WorldWideScience

Sample records for center dust gas

  1. Hydrodynamic model of a self-gravitating optically thick gas and dust cloud

    Science.gov (United States)

    Zhukova, E. V.; Zankovich, A. M.; Kovalenko, I. G.; Firsov, K. M.

    2015-10-01

    We propose an original mechanism of sustained turbulence generation in gas and dust clouds, the essence of which is the consistent provision of conditions for the emergence and maintenance of convective instability in the cloud. We considered a quasi-stationary one-dimensional model of a selfgravitating flat cloud with stellar radiation sources in its center. The material of the cloud is considered a two-component two-speed continuous medium, the first component of which, gas, is transparent for stellar radiation and is supposed to rest being in hydrostatic equilibrium, and the second one, dust, is optically dense and is swept out by the pressure of stellar radiation to the periphery of the cloud. The dust is specified as a set of spherical grains of a similar size (we made calculations for dust particles with radii of 0.05, 0.1, and 0.15 μm). The processes of scattering and absorption of UV radiation by dust particles followed by IR reradiation, with respect to which the medium is considered to be transparent, are taken into account. Dust-driven stellar wind sweeps gas outwards from the center of the cloud, forming a cocoon-like structure in the gas and dust. For the radiation flux corresponding to a concentration of one star with a luminosity of about 5 ×104 L ⊙ per square parsec on the plane of sources, sizes of the gas cocoon are equal to 0.2-0.4 pc, and for the dust one they vary from tenths of a parsec to six parsecs. Gas and dust in the center of the cavity are heated to temperatures of about 50-60 K in the model with graphite particles and up to 40 K in the model with silicate dust, while the background equilibrium temperature outside the cavity is set equal to 10 K. The characteristic dust expansion velocity is about 1-7 kms-1. Three structural elements define the hierarchy of scales in the dust cocoon. The sizes of the central rarefied cavity, the dense shell surrounding the cavity, and the thin layer inside the shell in which dust is settling provide

  2. The Marriage of Gas and Dust

    Science.gov (United States)

    Price, D. J.; Laibe, G.

    2015-10-01

    Dust-gas mixtures are the simplest example of a two fluid mixture. We show that when simulating such mixtures with particles or with particles coupled to grids a problem arises due to the need to resolve a very small length scale when the coupling is strong. Since this is occurs in the limit when the fluids are well coupled, we show how the dust-gas equations can be reformulated to describe a single fluid mixture. The equations are similar to the usual fluid equations supplemented by a diffusion equation for the dust-to-gas ratio or alternatively the dust fraction. This solves a number of numerical problems as well as making the physics clear.

  3. DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO

    Energy Technology Data Exchange (ETDEWEB)

    Pinte, C.; Ménard, F. [UMI-FCA, CNRS/INSU, France (UMI 3386), and Dept. de Astronomía, Universidad de Chile, Santiago (Chile); Dent, W. R. F.; Hales, A.; Hill, T.; Cortes, P.; Gregorio-Monsalvo, I. de, E-mail: christophe.pinte@obs.ujf-grenoble.fr [Atacama Large Millimeter/Submillimeter Array, Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago (Chile)

    2016-01-01

    The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.

  4. Dust characterisation for hot gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Dockter, B.; Erickson, T.; Henderson, A.; Hurley, J.; Kuehnel, V.; Katrinak, K.; Nowok, J.; O`Keefe, C.; O`Leary, E.; Swanson, M.; Watne, T. [University of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center (UNDEERC)

    1998-03-01

    Hot gas filtration to remove particulates from the gas flow upstream of the gas turbine is critical to the development of many of the advanced coal-fired power generation technologies such as the Air Blown Gasification Cycle (ABGC), a hybrid gasification combined cycle being developed in the UK. Ceramic candle filters are considered the most promising technology for this purpose. Problems of mechanical failure and of `difficult-to-clean` dusts causing high pressure losses across the filter elements need to be solved. The project investigated the behaviour of high-temperature filter dusts, and the factors determining the ease with which they can be removed from filters. The high-temperature behaviour of dusts from both combustion and gasification systems was investigated. Dust samples were obtained from full-scale demonstration and pilot-scale plant operating around the world. Dust samples were also produced from a variety of coals, and under several different operating conditions, on UNDEERC`s pilot-scale reactor. Key factors affecting dust behaviour were examined, including: the rates of tensile strength developing in dust cakes; the thermochemical equilibria pertaining under filtration conditions; dust adhesivity on representative filter materials; and the build-up and cleaning behaviour of dusts on representative filter candles. The results obtained confirmed the importance of dust temperature, dust cake porosity, cake liquid content, and particle size distribution in determining the strength of a dust cake. An algorithm was developed to indicate the likely sticking propensity of dusts as a function of coal and sorbent composition and combustion conditions. This algorithm was incorporated into a computer package which can be used to judge the degree of difficulty in filter cleaning that can be expected to arise in a real plant based on operating parameters and coal analyzes. 6 figs.

  5. Correlation Between Cometary Gas/Dust Ratios and Heliocentric Distance

    Science.gov (United States)

    Harrington, Olga; Womack, Maria; Lastra, Nathan

    2017-10-01

    We compiled CO-based gas/dust ratios for several comets out to heliocentric distances, rh, of 8 au to probe whether there is a noticeable change in comet behavior over the range that water-ice sublimation starts. Previously, gas/dust ratios were calculated for an ensemble of comets using Q(CO2)/efp values derived from infrared measurements, which showed that the gas/dust ratio follows a rh-2 within 4 AU, but is flat at greater distances (Bauer et al. 2015). Our project focuses on gas/dust ratios for which CO is assumed to be the dominant gas, in order to test whether similar breaks in slope occur for CO. The gas/dust ratios were calculated from measurements of CO production rates (mostly from millimeter-wavelength spectroscopy) and reflected sunlight of comets (mostly via reported visual magnitudes of dusty comets). We present our new CO-based gas/dust ratios at different heliocentric distances, compare them to existing CO2-based gas/dust ratios, and discuss implications for CO-driven and CO2-driven activity. We discuss O.H. acknowledges support from the Hartmann Student Travel Grant program. M.W. acknowledges support from NSF grant AST-1615917.

  6. Dust-gas interaction deduced from Halley multicolour camera observations

    International Nuclear Information System (INIS)

    Huebner, W.F.; Delamere, W.A.; Keller, H.U.; Reitsema, H.J.; Schmidt, H.U.; Whipple, F.L.; Wilhelm, K.

    1986-01-01

    The dust and gas productions of Comet Halley were measured by the dust counter and the mass spectrometers on the Giotto spacecraft. These instruments give only little information about the spatial asymmetry of the activity. The asymmetry in the dust production is clearly evident from the dust jets seen in the Halley Multicolour Camera images. Since the dust is entrained by the gas, production must be similarly asymmetric. The intensity profiles along and across several dust jets are related to their source regions on the nucleus. Properties of the dust jets are investigated. A few compact, but highly active source regions on the nucleus produce most of the visible dust and can account for most of the gas produced by the comet. 2 refs

  7. HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK

    Energy Technology Data Exchange (ETDEWEB)

    Roberge, A. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Kamp, I. [Kapteyn Astronomical Institute, University of Groningen, 9700 AV Groningen (Netherlands); Montesinos, B. [Departamento de Astrofisica, Centro de Astrobiologia (INTA-CSIC), ESAC Campus, PO Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Dent, W. R. F. [ALMA, Avda Apoquindo 3846, Piso 19, Edificio Alsacia, Las Condes, Santiago (Chile); Meeus, G.; Eiroa, C. [Departmento Fisica Teorica, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Donaldson, J. K. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Olofsson, J. [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117, Heidelberg (Germany); Moor, A. [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary); Augereau, J.-C.; Thi, W.-F. [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique de Grenoble, UMR 5274, F-38041, Grenoble (France); Howard, C.; Sandell, G. [SOFIA-USRA, NASA Ames Research Center, Building N232, PO Box 1, Moffett Field, CA 94035 (United States); Ardila, D. R. [NASA Herschel Science Center, California Institute of Technology, 1200 E. California Blvd., Mail Stop 220-6, Pasadena, CA 91125 (United States); Woitke, P., E-mail: Aki.Roberge@nasa.gov [University of Vienna, Department of Astronomy, Tuerkenschanzstr. 17, A-1180, Vienna (Austria)

    2013-07-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space Observatory PACS and SPIRE instruments, largely as part of the ''Gas in Protoplanetary Systems'' (GASPS) Open Time Key Programme. Disk dust emission is detected in images at 70, 160, 250, 350, and 500 {mu}m; 49 Cet is significantly extended in the 70 {mu}m image, spatially resolving the outer dust disk for the first time. Spectra covering small wavelength ranges centered on eight atomic and molecular emission lines were obtained, including [O I] 63 {mu}m and [C II] 158 {mu}m. The C II line was detected at the 5{sigma} level-the first detection of atomic emission from the disk. No other emission lines were seen, despite the fact that the O I line is the brightest one observed in Herschel protoplanetary disk spectra. We present an estimate of the amount of circumstellar atomic gas implied by the C II emission. The new far-IR/sub-mm data fills in a large gap in the previous spectral energy distribution (SED) of 49 Cet. A simple model of the new SED confirms the two-component structure of the disk: warm inner dust and cold outer dust that produces most of the observed excess. Finally, we discuss preliminary thermochemical modeling of the 49 Cet gas/dust disk and our attempts to match several observational results simultaneously. Although we are not yet successful in doing so, our investigations shed light on the evolutionary status of the 49 Cet gas, which might not be primordial gas but rather secondary gas coming from comets.

  8. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. II. GAS-TO-DUST RATIO VARIATIONS ACROSS INTERSTELLAR MEDIUM PHASES

    International Nuclear Information System (INIS)

    Roman-Duval, Julia; Gordon, Karl D.; Meixner, Margaret; Bot, Caroline; Bolatto, Alberto; Jameson, Katherine; Hughes, Annie; Hony, Sacha; Wong, Tony; Babler, Brian; Bernard, Jean-Philippe; Clayton, Geoffrey C.; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Lebouteiller, Vianney; Lee, Min-Young; Glover, Simon; Israel, Frank; Li, Aigen

    2014-01-01

    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Hα observations. In the diffuse atomic interstellar medium (ISM), we derive the GDR as the slope of the dust-gas relation and find GDRs of 380 −130 +250 ± 3 in the LMC, and 1200 −420 +1600 ± 120 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 M ☉  pc –2 in the LMC and 0.03 M ☉  pc –2 in the SMC, corresponding to A V ∼ 0.4 and 0.2, respectively. We investigate the range of CO-to-H 2 conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on X CO to be 6 × 10 20  cm –2  K –1  km –1 s in the LMC (Z = 0.5 Z ☉ ) at 15 pc resolution, and 4 × 10 21  cm –2  K –1  km –1 s in the SMC (Z = 0.2 Z ☉ ) at 45 pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ∼2, even after accounting for the effects of CO-dark H 2 in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H 2 . Within the expected 5-20 times Galactic X CO range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling and observations are required to break the degeneracy between dust grain coagulation, accretion, and CO-dark H 2

  9. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. II. GAS-TO-DUST RATIO VARIATIONS ACROSS INTERSTELLAR MEDIUM PHASES

    Energy Technology Data Exchange (ETDEWEB)

    Roman-Duval, Julia; Gordon, Karl D.; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bot, Caroline [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l' université, F-67000 Strasbourg (France); Bolatto, Alberto; Jameson, Katherine [Department of Astronomy, Lab for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Hughes, Annie; Hony, Sacha [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Wong, Tony [University of Illinois at Urbana-Champaign, 1002 W. Green St., Urbana, IL 61801 (United States); Babler, Brian [Department of Astronomy, University of Wisconsin, 475 North Charter St., Madison, WI 53706 (United States); Bernard, Jean-Philippe [CNRS, IRAP, 9 Av. colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France); Clayton, Geoffrey C. [Louisiana State University, Department of Physics and Astronomy, 233-A Nicholson Hall, Tower Dr., Baton Rouge, LA 70803-4001 (United States); Fukui, Yasuo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Galametz, Maud [European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching (Germany); Galliano, Frederic; Lebouteiller, Vianney; Lee, Min-Young [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Glover, Simon [Zentrum für Astronomie, Institut für Theoretische Astrophysik, Universität Heidelberg, Albert-Ueberle Strasse 2, D-69120 Heidelberg (Germany); Israel, Frank [Sterrewacht Leiden, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Li, Aigen, E-mail: duval@stsci.edu [314 Physics Building, Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); and others

    2014-12-20

    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Hα observations. In the diffuse atomic interstellar medium (ISM), we derive the GDR as the slope of the dust-gas relation and find GDRs of 380{sub −130}{sup +250} ± 3 in the LMC, and 1200{sub −420}{sup +1600} ± 120 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 M {sub ☉} pc{sup –2} in the LMC and 0.03 M {sub ☉} pc{sup –2} in the SMC, corresponding to A {sub V} ∼ 0.4 and 0.2, respectively. We investigate the range of CO-to-H{sub 2} conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on X {sub CO} to be 6 × 10{sup 20} cm{sup –2} K{sup –1} km{sup –1} s in the LMC (Z = 0.5 Z {sub ☉}) at 15 pc resolution, and 4 × 10{sup 21} cm{sup –2} K{sup –1} km{sup –1} s in the SMC (Z = 0.2 Z {sub ☉}) at 45 pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ∼2, even after accounting for the effects of CO-dark H{sub 2} in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H{sub 2}. Within the expected 5-20 times Galactic X {sub CO} range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling

  10. Stripping of gas and dust from the elliptical galaxy M86

    International Nuclear Information System (INIS)

    White, D.A.; Fabian, A.C.; Forman, W.; Jones, C.; Stern, C.

    1990-01-01

    Past observations of the x ray morphology of M86 have revealed that the galaxy is experiencing ram-pressure stripping due to its large velocity (1500 km s(-1)) relative to the intracluster medium of Virgo (Forman et al. 1979, Fabian, Schwartz, and Forman 1980). Observations indicate that the x ray emitting gas in the plume of M86 is still being produced from the continual heating of gas and dust stripped from nearer the galaxy's center. Researchers obtained two-dimensional Infrared Astronomy Satellite (IRAS) images of M86 which have revealed that there are two spatially separated regions of emission, one at 60 microns and the other at 100 microns of the IRAS wavebands. The 100 microns emission, presumably from cool dust (at approximately 20 K), appears to be located near the center of the galaxy together with HI (detected by Bregman, Roberts and Giovanelli 1988), while the 60 microns emission appears to lie more than 3 arcminutes away from the optical center in a direction slightly south of the center of the plume. Optical images produced by scanning U.K. Schmidt plates, reveal asymmetric isophotal contours along the major axis of the galaxy (first reported by Nulsen and Carter in 1987, which they propose as excess emission due to star formation). This excess optical emission is co-incident with the direction of the 60 micron infra-red emission

  11. Formation of a Boundary-Free Dust Cluster in a Low-Pressure Gas-Discharge Plasma

    International Nuclear Information System (INIS)

    Usachev, A. D.; Zobnin, A. V.; Petrov, O. F.; Fortov, V. E.; Annaratone, B. M.; Thoma, M. H.; Hoefner, H.; Kretschmer, M.; Fink, M.; Morfill, G. E.

    2009-01-01

    An attraction between negatively charged micron-sized plastic particles was observed in the bulk of a low-pressure gas-discharge plasma under microgravity conditions. This attraction had led to the formation of a boundary-free dust cluster, containing one big central particle with a radius of about 6 μm and about 30 1 μm-sized particles situated on a sphere with a radius of 190 μm and with the big particle in the center. The stability of this boundary-free dust cluster was possible due to its confinement by the plasma flux on the central dust particle

  12. Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties

    Science.gov (United States)

    Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl

    2017-12-01

    We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.

  13. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe

    2015-01-01

    Using the Planck far-infrared and Arecibo GALFA 21 cm line surveys, we identified a set of isolated interstellar clouds (approximately degree-sized on the sky and comprising 100 solar masses) and assessed the ratio of gas mass to dust mass. Significant variations of the gas/dust ratio are found both from cloud to cloud and within regions of individual clouds; within the clouds, the atomic gas per unit dust decreases by more than a factor of 3 compared with the standard gas/dust ratio. Three hypotheses are considered. First, the apparently low gas/dust ratio could be due to molecular gas. Comparing to Planck CO maps, the brightest clouds have a H 2 /CO ratio comparable to Galactic plane clouds, but a strong lower limit is placed on the ratio for other clouds, such that the required amount of molecular gas is far higher than would be expected based on the CO upper limits. Second, we consider self-absorbed 21 cm lines and find that the optical depth must be ∼3, significantly higher than found from surveys of radio sources. Third, grain properties may change within the clouds: they become more emissive when they are colder, while not utilizing heavy elements that already have their cosmic abundance fully locked into grains. It is possible that all three processes are active, and follow-up studies will be required to disentangle them and measure the true total gas and dust content of interstellar clouds

  14. Blast furnace top gas and dusts; Masuunin huippukaasu ja poelyt

    Energy Technology Data Exchange (ETDEWEB)

    Lohi, T.K.; Mannila, P.; Karjalahti, T.; Haerkki, J.

    1997-12-31

    This report is related to the `Gas Phase Reactions in a Blast Furnace` project. The aim of the project is to clarify the behaviour of gas phase in a blast furnace with high oil injection rate. The effect of blast furnace operation, iron reduction reactions, the amount of oil injected, alkalis, zinc and sulfur on the formation of top gas and dusts has been examined in this work. In addition, the gas cleaning system, i.e. the dust sack, gas scrubber, venturi scrubbers and an electric filter, of the blast furnaces of Rautaruukki Oy is presented. The composition of the top gas as well as the amount and composition of the dust from the gas cleaners were investigates in the experimental part of the research. The work has been focused on the analysis of carbon, iron, zinc, sulfur and alkalis. In addition to this, possible systematic variations caused by the discharge of hot metal were investigated. The experiments were made at blast furnaces no 1 and 2 of Rautaruukki Raahe Steel. The relationship between dust quantity and composition in the dust sack and the quantity of oil injected was analyzed on the basis of collected data. On the basis of experimental results, hot metal discharge has no effect on the composition or quantity of the top gas and dust. The composition of the dust varied between different gas cleaners. The coarsest and heaviest material remains in the dust sack. The lightest material separates at the electric filter. The main components at every gas cleaner were iron (9.4 - 38.1 %) and carbon (31.5 - 63.7 %). Particles with zinc and sulfur were separated at the venturi scrubbers (Zn = 3.0 % and S = 2.2 %) and the electric filter (Zn = 3.2 % and S = 2.6 %). Particles with alkalis were separated at the end of the gas cleaning process. The amount of sodium at the venturi scrubbers and the electric filter was 1.0 % on average. The average amount of potassium was 0.5 % at the venturi scrubber and 1.4 % at the electric filter 28 refs., 31 figs.

  15. New View of Gas and Dust in the Solar Nebula

    Science.gov (United States)

    Taylor, G. J.

    2010-08-01

    The recognizable components in meteorites differ in their relative abundances of the three oxygen isotopes (16O, 17O, and 18O). In particular, the amount of 16O varies from being like that of the Earth to substantially enriched compared to the other two isotopes. The current explanation for this interesting range in isotopic composition is that dust and gas in the solar nebula (the cloud of gas and dust surrounding the primitive Sun) began with the same 16O-rich composition, but the solids evolved towards the terrestrial value. A new analysis of the problem by Alexander Krot (University of Hawaii) and colleagues at the University of Hawaii, the University of Chicago, Clemson University, and Lawrence Livermore National Laboratory leads to the bold assertion that primordial dust and gas differed in isotopic composition. The gas was rich in 16O as previously thought (possibly slightly richer in 16O than the measurements of the solar wind returned by the Genesis Mission), but that the dust had a composition close to the 16O-depleted terrestrial average. In this new view, the dust had a different history than did the gas before being incorporated into the Solar System. Solids with compositions near the terrestrial line may have formed in regions of the solar nebula where dust had concentrated compared to the mean solar dust/gas ratio (1 : ~100). The idea has great implications for understanding the oxygen-isotope composition of the inner Solar System and the origin of materials in the molecular cloud from which the Solar System formed.

  16. COLD DUST BUT WARM GAS IN THE UNUSUAL ELLIPTICAL GALAXY NGC 4125

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, C. D.; Cridland, A.; Foyle, K.; Parkin, T. J.; Cooper, E. Mentuch [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Roussel, H. [Institut d' Astrophysique de Paris, Université Pierre et Marie Curie, CNRS UMR 7095, F-75014 Paris (France); Sauvage, M.; Lebouteiller, V.; Madden, S. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot DAPNIA/Service d' Astrophysique, Bât. 709, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France); Smith, M. W. L.; Gear, W. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, M.; De Looze, I. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bendo, G. [UK ALMA Regional Centre Node, Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Boquien, M.; Boselli, A.; Ciesla, L. [Aix-Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Galametz, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); and others

    2013-10-20

    Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and H I emission. Depending on the dust emissivity, the total dust mass is 2-5 × 10{sup 6} M {sub ☉}. While the neutral gas-to-dust mass ratio is extremely low (<12-30), including the ionized gas traced by [C II] emission raises this limit to <39-100. The dust emission follows a similar r {sup 1/4} profile to the stellar light and the dust to stellar mass ratio is toward the high end of what is found in nearby elliptical galaxies. We suggest that NGC 4125 is currently in an unusual phase where evolved stars produced in a merger-triggered burst of star formation are pumping large amounts of gas and dust into the interstellar medium. In this scenario, the low neutral gas-to-dust mass ratio is explained by the gas being heated to temperatures ≥10{sup 4} K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.

  17. Dust removal from waste gas arising from fluidized beds

    International Nuclear Information System (INIS)

    Soltys, L.

    1992-01-01

    Two types dust removal equipment mostly useful for dust removal from waste gas from fluidized beds, i.e. electrofilters and pulsatory bag filters were presented. Their features and functional properties were compared. (author). 7 refs, 4 figs

  18. 30 CFR 70.305 - Respiratory equipment; gas, dusts, fumes, or mists.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Respiratory equipment; gas, dusts, fumes, or... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES Respiratory Equipment § 70.305 Respiratory equipment; gas, dusts, fumes, or mists. Respiratory equipment approved by...

  19. Stars, gas, and dust in the Andromeda Galaxy

    International Nuclear Information System (INIS)

    Walterbos, R.A.M.

    1986-01-01

    In this thesis the results of an extensive observational study are presented of the properties of the stellar disk and bulge, the dust, and the gas in the Andromeda nebula (M31). A detailed analysis of the RAS results on M31 is given. In addition, new complete multi-color data on the optical light distribution are described. Together with a high-resolution radio continuum survey at 21 cm. The general morphological aspects of the different compounds are discussed. The analysis further focusses on the correlations between various components, in particular on that between gas and dust. (Auth.)

  20. Dust-acoustic instability in an inductive gas-discharge plasma

    International Nuclear Information System (INIS)

    Zobnin, A.V.; Usachev, A.D.; Petrov, O.F.; Fortov, V.E.

    2002-01-01

    Spontaneous excitation of a dust-particle density wave is observed in a dust cloud levitating in the region of the diffused edge of an rf inductive low-pressure gas-discharge plasma. The main physical parameters of this wave and of the background plasma are measured. The analytic model proposed for the observed phenomenon is based on the theory of dust sound and successfully correlates with experimental data in a wide range of experimental conditions. The effect of variable charge of dust particles on the evolution of the observed dust-plasma instability is studied analytically. It is shown that the necessary condition for the development of the dust-acoustic instability is the presence of a dc electric field in the dust cloud region

  1. Gas and dust in the star-forming region ρ Oph A. The dust opacity exponent β and the gas-to-dust mass ratio g2d

    Science.gov (United States)

    Liseau, R.; Larsson, B.; Lunttila, T.; Olberg, M.; Rydbeck, G.; Bergman, P.; Justtanont, K.; Olofsson, G.; de Vries, B. L.

    2015-06-01

    Aims: We aim at determining the spatial distribution of the gas and dust in star-forming regions and address their relative abundances in quantitative terms. We also examine the dust opacity exponent β for spatial and/or temporal variations. Methods: Using mapping observations of the very dense ρ Oph A core, we examined standard 1D and non-standard 3D methods to analyse data of far-infrared and submillimetre (submm) continuum radiation. The resulting dust surface density distribution can be compared to that of the gas. The latter was derived from the analysis of accompanying molecular line emission, observed with Herschel from space and with APEX from the ground. As a gas tracer we used N2H+, which is believed to be much less sensitive to freeze-out than CO and its isotopologues. Radiative transfer modelling of the N2H+ (J = 3-2) and (J = 6-5) lines with their hyperfine structure explicitly taken into account provides solutions for the spatial distribution of the column density N(H2), hence the surface density distribution of the gas. Results: The gas-to-dust mass ratio is varying across the map, with very low values in the central regions around the core SM 1. The global average, = 88, is not far from the canonical value of 100, however. In ρ Oph A, the exponent β of the power-law description for the dust opacity exhibits a clear dependence on time, with high values of 2 for the envelope-dominated emission in starless Class -1 sources to low values close to 0 for the disk-dominated emission in Class III objects. β assumes intermediate values for evolutionary classes in between. Conclusions: Since β is primarily controlled by grain size, grain growth mostly occurs in circumstellar disks. The spatial segregation of gas and dust, seen in projection toward the core centre, probably implies that, like C18O, also N2H+ is frozen onto the grains. Based on observations with APEX, which is a 12 m diameter submillimetre telescope at 5100 m altitude on Llano Chajnantor

  2. Lupus Disks with Faint CO Isotopologues: Low Gas/Dust or High Carbon Depletion?

    Science.gov (United States)

    Miotello, Anna

    2017-11-01

    With the advent of ALMA, complete surveys of gas and dust in protoplanetary disks are being carried out in different star forming regions. In particular, continuum emission is used to trace the large (mm-sized) dust grains and CO isotopologues are observed in order to trace the bulk of the gas. The attempt is to simultaneously constrain the gas and dust disk mass as well as the gas/dust mass ratio. In this presentation I will present the Lupus disk survey observations, analyzed with thermo-chemical disk models, including radiative transfer, CO isotope-selective processes and freeze-out. The main result is that CO-based gas masses are very low, often smaller than Jupiter Mass. Moreover, gas/dust mass ratios are much lower than value of 100 found in the ISM, being mainly between 1 and 10. This result can be interpreted either as rapid loss of gas, or as a chemical effect removing carbon from CO and locking it into more complex molecules or in larger bodies. Previous data cannot distinguish between the two scenarios (except for sources with detected HD lines), but new Cycle 4 observations of hydrocarbon lines will be presented and they can help to calibrate CO-based gas masses and to constrain disk gas masses.

  3. Extinction Mapping and Dust-to-Gas Ratios of Nearby Galaxies using LEGUS

    Science.gov (United States)

    Kahre, Lauren; Walterbos, Rene; Kim, Hwihyun; Thilker, David; Lee, Janice; LEGUS Team

    2018-01-01

    Dust is commonly used as a tracer for cold dense gas, either through IR and NIR emission maps or through extinction mapping, and dust abundance and gas metallicity are critical constraints for chemical and galaxy evolution models. Extinction mapping has been used to trace dust column densities in the Milky Way, the Magellanic Clouds, and M31. The maps for M31 use IR and NIR photometry of red giant branch stars, which is more difficult to obtain for more distant galaxies. Work by Kahre et al. (in prep) uses the extinctions derived for individual massive stars using the isochrone-matching method described by Kim et al. (2012) to generate extinction maps for these more distant galaxies.Isochrones of massive stars lie in the same location on a color-color diagram with little dependence on metallicity and luminosity class, so the extinction can be directly derived from the observed photometry. We generate extinction maps using photometry of massive stars from the Hubble Space Telescope for several of the nearly 50 galaxies observed by the Legacy Extragalactic Ultraviolet Survey (LEGUS). The derived extinction maps will allow us to correct ground-based and HST Halpha maps for extinction, and will be used to constrain changes in the dust-to-gas ratio across the galaxy sample and in different star formation, metallicity and morphological environments. Previous studies have found links between galaxy metallicity and the dust-to-gas mass ratio. We present a study of LEGUS galaxies spanning a range of distances, metallicities, and galaxy morphologies, expanding on our previous study of metal-poor dwarfs Holmberg I and II and giant spirals NGC 6503 and NGC 628. We see clear evidence for changes in the dust-to-gas mass ratio with changing metallicity. We also examine changes in the dust-to-gas mass ratio with galactocentric radius. Ultimately, we will provide constraints on the dust-to-gas mass ratio across a wide range of galaxy environments.

  4. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    Science.gov (United States)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  5. The quantitative studies on gas explosion suppression by an inert rock dust deposit.

    Science.gov (United States)

    Song, Yifan; Zhang, Qi

    2018-07-05

    The traditional defence against propagating gas explosions is the application of dry rock dust, but not much quantitative study on explosion suppression of rock dust has been made. Based on the theories of fluid dynamics and combustion, a simulated study on the propagation of premixed gas explosion suppressed by deposited inert rock dust layer is carried out. The characteristics of the explosion field (overpressure, temperature, flame speed and combustion rate) at different deposited rock dust amounts are investigated. The flame in the pipeline cannot be extinguished when the deposited rock dust amount is less than 12 kg/m 3 . The effects of suppressing gas explosion become weak when the deposited rock dust amount is greater than 45 kg/m 3 . The overpressure decreases with the increase of the deposited rock dust amounts in the range of 18-36 kg/m 3 and the flame speed and the flame length show the same trends. When the deposited rock dust amount is 36 kg/m 3 , the overpressure can be reduced by 40%, the peak flame speed by 50%, and the flame length by 42% respectively, compared with those of the gas explosion of stoichiometric mixture. In this model, the effective raised dust concentrations to suppress explosion are 2.5-3.5 kg/m 3 . Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Extinction Maps and Dust-to-gas Ratios in Nearby Galaxies with LEGUS

    Science.gov (United States)

    Kahre, L.; Walterbos, R. A.; Kim, H.; Thilker, D.; Calzetti, D.; Lee, J. C.; Sabbi, E.; Ubeda, L.; Aloisi, A.; Cignoni, M.; Cook, D. O.; Dale, D. A.; Elmegreen, B. G.; Elmegreen, D. M.; Fumagalli, M.; Gallagher, J. S., III; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sacchi, E.; Smith, L. J.; Tosi, M.; Adamo, A.; Andrews, J. E.; Ashworth, G.; Bright, S. N.; Brown, T. M.; Chandar, R.; Christian, C.; de Mink, S. E.; Dobbs, C.; Evans, A. S.; Herrero, A.; Johnson, K. E.; Kennicutt, R. C.; Krumholz, M. R.; Messa, M.; Nair, P.; Nota, A.; Pellerin, A.; Ryon, J. E.; Schaerer, D.; Shabani, F.; Van Dyk, S. D.; Whitmore, B. C.; Wofford, A.

    2018-03-01

    We present a study of the dust-to-gas ratios in five nearby galaxies: NGC 628 (M74), NGC 6503, NGC 7793, UGC 5139 (Holmberg I), and UGC 4305 (Holmberg II). Using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury program Legacy ExtraGalactic UV Survey (LEGUS) combined with archival HST/Advanced Camera for Surveys data, we correct thousands of individual stars for extinction across these five galaxies using an isochrone-matching (reddening-free Q) method. We generate extinction maps for each galaxy from the individual stellar extinctions using both adaptive and fixed resolution techniques and correlate these maps with neutral H I and CO gas maps from the literature, including the H I Nearby Galaxy Survey and the HERA CO-Line Extragalactic Survey. We calculate dust-to-gas ratios and investigate variations in the dust-to-gas ratio with galaxy metallicity. We find a power-law relationship between dust-to-gas ratio and metallicity, consistent with other studies of dust-to-gas ratio compared to metallicity. We find a change in the relation when H2 is not included. This implies that underestimation of {N}{{{H}}2} in low-metallicity dwarfs from a too-low CO-to-H2 conversion factor X CO could have produced too low a slope in the derived relationship between dust-to-gas ratio and metallicity. We also compare our extinctions to those derived from fitting the spectral energy distribution (SED) using the Bayesian Extinction and Stellar Tool for NGC 7793 and find systematically lower extinctions from SED fitting as compared to isochrone matching.

  7. The Interstellar Gas Dust Streams and Seeds of Life

    Science.gov (United States)

    Oleg, Khavroshkin; Vladislav, Tsyplakov

    systems solar system and interacting with lunar surface. Characteristic of binary stars systems and picked out periods of lunar seismicity are publish. Genesis of Life. If the solar system is reached by the gas-dust streams from binary stars, then all bodes in space have particles of star dust on their surfaces and/or atmospheres. Solar system has made 8-10 revolutions around galactic center and thus captured dust from many thousands stars. As these stars caught in turn dust particles from other stars too then probably our solar system has mainly dust samples from all objects of our galaxy. The age of galaxy and old stars is approximately more than15 billion years and that of the Earth is only 4, 5 Gyr. Genesis of Life for the Earth has not more than 3 billion years. Thus comparative analysis of simple balance of these times shows that the genesis of Life for Earth is the result of galactic processes/objects and not of the solar system of course. Peculiarity of Genesis. After formation of the solar system all old and new captured dust particles are first accumulated in the Oort cloud and then they are carried by comets to planets. The modern state of the Earth exists for more than 3 billion years, so possibilities for appearing Life were always. These processes had happened a few times during this period of the Earth state. The sizes of the universe and galaxies at t0 physical fields and radiations at the moment τ0 was many orders of magnitude higher than the density existing now. Disintegration of neutron substance and nucleus of heavy unstable elements have caused constantly existing streams of left polarized electrons which have determined chirality’s asymmetry of original organic molecules and thus the hilarity of the existing biological world. Some types of radiations functionally could replace enzymes during formation of self-reproducing molecular structures. Man is used only 10 % of the genetic information. It indicates the common total surplus of a genetic

  8. SVOC partitioning between the gas phase and settled dust indoors

    Science.gov (United States)

    Weschler, Charles J.; Nazaroff, William W.

    2010-09-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps in crafting measurement programs for epidemiological studies designed to probe potential associations between exposure to these compounds and adverse health effects. In this paper, we analyze published data from nineteen studies that cumulatively report measurements of dustborne and airborne SVOCs in more than a thousand buildings, mostly residences, in seven countries. In aggregate, measured median data are reported in these studies for 66 different SVOCs whose octanol-air partition coefficients ( Koa) span more than five orders of magnitude. We use these data to test a simple equilibrium model for estimating the partitioning of an SVOC between the gas phase and settled dust indoors. The results demonstrate, in central tendency, that a compound's octanol-air partition coefficient is a strong predictor of its abundance in settled dust relative to its gas phase concentration. Using median measured results for each SVOC in each study, dustborne mass fractions predicted using Koa and gas-phase concentrations correlate reasonably well with measured dustborne mass fractions ( R2 = 0.76). Combined with theoretical understanding of SVOC partitioning kinetics, the empirical evidence also suggests that for SVOCs with high Koa values, the mass fraction in settled dust may not have sufficient time to equilibrate with the gas phase concentration.

  9. Ice nucleation of ammonia gas exposed montmorillonite mineral dust particles

    Directory of Open Access Journals (Sweden)

    A. Salam

    2007-07-01

    Full Text Available The ice nucleation characteristics of montmorillonite mineral dust aerosols with and without exposure to ammonia gas were measured at different atmospheric temperatures and relative humidities with a continuous flow diffusion chamber. The montmorillonite particles were exposed to pure (100% and diluted ammonia gas (25 ppm at room temperature in a stainless steel chamber. There was no significant change in the mineral dust particle size distribution due to the ammonia gas exposure. 100% pure ammonia gas exposure enhanced the ice nucleating fraction of montmorillonite mineral dust particles 3 to 8 times at 90% relative humidity with respect to water (RHw and 5 to 8 times at 100% RHw for 120 min exposure time compared to unexposed montmorillonite within our experimental conditions. The percentages of active ice nuclei were 2 to 8 times higher at 90% RHw and 2 to 7 times higher at 100% RHw in 25 ppm ammonia exposed montmorillonite compared to unexposed montmorillonite. All montmorillonite particles are more efficient as ice nuclei with increasing relative humidities and decreasing temperatures. The activation temperature of montmorillonite exposed to 100% pure ammonia was 15°C higher than for unexposed montmorillonite particles at 90% RHw. In the 25 ppm ammonia exposed montmorillonite experiments, the activation temperature was 10°C warmer than unexposed montmorillonite at 90% RHw. Degassing does not reverse the ice nucleating ability of ammonia exposed montmorillonite mineral dust particles suggesting that the ammonia is chemically bound to the montmorillonite particle. This is the first experimental evidence that ammonia gas exposed montmorillonite mineral dust particles can enhance its activation as ice nuclei and that the activation can occur at temperatures warmer than –10°C where natural atmospheric ice nuclei are very scarce.

  10. Gas flow and dust acceleration in a cometary Knudsen layer

    CERN Document Server

    Skorov, Yu V

    1999-01-01

    An analytical model of the innermost gas-dust coma region is proposed. The kinetic Knudsen layer adjacent to the surface of the cometary nucleus, where the initially non-equilibrium velocity distribution function of gas molecules $9 relaxes to Maxwell equilibrium distribution function and, as a result, the macro-characteristics of gas and dust flows vary several-fold, is considered. The gas phase model is based on the equations for mass, momentum and energy flux $9 conservation, and is a natural development of the Anisimov (1968) and Cercignani (1981) approaches. The analytical relations between the characteristics of the gas flow on the boundaries of the non- equilibrium layer and the $9 characteristics of the returning gas flow adsorbed by the surface are determined. These values form a consistent basis both for hydrodynamic models of the inner coma and for jet force models. Three particular models are presented: $9 (1) sublimation of a polyatomic one-component gas; (2) sublimation of a two-component polyat...

  11. MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas

    Science.gov (United States)

    Hutchison, Mark; Price, Daniel J.; Laibe, Guillaume

    2018-05-01

    We present a new algorithm, MULTIGRAIN, for modelling the dynamics of an entire population of small dust grains immersed in gas, typical of conditions that are found in molecular clouds and protoplanetary discs. The MULTIGRAIN method is more accurate than single-phase simulations because the gas experiences a backreaction from each dust phase and communicates this change to the other phases, thereby indirectly coupling the dust phases together. The MULTIGRAIN method is fast, explicit and low storage, requiring only an array of dust fractions and their derivatives defined for each resolution element.

  12. Mapping the gas-to-dust ratio in the edge-on spiral galaxy IC2531

    Science.gov (United States)

    Baes, Maarten; Gentile, Gianfranco; Allaert, Flor; Kuno, Nario; Verstappen, Joris

    2012-04-01

    The gas-to-dust ratio is an important diagnostic of the chemical evolution of galaxies, but unfortunately, there are only a few unbiased studies of the gas-to-dust ratio within galaxies and among different galaxies. We want to take advantage of the revolutionary capabilities of the Herschel Space Observatory and the special geometry of edge-on spiral galaxies to derive accurate gas and dust mass profiles in the edge-on spiral galaxy IC2531, the only southern galaxy from a sample of large edge-on spirals observed with Herschel. We already have a wealth of ancillary data and detailed radiative transfer modelling at our disposal for this galaxy, and now request CO observations to map the molecular gas distribution. With our combined dataset, we will investigate the radial behaviour of the gas-to-dust ratio, compare it with the properties of the stellar population and the dark matter distribution, and test the possibility to use the far-infrared emission from dust to determine the total ISM mass in galaxies.

  13. Three-dimensional simulation of gas and dust in Io's Pele plume

    Science.gov (United States)

    McDoniel, William J.; Goldstein, David B.; Varghese, Philip L.; Trafton, Laurence M.

    2015-09-01

    Io's giant Pele plume rises high above the moon's surface and produces a complex deposition pattern. We use the direct simulation Monte Carlo (DSMC) method to model the flow of SO2 gas and silicate ash from the surface of the lava lake, into the umbrella-shaped canopy of the plume, and eventually onto the surface where the flow leaves black "butterfly wings" surrounded by a large red ring. We show how the geometry of the lava lake, from which the gas is emitted, is responsible for significant asymmetry in the plume and for the shape of the red deposition ring by way of complicated gas-dynamic interactions between parts of the gas flow arising from different areas in the lava lake. We develop a model for gas flow in the immediate vicinity of the lava lake and use it to show that the behavior of ash particles of less than about 2 μm in diameter in the plume is insensitive to the details of how they are introduced into the flow because they are coupled to the gas at low altitudes. We simulate dust particles in the plume to show how particle size determines the distance from the lava lake at which particles deposit on the surface, and we use this dependence to find a size distribution of black dust particles in the plume that provides the best explanation for the observed black fans to the east and west of the lava lake. This best-fit particle size distribution suggests that there may be two distinct mechanisms of black dust creation at Pele, and when two log-normal distributions are fit to our results we obtain a mean particle diameter of 88 nm. We also propose a mechanism by which the condensible plume gas might overlay black dust in areas where black coloration is not observed and compare this to the observed overlaying of Pillanian dust by Pele's red ring.

  14. GPK helmet for protection from gas and dust

    Energy Technology Data Exchange (ETDEWEB)

    Ilinskiy, E.G.; Kogan, Yu.A.; Mazanenko, V.P.

    1983-01-01

    An examination is made of the purpose, area of application, operating principle, technical characteristics, and also results of testing a new device for individual protection of miners from gas and dust are examined.

  15. Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers

    DEFF Research Database (Denmark)

    Langer, Sarka; Weschler, Charles J.; Fischer, Andreas

    2010-01-01

    (diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(isobutyl) phthalate (DiBP), butyl benzyl phthalate (BBzP), di(2-ethylhexyl) phthalate (DEHP)) and three PAHs (pyrene, benz[a]anthracene (B[a]A) and benzo[a]pyrene (B[a]P)). The three PAHs and DEHP were detected in dust samples from all sites, while...... DEP. DnBP, DiBP and BBzP were detected in more than 75% of the bedrooms and more than 90% of the daycare centers. The dust mass-fractions of both phthalates and PAHs were log-normally distributed. With the exception of DEP, the mass-fractions of phthalates in dust were higher in daycare centers than...... homes: PAH mass-fractions in dust were similar in the two locations. There was no correlation among the different phthalates in either homes or daycare centers. In contrast, the PAH were correlated with one another more strongly so in homes (R-2 = 0.80-0.90) than in daycare centers (R-2 = 0...

  16. Dust trap formation in a non-self-sustained discharge with external gas ionization

    International Nuclear Information System (INIS)

    Filippov, A. V.; Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-01-01

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place

  17. Dust trap formation in a non-self-sustained discharge with external gas ionization

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A. V., E-mail: fav@triniti.ru; Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D. [Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  18. RESOLVED CO GAS INTERIOR TO THE DUST RINGS OF THE HD 141569 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Flaherty, Kevin M.; Hughes, A. Meredith; Zachary, Julia [Van Vleck Observatory, Astronomy Department, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Andrews, Sean M.; Qi, Chunhua; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Boley, Aaron C.; White, Jacob A. [Department of Physics and Astronomy, University of British Columbia, Vancouver BC (Canada); Harney, Will [Department of Physics and Astronomy, Union College, Schenectady, NY (United States)

    2016-02-10

    The disk around HD 141569 is one of a handful of systems whose weak infrared emission is consistent with a debris disk, but still has a significant reservoir of gas. Here we report spatially resolved millimeter observations of the CO(3-2) and CO(1-0) emission as seen with the Submillimeter Array and CARMA. We find that the excitation temperature for CO is lower than expected from cospatial blackbody grains, similar to previous observations of analogous systems, and derive a gas mass that lies between that of gas-rich primordial disks and gas-poor debris disks. The data also indicate a large inner hole in the CO gas distribution and an outer radius that lies interior to the outer scattered light rings. This spatial distribution, with the dust rings just outside the gaseous disk, is consistent with the expected interactions between gas and dust in an optically thin disk. This indicates that gas can have a significant effect on the location of the dust within debris disks.

  19. The Interplay between Radiation Pressure and the Photoelectric Instability in Optically Thin Disks of Gas and Dust

    Science.gov (United States)

    Richert, Alexander J. W.; Lyra, Wladimir; Kuchner, Marc J.

    2018-03-01

    In optically thin disks, dust grains are photoelectrically stripped of electrons by starlight, heating nearby gas and possibly creating a dust clumping instability—the photoelectric instability (PeI)—that significantly alters global disk structure. In the current work, we use the Pencil Code to perform the first numerical models of the PeI that include stellar radiation pressure on dust grains in order to explore the parameter regime in which the instability operates. In some models with low gas and dust surface densities, we see a variety of dust structures, including sharp concentric rings. In the most gas- and dust-rich models, nonaxisymmetric clumps, arcs, and spiral arms emerge that represent dust surface density enhancements of factors of ∼5–20. In one high gas surface density model, we include a large, low-order gas viscosity and find that it observably smooths the structures that form in the gas and dust, suggesting that resolved images of a given disk may be useful for deriving constraints on the effective viscosity of its gas. Our models show that radiation pressure does not preclude the formation of complex structure from the PeI, but the qualitative manifestation of the PeI depends strongly on the parameters of the system. The PeI may provide an explanation for unusual disk morphologies, such as the moving blobs of the AU Mic disk, the asymmetric dust distribution of the 49 Ceti disk, and the rings and arcs found in the HD 141569A disk.

  20. THE COUPLED PHYSICAL STRUCTURE OF GAS AND DUST IN THE IM Lup PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.; Huang, Jane; Loomis, Ryan A.; Andrews, Sean M.; Czekala, Ian, E-mail: ilse.cleeves@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-12-01

    The spatial distribution of gas and solids in protoplanetary disks determines the composition and formation efficiency of planetary systems. A number of disks show starkly different distributions for the gas and small grains compared to millimeter–centimeter-sized dust. We present new Atacama Large Millimeter/Submillimeter Array observations of the dust continuum, CO, {sup 13}CO, and C{sup 18}O in the IM Lup protoplanetary disk, one of the first systems where this dust–gas dichotomy was clearly seen. The {sup 12}CO is detected out to a radius of 970 au, while the millimeter continuum emission is truncated at just 313 au. Based upon these data, we have built a comprehensive physical and chemical model for the disk structure, which takes into account the complex, coupled nature of the gas and dust and the interplay between the local and external environment. We constrain the distributions of gas and dust, the gas temperatures, the CO abundances, the CO optical depths, and the incident external radiation field. We find that the reduction/removal of dust from the outer disk exposes this region to higher stellar and external radiation and decreases the rate of freeze-out, allowing CO to remain in the gas out to large radial distances. We estimate a gas-phase CO abundance of 5% of the interstellar medium value and a low external radiation field ( G {sub 0} ≲ 4). The latter is consistent with that expected from the local stellar population. We additionally find tentative evidence for ring-like continuum substructure, suggestions of isotope-selective photodissociation, and a diffuse gas halo.

  1. Analysis of graphite dust deposition in hot gas duct of HTGR

    International Nuclear Information System (INIS)

    Peng Wei; Zhen Ya'nan; Yang Xiaoyong; Ye Ping

    2013-01-01

    The behavior of the graphite dust is important to the safety of high-temperature gas-cooled reactor (HTGR). The temperature field in hot gas duct was obtained using computational fluid dynamics (CFD) method. Further analysis to the thermo-phoretic deposition and turbulent deposition shows that as the dust particle diameter increases, the thermo-phoretic deposition efficiency decreases, and the turbulent deposition efficiency initially decreases and then increases. The comparisons of calculation results for two reactor powers, namely 30% FP (full power) and 100 % FP, indicate that the thermo-phoretic deposition efficiency is higher at 30% FP than that at 100% FP. while the turbulent deposition efficiency grows more rapidly at 100% FP. Besides, the results also demonstrate that the thermo-phoretic deposition and the turbulent deposition are nearly equivalent when particle sizes are small, while the turbulent deposition becomes dominant when particle sizes are fairly large. The calculation results by using the most probable distribution of particle size show that the total deposition of graphite dusts in hot gas duct is limited. (authors)

  2. Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas

    OpenAIRE

    Barniske, A.; Oskinova, L. M.; Hamann, W. -R.

    2008-01-01

    We study relatively isolated massive WN-type stars in the Galactic center. The K-band spectra of WR102ka and WR102c are exploited to infer the stellar parameters and to compute synthetic stellar spectra using the Potsdam Wolf-Rayet (PoWR) model atmosphere code. These models are combined with dust-shell models for analyzing the Spitzer IRS spectra of these objects. Archival IR images complement the interpretation. We report that WR102ka and WR102c are among the most luminous stars in the Milky...

  3. The comparison of physical properties derived from gas and dust in a massive star-forming region

    Energy Technology Data Exchange (ETDEWEB)

    Battersby, Cara; Bally, John; Ginsburg, Adam; Darling, Jeremy [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Dunham, Miranda [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Longmore, Steve [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom)

    2014-05-10

    We explore the relationship between gas and dust in a massive star-forming region by comparing the physical properties derived from each. We compare the temperatures and column densities in a massive star-forming Infrared Dark Cloud (G32.02+0.05), which shows a range of evolutionary states, from quiescent to active. The gas properties were derived using radiative transfer modeling of the (1,1), (2,2), and (4,4) transitions of NH{sub 3} on the Karl G. Jansky Very Large Array, while the dust temperatures and column densities were calculated using cirrus-subtracted, modified blackbody fits to Herschel data. We compare the derived column densities to calculate an NH{sub 3} abundance, χ{sub NH{sub 3}} = 4.6 × 10{sup –8}. In the coldest star-forming region, we find that the measured dust temperatures are lower than the measured gas temperatures (mean and standard deviations T {sub dust,} {sub avg} ∼ 11.6 ± 0.2 K versus T {sub gas,} {sub avg} ∼ 15.2 ± 1.5 K), which may indicate that the gas and dust are not well-coupled in the youngest regions (∼0.5 Myr) or that these observations probe a regime where the dust and/or gas temperature measurements are unreliable. Finally, we calculate millimeter fluxes based on the temperatures and column densities derived from NH{sub 3}, which suggest that millimeter dust continuum observations of massive star-forming regions, such as the Bolocam Galactic Plane Survey or ATLASGAL, can probe hot cores, cold cores, and the dense gas lanes from which they form, and are generally not dominated by the hottest core.

  4. The comparison of physical properties derived from gas and dust in a massive star-forming region

    International Nuclear Information System (INIS)

    Battersby, Cara; Bally, John; Ginsburg, Adam; Darling, Jeremy; Dunham, Miranda; Longmore, Steve

    2014-01-01

    We explore the relationship between gas and dust in a massive star-forming region by comparing the physical properties derived from each. We compare the temperatures and column densities in a massive star-forming Infrared Dark Cloud (G32.02+0.05), which shows a range of evolutionary states, from quiescent to active. The gas properties were derived using radiative transfer modeling of the (1,1), (2,2), and (4,4) transitions of NH 3 on the Karl G. Jansky Very Large Array, while the dust temperatures and column densities were calculated using cirrus-subtracted, modified blackbody fits to Herschel data. We compare the derived column densities to calculate an NH 3 abundance, χ NH 3 = 4.6 × 10 –8 . In the coldest star-forming region, we find that the measured dust temperatures are lower than the measured gas temperatures (mean and standard deviations T dust, avg ∼ 11.6 ± 0.2 K versus T gas, avg ∼ 15.2 ± 1.5 K), which may indicate that the gas and dust are not well-coupled in the youngest regions (∼0.5 Myr) or that these observations probe a regime where the dust and/or gas temperature measurements are unreliable. Finally, we calculate millimeter fluxes based on the temperatures and column densities derived from NH 3 , which suggest that millimeter dust continuum observations of massive star-forming regions, such as the Bolocam Galactic Plane Survey or ATLASGAL, can probe hot cores, cold cores, and the dense gas lanes from which they form, and are generally not dominated by the hottest core.

  5. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M. [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT 06459 (United States); Roberge, Aki [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Kóspál, Ágnes; Moór, Attila; Ábrahám, Peter [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Kamp, Inga [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Wilner, David J.; Andrews, Sean M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States); Kastner, Joel H., E-mail: amhughes@astro.wesleyan.edu [Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2017-04-20

    We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  6. Alternative Fuels Data Center: Natural Gas

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on

  7. Dynamic behavior of polydisperse dust system in cryogenic gas discharge complex plasmas

    NARCIS (Netherlands)

    Antipov, S.N.; Schepers, L.P.T.; Vasiliev, M.M.; Petrov, O.F.

    2016-01-01

    Complex (dusty) plasmas of micron-sized CeO2 polydisperse particles in dc glow discharges at 77 and ∼ 10 K were experimentally investigated. It was obtained that dust structure in cryogenic gas discharge plasma can be a mixture of two fractions (components) with completely different dust ordering

  8. Self-contained anti-static adapter for compressed gas dust blowing devices

    International Nuclear Information System (INIS)

    Schwartz, L.H.; Miller, S.W.; Severud, C.N. Jr.

    1984-01-01

    An anti-static adapter which enhances the operation of compressed gas dust blowing devices by allowing the safe use of a radioactive source to ionize a gas stream. The adapter may be used and handled safely without special precautions on the part of the operator

  9. Cosmic rays, gas and dust in nearby anticentre clouds. I. CO-to-H2 conversion factors and dust opacities

    Science.gov (United States)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2017-05-01

    Aims: We aim to explore the capabilities of dust emission and γ rays for probing the properties of the interstellar medium in the nearby anti-centre region, using γ-ray observations with the Fermi Large Area Telescope (LAT), and the thermal dust optical depth inferred from Planck and IRAS observations. We also aim to study massive star-forming clouds including the well known Taurus, Auriga, Perseus, and California molecular clouds, as well as a more diffuse structure which we refer to as Cetus. In particular, we aim at quantifying potential variations in cosmic-ray density and dust properties per gas nucleon across the different gas phases and different clouds, and at measuring the CO-to-H2 conversion factor, XCO, in different environments. Methods: We have separated six nearby anti-centre clouds that are coherent in velocities and distances, from the Galactic-disc background in H I 21-cm and 12CO 2.6-mm line emission. We have jointly modelled the γ-ray intensity recorded between 0.4 and 100 GeV, and the dust optical depth τ353 at 353 GHz as a combination of H I-bright, CO-bright, and ionised gas components. The complementary information from dust emission and γ rays was used to reveal the gas not seen, or poorly traced, by H I, free-free, and 12CO emissions, namely (I) the opaque H iand diffuse H2 present in the Dark Neutral Medium at the atomic-molecular transition, and (II) the dense H2 to be added where 12CO lines saturate. Results: The measured interstellar γ-ray spectra support a uniform penetration of the cosmic rays with energies above a few GeV through the clouds, from the atomic envelopes to the 12CO-bright cores, and with a small ± 9% cloud-to-cloud dispersion in particle flux. We detect the ionised gas from the H iiregion NGC 1499 in the dust and γ-ray emissions and measure its mean electron density and temperature. We find a gradual increase in grain opacity as the gas (atomic or molecular) becomes more dense. The increase reaches a factor of

  10. Squalene and cholesterol in dust from Danish homes and daycare centers

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Langer, Sarka; Fischer, Andreas

    2011-01-01

    .4; daycare centers: GM = 220 μg/g, GSD = 4.0). Correlations between squalene and cholesterol were weak (r = 0.22). Furthermore, the median squalene-to-cholesterol ratio in dust (0.05) was more than an order of magnitude smaller than that in skin oil. This implies sources in addition to desquamation (e.......g., cholesterol from cooking) coupled, perhaps, with a shorter indoor lifetime for squalene. Estimated values of squalene’s vapor pressure, while uncertain, suggest meaningful redistribution from dust to other indoor compartments. We estimate that dust containing squalene at 60 μg/g would contribute about 4...

  11. Method for cleaning the filter pockets of dust gas filter systems

    Energy Technology Data Exchange (ETDEWEB)

    Margraf, A

    1975-05-07

    The invention deals with a method to clean filter pockets filled with dust gas. By a periodic to and fro air jet attached to a scavenging blower, a pulsed fluttering movement of the filter surface is obtained which releases the outer layers of dust. The charging of the filter pockets with scavenging air to clean the filter material can be carried out immediately on the pulsed admission with suitable time control.

  12. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies.

    Science.gov (United States)

    Shu, Anthony; Collette, Andrew; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Kempf, Sascha; Mocker, Anna; Munsat, Tobin; Northway, Paige; Srama, Ralf; Sternovsky, Zoltán; Thomas, Evan

    2012-07-01

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Institüt für Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10(-7) torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10(-10) torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  13. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Anthony; Horanyi, Mihaly; Kempf, Sascha; Thomas, Evan [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Collette, Andrew; Drake, Keith; Northway, Paige [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Laboratory for Atmospheric and Space Physics, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Gruen, Eberhard [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Mocker, Anna [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); Munsat, Tobin [Colorado Center for Lunar Dust and Atmospheric Studies, Boulder, Colorado 80303 (United States); Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Srama, Ralf [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); and others

    2012-07-15

    A hypervelocity dust accelerator for studying micrometeorite impacts has been constructed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) at the University of Colorado. Based on the Max-Planck-Instituet fuer Kernphysik (MPI-K) accelerator, this accelerator is capable of emitting single particles of a specific mass and velocity selected by the user. The accelerator consists of a 3 MV Pelletron generator with a dust source, four image charge pickup detectors, and two interchangeable target chambers: a large high-vacuum test bed and an ultra-high vacuum impact study chamber. The large test bed is a 1.2 m diameter, 1.5 m long cylindrical vacuum chamber capable of pressures as low as 10{sup -7} torr while the ultra-high vacuum chamber is a 0.75 m diameter, 1.1 m long chamber capable of pressures as low as 10{sup -10} torr. Using iron dust of up to 2 microns in diameter, final velocities have been measured up to 52 km/s. The spread of the dust particles and the effect of electrostatic focusing have been measured using a long exposure CCD and a quartz target. Furthermore, a new technique of particle selection is being developed using real time digital filtering techniques. Signals are digitized and then cross-correlated with a shaped filter, resulting in a suppressed noise floor. Improvements over the MPI-K design, which include a higher operating voltage and digital filtering for detection, increase the available parameter space of dust emitted by the accelerator. The CCLDAS dust facility is a user facility open to the scientific community to assist with instrument calibrations and experiments.

  14. Gas and dust in regions of recent star formation

    International Nuclear Information System (INIS)

    Cardelli, J.A.

    1985-01-01

    A variety of observations of gas and dust were obtained in two regions of recent star formation for the purpose of determining basic physical properties. The analyses center on extinction and scattering in the Orion complex and extinction and atomic and molecular absorption near the center of rho Oph molecular cloud. In Orion, the visual extinction towards theta/sup 1,2/Ori indicates that, for the grains responsible for the visual extinction, the average size has increased on the order of 20 to 30%. The subsequent increase in absolute visual extinction has resulted in an apparent lowering of the uv extinction via normalization in the visual. Analysis of small-angle scattering in NGC 1999 in the uv indicates that the phase function (g) changes from about 0.60 near lambda 4000 A to about 0.25 near lambda 1400 A. This seems to imply that the observed continua of H-H 1 and 2 cannot be the result of small angle scattering from imbedded T Tauri stars. For four lines of sight near the center of the rho Oph molecular cloud, the determined column densities of CH extend the relation N(CH) α N(H 2 ) to densities as large as log N(H 2 ) approximately greater than or equal to 21. For CN, the relation N(CN) α N(H 2 ) 3 is extended to log N(H 2 ) approx. = 21

  15. Alternative Fuels Data Center: Natural Gas Benefits

    Science.gov (United States)

    Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas

  16. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM. II. SEARCH FOR COLD GAS

    Energy Technology Data Exchange (ETDEWEB)

    Reach, William T. [Universities Space Research Association, MS 232-11, Moffett Field, CA 94035 (United States); Heiles, Carl [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Bernard, Jean-Philippe, E-mail: wreach@sofia.usra.edu [Université de Toulouse, Institut de Recherche en Astrophysique et Planétologie, F-31028 Toulouse cedex 4 (France)

    2017-01-01

    The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M {sub ⊙} in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that there is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.

