards, and the liquid is produced mainly by vertical drainage. At long times the semilog straight line appears. The confined liquid solutions by Theis (1935) and van Everdingen and Hurst (1949) may be used during the pseudoradial flow period if the flowrate is low. New type curves are presented that yield both vertical and horizontal permeabilities.
Clusters of Galaxies in a Weyl Geometric Approach to Gravity
Directory of Open Access Journals (Sweden)
Erhard Scholz
2016-01-01
Full Text Available A model for the dark halos of galaxy clusters, based on the Weyl geometric scalar tensor theory of gravity (WST with a MOND-like approximation, is proposed. It is uniquely determined by the baryonic mass distribution of hot gas and stars. A first heuristic check against empirical data for 19 clusters (2 of which are outliers, taken from the literature, shows encouraging results. Modulo a caveat resulting from different background theories (Einstein gravity plus ΛCDM versus WST, the total mass for 15 of the outlier reduced ensemble of 17 clusters seems to be predicted correctly (in the sense of overlapping 1σ error intervals.
Power-counting renormalizability of generalized Horava gravity
Visser, Matt
2009-01-01
In an earlier article [arXiv:0902.0590 [hep-th], Phys. Rev D80 (2009) 025011], I discussed the potential benefits of allowing Lorentz symmetry breaking in quantum field theories. In particular I discussed the perturbative power-counting finiteness of the normal-ordered :P(phi)^{z>=d}_{d+1}: scalar quantum field theories, and sketched the implications for Horava's model of quantum gravity. In the current rather brief addendum, I will tidy up some dangling issues and fill out some of the technical details of the argument indicating the power-counting renormalizability of a z>=d variant of Horava gravity in (d+1) dimensions.
Learning about quantum gravity with a couple of nodes
Borja, Enrique F; Vidotto, Francesca
2011-01-01
Loop Quantum Gravity provides a natural truncation of the infinite degrees of freedom of gravity, obtained by studying the theory on a given finite graph. We review this procedure and we present the construction of the canonical theory on a simple graph, formed by only two nodes. We review the U(N) framework, which provides a powerful tool for the canonical study of this model, and a formulation of the system based on spinors. We consider also the covariant theory, which permits to derive the model from a more complex formulation, paying special attention to the cosmological interpretation of the theory.
Learning about Quantum Gravity with a Couple of Nodes
Borja, Enrique F.; Garay, Iñaki; Vidotto, Francesca
2012-03-01
Loop Quantum Gravity provides a natural truncation of the infinite degrees of freedom of gravity, obtained by studying the theory on a given finite graph. We review this procedure and we present the construction of the canonical theory on a simple graph, formed by only two nodes. We review the U(N) framework, which provides a powerful tool for the canonical study of this model, and a formulation of the system based on spinors. We consider also the covariant theory, which permits to derive the model from a more complex formulation, paying special attention to the cosmological interpretation of the theory.
Radiative Structures of Lycopodium-Air Flames in Low Gravity
Berlad, A. L.; Tangirala, V.; Ross, H.; Facca, L.
1989-01-01
Initially uniform clouds of fuel particulates in air sustain processes which may lead to particle cloud nonuniformities. In low gravity, flame-induced Kundt's Tube phenomena are observed to form regular patterns of nonuniform particle concentrations. Irregular patterns of particle concentrations also are observed to result from selected nonuniform mixing processes. Low gravity flame propagation for each of these classes of particle cloud flames has been found to depend importantly on the flame-generated infrared radiative fields. The spatial structures of these radiative fields are described. Application is made for the observed clases of lycopodium-air flames.
Torsion Wave Solutions in Yang-Mielke Theory of Gravity
Pasic, Vedad
2015-01-01
The approach of metric-affine gravity initially distinguishes it from Einstein's general relativity. Using an independent affine connection produces a theory with 10+64 unknowns. We write down the Yang-Mills action for the affine connection and produce the Yang-Mills equation and the so called complementary Yang-Mills equation by independently varying with respect to the connection and the metric respectively. We call this theory the Yang-Mielke theory of gravity. We construct explicit spacetimes with pp-metric and purely axial torsion and show that they represent a solution of Yang-Mills theory. Finally we compare these spacetimes to existing solutions of metric-affine gravity and present future research possibilities.
Perceptual centering of body segment orientation.
Hanes, Douglas A
2007-01-01
It has been shown experimentally that under certain combinations of sensory stimuli, human subjects can perceive one of several distinct illusions about their overall orientation in or movement through space. In at least some cases, the structure of such multistable illusory perceptions of orientation can be efficiently described by perceptual transformations that act on a current orientation estimate to yield an updated perceptual construct. Repeated application of identified generating transformations yields a limited set of predicted illusions for a given sensory environment. This approach is especially valuable for perceptual data that exhibits discretely differing classes of illusions between subjects or trials. In a previous study, application of a semigroup of perceptual centering transformations has succeeded in reproducing and simplifying data from an experiment in which subjects experiencing visual vection reported a range of illusions about the orientations of their gaze, head, and torso to gravity. After reviewing previously obtained results on perceptual centering, this article generalizes the approach, presenting the mathematics required to characterize perceptual transformations. The developed framework should be widely applicable in the understanding of perceptual illusions, particularly when these are guided by alignment with preferred constructs. Secondly, the article reveals the nontrivial mathematical process of perceptual semigroup formation and evaluation, deducing the complete description of the semigroup constructed in the previous study. Perceptual centering transformations identified in terrestrial experiments may predict illusions to be expected in spaceflight. For example, our results indicate that under certain conditions, many astronauts will misperceive a visual rotation axis to be centered in front of the head or even the torso.