  17. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S [Earth Sciences Department. Barcelona Supercomputing Center. Barcelona (Spain); Cuevas, E [Izanaa Atmospheric Research Center. Agencia Estatal de Meteorologia, Tenerife (Spain); Nickovic, S [Atmospheric Research and Environment Branch, World Meteorological Organization, Geneva (Switzerland)], E-mail: carlos.perez@bsc.es

    2009-03-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  18. Dust modelling and forecasting in the Barcelona Supercomputing Center: Activities and developments

    International Nuclear Information System (INIS)

    Perez, C; Baldasano, J M; Jimenez-Guerrero, P; Jorba, O; Haustein, K; Basart, S; Cuevas, E; Nickovic, S

    2009-01-01

    The Barcelona Supercomputing Center (BSC) is the National Supercomputer Facility in Spain, hosting MareNostrum, one of the most powerful Supercomputers in Europe. The Earth Sciences Department of BSC operates daily regional dust and air quality forecasts and conducts intensive modelling research for short-term operational prediction. This contribution summarizes the latest developments and current activities in the field of sand and dust storm modelling and forecasting.

  19. International Center for Gas Technology Information

    International Nuclear Information System (INIS)

    Gad, L.H.

    1993-01-01

    Based on an acknowledgement of the growing importance of natural gas, a number of European countries, USA, Japan and the Russian Federation have worked together in order to establish a common center of information on natural gas technology under the auspices of the International Energy Agency. Centers were to be established in Washington and in Denmark. The centers will concern themselves with establishing an international information center for gas technology, effecting natural gas technology transfer between global regions, carrying out analytical studies on the energy market and the development of technology within the field of natural gas. The structure of the decision-making processes that will be employed is explained in addition to the organization and economy. The centers should build up a global information network between the relevant countries, their gas companies, institutions etc. (AB)

  20. A UV-to-NIR Study of Molecular Gas in the Dust Cavity around RY Lupi

    Science.gov (United States)

    Arulanantham, N.; France, K.; Hoadley, K.; Manara, C. F.; Schneider, P. C.; Alcalá, J. M.; Banzatti, A.; Günther, H. M.; Miotello, A.; van der Marel, N.; van Dishoeck, E. F.; Walsh, C.; Williams, J. P.

    2018-03-01

    We present a study of molecular gas in the inner disk (rgas in a surface layer between r = 0.1–10 au, as traced by Lyα-pumped H2. The result shows H2 emission originating in a ring centered at ∼3 au that declines within r gas emitting from radially separated disk regions ( ∼ 0.4+/- 0.1 {au}; ∼ 3+/- 2 {au}). The 4.7 μm 12CO emission lines are also well fit by two-component profiles ( =0.4+/- 0.1 {au}; =15+/- 2 {au}). We combine these results with 10 μm observations to form a picture of gapped structure within the mm-imaged dust cavity, providing the first such overview of the inner regions of a young disk. The HST SED of RY Lupi is available online for use in modeling efforts.

  1. SVOC partitioning between the gas phase and settled dust indoors

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Nazaroff, W. W.

    2010-01-01

    Semivolatile organic compounds (SVOCs) are a major class of indoor pollutants. Understanding SVOC partitioning between the gas phase and settled dust is important for characterizing the fate of these species indoors and the pathways by which humans are exposed to them. Such knowledge also helps...

  2. The gas-to-dust ratio in the Orion nebula

    International Nuclear Information System (INIS)

    Perinotto, M.; Patriarchi, P.

    1974-01-01

    About sixty spectra have been obtained using an image tube with the nebular spectrograph of the Asiago 122cm reflector, in a position W-E from north of the Trapezium across the star P 1925 into the bay area of the Orion Nebula. Twenty-five spectra have been selected for accurate measurements of the Hβ intensity and of the electron density by the [S II] 6730/6716 intensity line ratio. The results are interpreted in terms of well-mixed gas and dust, not only in the central bright regions, but even in the bay area, where the coefficient of dust extinction counted per electron is found to be larger than in the bright centre of the nebula

  3. A New View of Molecular Gas in the Galactic Center

    Science.gov (United States)

    Mills, Elisabeth A.; Morris, M.; Güsten, R.; Requena Torres, M.; Lang, C. C.; Butterfield, N.; Ott, J.

    2013-01-01

    On average, the molecular gas in the center of our Galaxy is significantly hotter (T = 50-300 K), denser (n > 10^4 cm^-3), and more turbulent than gas in the rest of the disk. I will present results from a recent series of observations that indicate that our understanding of the Galactic center (GC) molecular gas is incomplete, and that conditions in some clouds are even more extreme than previously thought. Using the Green Bank telescope, we have measured a very hot molecular gas component (T = 400-500 K ) in three largely quiescent GC giant molecular clouds using metastable inversion lines of ammonia from (8,8) to (15,15) . We further detect the (9,9) line in seven other GC clouds, indicating that this hot gas component may be a common feature of GC clouds, potentially yielding insight into the heating source of the molecular gas in this region. In addition, I will present new density constraints for the circumnuclear disk (CND), a reservoir of gas and dust 1.5 parsecs in radius from the central supermassive black hole, Sgr A*. Recent estimates of the CND density vary by four orders of magnitude, which makes its future evolution uncertain: gas in the CND could either accrete onto the black hole, dissipate, or, if the density is higher than 10^7 cm^-3, exist in gravitationally-stable clumps capable of forming stars. However, our APEX measurements of highly excited lines of HCN and HCO+ indicate that although the CND gas is denser than most other GC clouds, it is not likely to be tidally stable and thus is unlikely to host star formation. Finally, I will present early results from a new Very Large Array study of gas on sub-parsec scales in a sample of GC clouds, all of which exhibit unexpectedly abundant Class I methanol maser emission. The widespread distribution of these masers suggests shocks play an important role in driving cloud evolution throughout this unique region of our Galaxy.

  4. Attenuation Modified by DIG and Dust as Seen in M31

    Energy Technology Data Exchange (ETDEWEB)

    Tomičić, Neven; Kreckel, Kathryn; Schinnerer, Eva [Max Planck Institute for Astronomy (MPIA), Königstuhl 17, 69117 Heidelberg (Germany); Groves, Brent [School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Sandstrom, Karin [Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Kapala, Maria [Department of Astronomy, University of Cape Town, Republic of South Africa (South Africa); Blanc, Guillermo A. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Leroy, Adam, E-mail: tomicic@mpia-hd.mpg.de [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2017-08-01

    The spatial distribution of dust in galaxies affects the global attenuation, and hence inferred properties, of galaxies. We trace the spatial distribution of dust in five approximately kiloparsec fields of M31 by comparing optical attenuation with the total dust mass distribution. We measure the attenuation from the Balmer decrement using Integral Field Spectroscopy and the dust mass from Herschel far-IR observations. Our results show that M31's dust attenuation closely follows a foreground screen model, contrary to what was previously found in other nearby galaxies. By smoothing the M31 data, we find that spatial resolution is not the cause for this difference. Based on the emission-line ratios and two simple models, we conclude that previous models of dust/gas geometry need to include a weakly or non-attenuated diffuse ionized gas (DIG) component. Due to the variation of dust and DIG scale heights with galactic radius, we conclude that different locations in galaxies will have different vertical distributions of gas and dust and therefore different measured attenuation. The difference between our result in M31 with that found in other nearby galaxies can be explained by our fields in M31 lying at larger galactic radii than the previous studies that focused on the centers of galaxies.

  5. Alternative Fuels Data Center: Natural Gas Vehicles

    Science.gov (United States)

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative

  6. Guilt by Association: The 13 Micron Dust Emission Feature and Its Correlation to Other Gas and Dust Features

    Science.gov (United States)

    Sloan, G. C.; Kraemer, Kathleen E.; Goebel, J. H.; Price, Stephan D.

    2003-09-01

    A study of all full-scan spectra of optically thin oxygen-rich circumstellar dust shells in the database produced by the Short Wavelength Spectrometer on ISO reveals that the strength of several infrared spectral features correlates with the strength of the 13 μm dust feature. These correlated features include dust features at 19.8 and 28.1 μm and the bands produced by warm carbon dioxide molecules (the strongest of which are at 13.9, 15.0, and 16.2 μm). The database does not provide any evidence for a correlation of the 13 μm feature with a dust feature at 32 μm, and it is more likely that a weak emission feature at 16.8 μm arises from carbon dioxide gas rather than dust. The correlated dust features at 13, 20, and 28 μm tend to be stronger with respect to the total dust emission in semiregular and irregular variables associated with the asymptotic giant branch than in Mira variables or supergiants. This family of dust features also tends to be stronger in systems with lower infrared excesses and thus lower mass-loss rates. We hypothesize that the dust features arise from crystalline forms of alumina (13 μm) and silicates (20 and 28 μm). Based on observations with the ISO, a European Space Agency (ESA) project with instruments funded by ESA member states (especially the Principal Investigator countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of the Institute of Space and Astronautical Science (ISAS) and the National Aeronautics and Space Administration (NASA).

  7. Gone with the heat: a fundamental constraint on the imaging of dust and molecular gas in the early Universe.

    Science.gov (United States)

    Zhang, Zhi-Yu; Papadopoulos, Padelis P; Ivison, R J; Galametz, Maud; Smith, M W L; Xilouris, Emmanuel M

    2016-06-01

    Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh-Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB.

  8. After the Fall: The Dust and Gas in E+A Post-starburst Galaxies

    Science.gov (United States)

    Smercina, A.; Smith, J. D. T.; Dale, D. A.; French, K. D.; Croxall, K. V.; Zhukovska, S.; Togi, A.; Bell, E. F.; Crocker, A. F.; Draine, B. T.; Jarrett, T. H.; Tremonti, C.; Yang, Yujin; Zabludoff, A. I.

    2018-03-01

    The traditional picture of post-starburst galaxies as dust- and gas-poor merger remnants, rapidly transitioning to quiescence, has been recently challenged. Unexpected detections of a significant interstellar medium (ISM) in many post-starburst galaxies raise important questions. Are they truly quiescent, and if so, what mechanisms inhibit further star formation? What processes dominate their ISM energetics? We present an infrared spectroscopic and photometric survey of 33 E+A post-starbursts selected by the Sloan Digital Sky Survey, aimed at resolving these questions. We find compact, warm dust reservoirs with high PAH abundances and total gas and dust masses significantly higher than expected from stellar recycling alone. Both polycyclic aromatic hydrocarbon (PAH)/total infrared (TIR) and dust-to-burst stellar mass ratios are seen to decrease with post-burst age, indicative of the accumulating effects of dust destruction and an incipient transition to hot, early-type ISM properties. Their infrared spectral properties are unique, with dominant PAH emission, very weak nebular lines, unusually strong H2 rotational emission, and deep [C II] deficits. There is substantial scatter among star formation rate (SFR) indicators, and both PAH and TIR luminosities provide overestimates. Even as potential upper limits, all tracers show that the SFR has typically experienced a decline of more than two orders of magnitude since the starburst and that the SFR is considerably lower than expected given both their stellar masses and molecular gas densities. These results paint a coherent picture of systems in which star formation was, indeed, rapidly truncated, but in which the ISM was not completely expelled, and is instead supported against collapse by latent or continued injection of turbulent or mechanical heating. The resulting aging burst populations provide a “high-soft” radiation field that seemingly dominates the E+A galaxies’ unusual ISM energetics.

  9. On the relationship between visual magnitudes and gas and dust production rates in target comets to space missions

    Science.gov (United States)

    de Almeida, A. A.; Sanzovo, G. C.; Singh, P. D.; Misra, A.; Miguel Torres, R.; Boice, D. C.; Huebner, W. F.

    In this paper, we report the results of a cometary research, developed during the last 10 years by us, involving a criterious analysis of gas and dust production rates in comets directly associated to recent space missions. For the determination of the water release rates we use the framework of the semi-empirical model of observed visual magnitudes [Newburn Jr., R.L. A semi-empirical photometric theory of cometary gas and dust production. Application to P/Halley's production rates, ESA-SP 174, 3, 1981; de Almeida, A.A., Singh, P.D., Huebner, W.F. Water release rates, active areas, and minimum nuclear radius derived from visual magnitudes of comets - an application to Comet 46P/Wirtanen, Planet. Space Sci. 45, 681-692, 1997; Sanzovo, G.C., de Almeida, A.A., Misra, A. et al. Mass-loss rates, dust particle sizes, nuclear active areas and minimum nuclear radii of target comets for missions STARDUST and CONTOUR, MNRAS 326, 852-868, 2001.], which once obtained, were directly converted into gas production rates. In turn, the dust release rates were obtained using the photometric model for dust particles [Newburn Jr., R.L., Spinrad, H. Spectrophotometry of seventeen comets. II - the continuum, AJ 90, 2591-2608, 1985; de Freitas Pacheco, J.A., Landaberry, S.J.C., Singh, P.D. Spectrophotometric observations of the Comet Halley during the 1985-86 apparition, MNRAS 235, 457-464, 1988; Sanzovo, G.C., Singh, P.D., Huebner, W.F. Dust colors, dust release rates, and dust-to-gas ratios in the comae of six comets, A&AS 120, 301-311, 1996.]. We applied these models to seven target comets, chosen for space missions of "fly-by"/impact and rendezvous/landing.

  10. DUST PROPERTIES AND DISK STRUCTURE OF EVOLVED PROTOPLANETARY DISKS IN Cep OB2: GRAIN GROWTH, SETTLING, GAS AND DUST MASS, AND INSIDE-OUT EVOLUTION

    International Nuclear Information System (INIS)

    Sicilia-Aguilar, Aurora; Henning, Thomas; Dullemond, Cornelis P.; Bouwman, Jeroen; Sturm, Bernhard; Patel, Nimesh; Juhász, Attila

    2011-01-01

    We present Spitzer/Infrared Spectrograph spectra of 31 T Tauri stars (TTS) and IRAM/1.3 mm observations for 34 low- and intermediate-mass stars in the Cep OB2 region. Including our previously published data, we analyze 56 TTS and 3 intermediate-mass stars with silicate features in Tr 37 (∼4 Myr) and NGC 7160 (∼12 Myr). The silicate emission features are well reproduced with a mixture of amorphous (with olivine, forsterite, and silica stoichiometry) and crystalline grains (forsterite, enstatite). We explore grain size and disk structure using radiative transfer disk models, finding that most objects have suffered substantial evolution (grain growth, settling). About half of the disks show inside-out evolution, with either dust-cleared inner holes or a radially dependent dust distribution, typically with larger grains and more settling in the innermost disk. The typical strong silicate features nevertheless require the presence of small dust grains, and could be explained by differential settling according to grain size, anomalous dust distributions, and/or optically thin dust populations within disk gaps. M-type stars tend to have weaker silicate emission and steeper spectral energy distributions than K-type objects. The inferred low dust masses are in a strong contrast with the relatively high gas accretion rates, suggesting global grain growth and/or an anomalous gas-to-dust ratio. Transition disks in the Cep OB2 region display strongly processed grains, suggesting that they are dominated by dust evolution and settling. Finally, the presence of rare but remarkable disks with strong accretion at old ages reveals that some very massive disks may still survive to grain growth, gravitational instabilities, and planet formation.

  11. Dust Concentration and Emission in Protoplanetary Disks Vortices

    Science.gov (United States)

    Sierra, Anibal; Lizano, Susana; Barge, Pierre

    2017-12-01

    We study the dust concentration and emission in protoplanetary disks vortices. We extend the Lyra-Lin solution for the dust concentration of a single grain size to a power-law distribution of grain sizes n(a)\\propto {a}-p. Assuming dust conservation in the disk, we find an analytic dust surface density as a function of the grain radius. We calculate the increase of the dust-to-gas mass ratio ɛ and the slope p of the dust size distribution due to grain segregation within the vortex. We apply this model to a numerical simulation of a disk containing a persistent vortex. Due to the accumulation of large grains toward the vortex center, ɛ increases by a factor of 10 from the background disk value, and p decreases from 3.5 to 3.0. We find the disk emission at millimeter wavelengths corresponding to synthetic observations with ALMA and VLA. The simulated maps at 7 mm and 1 cm show a strong azimuthal asymmetry. This happens because, at these wavelengths, the disk becomes optically thin while the vortex remains optically thick. The large vortex opacity is mainly due to an increase in the dust-to-gas mass ratio. In addition, the change in the slope of the dust size distribution increases the opacity by a factor of two. We also show that the inclusion of the dust scattering opacity substantially changes the disks images.

  12. Relativistic Gas Drag on Dust Grains and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Korea University of Science and Technology, Daejeon, 34113 (Korea, Republic of)

    2017-09-20

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative due to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.

  13. Alternative Fuels Data Center: Conventional Natural Gas Production

    Science.gov (United States)

    Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production

  14. Complex research of acoustic impact on gas-dust flow in vortex ...

    African Journals Online (AJOL)

    Complex research of acoustic impact on gas-dust flow in vortex-acoustic dispenser. ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Introduction The processing of wastes from mining operations is usually related to the needs of related industries in raw materials. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  15. Multi-laboratory testing of a screening method for world trade center (WTC) collapse dust

    International Nuclear Information System (INIS)

    Rosati, Jacky A.; Bern, Amy M.; Willis, Robert D.; Blanchard, Fredrick T.; Conner, Teri L.; Kahn, Henry D.; Friedman, David

    2008-01-01

    The September 11, 2001 attack on the World Trade Center (WTC) covered a large area of downtown New York City with dust and debris. This paper describes the testing of an analytical method designed to evaluate whether sampled dust contains dust that may have originated from the collapse of the WTC. Using dust samples collected from locations affected and not affected (referred to as 'background' locations) by the collapse, a scanning electron microscopy (SEM) analysis method was developed to screen for three materials that are believed to be present in large quantities in WTC dusts: slag wool, concrete, and gypsum. An inter-laboratory evaluation of the method was implemented by having eight laboratories analyze a number of 'blind' dust samples, consisting of confirmed background dust and confirmed background dust spiked with varying amounts of dust affected by the WTC collapse. The levels of gypsum and concrete in the spiked samples were indistinguishable from the levels in the background samples. Measurements of slag wool in dust demonstrated potential for distinguishing between spiked and background samples in spite of considerable within and between laboratory variability. Slag wool measurements appear to be sufficiently sensitive to distinguish dust spiked with 5% WTC-affected dust from 22 out of 25 background dust samples. Additional development work and inter-laboratory testing of the slag wool component will be necessary to improve the precision and accuracy of the method and reduce inter- and intra-laboratory variability from levels observed in the inter-laboratory evaluation

  16. Gas and dust from solar metallicity AGB stars

    Science.gov (United States)

    Ventura, P.; Karakas, A.; Dell'Agli, F.; García-Hernández, D. A.; Guzman-Ramirez, L.

    2018-04-01

    We study the asymptotic giant branch (AGB) evolution of stars with masses between 1 M⊙and8.5 M⊙. We focus on stars with a solar chemical composition, which allows us to interpret evolved stars in the Galaxy. We present a detailed comparison with models of the same chemistry, calculated with a different evolution code and based on a different set of physical assumptions. We find that stars of mass ≥3.5 M⊙ experience hot bottom burning at the base of the envelope. They have AGB lifetimes shorter than ˜3 × 105 yr and eject into their surroundings gas contaminated by proton-capture nucleosynthesis, at an extent sensitive to the treatment of convection. Low-mass stars with 1.5 M⊙ ≤ M ≤ 3 M⊙ become carbon stars. During the final phases, the C/O ratio grows to ˜3. We find a remarkable agreement between the two codes for the low-mass models and conclude that predictions for the physical and chemical properties of these stars, and the AGB lifetime, are not that sensitive to the modelling of the AGB phase. The dust produced is also dependent on the mass: low-mass stars produce mainly solid carbon and silicon carbide dust, whereas higher mass stars produce silicates and alumina dust. Possible future observations potentially able to add more robustness to the present results are also discussed.

  17. Physics of dust grains in hot gas

    International Nuclear Information System (INIS)

    Draine, B.T.; Salpeter, E.E.

    1979-01-01

    Charging of dust grains in hot (10 4 --10 9 K) plasma is studied, including photoelectron and secondary electron emission, field emission, and transmission of electrons and ions through the grain; resulting grain potentials are (for T > or approx. = 10 5 K) considerably smaller in magnitude than found by Burke and Silk. Even so, large electrostatic stresses can cause ion field emission and rapid destruction of small grains in very hot gas. Rapid rotation can also disrupt small grains, but damping (by microwave emission) usually limits the centrifugal stress to acceptable values for plasma densities n/sub H/ -3 . Sputtering rates are estimated for grains in hot gas, based upon a semiempirical fit to experimental data. Predicted sputtering rates for possible grain constituents are similar to estimates by Barlow, but in some cases differ significantly. Useful approximation formulae are given for the drag forces acting on a grain with arbitrary Mach number

  18. Measurement of nicotine in household dust

    International Nuclear Information System (INIS)

    Kim, Sungroul; Aung, Ther; Berkeley, Emily; Diette, Gregory B.; Breysse, Patrick N.

    2008-01-01

    An analytical method of measuring nicotine in house dust was optimized and associations among three secondhand smoking exposure markers were evaluated, i.e., nicotine concentrations of both house dust and indoor air, and the self-reported number of cigarettes smoked daily in a household. We obtained seven house dust samples from self-reported nonsmoking homes and 30 samples from smoking homes along with the information on indoor air nicotine concentrations and the number of cigarettes smoked daily from an asthma cohort study conducted by the Johns Hopkins Center for Childhood Asthma in the Urban Environment. House dust nicotine was analyzed by isotope dilution gas chromatography-mass spectrometry (GC/MS). Using our optimized method, the median concentration of nicotine in the dust of self-reported nonsmoking homes was 11.7 ng/mg while that of smoking homes was 43.4 ng/mg. We found a substantially positive association (r=0.67, P<0.0001) between house dust nicotine concentrations and the numbers of cigarettes smoked daily. Optimized analytical methods showed a feasibility to detect nicotine in house dust. Our results indicated that the measurement of nicotine in house dust can be used potentially as a marker of longer term SHS exposure

  19. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. I. DUST PROPERTIES AND INSIGHTS INTO THE ORIGIN OF THE SUBMILLIMETER EXCESS EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Karl D.; Roman-Duval, Julia; Meixner, Margaret [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bot, Caroline [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l Université, F-67000 Strasbourg (France); Babler, Brian [Department of Astronomy, 475 North Charter Street, University of Wisconsin, Madison, WI 53706 (United States); Bernard, Jean-Philippe [CESR, Université de Toulouse, UPS, 9 Avenue du Colonel Roche, F-31028 Toulouse, Cedex 4 (France); Bolatto, Alberto; Jameson, Katherine [Department of Astronomy, Lab for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, 233-A Nicholson Hall, Tower Drive, Baton Rouge, LA 70803 (United States); Engelbracht, Charles [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Fukui, Yasuo [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Galametz, Maud [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching-bei-Mnchen (Germany); Galliano, Frederic; Hony, Sacha; Lebouteiller, Vianney [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Hughes, Annie [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Indebetouw, Remy [Department of Astronomy, University of Virginia, and National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Israel, Frank P. [Sterrewacht Leiden, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Kawamura, Akiko [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan); and others

    2014-12-20

    The dust properties in the Large and Small Magellanic clouds (LMC/SMC) are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 μm. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power-law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models, we investigate the origin of the submillimeter excess, defined as the submillimeter emission above that expected from SMBB models fit to observations <200 μm. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 μm submillimeter excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 ± 1.7) × 10{sup 5} and (8.3 ± 2.1) × 10{sup 4} M {sub ☉} for the LMC and SMC, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

  20. Investigation into the potential for dust and gas explosions in underground coal mines with reference to pick tip geometry

    International Nuclear Information System (INIS)

    Dawood, Albert D.

    2011-01-01

    In underground coal mines, methane gas, if present in sufficient concentration, may be ignited by sparks from hot spots on the picks of coal cutting machines striking hard bands of rock. During the coal cutting, wear-flat areas develop on the trailing side of the tips of picks. As pick wear progresses, the generation of frictional heat and coal dust increases and the development of hot spots at the cutting tips may lead to an explosion of methane gas. Field experience and research work over the last few years have facilitated excellent cutting performance for certain picks through the optimisation of the cutting parameters. Such performance improvements show great promise in preventing the incidence of gas or dust explosions occurring at the coal face area. This study sets out some of the fundamentals of pick geometry and cutting parameters and the methods which have been employed to achieve improvements in reducing the hazards of gas or dust explosions. It is based on the comparative trial results of two types of picks with different designs and on a range of available research information on the subject. My investigation looked at the fundamentals of pick geometry and cutting parameters and the current suppression techniques in place to control the dust and gas explosions on the coal operating face.

  1. STEADY STATE DUST DISTRIBUTIONS IN DISK VORTICES: OBSERVATIONAL PREDICTIONS AND APPLICATIONS TO TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Lyra, Wladimir; Lin, Min-Kai

    2013-01-01

    The Atacama Large Millimeter Array has returned images of transitional disks in which large asymmetries are seen in the distribution of millimeter sized dust in the outer disk. The explanation in vogue borrows from the vortex literature and suggests that these asymmetries are the result of dust trapping in giant vortices, excited via Rossby wave instabilities at planetary gap edges. Due to the drag force, dust trapped in vortices will accumulate in the center and diffusion is needed to maintain a steady state over the lifetime of the disk. While previous work derived semi-analytical models of the process, in this paper we provide analytical steady-steady solutions. Exact solutions exist for certain vortex models. The solution is determined by the vortex rotation profile, the gas scale height, the vortex aspect ratio, and the ratio of dust diffusion to gas-dust friction. In principle, all of these quantities can be derived from observations, which would validate the model and also provide constrains on the strength of the turbulence inside the vortex core. Based on our solution, we derive quantities such as the gas-dust contrast, the trapped dust mass, and the dust contrast at the same orbital location. We apply our model to the recently imaged Oph IRS 48 system, finding values within the range of the observational uncertainties

  2. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements With Modified Blackbody Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; −13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ {sup 2} values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; −7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect

  3. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements with Modified Blackbody Fitting

    Science.gov (United States)

    Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E.

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; -13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ 2 values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; -7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect techniques.

  4. Method development for analysis of urban dust using scanning electron microscopy with energy dispersive x-ray spectrometry to detect the possible presence of world trade center dust constituents

    Science.gov (United States)

    Bern, A.M.; Lowers, H.A.; Meeker, G.P.; Rosati, J.A.

    2009-01-01

    The collapse of the World Trade Center Towers on September 11, 2001, sent dust and debris across much of Manhattan and in the surrounding areas. Indoor and outdoor dust samples were collected and characterized by U.S. Geological Survey (USGS) scientists using scanning electron microscopy with energy-dispersive spectrometry (SEM/EDS). From this characterization, the U.S. Environmental Protection Agency and USGS developed a particulate screening method to determine the presence of residual World Trade Center dust in the indoor environment using slag wool as a primary "signature". The method describes a procedure that includes splitting, ashing, and sieving of collected dust. From one split, a 10 mg/mL dust/ isopropanol suspension was prepared and 10-30 ??L aliquots of the suspension placed on an SEM substrate. Analyses were performed using SEM/EDS manual point counting for slag wool fibers. Poisson regression was used to identify some of the sources of uncertainty, which are directly related to the small number of fibers present on each sample stub. Preliminary results indicate that the procedure is promising for screening urban background dust for the presence of WTC dust. Consistent sample preparation of reference materials and samples must be performed by each laboratory wishing to use this method to obtain meaningful and accurate results. ?? 2009 American Chemical Society.

  5. Indirect evidences for a gas/dust torus along the Phobos orbit

    International Nuclear Information System (INIS)

    Dubinin, E.M.; Lundin, R.; Pissarenko, N.F.; Barabash, S.V.; Zakharov, A.V.; Koskinen, H.; Schwingenshuh, K.; Yeroshenko, Ye.G.

    1990-01-01

    Observations from the PHOBOS-2 space-craft of plasma and magnetic field effects in the solar wind near Mars suggest that a neutral gas (dust?)torus/ring resides along the orbit of the Martian satellite Phobos. Magnetic cavities (strong decreases of the magnetic field strength) coincident with strong plasma density increases (up to a factor of ten) are observed during the first elliptic transition orbits when the spacecraft approached the Phobos orbits. The characteristic transverse dimension of the structures along the spacecraft orbit is in the range 100-1,000 km. Torus effects also have characteristics similar to the formation of a bow shock with increases of plasma density and ion temperature, and a characteristic deflection of the ion flow. This suggests a rather strong interaction between the solar wind plasma and plasma near Phobos orbit. The interaction appears quite similar to that of the solar wind with a comet. The outgassing of matter from Phobos (and Deimos) is also suggested by plasma observations in the wake/tail of the Martian satellites. Altogether, the authors observations imply that a neutral gas cloud - possibly also associated with a faint dust ring - exists along the Phobos orbit

  6. WMO SDS-WAS NAMEE Regional Center: Towards continuous evaluation of dust models in Northern Africa

    Science.gov (United States)

    Basart, Sara; García-Castillo, Gerardo; Cuevas, Emilio; Terradellas, Enric

    2016-04-01

    One of the most important activities of the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization's Sand and Dust Storm Warning Advisory and Assessment System (WMO SDS-WAS, http://sds-was.aemet.es) is the dust model intercomparison and forecast evaluation, which is deemed an indispensable service to the users and an invaluable tool to assess model skills. Currently, the Regional Center collects daily dust forecasts from models run by nine partners (BSC, ECMWF, NASA, NCEP, SEEVCCC, EMA, CNR-ISAC, NOA and UK Met Office). A multi-model ensemble has also been set up in an effort to provide added-value products to the users. The first problem to address the dust model evaluation is the scarcity of suitable routine observations near the Sahara, the world's largest source of mineral dust. The present contribution presents preliminary results of dust model evaluation using new observational datasets. The current routine evaluation of dust predictions is focused on total-column dust optical depth (DOD) and uses remote-sensing retrievals from sun-photometric (AERONET) and satellite (MODIS) measurements. However, most users of dust forecasts are interested in the concentration near the surface (in the air we breathe) rather than in the total column content. Therefore, evaluation of the predicted surface concentration is also necessary. In this context, the initiative of the African Monsoon Interdisciplinary Analysis (AMMA) International Program to establish permanent measuring stations in the Sahel is extremely important. Tapered Element Oscillating Microbalance (TEOM) monitors continuously record PM10 in M'Bour (Senegal); Cinzana (Mali) and Banizoumbou (Niger). This surface model evaluation is complemented with the PM10 observation from the Air Quality Control and Monitoring Network (AQCMN) of the Canary Islands (Spain). The region, located in the sub-tropical Eastern Atlantic (roughly 100 km west of the Moroccan coast), is

  7. Dust evolution in protoplanetary disks

    OpenAIRE

    Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume

    2007-01-01

    6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...

  8. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    Science.gov (United States)

    Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  9. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, Asunción; Bachiller, Rafael [Observatorio Astronómico Nacional (OAN, IGN), Apdo 112, E-28803 Alcalá de Henares (Spain); Baruteau, Clément; Carmona, Andrés; Berné, Olivier [IRAP, Université de Toulouse, CNRS, UPS, Toulouse (France); Neri, Roberto [Institut de Radioastronomie Millimétrique (IRAM), 300 rue de la Piscine, F-38406 Saint Martin d’Hères (France); Agúndez, Marcelino; Goicoechea, Javier R.; Cernicharo, José, E-mail: a.fuente@oan.es [Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Cantoblanco, Madrid (Spain)

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  10. Kinetic simulation of neutral/ionized gas and electrically charged dust in the coma of comet 67P/Churyumov-Gerasimenko

    International Nuclear Information System (INIS)

    Tenishev, Valeriy; Rubin, Martin; Combi, Michael R.

    2011-01-01

    The cometary coma is a unique phenomenon in the solar system being a planetary atmosphere influenced by little or no gravity. As a comet approaches the sun, the water vapor with some fraction of other gases sublimate, generating a cloud of gas, ice and other refractory materials (rocky and organic dust) ejected from the surface of the nucleus. Sublimating gas molecules undergo frequent collisions and photochemical processes in the near-nucleus region. Owing to its negligible gravity, comets produce a large and highly variable extensive dusty coma with a size much larger than the characteristic size of the cometary nucleus.The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. Both, interpretation of measurements and safety consideration of the spacecraft require modeling of the comet's dusty gas environment.In this work we present results of a numerical study of multispecies gaseous and electrically charged dust environment of comet Chyuryumov-Gerasimenko. Both, gas and dust phases of the coma are simulated kinetically. Photolytic reactions are taken into account. Parameters of the ambient plasma as well as the distribution of electric/magnetic fields are obtained from an MHD simulation of the coma connected to the solar wind. Trajectories of ions and electrically charged dust grains are simulated by accounting for the Lorentz force and the nucleus gravity.

  11. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yinghe [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Lu, Nanyao; Xu, C. Kevin [National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100012 (China); Díaz-Santos, Tanio [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Gao Yu [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Charmandaris, Vassilis [Department of Physics, University of Crete, GR-71003 Heraklion (Greece); Werf, Paul van der [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Zhang Zhi-Yu [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Cao, Chen, E-mail: zhaoyinghe@ynao.ac.cn [School of Space Science and Physics, Shandong University at Weihai, Weihai, Shandong 264209 (China)

    2017-08-10

    We present our high-resolution (0.″15 × 0.″13, ∼34 pc) observations of the CO (6−5) line emission, which probes the warm and dense molecular gas, and the 434 μ m dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6−5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the CO (6−5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ∼10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa- α equivalent width. Within the nuclear region (radius ∼ 300 pc) and with a resolution of ∼34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s{sup −1} (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel .

  12. Hypervelocity Dust Impacts in Space and the Laboratory

    Science.gov (United States)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  13. The unexpectedly large dust and gas content of quiescent galaxies at z > 1.4

    Science.gov (United States)

    Gobat, R.; Daddi, E.; Magdis, G.; Bournaud, F.; Sargent, M.; Martig, M.; Jin, S.; Finoguenov, A.; Béthermin, M.; Hwang, H. S.; Renzini, A.; Wilson, G. W.; Aretxaga, I.; Yun, M.; Strazzullo, V.; Valentino, F.

    2018-03-01

    Early-type galaxies (ETGs) contain most of the stars present in the local Universe and, above a stellar mass content of 5 × 1010 solar masses, vastly outnumber spiral galaxies such as the Milky Way. These massive spheroidal galaxies have, in the present day, very little gas or dust in proportion to their mass1, and their stellar populations have been evolving passively for over 10 billion years. The physical mechanisms that led to the termination of star formation in these galaxies and depletion of their interstellar medium remain largely conjectural. In particular, there are currently no direct measurements of the amount of residual gas that might still be present in newly quiescent spheroidals at high redshift2. Here we show that quiescent ETGs at redshift z 1.8, close to their epoch of quenching, contained at least two orders of magnitude more dust at a fixed stellar mass compared with local ETGs. This implies the presence of substantial amounts of gas (5-10%), which has been consumed less efficiently than in more active galaxies, probably due to their spheroidal morphology, consistent with our simulations. This lower star formation efficiency, combined with an extended hot gas halo possibly maintained by persistent feedback from an active galactic nucleus, keep ETGs mostly passive throughout cosmic time.

  14. Elongated dust clouds in a uniform DC positive column of low pressure gas discharge

    International Nuclear Information System (INIS)

    Usachev, A D; Zobnin, A V; Petrov, O F; Fortov, V E; Thoma, M H; Pustylnik, M Y; Fink, M A; Morfill, G E

    2016-01-01

    Experimental investigations of the formation of elongated dust clouds and their influence on the plasma glow intensity of the uniform direct current (DC) positive column (PC) have been performed under microgravity conditions. For the axial stabilization of the dust cloud position a polarity switching DC gas discharge with a switching frequency of 250 Hz was used. During the experiment, a spontaneous division of one elongated dust cloud into two smaller steady state dust clouds has been observed. Quantitative data on the dust cloud shape, size and dust number density distribution were obtained. Axial and radial distributions of plasma emission within the 585.2 nm and 703.2 nm neon spectral lines were measured over the whole discharge volume. It has been found that both spectral line intensities at the dust cloud region grew 1.7 times with respect to the undisturbed positive column region; in this the 585.2 nm line intensity increased by 10% compared to the 703.2 nm line intensity. For a semi-quantitative explanation of the observed phenomena the Schottky approach based on the equation of diffusion was used. The model reasonably explains the observed glow enhancement as an increasing of the ionization rate in the discharge with dust cloud, which compensates ion-electron recombination on the dust grain surfaces. In this, the ionization rate increases due to the growing of the DC axial electric field, and the glow grows directly proportional to the electric field. It is shown that the fundamental condition of the radial stability of the dusty plasma cloud is equal to the ionization and recombination rates within the cloud volume that is possible only when the electron density is constant and the radial electric field is absent within the dust cloud. (paper)

  15. Far-IR Observations of Gas and Dust in the Unusual 49 Ceti Disk

    NARCIS (Netherlands)

    Roberge, Aki; Kamp, I.; Augereau, J.; Montesinos, B.; Meeus, G.; Olofsson, J.; Donaldson, J.; Howard, C. D.; Eiroa, C.; Dent, B.

    We present Herschel Space Observatory far-IR imaging and spectroscopy of 49 Cet, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. Photometry was obtained at

  16. Topology of two-dimensional turbulent flows of dust and gas

    Science.gov (United States)

    Mitra, Dhrubaditya; Perlekar, Prasad

    2018-04-01

    We perform direct numerical simulations (DNS) of passive heavy inertial particles (dust) in homogeneous and isotropic two-dimensional turbulent flows (gas) for a range of Stokes number, StDNS confirms that the statistics of topological properties of B are the same in Eulerian and Lagrangian frames only if the Eulerian data are weighed by the dust density. We use this correspondence to study the statistics of topological properties of A in the Lagrangian frame from our Eulerian simulations by calculating density-weighted probability distribution functions. We further find that in the Lagrangian frame, the mean value of the trace of A is negative and its magnitude increases with St approximately as exp(-C /St) with a constant C ≈0.1 . The statistical distribution of different topological structures that appear in the dust flow is different in Eulerian and Lagrangian (density-weighted Eulerian) cases, particularly for St close to unity. In both of these cases, for small St the topological structures have close to zero divergence and are either vortical (elliptic) or strain dominated (hyperbolic, saddle). As St increases, the contribution to negative divergence comes mostly from saddles and the contribution to positive divergence comes from both vortices and saddles. Compared to the Eulerian case, the Lagrangian (density-weighted Eulerian) case has less outward spirals and more converging saddles. Inward spirals are the least probable topological structures in both cases.

  17. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NARCIS (Netherlands)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moor, A.; Augereau, J. -C.; Howard, C.; Eiroa, C.; Thi, W. -F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-01-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space

  18. From the sun to the Galactic Center: dust, stars and black hole(s)

    Science.gov (United States)

    Fritz, Tobias

    2013-07-01

    The centers of galaxies are their own ultimate gravitational sinks. Massive black holes and star clusters as well as gas are especially likely to fall into the centers of galaxies by dynamical friction or dissipation. Many galactic centers harbor supermassive black holes (SMBH) and dense nuclear (star) clusters which possibly arrived there by these processes. Nuclear clusters can be formed in situ from gas, or from smaller star clusters which fall to the center. Since the Milky Way harbors both an SMBH and a nuclear cluster, both can be studied best in the Galactic Center (GC), which is the closest galactic nucleus to us. In Chapter 1, I introduce the different components of the Milky Way, and put these into the context of the GC. I then give an overview of relevant properties (e.g. star content and distribution) of the GC. Afterwards, I report the results of four different studies about the GC. In Chapter 2, I analyze the limitations of astrometry, one of the most useful methods for the study of the GC. Thanks to the high density of stars and its relatively small distance from us it is possible to measure the motions of thousands of stars in the GC with images, separated by few years only. I find two main limitations to this method: (1) for bright stars the not perfectly correctable distortion of the camera limits the accuracy, and (2) for the majority of the fainter stars, the main limitation is crowding from the other stars in the GC. The position uncertainty of faint stars is mainly caused by the seeing halos of bright stars. In the very center faint unresolvable stars are also important for the position uncertainty. In Chapter 3, I evaluate the evidence for an intermediate mass black hole in the small candidate cluster IRS13E within the GC. Intermediate mass black holes (IMBHs) have a mass between the two types of confirmed black hole: the stellar remnants and the supermassive black holes in the centers of galaxies. One possibility for! their formation is the

  19. NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam [University of California, Riverside, CA 92512 (United States); Nayyeri, Hooshang; Miller, Sarah [University of California, Irvine, CA 92697 (United States); Sobral, David, E-mail: shemm001@ucr.edu [Universidade de Lisboa, PT1349-018 Lisbon (Portugal)

    2015-11-20

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this

  20. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    Science.gov (United States)

    Zhao, Yinghe; Lu, Nanyao; Díaz-Santos, Tanio; Xu, C. Kevin; Gao, Yu; Charmandaris, Vassilis; van der Werf, Paul; Zhang, Zhi-Yu; Cao, Chen

    2017-08-01

    We present our high-resolution (0.″15 × 0.″13, ˜34 pc) observations of the CO (6-5) line emission, which probes the warm and dense molecular gas, and the 434 μm dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6-5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the CO (6-5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ˜10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa-α equivalent width. Within the nuclear region (radius ˜ 300 pc) and with a resolution of ˜34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s-1 (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  1. BASIN-CENTERED GAS SYSTEMS OF THE U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Marin A. Popov; Vito F. Nuccio; Thaddeus S. Dyman; Timothy A. Gognat; Ronald C. Johnson; James W. Schmoker; Michael S. Wilson; Charles Bartberger

    2000-11-01

    The USGS is re-evaluating the resource potential of basin-centered gas accumulations in the U.S. because of changing perceptions of the geology of these accumulations, and the availability of new data since the USGS 1995 National Assessment of United States oil and gas resources (Gautier et al., 1996). To attain these objectives, this project used knowledge of basin-centered gas systems and procedures such as stratigraphic analysis, organic geochemistry, modeling of basin thermal dynamics, reservoir characterization, and pressure analysis. This project proceeded in two phases which had the following objectives: Phase I (4/1998 through 5/1999): Identify and describe the geologic and geographic distribution of potential basin-centered gas systems, and Phase II (6/1999 through 11/2000): For selected systems, estimate the location of those basin-centered gas resources that are likely to be produced over the next 30 years. In Phase I, we characterize thirty-three (33) potential basin-centered gas systems (or accumulations) based on information published in the literature or acquired from internal computerized well and reservoir data files. These newly defined potential accumulations vary from low to high risk and may or may not survive the rigorous geologic scrutiny leading towards full assessment by the USGS. For logistical reasons, not all basins received the level of detail desired or required.

  2. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-11-01

    The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

  3. Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas

    Science.gov (United States)

    Phoenix Cleans Up with Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Phoenix Cleans Up with Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Phoenix Cleans Up with Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Phoenix Cleans Up with Natural

  4. Quasar Winds as Dust Factories at High Redshift

    OpenAIRE

    Elvis, Martin; Marengo, Massimo; Karovska, Margarita

    2003-01-01

    Winds from AGN and quasars will form large amounts of dust, as the cool gas in these winds passes through the (pressure, temperature) region where dust is formed in AGB stars. Conditions in the gas are benign to dust at these radii. As a result quasar winds may be a major source of dust at high redshifts, obviating a difficulty with current observations, and requiring far less dust to exist at early epochs.

  5. Exposure to respirable dust and crystalline silica in bricklaying education at Dutch vocational training centers.

    NARCIS (Netherlands)

    Huizer, D.; Spee, T.; Lumens, M.E.G.L.; Kromhout, H.

    2010-01-01

    BACKGROUND: Construction workers are educated at vocational training centers before they begin their working lives. Future bricklayers and their instructors are exposed to respirable dust and possibly to hazardous respirable crystalline silica from trial mortar. METHODS: Thirty-six personal air

  6. Dust and gas distribution in molecular clouds: an observational approach

    International Nuclear Information System (INIS)

    Campeggio, Loretta; Elia, Davide; Maiolo, Berlinda M T; Strafella, Francesco; Cecchi-Pestellini, Cesare

    2005-01-01

    The interstellar medium (ISM), gas and dust, appears to be arranged in clouds, whose dimensions, masses and densities span a large range of scales: from giant molecular clouds to small isolated globules. The structure of these objects show a high degree of complexity appearing, in the range of the observed scales, as a non-homogeneous ('clumpy') distribution of matter. The arrangement of the ISM is clearly relevant for the study of the fragmentation of the clouds and then of the star formation processes. To quantify observationally the ISM structure, many methods have been developed and our study is focused on some of them, exploiting multiwavelength observations of IS objects. The investigations presented here have been carried out by considering both the dust absorption (in optical and near IR wavelengths) and the gas emission (in the submm-radio spectral range). We present the maps obtained from the reduction of raw data and a first tentative analysis by means of methods as the structure function, the autocorrelation, and the Δ-variance. These are appropriate tools to highlight the complex structure of the ISM with reference to the paradigm given by the supersonic turbulence. Three observational cases are briefly discussed. In order to analyse the structure of objects characterized by different sizes, we applied the above-mentioned algorithms to the extinction map of the dark globule CB 107 and to the CO(J = 1-0) integrated intensity map of Vela Molecular Ridge, D Cloud. Finally we compare the results obtained with synthetic fractal maps known as 'fractional Brownian motion' fBm images

  7. THE DIFFERENT EVOLUTION OF GAS AND DUST IN DISKS AROUND SUN-LIKE AND COOL STARS

    NARCIS (Netherlands)

    Pascucci, I.; Apai, D.; Luhman, K.; Henning, Th.; Bouwman, J.; Meyer, M. R.; Lahuis, F.; Natta, A.

    2009-01-01

    Planet formation is profoundly impacted by the properties of protoplanetary disks and their central star. However, how disk properties vary with stellar parameters remains poorly known. Here, we present the first comprehensive, comparative Spitzer/IRS study of the dust and gas properties of disks

  8. Spatially Resolved Dust, Gas, and Star Formation in the Dwarf Magellanic Irregular NGC 4449

    Science.gov (United States)

    Calzetti, D.; Wilson, G. W.; Draine, B. T.; Roussel, H.; Johnson, K. E.; Heyer, M. H.; Wall, W. F.; Grasha, K.; Battisti, A.; Andrews, J. E.; Kirkpatrick, A.; Rosa González, D.; Vega, O.; Puschnig, J.; Yun, M.; Östlin, G.; Evans, A. S.; Tang, Y.; Lowenthal, J.; Sánchez-Arguelles, D.

    2018-01-01

    We investigate the relation between gas and star formation in subgalactic regions, ∼360 pc to ∼1.5 kpc in size, within the nearby starburst dwarf NGC 4449, in order to separate the underlying relation from the effects of sampling at varying spatial scales. Dust and gas mass surface densities are derived by combining new observations at 1.1 mm, obtained with the AzTEC instrument on the Large Millimeter Telescope, with archival infrared images in the range 8–500 μm from the Spitzer Space Telescope and the Herschel Space Observatory. We extend the dynamic range of our millimeter (and dust) maps at the faint end, using a correlation between the far-infrared/millimeter colors F(70)/F(1100) (and F(160)/F(1100)) and the mid-infrared color F(8)/F(24) that we establish for the first time for this and other galaxies. Supplementing our data with maps of the extinction-corrected star formation rate (SFR) surface density, we measure both the SFR–molecular gas and the SFR–total gas relations in NGC 4449. We find that the SFR–molecular gas relation is described by a power law with an exponent that decreases from ∼1.5 to ∼1.2 for increasing region size, while the exponent of the SFR–total gas relation remains constant with a value of ∼1.5 independent of region size. We attribute the molecular law behavior to the increasingly better sampling of the molecular cloud mass function at larger region sizes; conversely, the total gas law behavior likely results from the balance between the atomic and molecular gas phases achieved in regions of active star formation. Our results indicate a nonlinear relation between SFR and gas surface density in NGC 4449, similar to what is observed for galaxy samples. Based on observations obtained with the Large Millimeter Telescope Alfonso Serrano—a binational collaboration between INAOE (Mexico) and the University of Massachusetts–Amherst (USA).

  9. Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales

    Science.gov (United States)

    Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka

    2018-04-01

    We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (activity compared to intermediate-age and older clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.

  10. CONSTRAINING DUST AND MOLECULAR GAS PROPERTIES IN Lyα BLOBS AT z ∼ 3

    International Nuclear Information System (INIS)

    Yang Yujin; Decarli, Roberto; Walter, Fabian; Leipski, Christian; Dannerbauer, Helmut; Le Floc'h, Emeric; Weiss, Axel; Menten, Karl M.; Dey, Arjun; Chapman, Scott C.; Prescott, Moire K. M.; Neri, Roberto; Borys, Colin; Matsuda, Yuichi; Yamada, Toru; Hayashino, Tomoki; Tapken, Christian

    2012-01-01

    In order to constrain the bolometric luminosities, dust properties, and molecular gas content of giant Lyα nebulae, the so-called Lyα blobs, we have carried out a study of dust continuum and CO line emission in two well-studied representatives of this population at z ∼ 3: an Lyα blob discovered by its strong Spitzer Multiband Infrared Photometer 24 μm detection (LABd05) and the Steidel blob 1 (SSA22-LAB01). We find that the spectral energy distribution of LABd05 is well described by an active-galactic-nucleus-starburst composite template with L FIR = (4.0 ± 0.5) × 10 12 L ☉ , comparable to high-z submillimeter galaxies and ultraluminous infrared galaxies. New Large APEX Bolometer Camera 870 μm measurements rule out the reported Submillimeter Common-User Bolometer Array detection of the SSA22-LAB01 (S 850μm = 16.8 mJy) at the >4σ level. Consistent with this, ultradeep Plateau de Bure Interferometer observations with ∼2'' spatial resolution also fail to detect any 1.2 mm continuum source down to ≈0.45 mJy beam –1 (3σ). Combined with the existing (sub)millimeter observations in the literature, we conclude that the FIR luminosity of SSA22-LAB01 remains uncertain. No CO line is detected in either case down to integrated flux limits of S ν ΔV ∼ –1 , indicating a modest molecular gas reservoir, M(H 2 ) 10 M ☉ . The non-detections exclude, with high significance (12σ), the previous tentative detection of a CO J = 4-3 line in the SSA22-LAB01. The increased sensitivity afforded by the Atacama Large Millimeter/submillimeter Array will be critical in studying molecular gas and dust in these interesting systems.

  11. Differences in the Gas and Dust Distribution in the Transitional Disk of a Sun-like Young Star, PDS 70

    Science.gov (United States)

    Long, Zachary C.; Akiyama, Eiji; Sitko, Michael; Fernandes, Rachel B.; Assani, Korash; Grady, Carol A.; Cure, Michel; Danchi, William C.; Dong, Ruobing; Fukagawa, Misato; Hasegawa, Yasuhiro; Hashimoto, Jun; Henning, Thomas; Inutsuka, Shu-Ichiro; Kraus, Stefan; Kwon, Jungmi; Lisse, Carey M.; Baobabu Liu, Hauyu; Mayama, Satoshi; Muto, Takayuki; Nakagawa, Takao; Takami, Michihiro; Tamura, Motohide; Currie, Thayne; Wisniewski, John P.; Yang, Yi

    2018-05-01

    We present ALMA 0.87 mm continuum, HCO+ J = 4–3 emission line, and CO J = 3–2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two-component transitional disk system with a radial dust gap of 0.″42 ± 0.″05, an azimuthal gap in the HCO+ J = 4–3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analog in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D using a two-disk component. We find that there is a radial gap that extends from 15 to 60 au in all grain sizes, which differs from previous work.

  12. [Analysis on occupational exposure to dust and harmful gas and corresponding protection in adults aged 40 years and older in China, 2014].

    Science.gov (United States)

    Wang, B H; Cong, S; Bao, H L; Feng, Y J; Fan, J; Wang, N; Fang, L W; Wang, L H

    2018-05-10

    Objective: To understand the current status of dust and/or harmful gas exposure in adults aged ≥40 years and corresponding protection in China, and provide evidence for strengthening the occupational protection against dust and harmful gas exposure. Methods: The data were obtained from 2014-2015 COPD surveillance in China. A total of 75 107 adults aged ≥40 years selected through multi-stage stratified cluster sampling from 125 surveillance points in 31 provinces (autonomous regions and municipalities) were surveyed in face to face interviews. Occupational exposure was defined as occupational exposure to dust and/or harmful gas for more than 1 year. The weighted percentages of exposure were estimated by using complex sampling design. Results: Among eligible 71 061 participants, the exposure rate of dust and/or harmful gas was 46.3 % . The exposure rate in rural area (51.7 % ) was significantly higher than that in urban area (40.3 % ), and the exposure rate in the western area was higher than those in the eastern and central areas ( P school and below was highest (49.7 % , P protection rate was 26.7 % , and the exposure protection rate was highest in the eastern area (29.9 % ), followed by that in the central area (27.0 % ) and that in the western area (22.9 % ) The exposure protection rate in urban area was significantly higher than that in rural area, and the exposure protection rate was lowest in those with education level of primary school and below. The regular exposure protection was taken by only 50.7 % of the adults surveyed. Conclusion: The exposure rate of dust and/or harmful gas is high in China, while the exposure protection rate is very low. Health education, occupational protection and supervision should be strengthened among those with low education level, and those living in rural area and in the western area.

  13. Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas

    Science.gov (United States)

    Trucks Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark

  14. Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers

    Science.gov (United States)

    Refuse Vehicles Renewable Natural Gas From Landfill Powers Refuse Vehicles to someone by E-mail Share Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse Vehicles on Facebook Tweet about Alternative Fuels Data Center: Renewable Natural Gas From Landfill Powers Refuse

  15. Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas

    Science.gov (United States)

    Pennsylvania School Buses Run on Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania School Buses Run on Natural Gas on Twitter Bookmark Alternative Fuels Data Center

  16. Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas

    Science.gov (United States)

    Fueling Stations Colorado Airport Relies on Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Colorado Airport Relies on Natural Gas Fueling Stations on

  17. Carbon Formation and Metal Dusting in Hot-Gas Cleanup Systems of Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, Peter F.; Judkins, Roddie R.; DeVan, Jackson H.; Wright, Ian G.

    1995-12-31

    There are several possible materials/systems degradation modes that result from gasification environments with appreciable carbon activities. These processes, which are not necessarily mutually exclusive, include carbon deposition, carburization, metal dusting, and CO disintegration of refractories. Carbon formation on solid surfaces occurs by deposition from gases in which the carbon activity (a sub C) exceeds unity. The presence of a carbon layer CO can directly affect gasifier performance by restricting gas flow, particularly in the hot gas filter, creating debris (that may be deposited elsewhere in the system or that may cause erosive damage of downstream components), and/or changing the catalytic activity of surfaces.

  18. Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas

    Science.gov (United States)

    Central Ohio Turns Trash Into Natural Gas to someone by E-mail Share Alternative Fuels Data Center : Central Ohio Turns Trash Into Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Central Ohio Turns Trash Into Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Central Ohio Turns

  19. Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling

    Science.gov (United States)

    Station in Arkansas Krug Energy Opens Natural Gas Fueling Station in Arkansas to someone by E -mail Share Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in Arkansas on Facebook Tweet about Alternative Fuels Data Center: Krug Energy Opens Natural Gas Fueling Station in

  20. HCO+ Detection of Dust-depleted Gas in the Inner Hole of the LkCa 15 Pre-transitional Disk

    NARCIS (Netherlands)

    Drabek-Maunder, E.; Mohanty, S.; Greaves, J.; Kamp, I.; Meijerink, R.; Spaans, M.; Thi, W. -F; Woitke, P.

    2016-01-01

    LkCa 15 is an extensively studied star in the Taurus region, known for its pre-transitional disk with a large inner cavity in the dust continuum and normal gas accretion rate. The most popular hypothesis to explain the LkCa 15 data invokes one or more planets to carve out the inner cavity, while gas

  1. Effect of Gas Velocity on the Dust Sediment Layer in the Coupled Field of Corona Plasma and Cyclone

    International Nuclear Information System (INIS)

    Wei Mingshan; Ma Chaochen; Li Minghua; Danish, S N

    2006-01-01

    A dust sediment layer was found on the outer tube wall when the ESCP (electrostatic centrifugal precipitator) trapped diesel particulates or ganister sand. The Compton back scatter method was used to measure the sediment thickness during the experiment. The effect of the inlet gas velocity on the dust sediment layer was investigated. PIV (Particle Image Velocimetry) was used to measure the velocity field between the inner barb tube wall and the outer tube wall. Experiments showed that the thickness of the sediment increased with time, and the sediment layer at the lower end was much thicker than that at the upper end. The agglomeration on the outer tube wall could be removed when the inlet gas velocity was increased to a certain value

  2. Planck intermediate results XXVIII. Interstellar gas and dust in the Chamaeleon clouds as seen by Fermi LAT and Planck

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Aniano, G.

    2015-01-01

    the clouds. We have separated clouds at local, intermediate, and Galactic velocities in H i and 12CO line emission to model in parallel the γ-ray intensity recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz, τ353; the thermal radiance of the large grains; and an estimate of the dust...... extinction, AVQ, empirically corrected for the starlight intensity. The dust and gamma-models have been coupled to account for the DNM gas. The consistent γ-emissivity spectra recorded in the different phases confirm that the GeV-TeV cosmic rays probed by the LAT uniformly permeate all gas phases up...... in the gamma-versus dust calibration of XCO, but they confirm the factor of 2 difference found between the XCO estimates in nearby clouds and in the neighbouring spiral arms....

  3. DUST PRODUCTION AND PARTICLE ACCELERATION IN SUPERNOVA 1987A REVEALED WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Indebetouw, R.; Chevalier, R. [Department of Astronomy, University of Virginia, PO Box 400325, Charlottesville, VA 22904 (United States); Matsuura, M.; Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Dwek, E. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Zanardo, G. [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, Crawley, WA 6009 (Australia); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bouchet, P. [CEA-Saclay, F-91191 Gif-sur-Yvette (France); Burrows, D. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Fransson, C.; Lundqvist, P. [Department of Astronomy and the Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Gaensler, B. [Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO) (Australia); Kirshner, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Lakićević, M. [Lennard-Jones Laboratories, Keele University, ST5 5BG (United Kingdom); Long, K. S.; Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Martí-Vidal, I. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden); Marcaide, J. [Universidad de Valencia, C/Dr. Moliner 50, E-46100 Burjassot (Spain); McCray, R., E-mail: remy@virginia.edu [Department of Astrophysical and Planetary Sciences, University of Colorado at Boulder, UCB 391, Boulder, CO 80309 (United States); and others

    2014-02-10

    Supernova (SN) explosions are crucial engines driving the evolution of galaxies by shock heating gas, increasing the metallicity, creating dust, and accelerating energetic particles. In 2012 we used the Atacama Large Millimeter/Submillimeter Array to observe SN 1987A, one of the best-observed supernovae since the invention of the telescope. We present spatially resolved images at 450 μm, 870 μm, 1.4 mm, and 2.8 mm, an important transition wavelength range. Longer wavelength emission is dominated by synchrotron radiation from shock-accelerated particles, shorter wavelengths by emission from the largest mass of dust measured in a supernova remnant (>0.2 M {sub ☉}). For the first time we show unambiguously that this dust has formed in the inner ejecta (the cold remnants of the exploded star's core). The dust emission is concentrated at the center of the remnant, so the dust has not yet been affected by the shocks. If a significant fraction survives, and if SN 1987A is typical, supernovae are important cosmological dust producers.

  4. Hybrid Simulations of Plasma-Neutral-Dust Interactions at Enceladus

    International Nuclear Information System (INIS)

    Omidi, N.; Russell, C. T.; Jia, Y. D.; Tokar, R. L.; Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Leisner, J. S.

    2010-01-01

    Through ejection from its southern hemisphere, Enceladus is a dominant source of neutral gas and dust in Saturn's inner magnetosphere. The interaction of the corotating plasma with the gas and dust modifies the plasma environment around Enceladus. We use 3-D hybrid (kinetic ions, fluid electrons) simulations to examine the effects of gas and dust on the nature of the interaction region and use Cassini observations to constrain their properties.

  5. Laboratory modelling of the physico-chemical processes in the cosmic gas-dust clouds

    International Nuclear Information System (INIS)

    Bakulina, I.N.; Blashenkov, N.M.; Varshalovich, D.A.; Lavrent'ev, G.Ya.; Shustrov, B.N.

    1980-01-01

    The preliminary results of an experiment on the complex laboratory modelling of the physico-chemical processes proceeding in the interstellar gas clouds are presented. The purpose of the modelling is an analysis of the molecule formation and dissociation processes kinetics. The basic component of the modelling system is 10 cm diameter spherical container with cooled walls (the dust particles surface analogue). The high frequency discharger (the discharge region - the H 2 zone analogue) is placed in the central part of the container. The container contains the mixture of simple gases: 10 -1 Tor of H 2 and He, 10 -2 Tor of CO, O 2 and N 2 and 0.5x10 -2 Tor of H 2 S (an analogue of the H 1 zone). The reactions are induced by the electrodeless high-frequency discharge (f=20 MHz) with the discharge power of 0.1-1 W. The resulting mixture has been analyzed by the high-resolution magnetic resonance mass spectrometer. (M/ΔM=2x10 4 ) with an electron impact source. It is shown that, in the reactions of the formation of many on the interstellar molecules, the on the cold dust surface reactions rather than the gas-phase reactions may play the dominant role

  6. Metal Dusting: Catastrophic Corrosion by Carbon

    Science.gov (United States)

    Young, David J.; Zhang, Jianqiang

    2012-12-01

    Reducing gases rich in carbon-bearing species such as CO can be supersaturated with respect to graphite at intermediate temperatures of about 400-700°C. Engineering alloys such as low-alloy and stainless steels, and heat-resisting iron-, nickel-, and cobalt-base alloys catalyze gas processes that release the carbon. An understanding of how the resulting carbon deposition can destroy alloys at a catastrophically rapid rate has been the objective of a great deal of research. The current review of recent work on metal dusting covers the mass transfer—principally carbon diffusion—and graphite nucleation processes involved. A clear distinction emerges between ferritic alloys, which form cementite and precipitate graphite within that carbide, and austenitics that nucleate graphite directly within the metal. The latter process is facilitated by the strong orientation relationship between the graphite and face-centered cubic (fcc) lattices. Strategies for the control of dusting are briefly outlined.

  7. A Comprehensive Study of the Cold Dust and Gas in Galactic Winds

    Science.gov (United States)

    Veilleux, Sylvain

    Galaxies do not evolve statically or in isolation, but instead are being structurally rearranged by stellar and gas motions and are interacting dynamically with their halos and environments. Galactic winds (GWs), or large-scale outflows of material from disks and spheroids, are a primary means by which this structural evolution and ongoing interplay occur. Major outstanding questions remain, however, about the precise impact that GWs make. Both from the ground and from space, our recent effort has focused on the all-important cold gas and dust components of GWs. They are the key to understanding GWs for at least three reasons: i. Outflows have to affect the cold gas and dust out of which stars form if they are to inhibit star formation in the host galaxy. ii. We have found in recent years that the cold gas phase is the energetically dominant phase of many GWs. iii. The kinematics and dynamics of the cold gas phase show trends with AGN luminosity that suggest that we are finally seeing the long-sought ``smoking gun'' of quasar feedback. However, these conclusions rest on very limited samples and are thus tentative. Remarkably, the Herschel and Spitzer Science Archives are treasure troves of high-quality images and spectra on GWs that could drastically improve this sad state of affairs, once these data are analyzed. Here we propose to carry out for the first time a single, self-consistent analysis of all of these data, and combine the results with our extensive ancillary ground-based data (Gemini, VLT, JVLA, ALMA, IRAM, and Keck) to capture all of the gas phases involved in GWs. This multiwavelength approach is unique and goes much beyond individual targeted programs in this area. We are interested in studying all GWs, regardless of redshifts: For the nearest (systems, we will examine deep Herschel and Spitzer images to derive the dust content of GWs and the circumgalactic environment in general. Our sample size (~50 GWs and control galaxies) will allow us to

  8. The Chandra Dust-scattering Halo of Galactic Center Transient Swift J174540.7–290015

    Energy Technology Data Exchange (ETDEWEB)

    Corrales, L. R. [Einstein Fellow, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI, 53706 (United States); Mon, B.; Haggard, D. [McGill Space Institute, McGill University, 3550 University Street, Montreal, QC, H3A 2A7 (Canada); Baganoff, F. K. [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Garmire, G. [Huntingdon Institute for X-ray Astronomy, 10677 Franks Road Huntingdon, PA, 16652 (United States); Degenaar, N. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Reynolds, M. [University of Michigan, 1085 S. University, 311 West Hall, Ann Arbor, MI 48109 (United States)

    2017-04-20

    We report the detection of a dust-scattering halo around a recently discovered X-ray transient, Swift J174540.7–290015, which in early 2016 February underwent one of the brightest outbursts ( F {sub X} ≈ 5 × 10{sup −10} erg cm{sup −2} s{sup −1}) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. After adjusting our spectral extraction for the effects of detector pile-up, we construct a point-spread function for each observation and compare it to the GC field before the outburst. We find residual surface brightness around Swift J174540.7–290015, which has a shape and temporal evolution consistent with the behavior expected from X-rays scattered by foreground dust. We examine the spectral properties of the source, which shows evidence that the object transitioned from a soft to hard spectral state as it faded below L {sub X} ∼ 10{sup 36} erg s{sup −1}. This behavior is consistent with the hypothesis that the object is a low-mass X-ray binary in the Galactic Center.

  9. THE RELATION BETWEEN GAS AND DUST IN THE TAURUS MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Pineda, Jorge L.; Goldsmith, Paul F.; Chapman, Nicholas; Li Di; Snell, Ronald L.; Cambresy, Laurent; Brunt, Chris

    2010-01-01

    We report a study of the relation between dust and gas over a 100 deg 2 area in the Taurus molecular cloud. We compare the H 2 column density derived from dust extinction with the CO column density derived from the 12 CO and 13 CO J = 1 → 0 lines. We derive the visual extinction from reddening determined from 2MASS data. The comparison is done at an angular size of 200'' corresponding to 0.14 pc at a distance of 140 pc. We find that the relation between visual extinction A V and N(CO) is linear between A V ≅ 3 and 10 mag in the region associated with the B213-L1495 filament. In other regions, the linear relation is flattened for A V ∼> 4 mag. We find that the presence of temperature gradients in the molecular gas affects the determination of N(CO) by ∼30%-70% with the largest difference occurring at large column densities. Adding a correction for this effect and accounting for the observed relation between the column density of CO and CO 2 ices and A V , we find a linear relationship between the column of carbon monoxide and dust for observed visual extinctions up to the maximum value in our data ≅23 mag. We have used these data to study a sample of dense cores in Taurus. Fitting an analytical column density profile to these cores we derive an average volume density of about 1.4 x 10 4 cm -3 and a CO depletion age of about 4.2 x 10 5 yr. At visual extinctions smaller than ∼3 mag, we find that the CO fractional abundance is reduced by up to two orders of magnitude. The data show a large scatter suggesting a range of physical conditions of the gas. We estimate the H 2 mass of Taurus to be about 1.5 x 10 4 M sun , independently derived from the A V and N(CO) maps. We derive a CO integrated intensity to H 2 conversion factor of about 2.1 x 10 20 cm -2 (K km s -1 ) -1 , which applies even in the region where the [CO]/[H 2 ] ratio is reduced by up to two orders of magnitude. The distribution of column densities in our Taurus maps resembles a log

  10. CONSTRAINING DUST AND MOLECULAR GAS PROPERTIES IN Ly{alpha} BLOBS AT z {approx} 3

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yujin; Decarli, Roberto; Walter, Fabian; Leipski, Christian [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, Heidelberg (Germany); Dannerbauer, Helmut; Le Floc' h, Emeric [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA-Saclay, Orme des Merisiers, 91191 Gif-sur-Yvette Cedex (France); Weiss, Axel; Menten, Karl M. [Max-Planck-Insitut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Dey, Arjun [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Chapman, Scott C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Prescott, Moire K. M. [Department of Physics, Broida Hall, Mail Code 9530, University of California, Santa Barbara, CA 93106 (United States); Neri, Roberto [IRAM-Institut de Radio Astronomie Millimetrique, 300 rue de la Piscine, 38406 Saint-Martin d' Heres (France); Borys, Colin [IPAC, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Matsuda, Yuichi [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Yamada, Toru [Astronomical Institute, Tohoku University, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Hayashino, Tomoki [Research Center for Neutrino Science, Graduate School of Science, Tohoku University, Sendai 980-8578 (Japan); Tapken, Christian [Leibnitz-Institut fuer Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam (Germany)

    2012-01-10

    In order to constrain the bolometric luminosities, dust properties, and molecular gas content of giant Ly{alpha} nebulae, the so-called Ly{alpha} blobs, we have carried out a study of dust continuum and CO line emission in two well-studied representatives of this population at z {approx} 3: an Ly{alpha} blob discovered by its strong Spitzer Multiband Infrared Photometer 24 {mu}m detection (LABd05) and the Steidel blob 1 (SSA22-LAB01). We find that the spectral energy distribution of LABd05 is well described by an active-galactic-nucleus-starburst composite template with L{sub FIR} = (4.0 {+-} 0.5) Multiplication-Sign 10{sup 12} L{sub Sun }, comparable to high-z submillimeter galaxies and ultraluminous infrared galaxies. New Large APEX Bolometer Camera 870 {mu}m measurements rule out the reported Submillimeter Common-User Bolometer Array detection of the SSA22-LAB01 (S{sub 850{mu}m} = 16.8 mJy) at the >4{sigma} level. Consistent with this, ultradeep Plateau de Bure Interferometer observations with {approx}2'' spatial resolution also fail to detect any 1.2 mm continuum source down to Almost-Equal-To 0.45 mJy beam{sup -1} (3{sigma}). Combined with the existing (sub)millimeter observations in the literature, we conclude that the FIR luminosity of SSA22-LAB01 remains uncertain. No CO line is detected in either case down to integrated flux limits of S{sub {nu}}{Delta}V {approx}< 0.25-1.0 Jy km s{sup -1}, indicating a modest molecular gas reservoir, M(H{sub 2}) < (1-3) Multiplication-Sign 10{sup 10} M{sub Sun }. The non-detections exclude, with high significance (12{sigma}), the previous tentative detection of a CO J = 4-3 line in the SSA22-LAB01. The increased sensitivity afforded by the Atacama Large Millimeter/submillimeter Array will be critical in studying molecular gas and dust in these interesting systems.

  11. Inorganic chemical composition and chemical reactivity of settled dust generated by the World Trade Center building collapse: Chapter 12

    Science.gov (United States)

    Plumlee, Geoffrey S.; Hageman, Philip L.; Lamothe, Paul J.; Ziegler, Thomas L.; Meeker, Gregory P.; Theodorakos, Peter M.; Brownfield, Isabelle; Adams, Monique G.; Swayze, Gregg A.; Hoefen, Todd M.; Taggart, Joseph E.; Clark, Roger N.; Wilson, S.; Sutley, Stephen J.

    2009-01-01

    Samples of dust deposited around lower Manhattan by the September 11, 2001, World Trade Center (WTC) collapse have inorganic chemical compositions that result in part from the variable chemical contributions of concrete, gypsum wallboard, glass fibers, window glass, and other materials contained in the buildings. The dust deposits were also modified chemically by variable interactions with rain water or water used in street washing and fire fighting. Chemical leach tests using deionized water as the extraction fluid show the dust samples can be quite alkaline, due primarily to reactions with calcium hydroxide in concrete particles. Calcium and sulfate are the most soluble components in the dust, but many other elements are also readily leached, including metals such as Al, Sb, Mo Cr, Cu, and Zn. Indoor dust samples produce leachates with higher pH, alkalinity, and dissolved solids than outdoor dust samples, suggesting most outdoor dust had reacted with water and atmospheric carbon dioxide prior to sample collection. Leach tests using simulated lung fluids as the extracting fluid suggest that the dust might also be quite reactive in fluids lining the respiratory tract, resulting in dissolution of some particles and possible precipitation of new phases such as phosphates, carbonates, and silicates. Results of these chemical characterization studies can be used by health scientists as they continue to track and interpret health effects resulting from the short-term exposure to the initial dust cloud and the longer-term exposure to dusts resuspended during cleanup.

  12. Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas

    Science.gov (United States)

    New Hampshire Fleet Revs up With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas on Twitter Bookmark Alternative Fuels Data Center

  13. Cross-calibration of CO- vs dust-based gas masses and assessment of the dynamical mass budget in Herschel-SDSS Stripe82 galaxies

    Science.gov (United States)

    Bertemes, Caroline; Wuyts, Stijn; Lutz, Dieter; Förster Schreiber, Natascha M.; Genzel, Reinhard; Minchin, Robert F.; Mundell, Carole G.; Rosario, David; Saintonge, Amélie; Tacconi, Linda

    2018-05-01

    We present a cross-calibration of CO- and dust-based molecular gas masses at z ≤ 0.2. Our results are based on a survey with the IRAM 30-m telescope collecting CO(1-0) measurements of 78 massive (log M⋆/M⊙ > 10) galaxies with known gas-phase metallicities, and with IR photometric coverage from WISE (22 μ ) and Herschel SPIRE (250, 350, 500μ). We find a tight relation (˜0.17 dex scatter) between the gas masses inferred from CO and dust continuum emission, with a minor systematic offset of 0.05 dex. The two methods can be brought into agreement by applying a metallicity-dependent adjustment factor (˜0.13 dex scatter). We illustrate that the observed offset is consistent with a scenario in which dust traces not only molecular gas, but also part of the H I reservoir, residing in the H2 -dominated region of the galaxy. Observations of the CO(2-1) to CO(1-0) line ratio for two thirds of the sample indicate a narrow range in excitation properties, with a median ratio of luminosities ⟨R21⟩ ˜ 0.64. Finally, we find dynamical mass constraints from spectral line profile fitting to agree well with the anticipated mass budget enclosed within an effective radius, once all mass components (stars, gas and dark matter) are accounted for.

  14. Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas

    Science.gov (United States)

    Cities Make the Clean Switch to Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Cities Make the Clean Switch to Natural Gas on Facebook Tweet about Alternative Fuels Data Center : Cities Make the Clean Switch to Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Cities

  15. Modeling of the flame propagation in coal-dust- methane air mixture in an enclosed sphere volume

    International Nuclear Information System (INIS)

    Krainov, A Yu; Moiseeva, K M

    2016-01-01

    The results of the numerical simulation of the flame front propagation in coal-dust- methane-air mixture in an enclosed volume with the ignition source in the center of the volume are presented. The mathematical model is based on a dual-velocity two-phase model of the reacting gas-dispersion medium. The system of equations includes the mass-conversation equation, the impulse-conversation equation, the total energy-conversation equation of the gas and particles taking into account the thermal conductivity and chemical reactions in the gas and on the particle surface, mass-conversation equation of the mixture gas components considering the diffusion and the burn-out and the particle burn-out equation. The influence of the coal particle mass on the pressure in the volume after the mixture burn out and on the burn-out time has been investigated. It has been shown that the burning rate of the coal-dust methane air mixtures depends on the coal particle size. (paper)

  16. Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse

    Science.gov (United States)

    Trucks Virginia Cleans up With Natural Gas Refuse Trucks to someone by E-mail Share Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Facebook Tweet about Alternative Fuels Data Center: Virginia Cleans up With Natural Gas Refuse Trucks on Twitter Bookmark Alternative

  17. Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas

    Science.gov (United States)

    Trucks Golden Eagle Delivers Beer With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Golden Eagle Delivers Beer With Natural Gas Trucks on Twitter Bookmark

  18. Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas

    Science.gov (United States)

    Buses Little Rock Gains Momentum with Natural Gas Buses to someone by E-mail Share Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas Buses on Facebook Tweet about Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas Buses on Twitter Bookmark Alternative

  19. Properties of the Nucleus, Dust Coma, and Gas Coma of Comet 29P/Schwassmann-Wachmann 1 As Observed By WISE/NEOWISE

    Science.gov (United States)

    Fernandez, Yanga R.; Bauer, J. M.; Lisse, C. M.; Grav, T.; Mainzer, A. K.; Masiero, J. R.; Walker, R. G.; Meech, K. J.

    2012-10-01

    We present our analysis of mid-infrared imaging of comet 29P/Schwassmann-Wachmann 1 by the Wide-field Infrared Survey Explorer (WISE) [1,2]. The comet was observed on May 3-4, 2010 - not in strong outburst - with imaging at 3.4, 4.6, 12, and 22 microns (a.k.a. bands W1, W2, W3, and W4). W1 and W2 were sensitive to the reflected-sunlight continuum and W3 and W4 to thermal emission. The comet's coma was seen in all bands, with a point-source clearly embedded in W1, W3, and W4 imaging. A coma-fitting technique [3,4] let us photometrically extract this point-source from the images, thereby letting us measure the nucleus's size, W1-band geometric albedo, and infrared beaming. The dust coma was most clearly seen at bands W1, W3, and W4, letting us estimate the dust production rate, extract spatially-resolved information about the dust albedo and color temperature, and constrain the grain composition and size distribution. W2 imaging shows a coma whose radial surface-brightness profile and photometry suggest we are seeing a gas component, specifically emission from CO and/or CO2, i.e. high-abundance species with emission lines within the bandpass. This lets us estimate 29P’s gas production rate and dust-to-gas ratio independently from earlier methods. We present a comparison of our dust, gas, and nucleus results to those from earlier studies of this comet. References: [1] E. L. Wright et al. 2010, AJ, 140, 1868. [2] A. K. Mainzer et al. 2011, ApJ, 731, 53. [3] C. M. Lisse et al. 1999, Icarus, 140, 189. [4] P. L. Lamy et al. 2004, in Comets II, pp. 223-264. Acknowledgements: This publication makes use of data products from (1) WISE, which is a joint project of UCLA and JPL/Caltech, funded by NASA; and (2) NEOWISE, which is a project of JPL/Caltech, funded by the Planetary Science Division of NASA.

  20. RADIAL DISTRIBUTION OF STARS, GAS AND DUST IN SINGS GALAXIES. I. SURFACE PHOTOMETRY AND MORPHOLOGY

    International Nuclear Information System (INIS)

    Munoz-Mateos, J. C.; Gil de Paz, A.; Zamorano, J.

    2009-01-01

    We present ultraviolet through far-infrared (FIR) surface brightness profiles for the 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). The imagery used to measure the profiles includes Galaxy Evolution Explorer UV data, optical images from Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and Sloan Digital Sky Survey, near-IR data from Two Micron All Sky Survey, and mid- and FIR images from Spitzer. Along with the radial profiles, we also provide multi-wavelength asymptotic magnitudes and several nonparametric indicators of galaxy morphology: the concentration index (C 42 ), the asymmetry (A), the Gini coefficient (G), and the normalized second-order moment of the brightest 20% of the galaxy's flux (M-bar 20 ). In this paper, the first of a series, we describe the technical aspects regarding the surface photometry, and present a basic analysis of the global and structural properties of the SINGS galaxies at different wavelengths. The homogeneity in the acquisition, reduction, and analysis of the results presented here makes these data ideal for multiple unanticipated studies on the radial distribution of the properties of stars, dust, and gas in galaxies. Our radial profiles show a wide range of morphologies and multiple components (bulges, exponential disks, inner and outer disk truncations, etc.) that vary not only from galaxy to galaxy but also with wavelength for a given object. In the optical and near-IR, the SINGS galaxies occupy the same regions in the C 42 -A-G-M-bar 20 parameter space as other normal galaxies in previous studies. However, they appear much less centrally concentrated, more asymmetric, and with larger values of G when viewed in the UV (due to star-forming clumps scattered across the disk) and in the mid-IR (due to the emission of polycyclic aromatic hydrocarbons at 8.0 μm and very hot dust at 24 μm). In an accompanying paper by Munoz-Mateos et al., we focus on the radial distribution of dust

  1. Studies of dust shells around stars

    International Nuclear Information System (INIS)

    Bedijn, P.J.

    1977-01-01

    This thesis deals with some aspects of circumstellar dust shells. This dust shell, emitting infrared radiation, is described by way of its absorptive and emissive properties as well as by the transfer of radiation through the dust shell itself. Model calculations are compared to experimental results and agree reasonably well. The author also discusses the dynamics of the extended shells of gas and dust around newly formed stars

  2. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    Science.gov (United States)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  3. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    Science.gov (United States)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  4. Dust particle removal efficiency of a venturi scrubber

    International Nuclear Information System (INIS)

    Ali, Majid; Yan, Changqi; Sun, Zhongning; Gu, Haifeng; Mehboob, Khurram

    2013-01-01

    Highlights: ► Experimental and theoretical study of dust removal efficiency in venturi scrubber. ► Dust removal efficiency 99.5% is achieved at throat gas velocity 220 m/s. ► Results obtained from mathematical model concur well with experimental results. - Abstract: The venturi scrubber is one of the most efficient gas cleaning devices to remove the contaminated particles from gaseous stream during severe accident in nuclear power plant. This study is focused on the dust particle removal efficiency of the venturi scrubber experimentally and theoretically. The venturi scrubber encapsulates the dust particles in petite water droplets flowing into it. The water injected into the scrubber is in the form of water film. The study investigates the removal efficiency of venturi scrubber for throat gas velocities of 130, 165 and 200 m/s and liquid flow rates 0.3–1 m 3 /h, whereas dust concentration ranges between 0.1 and 1 g/m 3 . The hydrophobic titanium dioxide (TiO 2 ) particles having density 4.23 g/cm 3 and mean diameter of 1 μm are used as dust particles in this research. Filtration technique is used to measure the concentration of dust particles at inlet and outlet. Experimental results show that the removal efficiency is higher with the increase of throat gas velocity and liquid flow rate. A mathematical model is employed for the verification of experimental results. The model concurs well with the experimental results

  5. Gas injection system in the Tara center cell

    International Nuclear Information System (INIS)

    Brau, K.; Post, R.S.; Sevillano, E.

    1985-11-01

    Precise control of the gas fueling is essential to the successful operation of tandem mirror plasmas. Improper choice of fueling location, magnetic geometry, and gas injection rates can prevent potential and thermal barrier formation, as well as reduce the energy confinement time. In designing the new gas injection configuration for the Tara center cell, the following issues were addressed: RF potential barriers, gas leakage, and charge exchange recombination. 2 refs., 6 figs

  6. Fractal dust grains in plasma

    International Nuclear Information System (INIS)

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-01-01

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  7. Production of brown coal fuel dust as a high value and effective energy carrier for substituting heating oil, natural gas and black coal in the cement and metallurgical industry

    Energy Technology Data Exchange (ETDEWEB)

    Kubasch, A.

    1985-01-01

    Poduction and industrial use of brown coal dust in the German Democratic Republic are reviewed. Dust production in 14 brown coal briquetting plants increased from 818.4 kt in 1980 to 2064 kt in 1984 and will exceed 4000 kt in 1990. Quality parameters of dusts according to the TGL 15380 industrial standard are listed. The railroad car loading and shipping technology is explained with the example of modern facilities of the Schwarze Pumpe briquetting plant: dust bunkers of 200 t storage capacity, pneumatic feeding and telescope discharge systems with nitrogen gas inertization, fire prevention, and railroad car cleaning equipment, rail track heating for improved winter loading conditions, etc. Since 1979 the Deuna, Karsdorf and Bernburg cement plants have been converted to brown coal dust combustion after installation of new fuel dust shipping, storage and combustion equipment. Substitution of heating oil and gas in metallurgical blast furnaces by brown coal dust is further described. Techogical advantages of the pneumatic KOSTE fuel feeding method are enumerated.

  8. DUST DYNAMICS IN PROTOPLANETARY DISK WINDS DRIVEN BY MAGNETOROTATIONAL TURBULENCE: A MECHANISM FOR FLOATING DUST GRAINS WITH CHARACTERISTIC SIZES

    Energy Technology Data Exchange (ETDEWEB)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)

    2016-04-10

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  9. Dust in H II regions

    International Nuclear Information System (INIS)

    Isobe, S.

    1977-01-01

    Several pieces of evidence indicate that H II regions may contain dust: 1) the continuum light scattered by dust grains (O'Dell and Hubbard, 1965), 2) thermal radiation from dust grains at infrared wavelengths (Ney and Allen, 1969), 3) the abnormal helium abundance in some H II regions (Peimbert and Costero, 1969), etc. Although observations of the scattered continuum suggest that the H II region cores may be dust-free, dust grains and gas must be well mixed in view of the infrared observations. This difficulty may be solved by introducing globules with sizes approximately 0.001 pc. These globules and the molecular clouds adjacent to H II regions are the main sources supplying dust to H II regions. (Auth.)

  10. CAN DUST EMISSION BE USED TO ESTIMATE THE MASS OF THE INTERSTELLAR MEDIUM IN GALAXIES-A PILOT PROJECT WITH THE HERSCHEL REFERENCE SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Eales, Stephen; Smith, Matthew W. L.; Auld, Robbie; Davies, Jon; Gear, Walter; Gomez, Haley [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Baes, Maarten; De Looze, Ilse; Gentile, Gianfranco; Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bendo, George J. [UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Bianchi, Simone [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Boselli, Alessandro; Ciesla, Laure [Laboratoire d' Astrophysique de Marseilles, UMR6110 CNRS, 38 rue F. Joliot-Curie, F-1338 Marseilles (France); Clements, David [Astrophysics Group, Imperial College, Blackett Lab, Prince Consort Road, London SW7 2AZ (United Kingdom); Cooray, Asantha [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Cortese, Luca [European Southern Observatory, Karl-Schwarzschild-Strasse 2 D-85748, Garching bei Munchen (Germany); Galametz, Maud [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hughes, Tom [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Madden, Suzanne [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, F-91191 Gif sur Yvette (France); and others

    2012-12-20

    The standard method for estimating the mass of the interstellar medium (ISM) in a galaxy is to use the 21 cm line to trace the atomic gas and the CO 1-0 line to trace the molecular gas. In this paper, we investigate the alternative technique of using the continuum dust emission to estimate the mass of gas in all phases of the ISM. Using Herschel observations of 10 galaxies from the Herschel Reference Survey and the Herschel Virgo Cluster Survey, we show that the emission detected by Herschel is mostly from dust that has a temperature and emissivity index similar to that of dust in the local ISM in our galaxy, with the temperature generally increasing toward the center of each galaxy. We calibrate the dust method using the CO and 21 cm observations to provide an independent estimate of the mass of hydrogen in each galaxy, solving the problem of the uncertain ''X-factor'' for the CO observations by minimizing the dispersion in the ratio of the masses estimated using the two methods. With the calibration for the dust method and the estimate of the X-factor produced in this way, the dispersion in the ratio of the two gas masses is 25%. The calibration we obtain for the dust method is similar to those obtained from Herschel observations of M31 and from Planck observations of the Milky Way. We discuss the practical problems in using this method.

  11. IONIZATION AND DUST CHARGING IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Ivlev, A. V.; Caselli, P. [Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstr. 1, D-85748 Garching (Germany); Akimkin, V. V., E-mail: ivlev@mpe.mpg.de [Institute of Astronomy of the Russian Academy of Sciences, Pyatnitskaya Street 48, 119017 Moscow (Russian Federation)

    2016-12-10

    Ionization–recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field, and development of instabilities in protoplanetary disks. We determine a critical gas density above which the recombination of electrons and ions on the grain surface dominates over the gas-phase recombination. For this regime, we present a self-consistent analytical model, which allows us to calculate exactly the abundances of charged species in dusty gas, without making assumptions on the grain charge distribution. To demonstrate the importance of the proposed approach, we check whether the conventional approximation of low grain charges is valid for typical protoplanetary disks, and discuss the implications for dust coagulation and development of the “dead zone” in the disk. The presented model is applicable for arbitrary grain-size distributions and, for given dust properties and conditions of the disk, has only one free parameter—the effective mass of the ions, shown to have a small effect on the results. The model can be easily included in numerical simulations following the dust evolution in dense molecular clouds and protoplanetary disks.

  12. COSMIC EVOLUTION OF DUST IN GALAXIES: METHODS AND PRELIMINARY RESULTS

    International Nuclear Information System (INIS)

    Bekki, Kenji

    2015-01-01

    We investigate the redshift (z) evolution of dust mass and abundance, their dependences on initial conditions of galaxy formation, and physical correlations between dust, gas, and stellar contents at different z based on our original chemodynamical simulations of galaxy formation with dust growth and destruction. In this preliminary investigation, we first determine the reasonable ranges of the most important two parameters for dust evolution, i.e., the timescales of dust growth and destruction, by comparing the observed and simulated dust mass and abundances and molecular hydrogen (H 2 ) content of the Galaxy. We then investigate the z-evolution of dust-to-gas ratios (D), H 2 gas fraction (f H 2 ), and gas-phase chemical abundances (e.g., A O = 12 + log (O/H)) in the simulated disk and dwarf galaxies. The principal results are as follows. Both D and f H 2 can rapidly increase during the early dissipative formation of galactic disks (z ∼ 2-3), and the z-evolution of these depends on initial mass densities, spin parameters, and masses of galaxies. The observed A O -D relation can be qualitatively reproduced, but the simulated dispersion of D at a given A O is smaller. The simulated galaxies with larger total dust masses show larger H 2 and stellar masses and higher f H 2 . Disk galaxies show negative radial gradients of D and the gradients are steeper for more massive galaxies. The observed evolution of dust masses and dust-to-stellar-mass ratios between z = 0 and 0.4 cannot be reproduced so well by the simulated disks. Very extended dusty gaseous halos can be formed during hierarchical buildup of disk galaxies. Dust-to-metal ratios (i.e., dust-depletion levels) are different within a single galaxy and between different galaxies at different z

  13. COSMIC EVOLUTION OF DUST IN GALAXIES: METHODS AND PRELIMINARY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2015-02-01

    We investigate the redshift (z) evolution of dust mass and abundance, their dependences on initial conditions of galaxy formation, and physical correlations between dust, gas, and stellar contents at different z based on our original chemodynamical simulations of galaxy formation with dust growth and destruction. In this preliminary investigation, we first determine the reasonable ranges of the most important two parameters for dust evolution, i.e., the timescales of dust growth and destruction, by comparing the observed and simulated dust mass and abundances and molecular hydrogen (H{sub 2}) content of the Galaxy. We then investigate the z-evolution of dust-to-gas ratios (D), H{sub 2} gas fraction (f{sub H{sub 2}}), and gas-phase chemical abundances (e.g., A {sub O} = 12 + log (O/H)) in the simulated disk and dwarf galaxies. The principal results are as follows. Both D and f{sub H{sub 2}} can rapidly increase during the early dissipative formation of galactic disks (z ∼ 2-3), and the z-evolution of these depends on initial mass densities, spin parameters, and masses of galaxies. The observed A {sub O}-D relation can be qualitatively reproduced, but the simulated dispersion of D at a given A {sub O} is smaller. The simulated galaxies with larger total dust masses show larger H{sub 2} and stellar masses and higher f{sub H{sub 2}}. Disk galaxies show negative radial gradients of D and the gradients are steeper for more massive galaxies. The observed evolution of dust masses and dust-to-stellar-mass ratios between z = 0 and 0.4 cannot be reproduced so well by the simulated disks. Very extended dusty gaseous halos can be formed during hierarchical buildup of disk galaxies. Dust-to-metal ratios (i.e., dust-depletion levels) are different within a single galaxy and between different galaxies at different z.

  14. Embedded protostars in the dust, ice, and gas in time (DIGIT) Herschel key program

    DEFF Research Database (Denmark)

    Green, Joel D.; Evans II, Neal J.; Jørgensen, Jes Kristian

    2013-01-01

    We present 50-210 um spectral scans of 30 Class 0/I protostellar sources, obtained with Herschel-PACS, and 0.5-1000 um SEDs, as part of the Dust, Ice, and Gas in Time (DIGIT) Key Program. Some sources exhibit up to 75 H2O lines ranging in excitation energy from 100-2000 K, 12 transitions of OH, a...

  15. Dust Devil Tracks

    Science.gov (United States)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  16. Improvement of cement plant dust emission by bag filter system

    Science.gov (United States)

    Wahyu Purnomo, Chandra; Budhijanto, Wiratni; Alfisyah, Muziibu; Triyono

    2018-03-01

    The limestone quarry in PT Indocement Tunggal Prakarsa (ITP) in Cirebon is considered as a complex quarry in terms of chemical composition and material hardness. From the beginning of the plant operation up to the end of 2015, the dust removal was rely on electrostatic precipitator (EP) system. Whenever limestone from specific quarry zones were incorporated into Raw Mill (RM) feed or there was an upset condition, the dust emission increased significantly. Beside higher demand of electricity, an EP system requires lower gas inlet temperature in order to remove the dust effectively which requires larger cooling water in the previous gas conditioning tower to cool down gas from 400 °C to about 100 °C. By considering the drawbacks, the EP system was replaced by a bag filter (BF) system. The BF allows higher temperature of gas inlet and it has higher dust removal efficiency. In this study, the efficiency of the two different dust removal systems is compared. The effect of process variables i.e. RM feed, kiln feed, inlet temperature and pressure, and small size particle fraction to the dust emission are studied by multivariate linier regression analysis. It is observed that the BF system can reduce significantly the dust emission from 30 to 6 mg/m3 and in the same time reducing CO2 emission by 0.24 ton/year from the electricity consumption saving.

  17. Hamiltonian Formulation and Perturbations for Dust Motion Around Cometary Nuclei

    Science.gov (United States)

    Jiang, Yu; Schmidt, Juergen; Baoyin, Hexi; Li, Hengnian; Li, Junfeng

    2017-12-01

    In this paper we analyze the dynamical behavior of large dust grains in the vicinity of a cometary nucleus. To this end we consider the gravitational field of the irregularly shaped body, as well as its electric and magnetic fields. Without considering the effect of gas friction and solar radiation, we find that there exist grains which are static relative to the cometary nucleus; the positions of these grains are the stable equilibria. There also exist grains in the stable periodic orbits close to the cometary nucleus. The grains in the stable equilibria or the stable periodic orbits won't escape or impact on the surface of the cometary nucleus. The results are applicable for large charge dusts with small area-mass ratio which are near the cometary nucleus and far from the Solar. It is found that the resonant periodic orbit can be stable, and there exist stable non-resonant periodic orbits, stable resonant periodic orbits and unstable resonant periodic orbits in the potential field of cometary nuclei. The comet gravity force, solar gravity force, electric force, magnetic force, solar radiation pressure, as well as the gas drag force are all considered to analyze the order of magnitude of these forces acting on the grains with different parameters. Let the distance of the dust grain relative to the mass centre of the cometary nucleus, the charge and the mass of the dust grain vary, respectively, fix other parameters, we calculated the strengths of different forces. The motion of the dust grain depends on the area-mass ratio, the charge, and the distance relative to the comet's mass center. For a large dust grain (> 1 mm) close to the cometary nucleus which has a small value of area-mass ratio, the comet gravity is the largest force acting on the dust grain. For a small dust grain (< 1 mm) close to the cometary nucleus with large value of area-mass ratio, both the solar radiation pressure and the comet gravity are two major forces. If the a small dust grain which is

  18. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on

  19. Variability of Disk Emission in Pre-Main Sequence and Related Stars. II. Variability in the Gas and Dust Emission of the Herbig Fe Star SAO 206462

    Science.gov (United States)

    Sitko, Michael L.; Day, Amanda N.; Kimes, Robin L.; Beerman, Lori C.; Martus, Cameron; Lynch, David K.; Russell, Ray W.; Grady, Carol A.; Schneider, Glenn; Lisse, Carey M.; hide

    2011-01-01

    We present thirteen epochs of near-infrared (0.8-5 microns) spectroscopic observations of the pre-transitional, "gapped" disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (Br(alpha) , Br(gamma), Pa(beta), Pa(delta), Pa(epsilon), and the 0.8446 microns line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 x 10(exp 8)Solar Mass/yr was derived from the Br(gamma) and Pa(beta) lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only approx.30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 microns was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on time scales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magneto-rotational) would operate there on longer time scales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on time scales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer time scales that have been sampled so far.

  20. Dust in the Quasar Wind (Artist Concept)

    Science.gov (United States)

    2007-01-01

    Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy. Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from? Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young. Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds. Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.

  1. Flue gas wells to minimize dust and acidic components in small-scale burning of field fuel, further development; Roekgasbrunn foer minimering av stoft och sura komponenter vid smaaskalig foerbraenning av aakerbraenslen, vidareutveckling

    Energy Technology Data Exchange (ETDEWEB)

    Yngvesson, Johan; Roennbaeck, Marie; Arkeloev, Olof

    2011-01-15

    Agricultural derived solid fuels are more problematic to combust in small-scale heating plants than conventional wood fuels. Their high content of ash, chlorine and sulphur leads to increased emissions of dust, sulphur dioxide and hydrogen chloride in the flue gases. By transporting the flue gases to a flue gas well where it condenses, and separates dust and sour components, enables a cost effective flue gas purification for small-scale heating plants (50 kW - 10 MW) of agricultural derived solid fuels. This project have studied two heating plants using flue gas wells with the aim to add to the knowledge about how a flue gas wells may look like and to quantify how much emissions of dust, chlorine and sulphur in the flue gases are reduced. The project also aimed to summon regulations and laws regarding the handling of the condensate that develop in the flue gas well. In the project measures were conducted on two different heating plants with mounted flue gas wells: a 60 kW biofuels boiler combusting grains and red canary grass and a 1 MW batch fired boiler combusting wheat straw. Measurements on flue gases were conducted with and without water injection in the flue gases. The flue gas wells reduced dust emissions of up to 80 %. The best reduction was achieved at the 60 kW heating plant when firing red canary grass. Firing grains in the same plant lead to 7 % reduction of the dust emissions. In the 1 MW heating plant firing wheat straw the flue gas well accomplished 40 % reduction of dust emissions. The boiler ability to achieve complete combustion, hence minimize the content of volatile and semi-volatile components in the flue gas, is largely affecting the flue gas well ability to reduce dust emissions. This did not, however, affect the reduction of dust in the flue. Chlorine emissions was reduced by up to 88 % by a flue gas well. Water injection made a big difference on reduction of chlorine emission from grain combustion. Sulphur emissions was reduced by 50

  2. Dust Cloud Combustion for Defeat of Airborne Bio-WMD

    Science.gov (United States)

    2017-12-01

    developed to study the dust flames properties. The various diagnostic techniques allow the measurement of solid and gas phase temperature, aluminum...of flames propagating in dust clouds. The first is an analytical model that addresses the different flame propagation behaviours observed in hybrid...a Particle Suspension in a Rapidly-Heated Oxidizing Gas  ................ 149  Nomenclature

  3. Lunar Dust Mitigation Screens

    Science.gov (United States)

    Knutson, Shawn; Holloway, Nancy

    being developed in a collaborative effort between Langley Research Center and Kennedy Space Center. The screens typically consist of spiral shaped conductive traces patterned on high dielectric substrates (i.e. glass, quartz, polyimide film, etc.). Two broad categories of substrate materials are being investigated for the screens. One category consists of transparent substrates (i.e. glass, quartz, sapphire, etc.), and the other non-transparent sub-strates (Kapton, polyimide films, metals, etc.). The transparent screens utilize patterns made from indium tin oxide (ITO), a transparent conductive material, on clear substrates while the non-transparent screens use copper patterns on a transluscent or opaque substrates. Further, the screen is coated with a high dielectric polyimide cover layer to protect the screen pattern. One promising cover layer material that is currently being investigated is Langley Research Center-Soluble Imide (LaRC-SI), a NASA LaRC developed polyimide. Lastly, a top-coat of hard, inorganic material is evaporated onto the cover layer for protection from scratches due to abrasive nature of the dust. Of note, several top-coat materials are under investigation and include: aluminum oxide, silicon dioxide, titanium oxide, yttrium oxide, zirconium oxide, and zinc sulfide. The electrostatic dust mitigation screens function when a high voltage (700V or greater) is applied to the screen electrodes, thus creating an electromagnetic wave across the surface of the screen that repels the dust. Lunar dust typically contains a high positive charge; therefore, the screens are charged with a higher positive charge that effectively repels dust from the surface (i.e. like charges repel, unlike charges attract). It is anticipated that full development and maturation of this technology will enable humans to sustain a long term presence on the moon, and other planets where dust may have negative implications.

  4. Dust vortices, clouds, and jets in nuclear-induced plasmas

    International Nuclear Information System (INIS)

    Vladimirov, V.I.; Deputatova, L.V.; Nefedov, A.P.; Fortov, V.E.; Rykov, V.A.; Khudyakov, A.V.

    2001-01-01

    The collective movement of dust particles in a plasma formed during deceleration of decay products of californium nuclei in neon is investigated experimentally. For the first time, compact vortex structures containing a large number of coagulating dust particles and dense dust clouds evolving in time are observed. Dust formations have clearly defined boundaries and particles in them form ordered liquid-type structures. Under steady-state conditions, dust structures exist from several minutes to hours. An increase in the voltage applied to the high-voltage electrode leads to the formation of dust particle jets. A change in the electric field configuration transforms the structures from one type to another. A strong recombination of electrons and ions at dust particles is observed. The momentum transfer from ions drifting in an external field to gas molecules is studied using the Monte Carlo method. It is shown that the transferred momentum is so large that it may cause a gas flow. The characteristic features of vortex flow in neon and in air are explained

  5. Fluffy dust forms icy planetesimals by static compression

    Science.gov (United States)

    Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji

    2013-09-01

    Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.

  6. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  7. The effects of a newsletter on bedding control on house dust mite allergen concentrations in childcare centers in Korea

    Directory of Open Access Journals (Sweden)

    Jeonghoon Kim

    2015-08-01

    Full Text Available Objectives Bedding in childcare centers (CCCs can hold house dust mite (HDM allergens. This study examined whether HDM allergen levels can be reduced through the distribution of an educational newsletter on bedding control to parents of CCC children in Korea. Methods All 38 CCCs were measured for Der 1 (sum of Der f 1 and Der p 1 concentrations on classroom floors and bedding before the intervention. Educational newsletters on children’s bedding control were sent to 21 CCCs by mail, and teachers were asked to distribute the newsletters to the parents of the children (intervention group. The remaining 17 CCCs were not sent newsletters (control group. The measurement of Der 1 concentrations in 38 CCCs was repeated after the intervention. Dust samples were collected with a vacuum cleaner and analyzed using enzyme-linked immunosorbent assay methods. Results The Der 1 concentrations on the bedding were significantly higher than those on the floors in 38 CCCs at baseline (p<0.05. Although changes of the Der 1 concentrations for the control group (n=17 were not significant, Der 1 concentrations for the intervention group (n=21 decreased significantly from 2077.9 ng/g dust to 963.5 ng/g dust on the floors and from 3683.9 ng/g dust to 610.4 ng/g dust on bedding (p<0.05. Conclusions The distribution of educational newsletters on bedding control to parents may be an effective means of controlling HDMs in CCCs.

  8. Hypervelocity Dust Injection for Plasma Diagnostic Applications

    Science.gov (United States)

    Ticos, Catalin

    2005-10-01

    Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.

  9. ANALYSIS OF THE INSTABILITY DUE TO GAS–DUST FRICTION IN PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Shadmehri, Mohsen, E-mail: m.shadmehri@gu.ac.ir [Department of Physics, Faculty of Science, Golestan University, Gorgan 49138-15739 (Iran, Islamic Republic of)

    2016-02-01

    We study the stability of a dust layer in a gaseous disk subject to linear axisymmetric perturbations. Instead of considering single-size particles, however, the population of dust particles is assumed to consist of two grain species. Dust grains exchange momentum with the gas via the drag force and their self-gravity is also considered. We show that the presence of two grain sizes can increase the efficiency of the linear growth of drag-driven instability in the protoplanetary disks (PPDs). A second dust phase with a small mass, compared to the first dust phase, would reduce the growth timescale by a factor of two or more, especially when its coupling to the gas is weak. This means that once a certain amount of large dust particles form, even though it is much smaller than that of small dust particles, the dust layer becomes more unstable and dust clumping is accelerated. Thus, the presence of dust particles of various sizes must be considered in studies of dust clumping in PPDs where both large and small dust grains are present.

  10. Gas and Dust Phenomena of Mega-earthquakes and the Cause

    Science.gov (United States)

    Yue, Z.

    2013-12-01

    A mega-earthquake suddenly releases a large to extremely large amount of kinetic energy within a few tens to two hundreds seconds and over ten to hundreds kilometer distances in the Earth's crust and on ground surface. It also generates seismic waves that can be received globally and co-seismic ground damages such co-seismic ruptures and landslides. However, such vast, dramatic and devastating kinetic actions in the Earth's crustal rocks and on the ground soils cannot be known or predicted by people at few weeks, days, hours, or minutes before they are happening. Although seismologists can develop and use seismometers to report the locations and magnitudes of earthquakes within minutes of their occurrence, they cannot predict earthquakes at present. Therefore, damage earthquakes have caused and would continue to cause huge disasters, fatalities and injuries to our human beings. This problem may indicate that it is necessary to re-examine the cause of mega-earthquakes in addition to the conventional cause of active fault elastic rebounding. In the last ten years, many mega-earthquakes occurred in China and around the Pacific Ocean and caused many casualties to human beings and devastating disasters to environments. The author will give a brief review on the impacts of the mega-earthquakes happened in recent years. He will then present many gas and dust related phenomena associated with the sudden occurrences of these mega earthquakes. They include the 2001 Kunlunshan Earthquake M8.1, 2008 Wenchuan Earthquake M8.0 and the 2010 Yushu Earthquake M7.1 in China, the 2010 Haiti Earthquake M7.0, the 2010 Mexicali Earthquake M7.2, the 2010 Chile Earthquake M8.8, the 2011 Christchurch earthquake M6.3 and the 2011 Japan Earthquake M9.0 around the Pacific Ocean. He will discuss the cause of these gas and dust related phenomena. He will use these phenomena and their common cause to show that the earthquakes were caused the rapid migration and expansion of highly compressed and

  11. Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas

    International Nuclear Information System (INIS)

    Zafiu, C.; Melzer, A.; Piel, A.

    2003-01-01

    Experiments on the quantitative determination of the weaker forces (ion drag, thermophoresis, and electric field force) on free-falling dust particles in a rf discharge tube are presented. The strongest force, gravity, is balanced by gas friction and the weaker forces are investigated in the radial (horizontal) plane. Under most discharge conditions, the particles are found to be expelled from the central plasma region. A transition to a situation where the falling particles are focused into the plasma center is observed at low gas pressures using small particles. These investigations allow a quantitative understanding of the mechanism of unwanted dust-free areas (so-called voids) in dusty plasmas under microgravity. Good quantitative agreement with standard models of the ion drag is found

  12. Dust coagulation in protoplanetary disks : porosity matters

    NARCIS (Netherlands)

    Ormel, C. W.; Spaans, M.; Tielens, A. G. G. M.

    Context. Sticking of colliding dust particles through van der Waals forces is the first stage in the grain growth process in protoplanetary disks, eventually leading to the formation of comets, asteroids and planets. A key aspect of the collisional evolution is the coupling between dust and gas

  13. Obliquely propagating dust-density waves

    International Nuclear Information System (INIS)

    Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.

    2008-01-01

    Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models

  14. The Lunar Dust Environment

    Science.gov (United States)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  15. Children's phthalate intakes and resultant cumulative exposures estimated from urine compared with estimates from dust ingestion, inhalation and dermal absorption in their homes and daycare centers.

    Directory of Open Access Journals (Sweden)

    Gabriel Bekö

    Full Text Available Total daily intakes of diethyl phthalate (DEP, di(n-butyl phthalate (DnBP, di(isobutyl phthalate (DiBP, butyl benzyl phthalate (BBzP and di(2-ethylhexyl phthalate (DEHP were calculated from phthalate metabolite levels measured in the urine of 431 Danish children between 3 and 6 years of age. For each child the intake attributable to exposures in the indoor environment via dust ingestion, inhalation and dermal absorption were estimated from the phthalate levels in the dust collected from the child's home and daycare center. Based on the urine samples, DEHP had the highest total daily intake (median: 4.42 µg/d/kg-bw and BBzP the lowest (median: 0.49 µg/d/kg-bw. For DEP, DnBP and DiBP, exposures to air and dust in the indoor environment accounted for approximately 100%, 15% and 50% of the total intake, respectively, with dermal absorption from the gas-phase being the major exposure pathway. More than 90% of the total intake of BBzP and DEHP came from sources other than indoor air and dust. Daily intake of DnBP and DiBP from all exposure pathways, based on levels of metabolites in urine samples, exceeded the Tolerable Daily Intake (TDI for 22 and 23 children, respectively. Indoor exposures resulted in an average daily DiBP intake that exceeded the TDI for 14 children. Using the concept of relative cumulative Tolerable Daily Intake (TDI(cum, which is applicable for phthalates that have established TDIs based on the same health endpoint, we examined the cumulative total exposure to DnBP, DiBP and DEHP from all pathways; it exceeded the tolerable levels for 30% of the children. From the three indoor pathways alone, several children had a cumulative intake that exceeded TDI(cum. Exposures to phthalates present in the air and dust indoors meaningfully contribute to a child's total intake of certain phthalates. Such exposures, by themselves, may lead to intakes exceeding current limit values.

  16. Residual Gas and Dust around Transition Objects and Weak T Tauri Stars

    Energy Technology Data Exchange (ETDEWEB)

    Doppmann, Greg W. [W. M. Keck Observatory, 65-1120 Mamalahoa Hwy., Kamuela, HI 96743 (United States); Najita, Joan R. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Carr, John S., E-mail: gdoppmann@keck.hawaii.edu, E-mail: najita@noao.edu, E-mail: carr@nrl.navy.mil [Naval Research Laboratory, Code 7213, Washington, DC 20375 (United States)

    2017-02-20

    Residual gas in disks around young stars can spin down stars, circularize the orbits of terrestrial planets, and whisk away the dusty debris that is expected to serve as a signpost of terrestrial planet formation. We have carried out a sensitive search for residual gas and dust in the terrestrial planet region surrounding young stars ranging in age from a few to ∼10 Myr. Using high-resolution 4.7 μ m spectra of transition objects (TOs) and weak T Tauri stars, we searched for weak continuum excesses and CO fundamental emission, after making a careful correction for the stellar contribution to the observed spectrum. We find that the CO emission from TOs is weaker and located farther from the star than CO emission from nontransition T Tauri stars with similar stellar accretion rates. The difference is possibly the result of chemical and/or dynamical effects (i.e., a low CO abundance or close-in low-mass planets). The weak T Tauri stars show no CO fundamental emission down to low flux levels (5 × 10{sup −20} to 10{sup −18} W m{sup −2}). We illustrate how our results can be used to constrain the residual disk gas content in these systems and discuss their potential implications for star and planet formation.

  17. COMPUTING THE DUST DISTRIBUTION IN THE BOW SHOCK OF A FAST-MOVING, EVOLVED STAR

    International Nuclear Information System (INIS)

    Van Marle, A. J.; Meliani, Z.; Keppens, R.; Decin, L.

    2011-01-01

    We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varying sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 μm) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.

  18. Parameterizing the interstellar dust temperature

    Science.gov (United States)

    Hocuk, S.; Szűcs, L.; Caselli, P.; Cazaux, S.; Spaans, M.; Esplugues, G. B.

    2017-08-01

    The temperature of interstellar dust particles is of great importance to astronomers. It plays a crucial role in the thermodynamics of interstellar clouds, because of the gas-dust collisional coupling. It is also a key parameter in astrochemical studies that governs the rate at which molecules form on dust. In 3D (magneto)hydrodynamic simulations often a simple expression for the dust temperature is adopted, because of computational constraints, while astrochemical modelers tend to keep the dust temperature constant over a large range of parameter space. Our aim is to provide an easy-to-use parametric expression for the dust temperature as a function of visual extinction (AV) and to shed light on the critical dependencies of the dust temperature on the grain composition. We obtain an expression for the dust temperature by semi-analytically solving the dust thermal balance for different types of grains and compare to a collection of recent observational measurements. We also explore the effect of ices on the dust temperature. Our results show that a mixed carbonaceous-silicate type dust with a high carbon volume fraction matches the observations best. We find that ice formation allows the dust to be warmer by up to 15% at high optical depths (AV> 20 mag) in the interstellar medium. Our parametric expression for the dust temperature is presented as Td = [ 11 + 5.7 × tanh(0.61 - log 10(AV) ]χuv1/5.9, where χuv is in units of the Draine (1978, ApJS, 36, 595) UV field.

  19. Effects of dust on forest tree health in Zagros oak forests.

    Science.gov (United States)

    Moradi, A; Taheri Abkenar, K; Afshar Mohammadian, M; Shabanian, N

    2017-10-10

    Dust is one of the most devastating factors for the environment threatening all animal and plant species. In many regions, the ecological and economic impact of microdust on scarce species is critical. In the western region of Iran, the Zagros forests have been exposed to dust storms for many years. In this study, the effect of dust on oak trees, the most important trees of Zagros forests, is investigated. For this purpose, 3-year-old seedlings of three species of oak trees under natural conditions were exposed to dust during spring and summer months. Seedlings were divided into two groups; one group was assigned as dust treatment and the other as control that the control group washed regularly to remove dust. Anatomical characteristics of leaves and dust deposits on leaves during the study period were examined by scanning electron microscope (SEM). The rate of photosynthesis and gas exchange in control and treated plants was examined by IRGA, LCI. SEM images showed that stomata structure, trichome density, and epicuticular waxes of leaves are different in all three species. This difference in micromorphology of species influences the effects of dust deposited on the leaves. A comparison of leaf species images in control and dust treatment showed that in dust treatment the percentage of stomata blocked by dust in three species (per unit area) of Quercus infectoria, Q. libni, and Q. brantii were 61/6, 48/4, and 38/1%, respectively. The results of leaf gas exchange investigation indicated that stomatal occlusion by dust had a negative impact on the examined parameters of three oak species (P ≤ 0.01). Thus, gas exchange and photosynthetic rates of the treated species were significantly reduced. The results of both parts of the study showed the vulnerability of the three species to dust as Q. infectoria > Q. libni > Q. brantii. Therefore, based on these findings, dust can disrupt the physiological activities of the studied species and the continuation of the

  20. Polybrominated diphenyl ethers (PBDEs) contents in house and car dust of Portugal by pressurized liquid extraction (PLE) and gas chromatography-mass spectrometry (GC-MS).

    Science.gov (United States)

    Cunha, S C; Kalachova, K; Pulkrabova, J; Fernandes, J O; Oliveira, M B P P; Alves, A; Hajslova, J

    2010-03-01

    Dust is the repository of various compounds including flame retardants. In this study an analytical method based on PLE extraction and gas chromatography-mass spectrometry was selected for the analysis of 16 PBDEs congeners in house and car dust samples collected in Portugal. The analytical performance of the method was validated using standard reference material (SRM); values from 90% to 109% and from 2% to 11% were obtained for recovery and precision, respectively. The PBDE congeners distribution in whole and sieved fractions of the dust samples, as well as influence of the source on the levels of these contaminants, were obtained. The wide range of PBDEs contents found in the dust samples indicates heterogeneous levels of contamination in these matrices. The clearest feature of the results obtained was that Deca-BDE was the main PBDE in both house and car dust samples. The total PBDEs measured in house dust (ranging from 34 to 1928 ng g(-1)) was lower than those found in car dust (ranging from 193 to 22955 ng g(-1)). However, house dust provides a major contribution to human exposure due to the time spent there, much higher than in cars. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  1. DIRT: Dust InfraRed Toolbox

    Science.gov (United States)

    Pound, Marc W.; Wolfire, Mark G.; Mundy, Lee G.; Teuben, Peter; Lord, Steve

    2011-02-01

    DIRT is a Java applet for modelling astrophysical processes in circumstellar dust shells around young and evolved stars. With DIRT, you can: select and display over 500,000 pre-run model spectral energy distributions (SEDs) find the best-fit model to your data set account for beam size in model fitting manipulate data and models with an interactive viewer display gas and dust density and temperature profiles display model intensity profiles at various wavelengths

  2. The ATCA CABB Line Survey on Centaurus A: Properties of the Molecular Gas from the Dust Lanes to the Central Engine

    Science.gov (United States)

    Ott, Juergen; Koribalski, Baerbel; Henkel, Christian; Edwards, Philip; Norris, Ray; Meier, David; Feain, Ilana; Curran, Steve; Martin-Pintado, Jesus; Beelen, Alexandre; Aalto, Susanne; Combes, Francoise; Israel, Frank; Muller, Sebastien; Espada, Daniel; Guelin, Michel; Black, John Harry; V-Trung, Dinh; Impellizzeri, Caterina M. V.; Persson, Carina

    2011-10-01

    Centaurus A with its host NGC5128 is the most nearby radio galaxy. Its molecular spectrum exhibits three prominent features: a) gas that is located in the outer disk and dust lanes, b) absorption lines that are supposedly close to the central AGN, and c) gas in emission from the nucleus. We propose to perform an extensive line survey toward CenA using the exciting new capabilities of CABB. The broad basebands and narrow zoom bands of CABB are ideal to capture the full breath of the CenA spectral features. Our multi-band line observations will allow us to derive the exact physical conditions of each component as well as the chemistry involved. We will therefore obtain a comprehensive view of the physics imprinted on the molecular spectrum of a radio galaxy and its host, reaching from the central supermassive black hole, through the accretion region and the inner disk to the outer dust lanes.