The good, the bad and the ugly .... of Horava gravity
Padilla, Antonio
2010-01-01
I review the good, the bad and the ugly of the non-projectable versions of Horava gravity. I explain how this non-relativistic theory was constructed and why it was touted with such excitement as a quantum theory of gravity. I then review some of the issues facing the theory, explaining how strong coupling occurs and why this is such a problem for both phenomenology and the question of renormalisability. Finally I comment on possible violations of Equivalence Principle, and explain why these could be an issue for Blas et al's "healthy extension". This paper was presented as a talk at PASCOS 2010 in Valencia.
Stochastic Boundary Element Analysis of Concrete Gravity Dam
Institute of Scientific and Technical Information of China (English)
张明; 吴清高
2002-01-01
Stochastic boundary integral equations for analyzing large structures are obtained from the partial derivatives of basic random variables. A stochastic boundary element method based on the equations is developed to solve engineering problems of gravity dams using random factors including material parameters of the dam body and the foundation, the water level in the upper reaches, the anti-slide friction coefficient of the dam base, etc. A numerical example shows that the stochastic boundary element method presented in this paper to calculate the reliability index of large construction projects such as a large concrete gravity dam has the advantages of less input data and more precise computational results.
Stabilization of linear higher derivative gravity with constraints
Energy Technology Data Exchange (ETDEWEB)
Chen, Tai-jun; Lim, Eugene A., E-mail: T.Chen@damtp.cam.ac.uk, E-mail: eugene.a.lim@gmail.com [DAMTP, University of Cambridge, Wilberforce Road, CB3 0WA, Cambridge (United Kingdom)
2014-05-01
We show that the instabilities of higher derivative gravity models with quadratic curvature invariant αR{sup 2}+βR{sub μν}R{sup μν} can be removed by judicious addition of constraints at the quadratic level of metric fluctuations around Minkowski/de Sitter background. With a suitable parameter choice, we find that the instabilities of helicity-0, 1, 2 modes can be removed while reducing the dimensionality of the original phase space. To retain the renormalization properties of higher derivative gravity, Lorentz symmetry in the constrained theory is explicitly broken.
On the critical temperatures of superconductors: a quantum gravity approach
Gregori, Andrea
2010-01-01
We consider superconductivity in the light of the quantum gravity theoretical framework introduced in [1]. In this framework, the degree of quantum delocalization depends on the geometry of the energy distribution along space. This results in a dependence of the critical temperature characterizing the transition to the superconducting phase on the complexity of the structure of a superconductor. We consider concrete examples, ranging from low to high temperature superconductors, and discuss how the critical temperature can be predicted once the quantum gravity effects are taken into account.
Yokoyama, I.; Mena, M.
1991-07-01
Previous studies of La Primavera caldera have mostly been based on surface geology and topography. Since 1980, many wells, exploring for geothermal energy, have reached depths of about 2 to 3 km at the center of the caldera. The results of the drillings, together with those of the gravity surveys, provide information about the subsurface structure of the caldera, and shed light on its formation. The drilling results and gravity anomalies at La Primavera caldera and San Marcos, located at about 40 km distance from the caldera, suggest that regional gravity anomalies can be interpreted in terms of depths of the granitic basements: the basement beneath La Primavera caldera is about 3 km deep and consists of roughly the same horizon as that beneath San Marcos. The drilling results within the caldera reveal that the depth of the caldera fills ranges from 0.3 to 1 km at the drilling sites. The andesite basement, about 1 km deep, remains approximately horizontal, and the granitic basement has a depth of about 3 km. The surface topographies, such as the postcaldera domes, scarcely disturb the subsurface strata. The local gravity anomalies show two lows within the caldera reflecting the configuration of caldera bottom, two funnel-shaped depressions, one of which corresponds to a vent of the Tala tuff deduced from geological observations. The mass deficiency within the caldera estimated from the gravity anomaly, satisfies the general relationship that the mass deficiency is proportional to the caldera diameter cubed. This means that caldera structure is three-dimensional: the larger the diameter, the deeper the funnel-shape. At present this argument may be limited to funnel-shaped calderas.
Gravity sensing, a largely misunderstood trigger of plant orientated growth.
Lopez, David; Tocquard, Kévin; Venisse, Jean-Stéphane; Legué, Valerie; Roeckel-Drevet, Patricia
2014-01-01
Gravity is a crucial environmental factor regulating plant growth and development. Plants have the ability to sense a change in the direction of gravity, which leads to the re-orientation of their growth direction, so-called gravitropism. In general, plant stems grow upward (negative gravitropism), whereas roots grow downward (positive gravitropism). Models describing the gravitropic response following the tilting of plants are presented and highlight that gravitropic curvature involves both gravisensing and mechanosensing, thus allowing to revisit experimental data. We also discuss the challenge to set up experimental designs for discriminating between gravisensing and mechanosensing. We then present the cellular events and the molecular actors known to be specifically involved in gravity sensing.