  3. Children’s Phthalate Intakes and Resultant Cumulative Exposures Estimated from Urine Compared with Estimates from Dust Ingestion, Inhalation and Dermal Absorption in Their Homes and Daycare Centers

    Science.gov (United States)

    Bekö, Gabriel; Weschler, Charles J.; Langer, Sarka; Callesen, Michael; Toftum, Jørn; Clausen, Geo

    2013-01-01

    Total daily intakes of diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(isobutyl) phthalate (DiBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) were calculated from phthalate metabolite levels measured in the urine of 431 Danish children between 3 and 6 years of age. For each child the intake attributable to exposures in the indoor environment via dust ingestion, inhalation and dermal absorption were estimated from the phthalate levels in the dust collected from the child’s home and daycare center. Based on the urine samples, DEHP had the highest total daily intake (median: 4.42 µg/d/kg-bw) and BBzP the lowest (median: 0.49 µg/d/kg-bw). For DEP, DnBP and DiBP, exposures to air and dust in the indoor environment accounted for approximately 100%, 15% and 50% of the total intake, respectively, with dermal absorption from the gas-phase being the major exposure pathway. More than 90% of the total intake of BBzP and DEHP came from sources other than indoor air and dust. Daily intake of DnBP and DiBP from all exposure pathways, based on levels of metabolites in urine samples, exceeded the Tolerable Daily Intake (TDI) for 22 and 23 children, respectively. Indoor exposures resulted in an average daily DiBP intake that exceeded the TDI for 14 children. Using the concept of relative cumulative Tolerable Daily Intake (TDIcum), which is applicable for phthalates that have established TDIs based on the same health endpoint, we examined the cumulative total exposure to DnBP, DiBP and DEHP from all pathways; it exceeded the tolerable levels for 30% of the children. From the three indoor pathways alone, several children had a cumulative intake that exceeded TDIcum. Exposures to phthalates present in the air and dust indoors meaningfully contribute to a child’s total intake of certain phthalates. Such exposures, by themselves, may lead to intakes exceeding current limit values. PMID:23626820

  4. Molecules and dust in Cassiopeia A

    DEFF Research Database (Denmark)

    Biscaro, Chiara; Cherchneff, Isabelle

    2016-01-01

    We study the dust evolution in the supernova remnant Cassiopeia A. We follow the processing of dust grains that formed in the Type II-b supernova ejecta by modelling the sputtering of grains. The dust is located in dense ejecta clumps that are crossed by the reverse shock. We also investigate......-rich clumps that correspond to the outermost carbon-rich ejecta zone. We consider the various dust components that form in the supernova, several reverse shock velocities and inter-clump gas temperatures, and derive grain-size distributions and masses for the dust as a function of time. Both non...... and size, and the shock velocity in the clump. A Type II-b SN forms small grains that are sputtered within the clumps and in the inter-clump medium. For Cas A, silicate grains do not survive thermal sputtering in the inter-clump medium, while alumina, silicon carbide, and carbon dust may survive...

  5. Dust Formation, Evolution, and Obscuration Effects in the Very High-Redshift Universe

    Science.gov (United States)

    Dwek, Eli; Staguhn, Johannes; Arendt, Richard G.; Kovacs, Attila; Su, Ting; Benford, Dominic J.

    2014-01-01

    The evolution of dust at redshifts z > or approx. 9, and consequently the dust properties, differs greatly from that in the local universe. In contrast to the local universe, core collapse supernovae (CCSNe) are the only source of thermally-condensed dust. Because of the low initial dust-to-gas mass ratio, grain destruction rates are low, so that CCSNe are net producers of interstellar dust. Galaxies with large initial gas mass or high mass infall rate will therefore have a more rapid net rate of dust production comported to galaxies with lower gas mass, even at the same star formation rate. The dust composition is dominated by silicates, which exhibit a strong rise in the UV opacity near the Lyman break. This "silicate-UV break" may be confused with the Lyman break, resulting in a misidentification of a galaxies' photometric redshift. In this paper we demonstrate these effects by analyzing the spectral energy distribution (SED) of MACS1149-JD, a lensed galaxy at z = 9.6. A potential 2mm counterpart of MACS1149-JD has been identified with GISMO. While additional observations are required to corroborate this identification, we use this possible association to illustrate the physical processes and the observational effects of dust in the very high redshift universe. Subject headings: galaxies: high-redshift - galaxies: evolution - galaxies: individual (MACS1149- JD) - Interstellar medium (ISM), nebulae: dust, extinction - physical data and processes: nuclear reactions, nucleosynthesis, abundances.

  6. MODELING DUST EMISSION OF HL TAU DISK BASED ON PLANET–DISK INTERACTIONS

    International Nuclear Information System (INIS)

    Jin, Sheng; Ji, Jianghui; Li, Shengtai; Li, Hui; Isella, Andrea

    2016-01-01

    We use extensive global two-dimensional hydrodynamic disk gas+dust simulations with embedded planets, coupled with three-dimensional radiative transfer calculations, to model the dust ring and gap structures in the HL Tau protoplanetary disk observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We include the self-gravity of disk gas and dust components and make reasonable choices of disk parameters, assuming an already settled dust distribution and no planet migration. We can obtain quite adequate fits to the observed dust emission using three planets with masses of 0.35, 0.17, and 0.26 M Jup at 13.1, 33.0, and 68.6 AU, respectively. Implications for the planet formation as well as the limitations of this scenario are discussed

  7. Characterizing the Variable Dust Permeability of Planet-induced Gaps

    Science.gov (United States)

    Weber, Philipp; Benítez-Llambay, Pablo; Gressel, Oliver; Krapp, Leonardo; Pessah, Martin E.

    2018-02-01

    Aerodynamic theory predicts that dust grains in protoplanetary disks will drift radially inward on comparatively short timescales. In this context, it has long been known that the presence of a gap opened by a planet can significantly alter the dust dynamics. In this paper, we carry out a systematic study employing long-term numerical simulations aimed at characterizing the critical particle size for retention outside a gap as a function of particle size, as well as various key parameters defining the protoplanetary disk model. To this end, we perform multifluid hydrodynamical simulations in two dimensions, including different dust species, which we treat as pressureless fluids. We initialize the dust outside of the planet’s orbit and study under which conditions dust grains are able to cross the gap carved by the planet. In agreement with previous work, we find that the permeability of the gap depends both on dust dynamical properties and the gas disk structure: while small dust follows the viscously accreting gas through the gap, dust grains approaching a critical size are progressively filtered out. Moreover, we introduce and compute a depletion factor that enables us to quantify the way in which higher viscosity, smaller planet mass, or a more massive disk can shift this critical size to larger values. Our results indicate that gap-opening planets may act to deplete the inner reaches of protoplanetary disks of large dust grains—potentially limiting the accretion of solids onto forming terrestrial planets.

  8. Dust and radon: the legal implications

    International Nuclear Information System (INIS)

    Van Sittert, J.M.O.

    1990-01-01

    It is known that radon gas is not generally considered to be a major problem when encountered in the working environment. However, in its process of decay, a series of four short lived daughter products are formed. In a dust-laden atmosphere these daughter products, which are ionized readily, attach to the particulate material and when inhaled are deposited in the alveoli of the lungs. Therefore, if respirable dust is controlled, the effects of radon daughters will also be minimized. The legal requirements for dust control in South Africa and their implications are discussed. 1 ill

  9. The Lunar Environment: Determining the Health Effects of Exposure to Moon Dusts

    Science.gov (United States)

    Khan-Mayberry, Noreen

    2007-01-01

    The moon's surface is covered with a thin layer of fine, charged, reactive dust capable of layer of fine, charged, reactive dust capable of capable of entering habitats and vehicle compartments, where it can result in crewmember health problems. NASA formed the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to study the effects of exposure to Lunar Dust on human health. To date, no scientifically defensible toxicological studies have been performed on lunar dusts, specifically the determination of exposure limits and their affect on human health. The multi-center LADTAG (Lunar Airborne Dust Toxicology center LADTAG (Lunar Airborne Dust Toxicology Advisory Group) was formed in response to the Office of the Chief Health and Medical Office s (OCHMO) request to develop recommendations for defining risk (OCHMO) request to develop recommendations for defining risk defining risk criteria for human lunar dust exposure.

  10. Conversion of gas into stars in the Galactic center

    Science.gov (United States)

    Longmore, S. N.

    2014-05-01

    The star formation rate in the central 500 pc of the Milky Way is lower by a factor of > 10 than expected for the substantial amount of dense gas it contains, which challenges current star formation theories. I discuss which physical mechanisms could be causing this observation and put forward a self-consistent cycle of star formation in the Galactic center, in which the plausible star formation inhibitors are combined. Their ubiquity suggests that the perception of a lowered central SFR should be a common phenomenon in other galaxies with direct implications for galactic star formation and also potentially supermassive black hole growth. I then describe a scenario to explain the presence of super star clusters in the Galactic center environment, in which their formation is triggered by gas streams passing close to the minimum of the global Galactic gravitational potential at the location of the central supermassive black hole, Sgr A*. If this triggering mechanism can be verified, we can use the known time interval since closest approach to Sgr A* to study the physics of stellar mass assembly in an extreme environment as a function of absolute time. I outline the first results from detailed numerical simulations testing this scenario. Finally, I describe a study showing that in terms of the baryonic composition, kinematics, and densities, the gas in the Galactic center is indistinguishable from high-redshift clouds and galaxies. As such, the Galactic center clouds may be used as a template to understand the evolution (and possibly the life cycle) of high-redshift clouds and galaxies.

  11. Radiation, ventilation and dust studies at Agnew Lake mines

    International Nuclear Information System (INIS)

    Bigu, J.; Gangal, M.; Knight, G.; Regan, R.; Stefanich, W.

    1980-08-01

    Measurements of radon gas, radon and thoron decay products, ventilation, and aerosol (<= 0.13 μm) and respirable dust (<= 10 μm) concentrations were conducted at an underground uranium mine in the Agnew Lake, Ontario, area. Radon gas measurements were carried out with a radon gas continuous monitoring system, whereas the other variables were determined by grab-sampling techniques. Studies were conducted at three mine locations: a working stope, an exhaust area near the stope and a general intake area supplying fresh air to several stopes. Radiation and dust studies were carried out for different mining operations (mainly mucking and drilling) and environmental conditions. Underground barometric pressure did not seem to affect radon gas levels. No obvious effect on radiation and dust levels was readily observed nor could be correlated with underground meteorological data within the relatively narrow range the (meteorological) variables changed. Theoretical calculations for some radiation variables were done and compared with experimental values. Within the limitations of some of the calculations, overall fair agreement between experimental and theoretical data was found

  12. PHOTOPHORETIC LEVITATION AND TRAPPING OF DUST IN THE INNER REGIONS OF PROTOPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    McNally, Colin P. [Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); McClure, Melissa K., E-mail: cmcnally@nbi.dk, E-mail: mmcclure@eso.org [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching bei München (Germany)

    2017-01-01

    In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk. In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.

  13. Development of surface decontamination technology for radioactive waste using plasma. Dust behaviors in the treatment of oxide films using a low-pressure arc

    International Nuclear Information System (INIS)

    Adachi, Kazuo; Furukawa, Shizue; Amakawa, Tadashi; Fujiwara, Kazutoshi; Kanbe, Hiromu

    2002-01-01

    We are developing the surface treatment technique using low-pressure arc as a new decontamination technology for radioactive wastes from nuclear facilities. For the practical use, effective dust collection methods are necessary, because dust is generated from oxide films on the surface during the treatment. The method using gas stream and filters may be one of them, but the behavior of the dust has not been examined yet. We studied the basic behavior of the dust and the possibilities of dust control by gas stream as follows. 1. Most of the dust attached to the anode in the case of no gas blow. 2. Dust attachment to the anode was reduced to about half using small cross section type anode. It seems to be possible to reduce the dust attachment by proper choice of electrode shape. 3. The dust attachment was reduced to 10 to 40 percent by the gas blow to the side of arc. The dust control by gas stream might be possible. (author)

  14. Verification of a dust transport model against theoretical solutions in multidimensional advection diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z., E-mail: zhanjie.xu@kit.ed [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany); Travis, J.R. [Ingenieurbuero DuBois-Pitzer-Travis, 63071 Offenbach (Germany); Breitung, W.; Jordan, T. [Forschungszentrum Karlsruhe, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2010-12-15

    Potentially explosive dust aerosol mobilization in the vacuum vessel is an important safety issue of the ITER facility, especially in scenarios of loss of vacuum accidents. Therefore dust mobilization modeling is ongoing in Research Center Karlsuhe. At first the aerosol particle model in the GASFLOW computer code is introduced briefly. To verify the particle model, a series of particle diffusion problems are simulated in one-, two- and three-dimensions. In each problem a particle source is initially exposed to an advective gas flow. Then a dust cloud is formed in the down stream. To obtain the theoretical solution about the particle concentration in the dust cloud, the governing diffusion partial differential equations with an additional advection term are solved by using Green's function method. Different spatial and temporal characters about the particle sources are also considered, e.g., instantaneous or continuous sources, line, or volume sources and so forth. The GASFLOW simulation results about the particle concentrations and the corresponding Green's function solutions are compared case by case. Very good agreements are found between the theoretical solutions and the GASGLOW simulations, when the drag force between the micron-sized particles and the conveying gas flow meets the Stokes' law about resistance. This situation is corresponding to a very small Reynolds number based on the particle diameter, with a negligible inertia effect of the particles. This verification work shows that the particle model of the GASFLOW code can reproduce numerically particle transport and diffusion in a good way.

  15. GPK helmets protecting from gas and dusts

    Energy Technology Data Exchange (ETDEWEB)

    Il' inskii, Eh.G.; Kogan, Yu.A.; Mazanenko, V.P.

    1983-08-01

    The GPK protective helmet with an integrated respirator system protecting a miner's respiratory system and eyes from gases and dusts is described. The system uses compressed air from the mine compressed air system. Air is supplied to the respirator by an elastic rubber pipe to 30 m long. The air cools the miner's head under the helmet and passes between a protective shield and the miner's face protecting eyes and the respiratory system. Air supply ranges from 100 to 150 l/min. The air supplied to the respirator is cleaned by a filter. The GPK system weighs 1.2 kg. The system has been tested under laboratory conditions and in two coal mines under operational conditions at longwall faces and during mine drivage. Tests showed that the GPK guarantees efficient cooling and protection from dust. Design of the GPK helmet with a respirator is shown in two schemes. Technical specifications of the system are given.

  16. A critical evaluation of combustible/explosible dust testing methods-part 1

    Science.gov (United States)

    Tests were conducted by the Center for Agricultural Air Quality Engineering and Science (CAAQES) and by Safety Consulting Engineers Inc. (SCE) to determine if dust found in cotton gins (gin dust) would serve as fuel for dust explosions. In other words, is gin dust explosible? The laboratory tests us...

  17. Planck early results. XX. New light on anomalous microwave emission from spinning dust grains

    DEFF Research Database (Denmark)

    Lähteenmäki, A.; Poutanen, T.; Natoli, P.

    2011-01-01

    by a combination of free-free radiation, cosmic microwave background, thermal dust, and electric dipole radiation from small spinning dust grains. The spinning dust spectra are the most precisely measured to date, and show the high frequency side clearly for the first time. The spectra have a peak in the range 20......-40 GHz and are detected at high significances of 17.1σ for Perseus and 8.4σ for ρ Ophiuchi. In Perseus, spinning dust in the dense molecular gas can account for most of the AME; the low density atomic gas appears to play a minor role. In ρ Ophiuchi, the ~30 GHz peak is dominated by dense molecular gas......, but there is an indication of an extended tail at frequencies 50-100 GHz, which can be accounted for by irradiated low density atomic gas. The dust parameters are consistent with those derived from other measurements. We have also searched the Planck map at 28.5 GHz for candidate AME regions, by subtracting a simple model...

  18. DUST DESTRUCTION RATES AND LIFETIMES IN THE MAGELLANIC CLOUDS

    International Nuclear Information System (INIS)

    Temim, Tea; Dwek, Eli; Boyer, Martha L.; Tchernyshyov, Kirill; Meixner, Margaret; Gall, Christa; Roman-Duval, Julia

    2015-01-01

    The dust budget in galaxies depends on the rate at which dust grains are created in different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper, we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetimes and destruction efficiencies of silicate and carbon dust. We find dust lifetimes of 22 ± 13 Myr (30 ± 17 Myr) for silicate (carbon) grains in the LMC, and 54 ± 32 Myr (72 ± 43 Myr) for silicate (carbon) grains in the SMC. The corresponding dust destruction rates are 2.3 × 10 –2 M ☉  yr –1 (5.9 × 10 –3 M ☉  yr –1 ) and 3.0 × 10 –3 M ☉  yr –1 (5.6 × 10 –4 M ☉  yr –1 ) for silicate (carbon) grains in the LMC and SMC, respectively. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass and preferentially higher dust-to-gas (D2G) mass ratios in the vicinity of the SNRs. We find that the maximum dust injection rates by asymptotic giant branch stars and core collapse supernovae are an order of magnitude lower than the dust destruction rates by the SNRs, suggesting that most of the dust may be reconstituted in dense molecular clouds. We also discuss the dependence of the dust destruction rate on the local D2G mass ratio, ambient gas density, and metallicity, as well as the application of our results to other galaxies and dust evolution models

  19. Analysis and Study on Performance of a New Integrated Dust Precipitator

    Directory of Open Access Journals (Sweden)

    Lia Zhihua

    2016-01-01

    Full Text Available The dust precipitator is integrated with cyclone and bag filter, With the aid of a mathematical model this paper proposed. the flow characteristics of dust-gas inside the new dust precipitator is studied. It is concluded that the new integrated dust precipitator combines the advantages of the cyclone and bag filter, avoids the violent fluctuation to bags when working, and raises the filtrating efficiency.

  20. Dipole-dipole interaction of dust grains in plasmas

    International Nuclear Information System (INIS)

    Tskhakaya, D.D.; Shukla, P.K.

    2005-01-01

    Complete screening of the negative dust grain charge by a cloud of trapped ions in plasmas is investigated. In the external electric field, the compound dust particle - 'dust grain + ion cloud' acquires a dipole moment due to displacement of the centers of positive and negative charges in the opposite directions. By analogy to the Van der Waals potential, the dipole-dipole interaction of the compound dust particles can have an attractive behavior. It is shown that the dipole-dipole attractive force can exceed the shadowing force that is connected with the reciprocal interception of ions by the neighboring dust grains

  1. 75 FR 68607 - CenterPoint Energy-Illinois Gas Transmission Company; Notice of Baseline Filing

    Science.gov (United States)

    2010-11-08

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-80-001] CenterPoint Energy--Illinois Gas Transmission Company; Notice of Baseline Filing November 1, 2010. Take notice that on October 28, 2010, CenterPoint Energy--Illinois Gas Transmission Company submitted a revised...

  2. Nebular dust and extinction in ionized nebulae i.. the Balmer decrement

    International Nuclear Information System (INIS)

    Mathis, J.S.

    1983-01-01

    Many astronomical objects contain plasma with internal or surrounding dust. The extinction of H II regions can be determined from the H#betta#/Hα flux ratio, and also from the H#betta#/radio fluxes. The two determinations almost always disagree by large factors (typically, approx.3), with the (H#betta#/Hα) extinction being smaller. This is shown to be a consequence of the albedo of dust at Hα being smaller than that of H#betta#, so that the destruction of Hα by dust is larger than for constant albedo. If the difference in albedo is ignored, one interprets the lower Hα flux as being caused by a small optical depth in dust. Simple models for the geometry of the dust and emitting gas are discussed: spherical models with dust mixed with the ionized gas, and also a slab of absorbing dust overlying the nebula. The two geometries give similar results for the Balmer decrements, so geometry does not strongly enter the final results. The conclusion that albedo (Hα) 8000 A). Recommendations for dereddening emission-line objects are presented and should be applicable to planetary nebulae, active galactic nuclei, or quasi-stellar objects as well as to H II regions

  3. SECULAR GRAVITATIONAL INSTABILITY OF A DUST LAYER IN SHEAR TURBULENCE

    International Nuclear Information System (INIS)

    Michikoshi, Shugo; Kokubo, Eiichiro; Inutsuka, Shu-ichiro

    2012-01-01

    We perform a linear stability analysis of a dust layer in a turbulent gas disk. Youdin investigated the secular gravitational instability (GI) of a dust layer using hydrodynamic equations with a turbulent diffusion term. We obtain essentially the same result independently of Youdin. In the present analysis, we restrict the area of interest to small dust particles, while investigating the secular GI in a more rigorous manner. We discuss the time evolution of the dust surface density distribution using a stochastic model and derive the advection-diffusion equation. The validity of the analysis by Youdin is confirmed in the strong drag limit. We demonstrate quantitatively that the finite thickness of a dust layer weakens the secular GI and that the density-dependent diffusion coefficient changes the growth rate. We apply the results obtained to the turbulence driven by the shear instability and find that the secular GI is faster than the radial drift when the gas density is three times as large as that in the minimum-mass disk model. If the dust particles are larger than chondrules, the secular GI grows within the lifetime of a protoplanetary disk.

  4. Analysis of Dust and Fission Products in PBMR Turbine

    International Nuclear Information System (INIS)

    Stempniewicz, M.M.; Wessels, D.

    2014-01-01

    A 400 MWth direct cycle Pebble Bed Modular reactor was under development in South Africa. The work performed included design and safety analyses. In HTR/PBMR, graphite dust is generated during normal reactor operation due to pebble-to-pebble scratching. This dust will be deposited throughout the primary system. Furthermore, the dust will become radioactive due to sorption of fission products released, although in very small quantities, during normal operation. This paper presents a model and analyses of the PBMR turbine with the SPECTRA code. The purpose of the present work was to estimate the amount and distribution of deposited dust and the fission products, namely cesium, iodine, and silver, during plant life-time, which was assumed to be 40 full-power years. The performed work showed that after 40 years of plant life-time deposited layers are very small. The largest deposition is of course observed on the dust filters. Apart from the dust filters, the largest dust deposition is observed on the: • Outer Casing (inner walls) • Turbine Rotor Cooling Cavity (inner walls) • HPC Cold Cooling Gas Header (inner walls) This is caused by relatively low gas velocities in these volumes. The low velocities allow a continuous build-up of the dust layer. About 90% of cesium, 40% of iodine, and 99.9% of silver is adsorbed on the metallic structures of the turbine. The sorption rate increases along the turbine due to decreasing temperatures. In case of cesium and iodine the highest concentrations are observed in the last stage (stage 12) of the turbine. In the case of silver the sorption is so large that the silver vapor is significantly depleted in the last stages of the turbine. This is a reason for having a maximum in silver concentration in the stage 10. In the following stages the concentration decreases due to very small silver vapor fraction in the gas. (author)

  5. Featured Image: Making Dust in the Lab

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224

  6. Cosmological simulation with dust formation and destruction

    Science.gov (United States)

    Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh

    2018-06-01

    To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.

  7. Utilization of waste coconut coir dust as a source of fuel

    Energy Technology Data Exchange (ETDEWEB)

    Festin, T.F.; Jose, W.I.

    1979-01-01

    A review on the production of a gaseous fuel by the pyrolysis of waste coir dust, which is a by-product in the manufacturing of coir fibers from coconut husks. Experimental and pilot-plant studies on the pyrolysis of coir dust are discussed and the properties of the dust and the fuel gas produced are given. (Refs. 13).

  8. Dust cloud evolution in sub-stellar atmospheres via plasma deposition and plasma sputtering

    Science.gov (United States)

    Stark, C. R.; Diver, D. A.

    2018-04-01

    Context. In contemporary sub-stellar model atmospheres, dust growth occurs through neutral gas-phase surface chemistry. Recently, there has been a growing body of theoretical and observational evidence suggesting that ionisation processes can also occur. As a result, atmospheres are populated by regions composed of plasma, gas and dust, and the consequent influence of plasma processes on dust evolution is enhanced. Aim. This paper aims to introduce a new model of dust growth and destruction in sub-stellar atmospheres via plasma deposition and plasma sputtering. Methods: Using example sub-stellar atmospheres from DRIFT-PHOENIX, we have compared plasma deposition and sputtering timescales to those from neutral gas-phase surface chemistry to ascertain their regimes of influence. We calculated the plasma sputtering yield and discuss the circumstances where plasma sputtering dominates over deposition. Results: Within the highest dust density cloud regions, plasma deposition and sputtering dominates over neutral gas-phase surface chemistry if the degree of ionisation is ≳10-4. Loosely bound grains with surface binding energies of the order of 0.1-1 eV are susceptible to destruction through plasma sputtering for feasible degrees of ionisation and electron temperatures; whereas, strong crystalline grains with binding energies of the order 10 eV are resistant to sputtering. Conclusions: The mathematical framework outlined sets the foundation for the inclusion of plasma deposition and plasma sputtering in global dust cloud formation models of sub-stellar atmospheres.

  9. PREVAILING DUST-TRANSPORT DIRECTIONS ON COMET 67P/CHURYUMOV–GERASIMENKO

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Tobias; Noack, Matthias [Konrad-Zuse-Zentrum für Informationstechnik, Takustrasse 7, D-14195 Berlin (Germany)

    2015-11-10

    Dust transport and deposition behind larger boulders on the comet 67P/Churyumov–Gerasimenko (67P/C–G) have been observed by the Rosetta mission. We present a mechanism for dust-transport vectors based on a homogeneous surface activity model incorporating in detail the topography of 67P/C–G. The combination of gravitation, gas drag, and Coriolis force leads to specific dust transfer pathways, which for higher dust velocities fuel the near-nucleus coma. By distributing dust sources homogeneously across the whole cometary surface, we derive a global dust-transport map of 67P/C–G. The transport vectors are in agreement with the reported wind-tail directions in the Philae descent area.

  10. Electrodynamic Dust Shield Demonstrator

    Science.gov (United States)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  11. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, T.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Gavilan, L.; Lemaire, J. L.; Vidali, G. [Observatoire de Paris/Université de Cergy-Pontoise, 5 mail Gay Lussac, F-95000 Cergy-Pontoise (France); Mutschke, H. [Laboratory Astrophysics Group of the Astrophysical Institute and University Observatory, Friedrich Schiller University Jena Schillergässchen 3, D-07743 Jena (Germany); Henning, T., E-mail: tolou.sabri@uni-jena.de [Max Planck Institute for Astronomy Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  12. DUST DESTRUCTION RATES AND LIFETIMES IN THE MAGELLANIC CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Temim, Tea; Dwek, Eli; Boyer, Martha L. [Observational Cosmology Lab, Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Tchernyshyov, Kirill; Meixner, Margaret [Department of Physics and Astronomy, The Johns Hopkins University, 366 Bloomberg Center, 3400 North Charles Street, Baltimore, MD 21218 (United States); Gall, Christa [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Roman-Duval, Julia, E-mail: tea.temim@nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2015-02-01

    The dust budget in galaxies depends on the rate at which dust grains are created in different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper, we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetimes and destruction efficiencies of silicate and carbon dust. We find dust lifetimes of 22 ± 13 Myr (30 ± 17 Myr) for silicate (carbon) grains in the LMC, and 54 ± 32 Myr (72 ± 43 Myr) for silicate (carbon) grains in the SMC. The corresponding dust destruction rates are 2.3 × 10{sup –2} M {sub ☉} yr{sup –1} (5.9 × 10{sup –3} M {sub ☉} yr{sup –1}) and 3.0 × 10{sup –3} M {sub ☉} yr{sup –1} (5.6 × 10{sup –4} M {sub ☉} yr{sup –1}) for silicate (carbon) grains in the LMC and SMC, respectively. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass and preferentially higher dust-to-gas (D2G) mass ratios in the vicinity of the SNRs. We find that the maximum dust injection rates by asymptotic giant branch stars and core collapse supernovae are an order of magnitude lower than the dust destruction rates by the SNRs, suggesting that most of the dust may be reconstituted in dense molecular clouds. We also discuss the dependence of the dust destruction rate on the local D2G mass ratio, ambient gas density, and metallicity, as well as the application of our results to other galaxies and dust evolution models.

  13. Emission Lines in the Near-infrared Spectra of the Infrared Quintuplet Stars in the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Najarro, F. [Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón a Ajalvir km 4, E-28850 Torrejón de Ardoz (Spain); Geballe, T. R. [Gemini Observatory, 670 North A’ohoku Place, Hilo, HI 96720 (United States); Figer, D. F. [Center for Detectors, Rochester Institute of Technology, 74 Lomb Memorial Drive, Rochester, NY 14623 (United States); Fuente, D. de la [Instituto de Astronomía, Unidad Académica en Ensenada, Universidad Nacional Autónoma de México, Ensenada 22860, México (Mexico)

    2017-08-20

    We report the detection of a number of emission lines in the 1.0–2.4 μ m spectra of four of the five bright-infrared dust-embedded stars at the center of the Galactic center’s (GC) Quintuplet Cluster. Spectroscopy of the central stars of these objects is hampered not only by the large interstellar extinction that obscures all of the objects in the GC, but also by the large amounts of warm circumstellar dust surrounding each of the five stars. The pinwheel morphologies of the dust observed previously around two of them are indicative of Wolf–Rayet colliding wind binaries; however, infrared spectra of each of the five have until now revealed only dust continua steeply rising to long wavelengths and absorption lines and bands from interstellar gas and dust. The emission lines detected, from ionized carbon and from helium, are broad and confirm that the objects are dusty late-type carbon Wolf–Rayet stars.

  14. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yongxiang, Yang; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1998-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  15. A CFD study on the dust behaviour in a metallurgical waste-heat boiler

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yongxiang; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A waste-heat boiler forms an essential part for the treatment of high temperature flue-gases in most metallurgical processes. Flue-dust carried by the furnace off-gas has to be captured efficiently in the waste-heat boilers before entering the downstream gas purification equipment. Flue dust may accumulate and foul on the heat transfer surfaces such as tube-walls, narrow conjunctions between the boiler and the furnace uptake, and thus may cause smelter shutdown, and interrupt the production. A commercial CFD package is used as the major tool on modelling the dust flow and settling in the waste-heat boiler of an industrial copper flash smelter. In the presentation, dust settling behaviour is illustrated for a wide range of particle sizes, and dust capture efficiency in the radiation section of the boiler for different particle sizes has been shown with the transient simulation. The simulation aims at providing detailed information of dust behaviour in the waste-heat boiler in sulphide smelting. (author) 11 refs.

  16. Dust control at Yucca Mountain project

    International Nuclear Information System (INIS)

    Kissell, F.; Jurani, R.; Dresel, R.; Reaux, C.

    1999-01-01

    This report describes actions taken to control silica dust at the Yucca Mountain Exploratory Studies Facility, a tunnel located in Southern Nevada that is part of a scientific program to determine site suitability for a potential nuclear waste repository. The rock is a volcanic tuff containing significant percentages of both quartz and cristobalite. Water use for dust control was limited because of scientific test requirements, and this limitation made dust control a difficult task. Results are reported for two drifts, called the Main Loop Drift and the Cross Drift. In the Main Loop Drift, dust surveys and tracer gas tests indicated that air leakage from the TBM head, the primary ventilation duct, and movement of the conveyor belt were all significant sources of dust. Conventional dust control approaches yielded no significant reductions in dust levels. A novel alternative was to install an air cleaning station on a rear deck of the TBM trailing gear. It filtered dust from the contaminated intake air and discharged clean air towards the front of the TBM. The practical effect was to produce dust levels below the exposure limit for all TBM locations except close to the head. In the Cross Drift, better ventilation and an extra set of dust seals on the TBM served to cut down the leakage of dust from the TBM cutter head. However, the conveyor belt was much dustier than the belt in the main loop drift. The problem originated with dirt on the bottom of the belt return side and much spillage from the belt top side. Achieving lower dust levels in hard rock tunneling operations will require new approaches as well as a more meticulous application of existing technology. Planning for dust control will require specific means to deal with dust that leaks from the TBM head, dust that originates with leaky ventilation systems, and dust that comes from conveyor belts. Also, the application of water could be more efficient if automatic controls were used to adjust the water flow

  17. Dust Evolution in Galaxy Cluster Simulations

    Science.gov (United States)

    Gjergo, Eda; Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia; Tornatore, Luca; Borgani, Stefano

    2018-06-01

    We implement a state-of-the-art treatment of the processes affecting the production and Interstellar Medium (ISM) evolution of carbonaceous and silicate dust grains within SPH simulations. We trace the dust grain size distribution by means of a two-size approximation. We test our method on zoom-in simulations of four massive (M200 ≥ 3 × 1014M⊙) galaxy clusters. We predict that during the early stages of assembly of the cluster at z ≳ 3, where the star formation activity is at its maximum in our simulations, the proto-cluster regions are rich in dusty gas. Compared to the case in which only dust production in stellar ejecta is active, if we include processes occurring in the cold ISM,the dust content is enhanced by a factor 2 - 3. However, the dust properties in this stage turn out to be significantly different from those observationally derived for the average Milky Way dust, and commonly adopted in calculations of dust reprocessing. We show that these differences may have a strong impact on the predicted spectral energy distributions. At low redshift in star forming regions our model reproduces reasonably well the trend of dust abundances over metallicity as observed in local galaxies. However we under-produce by a factor of 2 to 3 the total dust content of clusters estimated observationally at low redshift, z ≲ 0.5 using IRAS, Planck and Herschel satellites data. This discrepancy does not subsist by assuming a lower sputtering efficiency, which erodes dust grains in the hot Intracluster Medium (ICM).

  18. Tungsten dust remobilization under steady-state and transient plasma conditions

    Directory of Open Access Journals (Sweden)

    S. Ratynskaia

    2017-08-01

    Full Text Available Remobilization is one of the most prominent unresolved fusion dust-relevant issues, strongly related to the lifetime of dust in plasma-wetted regions, the survivability of dust on hot plasma-facing surfaces and the formation of dust accumulation sites. A systematic cross-machine study has been initiated to investigate the remobilization of tungsten micron-size dust from tungsten surfaces implementing a newly developed technique based on controlled pre-adhesion by gas dynamics methods. It has been utilized in a number of devices and has provided new insights on remobilization under steady-state and transient conditions. The experiments are interpreted with contact mechanics theory and heat conduction models.

  19. INFRARED LUMINOSITIES AND DUST PROPERTIES OF z ∼ 2 DUST-OBSCURED GALAXIES

    International Nuclear Information System (INIS)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.; Borys, C.; Desai, V.; Sheth, K.; Soifer, B. T.; Le Floc'h, E.; Melbourne, J.

    2009-01-01

    We present SHARC-II 350 μm imaging of twelve 24 μm bright (F 24μm > 0.8 mJy) Dust-Obscured Galaxies (DOGs) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) 1 mm imaging of a subset of two DOGs. These objects are selected from the Booetes field of the NOAO Deep Wide-Field Survey. Detections of four DOGs at 350 μm imply infrared (IR) luminosities which are consistent to within a factor of 2 of expectations based on a warm-dust spectral energy distribution (SED) scaled to the observed 24 μm flux density. The 350 μm upper limits for the 8 non-detected DOGs are consistent with both Mrk 231 and M82 (warm-dust SEDs), but exclude cold dust (Arp 220) SEDs. The two DOGs targeted at 1 mm were not detected in our CARMA observations, placing strong constraints on the dust temperature: T dust > 35-60 K. Assuming these dust properties apply to the entire sample, we find dust masses of ∼3 x 10 8 M sun . In comparison to other dusty z ∼ 2 galaxy populations such as submillimeter galaxies (SMGs) and other Spitzer-selected high-redshift sources, this sample of DOGs has higher IR luminosities (2 x 10 13 L sun versus 6 x 10 12 L sun for the other galaxy populations) that are driven by warmer dust temperatures (>35-60 K versus ∼30 K) and lower inferred dust masses (3 x 10 8 M sun versus 3 x 10 9 M sun ). Wide-field Herschel and Submillimeter Common-User Bolometer Array-2 surveys should be able to detect hundreds of these power-law-dominated DOGs. We use the existing Hubble Space Telescope and Spitzer/InfraRed Array Camera data to estimate stellar masses of these sources and find that the stellar to gas mass ratio may be higher in our 24 μm bright sample of DOGs than in SMGs and other Spitzer-selected sources. Although much larger sample sizes are needed to provide a definitive conclusion, the data are consistent with an evolutionary trend in which the formation of massive galaxies at z ∼ 2 involves a submillimeter bright, cold-dust, and star

  20. Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains

    Science.gov (United States)

    Yorke, H.; Lin, D.; Suttner, G.

    1999-01-01

    Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and -- due to corresponding changes in the medium's opacity significantly -- influence the evolution during early phases of star formation.

  1. Complex plasma experimental device – A test bed for studying dust ...

    Indian Academy of Sciences (India)

    2016-11-03

    Nov 3, 2016 ... gas, for inserting the electrode system and carrying out their electrical .... dust particles is found to be sensitive to the distribution of dust particles on the .... which an approximately constant voltage drop across the electrodes is ...

  2. THE DIFFERENT EVOLUTION OF GAS AND DUST IN DISKS AROUND SUN-LIKE AND COOL STARS

    International Nuclear Information System (INIS)

    Pascucci, I.; Apai, D.; Luhman, K.; Henning, Th.; Bouwman, J.; Meyer, M. R.; Lahuis, F.; Natta, A.

    2009-01-01

    Planet formation is profoundly impacted by the properties of protoplanetary disks and their central star. However, how disk properties vary with stellar parameters remains poorly known. Here, we present the first comprehensive, comparative Spitzer/IRS study of the dust and gas properties of disks around young Sun-like stars (K1-M5) and cool stars/brown dwarfs (M5-M9). The comparison of these two large samples of over 60 sources reveal major differences in the evolution of both the dust and gas components. We report the first detection of organic molecules in disks around brown dwarfs. The detection rate statistics and the line flux ratios of HCN and C 2 H 2 show a striking difference between the two samples, demonstrating a significant underabundance of HCN relative to C 2 H 2 in the disk surface of cool stars. We propose this to originate from the large difference in the UV irradiation around the two types of sources. The statistical comparison of the 10 μm silicate emission features also reveals a difference between the two samples. Cool stars and brown dwarfs show weaker features arising from more processed silicate grains in the disk atmosphere. These findings complement previous indications of flatter disk structures and longer disk lifetimes around cool stars. Our results highlight important differences in the chemical and physical evolution of protoplanetary disks as a function of stellar mass, temperature, and radiation field which should be taken into account in planet formation models. We note that the different chemistry of preplanetary materials in the disk may also influence the bulk composition and volatile content of the forming planets. In particular, if exogenous HCN has played a key role in the synthesis of prebiotic molecules on Earth as proposed, then prebiotic chemistry may unfold differently on planets around cool stars.

  3. Exploring the Dust Content of Galactic Winds with Herschel. II. Nearby Dwarf Galaxies*

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-03-01

    We present results from analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20% of the total dust mass in these galaxies resides outside of their stellar disks, but this fraction reaches ˜60% in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disk by energy inputs from on-going star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disk by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disk that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  4. Journey to the center of the galaxy

    International Nuclear Information System (INIS)

    Chaisson, E.

    1980-01-01

    The solar system is a member of the Orion Arm of the Milky Way, far from the center of the Galaxy. This article takes the reader on a hypothetical journey from the solar system to the center of the Galaxy. Results from radio and infrared studies are used to suggest what such a journey might reveal. Traveling from the solar system toward the center, one crosses the Cygnus Arm, then the Sagittarius Arm, and then the so-called Three-kiloparsec Arm. The Arms contain a mixture of young stars as well as lots of gas and dust. Radio studies show that the Three-kiloparsec Arm is more like a ring than an arm. Inside this ring, is another ring composed of giant molecular clouds. Radio and infrared astronomers have discovered that the heart of the Galaxy is composed of matter in most perplexing states. There are three regions known within this innermost thousand light-years. First, there is a large zone of thin, hot ionized gas. Within this, there is a whirlpool of dense, warm matter. And further embedded, there seems to be a small supermassive object at the center. Possibly this object could be a blackhole. Researchers are continuing to examine, monitor, and model this mysterious region, the galactic nuclei

  5. The chosen needs of Polish restructured coal mines concerning the ventilation and struggling against gas, dust and air-conditioning dangers

    Energy Technology Data Exchange (ETDEWEB)

    Matuszewski, K. [Rudzka Coal Company (Poland)

    2001-07-01

    In this paper the selected needs of Polish coal mines with regard to their ventilation, minimisation of gas, dust and air-shortage dangers are presented. As far as ventilation is concerned: the need to broaden the use of the synchronic inverter cascades for speed regulation of main fans and the delivery of ventilation air duct to ensure a delivery of 11,117 m{sup 3}/s (6,5011,000 m{sup 3}/min) has been shown. As far as gas dangers are concerned there exists a need for the dissemination of dispatcher's help systems, training safety personnel in use of so called synoptic display table, a supply of 0,8311,67 m{sup 3}/s (501,100 m{sup 3}/min) of nitrogen in gaseous state for fire prevention as well as the use of modern mineral and chemical means have been mentioned. In order to help to reduce the dust danger the projected need for a modern generation of dry or wet dust collectors enabling a reduction in dustiness to NDS standards and equipping all longwalls with cutting machines with permanent and working installations of internal sprinklers have been postulated. In the case of air conditioning, the need to install 300 kW movable coolers with 300 kW single gear fans for the supply of 10 m{sup 3}/s (600 m{sup 3}/min) and an overall air pressure increase from 1600 to 2000 Pa has been presented. In the most dangerous coal mines attention has been drawn to the need for the installation and application of stationery coolers operating intermittently. 6 refs.

  6. Study of Charge Distribution in a Dust Beam using a Faraday Cup Assembly

    International Nuclear Information System (INIS)

    Kausik, S.S.; Dutta, P.; Chakraborty, M.; Kakati, M.; Saikia, B.K.

    2005-01-01

    A Faraday cup assembly is employed to study the charge distribution in a dust beam. The Faraday Cup scans the dust beam across its diameter and the dust particle current is noted in an Electrometer. The variation of the pico ampere current, carried by the charged dust particles in the beam, is studied with change in the gas pressure. The observations provide an insight into the variation of the charge to mass ratio in a dust beam

  7. ALMA Observations of Molecular Clouds in Three Group-centered Elliptical Galaxies: NGC 5846, NGC 4636, and NGC 5044

    Science.gov (United States)

    Temi, Pasquale; Amblard, Alexandre; Gitti, Myriam; Brighenti, Fabrizio; Gaspari, Massimo; Mathews, William G.; David, Laurence

    2018-05-01

    We present new ALMA CO(2–1) observations of two well-studied group-centered elliptical galaxies: NGC 4636 and NGC 5846. In addition, we include a revised analysis of Cycle 0 ALMA observations of the central galaxy in the NGC 5044 group. We find evidence that molecular gas is a common presence in bright group-centered galaxies (BGG). CO line widths are broader than Galactic molecular clouds, and using the reference Milky Way X CO, the total molecular mass ranges from 2.6 × 105 M ⊙ in NGC 4636 to 6.1 × 107 M ⊙ in NGC 5044. Complementary observations using the ALMA Compact Array do not exhibit any detection of a CO diffuse component at the sensitivity level achieved by current exposures. The origin of the detected molecular features is still uncertain, but these ALMA observations suggest that they are the end product of the hot gas cooling process and not the result of merger events. Some of the molecular clouds are associated with dust features as revealed by HST dust extinction maps, suggesting that these clouds formed from dust-enhanced cooling. The global nonlinear condensation may be triggered via the chaotic turbulent field or buoyant uplift. The large virial parameter of the molecular structures and correlation with the warm ({10}3{--}{10}5 {{K}})/hot (≥106) phase velocity dispersion provide evidence that they are unbound giant molecular associations drifting in the turbulent field, consistent with numerical predictions of the chaotic cold accretion process. Alternatively, the observed large CO line widths may be generated by molecular gas flowing out from cloud surfaces due to heating by the local hot gas atmosphere.

  8. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  9. Dust in planetary nebulae

    International Nuclear Information System (INIS)

    Kwok, S.

    1980-01-01

    A two-component dust model is suggested to explain the infrared emission from planetary nebulae. A cold dust component located in the extensive remnant of the red-giant envelope exterior to the visible nebula is responsible for the far-infrared emission. A ward dust component, which is condensed after the formation of the planetary nebula and confined within the ionized gas shell, emits most of the near- and mid-infrared radiation. The observations of NGC 7027 are shown to be consisten with such a model. The correlation of silicate emission in several planetary nebulae with an approximately +1 spectral index at low radio frequencies suggests that both the silicate and radio emissions originate from the remnant of the circumstellar envelope of th precursor star and are observable only while the planetary nebula is young. It is argued that oxygen-rich stars as well as carbon-rich stars can be progenitors of planetary nebulae

  10. NEW ULTRAVIOLET EXTINCTION CURVES FOR INTERSTELLAR DUST IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Gordon, Karl D.; Bohlin, R. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Bianchi, Luciana C. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218 (United States); Massa, Derck L.; Wolff, Michael J. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Fitzpatrick, Edward L., E-mail: gclayton@fenway.phys.lsu.edu, E-mail: bohlin@stsci.edu, E-mail: kgordon@stsci.edu, E-mail: bianchi@jhu.edu, E-mail: mjwolff@spacescience.org, E-mail: edward.fitzpatrick@villanova.edu [Department of Astronomy and Astrophysics, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085 (United States)

    2015-12-10

    New low-resolution UV spectra of a sample of reddened OB stars in M31 were obtained with the Hubble Space Telescope/STIS to study the wavelength dependence of interstellar extinction and the nature of the underlying dust grain populations. Extinction curves were constructed for four reddened sightlines in M31 paired with closely matching stellar atmosphere models. The new curves have a much higher signal-to-noise ratio than previous studies. Direct measurements of N(H i) were made using the Lyα absorption lines enabling gas-to-dust ratios to be calculated. The sightlines have a range in galactocentric distance of 5–14 kpc and represent dust from regions of different metallicities and gas-to-dust ratios. The metallicities sampled range from solar to 1.5 solar. The measured curves show similarity to those seen in the Milky Way and the Large Magellanic Cloud. The Maximum Entropy Method was used to investigate the dust composition and size distribution for the sightlines observed in this program, finding that the extinction curves can be produced with the available carbon and silicon abundances if the metallicity is super-solar.

  11. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish; Stenchikov, Georgiy L.; Tao, Weichun; Yapici, Tahir; Warsama, Bashir H.; Engelbrecht, Johann

    2016-01-01

    , because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably

  12. Dust Abundance Variations in the Magellanic Clouds: Probing the Life-cycle of Metals with All-sky Surveys

    Science.gov (United States)

    Roman-Duval, Julia; Bot, Caroline; Chastenet, Jeremy; Gordon, Karl

    2017-06-01

    Observations and modeling suggest that dust abundance (gas-to-dust ratio, G/D) depends on (surface) density. Variations of the G/D provide timescale constraints for the different processes involved in the life cycle of metals in galaxies. Recent G/D measurements based on Herschel data suggest a factor of 5-10 decrease in dust abundance between the dense and diffuse interstellar media (ISM) in the Magellanic Clouds. However, the relative nature of the Herschel measurements precludes definitive conclusions as to the magnitude of those variations. We investigate variations of the dust abundance in the LMC and SMC using all-sky far-infrared surveys, which do not suffer from the limitations of Herschel on their zero-point calibration. We stack the dust spectral energy distribution (SED) at 100, 350, 550, and 850 microns from IRAS and Planck in intervals of gas surface density, model the stacked SEDs to derive the dust surface density, and constrain the relation between G/D and gas surface density in the range 10-100 M ⊙ pc-2 on ˜80 pc scales. We find that G/D decreases by factors of 3 (from 1500 to 500) in the LMC and 7 (from 1.5× {10}4 to 2000) in the SMC between the diffuse and dense ISM. The surface-density-dependence of G/D is consistent with elemental depletions, and with simple modeling of the accretion of gas-phase metals onto dust grains. This result has important implications for the sub-grid modeling of galaxy evolution, and for the calibration of dust-based gas-mass estimates, both locally and at high redshift.

  13. Non-ideal dust acoustic waves

    International Nuclear Information System (INIS)

    Konefka, F; Contreras, J P; Puerta, J; Castro, E; MartIn, P

    2008-01-01

    The dispersion relation for dust acoustic waves (DA waves) functionally depends on the state equation for the charged dust grains. The ideal gas equation is usually used for studying the effect of temperature on this dispersion relation. However, since the space occupied by the grains can be important in high-density plasmas, the non-ideal effects can be important in this case. This paper analyses the dispersion relation for DA waves, when more precise state equations are used as those described for Pade approximants. The correction to the usual wave equation has been determined and the break point in density, where the ideal gas-state equation has been found. The non-ideal effects are more important for short wavelength ones, and the limits where those effects become important are also studied. Since there are several experimental results for these kinds of waves, the importance of the non-ideal effects in these cases is analysed in detail.

  14. Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction

    Energy Technology Data Exchange (ETDEWEB)

    Krupadam, Reddithota J.; Bhagat, Bhagyashree; Khan, Muntazir S. [National Environmental Engineering Research Institute, Nagpur (India)

    2010-08-15

    A method based on solid-phase extraction with a molecularly imprinted polymer (MIP) has been developed to determine five probable human carcinogenic polycyclic aromatic hydrocarbons (PAHs) in ambient air dust by gas chromatography-mass spectrometry (GC-MS). Molecularly imprinted poly(vinylpyridine-co-ethylene glycol dimethacrylate) was chosen as solid-phase extraction (SPE) material for PAHs. The conditions affecting extraction efficiency, for example surface properties, concentration of PAHs, and equilibration times were evaluated and optimized. Under optimum conditions, pre-concentration factors for MIP-SPE ranged between 80 and 93 for 10 mL ambient air dust leachate. PAHs recoveries from MIP-SPE after extraction from air dust were between 85% and 97% and calibration graphs of the PAHs showed a good linearity between 10 and 1000 ng L{sup -1} (r=0.99). The extraction efficiency of MIP for PAHs was compared with that of commercially available SPE materials - powdered activated carbon (PAC) and polystyrene-divinylbenzene resin (XAD) - and it was shown that the extraction capacity of the MIP was better than that of the other two SPE materials. Organic matter in air dust had no effect on MIP extraction, which produced a clean extract for GC-MS analysis. The detection limit of the method proposed in this article is 0.15 ng L{sup -1} for benzo[a]pyrene, which is a marker molecule of air pollution. The method has been applied to the determination of probable carcinogenic PAHs in air dust of industrial zones and satisfactory results were obtained. (orig.)

  15. Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction.

    Science.gov (United States)

    Krupadam, Reddithota J; Bhagat, Bhagyashree; Khan, Muntazir S

    2010-08-01

    A method based on solid--phase extraction with a molecularly imprinted polymer (MIP) has been developed to determine five probable human carcinogenic polycyclic aromatic hydrocarbons (PAHs) in ambient air dust by gas chromatography-mass spectrometry (GC-MS). Molecularly imprinted poly(vinylpyridine-co-ethylene glycol dimethacrylate) was chosen as solid-phase extraction (SPE) material for PAHs. The conditions affecting extraction efficiency, for example surface properties, concentration of PAHs, and equilibration times were evaluated and optimized. Under optimum conditions, pre-concentration factors for MIP-SPE ranged between 80 and 93 for 10 mL ambient air dust leachate. PAHs recoveries from MIP-SPE after extraction from air dust were between 85% and 97% and calibration graphs of the PAHs showed a good linearity between 10 and 1000 ng L(-1) (r = 0.99). The extraction efficiency of MIP for PAHs was compared with that of commercially available SPE materials--powdered activated carbon (PAC) and polystyrene-divinylbenzene resin (XAD)--and it was shown that the extraction capacity of the MIP was better than that of the other two SPE materials. Organic matter in air dust had no effect on MIP extraction, which produced a clean extract for GC-MS analysis. The detection limit of the method proposed in this article is 0.15 ng L(-1) for benzo[a]pyrene, which is a marker molecule of air pollution. The method has been applied to the determination of probable carcinogenic PAHs in air dust of industrial zones and satisfactory results were obtained.

  16. THE ORIGIN OF DUST IN EARLY-TYPE GALAXIES AND IMPLICATIONS FOR ACCRETION ONTO SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Paul [Department of Astronomy and Center for Cosmology and Astroparticle Physics, The Ohio State University, Columbus, OH 43210 (United States); Dicken, Daniel [Institut de Astrophysique Spatiale, Paris (France); Storchi-Bergmann, Thaisa [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Caixa Postal 15051, 91501-970 Porto Alegre, RS (Brazil)

    2013-04-01

    We have conducted an archival Spitzer study of 38 early-type galaxies in order to determine the origin of the dust in approximately half of this population. Our sample galaxies generally have good wavelength coverage from 3.6 {mu}m to 160 {mu}m, as well as visible-wavelength Hubble Space Telescope (HST) images. We use the Spitzer data to estimate dust masses, or establish upper limits, and find that all of the early-type galaxies with dust lanes in the HST data are detected in all of the Spitzer bands and have dust masses of {approx}10{sup 5}-10{sup 6.5} M{sub Sun }, while galaxies without dust lanes are not detected at 70 {mu}m and 160 {mu}m and typically have <10{sup 5} M{sub Sun} of dust. The apparently dust-free galaxies do have 24 {mu}m emission that scales with the shorter-wavelength flux, yet substantially exceeds the expectations of photospheric emission by approximately a factor of three. We conclude this emission is dominated by hot, circumstellar dust around evolved stars that does not survive to form a substantial interstellar component. The order-of-magnitude variations in dust masses between galaxies with similar stellar populations rule out a substantial contribution from continual, internal production in spite of the clear evidence for circumstellar dust. We demonstrate that the interstellar dust is not due to purely external accretion, unless the product of the merger rate of dusty satellites and the dust lifetime is at least an order of magnitude higher than expected. We propose that dust in early-type galaxies is seeded by external accretion, yet the accreted dust is maintained by continued growth in externally accreted cold gas beyond the nominal lifetime of individual grains. The several Gyr depletion time of the cold gas is long enough to reconcile the fraction of dusty early-type galaxies with the merger rate of gas-rich satellites. As the majority of dusty early-type galaxies are also low-luminosity active galactic nuclei and likely fueled

  17. Evaluation of Surface Modification as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces

    Science.gov (United States)

    Gaier, James R.; Waters, Deborah L.; Misconin, Robert M.; Banks, Bruce A.; Crowder, Mark

    2011-01-01

    Three surface treatments were evaluated for their ability to lower the adhesion between lunar simulant dust and AZ93, AlFEP, and AgFEP thermal control surfaces under simulated lunar conditions. Samples were dusted in situ and exposed to a standardized puff of nitrogen gas. Thermal performance before dusting, after dusting, and after part of the dust was removed by the puff of gas, were compared to perform the assessment. None of the surface treatments was found to significantly affect the adhesion of lunar simulants to AZ93 thermal control paint. Oxygen ion beam texturing also did not lower the adhesion of lunar simulant dust to AlFEP or AgFEP. But a workfunction matching coating and a proprietary Ball Aerospace surface treatment were both found to significantly lower the adhesion of lunar simulants to AlFEP and AgFEP. Based on these results, it is recommended that all these two techniques be further explored as dust mitigation coatings for AlFEP and AgFEP thermal control surfaces.

  18. Lagrangian Trajectory Modeling of Lunar Dust Particles

    Science.gov (United States)

    Lane, John E.; Metzger, Philip T.; Immer, Christopher D.

    2008-01-01

    Apollo landing videos shot from inside the right LEM window, provide a quantitative measure of the characteristics and dynamics of the ejecta spray of lunar regolith particles beneath the Lander during the final 10 [m] or so of descent. Photogrammetry analysis gives an estimate of the thickness of the dust layer and angle of trajectory. In addition, Apollo landing video analysis divulges valuable information on the regolith ejecta interactions with lunar surface topography. For example, dense dust streaks are seen to originate at the outer rims of craters within a critical radius of the Lander during descent. The primary intent of this work was to develop a mathematical model and software implementation for the trajectory simulation of lunar dust particles acted on by gas jets originating from the nozzle of a lunar Lander, where the particle sizes typically range from 10 micron to 500 micron. The high temperature, supersonic jet of gas that is exhausted from a rocket engine can propel dust, soil, gravel, as well as small rocks to high velocities. The lunar vacuum allows ejected particles to travel great distances unimpeded, and in the case of smaller particles, escape velocities may be reached. The particle size distributions and kinetic energies of ejected particles can lead to damage to the landing spacecraft or to other hardware that has previously been deployed in the vicinity. Thus the primary motivation behind this work is to seek a better understanding for the purpose of modeling and predicting the behavior of regolith dust particle trajectories during powered rocket descent and ascent.

  19. The temperature of large dust grains in molecular clouds

    Science.gov (United States)

    Clark, F. O.; Laureijs, R. J.; Prusti, T.

    1991-01-01

    The temperature of the large dust grains is calculated from three molecular clouds ranging in visual extinction from 2.5 to 8 mag, by comparing maps of either extinction derived from star counts or gas column density derived from molecular observations to I(100). Both techniques show the dust temperature declining into clouds. The two techniques do not agree in absolute scale.

  20. An opening criterion for dust gaps in protoplanetary discs

    OpenAIRE

    Dipierro, Giovanni; Laibe, Guillaume

    2017-01-01

    We aim to understand under which conditions a low mass planet can open a gap in viscous dusty protoplanetary discs. For this purpose, we extend the theory of dust radial drift to include the contribution from the tides of an embedded planet and from the gas viscous forces. From this formalism, we derive i) a grain size-dependent criterion for dust gap opening in discs, ii) an estimate of the location of the outer edge of the dust gap and iii) an estimate of the minimum Stokes number above whi...

  1. Exploring the dust content of galactic winds with Herschel - II. Nearby dwarf galaxies

    Science.gov (United States)

    McCormick, Alexander; Veilleux, Sylvain; Meléndez, Marcio; Martin, Crystal L.; Bland-Hawthorn, Joss; Cecil, Gerald; Heitsch, Fabian; Müller, Thomas; Rupke, David S. N.; Engelbracht, Chad

    2018-06-01

    We present the results from an analysis of deep Herschel Space Observatory observations of six nearby dwarf galaxies known to host galactic-scale winds. The superior far-infrared sensitivity and angular resolution of Herschel have allowed detection of cold circumgalactic dust features beyond the stellar components of the host galaxies traced by Spitzer 4.5 μm images. Comparisons of these cold dust features with ancillary data reveal an imperfect spatial correlation with the ionized gas and warm dust wind components. We find that typically ˜10-20 per cent of the total dust mass in these galaxies resides outside of their stellar discs, but this fraction reaches ˜60 per cent in the case of NGC 1569. This galaxy also has the largest metallicity (O/H) deficit in our sample for its stellar mass. Overall, the small number of objects in our sample precludes drawing strong conclusions on the origin of the circumgalactic dust. We detect no statistically significant trends with star formation properties of the host galaxies, as might be expected if the dust were lifted above the disc by energy inputs from ongoing star formation activity. Although a case for dust entrained in a galactic wind is seen in NGC 1569, in all cases, we cannot rule out the possibility that some of the circumgalactic dust might be associated instead with gas accreted or removed from the disc by recent galaxy interaction events, or that it is part of the outer gas-rich portion of the disc that lies below the sensitivity limit of the Spitzer 4.5 μm data.

  2. Experimental investigation on the minimum ignition temperature of hybrid mixtures of dusts and gases or solvents.

    Science.gov (United States)

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-01-15

    Investigations on the minimum ignition temperatures (MIT) of hybrid mixtures of dusts with gases or solvents were performed in the modified Godbert-Greenwald (GG) furnace. Five combustible dusts and six flammable gases (three ideal and three real) were used. The test protocol was according to EN 50281-2-1 for dust-air mixtures whereas in the case of gases, solvents and hybrid mixtures this standard was used with slight modification. The experimental results demonstrated a significant decrease of the MIT of gas, solvent or dust and an increase in the likelihood of explosion when a small amount of dust, which was either below the minimum explosion concentration or not ignitable by itself, was mixed with gas and vice versa. For example, the MIT of toluene decreased from 540°C to 455°C when small amount of lycopodium was added. It was also confirmed that a hybrid mixture explosion is possible even when both dust and vapour or gas concentrations are respectively lower than their minimum explosion concentration (MEC) and lower explosion limit (LEL). Another example is CN4, the MEC of which of 304 g/m(3) decreased to 37 g/m(3) when propane was added, even though the concentrations of the gas was below its LEL. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Martian dust storms as a possible sink of atmospheric methane

    Science.gov (United States)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  4. Planck early results. XIX. All-sky temperature and dust optical depth from Planck and IRAS. Constraints on the "dark gas" in our Galaxy

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    An all sky map of the apparent temperature and optical depth of thermal dust emission is constructed using the Planck-HFI (350μm to 2 mm) andIRAS(100μm) data. The optical depth maps are correlated with tracers of the atomic (Hi) and molecular gas traced by CO. The correlation with the column dens...

  5. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    Science.gov (United States)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike

  6. Carbon formation and metal dusting in advanced coal gasification processes

    Energy Technology Data Exchange (ETDEWEB)

    DeVan, J.H.; Tortorelli, P.F.; Judkins, R.R.; Wright, I.G.

    1997-02-01

    The product gases generated by coal gasification systems contain high concentrations of CO and, characteristically, have relatively high carbon activities. Accordingly, carbon deposition and metal dusting can potentially degrade the operation of such gasifier systems. Therefore, the product gas compositions of eight representative gasifier systems were examined with respect to the carbon activity of the gases at temperatures ranging from 480 to 1,090 C. Phase stability calculations indicated that Fe{sub 3}C is stable only under very limited thermodynamic conditions and with certain kinetic assumptions and that FeO and Fe{sub 0.877}S tend to form instead of the carbide. As formation of Fe{sub 3}C is a necessary step in the metal dusting of steels, there are numerous gasifier environments where this type of carbon-related degradation will not occur, particularly under conditions associated with higher oxygen and sulfur activities. These calculations also indicated that the removal of H{sub 2}S by a hot-gas cleanup system may have less effect on the formation of Fe{sub 3}C in air-blown gasifier environments, where the iron oxide phase can exist and is unaffected by the removal of sulfur, than in oxygen-blown systems, where iron sulfide provides the only potential barrier to Fe{sub 3}C formation. Use of carbon- and/or low-alloy steels dictates that the process gas composition be such that Fe{sub 3}C cannot form if the potential for metal dusting is to be eliminated. Alternatively, process modifications could include the reintroduction of hydrogen sulfide, cooling the gas to perhaps as low as 400 C and/or steam injection. If higher-alloy steels are used, a hydrogen sulfide-free gas may be processed without concern about carbon deposition and metal dusting.

  7. Dust and molecules in extra-galactic planetary nebulae

    Science.gov (United States)

    Garcia-Hernandez, Domingo Aníbal

    2015-08-01

    Extra-galactic planetary nebulae (PNe) permit the study of dust and molecules in metallicity environments other than the Galaxy. Their known distances lower the number of free parameters in the observations vs. models comparison, providing strong constraints on the gas-phase and solid-state astrochemistry models. Observations of PNe in the Galaxy and other Local Group galaxies such as the Magellanic Clouds (MC) provide evidence that metallicity affects the production of dust as well as the formation of complex organic molecules and inorganic solid-state compounds in their circumstellar envelopes. In particular, the lower metallicity MC environments seem to be less favorable to dust production and the frequency of carbonaceous dust features and complex fullerene molecules is generally higher with decreasing metallicity. Here, I present an observational review of the dust and molecular content in extra-galactic PNe as compared to their higher metallicity Galactic counterparts. A special attention is given to the level of dust processing and the formation of complex organic molecules (e.g., polycyclic aromatic hydrocarbons, fullerenes, and graphene precursors) depending on metallicity.

  8. Satellitesimal Formation via Collisional Dust Growth in Steady Circumplanetary Disks

    Science.gov (United States)

    Shibaike, Yuhito; Okuzumi, Satoshi; Sasaki, Takanori; Ida, Shigeru

    2017-09-01

    The icy satellites around Jupiter are considered to have formed in a circumplanetary disk. While previous models have focused on the formation of the satellites starting from satellitesimals, the question of how satellitesimals themselves form from smaller dust particles has not yet been addressed. In this work, we study the possibility that satellitesimals form in situ in a circumplanetary disk. We calculate the radial distribution of the surface density and representative size of icy dust particles that grow by colliding with each other and drift toward the central planet in a steady circumplanetary disk with a continuous supply of gas and dust from the parent protoplanetary disk. The radial drift barrier is overcome if the ratio of the dust-to-gas accretion rates onto the circumplanetary disk, {\\dot{M}}{{d}}/{\\dot{M}}{{g}}, is high and the strength of turbulence, α, is not too low. The collision velocity is lower than the critical velocity of fragmentation when α is low. Taken together, we find that the conditions for satellitesimal formation via dust coagulation are given by {\\dot{M}}{{d}}/{\\dot{M}}{{g}}≥slant 1 and {10}-4≤slant α aggregates nor via streaming instability is viable as long as {\\dot{M}}{{d}}/{\\dot{M}}{{g}} is low.

  9. Molecular Gas Reservoirs in Cluster Galaxies at z = 1.46

    Science.gov (United States)

    Hayashi, Masao; Tadaki, Ken-ichi; Kodama, Tadayuki; Kohno, Kotaro; Yamaguchi, Yuki; Hatsukade, Bunyo; Koyama, Yusei; Shimakawa, Rhythm; Tamura, Yoichi; Suzuki, Tomoko L.

    2018-04-01

    We present molecular gas reservoirs of 18 galaxies associated with the XMMXCS J2215.9–1738 cluster at z = 1.46. From Band 7 and Band 3 data of the Atacama Large Millimeter/submillimeter Array, we detect dust continuum emission at 870 μm and the CO J = 2–1 emission line from 8 and 17 member galaxies, respectively, within a clustercentric radius of R 200. The molecular gas masses derived from the CO and/or dust continuum luminosities show that the fraction of molecular gas mass and the depletion timescale for the cluster galaxies are larger than expected from the scaling relations of molecular gas on stellar mass and offset from the main sequence of star-forming galaxies in general fields. The galaxies closer to the cluster center in terms of both projected position and accretion phase seem to show a larger deviation from the scaling relations. We speculate that the environment of the galaxy cluster helps feed the gas through inflow to the member galaxies and reduce the efficiency of star formation. The stacked Band 3 spectrum of 12 quiescent galaxies with M stellar ∼ 1011 M ⊙ within 0.5R 200 shows no detection of a CO emission line, giving the upper limit of molecular gas mass and molecular gas fraction to be ≲1010 M ⊙ and ≲10%, respectively. Therefore, the massive galaxies in the cluster core quench the star formation activity while consuming most of the gas reservoirs.

  10. Dust mobilization by high-speed vapor flow under LOVA

    International Nuclear Information System (INIS)

    Matsuki, K.; Suzuki, S.; Ebara, S.; Yokomine, T.; Shimizu, A.

    2006-01-01

    In the safety analysis on the International Thermonuclear Experimental Reactor (ITER), the ingress of coolant (ICE) event and the loss of vacuum (LOVA) event are considered as one of the most serious accident. On the assumption of LOVA occurring after ICE, it is inferable that activated dusts are under the wet condition. Transport behavior of in-vessel activated dusts under the wet condition is not well understood in comparison with the dry case. In this study, we experimentally investigated the entrainment behavior of dust under LOVA after ICE. We measured dust entrainment by high-speed humid airflow with phase change. Graphite dusts and glass beads are used as substitutions for mobile inventory. The relations among the relative humidity, the entrainment of particles in the exhaust gas flow and the adhesion rate of dust particles on the pipe wall have been made clear, as has the distribution profile of dust deposition on the pipe wall. The entrainment ratio decreased as the relative humidity increased and increased as the initial pressure difference increased

  11. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles

    Science.gov (United States)

    Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)

    2002-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron

  12. Saharan Dust, Transport Processes, and Possible Impacts on Hurricane Activities

    Science.gov (United States)

    Lau, William K. M.; Kim, K. M.

    2010-01-01

    In this paper, we present observational evidence of significant relationships between Saharan dust outbreak, and African Easterly wave activities and hurricane activities. We found two dominant paths of transport of Saharan dust: a northern path, centered at 25degN associated with eastward propagating 6-19 days waves over northern Africa, and a southern path centered at 15degN, associated with the AEW, and the Atlantic ITCZ. Seasons with stronger dust outbreak from the southern path are associated with a drier atmosphere over the Maximum Development Region (MDR) and reduction in tropical cyclone and hurricane activities in the MDR. Seasons with stronger outbreak from the northern path are associated with a cooler N. Atlantic, and suppressed hurricane in the western Atlantic basin.

  13. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Philip F. [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Conroy, Charlie, E-mail: phopkins@caltech.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-02-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  14. Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?

    International Nuclear Information System (INIS)

    Hopkins, Philip F.; Conroy, Charlie

    2017-01-01

    Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances of these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.

  15. Spring Dust Storm Smothers Beijing

    Science.gov (United States)

    2002-01-01

    A few days earlier than usual, a large, dense plume of dust blew southward and eastward from the desert plains of Mongolia-quite smothering to the residents of Beijing. Citizens of northeastern China call this annual event the 'shachenbao,' or 'dust cloud tempest.' However, the tempest normally occurs during the spring time. The dust storm hit Beijing on Friday night, March 15, and began coating everything with a fine, pale brown layer of grit. The region is quite dry; a problem some believe has been exacerbated by decades of deforestation. According to Chinese government estimates, roughly 1 million tons of desert dust and sand blow into Beijing each year. This true-color image was made using two adjacent swaths (click to see the full image) of data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on March 17, 2002. The massive dust storm (brownish pixels) can easily be distinguished from clouds (bright white pixels) as it blows across northern Japan and eastward toward the open Pacific Ocean. The black regions are gaps between SeaWiFS' viewing swaths and represent areas where no data were collected. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  16. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  17. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R [VTT Energy, Espoo (Finland). Energy Systems

    1998-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  18. Dust particle diffusion in ion beam transport region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  19. Gas Content and Kinematics in Clumpy, Turbulent Star-forming Disks

    International Nuclear Information System (INIS)

    White, Heidi A.; Abraham, Roberto G.; Fisher, David B.; Glazebrook, Karl; Murray, Norman; Bolatto, Alberto D.; Green, Andrew W.; Mentuch Cooper, Erin; Obreschkow, Danail

    2017-01-01

    We present molecular gas-mass estimates for a sample of 13 local galaxies whose kinematic and star-forming properties closely resemble those observed in z ≈ 1.5 main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas-mass fractions of ∼20%. Moreover, dust emission modeling finds T dust < 30 K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas-mass estimates argue that z ∼ 0.1 DYNAMO galaxies not only share similar kinematic properties with high- z disks, but they are also similarly rich in molecular material. Pairing the gas-mass fractions with existing kinematics reveals a linear relationship between f gas and σ / v c , consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas-velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with the lowest t dep (∼0.5 Gyr) have the highest ratios of σ / v c and more pronounced clumps, even at the same high molecular gas fraction.

  20. Gas Content and Kinematics in Clumpy, Turbulent Star-forming Disks

    Energy Technology Data Exchange (ETDEWEB)

    White, Heidi A.; Abraham, Roberto G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H8 (Canada); Fisher, David B.; Glazebrook, Karl [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Murray, Norman [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto ON M5S 3H8 (Canada); Bolatto, Alberto D. [Department of Astronomy and Joint Space Institute, University of Maryland, College Park, MD 20642 (United States); Green, Andrew W. [Australian Astronomical Observatory, P.O. Box 970, North Ryde, NSW 1670 (Australia); Mentuch Cooper, Erin [Astronomy Department, University of Texas at Austin, Austin, TX 78712 (United States); Obreschkow, Danail [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, M468, Crawley, WA 6009 (Australia)

    2017-09-01

    We present molecular gas-mass estimates for a sample of 13 local galaxies whose kinematic and star-forming properties closely resemble those observed in z ≈ 1.5 main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas-mass fractions of ∼20%. Moreover, dust emission modeling finds T {sub dust} < 30 K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas-mass estimates argue that z ∼ 0.1 DYNAMO galaxies not only share similar kinematic properties with high- z disks, but they are also similarly rich in molecular material. Pairing the gas-mass fractions with existing kinematics reveals a linear relationship between f {sub gas} and σ / v {sub c}, consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas-velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with the lowest t {sub dep} (∼0.5 Gyr) have the highest ratios of σ / v{sub c} and more pronounced clumps, even at the same high molecular gas fraction.

  1. Experimental investigation of flow induced dust acoustic shock waves in a complex plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, S., E-mail: surabhijaiswal73@gmail.com; Bandyopadhyay, P.; Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2016-08-15

    We report on experimental observations of flow induced large amplitude dust-acoustic shock waves in a complex plasma. The experiments have been carried out in a Π shaped direct current glow discharge experimental device using kaolin particles as the dust component in a background of Argon plasma. A strong supersonic flow of the dust fluid is induced by adjusting the pumping speed and neutral gas flow into the device. An isolated copper wire mounted on the cathode acts as a potential barrier to the flow of dust particles. A sudden change in the gas flow rate is used to trigger the onset of high velocity dust acoustic shocks whose dynamics are captured by fast video pictures of the evolving structures. The physical characteristics of these shocks are delineated through a parametric scan of their dynamical properties over a range of flow speeds and potential hill heights. The observed evolution of the shock waves and their propagation characteristics are found to compare well with model numerical results based on a modified Korteweg-de-Vries-Burgers type equation.

  2. Dust processing device for inside of vacuum vessel of thermonuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Okumura, Atsushi; Tsujimura, Seiichi; Takahashi, Kenji; Ueda, Yasutoshi; Kuwata, Masayasu; Onozuka, Masaki

    1995-05-02

    The device of the present invention can occasionally recover dusts in a vacuum vessel of a thermonuclear reactor. In addition, fine powdery dusts are never scattered to the vacuum vessel. Namely, a processing device main body comprises a locally sealed space in the vacuum vessel. A blow-up device blows up and floats dusts accumulated in the vacuum vessel to the processing device main body. A discharge plate electrically charges the floating dusts by discharge. An electrode collects the charged dusts. Collected dusts are recovered together with a pressurized gas through a dust recovering port to the outside of the processing device. With such a constitution, it is not necessary to release the vacuum vessel to the atmosphere and evacuate after the completion of the collection of the dusts on every time when the dusts are generated as in the prior art. It is no more necessary for an operator to enter into the vacuum vessel and recover the dusts. Since fine powdery dusts are never scattered in the vacuum vessel, no undesired effects are given to exhaustion facilities and instruments of the vacuum vessel. (I.S.).

  3. Dust processing device for inside of vacuum vessel of thermonuclear reactor

    International Nuclear Information System (INIS)

    Okumura, Atsushi; Tsujimura, Seiichi; Takahashi, Kenji; Ueda, Yasutoshi; Kuwata, Masayasu; Onozuka, Masaki.

    1995-01-01

    The device of the present invention can occasionally recover dusts in a vacuum vessel of a thermonuclear reactor. In addition, fine powdery dusts are never scattered to the vacuum vessel. Namely, a processing device main body comprises a locally sealed space in the vacuum vessel. A blow-up device blows up and floats dusts accumulated in the vacuum vessel to the processing device main body. A discharge plate electrically charges the floating dusts by discharge. An electrode collects the charged dusts. Collected dusts are recovered together with a pressurized gas through a dust recovering port to the outside of the processing device. With such a constitution, it is not necessary to release the vacuum vessel to the atmosphere and evacuate after the completion of the collection of the dusts on every time when the dusts are generated as in the prior art. It is no more necessary for an operator to enter into the vacuum vessel and recover the dusts. Since fine powdery dusts are never scattered in the vacuum vessel, no undesired effects are given to exhaustion facilities and instruments of the vacuum vessel. (I.S.)

  4. Nature versus nurture: Luminous blue variable nebulae in and near massive stellar clusters at the galactic center

    Energy Technology Data Exchange (ETDEWEB)

    Lau, R. M.; Herter, T. L.; Adams, J. D. [Astronomy Department, 202 Space Sciences Building, Cornell University, Ithaca, NY 14853-6801 (United States); Morris, M. R. [Department of Physics and Astronomy, University of California, Los Angeles, 430 Portola Plaza, Los Angeles, CA 90095-1547 (United States)

    2014-04-20

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical 'twins' that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s{sup –1}) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ∼ 35 Å) having a total dust mass of 0.03 M {sub ☉}, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 10{sup 5} L {sub ☉}. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M {sub ☉}. The total IR luminosity of the G

  5. Nature versus nurture: Luminous blue variable nebulae in and near massive stellar clusters at the galactic center

    International Nuclear Information System (INIS)

    Lau, R. M.; Herter, T. L.; Adams, J. D.; Morris, M. R.

    2014-01-01

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical 'twins' that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s –1 ) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ∼ 35 Å) having a total dust mass of 0.03 M ☉ , and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 10 5 L ☉ . Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M ☉ . The total IR luminosity of the G0.120-0.048 nebula is

  6. Spectroscopic and x-ray diffraction analyses of asbestos in the World Trade Center dust:

    Science.gov (United States)

    Swayze, Gregg A.; Clark, Roger N.; Sutley, Stephen J.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Meeker, Gregory P.; Brownfield, Isabelle; Livo, Keith E.; Morath, Laurie C.

    2009-01-01

    On September 17 and 18, 2001, samples of settled dust and airfall debris were collected from 34 sites within a 1-km radius of the WTC collapse site, including a sample from an indoor location unaffected by rainfall, and samples of insulation from two steel beams at Ground Zero. Laboratory spectral and x-ray diffraction analyses of the field samples detected trace levels of serpentine minerals, including chrysotile asbestos, in about two-thirds of the dust samples at concentrations at or below ~1 wt%. One sample of a beam coating material contained up to 20 wt% chrysotile asbestos. Analyses indicate that trace levels of chrysotile were distributed with the dust radially to distances greater than 0.75 km from Ground Zero. The chrysotile content of the dust is variable and may indicate that chrysotile asbestos was not distributed uniformly during the three collapse events.

  7. Simulating galactic dust grain evolution on a moving mesh

    Science.gov (United States)

    McKinnon, Ryan; Vogelsberger, Mark; Torrey, Paul; Marinacci, Federico; Kannan, Rahul

    2018-05-01

    Interstellar dust is an important component of the galactic ecosystem, playing a key role in multiple galaxy formation processes. We present a novel numerical framework for the dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based method for dust subject to dynamical forces including drag and gravity. The drag force is implemented using a second-order semi-implicit integrator and validated using several dust-hydrodynamical test problems. Each dust particle has a grain size distribution, describing the local abundance of grains of different sizes. The grain size distribution is discretised with a second-order piecewise linear method and evolves in time according to various dust physical processes, including accretion, sputtering, shattering, and coagulation. We present a novel scheme for stochastically forming dust during stellar evolution and new methods for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc galaxy to study the impact of dust physical processes that shape the interstellar grain size distribution. We demonstrate, for example, how dust shattering shifts the grain size distribution to smaller sizes resulting in a significant rise of radiation extinction from optical to near-ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily be extended to account for other dynamical processes relevant in galaxy formation, like magnetohydrodynamics, radiation pressure, and thermo-chemical processes.

  8. Electrodynamic Dust Shield for Lunar/ISS Experiment

    Data.gov (United States)

    National Aeronautics and Space Administration — The Electrostatics and Surface Physics Laboratory at Kennedy Space Center is developing a dust mitigation experiment and testing it on the lunar surface and on the...

  9. Surface observation of sand and dust storm in East Asia and its application in CUACE/Dust

    Directory of Open Access Journals (Sweden)

    Y. Q. Wang

    2008-02-01

    Full Text Available The spatial-temporal distributions and sources of sand and dust storm (SDS in East Asia from 2001 to 2006 were investigated on the basis of visibility and PM10 data from the routine SDS and weather monitoring networks run by CMA (China Meteorological Administration. A power functional relationships between PM10 and visibility was found among various regions generally with a good correlation (r2=0.90, especially in Asian SDS source regions. In addition, three SDS occurrence centers, i.e. western China, Mongolia and northern China, were identified with the Mongolia source contributing more dust to the downwind areas including Korea and Japan than other two sources. Generally, high PM10 concentrations were observed in most areas of northern China. The highest value was obtained in the center of western China with a spring daily mean value of 876 μgm−3, and the value in other source regions exceeds 200 μgm−3. These data sets together with the satellite observations in China form the main observation database for the evaluation and data assimilation of CUACE/Dust system – an operational SDS forecasting system for East Asia.

  10. On the relationship between gas and dust in 15 comets: an application to Comet 103P/Hartley 2 target of the NASA EPOXI mission of opportunity

    Science.gov (United States)

    Sanzovo, G. C.; Sanzovo, D. Trevisan; de Almeida, A. A.

    After the success of Deep Impact mission to hit the nucleus of Comet 9P/Tempel 1 with an impactor, the concerns are turned now to the possible reutilization of this dormant flyby spacecraft in the study of another comet, for only about 10% of the cost of the original mission. Comet 103P/Hartley 2 on UT 2010 October 11 is the most attractive target in terms of available fuel at rendezvous and arrival time at the comet. In addition, the comet has a low inclination so that major orbital plane changes in the spacecraft trajectory are unnecessary. In an effort to provide information concerning the planning of this new NASA EPOXI space mission of opportunity, we use in this work, visual magnitudes measurements available from International Comet Quarterly (ICQ) to obtain, applying the Semi-Empirical Method of Visual Magnitudes - SEMVM (de Almeida, Singh, & Huebner 1997), the water production rates (in molecules/s) related to its perihelion passage of 1997. When associated to the water vaporization theory of Delsemme (1982), these rates allowed the acquisition of the minimum dimension for the effective nuclear radius of the comet. The water production rates were then converted into gas production rates (in g/s) so that, with the help of the strong correlation between gas and dust found for 12 periodic comets and 3 non-period comets (Trevisan Sanzovo 2006), we obtained the dust loss rates (in g/s), its behavior with the heliocentric distance and the dust-to-gas ratios in this physically attractive rendezvous target-comet to Deep Impact spacecraft at a closest approach of 700 km.

  11. ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Catherine; Maud, Luke T. [Leiden Observatory, Leiden University, P.O. Box 9531, 2300 RA Leiden (Netherlands); Juhász, Attila [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Meeus, Gwendolyn [Departamento de Física Teórica, Universidad Autonoma de Madrid, Campus Cantoblanco, E-28049 Madrid (Spain); Dent, William R. F. [Joint ALMA Observatory (JAO), Alonso de Córdova 3107, Vitacura, Santiago (Chile); Aikawa, Yuri [Center for Computer Sciences, University of Tsukuba, 305-8577 Tsukuba (Japan); Millar, Tom J. [School of Mathematics and Physics, Queen’s University Belfast, University Road, Belfast BT7 1NN (United Kingdom); Nomura, Hideko, E-mail: cwalsh@strw.leidenuniv.nl, E-mail: c.walsh1@leeds.ac.uk [Department of Earth and Planetary Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8551 Tokyo (Japan)

    2016-11-10

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ∼ mm wavelengths. We present the first spatially resolved ∼ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°–40°. HD 97048 is another source for which the large (∼ mm-sized) dust grains are more centrally concentrated than the small (∼ μ m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10–20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  12. ALMA Reveals the Anatomy of the mm-sized Dust and Molecular Gas in the HD 97048 Disk

    Science.gov (United States)

    Walsh, Catherine; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Maud, Luke T.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko

    2016-11-01

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ˜ mm wavelengths. We present the first spatially resolved ˜ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°-40°. HD 97048 is another source for which the large (˜ mm-sized) dust grains are more centrally concentrated than the small (˜μm-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10-20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  13. ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK

    International Nuclear Information System (INIS)

    Walsh, Catherine; Maud, Luke T.; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko

    2016-01-01

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ∼ mm wavelengths. We present the first spatially resolved ∼ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°–40°. HD 97048 is another source for which the large (∼ mm-sized) dust grains are more centrally concentrated than the small (∼ μ m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10–20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  14. Valve for a dust meter. Ventil fuer eine Staubkonzentrationsmessanordnung

    Energy Technology Data Exchange (ETDEWEB)

    1985-08-01

    When sampling a representative gas or dust flow from a flue, the characteristics of the sample must remain unchanged. As sampling is carried out using a pump, a valve is provided through which the isokinetic component current is led across a dust deposition length and, via a bypass, back into the flue. The valve has a distributor casing with a distributor cylinder and with three connections that do not change the volume flow.

  15. Dust pollution of snow cover in the industrial areas of Tomsk city (Western Siberia, Russia)

    Science.gov (United States)

    Talovskaya, A. V.; Filimonenko, E. A.; Osipova, N. A.; Yazikov, E. G.; Nadeina, L. V.

    2016-03-01

    This article describes the results of long-term monitoring (2007-2014) of snow cover pollution in the territory of Tomsk city. Snow samples were collected in the territory of Tomsk. Determination of dust load level was carried out by comparing with the background and reference values. It has been determined that the north-east and central parts of Tomsk are the most contaminated areas, where brickworks, coal and gas-fired thermal power plant are located. The analysis of long-term dynamics showed a dust load decrease in the vicinity of coal and gas-fired thermal power plant due to upgrading of the existing dust collecting systems. During the monitoring period the high dust load in the vicinity of brickworks did not change. The lowest value of the dust load on snow cover was detected in the vicinity of the petrochemical plant and concrete product plants. The near and far zones of dust load on snow cover were determined with the reference to the location of the studied plants.

  16. TRACING MOLECULAR GAS MASS IN EXTREME EXTRAGALACTIC ENVIRONMENTS: AN OBSERVATIONAL STUDY

    International Nuclear Information System (INIS)

    Zhu Ming; Papadopoulos, Padeli P.; Xilouris, Emmanuel M.; Kuno, Nario; Lisenfeld, Ute

    2009-01-01

    We present a new observational study of the 12 CO(1-0) line emission as an H 2 gas mass tracer under extreme conditions in extragalactic environments. Our approach is to study the full neutral interstellar medium (H 2 , H I, and dust) of two galaxies whose bulk interstellar medium (ISM) resides in environments that mark (and bracket) the excitation extremes of the ISM conditions found in infrared luminous galaxies, the starburst NGC 3310, and the quiescent spiral NGC 157. Our study maintains a robust statistical notion of the so-called X = N(H 2 )/I CO factor (i.e., a large ensemble of clouds is involved) while exploring its dependence on the very different average ISM conditions prevailing within these two systems. These are constrained by fully sampled 12 CO(3-2) and 12 CO(1-0) observations, at a matched beam resolution of half-power beam width ∼15'', obtained with the James Clerk Maxwell Telescope (JCMT) on Mauna Kea (Hawaii) and the 45 m telescope of the Nobeyama Radio Observatory in Japan, combined with sensitive 850 μm and 450 μm dust emission and H I interferometric images which allow a complete view of all the neutral ISM components. Complementary 12 CO(2-1) observations were obtained with the JCMT toward the center of the two galaxies. We found an X factor varying by a factor of 5 within the spiral galaxy NGC 157 and about two times lower than the Galactic value in NGC 3310. In addition, the dust emission spectrum in NGC 3310 shows a pronounced submillimeter 'excess'. We tried to fit this excess by a cold dust component but very low temperatures were required (T C ∼ 5-11 K) with a correspondingly low gas-to-dust mass ratio of ∼5-43. We furthermore show that it is not possible to maintain the large quantities of dust required at these low temperatures in this starburst galaxy. Instead, we conclude that the dust properties need to be different from Galactic dust in order to fit the submillimeter 'excess'. We show that the dust spectral energy

  17. Size and density sorting of dust grains in SPH simulations of protoplanetary discs

    Science.gov (United States)

    Pignatale, F. C.; Gonzalez, J.-F.; Cuello, Nicolas; Bourdon, Bernard; Fitoussi, Caroline

    2017-07-01

    The size and density of dust grains determine their response to gas drag in protoplanetary discs. Aerodynamical (size × density) sorting is one of the proposed mechanisms to explain the grain properties and chemical fractionation of chondrites. However, the efficiency of aerodynamical sorting and the location in the disc in which it could occur are still unknown. Although the effects of grain sizes and growth in discs have been widely studied, a simultaneous analysis including dust composition is missing. In this work, we present the dynamical evolution and growth of multicomponent dust in a protoplanetary disc using a 3D, two-fluid (gas+dust) smoothed particle hydrodynamics code. We find that the dust vertical settling is characterized by two phases: a density-driven phase that leads to a vertical chemical sorting of dust and a size-driven phase that enhances the amount of lighter material in the mid-plane. We also see an efficient radial chemical sorting of the dust at large scales. We find that dust particles are aerodynamically sorted in the inner disc. The disc becomes sub-solar in its Fe/Si ratio on the surface since the early stage of evolution but sub-solar Fe/Si can be also found in the outer disc-mid-plane at late stages. Aggregates in the disc mimic the physical and chemical properties of chondrites, suggesting that aerodynamical sorting played an important role in determining their final structure.

  18. Physico-chemical characterization of grain dust in storage air of Bangalore.

    Science.gov (United States)

    Mukherjee, A K; Nag, D P; Kakde, Y; Babu, K R; Prdkash, M N; Rao, S R

    1998-06-01

    An Anderson personal cascade impactor was used to study the particle mass size distribution in the storage air of two major grain storage centers in Bangalore. Dust levels in storage air as well as the personal exposures of workers were determined along with a detailed study on the particle size distribution. Protein and carbohydrate content of the dust were also determined respectively in the phosphate buffer saline (PBS) and water extracts by using the standard analytical techniques. Personal exposures in both of the grain storage centers have been found to be much above the limit prescribed by ACGIH (1995-96). But the results of particle size analysis showed a higher particle mass distribution in the non-respirable size range. The mass median diameters (MMD) of the storage air particulate of both the centers were found to be beyond the respirable range. Presence of protein and carbohydrate in the storage air dust is indicative of the existence of glyco-proteins, mostly of membrane origin.

  19. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran

    Science.gov (United States)

    Kaskaoutis, D. G.; Rashki, A.; Houssos, E. E.; Mofidi, A.; Goto, D.; Bartzokas, A.; Francois, P.; Legrand, M.

    2015-07-01

    Dust storms are considered natural hazards that seriously affect atmospheric conditions, ecosystems and human health. A key requirement for investigating the dust life cycle is the analysis of the meteorological (synoptic and dynamic) processes that control dust emission, uplift and transport. The present work focuses on examining the synoptic and dynamic meteorological conditions associated with dust-storms in the Sistan region, southeastern Iran during the summer season (June-September) of the years 2001-2012. The dust-storm days (total number of 356) are related to visibility records below 1 km at Zabol meteorological station, located near to the dust source. RegCM4 model simulations indicate that the intense northern Levar wind, the high surface heating and the valley-like characteristics of the region strongly affect the meteorological dynamics and the formation of a low-level jet that are strongly linked with dust exposures. The intra-annual evolution of the dust storms does not seem to be significantly associated with El-Nino Southern Oscillation, despite the fact that most of the dust-storms are related to positive values of Oceanic Nino Index. National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis suggests that the dust storms are associated with low sea-level pressure conditions over the whole south Asia, while at 700 hPa level a trough of low geopotential heights over India along with a ridge over Arabia and central Iran is the common scenario. A significant finding is that the dust storms over Sistan are found to be associated with a pronounced increase of the anticyclone over the Caspian Sea, enhancing the west-to-east pressure gradient and, therefore, the blowing of Levar. Infrared Difference Dust Index values highlight the intensity of the Sistan dust storms, while the SPRINTARS model simulates the dust loading and concentration reasonably well, since the dust storms are usually associated with peaks in model

  20. Dust in Supernovae and Supernova Remnants II: Processing and Survival

    Science.gov (United States)

    Micelotta, E. R.; Matsuura, M.; Sarangi, A.

    2018-03-01

    Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.

  1. Occurrence of polycyclic aromatic hydrocarbons in dust emitted from circulating fluidized bed boilers.

    Science.gov (United States)

    Kozielska, B; Konieczyńiski, J

    2008-11-01

    Occurrence of polycyclic aromatic hydrocarbons (PAHs) in granulometric fractions of dust emitted from a hard coal fired circulating fluidized bed (CFB) boiler was investigated. The dust was sampled with the use of a Mark III impactor. In each fraction of dust, by using gas chromatography (GC), 16 selected PAHs and total PAHs were determined and the toxic equivalent B(a)P (TE B(a)P) was computed. The results, recalculated for the standard granulometric fractions, are presented as concentrations and content of the determined PAHs in dust. Distributions of PAHs and their profiles in the granulometric dust fractions were studied also. The PAHs in dust emitted from the CFB boiler were compared with those emitted from mechanical grate boilers; a distinctly lower content of PAHs was found in dust emitted from the former.

  2. Gas-dust-impact mass spectrometer

    CERN Document Server

    Semkin, N D; Myasnikov, S V; Pomelnikov, R A

    2002-01-01

    Paper describes design of a mass spectrometer to study element composition of micro meteorite and man-made particles in space. Paper describes a way to improve resolution of mass spectrometer based on variation of parameters of accelerating electric field in time. The advantage of the given design of mass spectrometer in comparison with similar ones is its large operating area and higher resolution at the comparable weight and dimensions. Application of a combined design both for particles and for gas enables to remove space vehicle degassing products from the spectrum and, thus, to improve reliability of the acquired information, as well as, to acquire information on a gas component of the external atmosphere of a space vehicle

  3. Paleo-dust insights onto dust-climate interactions

    Science.gov (United States)

    Albani, S.; Mahowald, N. M.

    2017-12-01

    Mineral dust emissions are affected by changing climate conditions, and in turn dust impacts the atmospheric radiation budget, clouds and biogeochemical cycles. Climate and public health dust-related issues call for attention on the fate of the dust cycle in the future, and the representation of the dust cycle is now part of the strategy of the Paleoclimate Modelling Intercomparison Project phase 4 and the Coupled Model Intercomparison Project phase 6 (PMIP4-CMIP6). Since mineral aerosols are one of the most important natural aerosols, understanding past dust responses to climate in the paleoclimate will allow us to better understand mineral aerosol feedbacks with climate and biogeochemistry in the Anthropocene. Modern observations and paleoclimate records offer the possibility of multiple, complementary views on the global dust cycle, and allow to validate and/or constrain the numerical representation of dust in climate and Earth system models. We present our results from a set of simulations with the Community Earth System Model for different climate states, including present and past climates such as the pre-industrial, the mid-Holocene and the Last Glacial Maximum. A set of simulations including a prognostic dust cycle was thoroughly compared with a wide set of present day observations from different platforms and regions, in order to realistically constrain the magnitude of dust load, surface concentration, deposition, optical properties, and particle size distributions. The magnitude of emissions for past climate regimes was constrained based on compilations of paleodust mass accumulation rates and size distributions, as well as based on information on dust provenance. The comparison with a parallel set of simulations without dust allows estimating the impacts of dust on surface climate. We analyze impacts of dust on the mean and variability of surface temperature and precipitation in each climate state, as well as the impacts that changing dust emissions had

  4. Dermatophagoides pteronyssinus (Trouessart, 1897) in mattress and floor dust in a temperate climate (Acari : Pyroglyphidae)

    NARCIS (Netherlands)

    Bronswijk, van J.E.M.H.

    1973-01-01

    The arthropod fauna of mattress dust, bedroom dust and living-room dust was sampled during a 1-year period in a center for asthmatic children (near Nijmegen, The Netherlands) with the aid of a vacuum cleaner, Berlese funnels and a flotation method. Dermatophagoides pteronyssinus was most abundant;

  5. Respirable dust measured downwind during rock dust application.

    Science.gov (United States)

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  6. Effects of dust accumulation and removal on radiator surfaces on Mars

    International Nuclear Information System (INIS)

    Gaier, J.R.; Perez-Davis, M.E.; Rutledge, S.K.; Hotes, D.; Olle, R.

    1991-01-01

    Tests were carried out to assess the impact of wind blown dust accumulation and abrasion on radiator surfaces on Mars. High emittance arc-textured copper (Cu) and niobium-1%-zirconium (Nb-1%Zr) samples were subjected to basaltic dust laden wind at Martian pressure (1000 Pa) at speeds varying from 19 to 97 m/s in the Martian Surface Wind Tunnel at NASA Ames Research Center. The effect of accumulated dust was also observed by pre-dusting some of the samples before the test. Radiator degradation was determined by measuring the change in the emittance after dust was deposited and/or removed. The principal mode of degradation was abrasion. Arc-textured Nb-1%Zr proved to be more susceptible to degradation than Cu, and pre-dusting appeared to have lessened the abrasion

  7. Formation of dust grains in the ejecta of SN 1987A

    International Nuclear Information System (INIS)

    Kozasa, Takashi; Hasegawa, Hiroichi; Nomoto, Kenichi

    1989-01-01

    Formation of dust grains in the ejecta of SN 1987A is investigated on the basis of a theory of homogeneous nucleation and grain growth. The formation of dust grains in the gas ejected from a heavy element-rich mantle is considered, including the effects of latent heat released during grain growth and of radiation from the photosphere. It is shown that dust grains can condense in the heavy-element-rich mantle, and that the time of formation strongly depends on the temperature structure in the ejecta. Moreover, the formation of dust grains is retarded by the strong SN radiation field and the effect of latent heat deposited during grain growth. 41 refs

  8. Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles

    Science.gov (United States)

    Wooden, D. H.

    2005-01-01

    Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.

  9. Electrodynamic Dust Shield for Space Applications

    Science.gov (United States)

    Mackey, Paul J.; Johansen, Michael R.; Olsen, Robert C.; Raines, Matthew G.; Phillips, James R., III; Cox, Rachel E.; Hogue, Michael D.; Pollard, Jacob R. S.; Calle, Carlos I.

    2016-01-01

    Dust mitigation technology has been highlighted by NASA and the International Space Exploration Coordination Group (ISECG) as a Global Exploration Roadmap (GER) critical technology need in order to reduce life cycle cost and risk, and increase the probability of mission success. The Electrostatics and Surface Physics Lab in Swamp Works at the Kennedy Space Center has developed an Electrodynamic Dust Shield (EDS) to remove dust from multiple surfaces, including glass shields and thermal radiators. Further development is underway to improve the operation and reliability of the EDS as well as to perform material and component testing outside of the International Space Station (ISS) on the Materials on International Space Station Experiment (MISSE). This experiment is designed to verify that the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the Moon.

  10. Infrared emission from dust in the Coma cluster of galaxies

    International Nuclear Information System (INIS)

    Dwek, E.; Rephaeli, Y.; Mather, J.C.

    1990-01-01

    Detailed calculations of the infrared emission from collisionally heated dust in the Coma cluster are presented. The proposed model includes continuous dust injection from galaxies, grain destruction by sputtering, and transient grain heating by the hot plasma. The computed infrared fluxes are in agreement with the upper limits obtained from the IRAS. The calculations, and constraints implied by the IRAS observations, suggest that the intracluster dust in the central region of the cluster must be significantly depleted compared to interstellar abundances. The observed visual extinction can therefore not be attributed to the presence of dust in that region. Extinction due to cluster galaxies or their haloes is ruled out as well. The only alternative explanation is that the extinction is caused by dust at great distances from the cluster center. 30 refs

  11. Dust extinction and X-ray emission from the starburst galaxy NGC 1482

    Science.gov (United States)

    Vagshette, N. D.; Pandge, M. B.; Pandey, S. K.; Patil, M. K.

    2012-07-01

    We present the results based on multiwavelength imaging observations of the prominent dust lane starburst galaxy NGC 1482 aimed to investigate the extinction properties of dust existing in the extreme environment. (B-V) colour-index map derived for the starburst galaxy NGC 1482 confirms two prominent dust lanes running along its optical major axis and are found to extend up to ˜11 kpc. In addition to the main lanes, several filamentary structures of dust originating from the central starburst are also evident. Though, the dust is surrounded by exotic environment, the average extinction curve derived for this target galaxy is compatible with the Galactic curve, with RV = 3.05, and imply that the dust grains responsible for the optical extinction in the target galaxy are not really different than the canonical grains in the Milky Way. Our estimate of total dust content of NGC 1482 assuming screening effect of dust is ˜2.7 × 105 M⊙, and provide lower limit due to the fact that our method is not sensitive to the intermix component of dust. Comparison of the observed dust in the galaxy with that supplied by the SNe to the ISM, imply that this supply is not sufficient to account for the observed dust and hence point towards the origin of dust in this galaxy through a merger like event. Our multiband imaging analysis reveals a qualitative physical correspondence between the morphologies of the dust and Hα emission lines as well as diffuse X-ray emission in this galaxy. Spatially resolved spectral analysis of the hot gas along outflows exhibit a gradient in the temperature. Similar gradient was also noticed in the measured values of metallicity, indicating that the gas in the halo is not yet enriched. High resolution, 2-8 keV Chandra image reveals a pair of point sources in the nuclear region with their luminosities equal to 2.27 × 1039 erg s-1 and 9.34 × 1039 erg s-1, and are in excess of the Eddington-limit of 1.5 M⊙ accreting source. Spectral analysis of these

  12. Impacts of Cosmic Dust on Planetary Atmospheres and Surfaces

    Science.gov (United States)

    Plane, John M. C.; Flynn, George J.; Määttänen, Anni; Moores, John E.; Poppe, Andrew R.; Carrillo-Sanchez, Juan Diego; Listowski, Constantino

    2018-02-01

    Recent advances in interplanetary dust modelling provide much improved estimates of the fluxes of cosmic dust particles into planetary (and lunar) atmospheres throughout the solar system. Combining the dust particle size and velocity distributions with new chemical ablation models enables the injection rates of individual elements to be predicted as a function of location and time. This information is essential for understanding a variety of atmospheric impacts, including: the formation of layers of metal atoms and ions; meteoric smoke particles and ice cloud nucleation; perturbations to atmospheric gas-phase chemistry; and the effects of the surface deposition of micrometeorites and cosmic spherules. There is discussion of impacts on all the planets, as well as on Pluto, Triton and Titan.

  13. Temporal and spatial characteristics of dust devils and their contribution to the aerosol budget in East Asia-An analysis using a new parameterization scheme for dust devils

    Science.gov (United States)

    Tang, Yaoguo; Han, Yongxiang; Liu, Zhaohuan

    2018-06-01

    Dust aerosols are the main aerosol components of the atmosphere that affect climate change, but the contribution of dust devils to the atmospheric dust aerosol budget is uncertain. In this study, a new parameterization scheme for dust devils was established and coupled with WRF-Chem, and the diurnal and monthly variations and the contribution of dust devils to the atmospheric dust aerosol budget in East Asia was simulated. The results show that 1) both the diurnal and monthly variations in dust devil emissions in East Asia had unimodal distributions, with peaks in the afternoon and the summer that were similar to the observations; 2) the simulated dust devils occurred frequently in deserts, including the Gobi. The distributed area and the intensity center of the dust devil moved from east to west during the day; 3) the ratio between the availability of convective buoyancy relative to the frictional dissipation was the main factor that limited the presence of dust devils. The position of the dust devil formation, the surface temperature, and the boundary layer height determined the dust devil intensity; 4) the contribution of dust devils to atmospheric dust aerosols determined in East Asia was 30.4 ± 13%, thereby suggesting that dust devils contribute significantly to the total amount of atmospheric dust aerosols. Although the new parameterization scheme for dust devils was rough, it was helpful for understanding the distribution of dust devils and their contribution to the dust aerosol budget.

  14. Simulation of thermal effectiveness under coal dust burning

    International Nuclear Information System (INIS)

    Korabejnikova, V.K.

    2001-01-01

    The simulation equation of polydisperse fuel (coal dust) torch combustion in the definite zones of burning cameras of stream generator and taking into account reactions in kinetic and diffusion areas at distinguishing temperatures of particles and gas are considered. (author)

  15. Iron: A Key Element for Understanding the Origin and Evolution of Interstellar Dust

    Science.gov (United States)

    Dwek, Eli

    2016-01-01

    The origin and depletion of iron differ from all other abundant refractory elements that make up the composition of the interstellar dust. Iron is primarily synthesized in Type Ia supernovae (SNe Ia) and in core collapse supernovae (CCSN), and is present in the outflows from AGB (Asymptotic Giant Branch) stars. Only the latter two are observed to be sources of interstellar dust, since searches for dust in SN Ia have provided strong evidence for the absence of any significant mass of dust in their ejecta. Consequently, more than 65 percent of the iron is injected into the ISM (Inter-Stellar Matter) in gaseous form. Yet, ultraviolet and X-ray observations along many lines of sight in the ISM show that iron is severely depleted in the gas phase compared to expected solar abundances. The missing iron, comprising about 90 percent of the total, is believed to be locked up in interstellar dust. This suggests that most of the missing iron must have precipitated from the ISM gas by cold accretion onto preexisting silicate, carbon, or composite grains. Iron is thus the only element that requires most of its growth to occur outside the traditional stellar condensation sources. This is a robust statement that does not depend on our evolving understanding of the dust destruction efficiency in the ISM. Reconciling the physical, optical, and chemical properties of such composite grains with their many observational manifestations is a major challenge for understanding the nature and origin of interstellar dust.

  16. Velocity limitation of a neutral dust cloud colliding with a magnetized plasma

    International Nuclear Information System (INIS)

    Lehnert, B.

    1986-08-01

    The problem is considered of a cloud of neutral dust which moves into a cloud of static plasma which is confined in a magnetic field. Earlier experiments and theoretical analysis on critical velocity limitation by plasma-wall interaction suggest that such limitation also arises in the case of plasma-neutral dust interaction. Nevertheless further analysis is required to provide a full and clear picture of the interaction between plasma and neutral gas on one hand and plasma and neutral dust on the other. (author)

  17. A detailed framework to incorporate dust in hydrodynamical simulations

    OpenAIRE

    Grassi, Tommaso; Bovino, S.; Haugbølle, Troels; Schleicher, Dominik R. G.

    2017-01-01

    Dust plays a key role in the evolution of the ISM and its correct modelling in numerical simulations is therefore fundamental. We present a new and self-consistent model that treats grain thermal coupling with the gas, radiation balance, and surface chemistry for molecular hydrogen. This method can be applied to any dust distribution with an arbitrary number of grain types without affecting the overall computational cost. In this paper we describe in detail the physics and the algorithm behin...

  18. Spatial distribution of dust in galaxies from the Integral field unit data

    Science.gov (United States)

    Zafar, Tayyaba; Sophie Dubber, Andrew Hopkins

    2018-01-01

    An important characteristic of the dust is it can be used as a tracer of stars (and gas) and tell us about the composition of galaxies. Sub-mm and infrared studies can accurately determine the total dust mass and its spatial distribution in massive, bright galaxies. However, faint and distant galaxies are hampered by resolution to dust spatial dust distribution. In the era of integral-field spectrographs (IFS), Balmer decrement is a useful quantity to infer the spatial extent of the dust in distant and low-mass galaxies. We conducted a study to estimate the spatial distribution of dust using the Sydney-Australian Astronomical Observatory (AAO) Multi-object Integral field spectrograph (SAMI) galaxies. Our methodology is unique to exploit the potential of IFS and using the spatial and spectral information together to study dust in galaxies of various morphological types. The spatial extent and content of dust are compared with the star-formation rate, reddening, and inclination of galaxies. We find a right correlation of dust spatial extent with the star-formation rate. The results also indicate a decrease in dust extent radius from Late Spirals to Early Spirals.

  19. Early Spring Dust over the Mediterranean Sea

    Science.gov (United States)

    2002-01-01

    The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) observed this large cloud of dust (brownish pixels) blowing from northern Africa across the Mediterranean Sea on March 4, 2002. The dust can be seen clearly blowing across Southern Italy, Albania, Greece, and Turkey-all along the Mediterranean's northeastern shoreline. Notice that there also appears to be human-made aerosol pollution (greyish pixels) pooling in the air just south of the Italian Alps and blowing southeastward over the Adriatic Sea. The Alps can be easily identified as the crescent-shaped, snow-capped mountain range in the top center of this true-color scene. There also appears to be a similar haze over Austria, Hungary, and Yugoslavia to the north and east of Italy. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  20. Estimating dust production rate of carbon-rich stars in the Small Magellanic Cloud

    Science.gov (United States)

    Nanni, A.; Marigo, P.; Groenewegen, M. A. T.; Aringer, B.; Pastorelli, G.; Rubele, S.; Girardi, L.; Bressan, A.; Bladh, S.

    We compute a grid of spectra describing dusty Circumstellar Envelopes of Thermally Pulsing Asymptotic Giant Branch carbon-rich stars by employing a physically grounded description for dust growth. The optical constants for carbon dust have been selected in order to reproduce simultaneously the most important color-color diagrams in the Near and Mid Infrared bands. We fit the Spectral Energy Distribution of ≈2000 carbon-rich in the Small Magellanic Cloud and we compute their total dust production rate. We compare our results with the ones in the literature. Different choices of the dust-to-gas ratio and outflow expansion velocity adopted in different works, yield, in some cases, a total dust budget about three times lower than the one derived from our scheme, with the same optical data set for carbon dust.

  1. Trajectory Calculation as Forecasting Support Tool for Dust Storms

    Directory of Open Access Journals (Sweden)

    Sultan Al-Yahyai

    2014-01-01

    Full Text Available In arid and semiarid regions, dust storms are common during windy seasons. Strong wind can blow loose sand from the dry surface. The rising sand and dust is then transported to other places depending on the wind conditions (speed and direction at different levels of the atmosphere. Considering dust as a moving object in space and time, trajectory calculation then can be used to determine the path it will follow. Trajectory calculation is used as a forecast supporting tool for both operational and research activities. Predefined dust sources can be identified and the trajectories can be precalculated from the Numerical Weather Prediction (NWP forecast. In case of long distance transported dust, the tool should allow the operational forecaster to perform online trajectory calculation. This paper presents a case study for using trajectory calculation based on NWP models as a forecast supporting tool in Oman Meteorological Service during some dust storm events. Case study validation results showed a good agreement between the calculated trajectories and the real transport path of the dust storms and hence trajectory calculation can be used at operational centers for warning purposes.

  2. Application of ESP for gas cleaning in cement industry--with reference to India.

    Science.gov (United States)

    Bapat, J D

    2001-02-16

    Electrostatic precipitators (ESP) are used for gas cleaning in almost every section of cement manufacture. Application of ESP is studied, keeping in view Indian conditions. The characterisation of dust emissions has been done for different units, such as rotary kiln and raw mill, alkali by-pass, clinker cooler, cement and coal mill, in terms of exit gas quantity, temperature, dew point, dust content and particle size. It is seen that all these characteristics have a wide range of variance. The ESP system must effectively deal with these variations. The fundamental analytical expression governing the performance of ESP, i.e. the Deutsch equation, and that for particle migration velocity, were analysed to predict the effect of major operating parameters, namely particle size, temperature and applied voltage. Whereas the migration velocity (and the efficiency) varies directly with the particle size, it is proportional to the square and square root of applied voltage and absolute temperature of the gas, respectively. The increase in efficiency due to temperature is not seen in dc based ESP, perhaps due to more pronounced negative effect on the applied voltage due to the increase in dust resistivity at higher temperatures. The effect of gas and dust characteristics on the collection efficiency of ESP, as seen in the industrial practice, is summarised. Some main process and design improvements effectively dealing with the problem of gas and dust characteristics have been discussed. These are gas conditioning, pulse energization, ESP-fabric filter (FF) combination, improved horizontal flow as well as open top ESP.Generally, gas conditioning entails higher operating and maintenance costs. Pulse energization allows the use of hot gas, besides reducing the dust emission and power consumption. The improved horizontal flow ESP has been successfully used in coal dust cleaning. The open top or vertical flow ESP has a limitation on collection efficiency as it provides for only

  3. ANALYSIS OF SOIL AND DUST SAMPLES FOR POLYCHLORINATED BIPHENYLS BY ENZYME LINKED IMMUNOSORBENT ASSAY (ELISA)

    Science.gov (United States)

    An inhibition enzyme-linked immunosorbent assay (ELISA) was used to determine polychlorinated biphenyls (PCBs) in house dust and soil. Soil and house dust samples were analyzed for PCB by both gas chromatography/electron capture detection (GC/ECD) and ELISA methods. A correlati...

  4. Optimization of Photovoltaic Performance Through the Integration of Electrodynamic Dust Shield Layers

    Science.gov (United States)

    Nason, Steven; Davis, Kris; Hickman, Nicoleta; McFall, Judith; Arens, Ellen; Calle, Carlos

    2009-01-01

    The viability of photovoltaics on the Lunar and Martian surfaces may be determined by their ability to withstand significant degradation in the Lunar and Martian environments. One of the greatest threats is posed by fine dust particles which are continually blown about the surfaces. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted outdoors and in the Moon and Mars environmental chamber at the Florida Solar Energy Center. Electrodynamic dust shield prototypes based on the electric curtain concept have been developed by our collaborators at the Kennedy Space Center [1]. These thin film layers can remove dust from surfaces and prevent dust accumulation. Several types of dust shields were designed, built and tested under high vacuum conditions and simulated lunar gravity to validate the technology for lunar exploration applications. Gallium arsenide, single crystal and polycrystalline silicon photovoltaic integrated devices were designed, built and tested under Moon and Mars environmental conditions as well as under ambient conditions. Photovoltaic efficiency measurements were performed on each individual cell with the following configurations; without an encapsulation layer, with a glass covering, and with various thin film dust shields. It was found that the PV efficiency of the hybrid systems was unaffected by these various thin film dust shields, proving that the optical transmission of light through the device is virtually uninhibited by these layers. The future goal of this project is to incorporate a photovoltaic cell as the power source for the electrodynamic dust shield system, and experimentally show the effective removal of dust obstructing any light incident on the cell, thus insuring power production is maximized over time.

  5. An anomalous extinction law in the Cep OB3b young cluster: Evidence for dust processing during gas dispersal

    International Nuclear Information System (INIS)

    Allen, Thomas S.; Prchlik, Jakub J.; Megeath, S. Thomas; Gutermuth, Robert A.; Pipher, Judith L.; Naylor, Tim; Jeffries, R. D.

    2014-01-01

    We determine the extinction law through Cep OB3b, a young cluster of 3000 stars undergoing gas dispersal. The extinction is measured toward 76 background K giants identified with MMT/Hectospec spectra. Color excess ratios were determined toward each of the giants using V and R photometry from the literature, g, r, i, and z photometry from the Sloan Digital Sky Survey and J, H, and K s photometry from the Two Micron All Sky Survey. These color excess ratios were then used to construct the extinction law through the dusty material associated with Cep OB3b. The extinction law through Cep OB3b is intermediate between the R V = 3.1 and R V = 5 laws commonly used for the diffuse atomic interstellar medium and dense molecular clouds, respectively. The dependence of the extinction law on line-of-sight A V is investigated and we find the extinction law becomes shallower for regions with A V > 2.5 mag. We speculate that the intermediate dust law results from dust processing during the dispersal of the molecular cloud by the cluster.

  6. An anomalous extinction law in the Cep OB3b young cluster: Evidence for dust processing during gas dispersal

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Thomas S.; Prchlik, Jakub J.; Megeath, S. Thomas [University of Toledo, Ritter Astrophysical Observatory, Department of Physics and Astronomy, Toledo, OH 43606 (United States); Gutermuth, Robert A. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Pipher, Judith L. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Naylor, Tim [School of Physics, University of Exeter, Exeter, UK EX4 4QL (United Kingdom); Jeffries, R. D. [Astrophysics Group, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, UK ST5 5BG (United Kingdom)

    2014-05-10

    We determine the extinction law through Cep OB3b, a young cluster of 3000 stars undergoing gas dispersal. The extinction is measured toward 76 background K giants identified with MMT/Hectospec spectra. Color excess ratios were determined toward each of the giants using V and R photometry from the literature, g, r, i, and z photometry from the Sloan Digital Sky Survey and J, H, and K{sub s} photometry from the Two Micron All Sky Survey. These color excess ratios were then used to construct the extinction law through the dusty material associated with Cep OB3b. The extinction law through Cep OB3b is intermediate between the R{sub V} = 3.1 and R{sub V} = 5 laws commonly used for the diffuse atomic interstellar medium and dense molecular clouds, respectively. The dependence of the extinction law on line-of-sight A{sub V} is investigated and we find the extinction law becomes shallower for regions with A{sub V} > 2.5 mag. We speculate that the intermediate dust law results from dust processing during the dispersal of the molecular cloud by the cluster.

  7. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s −1 for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM

  8. On the Gas Content and Efficiency of AGN Feedback in Low-redshift Quasars

    Science.gov (United States)

    Shangguan, Jinyi; Ho, Luis C.; Xie, Yanxia

    2018-02-01

    The interstellar medium is crucial to understanding the physics of active galaxies and the coevolution between supermassive black holes and their host galaxies. However, direct gas measurements are limited by sensitivity and other uncertainties. Dust provides an efficient indirect probe of the total gas. We apply this technique to a large sample of quasars, whose total gas content would be prohibitively expensive to measure. We present a comprehensive study of the full (1 to 500 μm) infrared spectral energy distributions of 87 redshift 2MASS, WISE, and Herschel, combined with Spitzer mid-infrared (5–40 μm) spectra. With a newly developed Bayesian Markov Chain Monte Carlo fitting method, we decompose various overlapping contributions to the integrated spectral energy distribution, including starlight, warm dust from the torus, and cooler dust on galaxy scales. This procedure yields a robust dust mass, which we use to infer the gas mass, using a gas-to-dust ratio constrained by the host galaxy stellar mass. Most (90%) quasar hosts have gas fractions similar to those of massive, star-forming galaxies, although a minority (10%) seem genuinely gas-deficient, resembling present-day massive early-type galaxies. This result indicates that “quasar mode” feedback does not occur or is ineffective in the host galaxies of low-redshift quasars. We also find that quasars can boost the interstellar radiation field and heat dust on galactic scales. This cautions against the common practice of using the far-infrared luminosity to estimate the host galaxy star formation rate.

  9. IR-dust observations of Comet Tempel 2 with CRAF VIMS

    International Nuclear Information System (INIS)

    Combi, M.R.; McCord, T.B.; Bell, J.F.; Brown, R.H.; Clark, R.N.; Cruikshank, D.P.; Johnson, T.V.; Lebofsky, L.A.; Matson, D.L.

    1988-01-01

    Measurement strategies are now being planned for using the Visual and Infrared Mapping Spectrometer (VIMS) to observe the asteroid Hestia, and the nucleus, and the gas and dust in the coma of comet P/Tempel 2 as part of the Comet Rendezvous Asteroid Flyby (CRAF) mission. The spectral range of VIMS will cover wavelengths from 0.35 to 5.2 micrometers, with a spectral resolution of 11 nm from 0.35 to 2.4 micrometers and of 22 nm from 2.4 to 5.2 micrometers. The instantaneous field of view (IFOV) provided by the foreoptics is 0.5 milliradians, and the current design of the instrument provides for a scanning secondary mirror which will scan a swath of length 72 IFOVs. The CRAF high resolution scan platform motion will permit slewing VIMS in a direction perpendicular to the swath. This enables the building of a two dimensional image in any or all wavelength channels. Important measurements of the dust coma will include the onset of early coma activity, the mapping of gas and dust jets and correlations with active nucleus areas, observations of the dust coma from various scattering phase angles, coverage of the low wavelength portion of the thermal radiation, and the 3.4 micrometer hydrocarbon emission. A description of the VIMS instrument is presented

  10. Molecular Gas Feeding the Circumnuclear Disk of the Galactic Center

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Pei-Ying; Koch, Patrick M.; Ho, Paul T. P.; Tang, Ya-Wen [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Kim, Woong-Tae [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Wang, Hsiang-Hsu [Department of Physics and Institute of Theoretical Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Yen, Hsi-Wei [European Southern Observatory (ESO), Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Hwang, Chorng-Yuan, E-mail: pyhsieh@asiaa.sinica.edu.tw [Institute of Astronomy, National Central University, No.300, Jhongda Road, Jhongli City, Taoyuan County 32001, Taiwan (China)

    2017-09-20

    The interaction between a supermassive black hole (SMBH) and the surrounding material is of primary importance in modern astrophysics. The detection of the molecular 2 pc circumnuclear disk (CND) immediately around the Milky Way SMBH, SgrA*, provides a unique opportunity to study SMBH accretion at subparsec scales. Our new wide-field CS( J = 2 − 1) map toward the Galactic center (GC) reveals multiple dense molecular streamers that originated from the ambient clouds 20 pc further out, and that are connected to the central 2 pc of the CND. These dense gas streamers appear to carry gas directly toward the nuclear region and might be captured by the central potential. Our phase-plot analysis indicates that these streamers show a signature of rotation and inward radial motion with progressively higher velocities as the gas approaches the CND and finally ends up corotating with the CND. Our results might suggest a possible mechanism of gas feeding the CND from 20 pc around 2 pc in the GC. In this paper, we discuss the morphology and the kinematics of these streamers. As the nearest observable Galactic nucleus, this feeding process may have implications for understanding the processes in extragalactic nuclei.

  11. PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

    Science.gov (United States)

    Tacconi, L. J.; Genzel, R.; Saintonge, A.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; Contini, T.; Förster Schreiber, N. M.; Lilly, S.; Lutz, D.; Wuyts, S.; Accurso, G.; Boissier, J.; Boone, F.; Bouché, N.; Bournaud, F.; Burkert, A.; Carollo, M.; Cooper, M.; Cox, P.; Feruglio, C.; Freundlich, J.; Herrera-Camus, R.; Juneau, S.; Lippa, M.; Naab, T.; Renzini, A.; Salome, P.; Sternberg, A.; Tadaki, K.; Übler, H.; Walter, F.; Weiner, B.; Weiss, A.

    2018-02-01

    This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M */M ⊙) = 9.0–11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10‑1.3 to 102.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z)‑0.6 × (δMS)‑0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (1+z{)}2.5× {(δ {MS})}0.52× {({M}* )}-0.36, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z. Based on observations of an IRAM Legacy Program carried out with the NOEMA, operated by the Institute for Radio Astronomy in the Millimetre Range (IRAM), which is funded by a partnership of INSU/CNRS (France), MPG (Germany), and IGN (Spain).

  12. Comet Dust After Deep Impact

    Science.gov (United States)

    Wooden, Diane H.; Harker, David E.; Woodward, Charles E.

    2006-01-01

    When the Deep Impact Mission hit Jupiter Family comet 9P/Tempel 1, an ejecta crater was formed and an pocket of volatile gases and ices from 10-30 m below the surface was exposed (A Hearn et aI. 2005). This resulted in a gas geyser that persisted for a few hours (Sugita et al, 2005). The gas geyser pushed dust grains into the coma (Sugita et a1. 2005), as well as ice grains (Schulz et al. 2006). The smaller of the dust grains were submicron in radii (0-25.3 micron), and were primarily composed of highly refractory minerals including amorphous (non-graphitic) carbon, and silicate minerals including amorphous (disordered) olivine (Fe,Mg)2SiO4 and pyroxene (Fe,Mg)SiO3 and crystalline Mg-rich olivine. The smaller grains moved faster, as expected from the size-dependent velocity law produced by gas-drag on grains. The mineralogy evolved with time: progressively larger grains persisted in the near nuclear region, having been imparted with slower velocities, and the mineralogies of these larger grains appeared simpler and without crystals. The smaller 0.2-0.3 micron grains reached the coma in about 1.5 hours (1 arc sec = 740 km), were more diverse in mineralogy than the larger grains and contained crystals, and appeared to travel through the coma together. No smaller grains appeared at larger coma distances later (with slower velocities), implying that if grain fragmentation occurred, it happened within the gas acceleration zone. These results of the high spatial resolution spectroscopy (GEMINI+Michelle: Harker et 4. 2005, 2006; Subaru+COMICS: Sugita et al. 2005) revealed that the grains released from the interior were different from the nominally active areas of this comet by their: (a) crystalline content, (b) smaller size, (c) more diverse mineralogy. The temporal changes in the spectra, recorded by GEMIM+Michelle every 7 minutes, indicated that the dust mineralogy is inhomogeneous and, unexpectedly, the portion of the size distribution dominated by smaller grains has

  13. Iron and Silicate Dust Growth in the Galactic Interstellar Medium: Clues from Element Depletions

    Science.gov (United States)

    Zhukovska, Svitlana; Henning, Thomas; Dobbs, Clare

    2018-04-01

    The interstellar abundances of refractory elements indicate a substantial depletion from the gas phase, which increases with gas density. Our recent model of dust evolution, based on hydrodynamic simulations of the life cycle of giant molecular clouds (GMCs), proves that the observed trend for [Sigas/H] is driven by a combination of dust growth by accretion in the cold diffuse interstellar medium (ISM) and efficient destruction by supernova (SN) shocks. With an analytic model of dust evolution, we demonstrate that even with optimistic assumptions for the dust input from stars and without destruction of grains by SNe it is impossible to match the observed [Sigas/H]–n H relation without growth in the ISM. We extend the framework developed in our previous work for silicates to include the evolution of iron grains and address a long-standing conundrum: “Where is the interstellar iron?” Much higher depletion of Fe in the warm neutral medium compared to Si is reproduced by the models, in which a large fraction of interstellar iron (70%) is locked as inclusions in silicate grains, where it is protected from efficient sputtering by SN shocks. The slope of the observed [Fegas/H]–n H relation is reproduced if the remaining depleted iron resides in a population of metallic iron nanoparticles with sizes in the range of 1–10 nm. Enhanced collision rates due to the Coulomb focusing are important for both silicate and iron dust models to match the slopes of the observed depletion–density relations and the magnitudes of depletion at high gas density.

  14. Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes

    Science.gov (United States)

    Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun

    2017-10-01

    Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.

  15. Mass loss from OH/IR stars - Models for the infrared emission of circumstellar dust shells

    Science.gov (United States)

    Justtanont, K.; Tielens, A. G. G. M.

    1992-01-01

    The IR emission of a sample of 24 OH/IR stars is modeled, and the properties of circumstellar dust and mass-loss rate of the central star are derived. It is shown that for some sources the observations of the far-IR emission is well fitted with a lambda exp -1 law, while some have a steeper index of 1.5. For a few sources, the presence of circumstellar ice grains is inferred from detailed studies of the observed 10-micron feature. Dust mass-loss rates are determined from detailed studies for all the stars in this sample. They range from 6.0 x 10 exp -10 solar mass/yr for an optically visible Mira to 2.2 x 10 exp -6 solar mass/yr for a heavily obscured OH/IR star. These dust mass-loss rates are compared to those calculated from IRAS photometry using 12-, 25-, and 60-micron fluxes. The dust mass-loss rates are also compared to gas mass-loss rates determined from OH and CO observations. For stars with tenuous shells, a dust-to-gas ratio of 0.001 is obtained.

  16. Dynamics of small dust clouds trapped in a magnetized anodic plasma

    International Nuclear Information System (INIS)

    Pilch, Iris; Piel, Alexander; Trottenberg, Thomas; Koepke, Mark E.

    2007-01-01

    Small dust clouds, which are confined in an anodic plasma, are studied with respect to their structure and their response to modulation of the anode bias. The dust cloud is displaced from the center of the discharge by a process similar to the void mechanism in radio-frequency discharges under microgravity. The top layers of the dust cloud are in a crystalline state and the cloud performs a slow rotation about the magnetic field direction. For modulation frequencies below 15 Hz, a sloshing and stretching motion in the confining potential well is found. Spontaneously excited dust density waves are observed when the dust cloud exceeds a minimum size. The waves are characterized by sickle-shaped wave fronts. No standing waves were found. The wave dispersion shows an influence of the boundedness of the system in terms of a frequency cutoff

  17. PROBING EXTRAGALACTIC DUST THROUGH NEARBY GAMMA-RAY BURST AFTERGLOWS

    International Nuclear Information System (INIS)

    Liang, S. L.; Li Aigen

    2010-01-01

    The quantities and wavelength dependencies of the dust extinction along the lines of sight toward 33 nearby gamma-ray bursts (GRBs) with redshifts z V derived from the Drude approach is generally larger by a factor of ∼2-5 than that inferred by assuming a SMC-type template extinction law. Consistent with previous studies, the extinction-to-gas ratio is mostly smaller than that of the MW, and does not seem to correlate with the shape of the extinction curve. It is shown that the standard silicate-graphite interstellar grain model closely reproduces the extinction curves of all 33 GRBs host galaxies. For these 33 bursts at z < 2, we find no evidence for the evolution of the dust extinction, dust sizes, and relative abundances of silicate to graphite on redshifts.

  18. Estimation of Graphite Dust Production in ITER TBM

    International Nuclear Information System (INIS)

    Kang, Ji Ho; Kim, Eung Seon

    2013-01-01

    This scheme uses simple equations and the calculation time is much less than others. However, the contact equation requires a specially tuned material properties and instability of system matrix were reported. Second, only a couple of pebbles were modeled using FEM(Finite Element Method) and appropriate boundary and loading conditions are imposed. This scheme gives a detailed information of stress distribution of the pebbles and the stability of calculation is well established. However, the calculation cost is fairly high and only a few pebble can be analyzed in detail at a time with specifically assigned contact conditions. In this study, a prediction model of graphite dust production in ITER(International Thermonuclear Experimental Reactor) TBM(Test Blanket Module) using FEM was introduced and the amount of dust production for an operation cycle was estimated. In this study, graphite dust generation in the reflector zone of ITER TBM was estimated using FE analysis. A unit-cell model was defined to simulate normal contact forces and slip distances on contact points between the center pebble and the surrounding pebbles. The dust production was calculated using Archard equation. The simulation was repeated with different friction coefficient of graphite material to investigate the effect of friction on the dust production. The calculation result showed that the amount of dust production was 2.22∼3.67e-4 g/m 3 which was almost linearly proportional to the friction coefficient of graphite material. The amount of graphite dust production was considered too much small for a dust explosion

  19. The Mars Dust Cycle: Investigating the Effects of Radiatively Active Water Ice Clouds on Surface Stresses and Dust Lifting Potential with the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Kahre, Melinda A.; Hollingsworth, Jeffery

    2012-01-01

    The dust cycle is a critically important component of Mars' current climate system. Dust is present in the atmosphere of Mars year-round but the dust loading varies with season in a generally repeatable manner. Dust has a significant influence on the thermal structure of the atmosphere and thus greatly affects atmospheric circulation. The dust cycle is the most difficult of the three climate cycles (CO2, water, and dust) to model realistically with general circulation models. Until recently, numerical modeling investigations of the dust cycle have typically not included the effects of couplings to the water cycle through cloud formation. In the Martian atmosphere, dust particles likely provide the seed nuclei for heterogeneous nucleation of water ice clouds. As ice coats atmospheric dust grains, the newly formed cloud particles exhibit different physical and radiative characteristics. Thus, the coupling between the dust and water cycles likely affects the distributions of dust, water vapor and water ice, and thus atmospheric heating and cooling and the resulting circulations. We use the NASA Ames Mars GCM to investigate the effects of radiatively active water ice clouds on surface stress and the potential for dust lifting. The model includes a state-of-the-art water ice cloud microphysics package and a radiative transfer scheme that accounts for the radiative effects of CO2 gas, dust, and water ice clouds. We focus on simulations that are radiatively forced by a prescribed dust map, and we compare simulations that do and do not include radiatively active clouds. Preliminary results suggest that the magnitude and spatial patterns of surface stress (and thus dust lifting potential) are substantial influenced by the radiative effects of water ice clouds.

  20. Dust Separation and Measurement System for Mars ISRU Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has recognized that in future exploration and human missions to Mars, the problem of Martian dust contaminating gas processing systems and human habitats will...

  1. DustEM: Dust extinction and emission modelling

    Science.gov (United States)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  2. Paracas dust storms: Sources, trajectories and associated meteorological conditions

    Science.gov (United States)

    Briceño-Zuluaga, F.; Castagna, A.; Rutllant, J. A.; Flores-Aqueveque, V.; Caquineau, S.; Sifeddine, A.; Velazco, F.; Gutierrez, D.; Cardich, J.

    2017-09-01

    Dust storms that develop along the Pisco-Ica desert in Southern Peru, locally known as ;Paracas; winds have ecological, health and economic repercussions. Here we identify dust sources through MODIS (Moderate Resolution Imaging Spectroradiometer) imagery and analyze HYSPLIT (Hybrid Single Particles Lagrangian Integrated Trajectory) model trajectories and dispersion patterns, along with concomitant synoptic-scale meteorological conditions from National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis (NCEP/NCAR). Additionally, surface pressure data from the hourly METeorological Aerodrome Report (METAR) at Arica (18.5°S, 70.3°W) and Pisco (13.7°S, 76.2°W) were used to calculate Alongshore (sea-level) Pressure Gradient (APG) anomalies during Paracas dust storms, their duration and associated wind-speeds and wind directions. This study provides a review on the occurrence and strength of the Paracas dust storms as reported in the Pisco airfield for five-year period and their correspondence with MODIS true-color imagery in terms of dust-emission source areas. Our results show that most of the particle fluxes moving into the Ica-Pisco desert area during Paracas wind events originate over the coastal zone, where strong winds forced by steep APGs develop as the axis of a deep mid-troposphere trough sets in along north-central Chile. Direct relationships between Paracas wind intensity, number of active dust-emission sources and APGs are also documented, although the scarcity of simultaneous METAR/MODIS data for clearly observed MODIS dust plumes prevents any significant statistical inference. Synoptic-scale meteorological composites from NCEP/NCAR reanalysis data show that Paracas wind events (steep APGs) are mostly associated with the strengthening of anticyclonic conditions in northern Chile, that can be attributed to cold air advection associated with the incoming trough. Compared to the MODIS images, HYSPLIT outputs were able

  3. Positive response of Indian summer rainfall to Middle East dust

    KAUST Repository

    Jin, Qinjian

    2014-06-02

    Using observational and reanalyses data, we investigated the impact of dust aerosols over the Middle East and the Arabian Sea (AS) on the Indian summer monsoon (ISM) rainfall. Satellite and aerosol reanalysis data show extremely heavy aerosol loading, mainly mineral dust, over the Middle East and AS during the ISM season. Multivariate empirical orthogonal function analyses suggest an aerosol-monsoon connection. This connection may be attributed to dust-induced atmospheric heating centered over the Iranian Plateau (IP), which enhances the meridional thermal contrast and strengthens the ISM circulation and rainfall. The enhanced circulation further transports more dust to the AS and IP, heating the atmosphere (positive feedback). The aerosols over the AS and the Arabian Peninsula have a significant correlation with rainfall over central and eastern India about 2 weeks later. This finding highlights the nonlocal radiative effect of dust on the ISM circulation and rainfall and may improve ISM rainfall forecasts. © 2014. American Geophysical Union. All Rights Reserved.

  4. Positive response of Indian summer rainfall to Middle East dust

    KAUST Repository

    Jin, Qinjian; Wei, Jiangfeng; Yang, Zong-Liang

    2014-01-01

    Using observational and reanalyses data, we investigated the impact of dust aerosols over the Middle East and the Arabian Sea (AS) on the Indian summer monsoon (ISM) rainfall. Satellite and aerosol reanalysis data show extremely heavy aerosol loading, mainly mineral dust, over the Middle East and AS during the ISM season. Multivariate empirical orthogonal function analyses suggest an aerosol-monsoon connection. This connection may be attributed to dust-induced atmospheric heating centered over the Iranian Plateau (IP), which enhances the meridional thermal contrast and strengthens the ISM circulation and rainfall. The enhanced circulation further transports more dust to the AS and IP, heating the atmosphere (positive feedback). The aerosols over the AS and the Arabian Peninsula have a significant correlation with rainfall over central and eastern India about 2 weeks later. This finding highlights the nonlocal radiative effect of dust on the ISM circulation and rainfall and may improve ISM rainfall forecasts. © 2014. American Geophysical Union. All Rights Reserved.

  5. Electrostatic Dust Detection and Removal for ITER

    International Nuclear Information System (INIS)

    C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner

    2008-01-01

    We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 (micro)m spacing is biased to 30-50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm 2 with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations

  6. Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA

    International Nuclear Information System (INIS)

    Grabda, Mariusz; Oleszek, Sylwia; Shibata, Etsuro; Nakamura, Takashi

    2014-01-01

    Highlights: • Thermal treatment of EAF dust with TBBPADGE (a constituent of epoxy resins). • High reactivity of evolved HBr gas with Zn (ZnO, ZnFe 2 O 4 ) and Pb present in EAFD. • High separation of Zn, Pb from Fe-rich residue by a bromination–evaporation process. • Complete evaporation of the formed metallic bromides from the residue at 550 °C. - Abstract: In the present work we investigated the fates of zinc, lead, and iron present in electric arc furnace dust during thermal treatment of the dust with tetrabromobisphenol A (TBBPA) and tetrabromobisphenol A diglycidyl ether (TBBPADGE). Mixtures of these materials were compressed into pellets and heated in a laboratory-scale furnace at 550 °C for 80 min, under oxidizing and inert conditions. The solid, condensed, and gaseous-phase products were characterized using an array of analytical methods: scanning electron microscopy, X-ray diffraction, electron probe microscopy, inductively coupled plasma, ion chromatography, and gas chromatography. The results indicated that heating the mixtures under specific conditions enabled high separation of zinc and lead from iron-rich residues, by a bromination–evaporation process. In the case of TBBPADGE, a maximum of 85% of zinc and 81% of lead were effectively separated under the above conditions. The process is based on the reaction between the highly reactive HBr gas evolved during thermal degradation of the flame-retarded materials with zinc (ZnO and ZnFe 2 O 4 ) and lead in the dust, followed by complete evaporation of the formed metallic bromides from the solid residue

  7. Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA

    Energy Technology Data Exchange (ETDEWEB)

    Grabda, Mariusz, E-mail: mariusz@mail.tagen.tohoku.ac.jp [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Aoba-ku, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, M. Sklodowska-Curie 34, 41-819 Zabrze (Poland); Oleszek, Sylwia [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Aoba-ku, Sendai 980-8577 (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, M. Sklodowska-Curie 34, 41-819 Zabrze (Poland); Shibata, Etsuro; Nakamura, Takashi [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 1,1 Katahira, 2-Chome, Aoba-ku, Sendai 980-8577 (Japan)

    2014-08-15

    Highlights: • Thermal treatment of EAF dust with TBBPADGE (a constituent of epoxy resins). • High reactivity of evolved HBr gas with Zn (ZnO, ZnFe{sub 2}O{sub 4}) and Pb present in EAFD. • High separation of Zn, Pb from Fe-rich residue by a bromination–evaporation process. • Complete evaporation of the formed metallic bromides from the residue at 550 °C. - Abstract: In the present work we investigated the fates of zinc, lead, and iron present in electric arc furnace dust during thermal treatment of the dust with tetrabromobisphenol A (TBBPA) and tetrabromobisphenol A diglycidyl ether (TBBPADGE). Mixtures of these materials were compressed into pellets and heated in a laboratory-scale furnace at 550 °C for 80 min, under oxidizing and inert conditions. The solid, condensed, and gaseous-phase products were characterized using an array of analytical methods: scanning electron microscopy, X-ray diffraction, electron probe microscopy, inductively coupled plasma, ion chromatography, and gas chromatography. The results indicated that heating the mixtures under specific conditions enabled high separation of zinc and lead from iron-rich residues, by a bromination–evaporation process. In the case of TBBPADGE, a maximum of 85% of zinc and 81% of lead were effectively separated under the above conditions. The process is based on the reaction between the highly reactive HBr gas evolved during thermal degradation of the flame-retarded materials with zinc (ZnO and ZnFe{sub 2}O{sub 4}) and lead in the dust, followed by complete evaporation of the formed metallic bromides from the solid residue.

  8. Comparative study of the characteristics of some suction devices for gas sampling applications

    International Nuclear Information System (INIS)

    Donguy, R.; Drouet, J.

    1959-06-01

    Gas sampling (used to determine the characteristics of dusts or aerosols contained in a gas) needs a suction device. In order to select the right device and the right conditions of use, the characteristics and performances of various suction devices (helicoidal and centrifugal aspirators, air pumps, volumetric pumps) have been experimentally measured: flow rate, head loss, sampling volume and duration, aerosol and dust concentration, gas density, nature of the gas, suction circuit configuration, etc

  9. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    Science.gov (United States)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  10. Gathering dust: A galaxy-wide study of dust emission from cloud complexes in NGC 300

    Science.gov (United States)

    Riener, M.; Faesi, C. M.; Forbrich, J.; Lada, C. J.

    2018-05-01

    Aims: We use multi-band observations by the Herschel Space Observatory to study the dust emission properties of the nearby spiral galaxy NGC 300. We compile a first catalogue of the population of giant dust clouds (GDCs) in NGC 300, including temperature and mass estimates, and give an estimate of the total dust mass of the galaxy. Methods: We carried out source detection with the multiwavelength source extraction algorithm getsources. We calculated physical properties, including mass and temperature, of the GDCs from five-band Herschel PACS and SPIRE observations from 100 to 500 μm; the final size and mass estimates are based on the observations at 250 μm that have an effective spatial resolution of 170 pc. We correlated our final catalogue of GDCs to pre-existing catalogues of HII regions to infer the number of GDCs associated with high-mass star formation and determined the Hα emission of the GDCs. Results: Our final catalogue of GDCs includes 146 sources, 90 of which are associated with known HII regions. We find that the dust masses of the GDCs are completely dominated by the cold dust component and range from 1.1 × 103 to 1.4 × 104 M⊙. The GDCs have effective temperatures of 13-23 K and show a distinct cold dust effective temperature gradient from the centre towards the outer parts of the stellar disk. We find that the population of GDCs in our catalogue constitutes 16% of the total dust mass of NGC 300, which we estimate to be about 5.4 × 106 M⊙. At least about 87% of our GDCs have a high enough average dust mass surface density to provide sufficient shielding to harbour molecular clouds. We compare our results to previous pointed molecular gas observations in NGC 300 and results from other nearby galaxies and also conclude that it is very likely that most of our GDCs are associated with complexes of giant molecular clouds. The catalogue is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http

  11. Lack of dust in quasar absorption line systems

    International Nuclear Information System (INIS)

    Jura, M.

    1977-01-01

    It is stated that the origin of absorption line systems in quasars is still uncertain. Most such systems apparently have atomic hydrogen column densities of the order of 10 19 /cm 2 , but at least two quasars, 1331 + 170 and PHL957, have such strong Lyman α absorption lines that atomic hydrogen column densities of the order of 10 21 /cm 2 are indicated. It should be possible to observe the dust produced 2,200 A extinction feature as it is red shifted into the visible, and to determine whether absorption line systems are produced in spiral galaxies where the dust content is similar to that in the interstellar medium. It has been argued that the emission line regions of quasars generally lack dust and that towards PHL957 the 2,200 A feature is absent. The present author argues that dust similar to that found in the interstellar medium is not found towards the quasars 1331 + 170 and PHL957. This could explain why H 2 is not found towards PHL957, and it indicates that the absorption line systems in quasars are not produced in spiral galaxies similar to our own. It seems from the analysis presented that the dust-to-gas ratio towards 1331 + 170 is at least a factor of 20 less than in the interstellar medium, and there is no reason to suppose that this lack of dust results from a lack of metals It is concluded that there seems to be a lack of normal dust towards PHL957 by at least a factor of two; and that the absorption region towards 1331 + 170 and probably the region towards PHL957 are lacking dust similar to that in our own galaxy. This can explain the lack of H 2 in these systems. (U.K.)

  12. Equation of state calculations for two-dimensional dust coulomb crystal at near zero temperature by molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Djouder, M., E-mail: djouder-madjid@ummto.dz; Kermoun, F.; Mitiche, M. D.; Lamrous, O. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri Tizi-Ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)

    2016-01-15

    Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere.

  13. Equation of state calculations for two-dimensional dust coulomb crystal at near zero temperature by molecular dynamics simulations

    International Nuclear Information System (INIS)

    Djouder, M.; Kermoun, F.; Mitiche, M. D.; Lamrous, O.

    2016-01-01

    Dust particles observed in universe as well as in laboratory and technological plasma devices are still under investigation. At low temperature, these particles are strongly negatively charged and are able to form a 2D or 3D coulomb crystal. In this work, our aim was to check the ideal gas law validity for a 2D single-layer dust crystal recently reported in the literature. For this purpose, we have simulated, using the molecular dynamics method, its thermodynamic properties for different values of dust particles number and confinement parameters. The obtained results have allowed us to invalidate the ideal gas behaviour and to propose an effective equation of state which assumes a near zero dust temperature. Furthermore, the value of the calculated sound velocity was found to be in a good agreement with experimental data published elsewhere

  14. DUST COAGULATION IN THE VICINITY OF A GAP-OPENING JUPITER-MASS PLANET

    Energy Technology Data Exchange (ETDEWEB)

    Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W., E-mail: Augusto_Carballido@baylor.edu [Center for Astrophysics, Space Physics and Engineering Research, Baylor University, Waco, TX 76798 (United States)

    2016-06-01

    We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities, and turbulent stresses (a) close to the gap edge, (b) in one of the two gas streams that accrete onto the planet, (c) inside the low-density gap, and (d) outside the gap. The MHD values are then input into a Monte Carlo dust-coagulation algorithm which models grain sticking and compaction. We also introduce a simple implementation for bouncing, for comparison purposes. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 μ m, and another one whose initial size distribution follows the Mathis–Rumpl–Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 μ m. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (m-w) average porosity of the initially monodisperse population reaches extremely high final values of 98%. The final m-w porosities in all other cases without bouncing range between 30% and 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap. Future studies will need to explore the effect of different planet masses and electric charge on grains.

  15. DUST COAGULATION IN THE VICINITY OF A GAP-OPENING JUPITER-MASS PLANET

    International Nuclear Information System (INIS)

    Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W.

    2016-01-01

    We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities, and turbulent stresses (a) close to the gap edge, (b) in one of the two gas streams that accrete onto the planet, (c) inside the low-density gap, and (d) outside the gap. The MHD values are then input into a Monte Carlo dust-coagulation algorithm which models grain sticking and compaction. We also introduce a simple implementation for bouncing, for comparison purposes. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 μ m, and another one whose initial size distribution follows the Mathis–Rumpl–Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 μ m. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (m-w) average porosity of the initially monodisperse population reaches extremely high final values of 98%. The final m-w porosities in all other cases without bouncing range between 30% and 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap. Future studies will need to explore the effect of different planet masses and electric charge on grains.

  16. Influence of Agricultural Operations on Dust Emission During the 1930a Dust Bowl, Baca County, CO, USA.

    Science.gov (United States)

    Hodges, A. T.; Bolles, K.; Forman, S. L.

    2017-12-01

    The drought that struck the U.S. Great Plains during the 1930s was one of the most intensedroughts in the region in the last millennium, spurring a major environmental and public healthcrisis. A prominent explanation for the cause of the "dust bowl" centers on the expansion ofagriculture and poor land management practices leading to widespread soil erosion. Thisprevalent hypothesis largely excludes the impacts of naturally occurring land surface processesthat contribute to eolian erosion and dust emissivity, particularly during periods of drought. Priorwork generally focuses on economic and sociological factors in agricultural decision-making forindividual fields or farms.This study utilizes early aerial photography collected by the Soil Conservation Service in 1936 ofBaca County, Colorado, to identify and quantify spatial relationships between geomorphicprocesses and anthropogenic activities impacting dust emission. From the holdings at theNational Archives, 25 photos covering 125 km2 scanned at 1200dpi are combined into acontinuous mosaic, and geo-referenced at RMSE 78.6 m2 . Detailed land cover analyses areundertaken in ArcGIS to classify uncultivated and cultivated surfaces; cultivated surfaces arefurther divided by surface agricultural operations in relation to erosion and dust emission (e.g.listing, contour furrows, terraces, circuitous plowing, listing, eolian transport, and fallow fieldswith and without vegetation). The classified surface is overlaid with National ResourceConservation Service surveys and Soil Conservation Service reconnaissance surveys of land useand erosion carried out in 1936 to infer to potential emissivity of a given cultivated surface. Inthis way, it becomes possible to evaluate human influence on dust emission in one of theworst-struck counties of the Dust Bowl and potentially identify other causative factors to thissignificant period in American history.

  17. Spectrophotometry of Dust in Comet Hale-Bopp

    Science.gov (United States)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  18. The Properties of Quasar 2175 Å Dust Absorbers at z = 1.0-2.5

    Science.gov (United States)

    Ma, Jingzhe; Ge, Jian; Prochaska, Jason; Zhao, Yinan; Zhang, Shaohua; Ji, Tuo; Lundgren, Britt; Zhou, Hongyan; Lu, Honglin; Schneider, Donald

    2018-01-01

    Quasar 2175 Å dust absorbers (2DAs) are a population of quasar absorption line systems identified by the broad absorption feature centered around rest-frame 2175 Å, which is ubiquitously seen in the Milky Way extinction curves. These absorbers are excellent tracers of gas and dust properties, metal abundances, chemical evolution, physical conditions, as well as kinematics in the absorbing galaxies. We present the metallicity, depletion pattern, kinematics, and the cold neutral content (HI and CI gas) of a sample of 2DAs at z = 1.0-2.5 that were initially selected from the Sloan Digital Sky Survey and followed up with Keck and MMT spectrographs. We perform a correlation analysis between metallicity, redshift, depletion level, velocity width, and explore relationships between 2DAs and other absorption line systems. The 2DAs on average have higher metallicity, higher depletion levels, and larger velocity widths than Damped Lyman-α absorbers (DLAs) or subDLAs. The correlation between [Zn/H] and [Fe/Zn] or [Zn/H] and logΔV90 can be used as alternative stellar mass estimators based on the well-established mass-metallicity relation. The relationship with other quasar absorption line systems can be described as (1) 2DAs are a subset of Mg II and Fe II absorbers, (2) 2DAs are preferentially metal-strong DLAs/subDLAs, (3) More importantly, all of the 2DAs show CI detections with N(CI) > 14.0 cm-2, (4) 2DAs can be used as molecular gas tracers. Their host galaxies are likely to be chemically enriched, evolved, and massive galaxies (more massive than typical DLA/subDLA galaxies). In addition, we have, for the first time, identified the host galaxy of a 2DA beyond the local Universe using HST IR direct imaging and grism spectroscopy.

  19. THE 1.1 mm CONTINUUM SURVEY OF THE SMALL MAGELLANIC CLOUD: PHYSICAL PROPERTIES AND EVOLUTION OF THE DUST-SELECTED CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo [Department of Cosmosciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Komugi, Shinya; Muller, Erik; Mizuno, Norikazu; Kawamura, Akiko; Ezawa, Hajime [Chile Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Kohno, Kotaro [Institute of Astronomy, The University of Tokyo, 2-21-1, Osawa, Mitaka, Tokyo 181-0015 (Japan); Tosaki, Tomoka [Joetsu University of Education, Joetsu, Niigata 943-8512 (Japan); Onishi, Toshikazu [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531 (Japan); Fukui, Yasuo [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya 464-8602 (Japan); Oshima, Tai; Kawabe, Ryohei [Nobeyama Radio Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 462-2, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Scott, Kimberly S.; Austermann, Jason E.; Wilson, Grant W. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Matsuo, Hiroshi [Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University for Advanced Studies), 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan); Aretxaga, Itziar; Hughes, David H. [Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), 72000 Puebla (Mexico); and others

    2017-01-20

    The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg{sup 2} of the SMC with 1 σ noise levels of 5–12 mJy beam{sup −1}, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μ m, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500 μ m). The 1.1 mm objects show dust temperatures of 17–45 K and gas masses of 4 × 10{sup 3}–3 × 10{sup 5} M {sub ⊙}, assuming single-temperature thermal emission from the cold dust with an emissivity index, β , of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μ m and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μ m flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs.

  20. Applications of high-speed dust injection to magnetic fusion

    International Nuclear Information System (INIS)

    Wang, Zhehui; Li, Yangfang

    2012-01-01

    . Particle fluxes ranging from a few tens of particle per second up to thousands of particles per second have been achieved using this simple device. To achieve higher dust injection speed, another key consideration is how to accelerate dust at controlled amount. In addition to gravity, other possible acceleration mechanisms include electrostatic, electromagnetic, gas-dragged, plasma-dragged, and laser-ablation-based acceleration. Features and limitations of the different acceleration methods will be discussed. We will also describe laboratory experiments on dust acceleration.

  1. Studies on airborne dust particles by neutron activation analysis

    International Nuclear Information System (INIS)

    Aoki, Atsushi; Ishii, Taka; Tomiyama, Tsuyoshi; Yamamoto, Isao.

    1974-01-01

    Neutron activation analysis was performed on the airborne dust particles collected at six places with different contaminating circumstances in Kyoto city and the suburbs of Okayama city, using an open type low volume air sampler with a membrance filter attached. Radioactivation by neutrons was performed with the reactor in the Research Reactor Institute of Kyoto University. Short half-life nuclides activated by thermal neutrons were measured. The concentration of airborne dust was usually high in November and December, while Na, Mn, K, etc. probably owing to soil origin showed similar seasonal change to the dust particles, as expected. The concentrations Cl and Br were in proportion to traffic volume, and it was considered to be caused by the exhaust gas from cars. Zn, V. et. were thick in factory areas, which seemed to show the relationship with oil fuel consumption. (Kobatake, H.)

  2. Simulation of dust voids in complex plasmas

    Science.gov (United States)

    Goedheer, W. J.; Land, V.

    2008-12-01

    In dusty radio-frequency (RF) discharges under micro-gravity conditions often a void is observed, a dust free region in the discharge center. This void is generated by the drag of the positive ions pulled out of the discharge by the electric field. We have developed a hydrodynamic model for dusty RF discharges in argon to study the behaviour of the void and the interaction between the dust and the plasma background. The model is based on a recently developed theory for the ion drag force and the charging of the dust. With this model, we studied the plasma inside the void and obtained an understanding of the way it is sustained by heat generated in the surrounding dust cloud. When this heating mechanism is suppressed by lowering the RF power, the plasma density inside the void decreases, even below the level where the void collapses, as was recently shown in experiments on board the International Space Station. In this paper we present results of simulations of this collapse. At reduced power levels the collapsed central cloud behaves as an electronegative plasma with corresponding low time-averaged electric fields. This enables the creation of relatively homogeneous Yukawa balls, containing more than 100 000 particles. On earth, thermophoresis can be used to balance gravity and obtain similar dust distributions.

  3. Gas in Galaxies

    OpenAIRE

    Bland-Hawthorn, J.; Reynolds, R. J.

    2000-01-01

    The interstellar medium (ISM) can be thought of as the galactic atmosphere which fills the space between stars. When clouds within the ISM collapse, stars are born. When the stars die, they return their matter to the surrounding gas. Therefore the ISM plays a vital role in galactic evolution. The medium includes starlight, gas, dust, planets, comets, asteroids, fast moving charged particles (cosmic rays) and magnetic fields. The gas can be further divided into hot, warm and cold components, e...

  4. Dust acoustic shock wave at high dust density

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Sarkar, Susmita; Khan, Manoranjan; Avinash, K.; Gupta, M. R.

    2003-01-01

    Dust acoustic (DA) shock wave at high dust density, i.e., the dust electroacoustic (DEA) or dust Coulomb (DC) shock wave has been investigated incorporating the nonadiabatic dust charge variation. The nonlinear DEA (DC) shock wave is seen to be governed by the Korteweg-de Vries Burger equation, in which the Burger term is proportional to the nonadiabaticity generated dissipation. It is seen that the shock strength decreases but after reaching minimum, it increases as the dust space charge density |q d n d | increases and the shock strength of DA wave is greater than that of DEA (DC) wave. Moreover the DEA (DC) shock width increases appreciably with increase mass m i of the ion component of the dusty plasma but for DA shock wave the effect is weak

  5. Spatially resolving the dust properties and submillimetre excess in M 33

    Science.gov (United States)

    Relaño, M.; De Looze, I.; Kennicutt, R. C.; Lisenfeld, U.; Dariush, A.; Verley, S.; Braine, J.; Tabatabaei, F.; Kramer, C.; Boquien, M.; Xilouris, M.; Gratier, P.

    2018-05-01

    Context. The relative abundance of the dust grain types in the interstellar medium is directly linked to physical quantities that trace the evolution of galaxies. Because of the poor spatial resolution of the infrared and submillimetre data, we are able to study the dependence of the resolved infrared spectral energy distribution (SED) across regions of the interstellar medium (ISM) with different physical properties in just a few objects. Aims: We aim to study the dust properties of the whole disc of M 33 at spatial scales of 170 pc. This analysis allows us to infer how the relative dust grain abundance changes with the conditions of the ISM, study the existence of a submillimetre excess and look for trends of the gas-to-dust mass ratio (GDR) with other physical properties of the galaxy. Methods: For each pixel in the disc of M 33 we have fitted the infrared SED using a physically motivated dust model that assumes an emissivity index β close to two. We applied a Bayesian statistical method to fit the individual SEDs and derived the best output values from the study of the probability density function of each parameter. We derived the relative amount of the different dust grains in the model, the total dust mass, and the strength of the interstellar radiation field (ISRF) heating the dust at each spatial location. Results: The relative abundance of very small grains tends to increase, and for big grains to decrease, at high values of Hα luminosity. This shows that the dust grains are modified inside the star-forming regions, in agreement with a theoretical framework of dust evolution under different physical conditions. The radial dependence of the GDR is consistent with the shallow metallicity gradient observed in this galaxy. The strength of the ISRF derived in our model correlates with the star formation rate in the galaxy in a pixel by pixel basis. Although this is expected, it is the first time that a correlation between the two quantities has been reported

  6. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray

    Energy Technology Data Exchange (ETDEWEB)

    Pak, S.I. [National Fusion Research Center, 52 Eoeun-dong, Yuseong-gu, Daejeon 305-333 (Korea, Republic of)]. E-mail: paksunil@dreamwiz.com; Chang, K.S. [Department of Aerospace Engineering, KAIST, Daejeon (Korea, Republic of)]. E-mail: kschang@kaist.ac.kr

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  7. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray

    International Nuclear Information System (INIS)

    Pak, S.I.; Chang, K.S.

    2006-01-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements

  8. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray.

    Science.gov (United States)

    Pak, S I; Chang, K S

    2006-12-01

    A Venturi scrubber has dispersed three-phase flow of gas, dust, and liquid. Atomization of a liquid jet and interaction between the phases has a large effect on the performance of Venturi scrubbers. In this study, a computational model for the interactive three-phase flow in a Venturi scrubber has been developed to estimate pressure drop and collection efficiency. The Eulerian-Lagrangian method is used to solve the model numerically. Gas flow is solved using the Eulerian approach by using the Navier-Stokes equations, and the motion of dust and liquid droplets, described by the Basset-Boussinesq-Oseen (B-B-O) equation, is solved using the Lagrangian approach. This model includes interaction between gas and droplets, atomization of a liquid jet, droplet deformation, breakup and collision of droplets, and capture of dust by droplets. A circular Pease-Anthony Venturi scrubber was simulated numerically with this new model. The numerical results were compared with earlier experimental data for pressure drop and collection efficiency, and gave good agreements.

  9. Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-09-26

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD), inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography (IC), scanning electron microscopy (SEM) and laser particle size analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used in climate

  10. Determination of selected UV filters in indoor dust by matrix solid-phase dispersion and gas chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Negreira, N; Rodríguez, I; Rubí, E; Cela, R

    2009-07-31

    A simple, inexpensive sample preparation procedure, based on the matrix solid-phase dispersion (MSPD) technique, for the determination of six UV filters: 2-ethylhexyl salicylate (EHS), 3,3,5-trimethylcyclohexyl salicylate (Homosalate, HMS), 3-(4-methylbenzylidene) camphor (4-MBC), isoamyl-p-methoxycinnamate (IAMC), 2-ethylhexyl-p-methoxycinnamate (EHMC) and octocrylene (OCR), in dust from indoor environments is presented and the influence of several operational parameters on the extraction performance discussed. Under the final working conditions, sieved samples (0.5 g) were mixed with the same amount of anhydrous sodium sulphate and dispersed with 2 g of octadecyl bonded silica (C18) in a mortar with a pestle. This blend was transferred to a polypropylene solid-phase extraction cartridge containing 2 g of activated silica, as the clean-up co-sorbent. The cartridge was first rinsed with 5 mL of n-hexane and the analytes were then recovered with 4 mL of acetonitrile. This extract was adjusted to 1 mL, filtered and the compounds were determined by gas chromatography combined with tandem mass spectrometry (GC-MS/MS). Recoveries for samples spiked at two different concentrations ranged between 77% and 99%, and the limits of quantification (LOQs) of the method between 10 and 40 ng g(-1). Analysis of settled dust from different indoor areas, including private flats, public buildings and vehicle cabins, showed that EHMC and OCR were ubiquitous in this matrix, with maximum concentrations of 15 and 41 microg g(-1), respectively. Both UV filters were also quantified in dust reference material SRM 2585 for first time. EHS, 4-MBC and IAMC were detected in some of the analyzed samples, although at lower concentrations than EHMC and OCR.

  11. Partitioning of phthalates among the gas phase, airborne particles and settled dust in indoor environments

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Salthammer, Tunga; Fromme, Hermann

    2008-01-01

    (s)) or the octanol/air partition coefficient (K-OA). For each phthalate in each apartment, the ratio of its particle concentration to its dust concentration (C-particle/C-Dust) was calculated, The median values of this ratio were within an order of magnitude of one another for five of the phthalate esters despite...

  12. Dust Emission at 8 and 24 μ m as Diagnostics of H ii Region Radiative Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Oey, M. S.; López-Hernández, J.; Kellar, J. A. [Department of Astronomy, University of Michigan, 311 West Hall, 1085 South University Avenue, Ann Arbor, MI, 48109-1107 (United States); Pellegrini, E. W. [Institut für Theoretische Astrophysik, Albert-Überle-Str. 2, D-69120 Heidelberg (Germany); Gordon, K. D.; Meixner, M.; Roman-Duval, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Jameson, K. E. [Astronomy Department and Laboratory for Millimeter-wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Li, A. [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Madden, S. C. [Laboratoire AIM, CEA, Université Paris VII, IRFU/Service d’Astrophysique, Bat. 709, F-91191 Gif-sur-Yvette (France); Bot, C. [Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 Rue de l’Université, F-67000 Strasbourg (France); Rubio, M. [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Tielens, A. G. G. M. [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300RA Leiden (Netherlands)

    2017-07-20

    We use the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) survey of the Magellanic Clouds to evaluate the relationship between the 8 μ m polycyclic aromatic hydrocarbon (PAH) emission, 24 μ m hot dust emission, and H ii region radiative transfer. We confirm that in the higher-metallicity Large Magellanic Cloud, PAH destruction is sensitive to optically thin conditions in the nebular Lyman continuum: objects identified as optically thin candidates based on nebular ionization structure show six times lower median 8 μ m surface brightness (0.18 mJy arcsec{sup −2}) than their optically thick counterparts (1.2 mJy arcsec{sup −2}). The 24 μ m surface brightness also shows a factor of three offset between the two classes of objects (0.13 versus 0.44 mJy arcsec{sup −2}, respectively), which is driven by the association between the very small dust grains and higher density gas found at higher nebular optical depths. In contrast, PAH and dust formation in the low-metallicity Small Magellanic Cloud is strongly inhibited such that we find no variation in either 8 μ m or 24 μ m emission between our optically thick and thin samples. This is attributable to extremely low PAH and dust production together with high, corrosive UV photon fluxes in this low-metallicity environment. The dust mass surface densities and gas-to-dust ratios determined from dust maps using Herschel HERITAGE survey data support this interpretation.

  13. THE ROLE OF DUST IN THE EARLY UNIVERSE. I. PROTOGALAXY EVOLUTION

    International Nuclear Information System (INIS)

    Yamasawa, Daisuke; Habe, Asao; Kozasa, Takashi; Nozawa, Takaya; Nomoto, Ken'ichi; Hirashita, Hiroyuki; Umeda, Hideyuki

    2011-01-01

    We develop one-zone galaxy formation models in the early universe, taking into account dust formation and evolution by supernova (SN) explosions. We focus on the time evolution of dust size distribution, because H 2 formation on the dust surface plays a critical role in the star formation process in the early universe. In the model, we assume that star formation rate (SFR) is proportional to the total amount of H 2 . We consistently treat (1) the formation and size evolution of dust, (2) the chemical reaction networks including H 2 formation both on the surface of dust and in gas phase, and (3) the SFR in the model. First, we find that, because of dust destruction due to both reverse and forward shocks driven by SNe, H 2 formation is more suppressed than in situations without such dust destruction. At the galaxy age of ∼0.8 Gyr, for galaxy models with virial mass M vir = 10 9 M sun and formation redshift z vir = 10, the molecular fraction is 2.5 orders of magnitude less in the model with dust destruction by both shocks than that in the model without dust destruction. Second, we show that the H 2 formation rate strongly depends on the interstellar medium (ISM) density around SN progenitors. The SFR in higher ISM density is lower, since dust destruction by reverse shocks is more effective in higher ISM density. We conclude that not only the amount but also the size distribution of dust related to star formation activity strongly affects the evolution of galaxies in the early universe.

  14. Cometary Dust

    Science.gov (United States)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  15. Accreting planets as dust dams in 'transition' disks

    International Nuclear Information System (INIS)

    Owen, James E.

    2014-01-01

    We investigate under what circumstances an embedded planet in a protoplanetary disk may sculpt the dust distribution such that it observationally presents as a 'transition' disk. We concern ourselves with 'transition' disks that have large holes (≳ 10 AU) and high accretion rates (∼10 –9 -10 –8 M ☉ yr –1 ), particularly, those disks which photoevaporative models struggle to explain. Adopting the observed accretion rates in 'transition' disks, we find that the accretion luminosity from the forming planet is significant, and can dominate over the stellar luminosity at the gap edge. This planetary accretion luminosity can apply a significant radiation pressure to small (s ≲ 1 μm) dust particles provided they are suitably decoupled from the gas. Secular evolution calculations that account for the evolution of the gas and dust components in a disk with an embedded, accreting planet, show that only with the addition of the radiation pressure can we explain the full observed characteristics of a 'transition' disk (NIR dip in the spectral energy distribution (SED), millimeter cavity, and high accretion rate). At suitably high planet masses (≳ 3-4 M J ), radiation pressure from the accreting planet is able to hold back the small dust particles, producing a heavily dust-depleted inner disk that is optically thin to infrared radiation. The planet-disk system will present as a 'transition' disk with a dip in the SED only when the planet mass and planetary accretion rate are high enough. At other times, it will present as a disk with a primordial SED, but with a cavity in the millimeter, as observed in a handful of protoplanetary disks.

  16. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  17. Carbon Dust Filtration in Three Different Nuclear Process Environments: A comparison the challenges Carbon Dust Filtration Presents Under Different Process Conditions

    International Nuclear Information System (INIS)

    Chadwick, Chris

    2014-01-01

    Inits thirty five years of activity as an engineering company in nuclear filtration sector, the Porvair Filtration Group has experienced several demands to remove of Carbon/graphite dust from several nuclear gas streams. Of particular interest among those applications are, and those to be reported upon in this paper, are; • High temperature, high pressure, high DP resistant (high strength) filters operating in the CO2 environment of the UK fleet of AGR (Advanced Gas-Cooled Reactors) • Removing gross quantities of Carbon dust from the exhaust stream of a radioactive, nuclear organics decomposition, waste process • High pressure Helium filtration to remove Carbon dust for a gas flow associated with the Fuel Handling System in the High Temperature Reactor programme Each process is different from the other and presents its own unique problems. The paper will present to this conference the very different properties Carbon dust appears to exhibit in each of these very different applications, and to discuss the effects those significant differences had/have on Porvair’s responses to each application. An interesting comparison will be made of the substantial difference between the performance of the UK AGR filters and those used in the US for the removal of decomposed organics, and the significantly different properties the Carbon appears to exhibit in each unique set of conditions Two UK AGR stations which are described are taken out of service when their bypass blowdown filters reach an operating DP of about 700mB DP (starting at a clean DP of around 100mB) to enable their replacement. The used filter assemblies are lifted from their housings and placed in an active storage area. Analysis of the used filter assemblies has shown that, where they are observable, they appear to be pristine with no apparent surface discolouration. It is only when examined under magnification that it becomes obvious that the filter medium, under the outer layer of fibres, is coated in

  18. Determinants, reproducibility, and seasonal variation of ergosterol levels in house dust.

    Science.gov (United States)

    Leppänen, H K; Nevalainen, A; Vepsäläinen, A; Roponen, M; Täubel, M; Laine, O; Rantakokko, P; von Mutius, E; Pekkanen, J; Hyvärinen, A

    2014-06-01

    This study aimed to clarify the determinants that affect the concentrations of ergosterol and viable fungi in house dust and to examine the seasonal variation and reproducibility of ergosterol concentrations indoors. In studying the determinants, dust samples from living room floors and vacuum cleaner dust bags were collected from 107 farming and 105 non-farming homes. Ergosterol levels were determined with gas chromatography-mass spectrometry,and the dust bag dust was cultivated for enumeration of fungal genera. Lifestyle and environmental factors, for example using of the fireplace, and visible mold observations in homes, explained 20–26% of the variation of fungal concentrations. For the reproducibility study, samples were collected from five urban homes in four different seasons. The reproducibility of ergosterol determinations within a sample was excellent (ICC = 89.8) for floor dust and moderate (ICC = 63.8) for dust bag dust, but poor when sampling the same home throughout a year (ICC = 31.3 and 12.6, respectively) due to large temporal variation in ergosterol concentrations. In conclusion, environmental characteristics only partially predicted the variation of fungal concentrations. Based on these studies, we recommend repeated sampling of dust over time if one seeks to adequately describe overall fungal levels and exposure in a home. This study shows that levels of ergosterol and viable fungi in house dust are related to visible mold observations. Only 20% of the variation in fungal levels can be explained with questionnaires, and therefore, environmental samples need to be taken in addition. Reproducibility of ergosterol determination was excellent for floor dust, and thus, ergosterol measurements from floor dust samples could be suitable for assessing the fungal load in building investigations. The temporal variation needs to be taken into account when describing the ergosterol concentration of urban homes.

  19. Analysis of gas-phase mercury sorption with coke and lignite dust

    Directory of Open Access Journals (Sweden)

    Marczak Marta

    2017-01-01

    Full Text Available In recent years the problem of mercury emission became a widely discussed topic. Its high impact is caused by its toxicity and ability to accumulate in living organisms, properties that justified the United States Environmental Protection Agency (US EPA to classify mercury as hazardous pollutant. The problem of mercury emission is crucial for countries like Poland, where the most of the emission is caused by coaldepended energy sector. Current technology of mercury removal utilizes adsorption of mercury on the surface of activated carbon. Due to high price of activated carbon, this technological approach seems to be uneconomical and calls for cheaper alternative. One possible solution can be usage of other sorptive materials obtained from thermal processes like coke production. Example of such material is coke dust obtained from dry quenching of coke. The aim of this work was to analyse the sorption potential of lignite and coke dust and determine parameters influencing mercury behaviour during combustion.

  20. Assessing consumer benefits of selected gas appliance technology center tasks. Topical report, April-December 1992

    International Nuclear Information System (INIS)

    Smith, T.R.; Bournakis, A.D.; Worek, W.M.; Kalensky, D.C.; Dombrowski, L.P.

    1992-12-01

    The Gas Appliance Technology Center (GATC) was created in 1983 to assist the gas industry in bringing about a new generation of reasonably priced, advanced gas appliances. The objective of the report is to evaluate consumer benefits of sixteen selected GATC tasks for the time period between 1983 and 1990. Tasks were selected for review based upon their degree of industry impact and how well they represented activities in the four targeted research areas of Space Conditioning, Commercial Appliances, Residential Appliances, and Codes and Standards

  1. Experimental study of different carbon dust growth mechanisms

    International Nuclear Information System (INIS)

    Arnas, C.; Dominique, C.; Roubin, P.; Martin, C.; Laffon, C.; Parent, P.; Brosset, C.; Pegourie, B.

    2005-01-01

    Laboratory experiments are proposed to understand the growth mechanisms of spheroid carbon dust grains observed in Tokamaks with inside wall elements in graphite based materials. Different categories of solid grains in the nanometer size range are produced from graphite sputtering in rare gas plasmas. Dense primary particles are observed either individually or in the form of spherical agglomerates. The agglomeration process is likely to be stopped by Coulomb repulsion. Other particulates of higher size and cauliflower texture are formed by atomic-molecule accretion. Examples of these different cases are presented with specific characteristics provided by ex situ diagnostics. A comparison with dust samples collected in Tore Supra or observed in other Tokamaks is proposed

  2. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    Science.gov (United States)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, we investigate the relationships among Saharan dust outbreak and transport, African easterly waves (AEW), African easterly jet (AEJ) and associated convective activities of Atlantic Intertropical Convergence Zone (ITCZ) using Cloudsat-Calipso, MODIS and MERRA data. We find that a major Saharan dust outbreak is associated with the formation of a westward propagating strong cyclone around 15-25N over the western part northern Saharan. The strong cyclonic flow mobilizes and lifts the dust from the desert surface to a high elevation. As the cyclone propagate westward, it transports a thick elevated dust layer between 900 -500 hPa from the African continent to the eastern Atlantic. Cloudiness is reduced within the warm, dry dusty layer, but enhanced underneath it, possibly due to the presence of a shallow inversion layer over the marine boundary layer. The dust outbreak is linked to enhanced deep convection in the northern part of Atlantic ITCZ, abutting the southern flank of the dust layer, and a strengthening of the northward flank of the AEJ. As the dust layer spreads westward, it loses elevation and becomes increasing diffused as it reaches the central and western Atlantic. Using band pass filtered EOF analysis of MERRA winds, we find that AEWs propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are highly correlated with major dust outbreak over North Africa and associated with slower moving systems, with a quasi-periodicity of 6-9 day. On the other hand, easterly waves along the southern track are faster, with quasi-periodicity of 3-5 days. These faster easterly waves are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track by the faster waves generally leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between

  3. Attenuation of Ultraviolet Radiation by Dust in Interstellar Clouds

    Science.gov (United States)

    Escalante, V.

    1994-07-01

    Se han obtenido soluciones de la ecuación de transporte para la dispersión coherente, no conservativa y anisotrópica para estimar la precisión de métodos aproximados, usados en modelos de nubes en que la luz es atenuada principalmente por el polvo. En los cálculos se ha aplicado el metodo de armónicos esféricos para distintos parámetros del polvo. Se ha explorado la posibilidad de descubrir cambios en las caracterísiticas del polvo mediante observaciones de regiones fotodisociadas. Se muestra que para altos valores del albedo de dispersión simple y del parametro de asimetria de Ia función de fase que son adecuados para el polvo galáctico, no es posible determinar variaciones de más de un factor de 2 en el cociente de gas a polvo. Solutions to the transfer equation for coherent, non-conservative, anisotropic scattering have been obtained in order to estimate the accuracy of approximate methods used in models of clouds where light is attenuated mostly by dust. In the calculations the spherical harmonic method has been applied for different grain parameters. The possibility of discovering changes of dust characteristics through observations of photodissociation regions has been considered. It is shown that for the high values of the single scattering albedo and the asymmetry parameter of the phase function for redistribution that appear to be appropriate for galactic dust, it is not possible to determine variations of more than a factor of 2 in the gas to dust ratio.

  4. 2-methylanthraquinone as a marker of occupational exposure to teak wood dust in boatyards.

    Science.gov (United States)

    Gori, Giampaolo; Carrieri, Mariella; Scapellato, Maria Luisa; Parvoli, Giorgio; Ferrara, Daniela; Rella, Rocco; Sturaro, Alberto; Bartolucci, Giovanni Battista

    2009-01-01

    A new gas chromatographic/mass spectrometric (GC/MS) method was developed to detect 2-methylanthraquinone (2-MeA) in wood dust. 2-MeA is present in teak wood (a suspected human carcinogen) but not in oak, beech, mahogany, birch, ash or pine. The method involved collection of workplace dust on filters and extraction of 2-MeA with methanol and GC/MS analysis. The method was tested on teak wood dust samples (n = 43) collected on polyvinylchloride membrane filters during various work operations in four small factories making furniture and fittings for leisure craft and boatyards (air teak wood dust concentration: range 0.32-14.32 mg m(-3)). A high correlation coefficient for the content of 2-MeA versus teak dust was obtained (logarithmic correlation: y = 1.5308x + 0.0998, r = 0.9215). Determination of airborne 2-MeA is a useful technique to confirm occupational exposure to teak wood dust.

  5. COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD

    International Nuclear Information System (INIS)

    Kuchner, Marc J.; Stark, Christopher C.

    2010-01-01

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of ∼10 -4 primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10 -6 and 10 -7 ), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ('transport dominated') to being dominated by the birth ring ('collision dominated') when the optical depth reaches a critical value of τ ∼ v/c, where v is the local Keplerian speed.

  6. Collisional Grooming Models of the Kuiper Belt Dust Cloud

    Science.gov (United States)

    Kuchner, Marc J.; Stark, Christopher C.

    2010-01-01

    We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of approximately 10 (exp -4) primarily show an azimuthally- symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10 (exp -6) and 10 (exp-7)), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature is caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ("transport dominated") to being dominated by the birth ring ("collision dominated") when the optical depth reaches a critical value of r approximately v/c, where v is the local Keplerian speed.

  7. Changes in the metallicity of gas giant planets due to pebble accretion

    Science.gov (United States)

    Humphries, R. J.; Nayakshin, S.

    2018-06-01

    We run numerical simulations to study the accretion of gas and dust grains on to gas giant planets embedded into massive protoplanetary discs. The outcome is found to depend on the disc cooling rate, planet mass, grain size, and irradiative feedback from the planet. If radiative cooling is efficient, planets accrete both gas and pebbles rapidly, open a gap, and usually become massive brown dwarfs. In the inefficient cooling case, gas is too hot to accrete on to the planet but pebble accretion continues and the planets migrate inward rapidly. Radiative feedback from the planet tends to suppress gas accretion. Our simulations predict that metal enrichment of planets by dust grain accretion inversely correlates with the final planet mass, in accordance with the observed trend in the inferred bulk composition of Solar system and exosolar giant planets. To account for observations, however, as many as ˜30-50 per cent of the dust mass should be in the form of large grains.

  8. SPITZER AND HERSCHEL MULTIWAVELENGTH CHARACTERIZATION OF THE DUST CONTENT OF EVOLVED H II REGIONS

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, R. [NASA Herschel Science Center, California Institute of Technology, 1200, East California Boulevard, Pasadena, CA 91125 (United States); Umana, G. [INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Veneziani, M.; Noriega-Crespo, A. [Infrared Processing and Analysis Center, California Institute of Technology, 1200, East California Boulevard, Pasadena, CA 91125 (United States); Anderson, L. D. [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Piacentini, F. [Dipartimento di Fisica, Universita di Roma La Sapienza, I-00185 Roma (Italy); Pinheiro Goncalves, D. [Department of Astronomy and Astrophysics, University of Toronto 50 George Street, Toronto, ON M5S 3H4 (Canada); Paradis, D.; Bernard, J.-P. [Centre d' Etude Spatiale des Rayonnements, 9 Avenue du Colonel Roche, F-31028 Toulouse Cedex 4 (France); Tibbs, C. T. [Spitzer Science Center, California Institute of Technology, 1200, East California Boulevard, Pasadena, CA 91125 (United States); Natoli, P., E-mail: paladini@ipac.caltech.edu [Istituto Nazionale di Fisica Nucleare, Sezione Ferrara, I-44100 Ferrara (Italy)

    2012-12-01

    We have analyzed a uniform sample of 16 evolved H II regions located in a 2 Degree-Sign Multiplication-Sign 2 Degree-Sign Galactic field centered at (l,b) = (30 Degree-Sign , 0 Degree-Sign ) and observed as part of the Herschel Hi-GAL survey. The evolutionary stage of these H II regions was established using ancillary radio-continuum data. By combining Hi-GAL PACS (70 {mu}m, 160 {mu}m) and SPIRE (250 {mu}m, 350 {mu}m, and 500 {mu}m) measurements with MIPSGAL 24 {mu}m data, we built spectral energy distributions of the sources and showed that a two-component gray-body model is a good representation of the data. In particular, wavelengths >70 {mu}m appear to trace a cold dust component, for which we estimated an equilibrium temperature of the big grains (BGs) in the range 20-30 K, while for {lambda} < 70 {mu}m, the data indicate the presence of a warm dust component at temperatures of the order of 50-90 K. This analysis also revealed that dust is present in the interior of H II regions, although likely not in a large amount. In addition, the data seem to corroborate the hypothesis that the main mechanism responsible for the (partial) depletion of dust in H II regions is radiation-pressure-driven drift. In this framework, we speculated that the 24 {mu}m emission that spatially correlates with ionized gas might be associated with either very small grain or BG replenishment, as recently proposed for the case of wind-blown bubbles. Finally, we found that evolved H II regions are characterized by distinctive far-IR and submillimeter colors, which can be used as diagnostics for their identification in unresolved Galactic and extragalactic regions.

  9. DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith

    Science.gov (United States)

    Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.

    2010-01-01

    With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids

  10. Probing the impact of metallicity on the dust properties in galaxies

    International Nuclear Information System (INIS)

    Remy-Ruyer, Aurelie

    2013-01-01

    As galaxies evolve, their Interstellar Medium (ISM) becomes continually enriched with metals, and this metal enrichment influences the subsequent star formation. Low metallicity dwarf galaxies of the local Universe are ideal candidates to study the influence of metal enrichment on the ISM properties of galaxies and gives us insight into the enrichment process and star formation under ISM conditions that may provide clues to conditions in early universe metal-poor systems. Previous studies have shown that the ISM of dwarf galaxies poses a number of interesting puzzles in terms of the abundance of dust grains, the dust composition and even the FIR emission processes. However these studies were limited to the warmer dust emitting at wavelengths shorter than 200 microns and were done only on a small number of dwarf galaxies. Thanks to its increased sensitivity and resolution in FIR and submillimeter (sub-mm) wavelengths, Herschel gives us a new view on the cold dust properties in galaxies and enables us to study the lowest metallicity galaxies in a systematic way. In this work, I carry out a study of the dust properties in dwarf galaxies and compare with more metal rich environments, in order to address the question of the impact of metallicity on the dust properties. The novelty of this work lays in the fact that dwarf galaxies are studied here in a systematic way, enabling us to derive and quantify the general properties that are representative of these systems. This study is conducted over the full IR-to-sub-mm range, using new FIR/sub-mm Herschel observations, Spitzer, WISE, IRAS and 2MASS data. We complete this set of data with longer sub-mm measurements from ground-based facilities such as APEX and JCMT to study the presence and characteristics of the sub-mm excess in my sample of galaxies. I also collect Hi and CO data to access the gas properties of the galaxies and study the evolution of the G/D with metallicity. Our study reveal different dust properties in

  11. The uptake of SO2 on Saharan dust: a flow tube study

    Directory of Open Access Journals (Sweden)

    J. W. Adams

    2005-01-01

    Full Text Available The uptake of SO2 onto Saharan mineral dust from the Cape Verde Islands was investigated using a coated wall flow tube coupled to a mass spectrometer. The rate of loss of SO2 to the dust coating was measured and uptake coefficients were determined using the measured BET surface area of the sample. The uptake of SO2, with an initial concentration between (2-40x1010molecule cm-3 (0.62-12 µTorr, was found to be strongly time dependent over the first few hundred seconds of an experiment, with an initial uptake γ0,BET of (6.6±0.8x10-5 (298 K, declining at longer times. The amount of SO2 adsorbed on the dust samples was measured over a range of SO2 concentrations and mineral dust loadings. The uptake of SO2 was found to be up to 98% irreversible over the timescale of these investigations. Experiments were also performed at 258 K, at a relative humidity of 27% and at 298 K in the presence of ozone. The initial uptake and the amount of SO2 taken up per unit area of BET dust surface was the same within error, irrespective of the conditions used; however the presence of ozone reduced the amount of SO2 released back into the gas-phase per unit area once exposure of the surface ended. Multiple uptakes to the same surface revealed a loss of surface reactivity, which did not return if the samples were exposed to gas-phase water, or left under vacuum overnight. A mechanism which accounts for the observed uptake behaviour is proposed and numerically modelled, allowing quantitative estimates of the rate and amount of SO2 removal in the atmosphere to be estimated. Removal of SO2 by mineral dust is predicted to be significant at high dust loadings.

  12. Non-smoking Chronic Obstructive Pulmonary Disease Attributed to Occupational Exposure to Silica Dust.

    Science.gov (United States)

    Tsuchiya, Kazuo; Toyoshima, Mikio; Kamiya, Yosuke; Nakamura, Yutaro; Baba, Satoshi; Suda, Takafumi

    2017-01-01

    An 85-year-old, never-smoking man presented with exertional dyspnea. He had been exposed to silica dust in the work place. Chest computed tomography revealed bronchial wall thickening without emphysema. A pulmonary function test showed airflow obstruction without impaired gas transfer. Airway hyperresponsiveness and reversibility were not evident. A transbronchial lung biopsy showed findings suggestive of mineral dust exposure, such as fibrosis and slight pigmentation of bronchioles. He was diagnosed with non-smoking chronic obstructive pulmonary disease (COPD) due to occupational exposure to silica dust. His symptoms were improved using an inhaled long-acting bronchodilator. The clinical characteristics of non-smoking COPD are discussed in this report.

  13. Externalities from lignite mining-related dust emissions

    International Nuclear Information System (INIS)

    Papagiannis, A.; Roussos, D.; Menegaki, M.; Damigos, D.

    2014-01-01

    During the last three decades, several studies have been conducted in order to assess the external costs of electricity production from fossil fuels, especially coal and lignite. Nevertheless, these studies usually ignore the impacts generated by the upstream mining works. This paper contributes to existing literature and attempts to fill this gap by exploring the externalities of lignite mining owing to the emission of suspended particulate matter. To this end, a ‘bottom-up’ approach is implemented, using as case study the largest operational lignite surface mine at the Lignite Center of Western Macedonia (Greece). The results indicate that annual air pollution externalities of lignite mining are of the order of 3€/ton of lignite, which corresponds to around 5.0 €/MW h. The estimated costs are significantly lower, i.e. up to 80%, when dust deposition is considered in air dispersion models. In any case, these findings should be seen as a starting point for discussion owing to the lack of specific emission rates for Greek lignite mines. - Highlights: • Externalities from lignite mining-related dust emissions are 3 €/t of lignite. • Externalities of mining correspond to around 5.0 €/MW h. • Externalities are significantly lower, up to 80%, if dust deposition is considered. • There is lack of specific dust emission rates for lignite mining. • There are high discrepancies in existing dust emission rates for lignite mining

  14. HTGR Dust Safety Issues and Needs for Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Paul W. Humrickhouse

    2011-06-01

    This report presents a summary of high temperature gas-cooled reactor dust safety issues. It draws upon a literature review and the proceedings of the Very High Temperature Reactor Dust Assessment Meeting held in Rockville, MD in March 2011 to identify and prioritize the phenomena and issues that characterize the effect of carbonaceous dust on high temperature reactor safety. It reflects the work and input of approximately 40 participants from the U.S. Department of Energy and its National Labs, the U.S. Nuclear Regulatory Commission, industry, academia, and international nuclear research organizations on the topics of dust generation and characterization, transport, fission product interactions, and chemical reactions. The meeting was organized by the Idaho National Laboratory under the auspices of the Next Generation Nuclear Plant Project, with support from the U.S. Nuclear Regulatory Commission. Information gleaned from the report and related meetings will be used to enhance the fuel, graphite, and methods technical program plans that guide research and development under the Next Generation Nuclear Plant Project. Based on meeting discussions and presentations, major research and development needs include: generating adsorption isotherms for fission products that display an affinity for dust, investigating the formation and properties of carbonaceous crust on the inside of high temperature reactor coolant pipes, and confirming the predominant source of dust as abrasion between fuel spheres and the fuel handling system.

  15. Growth and sedimentation of dust grains in the primitive solar nebular

    International Nuclear Information System (INIS)

    Battaglia, A.

    1987-01-01

    Formation of the planets in the solar system is envisioned to occur via a gravitational instability in a thin layer of dust located at the midplane of the primitive solar nebula. The break-up of the dust layer gives rise to seed plants (planetesimals) that, through successive collisions, eventually form the present-day planets. This thesis addresses the problem of the formation of the dust layer, beginning with a configuration in which the dust particles are uniformly mixed with the nebula's turbulent gas. To describe the properties of turbulence in the primitive solar nebula, models by Canuto et al. (1987) and by Cabot et al. (1987) are used. The available results concerning calculation of the velocity of particles embedded in a turbulent fluid were found to be unsatisfactory; therefore, a new formalism was developed to express the latter quantity in terms of the properties of the turbulence in the fluid. Following the space-time evolution of the grains, formalism was developed that simulates the simultaneous processes of collisions and sedimentation of the dust grains in the primitive solar nebula. It is concluded that, for the model of the primitive solar nebula considered, the formation of a dust layer at midplane is very unlikely

  16. Influence of the forces on the adhesion behavior of graphite dust in HTGR

    International Nuclear Information System (INIS)

    Peng Wei; Sun Xiaokai; Zhang Tianqi; Yu Suyuan

    2015-01-01

    The behavior of the graphite dust is important to the safety of High Temperature Gas-cooled Reactors. The present study focuses on the forces which make the graphite dust attach or detach from the surface in HTGR. The effect of graphite dust size, the fluid velocity and the surface energy between the particles and the substrate were investigated. The result showed that van der Waals adhesion force is the main factors affecting the dust attach on the surface, the gravity force and the electrostatic force were much smaller than it. For small particles, both the aerodynamic lift and drag are smaller than van der Waals adhesion force. While for the large particles, the coupled effects of aerodynamic lift and drag can make the dust detach from the substrate easier. Both the aerodynamic lift and drag forces will increase quickly as the fluid velocity increases. The surface energy is an important parameter for van der Waals adhesion force, which will decrease as the surface energy decreases. (author)

  17. Atmospheric Fate and Transport of Agricultural Dust and Ammonia

    Science.gov (United States)

    Hiranuma, N.; Brooks, S. D.; Thornton, D. C.; Auvermann, B. W.; Fitz, D. R.

    2008-12-01

    Agricultural fugitive dust and odor are significant sources of localized air pollution in the semi-arid southern Great Plains. Daily episodes of ground-level fugitive dust emissions from the cattle feedlots associated with increased cattle activity in the early evenings are routinely observed, while consistently high ammonia is observed throughout the day. Here we present measurements of aerosol size distributions and concentrations of gas and particulate phase ammonia species collected at a feedlot in Texas during summers of 2006, 2007 and 2008. A GRIMM sequential mobility particle sizer and GRIMM 1.108 aerosol spectrometer were used to determine aerosol size distributions in the range of 10 nm to 20 µm aerodynamic diameter at the downwind and upwind edges of the facility. Using aqueous scrubbers, simultaneous measurements of both gas phase and total ammonia species present in the gas and particle phases were also collected. In addition to the continuous measurements at the edges of the facility, coincident aerosol and ammonia measurements were obtain at an additional site further downwind (~3.5 km). Taken together our measurements will be used to quantify aerosol and ammonia dispersion and transport. Relationships between the fate and transport of the aerosols and ammonia will be discussed.

  18. A Peek into a Cul-De-Sac and a Mews of Martian Dust Storm Activity: Western Hellas and Syria-Claritas Fossae During Mars Year 29

    Science.gov (United States)

    Heavens, N. G.

    2016-12-01

    Western Hellas Planitia (WHP) and the region encompassed by Syria Planum and Claritas Fossae are the main centers of textured dust storm activity in Mars's southern low to mid-latitudes. (Texture in this context refers to distinct fine structure at the cloud tops indicative of active lifting.) WHP is a well-known initiation zone for regional and global dust storm activity and often the end point of the Utopia "flushing storm" track. Syria-Claritas Fossae (SCF), too, can be a lifting center in global dust storm activity. Indeed, SCF and the area to its west was the region most denuded of dust by the Mars Year (MY) 25 global dust storm, perhaps suggesting that SCF contained the principal lifting center of the storm. Thus, if the Acidalia and Utopia storm tracks are Mars's dust storm alleys, through which dust storms pass quickly again and again; WHP might be a cul-de-sac and SCF something like a mews, where dust storm activity can enter more or less easily but may not as easily leave. In this presentation, I will focus on dust storm activity in these areas in a typical non-global dust storm year, MY 29. Synthesizing visible imagery by the Mars Color Imager (MARCI) on board Mars Reconnaissance Orbiter (MRO) and Mars Climate Sounder (MCS) also on board MRO, I will consider the climatology, morphology, texture, and vertical structure of dust storm activity in these areas in order to infer their governing dynamics. This investigation has two aims: (1) to understand why these areas are centers of textured dust storm activity; and (2) to connect the characteristics of smaller-scale dust storm activity in these regions to the underlying dynamics in order to understand the role of WHP and SCF in the dynamics of global dust storms. This work is supported by NASA's Mars Data Analysis Program (NNX14AM32G).

  19. DUST FILTRATION BY PLANET-INDUCED GAP EDGES: IMPLICATIONS FOR TRANSITIONAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Zhaohuan; Dong Ruobing [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Nelson, Richard P. [Astronomy Unit, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Espaillat, Catherine [Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Hartmann, Lee, E-mail: zhzhu@astro.princeton.edu, E-mail: rdong@astro.princeton.edu, E-mail: lhartm@umich.edu, E-mail: r.p.nelson@qmul.ac.uk, E-mail: cespaillat@cfa.harvard.edu [Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109 (United States)

    2012-08-10

    By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk-the so-called dust filtration mechanism. We have found that a gap opened by a giant planet at 20 AU in an {alpha} = 0.01, M-dot =10{sup -8} M{sub Sun} yr{sup -1} disk can effectively stop dust particles larger than 0.1 mm drifting inward, leaving a submillimeter (submm) dust cavity/hole. However, smaller particles are difficult to filter by a gap induced by a several M{sub J} planet due to (1) dust diffusion and (2) a high gas accretion velocity at the gap edge. Based on these simulations, an analytic model is derived to understand what size particles can be filtered by the planet-induced gap edge. We show that a dimensionless parameter T{sub s} /{alpha}, which is the ratio between the dimensionless dust stopping time and the disk viscosity parameter, is important for the dust filtration process. Finally, with our updated understanding of dust filtration, we have computed Monte Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions of disks with gaps. By comparing with transitional disk observations (e.g., GM Aur), we have found that dust filtration alone has difficulties depleting small particles sufficiently to explain the near-IR deficit of moderate M-dot transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is to invoke both dust filtration and dust growth in the inner disk. In this scenario, a planet-induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration

  20. DUST FILTRATION BY PLANET-INDUCED GAP EDGES: IMPLICATIONS FOR TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Zhu Zhaohuan; Dong Ruobing; Nelson, Richard P.; Espaillat, Catherine; Hartmann, Lee

    2012-01-01

    By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk—the so-called dust filtration mechanism. We have found that a gap opened by a giant planet at 20 AU in an α = 0.01, M-dot =10 -8 M ☉ yr -1 disk can effectively stop dust particles larger than 0.1 mm drifting inward, leaving a submillimeter (submm) dust cavity/hole. However, smaller particles are difficult to filter by a gap induced by a several M J planet due to (1) dust diffusion and (2) a high gas accretion velocity at the gap edge. Based on these simulations, an analytic model is derived to understand what size particles can be filtered by the planet-induced gap edge. We show that a dimensionless parameter T s /α, which is the ratio between the dimensionless dust stopping time and the disk viscosity parameter, is important for the dust filtration process. Finally, with our updated understanding of dust filtration, we have computed Monte Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions of disks with gaps. By comparing with transitional disk observations (e.g., GM Aur), we have found that dust filtration alone has difficulties depleting small particles sufficiently to explain the near-IR deficit of moderate M-dot transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is to invoke both dust filtration and dust growth in the inner disk. In this scenario, a planet-induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration with planet(s) in the disk is a

  1. Constraining the Dust Opacity Law in Three Small and Isolated Molecular Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Webb, K. A.; Thanjavur, K. [Department of Physics and Astronomy, 3800 Finnerty Road, University of Victoria, Victoria, BC, V8P 5C2 (Canada); Di Francesco, J. [National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Sadavoy, S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, R.; Vicente, J. Abreu; Kainulainen, J. [Max-Planck-Institut für Astronomy, Königstuhl 17, D-69117, Heidelberg (Germany); Shirley, Y. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Stutz, A., E-mail: kawebb@uvic.ca [Departmento de Astronomìa, Facultad Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barro Universitario, Casilla 160-C, Concepción (Chile)

    2017-11-01

    Density profiles of isolated cores derived from thermal dust continuum emission rely on models of dust properties, such as mass opacity, that are poorly constrained. With complementary measures from near-infrared extinction maps, we can assess the reliability of commonly used dust models. In this work, we compare Herschel -derived maps of the optical depth with equivalent maps derived from CFHT WIRCAM near-infrared observations for three isolated cores: CB 68, L 429, and L 1552. We assess the dust opacities provided from four models: OH1a, OH5a, Orm1, and Orm4. Although the consistency of the models differs between the three sources, the results suggest that the optical properties of dust in the envelopes of the cores are best described by either silicate and bare graphite grains (e.g., Orm1) or carbonaceous grains with some coagulation and either thin or no ice mantles (e.g., OH5a). None of the models, however, individually produced the most consistent optical depth maps for every source. The results suggest that either the dust in the cores is not well-described by any one dust property model, the application of the dust models cannot be extended beyond the very center of the cores, or more complex SED fitting functions are necessary.

  2. Concentrations of polycyclic aromatic hydrocarbons in resuspendable fraction of settled bus dust and its implications for human exposure

    International Nuclear Information System (INIS)

    Gao, Peng; Liu, Sa; Feng, Yujie; Lin, Nan; Lu, Binyu; Zhang, Zhaohan; Cui, Fuyi; Xing, Baoshan; Hammond, S. Katharine

    2015-01-01

    This preliminary study measured Polycyclic Aromatic Hydrocarbons (PAHs) concentrations in the resuspendable fraction of settled dust on 39 bus lines, to evaluate the impact of engine type (gasoline and compressed natural gas) on exposure for commuters and drivers. Benzo(b)fluoranthene(BbF) was the predominant PAH in resuspendable fraction of settled bus dust. The concentration of total PAHs was 92.90 ± 116.00 μg/g (range: 0.57–410) in gasoline buses and 3.97 ± 1.81 (range: 2.01–9.47) in compressed natural gas (CNG) buses. Based on Benzo[a]pyrene (BaP) equivalent concentrations for the sum of 16 PAHs, the average daily dose (ADD) via dust ingestion and dermal contact was calculated. The ADD of PAHs was higher for commuters and drivers in gasoline-powered buses than in buses using CNG buses. For both short and long duration journeys, young commuters were exposed to higher levels of PAHs via dust ingestion and dermal contact than adult commuters. - Highlights: • Resuspendable fraction of settled dust from microenvironment of buses in Harbin monitored for PAHs exposure assessment. • Higher levels of PAHs pollutants at gasoline-powered buses than at compressed natural gas-powered buses. • Non-occupational and occupational exposures in the microenvironment of buses are assessed. - Occupational and non-occupational exposure to PAHs from the microenvironment of bus

  3. Update on Automated Classification of Interplanetary Dust Particles

    Science.gov (United States)

    Maroger, I.; Lasue, J.; Zolensky, M.

    2018-01-01

    Every year, the Earth accretes about 40,000 tons of extraterrestrial material less than 1 mm in size on its surface. These dust particles originate from active comets, from impacts between asteroids and may also be coming from interstellar space for the very small particles. Since 1981, NASA Jonhson Space Center (JSC) has been systematically collecting the dust from Earth's strastosphere by airborne collectors and gathered them into "Cosmic Dust Catalogs". In those catalogs, a preliminary analysis of the dust particles based on SEM images, some geological characteristics and X-ray energy-dispersive spectrometry (EDS) composition is compiled. Based on those properties, the IDPs are classified into four main groups: C (Cosmic), TCN (Natural Terrestrial Contaminant), TCA (Artificial Terrestrial Contaminant) and AOS (Aluminium Oxide Sphere). Nevertheless, 20% of those particles remain ambiguously classified. Lasue et al. presented a methodology to help automatically classify the particles published in the catalog 15 based on their EDS spectra and nonlinear multivariate projections (as shown in Fig. 1). This work allowed to relabel 155 particles out of the 467 particles in catalog 15 and reclassify some contaminants as potential cosmic dusts. Further analyses of three such particles indicated their probable cosmic origin. The current work aims to bring complementary information to the automatic classification of IDPs to improve identification criteria.

  4. The unusual ISM in Blue and Dusty Gas Rich Galaxies (BADGRS).

    Science.gov (United States)

    Dunne, L.; Zhang, Z.; De Vis, P.; Clark, C. J. R.; Oteo, I.; Maddox, S. J.; Cigan, P.; de Zotti, G.; Gomez, H. L.; Ivison, R. J.; Rowlands, K.; Smith, M. W. L.; van der Werf, P.; Vlahakis, C.; Millard, J. S.

    2018-06-01

    The Herschel-ATLAS unbiased survey of cold dust in the local Universe is dominated by a surprising population of very blue (FUV - K 0.5). Dubbed `Blue and Dusty Gas Rich Sources' (BADGRS) they have cold diffuse dust temperatures, and the highest dust-to-stellar mass ratios of any galaxies in the local Universe. Here, we explore the molecular ISM in a representative sample of BADGRS, using very deep {CO(J_{up}=1,2,3)} observations across the central and outer disk regions. We find very low CO brightnesses (Tp = 5 - 30 mK), despite the bright far-infrared emission and metallicities in the range 0.5 UV attenuation for their UV colour suggestive of an SMC-type dust attenuation curve, different star formation histories or different dust/star geometry. They lie in a similar part of the IRX-β space as z ˜ 5 galaxies and may be useful as local analogues for high gas fraction galaxies in the early Universe.

  5. Is the Electron Avalanche Process in a Martian Dust Devil Self-Quenching?

    Science.gov (United States)

    Farrell, William M.; McLain, Jason L.; Collier, M. R.; Keller, J. W.; Jackson, T. J.; Delory, G. T.

    2015-01-01

    Viking era laboratory experiments show that mixing tribocharged grains in a low pressure CO2 gas can form a discharge that glows, indicating the presence of an excited electron population that persists over many seconds. Based on these early experiments, it has been predicted that martian dust devils and storms may also contain a plasma and new plasma chemical species as a result of dust grain tribo-charging. However, recent results from modeling suggest a contrasting result: that a sustained electron discharge may not be easily established since the increase in gas conductivity would act to short-out the local E-fields and quickly dissipate the charged grains driving the process. In essence, the system was thought to be self-quenching (i.e., turn itself off). In this work, we attempt to reconcile the difference between observation and model via new laboratory measurements. We conclude that in a Mars-like low pressure CO2 atmosphere and expected E-fields, the electron current remains (for the most part) below the expected driving tribo-electric dust currents (approx. 10 microA/m(exp. 2)), thereby making quenching unlikely.

  6. Dust Measurements in Tokamaks

    International Nuclear Information System (INIS)

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-01-01

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 (micro)m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics

  7. Exploring the Dust Content, Metallicity, Star Formation and AGN Activity in Distant Dusty, Star-Forming Galaxies Using Cosmic Telescope

    Science.gov (United States)

    Walth, Gregory; Egami, Eiichi; Clément, Benjamin; Rujopakarn, Wiphu; Rawle, Tim; Richard, Johan; Dessauges, Miroslava; Perez-Gonzalez, Pablo; Ebeling, Harald; Vayner, Andrey; Wright, Shelley; Cosens, Maren; Herschel Lensing Survey

    2018-01-01

    We present our recent ALMA observations of Herschel-detected gravitationally lensed dusty, star-forming galaxies (DSFGs) and how they compliment our near-infrared spectroscopic observations of their rest-frame optical nebular emission. This provides the complete picture of star formation; from the molecular gas that fuels star formation, to the dust emission which are the sites of star formation, and the nebular emission which is the gas excited by the young stars. DSFGs undergo the largest starbursts in the Universe, contributing to the bulk of the cosmic star formation rate density between redshifts z = 1 - 4. Internal processes within high-redshift DSFGs remains largely unexplored; such as feedback from star formation, the role of turbulence, gas surface density of molecular gas, AGN activity, and the rates of metal production. Much that is known about DSFGs star formation properties comes from their CO and dust emission. In order to fully understand the star formation history of DSFGs, it is necessary to observe their optical nebular emission. Unfortunately, UV/optical emission is severely attenuated by dust, making it challenging to detect. With the Herschel Lensing Survey, a survey of the cores of almost 600 massive galaxy clusters, we are able to probe faint dust-attenuated nebular emission. We are currently conducting a new survey using Keck/OSIRIS to resolve a sample of gravitationally lensed DSFGs from the Herschel Lensing Survey (>100 mJy, with SFRs >100 Msun/yr) at redshifts z=1-4 with magnifications >10x all with previously detected nebular emission lines. We present the physical and resolved properties of gravitationally lensed DSFGs at unprecedented spatial scales; such as ionization, metallicity, AGN activity, and dust attenuation.

  8. Arabian Red Sea coastal soils as potential mineral dust sources

    Directory of Open Access Journals (Sweden)

    P. Jish Prakash

    2016-09-01

    Full Text Available Both Moderate Resolution Imaging Spectroradiometer (MODIS and Spinning Enhanced Visible and InfraRed Imager (SEVIRI satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Arabian Red Sea coastal plain, which in turn will help to improve assessment of dust effects on the Red Sea, land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of windblown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included optical microscopy, X-ray diffraction (XRD, inductively coupled plasma optical emission spectrometry (ICP-OES, ion chromatography (IC, scanning electron microscopy (SEM and laser particle size analysis (LPSA. We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models

  9. Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.

    2003-01-01

    A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.

  10. Optical properties of cosmic dust analogs: a review

    Science.gov (United States)

    Henning, Thomas; Mutschke, Harald

    2010-04-01

    Nanometer- and micrometer-sized solid particles play an important role in the evolutionary cycle of stars and interstellar matter. The optical properties of cosmic grains determine the interaction of the radiation field with the solids, thereby regulating the temperature structure and spectral appearance of dusty regions. Radiation pressure on dust grains and their collisions with the gas atoms and molecules can drive powerful winds. The analysis of observed spectral features, especially in the infrared wavelength range, provides important information on grain size, composition and structure as well as temperature and spatial distribution of the material. The relevant optical data for interstellar, circumstellar, and protoplanetary grains can be obtained by measurements on cosmic dust analogs in the laboratory or can be calculated from grain models based on optical constants. Both approaches have made progress in the last years, triggered by the need to interpret increasingly detailed high-quality astronomical observations. The statistical theoretical approach, spectroscopic experiments at variable temperature and absorption spectroscopy of aerosol particulates play an important role for the successful application of the data in dust astrophysics.

  11. Charging of Dust Grains in a Nuclear-Induced Plasma at High Pressures

    International Nuclear Information System (INIS)

    Pal’, A. F.; Starostin, A. N.; Filippov, A. V.

    2001-01-01

    The process of dust-grain charging in plasmas produced by radioactive decay products or spontaneous fission fragments in air and xenon at high pressures is studied numerically in the hydrodynamic approximation. It is shown that, at sufficiently high rates of gas ionization, the dust grains in air are charged by electrons rather than ions, so that the grain charge in air is comparable to that in electropositive gases. The results of numerical calculations based on a complete model agree well with the experimental data. The time evolution of the grain charge is investigated, and the characteristic time scales on which the grains acquire an electric charge are established. The validity of approximate theories of dust-grain charging in electropositive and electronegative gases at high pressures is examined

  12. OUTFLOW AND HOT DUST EMISSION IN HIGH-REDSHIFT QUASARS

    International Nuclear Information System (INIS)

    Wang, Huiyuan; Xing, Feijun; Wang, Tinggui; Zhou, Hongyan; Zhang, Kai; Zhang, Shaohua

    2013-01-01

    Correlations of hot dust emission with outflow properties are investigated, based on a large z ∼ 2 non-broad absorption line quasar sample built from the Wide-field Infrared Survey and the Sloan Digital Sky Survey data releases. We use the near-infrared slope and the infrared to UV luminosity ratio to indicate the hot dust emission relative to the emission from the accretion disk. In our luminous quasars, these hot dust emission indicators are almost independent of the fundamental parameters, such as luminosity, Eddington ratio and black hole mass, but moderately dependent on the blueshift and asymmetry index (BAI) and FWHM of C IV lines. Interestingly, the latter two correlations dramatically strengthen with increasing Eddington ratio. We suggest that, in high Eddington ratio quasars, C IV regions are dominated by outflows so the BAI and FWHM (C IV) can reliably reflect the general properties and velocity of outflows, respectively. In low Eddington ratio quasars, on the other hand, C IV lines are primarily emitted by virialized gas so the BAI and FWHM (C IV) become less sensitive to outflows. Therefore, the correlations for the highest Eddington ratio quasars are more likely to represent the true dependence of hot dust emission on outflows and the correlations for the entire sample are significantly diluted by the low Eddington ratio quasars. Our results show that an outflow with a large BAI or velocity can double the hot dust emission on average. We suggest that outflows either contain hot dust in themselves or interact with the dusty interstellar medium or torus

  13. Statistical analysis of dust signals observed by ROSINA/COPS onboard of the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Tzou, Chia-Yu; altwegg, kathrin; Bieler, Andre; Calmonte, Ursina; Gasc, Sébastien; Le Roy, Léna; Rubin, Martin

    2016-10-01

    ROSINA is the in situ Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board of Rosetta, one of the corner stone missions of the European Space Agency (ESA) to land and orbit the Jupiter family comet 67P/Churyumov-Gerasimenko (67P). ROSINA consists of two mass spectrometers and a pressure sensor. The Reflectron Time of Flight Spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS) complement each other in mass and time resolution.The Comet Pressure Sensor (COPS) provides density measurements of the neutral molecules in the cometary coma of 67P. COPS has two gauges, a nude gauge that measures the total neutral density and a ram gauge that measures the dynamic pressure from the comet. Combining the two COPS is also capable of providing gas dynamic information such as gas velocity and gas temperature of the coma.While Rosetta started orbiting around 67P in August 2014, COPS observed diurnal and seasonal variations of the neutral gas density in the coma. Surprisingly, additional to these major density variation patterns, COPS occasionally observed small spikes in the density that are associated with dust. These dust signals can be interpreted as a result of cometary dust releasing volatiles while heated up near COPS. A statistical analysis of dust signals detected by COPS will be presented.

  14. Measuring instrument for the determination of dust concentrations. [air filter with. beta. radiometric gage

    Energy Technology Data Exchange (ETDEWEB)

    Dresia, H; Spohr, F

    1975-05-22

    The measuring instrument enables a continuous determination of the dust concentration or total dust content in gases on the basis of the radiometric mass determination of dusts. The partial current method is employed, with the gas fetched through a filter cell with a topped intake by a suction pump. A filter band to take up the dust deposit is continuously driven through the filter cell. The filter point and the measuring point with a ..beta..-radionuclide and a detector are both inside the filter cell. The filter cell is sealed all around, at the entrance and exit of the filter band. The band itself acts as a seal. The filter band also has borders strengthened with, e.g., plastic strips which engage the drive. The widths of the slits are adjustable in height.

  15. Peering Through the Dust: NuSTAR Observations of Two First-2Mass Red Quasars

    Science.gov (United States)

    Lamassa, Stephanie M.; Ricarte, Angelo; Glikman, Eilat; Urry, C. Megan; Stern, Daniel; Yaqoob, Tahir; Lansbury, George B.; Civano, Francesca; Boggs, Steve E.; Zhang, Will

    2016-01-01

    Some reddened quasars appear to be transitional objects in the paradigm of merger-induced black hole growth/ galaxy evolution, where a heavily obscured nucleus starts to be unveiled by powerful quasar winds evacuating the surrounding cocoon NuSTAR and XMM-Newton/Chandra observations of FIRST-2MASS-selected red quasars F2M 0830+3759 and F2M 1227+3214. We find that though F2M 0830 +3759 is moderately obscured N(sub H) = (2.1 +/- 0.2) x 10 (exp 22) per square centimeter) and F2M 1227+3214 is mildly absorbed (N(sub H),Z =3.4(+0.8/-0.7) X 10(exp -2) along the line of sight, heavier global obscuration may be present in both sources, with N(sub H) = 3.7 (+4.1/-2.6) X 10 (exp 23) per square centimeter) and less than 5.5 X 10(exp 23) per square centimeter) for F2M 0830+3759 and F2M 1227+ 3214, respectively. F2M 0830+3759 also has an excess of soft X-ray emission below 1 of dust and gas. Hard X-ray observations are able to peer through this gas and dust, revealing the properties of circumnuclear obscuration. Here, we present keV, which is well accommodated by a model where 7% of the intrinsic X-ray emission from the active galactic nucleus (AGN) is scattered into the line of sight. While F2M 1227+3214 has a dust-to-gas ratio (E(B - V)/NH) consistent with the Galactic value, the value of E(B - V)/NH for F2M 0830+3759 is lower than the Galactic standard, consistent with the paradigm that the dust resides on galactic scales while the X-ray reprocessing gas originates within the dust sublimation zone of the broad-line region. The X-ray and 6.1 µm luminosities of these red quasars are consistent with the empirical relations derived for high-luminosity, unobscured quasars, extending the parameter space of obscured AGNs previously observed by NuSTAR to higher luminosities.

  16. A Close-up View of the Young Circumbinary Disk HD 142527

    Energy Technology Data Exchange (ETDEWEB)

    Boehler, Y.; Weaver, E.; Isella, A.; Ricci, L. [Rice University, Department of Physics and Astronomy, Main Street, Houston, TX 77005 (United States); Grady, C. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Carpenter, J. [Joint ALMA Observatory (JAO), Alonso de Cordova 3107 Vitacura—Santiago de Chile (Chile); Perez, L. [Max-Planck-Institute for Astronomy, Bonn (Germany)

    2017-05-01

    We present ALMA observations of the 0.88 millimeter dust continuum and the {sup 13}CO and C{sup 18}O J = 3-2 line emission of the circumbinary disk HD 142527 at a spatial resolution of ∼0.″25. This system is characterized by a large central cavity of roughly 120 au in radius, and asymmetric dust and gas emission. By comparing the observations with theoretical models, we find that the azimuthal variations in gas and dust density reach a contrast of 54 for dust grains and 3.75 for CO molecules, with an extreme gas-to-dust ratio of 1.7 on the dust crescent. We point out that caution is required in interpreting continuum-subtracted maps of the line emission, as this process might result in removing a large fraction of the line emission. Radially, we find that both the gas and dust surface densities can be described by Gaussians, centered at the same disk radius, and with gas profiles wider than those for dust. These results strongly support a scenario in which millimeter dust grains are radially and azimuthally trapped toward the center of a gas pressure bump. Finally, our observations reveal a compact source of continuum and CO emission inside the dust-depleted cavity ∼50 au from the primary star. The kinematics of the CO emission from this region is different from that expected from material in Keplerian rotation around the binary system, and might instead trace a compact disk around a third companion. Higher angular resolution observations are required to investigate the nature of this source.

  17. Ten-year operational dust forecasting - Recent model development and future plans

    International Nuclear Information System (INIS)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G

    2009-01-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10 8 t yr- 1 . A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  18. Ten-year operational dust forecasting - Recent model development and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Kallos, G; Spyrou, C; Astitha, M; Mitsakou, C; Solomos, S; Kushta, J; Pytharoulis, I; Katsafados, P; Mavromatidis, E; Papantoniou, N; Vlastou, G [University of Athens, School of Physics, Atmospheric Modeling and Weather Forecasting Group - UOA/AM and WFG, University Campus, Bldg. PHYS-V, Athens 15784 (Greece)], E-mail: kallos@mg.uoa.gr

    2009-03-01

    The Sahara desert is one of the major sources of mineral dust on Earth, producing up to 2x10{sup 8} t yr-{sup 1}. A combined effort has been devoted during the last ten years at the University of Athens (UOA) from the Atmospheric Modeling and Weather Forecasting Group (AM and WFG) to the development of an analysis and forecasting tool that will provide early warning of Saharan dust outbreaks. The developed tool is the SKIRON limited-area forecasting system, based on the Eta limited area modeling system with embedded algorithms describing the dust cycle. A new version of the model is currently available, with extra features like eight-size particle bins, radiative transfer corrections, new dust source identification and utilization of rocky soil characterization and incorporation of more accurate deposition schemes. The new version of SKIRON modeling system is coupled with the photochemical model CAMx in order to study processes like the shading effect of dust particles on photochemical processes and the production of second and third generation of aerosols. Moreover, another new development in the AM and WFG is based on the RAMS model, with the incorporation of processes like dust and sea-salt production, gas and aqueous phase chemistry and particle formation. In this study, the major characteristics of the developed (and under development) modeling systems are presented, as well as the spatiotemporal distribution of the transported dust amounts, the interaction with anthropogenically-produced particles and the potential implications on radiative transfer.

  19. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution plumes

    Directory of Open Access Journals (Sweden)

    T. D. Fairlie

    2010-04-01

    Full Text Available We use a 3-D global chemical transport model (GEOS-Chem to interpret aircraft observations of nitrate and sulfate partitioning in transpacific dust plumes during the INTEX-B campaign of April–May 2006. The model includes explicit transport of size-resolved mineral dust and its alkalinity, nitrate, and sulfate content. The observations show that particulate nitrate is primarily associated with dust, sulfate is primarily associated with ammonium, and Asian dust remains alkaline across the Pacific. This can be reproduced in the model by using a reactive uptake coefficient for HNO3 on dust (γ(HNO3 ~10−3 much lower than commonly assumed in models and possibly reflecting limitation of uptake by dust dissolution. The model overestimates gas-phase HNO3 by a factor of 2–3, typical of previous model studies; we show that this cannot be corrected by uptake on dust. We find that the fraction of aerosol nitrate on dust in the model increases from ~30% in fresh Asian outflow to 80–90% over the Northeast Pacific, reflecting in part the volatilization of ammonium nitrate and the resulting transfer of nitrate to the dust. Consumption of dust alkalinity by uptake of acid gases in the model is slow relative to the lifetime of dust against deposition, so that dust does not acidify (at least not in the bulk. This limits the potential for dust iron released by acidification to become bio-available upon dust deposition. Observations in INTEX-B show no detectable ozone depletion in Asian dust plumes, consistent with the model. Uptake of HNO3 by dust, suppressing its recycling to NOx, reduces Asian pollution influence on US surface ozone in the model by 10–15% or up to 1 ppb.

  20. Grain-gas interaction in envelopes of red giants

    International Nuclear Information System (INIS)

    Maciel, W.J.

    1976-01-01

    A model for the ejection of the dust shell of red giant stars through the action of the stellar radiation pressure is developed. Being momentum-coupled to the gas, the dust shell can drive an effective mass loss. On the other hand, the grain injection rate into the interstellar space can be estimated [pt

  1. Preliminary experiment design of graphite dust emission measurement under accident conditions for HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Wei, E-mail: pengwei@tsinghua.edu.cn [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Chen, Tao; Sun, Qi; Wang, Jie [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2017-05-15

    Highlights: • A theoretical analysis is used to predict the total graphite dust release for an AVR LOCA. • Similarity criteria must be satisfied between the experiment and the actual HTGR system. • Model experiments should be conducted to predict the graphite dust resuspension rate. - Abstract: The graphite dust movement behavior is significant for the safety analyses of high-temperature gas cooled reactor (HTGR). The graphite dust release for accident conditions is an important source term for HTGR safety analyses. Depressurization release tests are not practical in HTGR because of a radioactivity release to the environment. Thus, a theoretical analysis and similarity principles were used to design a group of modeling experiments. Modeling experiments for fan start-up and depressurization process and actual experiments of helium circulator start-up in an HTGR were used to predict the rate of graphite dust resuspension and the graphite dust concentration, which can be used to predict the graphite dust release during accidents. The modeling experiments are easy to realize and the helium circulator start-up test does not harm the reactor system or the environment, so this experiment program is easily achieved. The revised Rock’n’Roll model was then used to calculate the AVR reactor release. The calculation results indicate that the total graphite dust releases during a LOCA will be about 0.65 g in AVR.

  2. Dust confinement and dust acoustic waves in a magnetized plasma

    Science.gov (United States)

    Piel, A.

    2005-10-01

    Systematic laboratory experiments on dust acoustic waves require the confinement of dust particles. Here we report on new experiments in a magnetized plasma region in front of an additional positively biased disk electrode in a background plasma which is generated in argon at 27MHz between a disk and grid electrode. The plasma diffuses through the grid along the magnetic field. The three-dimensional dust distribution is measured with a horizontal sheet of laser light and a CCD camera, which are mounted on a vertical translation stage. Depending on magnetic field and discharge current, cigar or donut-shaped dust clouds are generated, which tend to rotate about the magnetic field direction. Measurements with emissive probes show that the axial confinement of dust particles with diameters between 0.7-2 μm is achieved by a balance of ion-drag force and electric field force. Dust levitation and radial confinement is due to a strong radial electric field. Dust acoustic waves are destabilized by the ion flow or can be stimulated by a periodic bias on the disk electrode. The observed wave dispersion is compared with fluid and kinetic models of the dust acoustic wave.

  3. Wood-related occupations, wood dust exposure, and sinonasal cancer.

    Science.gov (United States)

    Hayes, R B; Gerin, M; Raatgever, J W; de Bruyn, A

    1986-10-01

    A case-control study was conducted to examine the relations between type of woodworking and the extent of wood dust exposure to the risks for specific histologic types of sinonasal cancer. In cooperation with the major treatment centers in the Netherlands, 116 male patients newly diagnosed between 1978 and 1981 with primary malignancies of epithelial origin of this site were identified for study. Living controls were selected from the municipal registries, and deceased controls were selected from the national death registry. Interviews were completed for 91 (78%) cases and 195 (75%) controls. Job histories were coded by industry and occupation. An index of exposure was developed to classify the extent of occupational exposure to wood dust. When necessary, adjustment was made for age and usual cigarette use. The risk for nasal adenocarcinoma was elevated by industry for the wood and paper industry (odds ratio (OR) = 11.9) and by occupation for those employed in furniture and cabinet making (OR = 139.8), in factory joinery and carpentry work (OR = 16.3), and in association with high-level wood dust exposure (OR = 26.3). Other types of nasal cancer were not found to be associated with wood-related industries or occupations. A moderate excess in risk for squamous cell cancer (OR = 2.5) was associated with low-level wood dust exposure; however, no dose-response relation was evident. The association between wood dust and adenocarcinoma was strongest for those employed in wood dust-related occupations between 1930 and 1941. The risk of adenocarcinoma did not appear to decrease for at least 15 years after termination of exposure to wood dust. No cases of nasal adenocarcinoma were observed in men whose first exposure to wood dust occurred after 1941.

  4. Allergies, asthma, and dust

    Science.gov (United States)

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  5. Seasonal and occupational trends of five organophosphate pesticides in house dust.

    Science.gov (United States)

    Smith, Marissa N; Workman, Tomomi; McDonald, Katie M; Vredevoogd, Melinda A; Vigoren, Eric M; Griffith, William C; Thompson, Beti; Coronado, Gloria D; Barr, Dana; Faustman, Elaine M

    2017-07-01

    Since 1998, the University of Washington's Center for Child Environmental Health Risks Research has followed a community-based participatory research strategy in the Lower Yakima Valley of Washington State to assess pesticide exposure among families of Hispanic farmworkers. As a part of this longitudinal study, house dust samples were collected from both farmworker and non-farmworker households, across three agricultural seasons (thinning, harvest and non-spray). The household dust samples were analyzed for five organophosphate pesticides: azinphos-methyl, phosmet, malathion, diazinon, and chlorpyrifos. Organophosphate pesticide levels in house dust were generally reflective of annual use rates and varied by occupational status and agricultural season. Overall, organophosphate pesticide concentrations were higher in the thinning and harvest seasons than in the non-spray season. Azinphos-methyl was found in the highest concentrations across all seasons and occupations. Farmworker house dust had between 5- and 9-fold higher concentrations of azinphos-methyl than non-farmworker house dust. Phosmet was found in 5-7-fold higher concentrations in farmworker house dust relative to non-farmworker house dust. Malathion and chlorpyriphos concentrations in farmworker house dust ranged between 1.8- and 9.8-fold higher than non-farmworker house dust. Diazinon showed a defined seasonal pattern that peaked in the harvest season and did not significantly differ between farmworker and non-farmworker house dust. The observed occupational differences in four out of five of the pesticide residues measured provides evidence supporting an occupational take home pathway, in which workers may bring pesticides home on their skin or clothing. Further, these results demonstrate the ability of dust samples to inform the episodic nature of organophosphate pesticide exposures and the need to collect multiple samples for complete characterization of exposure potential.

  6. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  7. Laser gas assisted texturing and formation of nitride and oxynitride compounds on alumina surface: Surface response to environmental dust

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Aqeeli, N.

    2018-03-01

    Laser gas assisted texturing of alumina surface is carried out, and formation of nitride and oxynitride compounds in the surface vicinity is examined. The laser parameters are selected to create the surface topology consisting of micro/nano pillars with minimum defect sites including micro-cracks, voids and large size cavities. Morphological and hydrophobic characteristics of the textured surface are examined using the analytical tools. The characteristics of the environmental dust and its influence on the laser textured surface are studied while mimicking the local humid air ambient. Adhesion of the dry mud on the laser textured surface is assessed through the measurement of the tangential force, which is required to remove the dry mud from the surface. It is found that laser texturing gives rise to micro/nano pillars topology and the formation of AlN and AlON compounds in the surface vicinity. This, in turn, lowers the free energy of the textured surface and enhances the hydrophobicity of the surface. The liquid solution resulted from the dissolution of alkaline and alkaline earth metals of the dust particles in water condensate forms locally scattered liquid islands at the interface of mud and textured surface. The dried liquid solution at the interface increases the dry mud adhesion on the textured surface. Some dry mud residues remain on the textured surface after the dry mud is removed by a pressurized desalinated water jet.

  8. Dust removal in power plant. Practical experiences with textile filter media in the flue gas purification coal-fired plants; Entstaubung von Kraftwerken. Praxiserfahrungen mit textilen Filtermedien in der Rauchgasreinigung von kohlegefeuerten Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Binnig, Joachim [BWF Envirotec, Offingen (Germany)

    2009-10-15

    Beside carbon dioxide, coal-fired power plants also produce particle emissions which have to be removed by filtering units from the flue gas. In the Federal Republic of Germany, this is enabled by means of electrostatic filters. In South Africa, the bag filter is the preferential method of dust removal. In the People's Republic of China, already large power plants with bag filters are dedusted. With regard to the cost structure, no significant differences between bag filters and electrostatic filters appear. Suitable measures can prevent the destruction of bag filters by an excess temperature in the case of disturbances of operation. Bag filters offer a higher efficiency of separation with fine dust and very fine dust. Using a professional conception of a filter plant, an operation of bag filters for the dedusting of coal-fired power plants is possible without problems. A service life of several years can be achieved.

  9. Dust evolution, a global view: III. Core/mantle grains, organic nano-globules, comets and surface chemistry

    Science.gov (United States)

    2016-01-01

    Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of ‘polar ice’ mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm ‘carbonyl’ absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes. PMID:28083090

  10. Experimental investigation on an entrained flow type biomass gasification system using coconut coir dust as powdery biomass feedstock.

    Science.gov (United States)

    Senapati, P K; Behera, S

    2012-08-01

    Based on an entrained flow concept, a prototype atmospheric gasification system has been designed and developed in the laboratory for gasification of powdery biomass feedstock such as rice husks, coconut coir dust, saw dust etc. The reactor was developed by adopting L/D (height to diameter) ratio of 10, residence time of about 2s and a turn down ratio (TDR) of 1.5. The experimental investigation was carried out using coconut coir dust as biomass feedstock with a mean operating feed rate of 40 kg/h The effects of equivalence ratio in the range of 0.21-0.3, steam feed at a fixed flow rate of 12 kg/h, preheat on reactor temperature, product gas yield and tar content were investigated. The gasifier could able to attain high temperatures in the range of 976-1100 °C with gas lower heating value (LHV) and peak cold gas efficiency (CGE) of 7.86 MJ/Nm3 and 87.6% respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Dust-lower-hybrid waves in a magnetized self-gravitating dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Roy Chowdhury, A.; Dasgupta, B.

    1997-11-01

    General dispersion relation for a self-gravitating magnetized and finite temperature dusty plasma has been derived using the Vlasov-kinetic theory in guiding center technique. Results of earlier studies in unmagnetized situations turn out to be special cases of our general dispersion relation. In addition to the usual dust-acoustic waves in unmagnetized plasmas, we find an ultra-low-frequency mode in the frequency range between cyclotron frequencies of ions and charged dust particles and the Jean's instability of the self-gravitating dusty plasma systems. (author)

  12. EVIDENCE FOR DUST CLEARING THROUGH RESOLVED SUBMILLIMETER IMAGING

    International Nuclear Information System (INIS)

    Brown, J. M.; Blake, G. A.; Qi, C.; Wilner, D. J.; Dullemond, C. P.; Williams, J. P.

    2009-01-01

    Mid-infrared spectrophotometric observations have revealed a small subclass of circumstellar disks with spectral energy distributions (SEDs) suggestive of large inner gaps with low dust content. However, such data provide only an indirect and model-dependent method of finding central holes. Imaging of protoplanetry disks provides an independent check of SED modeling. We present here the direct characterization of three 33-47 AU radii inner gaps, in the disks around LkHα 330, SR 21N, and HD 135344B, via 340 GHz (880 μm) dust continuum aperture synthesis observations obtained with the Submillimeter Array (SMA). The large gaps are fully resolved at ∼0.''3 by the SMA data and mostly empty of dust, with less than (1-7.5) x 10 -6 M sun of fine grained solids inside the holes. Gas (as traced by atomic accretion markers and CO 4.7 μm rovibrational emission) is still present in the inner regions of all three disks. For each, the inner hole exhibits a relatively steep rise in dust emission to the outer disk, a feature more likely to originate from the gravitational influence of a companion body than from a process expected to show a more shallow gradient like grain growth. Importantly, the good agreement between the spatially resolved data and spectrophotometry-based models lends confidence to current interpretations of SEDs, wherein the significant dust emission deficits arise from disks with inner gaps or holes. Further SED-based searches can therefore be expected to yield numerous additional candidates that can be examined at high spatial resolution.

  13. Stardust@home: An Interactive Internet-based Search for Interstellar Dust

    Science.gov (United States)

    Mendez, B. J.; Westphal, A. J.; Butterworth, A. L.; Craig, N.

    2006-12-01

    On January 15, 2006, NASA's Stardust mission returned to Earth after nearly seven years in interplanetary space. During its journey, Stardust encountered comet Wild 2, collecting dust particles from it in a special material called aerogel. At two other times in the mission, aerogel collectors were also opened to collect interstellar dust. The Stardust Interstellar Dust Collector is being scanned by an automated microscope at the Johnson Space Center. There are approximately 700,000 fields of view needed to cover the entire collector, but we expect only a few dozen total grains of interstellar dust were captured within it. Finding these particles is a daunting task. We have recruited many thousands of volunteers from the public to aid in the search for these precious pieces of space dust trapped in the collectors. We call the project Stardust@home. Through Stardust@home, volunteers from the public search fields of view from the Stardust aerogel collector using a web-based Virtual Microscope. Volunteers who discover interstellar dust particles have the privilege of naming them. The interest and response to this project has been extraordinary. Many people from all walks of life are very excited about space science and eager to volunteer their time to contribute to a real research project such as this. We will discuss the progress of the project and the education and outreach activities being carried out for it.

  14. Gas Modelling in the Disc of HD 163296

    Science.gov (United States)

    Tilling, I.; Woitke, P.; Meeus, G.; Mora, A.; Montesinos, B.; Riviere-Marichalar, P.; Eiroa, C.; Thi, W. -F.; Isella, A.; Roberge, A.; hide

    2011-01-01

    We present detailed model fits to observations of the disc around the Herbig Ae star HD 163296. This well-studied object has an age of approx. 4Myr, with evidence of a circumstellar disc extending out to approx. 540AU. We use the radiation thermo-chemical disc code ProDiMo to model the gas and dust in the circumstellar disc of HD 163296, and attempt to determine the disc properties by fitting to observational line and continuum data. These include new Herschel/PACS observations obtained as part of the open-time key program GASPS (Gas in Protoplanetary Systems), consisting of a detection of the [Oi] 63 m line and upper limits for several other far infrared lines. We complement this with continuum data and ground-based observations of the CO-12 3-2, 2-1 and CO-13 J=1-0 line transitions, as well as the H2 S(1) transition. We explore the effects of stellar ultraviolet variability and dust settling on the line emission, and on the derived disc properties. Our fitting efforts lead to derived gas/dust ratios in the range 9-100, depending on the assumptions made. We note that the line fluxes are sensitive in general to the degree of dust settling in the disc, with an increase in line flux for settled models. This is most pronounced in lines which are formed in the warm gas in the inner disc, but the low excitation molecular lines are also affected. This has serious implications for attempts to derive the disc gas mass from line observations. We derive fractional PAH abundances between 0.007 and 0.04 relative to ISM levels. Using a stellar and UV excess input spectrum based on a detailed analysis of observations, we find that the all observations are consistent with the previously assumed disc geometry

  15. Benchmarking validations for dust mobilization models of GASFLOW code. EFDA reference: TW5-TSS-SEA 3.5 D4

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Breitung, W. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Kern- und Energietechnik; Travis, J.R. [Ingenieur Buero DuBois-Pitzer-Travis, Offenbach (Germany). Programm Kernfusion

    2008-08-15

    The governing equations of particle transport are defined and solved in the computational fluid dynamics code of GASFLOW. The particle motion model is based on the discrete Lagrangian approach being applicable to model the dust mobilization in the dilute dust / gas mixture, which is being expected to exist in the vacuum vessel of the ITER. A particle turbulent dispersion model and models of particle / boundary interactions, like rebound / deposition and entrainment, are defined as well. The deterministic particle trajectories obtained by GASFLOW simulations are verified against analytical solutions in both Cartesian and cylindrical systems. The stochastic particle dispersions caused by the turbulence in gas flow are compared between light and heavy particles in straight and curved ducts. Green's function method is applied to develop a bunch of theoretical solutions about particle concentration distributions in advective flows with different source / boundary conditions. The analytical solutions supply benchmarking verifications of the particle model of GASFLOW. Finally a graphite dust dispersion experiment is simulated by using GASFLOW. The comparison between the computed dust cloud developing process and the experimental one manifests that the particle model can produce the dust mobilization both qualitatively and quantitatively (orig.)

  16. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    Science.gov (United States)

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  17. Modeled Downward Transport of a Passive Tracer over Western North America during an Asian Dust Event in April 1998.

    Science.gov (United States)

    Hacker, Joshua P.; McKendry, Ian G.; Stull, Roland B.

    2001-09-01

    An intense Gobi Desert dust storm in April 1998 loaded the midtroposphere with dust that was transported across the Pacific to western North America. The Mesoscale Compressible Community (MC2) model was used to investigate mechanisms causing downward transport of the midtropospheric dust and to explain the high concentrations of particulate matter of less than 10-m diameter measured in the coastal urban areas of Washington and southern British Columbia. The MC2 was initialized with a thin, horizontally homogeneous layer of passive tracer centered at 650 hPa for a simulation from 0000 UTC 26 April to 0000 UTC 30 April 1998. Model results were in qualitative agreement with observed spatial and temporal patterns of particulate matter, indicating that it captured the important meteorological processes responsible for the horizontal and vertical transport over the last few days of the dust event. A second simulation was performed without topography to isolate the effects of topography on downward transport.Results show that the dust was advected well east of the North American coast in southwesterly midtropospheric flow, with negligible dust concentration reaching the surface initially. Vertically propagating mountain waves formed during this stage, and differences between downward and upward velocities in these waves could account for a rapid descent of dust to terrain height, where the dust was entrained into the turbulent planetary boundary layer. A deepening outflow (easterly) layer near the surface transported the tracer westward and created a zonal-shear layer that further controlled the tracer advection. Later, the shear layer lifted, leading to a downward hydraulic acceleration along the western slopes, as waves generated in the easterly flow amplified below the shear layer that was just above mountain-crest height. Examination of 10 yr of National Centers for Environmental Prediction-National Center for Atmospheric Research reanalyses suggests that such events

  18. 75 FR 51990 - CenterPoint Energy-Illinois Gas Transmission Company; Notice of Baseline Filing

    Science.gov (United States)

    2010-08-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-80-000] CenterPoint Energy--Illinois Gas Transmission Company; Notice of Baseline Filing August 17, 2010. Take notice that on August 12, 2010, the applicant listed above submitted their baseline filing of its Statement of Operating...

  19. Concentrations of polycyclic aromatic hydrocarbons in resuspendable fraction of settled bus dust and its implications for human exposure.

    Science.gov (United States)

    Gao, Peng; Liu, Sa; Feng, Yujie; Lin, Nan; Lu, Binyu; Zhang, Zhaohan; Cui, Fuyi; Xing, Baoshan; Hammond, S Katharine

    2015-03-01

    This preliminary study measured Polycyclic Aromatic Hydrocarbons (PAHs) concentrations in the resuspendable fraction of settled dust on 39 bus lines, to evaluate the impact of engine type (gasoline and compressed natural gas) on exposure for commuters and drivers. Benzo(b)fluoranthene(BbF) was the predominant PAH in resuspendable fraction of settled bus dust. The concentration of total PAHs was 92.90 ± 116.00 μg/g (range: 0.57-410) in gasoline buses and 3.97 ± 1.81 (range: 2.01-9.47) in compressed natural gas (CNG) buses. Based on Benzo[a]pyrene (BaP) equivalent concentrations for the sum of 16 PAHs, the average daily dose (ADD) via dust ingestion and dermal contact was calculated. The ADD of PAHs was higher for commuters and drivers in gasoline-powered buses than in buses using CNG buses. For both short and long duration journeys, young commuters were exposed to higher levels of PAHs via dust ingestion and dermal contact than adult commuters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Time Variability of the Dust Sublimation Zones in Pre-Main Sequence Disk Systems

    Science.gov (United States)

    Sitko, Michael L.; Carpenter, W. J.; Grady, C. A.; Russel, R. W.; Lynch, D. K.; Rudy, R. J.; Mazuk, S. M.; Venturini, C. C.; Kimes, R. L.; Beerman, L. C.; hide

    2007-01-01

    The dust sublimation zone (DSZ) is the region of pre-main sequence (PMS) disks where dust grains most easily anneal, sublime, and condense out of the gas. Because of this, it is a location where crystalline material may be enhanced and redistributed throughout the rest of the disk. A decade-long program to monitor the thermal emission of the grains located in this region demonstrates that large changes in emitted flux occur in many systems. Changes in the thermal emission between 3 and 13.5 microns were observed in HD 31648 (MWC 480), HD 163296 (MWC 275), and DG Tau. This emission is consistent with it being produced at the DSZ, where the transition from a disk of gas to one of gas+dust occurs. In the case of DG Tau, the outbursts were accompanied by increased emission on the 10 micron silicate band on one occasion, while on another occasion it went into absorption. This requires lofting of the material above the disk into the line of sight. Such changes will affect the determination of the inner disk structure obtained through interferometry measurements, and this has been confirmed in the case of HD 163296. Cyclic variations in the heating of the DSZ will lead to the annealing of large grains, the sublimation of smaller grains, possibly followed by re-condensation as the zone enters a cooling phase. Lofting of dust above the disk plane, and outward acceleration by stellar winds and radiation pressure, can re-distribute the processed material to cooler regions of the disk, where cometesimals form. This processing is consistent with the detection of the preferential concentration of large crystalline grains in the inner few AU of PMS disks using interferometric spectroscopy with the VLTI.

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DUST SUPPRESSANT PRODUCTS: SYNTECH PRODUCTS CORPORATION'S PETROTAC

    Science.gov (United States)

    Dust suppressant products used to control particulate emissions from unpaved roads are among the technologies evaluated by the Air Pollution Control Technology (APCT) Verification Center, part of the U.S. Environmental Protection Agency's Environmental Technology Verification (ET...

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: DUST SUPPRESSANT PRODUCTS: SYNTECH PRODUCTS CORPORATION'S TECHSUPPRESS

    Science.gov (United States)

    Dust suppressant products used to control particulate emissions from unpaved roads are among the technologies evaluated by the Air Pollution Control Technology (APCT) Verification Center, part of the U.S. Environmental Protection Agency's Environmental Technology Verification (ET...

  3. INTERSTELLAR MEDIUM PROCESSING IN THE INNER 20 pc IN GALACTIC CENTER

    International Nuclear Information System (INIS)

    Liu, Hauyu Baobab; Ho, Paul T. P.; Su, Yu-Nung; Hsieh, Pei-Ying; Wright, Melvyn C. H.; Sun, Ai-Lei; Kim, Sungsoo S.; Minh, Young Chol

    2013-01-01

    We present the Submillimeter Array 157 pointing mosaic in 0.86 mm dust continuum emission with 5.''1 × 4.''2 angular resolution, and the National Radio Astronomy Observatory Green Bank 100 m Telescope (GBT) observations of the CS/C 34 S/ 13 CS 1-0 and SiO 1-0 emission with ≤20'' × 18'' angular resolution. The dust continuum image marginally resolves at least several tens of 10-10 2 M ☉ dense clumps in the 5' field including the circumnuclear disk (CND) and the exterior gas streamers. There is very good agreement between the high resolution dust continuum map of the CND and all previous molecular line observations. As the dust emission is the most reliable optically thin tracer of the mass, free from most chemical and excitation effects, we demonstrate the reality of the abundant localized structures within the CND, and their connection to external gas structures. From the spectral line data, the velocity dispersions of the dense clumps and their parent molecular clouds are ∼10-20 times higher than their virial velocity dispersions. This supports the idea that the CND and its immediate environment may not be stationary or stable structures. Some of the dense gas clumps are associated with 22 GHz water masers and 36.2 GHz and 44.1 GHz CH 3 OH masers. However, we do not find clumps that are bound by the gravity of the enclosed molecular gas. Hence, the CH 3 OH or H 2 O maser emission may be due to strong (proto)stellar feedback, which may be dispersing some of the gas clumps.

  4. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    Science.gov (United States)

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  5. Children's Phthalate Intakes and Resultant Cumulative Exposures Estimated from Urine Compared with Estimates from Dust Ingestion, Inhalation and Dermal Absorption in Their Homes and Daycare Centers

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Weschler, Charles J; Langer, Sarka

    2013-01-01

    Total daily intakes of diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(isobutyl) phthalate (DiBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) were calculated from phthalate metabolite levels measured in the urine of 431 Danish children between 3 and 6 years of a...... of certain phthalates. Such exposures, by themselves, may lead to intakes exceeding current limit values.......Total daily intakes of diethyl phthalate (DEP), di(n-butyl) phthalate (DnBP), di(isobutyl) phthalate (DiBP), butyl benzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) were calculated from phthalate metabolite levels measured in the urine of 431 Danish children between 3 and 6 years of age....... For each child the intake attributable to exposures in the indoor environment via dust ingestion, inhalation and dermal absorption were estimated from the phthalate levels in the dust collected from the child's home and daycare center. Based on the urine samples, DEHP had the highest total daily intake...

  6. Properties of the Circumsolar Dust Distribution Determined from STEREO/SECCHI and Implications for PSP and SolO

    Science.gov (United States)

    Howard, R.; Stenborg, G.

    2017-12-01

    We have performed an analysis of the HI-1A instrument in the STEREO/SECCHI suite to determine the inclination and longitude of the ascending node of the plane of symmetry of the F-corona. The F-corona arises from sunlight scattered by the dust in orbit about the Sun. We find that the inclination and ascending node are not constant in the field of view of the HI-1A (4° to 24° elongation), but are functions of the elongation angle i.e. the distance to the Sun and are slightly different from the parameters determined from the Helios mission. These parameters are reflecting the gravitational influences of Jupiter, Venus and the Sun as well as Lorentz and Poynting-Robinson forces on the dust orbits. The center of symmetry is not the center of the Sun, but is offset by 0.5 Rsun from the center in the direction of the average position of Jupiter during the epoch studied: from 2007-2012. We also observe a slight difference in the inclination when it is north or south of the ecliptic. We suggest this may be due to remnant dust in the orbit of the Kreutz sun-grazing comets which occur at an average rate of one every 2-3 days. Finally, as the dust particles evaporate we expect to see the F-coronal brightness correspondingly decrease. The detectability of the decrease will depend on the amount of dust evaporating, but a 10% change in the density is easily detectable. If a dust free zone surrounding the Sun exists, it will affect the F-coronal intensities observed by PSP and SolO by an observable amount.

  7. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    Science.gov (United States)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  8. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily; Jacques, Allison [Georgia College and State University, CBX 82, Milledgeville, GA 31061 (United States); Cao, Chen [School of Space Science and Physics, Shandong University, Weihai, Weihai, Shandong 264209 (China); Xu, C. Kevin [Infrared Processing and Analysis Center, California Institute of Technology 100-22, Pasadena, CA 91125 (United States); Jarrett, Thomas H. [University of Cape Town, Private Bag X3, Rondebosch 7701, Republic of South Africa (South Africa)

    2016-10-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K {sub s} magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  9. MAJOR-MERGER GALAXY PAIRS AT Z = 0: DUST PROPERTIES AND COMPANION MORPHOLOGY

    International Nuclear Information System (INIS)

    Domingue, Donovan L.; Ronca, Joseph; Hill, Emily; Jacques, Allison; Cao, Chen; Xu, C. Kevin; Jarrett, Thomas H.

    2016-01-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K s magnitude and redshift. The pairs represent the two populations of spiral–spiral (S+S) and mixed morphology spiral–elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer , and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  10. Inactivation of dust mites, dust mite allergen, and mold from carpet.

    Science.gov (United States)

    Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin

    2014-01-01

    Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.

  11. Trapping Dust to Form Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Kraus (University of Exeter) in a recent publication. Kraus and collaborators show that the protoplanetary disk of V1247 Orionis contains a ring-shaped, asymmetric inner disk component, as well as a sharply confined crescent structure. These structures are consistent with the morphologies expected from theoretical models of vortex formation in disks.Kraus and collaborators propose the following picture: an early planet is orbiting at 100 AU within the disk, generating a one-armed spiral arm as material feeds the protoplanet. As the protoplanet orbits, it clears a gap between the ring and the crescent, and it simultaneously triggers two vortices, visible as the crescent and the bright asymmetry in the ring. These vortices are then able to trap millimeter-sized particles.Gas column density of the authors radiation-hydrodynamic simulation of V1247 Orioniss disk. [Kraus et al. 2017]The authors run detailed hydrodynamics simulations of this scenario and compare them (as well as alternative theories) to the ALMA observations of V1247 Orionis. The simulations support their model, producing sample scattered-light images thatmatchwell the one-armed spiral observed in previous scattered-light images of the disk.How can we confirm V1247 Orionis providesan example of dust-trapping vortices? One piece of supporting evidence would be the discovery of the protoplanet that Kraus and collaborators theorize triggered the potential vortices in this disk. Future deeper ALMA imaging may make this possible, helping to confirm our picture of how dust builds into planets.CitationStefan Kraus et al 2017 ApJL 848 L11. doi:10.3847/2041-8213/aa8edc

  12. SIZE REDUCTION OF ELECTROSTATIC PRECIPITATOR CHAMBER BY MODIFICATION OF GAS FLOW DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Beata Sładkowska-Rybka

    2014-10-01

    Full Text Available Electrostatic precipitators (ESP are one of the most effective devices for particulate emission control, removing from the exhaust gases even 99,9 % of dust particles. The collection efficiency of the ESP depends on a number of factors: mechanical design and electrical operating parameters, physical and chemical properties of cleaned gas, characteristic of dust particles suspended in the gas. Among the most important factors affecting the ESP effectiveness, the velocity and the distribution of gas flow in the ESP chamber should be also indicated. Significant increase in ESP efficiency is possible thanks to the application of Skewed Gas Flow Technology (SGFT. In this paper the computer simulations results are shown. Authors investigated the possibility of ESP chamber size reduction by modification of gas flow distribution.

  13. Corrosion resistance of Ni-50Cr HVOF coatings on 310S alloy substrates in a metal dusting atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Saaedi, J. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada); Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Arabi, H.; Mirdamadi, S.; Ghorbani, H. [Department of Materials and Metallurgical Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Coyle, T.W. [Centre for Advanced Coating Technologies, Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2011-09-15

    Metal dusting attack has been examined after three 168 h cycles on two Ni-50Cr coatings with different microstructures deposited on 310S alloy substrates by the high velocity oxy-fuel (HVOF) thermal-spray process. Metal dusting in uncoated 310S alloy specimens was found to be still in the initiation stage after 504 h of exposure in the 50H{sub 2}:50CO gas environment at 620 C. Dense Ni-50Cr coatings offered suitable resistance to metal dusting. Metal dusting was observed in the 310S substrates adjacent to pores at the interface between the substrate and a porous Ni-50Cr coating. The porosity present in the as-deposited coatings was shown to introduce a large variability into coating performance. Carbon formed by decomposition of the gaseous species accumulated in the surface pores and resulted in the dislodgement of surface splats due to stresses generated by the volume changes. When the corrosive gas atmosphere was able to penetrate through the interconnected pores and reach the coating-substrate interface, the 310S substrate was carburized, metal dusting attack occurred, and the resulting formation of coke in the pores led to local failure of the coating. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. cGAS-mediated control of blood-stage malaria promotes Plasmodium-specific germinal center responses.

    Science.gov (United States)

    Hahn, William O; Butler, Noah S; Lindner, Scott E; Akilesh, Holly M; Sather, D Noah; Kappe, Stefan Hi; Hamerman, Jessica A; Gale, Michael; Liles, W Conrad; Pepper, Marion

    2018-01-25

    Sensing of pathogens by host pattern recognition receptors is essential for activating the immune response during infection. We used a nonlethal murine model of malaria (Plasmodium yoelii 17XNL) to assess the contribution of the pattern recognition receptor cyclic GMP-AMP synthase (cGAS) to the development of humoral immunity. Despite previous reports suggesting a critical, intrinsic role for cGAS in early B cell responses, cGAS-deficient (cGAS-/-) mice had no defect in the early expansion or differentiation of Plasmodium-specific B cells. As the infection proceeded, however, cGAS-/- mice exhibited higher parasite burdens and aberrant germinal center and memory B cell formation when compared with littermate controls. Antimalarial drugs were used to further demonstrate that the disrupted humoral response was not B cell intrinsic but instead was a secondary effect of a loss of parasite control. These findings therefore demonstrate that cGAS-mediated innate-sensing contributes to parasite control but is not intrinsically required for the development of humoral immunity. Our findings highlight the need to consider the indirect effects of pathogen burden in investigations examining how the innate immune system affects the adaptive immune response.

  15. Asian Dust particles impacts on air quality and radiative forcing over Korea

    International Nuclear Information System (INIS)

    Kim, Y J; Noh, Y M; Song, C H; Yoon, S C; Han, J S

    2009-01-01

    Asian Dust particles originated from the deserts and loess areas of the Asian continent are often transported over Korea, Japan, and the North Pacific Ocean during spring season. Major air mass pathway of Asian dust storm to Korea is from either north-western Chinese desert regions or north-eastern Chinese sandy areas. The local atmospheric environment condition in Korea is greatly impacted by Asian dust particles transported by prevailing westerly wind. Since these Asian dust particles pass through heavily populated urban and industrial areas in China before it reach Korean peninsular, their physical, chemical and optical properties vary depending on the atmospheric conditions and air mass pathway characteristics. An integrated system approach has been adopted at the Advanced Environment Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosols utilizing various in-situ and optical remote sensing methods, which include a multi-channel Raman LIDAR system, sunphotometer, satellite, and in-situ instruments. Results from recent studies on impacts of Asian dust particles on local air quality and radiative forcing over Korea are summarized here.

  16. Estimating dust distances to Type Ia supernovae from colour excess time evolution

    Science.gov (United States)

    Bulla, M.; Goobar, A.; Amanullah, R.; Feindt, U.; Ferretti, R.

    2018-01-01

    We present a new technique to infer dust locations towards reddened Type Ia supernovae and to help discriminate between an interstellar and a circumstellar origin for the observed extinction. Using Monte Carlo simulations, we show that the time evolution of the light-curve shape and especially of the colour excess E(B - V) places strong constraints on the distance between dust and the supernova. We apply our approach to two highly reddened Type Ia supernovae for which dust distance estimates are available in the literature: SN 2006X and SN 2014J. For the former, we obtain a time-variable E(B - V) and from this derive a distance of 27.5^{+9.0}_{-4.9} or 22.1^{+6.0}_{-3.8} pc depending on whether dust properties typical of the Large Magellanic Cloud (LMC) or the Milky Way (MW) are used. For the latter, instead, we obtain a constant E(B - V) consistent with dust at distances larger than ∼50 and 38 pc for LMC- and MW-type dust, respectively. Values thus extracted are in excellent agreement with previous estimates for the two supernovae. Our findings suggest that dust responsible for the extinction towards these supernovae is likely to be located within interstellar clouds. We also discuss how other properties of reddened Type Ia supernovae - such as their peculiar extinction and polarization behaviour and the detection of variable, blue-shifted sodium features in some of these events - might be compatible with dust and gas at interstellar-scale distances.

  17. Whither Cometary Dust?

    Science.gov (United States)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  18. Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling

    Science.gov (United States)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-01-01

    Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

  19. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    International Nuclear Information System (INIS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-01-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10 −4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains

  20. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kausik, S. S.; Kakati, B.; Saikia, B. K. [Centre of Plasma Physics, Institute for Plasma Research, Sonapur 782 402 (India)

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  1. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    Science.gov (United States)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  2. Dust deposition effects on growth and physiology of the endangered Astragalus jaegerianus (Fabaceae)

    Science.gov (United States)

    Wijayratne, Upekala C.; Scoles-Sciulla, Sara J.; Defalco, Lesley A.

    2009-01-01

    Human expansion into the Mojave Desert is a significant threat to rare desert plants. While immediate habitat loss is often the greatest concern, rare plants situated near areas where soil surfaces experience frequent disturbance may be indirectly impacted when fine particulate dust accumulates on leaf surfaces. Remaining populations of the federally listed Astragalus jaegerianus (Lane Mountain milkvetch) occur on land open to expanding military activities and on adjacent public land with increasing recreational use. This study was initiated to determine whether dust accumulation could decrease the vigor and fitness of A. jaegerianus through reduced growth. Beginning in early May 2004, plants located on Bureau of Land Management (BLM) land were dusted bimonthly at canopy-level dust concentrations ranging from 0 to 32 g/m2, and physiology and growth were monitored until late June when plants senesced. The maximum experimental dust level simulates dust concentrations of Mojave Desert perennials neighboring military activities at a nearby army training center. Average shoot growth declined with increasing dust accumulation, but seasonal net photosynthesis increased. Further investigation of plants grown in a greenhouse supported similar trends. This pattern of greater net photosynthesis with increasing dust accumulation may be explained by higher leaf temperatures of dusted individuals. Ambient dust deposition measured in traps near field plants (May 2004–July 2004) ranged from 0.04–0.17 g/m2/ d, which was well below the lowest level of dust on experimental plants (3.95 g/m2/d). With this low level of ambient deposition, we expect that A. jaegerianus plants in this population were not greatly affected by the dust they receive at the level of recreational use during the study.

  3. Exocometary gas in the HD 181327 debris ring

    Science.gov (United States)

    Marino, S.; Matrà, L.; Stark, C.; Wyatt, M. C.; Casassus, S.; Kennedy, G.; Rodriguez, D.; Zuckerman, B.; Perez, S.; Dent, W. R. F.; Kuchner, M.; Hughes, A. M.; Schneider, G.; Steele, A.; Roberge, A.; Donaldson, J.; Nesvold, E.

    2016-08-01

    An increasing number of observations have shown that gaseous debris discs are not an exception. However, until now, we only knew of cases around A stars. Here we present the first detection of 12CO (2-1) disc emission around an F star, HD 181327, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) observations at 1.3 mm. The continuum and CO emission are resolved into an axisymmetric disc with ring-like morphology. Using a Markov chain Monte Carlo method coupled with radiative transfer calculations, we study the dust and CO mass distribution. We find the dust is distributed in a ring with a radius of 86.0 ± 0.4 au and a radial width of 23.2 ± 1.0 au. At this frequency, the ring radius is smaller than in the optical, revealing grain size segregation expected due to radiation pressure. We also report on the detection of low-level continuum emission beyond the main ring out to ˜200 au. We model the CO emission in the non-local thermodynamic equilibrium regime and we find that the CO is co-located with the dust, with a total CO gas mass ranging between 1.2 × 10-6 M⊕ and 2.9 × 10-6 M⊕, depending on the gas kinetic temperature and collisional partners densities. The CO densities and location suggest a secondary origin, I.e. released from icy planetesimals in the ring. We derive a CO+CO2 cometary composition that is consistent with Solar system comets. Due to the low gas densities, it is unlikely that the gas is shaping the dust distribution.

  4. Solution of Riemann problem for ideal polytropic dusty gas

    International Nuclear Information System (INIS)

    Nath, Triloki; Gupta, R.K.; Singh, L.P.

    2017-01-01

    Highlights : • A direct approach is used to solve the Riemann problem for dusty ideal polytropic gas. • An analytical solution to the Riemann problem for dusty gas flow is obtained. • The existence and uniqueness of the solution in dusty gas is discussed. • Properties of elementary wave solutions of Riemann problem are discussed. • Effect of mass fraction of solid particles on the solution is presented. - Abstract: The Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady flow of an ideal polytropic gas with dust particles is solved analytically without any restriction on magnitude of the initial states. The elementary wave solutions of the Riemann problem, that is shock waves, rarefaction waves and contact discontinuities are derived explicitly and their properties are discussed, for a dusty gas. The existence and uniqueness of the solution for Riemann problem in dusty gas is discussed. Also the conditions leading to the existence of shock waves or simple waves for a 1-family and 3-family curves in the solution of the Riemann problem are discussed. It is observed that the presence of dust particles in an ideal polytropic gas leads to more complex expression as compared to the corresponding ideal case; however all the parallel results remain same. Also, the effect of variation of mass fraction of dust particles with fixed volume fraction (Z) and the ratio of specific heat of the solid particles and the specific heat of the gas at constant pressure on the variation of velocity and density across the shock wave, rarefaction wave and contact discontinuities are discussed.

  5. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    International Nuclear Information System (INIS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-01-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν (880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν (880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10 11 (L ☉ ) and 4-14 × 10 7 (M ☉ ), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution

  6. Dust Destruction in the ISM: A Re-Evaluation of Dust Lifetimes

    Science.gov (United States)

    Jones, A. P.; Nuth, J. A., III

    2011-01-01

    There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.

  7. CHANGE OF MAGNETIC FIELD-GAS ALIGNMENT AT THE GRAVITY-DRIVEN ALFVÉNIC TRANSITION IN MOLECULAR CLOUDS: IMPLICATIONS FOR DUST POLARIZATION OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Yu; King, Patrick K.; Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22901 (United States)

    2016-10-01

    Diffuse striations in molecular clouds are preferentially aligned with local magnetic fields, whereas dense filaments tend to be perpendicular to them. When and why this transition occurs remain uncertain. To explore the physics behind this transition, we compute the histogram of relative orientation (HRO) between the density gradient and the magnetic field in three-dimensional magnetohydrodynamic (MHD) simulations of prestellar core formation in shock-compressed regions within giant molecular clouds. We find that, in the magnetically dominated (sub-Alfvénic) post-shock region, the gas structure is preferentially aligned with the local magnetic field. For overdense sub-regions with super-Alfvénic gas, their elongation becomes preferentially perpendicular to the local magnetic field. The transition occurs when self-gravitating gas gains enough kinetic energy from the gravitational acceleration to overcome the magnetic support against the cross-field contraction, which results in a power-law increase of the field strength with density. Similar results can be drawn from HROs in projected two-dimensional maps with integrated column densities and synthetic polarized dust emission. We quantitatively analyze our simulated polarization properties, and interpret the reduced polarization fraction at high column densities as the result of increased distortion of magnetic field directions in trans- or super-Alfvénic gas. Furthermore, we introduce measures of the inclination and tangledness of the magnetic field along the line of sight as the controlling factors of the polarization fraction. Observations of the polarization fraction and angle dispersion can therefore be utilized in studying local magnetic field morphology in star-forming regions.

  8. Polarized Light Imaging of the HD 142527 Transition Disk with the Gemini Planet Imager: Dust around the Close-in Companion

    Science.gov (United States)

    Rodigas, Timothy J.; Follette, Katherine B.; Weinberger, Alycia; Close, Laird; Hines, Dean C.

    2014-08-01

    When giant planets form, they grow by accreting gas and dust. HD 142527 is a young star that offers a scaled-up view of this process. It has a broad, asymmetric ring of gas and dust beyond ~100 AU and a wide inner gap. Within the gap, a low-mass stellar companion orbits the primary star at just ~12 AU, and both the primary and secondary are accreting gas. In an attempt to directly detect the dusty counterpart to this accreted gas, we have observed HD 142527 with the Gemini Planet Imager in polarized light at Y band (0.95-1.14 μm). We clearly detect the companion in total intensity and show that its position and photometry are generally consistent with the expected values. We also detect a point source in polarized light that may be spatially separated by ~ a few AU from the location of the companion in total intensity. This suggests that dust is likely falling onto or orbiting the companion. Given the possible contribution of scattered light from this dust to previously reported photometry of the companion, the current mass limits should be viewed as upper limits only. If the dust near the companion is eventually confirmed to be spatially separated, this system would resemble a scaled-up version of the young planetary system inside the gap of the transition disk around LkCa 15. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministrio da Cincia, Tecnologia e Inovao (Brazil), and Ministerio de Ciencia, Tecnologa e Innovacin Productiva (Argentina).

  9. Non-thermal desorption from interstellar dust grains via exothermic surface reactions

    Science.gov (United States)

    Garrod, R. T.; Wakelam, V.; Herbst, E.

    2007-06-01

    Aims:The gas-phase abundance of methanol in dark quiescent cores in the interstellar medium cannot be explained by gas-phase chemistry. In fact, the only possible synthesis of this species appears to be production on the surfaces of dust grains followed by desorption into the gas. Yet, evaporation is inefficient for heavy molecules such as methanol at the typical temperature of 10 K. It is necessary then to consider non-thermal mechanisms for desorption. But, if such mechanisms are considered for the production of methanol, they must be considered for all surface species. Methods: Our gas-grain network of reactions has been altered by the inclusion of a non-thermal desorption mechanism in which the exothermicity of surface addition reactions is utilized to break the bond between the product species and the surface. Our estimated rate for this process derives from a simple version of classical unimolecular rate theory with a variable parameter only loosely constrained by theoretical work. Results: Our results show that the chemistry of dark clouds is altered slightly at times up to 106 yr, mainly by the enhancement in the gas-phase abundances of hydrogen-rich species such as methanol that are formed on grain surfaces. At later times, however, there is a rather strong change. Instead of the continuing accretion of most gas-phase species onto dust particles, a steady-state is reached for both gas-phase and grain-surface species, with significant abundances for the former. Nevertheless, most of the carbon is contained in an undetermined assortment of heavy surface hydrocarbons. Conclusions: The desorption mechanism discussed here will be better constrained by observational data on pre-stellar cores, where a significant accretion of species such as CO has already occurred.

  10. Characterization of east Asian dust outbreaks in the spring of 2001 using ground-based and satellite data

    Science.gov (United States)

    Darmenova, Kremena; Sokolik, Irina N.; Darmenov, Anton

    2005-01-01

    This study presents a detailed examination of east Asian dust events during March-April of 2001, by combining satellite multisensor observation (Total Ozone Mapping Spectrometer (TOMS), Moderate-Resolution Imaging Spectroradiometer (MODIS), and Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)) meteorological data from weather stations in China and Mongolia and the Pennsylania State University/National Center for Atmospheric Research Mesoscale Modeling System (MM5) driven by the National Centers for Environmental Prediction Reanalysis data. The main goal is to determine the extent to which the routine surface meteorological observations (including visibility) and satellite data can be used to characterize the spatiotemporal distribution of dust plumes at a range of scales. We also examine the potential of meteorological time series for constraining the dust emission schemes used in aerosol transport models. Thirty-five dust events were identified in the source region during March and April of 2001 and characterized on a case-by-case basis. The midrange transport routes were reconstructed on the basis of visibility observations and observed and MM5-predicted winds with further validation against satellite data. We demonstrate that the combination of visibility data, TOMS aerosol index, MODIS aerosol optical depth over the land, and a qualitative analysis of MODIS and SeaWiFS imagery enables us to constrain the regions of origin of dust outbreaks and midrange transport, though various limitations of individual data sets were revealed in detecting dust over the land. Only two long-range transport episodes were found. The transport routes and coverage of these dust episodes were reconstructed by using MODIS aerosol optical depth and TOMS aerosol index. Our analysis reveals that over the oceans the presence of persistent clouds poses a main problem in identifying the regions affected by dust transport, so only partial reconstruction of dust transport routes reaching the

  11. Detection of Dust Condensations in the Orion Bar Photon-dominated Region

    Science.gov (United States)

    Qiu, Keping; Xie, Zeqiang; Zhang, Qizhou

    2018-03-01

    We report Submillimeter Array dust continuum and molecular spectral line observations toward the Orion Bar photon-dominated region (PDR). The 1.2 mm continuum map reveals, for the first time, a total of nine compact (r < 0.01 pc) dust condensations located within a distance of ∼0.03 pc from the dissociation front of the PDR. Part of the dust condensations are also seen in spectral line emissions of CS (5–4) and H2CS (71,7–61,6), though the CS map also reveals dense gas further away from the dissociation front. We also detect compact emissions in H2CS (60,6–50,5), (62,4–52,3) and C34S, C33S (4–3) toward bright dust condensations. The line ratio of H2CS (60,6–50,5)/(62,4–52,3) suggests a temperature of 73 ± 58 K. A nonthermal velocity dispersion of ∼0.25–0.50 km s‑1 is derived from the high spectral resolution C34S data and indicates a subsonic to transonic turbulence in the condensations. The masses of the condensations are estimated from the dust emission, and range from 0.03 to 0.3 M ⊙, all significantly lower than any critical mass that is required for self-gravity to play a crucial role. Thus the condensations are not gravitationally bound, and could not collapse to form stars. In cooperating with recent high-resolution observations of the compressed surface layers of the molecular cloud in the Bar, we speculate that the condensations are produced as a high-pressure wave induced by the expansion of the H II region compresses and enters the cloud. A velocity gradient along a direction perpendicular to the major axis of the Bar is seen in H2CS (71,7–61,6), and is consistent with the scenario that the molecular gas behind the dissociation front is being compressed.

  12. [The development of market centers for gas transactions] The center of attention

    International Nuclear Information System (INIS)

    Stoddard, B.

    1994-01-01

    When Federal Energy Regulatory Commission (FERC) Order 636 placed new competitive demands on the buyers, sellers and traders of natural gas, the industry realized it needed to find new faster ways of making transactions. It has, and they are called hubs. With Order 636 and the advent of greater open-market trading, new hubs--so-called market centers--began sprouting throughout the nation's market and end-use regions, as well as in the supply regions. Local distribution companies (LDCs) began to see a market for selling such services as wheeling and balancing--often performed as part of a pipeline's tariff in the capacity-rich producing regions--to customers in end-use areas, where capacity is at more of a premium. Developing a marketing hub could also be considered a defensive move: Despite today's competitive market, LDCs must still serve their ratepayers at a reasonable cost, and a successful market hub can help keep rates low. The paper discusses the development of hubs in various regions of the US, the types of services being offered, and the start-up problems that they are overcoming

  13. Assessment of cleaning efficiency of the polydisperse gas flow in double-flow dedusting system

    Directory of Open Access Journals (Sweden)

    O.G. Butenko

    2016-05-01

    Full Text Available One of priority problems of nature protection activity at the industrial enterprises is upgrading the gas emissions cleaning of polydispersed dust. To solve the problem of catching of small fraction dust the double-flow dedusting system has been offered. Aim: The aim of the work is to determine the dependency type of the cleaning efficiency of polydisperse gas flow on gas separation factor double-flow dedusting system. Materials and methods: The analysis of influence of gas separation factor in the dividing device of double-flow dedusting system on its efficiency is carried out. By drawing up the mass balance of system on gas and on the mass of dust the general dependence for breakthrough of the main catcher, characterizing overall effectiveness of system, is received. Results: It is shown that value of breakthrough factor of the main catcher depends on dimensionless efficiency factors of the equipment. The received general dependence of breakthrough factor on separation factor allows to define the optimum value of separation factor for any combined dedusting system.

  14. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{sub ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  15. Collisionless damping of nonlinear dust ion acoustic wave due to dust charge fluctuation

    International Nuclear Information System (INIS)

    Ghosh, Samiran; Chaudhuri, Tushar K.; Sarkar, Susmita; Khan, Manoranjan; Gupta, M.R.

    2002-01-01

    A dissipation mechanism for the damping of the nonlinear dust ion acoustic wave in a collisionless dusty plasma consisting of nonthermal electrons, ions, and variable charge dust grains has been investigated. It is shown that the collisionless damping due to dust charge fluctuation causes the nonlinear dust ion acoustic wave propagation to be described by the damped Korteweg-de Vries equation. Due to the presence of nonthermal electrons, the dust ion acoustic wave admits both positive and negative potential and it suffers less damping than the dust acoustic wave, which admits only negative potential

  16. Method of burning highly reactive strongly slagging coal dust in a chamber furnace

    Energy Technology Data Exchange (ETDEWEB)

    Protsaylo, M.Ya.; Kotler, V.R.; Lobov, G.V.; Mechev, V.P.; Proshkin, A.V.; Zhuravlev, Yu.A.

    1982-01-01

    In the chamber furnace in order to reduce slagging, it is proprosed that, above the coal dust burners, nozzles be installed with inclination downwards through which air is fed in a mixture with flue gases. Under the influence of this flue gas-air mixture, the coal dust flame is deviated downwards. In this case there is an increase in the length of the flame and degree of filling of the volume of the furnace with the flame. This increases the effectiveness of dust burning. The input into the furnace of fuel jointly with the air and flue gases (optimally 10-15% of the total quantity of gases formed during fuel combustion) makes it possible to reduce the temperature in the furnace and the probability of slagging of the furnace walls.

  17. DUST PRODUCTION AND MASS LOSS IN THE GALACTIC GLOBULAR CLUSTER NGC 362

    International Nuclear Information System (INIS)

    Boyer, Martha L.; Gordon, Karl D.; Meixner, Margaret; Sewilo, Marta; Shiao, Bernie; Whitney, Barbara; McDonald, Iain; Van Loon, Jacco Th.; Oliveira, Joana M.; Babler, Brian; Bracker, Steve; Meade, Marilyn; Block, Miwa; Engelbracht, Charles; Misselt, Karl; Hora, Joe; Indebetouw, Remy

    2009-01-01

    We investigate dust production and stellar mass loss in the Galactic globular cluster NGC 362. Due to its close proximity to the Small Magellanic Cloud (SMC), NGC 362 was imaged with the Infrared Array Camera and Multiband Imaging Photometer cameras onboard the Spitzer Space Telescope as part of the Surveying the Agents of Galaxy Evolution (SAGE-SMC) Spitzer Legacy program. We detect several cluster members near the tip of the red giant branch (RGB) that exhibit infrared excesses indicative of circumstellar dust and find that dust is not present in measurable quantities in stars below the tip of the RGB. We modeled the spectral energy distribution (SED) of the stars with the strongest IR excess and find a total cluster dust mass-loss rate of 3.0 +2.0 -1.2 x 10 -9 M sun yr -1 , corresponding to a gas mass-loss rate of 8.6 +5.6 -3.4 x 10 -6 M sun yr -1 , assuming [Fe/H] =-1.16. This mass loss is in addition to any dustless mass loss that is certainly occurring within the cluster. The two most extreme stars, variables V2 and V16, contribute up to 45% of the total cluster dust-traced mass loss. The SEDs of the more moderate stars indicate the presence of silicate dust, as expected for low-mass, low-metallicity stars. Surprisingly, the SED shapes of the stars with the strongest mass-loss rates appear to require the presence of amorphous carbon dust, possibly in combination with silicate dust, despite their oxygen-rich nature. These results corroborate our previous findings in ω Centauri.

  18. Bounded dust-acoustic waves in a cylindrically bounded collisional dusty plasma with dust charge variation

    International Nuclear Information System (INIS)

    Wei Nanxia; Xue Jukui

    2006-01-01

    Taking into account the boundary, particle collisions, and dust charging effects, dust-acoustic waves in a uniform cylindrically bounded dusty plasma is investigated analytically, and the dispersion relation for the dust-acoustic wave is obtained. The effects of boundary, dust charge variation, particle collision, and dust size on the dust-acoustic wave are discussed in detail. Due to the bounded cylindrical boundary effects, the radial wave number is discrete, i.e., the spectrum is discrete. It is shown that the discrete spectrum, the adiabatic dust charge variation, dust grain size, and the particle collision have significant effects on the dust-acoustic wave

  19. Contamination of pine and birch wood dust with microscopic fungi and determination of its sterol contents.

    Science.gov (United States)

    Stuper-Szablewska, Kinga; Rogoziński, Tomasz; Perkowski, Juliusz

    2017-06-27

    Wood compounds, especially sterols, are connected with the level of contamination with microscopic fungi. Within this study, tests were conducted on wood dust samples collected at various work stations in a pine and birch timber conversion plant. Their contamination with mycobiota was measured as the concentration of ergosterol (ERG) by ultra performance liquid chromatography (UPLC). Another aim of this study was to assess the effect of contamination with microscopic fungi on the sterol contents in wood dusts. Analyses were conducted on five sterols: desmosterol, cholesterol, lanosterol, stigmasterol, and β-sitosterol using UPLC and their presence was confirmed using gas chromatography/mass spectrometry (GC/MS). The results of chemical analyses showed the greatest contamination with mycobiota in birch wood dust. We also observed varied contents of individual sterols depending on the wood dust type. Their highest concentration was detected in birch dust. The discriminant analysis covering all tested compounds as predictors showed complete separation of all tested wood dust types. The greatest discriminatory power was found for stigmasterol, desmosterol, and ergosterol.

  20. Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.; hide

    2005-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.

  1. Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains

    Science.gov (United States)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.

    2006-01-01

    The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.

  2. Mobilization of dust and exfoliation of erosion product films in tokamaks

    International Nuclear Information System (INIS)

    Martynenko, Yu. V.; Nagel, M. Yu.

    2012-01-01

    The mobilization of dust (i.e., detachment and removal of dust grains from a substrate) and the exfoliation of a film of erosion products in tokamaks have been studied theoretically. The following mechanisms of dust mobilization have been taken into account: (i) sharp heating (thermal shock) as a result of, e.g., plasma disruption and edge instabilities; (ii) substrate vibrations; and (iii) gas and plasma flow (wind) action. The most effective mobilization takes place under the action of sharp heating. Power fluxes that are characteristic of edge instabilities can mobilize dust grains with dimensions within or even greater than 0.1–1 μm. The velocities of detached grains reach ν ∼ 100 m/s for heavy grains and up to ν ∼ 300 m/s for the light ones. Conditions favoring the exfoliation of a film of erosion products are determined. It is shown that exfoliation under the action of edge instabilities can take place at a film thickness of h > 1 μm. Under the action of thermal-shock-induced stresses, the exfoliated film flakes with a size ranging from fractions of a millimeter to several centimeters break into pieces.

  3. Mobilization of dust and exfoliation of erosion product films in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, Yu. V.; Nagel, M. Yu. [National Research Centre Kurchatov Institute (Russian Federation)

    2012-04-15

    The mobilization of dust (i.e., detachment and removal of dust grains from a substrate) and the exfoliation of a film of erosion products in tokamaks have been studied theoretically. The following mechanisms of dust mobilization have been taken into account: (i) sharp heating (thermal shock) as a result of, e.g., plasma disruption and edge instabilities; (ii) substrate vibrations; and (iii) gas and plasma flow (wind) action. The most effective mobilization takes place under the action of sharp heating. Power fluxes that are characteristic of edge instabilities can mobilize dust grains with dimensions within or even greater than 0.1-1 {mu}m. The velocities of detached grains reach {nu} {approx} 100 m/s for heavy grains and up to {nu} {approx} 300 m/s for the light ones. Conditions favoring the exfoliation of a film of erosion products are determined. It is shown that exfoliation under the action of edge instabilities can take place at a film thickness of h > 1 {mu}m. Under the action of thermal-shock-induced stresses, the exfoliated film flakes with a size ranging from fractions of a millimeter to several centimeters break into pieces.

  4. HERSCHEL OBSERVATIONS OF MAJOR MERGER PAIRS AT z = 0: DUST MASS AND STAR FORMATION

    International Nuclear Information System (INIS)

    Cao, Chen; Xu, Cong Kevin; Lu, Nanyao; Mazzarella, Joe; Domingue, Donovan; Ronca, Joseph; Jacques, Allison; Buat, Veronique; Cheng, Yi-Wen; Gao, Yu; Huang, Jiasheng; Jarrett, Thomas H.; Lisenfeld, Ute; Sun, Wei-Hsin; Wu, Hong; Yun, Min S.

    2016-01-01

    We present Herschel PACS and SPIRE far-infrared (FIR) and submillimeter imaging observations for a large K-band selected sample of 88 close major-merger pairs of galaxies (H-KPAIRs) in 6 photometric bands (70, 100, 160, 250, 350, and 500 μm). Among 132 spiral galaxies in the 44 spiral–spiral (S+S) pairs and 44 spiral–elliptical (S+E) pairs, 113 are detected in at least 1 Herschel band. The star formation rate (SFR) and dust mass (M dust ) are derived from the IR SED fitting. The mass of total gas (M gas ) is estimated by assuming a constant dust-to-gas mass ratio of 0.01. Star-forming spiral galaxies (SFGs) in S+S pairs show significant enhancements in both specific star formation rate (sSFR) and star formation efficiency (SFE), while having nearly the same gas mass compared to control galaxies. On the other hand, for SFGs in S+E pairs, there is no significant sSFR enhancement and the mean SFE enhancement is significantly lower than that of SFGs in S+S pairs. This suggests an important role for the disk–disk collision in the interaction-induced star formation. The M gas of SFGs in S+E pairs is marginally lower than that of their counterparts in both S+S pairs and the control sample. Paired galaxies with and without interaction signs do not differ significantly in their mean sSFR and SFE. As found in previous works, this much larger sample confirms that the primary and secondary spirals in S+S pairs follow a Holmberg effect correlation on sSFR

  5. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  6. MAPPING CO GAS IN THE GG TAURI A TRIPLE SYSTEM WITH 50 au SPATIAL RESOLUTION

    International Nuclear Information System (INIS)

    Tang, Ya-Wen; Dutrey, Anne; Guilloteau, Stéphane; Di Folco, Emmanuel; Huré, Jean-Marc; Pierens, Arnaud; Chapillon, Edwige; Pietu, Vincent; Gueth, Fréderic; Bary, Jeff; Beck, Tracy; Beust, Hervé; Boehler, Yann; Simon, Michal

    2016-01-01

    We aim to unveil the observational imprint of physical mechanisms that govern planetary formation in the young, multiple system GG Tau A. We present ALMA observations of 12 CO and 13 CO 3–2 and 0.9 mm continuum emission with 0.″35 resolution. The 12 CO 3–2 emission, found within the cavity of the circumternary dust ring (at radius <180 au) where no 13 CO emission is detected, confirms the presence of CO gas near the circumstellar disk of GG Tau Aa. The outer disk and the recently detected hot spot lying at the outer edge of the dust ring are mapped both in 12 CO and 13 CO. The gas emission in the outer disk can be radially decomposed as a series of slightly overlapping Gaussian rings, suggesting the presence of unresolved gaps or dips. The dip closest to the disk center lies at a radius very close to the hot spot location at ∼250–260 au. The CO excitation conditions indicate that the outer disk remains in the shadow of the ring. The hot spot probably results from local heating processes. The two latter points reinforce the hypothesis that the hot spot is created by an embedded proto-planet shepherding the outer disk

  7. A SEARCH FOR DUST EMISSION IN THE LEO INTERGALACTIC CLOUD

    International Nuclear Information System (INIS)

    Bot, Caroline; Helou, George; Puget, Jeremie; Latter, William B.; Schneider, Stephen; Terzian, Yervant

    2009-01-01

    We present a search for infrared dust emission associated with the Leo cloud, a large intergalactic cloud in the M96 group. Mid-infrared and far-infrared images were obtained with the InfraRed Array Camera and the Multiband Imaging Photometer for Spitzer on the Spitzer Space Telescope. Our analysis of these maps is done at each wavelength relative to the H I spatial distribution. We observe a probable detection at 8 μm and a marginal detection at 24 μm associated with the highest H I column densities in the cloud. At 70 and 160 μm, upper limits on the dust emission are deduced. The level of the detection is low so that the possibility of a fortuitous cirrus clump or of an overdensity of extragalactic sources along the line of sight cannot be excluded. If this detection is confirmed, the quantities of dust inferred imply a dust-to-gas ratio in the intergalactic cloud up to a few times solar but no less than 1/20 solar. A confirmed detection would therefore exclude the possibility that the intergalactic cloud has a primordial origin. Instead, this large intergalactic cloud could therefore have been formed through interactions between galaxies in the group.

  8. The circumstellar environment of evolved stars as traced by molecules and dust. The diagnostic power of Herschel

    Science.gov (United States)

    Lombaert, Robin

    2013-12-01

    Low-to-intermediate mass stars end their life on the asymptotic giant branch (AGB), an evolutionary phase in which the star sheds most of its mantle into the circumstellar environment through a stellar wind. This stellar wind expands at relatively low velocities and enriches the interstellar medium with elements newly made in the stellar interior. The physical processes controlling the gas and dust chemistry in the outflow, as well as the driving mechanism of the wind itself, are poorly understood and constitute the broader context of this thesis work. In a first chapter, we consider the thermodynamics of the high-density wind of the oxygen-rich star oh, using observations obtained with the PACS instrument onboard the Herschel Space Telescope. Being one of the most abundant molecules, water vapor can be dominant in the energy balance of the inner wind of these types of stars, but to date, its cooling contribution is poorly understood. We aim to improve the constraints on water properties by careful combination of both dust and gas radiative-transfer models. This unified treatment is needed due to the high sensitivity of water excitation to dust properties. A combination of three types of diagnostics reveals a positive radial gradient of the dust-to-gas ratio in oh. The second chapter deals with the dust chemistry of carbon-rich winds. The 30-mic dust emission feature is commonly identified as due to magnesium sulfide (MgS). However, the lack of short-wavelength measurements of the optical properties of this dust species prohibits the determination of the temperature profile of MgS, and hence its feature strength and shape, questioning whether this species is responsible for the 30-mic feature. By considering the very optically thick wind of the extreme carbon star LL Peg, this problem can be circumvented because in this case the short-wavelength optical properties are not important for the radial temperature distribution. We attribute the 30-mic feature to MgS, but

  9. ALMA IMAGING OF HCN, CS, AND DUST IN ARP 220 AND NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Scoville, Nick; Manohar, Swarnima; Murchikova, Lena [California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Sheth, Kartik [North American ALMA Science Center, National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Walter, Fabian; Zschaechner, Laura [Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg (Germany); Yun, Min [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Koda, Jin [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Sanders, David; Barnes, Joshua [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, Hawaii, HI 96822 (United States); Thompson, Todd [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Robertson, Brant; Tacconi, Linda; Narayanan, Desika [Department of Astronomy and Steward Observatory, University of Arizona, Tucson AZ 85721 (United States); Genzel, Reinhard; Davies, Richard [Max-Planck-Institut fur extraterrestrische Physik (MPE), Giessenbachstrasse, D-85748 Garching (Germany); Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Brown, Robert [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Hayward, Christopher C. [TAPIR 350-17, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Kartaltepe, Jeyhan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); and others

    2015-02-10

    We report ALMA Band 7 (350 GHz) imaging at 0.''4-0.''6 resolution and Band 9 (696 GHz) at ∼0.''25 resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate interstellar medium masses for Arp 220 east and west and NGC 6240 of 1.9, 4.2, and 1.6 × 10{sup 9} M {sub ☉}within radii of 69, 65, and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dust emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220 estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are n{sub H{sub 2}}∼10{sup 5} cm{sup –3} at R <50 pc. We develop an analytic treatment for the molecular excitation (including photon trapping), yielding volume densities for both the HCN and CS emission with n {sub H2} ∼ 2 × 10{sup 5} cm{sup –3}. The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e., it is not cloudy or like swiss cheese.

  10. ALMA IMAGING OF HCN, CS, AND DUST IN ARP 220 AND NGC 6240

    International Nuclear Information System (INIS)

    Scoville, Nick; Manohar, Swarnima; Murchikova, Lena; Sheth, Kartik; Walter, Fabian; Zschaechner, Laura; Yun, Min; Koda, Jin; Sanders, David; Barnes, Joshua; Thompson, Todd; Robertson, Brant; Tacconi, Linda; Narayanan, Desika; Genzel, Reinhard; Davies, Richard; Hernquist, Lars; Brown, Robert; Hayward, Christopher C.; Kartaltepe, Jeyhan

    2015-01-01

    We report ALMA Band 7 (350 GHz) imaging at 0.''4-0.''6 resolution and Band 9 (696 GHz) at ∼0.''25 resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate interstellar medium masses for Arp 220 east and west and NGC 6240 of 1.9, 4.2, and 1.6 × 10 9 M ☉ within radii of 69, 65, and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dust emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220 estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are n H 2 ∼10 5  cm –3 at R <50 pc. We develop an analytic treatment for the molecular excitation (including photon trapping), yielding volume densities for both the HCN and CS emission with n H2 ∼ 2 × 10 5  cm –3 . The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e., it is not cloudy or like swiss cheese

  11. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish; Stenchikov, Georgiy L.; Tao, Weichun; Yapici, Tahir; Warsama, Bashir H.; Engelbrecht, Johann

    2016-01-01

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  12. Study of Arabian Red Sea coastal soils as potential mineral dust sources

    KAUST Repository

    Prakash, P. Jish

    2016-03-23

    Both Moderate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) satellite observations suggest that the narrow heterogeneous Red Sea coastal region is a frequent source of airborne dust that, because of its proximity, directly affects the Red Sea and coastal urban centers. The potential of soils to be suspended as airborne mineral dust depends largely on soil texture, moisture content, and particle size distributions. Airborne dust inevitably carries the mineralogical and chemical signature of a parent soil. The existing soil databases are too coarse to resolve the small but important coastal region. The purpose of this study is to better characterize the mineralogical, chemical and physical properties of soils from the Red Sea Arabian coastal plane, which in turn will help to improve assessment of dust effect on the Red Sea and land environmental systems and urban centers. Thirteen surface soils from the hot-spot areas of wind-blown mineral dust along the Red Sea coastal plain were sampled for analysis. Analytical methods included Optical Microscopy, X-ray diffraction (XRD), Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Ion Chromatography (IC), Scanning Electron Microscopy (SEM), and Laser Particle Size Analysis (LPSA). We found that the Red Sea coastal soils contain major components of quartz and feldspar, as well as lesser but variable amounts of amphibole, pyroxene, carbonate, clays, and micas, with traces of gypsum, halite, chlorite, epidote and oxides. The wide range of minerals in the soil samples was ascribed to the variety of igneous and metamorphic provenance rocks of the Arabian Shield forming the escarpment to the east of the Red Sea coastal plain. The analysis revealed that the samples contain compounds of nitrogen, phosphorus and iron that are essential nutrients to marine life. The analytical results from this study will provide a valuable input into dust emission models used

  13. Coupling Mars' Dust and Water Cycles: Effects on Dust Lifting Vigor, Spatial Extent and Seasonality

    Science.gov (United States)

    Kahre, M. A.; Hollingsworth, J. L.; Haberle, R. M.; Montmessin, F.

    2012-01-01

    The dust cycle is an important component of Mars' current climate system. Airborne dust affects the radiative balance of the atmosphere, thus greatly influencing the thermal and dynamical state of the atmosphere. Dust raising events on Mars occur at spatial scales ranging from meters to planet-wide. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. Generally, a low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading were observed by MGS/TES: one peak occurred before northern winter solstice at Ls 200-240, and one peak occurred after northern winter solstice at L(sub s) 305-340. These maxima in dust loading are thought to be associated with transient eddy activity in the northern hemisphere, which has been observed to maximize pre- and post-solstice. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading. Interactive dust cycle studies typically have not included the formation of water ice clouds or their radiative effects. Water ice clouds can influence the dust cycle by scavenging dust from atmosphere and by interacting with solar and infrared radiation

  14. Basis for criteria for exemption of decommissioning waste: reprocessing of dust from recycling of steel

    International Nuclear Information System (INIS)

    Elert, M.; Wiborgh, M.

    1992-06-01

    This study is a part of a larger study with the purpose to provide the authority concerned, the Swedish Radiation Protection Institute (SSI), with technical background material needed for future decisions concerning exemption levels for recycling and disposal of material originating from decommissioned nuclear power reactors. The dismantling of nuclear power reactors will give rise to large amounts of steel scrap with a very low activity concentration. It is of interest to exempt this material from regulatory control in order to make recycling possible. During the melting of steel scrap dust will be formed which is collected in the off-gas cleaning system of the furnace. Radionuclides may be enriched in this dust, and thereby obtain a higher activity concentration than the melted scrap. Presently, there is a strong interest to reprocess these dusts with the objectives to recover valuable metals and to reduce the amounts of waste harmful to the environment. During the reprocessing of dusts collected from the melting process a further redistribution and reconcentration of radionuclides may occur. In this report the treatment of dust from steel melting is described, the potential reconcentration of radionuclides is analyzed, and the potential radiological consequences are estimated. The study has focussed on the reprocessing of dust with the plasma method used at ScanDust in Sweden, and with the Waelz process used in, for example Spain and Germany. Various factors as economical, political and future developments of dust treatment and steel processes will determine the amounts of dusts produced and also to what degree dust will be reprocessed in the future. (au)

  15. Quantifying local-scale dust emission from the Arabian Red Sea coastal plain

    KAUST Repository

    Anisimov, Anatolii

    2017-01-23

    Dust plumes emitted from the narrow Arabian Red Sea coastal plain are often observed on satellite images and felt in local population centers. Despite its relatively small area, the coastal plain could be a significant dust source; however, its effect is not well quantified as it is not well approximated in global or even regional models. In addition, because of close proximity to the Red Sea, a significant amount of dust from the coastal areas could be deposited into the Red Sea and serve as a vital component of the nutrient balance of marine ecosystems. In the current study, we apply the offline Community Land Model version 4 (CLM4) to better quantify dust emission from the coastal plain during the period of 2009-2011. We verify the spatial and temporal variability in model results using independent weather station reports. We also compare the results with the MERRA Aerosol Reanalysis (MERRAero). We show that the best results are obtained with 1 km model spatial resolution and dust source function based on Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements. We present the dust emission spatial pattern, as well as estimates of seasonal and diurnal variability in dust event frequency and intensity, and discuss the emission regime in the major dust generation hot spot areas. We demonstrate the contrasting seasonal dust cycles in the northern and southern parts of the coastal plain and discuss the physical mechanisms responsible for dust generation. This study provides the first estimates of the fine-scale spatial and temporal distribution of dust emissions from the Arabian Red Sea coastal plain constrained by MERRAero and short-term WRF-Chem simulations. The estimate of total dust emission from the coastal plain, tuned to fit emissions in MERRAero, is 7.5 ± 0.5 Mt a. Small interannual variability indicates that the study area is a stable dust source. The mineralogical composition analysis shows that the coastal plain

  16. Determinants of manganese levels in house dust samples from the CHAMACOS cohort

    Energy Technology Data Exchange (ETDEWEB)

    Gunier, R.B., E-mail: gunier@berkeley.edu [Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA (United States); Jerrett, M. [Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA (United States); Smith, D.R.; Jursa, T. [Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA (United States); Yousefi, P.; Camacho, J.; Hubbard, A.; Eskenazi, B.; Bradman, A. [Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA (United States)

    2014-11-01

    Introduction: Manganese (Mn) is an essential nutrient, but at high exposure levels Mn is a neurotoxicant. The fungicides maneb and mancozeb are approximately 21% Mn by weight and more than 150,000 kg are applied each year to crops in the Salinas Valley, California. It is not clear, however, whether agricultural use of these fungicides increases Mn levels in homes. Materials and methods: We collected house dust samples from 378 residences enrolled in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study with a second sample collected approximately nine months later from 90 of the residences. House dust samples were analyzed for Mn using inductively coupled plasma optical emission spectroscopy. Information from interviews, home inspections, and pesticide use reports was used to identify potential predictors of Mn dust concentrations and loadings. Results: Mn was detectable in all dust samples. The median Mn concentration was 171 μg/g and median Mn loading was 1,910 μg/m{sup 2} at first visit. In multivariable models, Mn dust concentrations and loadings increased with the number of farmworkers in the home and the amount of agricultural Mn fungicides applied within three kilometers of the residence during the month prior to dust sample collection. Dust concentrations of Mn and other metals (lead, cadmium and chromium) were higher in residences located in the southern Salinas Valley compared those located in other areas of the Salinas Valley. Dust loadings of Mn and other metals were also higher in residences located on Antioch Loam soil than other soil types, and in homes with poor or average housekeeping practices. Conclusions: Agricultural use of Mn containing fungicides was associated with Mn dust concentrations and loadings in nearby residences and farmworker homes. Housekeeping practices and soil type at residence were also important factors related to dust metal concentrations and loadings. - Highlights: • Manganese dust

  17. Quantifying local-scale dust emission from the Arabian Red Sea coastal plain

    KAUST Repository

    Anisimov, Anatolii; Tao, Weichun; Stenchikov, Georgiy L.; Kalenderski, Stoitchko; Jish Prakash, P.; Yang, Zong Liang; Shi, Mingjie

    2017-01-01

    Dust plumes emitted from the narrow Arabian Red Sea coastal plain are often observed on satellite images and felt in local population centers. Despite its relatively small area, the coastal plain could be a significant dust source; however, its effect is not well quantified as it is not well approximated in global or even regional models. In addition, because of close proximity to the Red Sea, a significant amount of dust from the coastal areas could be deposited into the Red Sea and serve as a vital component of the nutrient balance of marine ecosystems. In the current study, we apply the offline Community Land Model version 4 (CLM4) to better quantify dust emission from the coastal plain during the period of 2009-2011. We verify the spatial and temporal variability in model results using independent weather station reports. We also compare the results with the MERRA Aerosol Reanalysis (MERRAero). We show that the best results are obtained with 1 km model spatial resolution and dust source function based on Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) measurements. We present the dust emission spatial pattern, as well as estimates of seasonal and diurnal variability in dust event frequency and intensity, and discuss the emission regime in the major dust generation hot spot areas. We demonstrate the contrasting seasonal dust cycles in the northern and southern parts of the coastal plain and discuss the physical mechanisms responsible for dust generation. This study provides the first estimates of the fine-scale spatial and temporal distribution of dust emissions from the Arabian Red Sea coastal plain constrained by MERRAero and short-term WRF-Chem simulations. The estimate of total dust emission from the coastal plain, tuned to fit emissions in MERRAero, is 7.5 ± 0.5 Mt a. Small interannual variability indicates that the study area is a stable dust source. The mineralogical composition analysis shows that the coastal plain

  18. Spectral Signature of Radiative Forcing by East Asian Dust-Soot Mixture

    Science.gov (United States)

    Zhu, A.; Ramanathan, V.

    2007-12-01

    The Pacific Dust Experiment (PACDEX) provides the first detailed sampling of dust-soot mixtures from the western Pacific to the eastern Pacific Ocean. The data includes down and up spectral irradiance, mixing state of dust and soot, and other aerosol properties. This study attempts to simulate the radiative forcing by dust-soot mixtures during the experimental period. The MODTRAN band model was employed to investigate the spectral signatures of solar irradiance change induced by aerosols at moderate spectral resolutions. For the short wave band (300-1100nm) used in this study, the reduction of downward irradiance at surface by aerosols greatly enhances with increasing wavelength in the UV band (300-400nm), reaches a maximum in the blue band, then gradually decreases toward the red band. In the near-IR band (700-1100nm), irradiance reduction by aerosols shows great fluctuations in the band with center wavelength at around 940nm, 820nm, 720nm, 760nm, 690nm, where the aerosol effect is overwhelmed by the water vapor and O2 absorptions. The spectral pattern of irradiance reduction varies for different aerosol species. The maximum reduction lies at around 450nm for soot, and shifting to about 490nm for East Asian mineral dust. It's worth noting that although soot aerosols reduce more irradiance than East Asian dust in the UV and blue band, the impact of dust to the irradiance exceeds that by soot at the longer wavelength band (i.e. around 550nm). The reduction of irradiance by East Asian dust (soot) in the UV band, visible band, and near-IR accounts for about 6% (10%), 56% (64%), and 38% (26%) of total irradiance reduction. As large amount of soot aerosols are involved during the long range transport of East Asian dust, the optical properties of dust aerosols are modified with different mixing state with soot, the spectral pattern of the irradiance reduction will be changed. The study of aerosol forcing at moderate spectral resolutions has the potential application for

  19. Formation of Non-symmetric Fractals During the First Stage of Pre-planetesimal Dust Growth

    Science.gov (United States)

    Kempf, S.; Blum, J.; Wurm, G.

    It is a generally accepted view that the genesis of a planetary system coincide s with the formation of sun-like young stellar objects surrounded by gaseous disc s. The building blocks of the planetesimals are micron-sized solid particles (the so-called dust) embedded in the gas of the disc. The relevant process for formi ng larger aggregates is the growth due to collisional sticking. For particles to c ollide and stick, a relative velocity component between the grains must be present. In the onset of dust growth, Brownian motion dominates other relative-velocity sources . However, numerically determined time scales of the pure Brownian dust growth are much too large for explaining the formation of planets within the lifetime of a proto-planetary di sc. In order to verify the validity of the theoretical models, the Cosmic Dust Aggr egation Experiment CODAG was developed. It allows to observe the growth of micron-sized dust analogs under astrophysical realistic conditions. Surprisingly, the experi ments showed that at least in the onset of the dust growth needle-like fractal aggreg ates rather than symmetric fractals are formed. Here we discuss the implication of this experimental finding for the pre-planetesimal growth models.

  20. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    Science.gov (United States)

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  1. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    Science.gov (United States)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  2. An assessment of hopanes in settled dust and air as indicators of exposure to traffic-related air pollution in Windsor, Ontario

    Science.gov (United States)

    Curran, Jason

    Traffic-related air pollution (TRAP) has been linked with several adverse health effects. We investigated hopanes, markers of primary particle emissions from gasoline and diesel engines, in house dust as an alternative approach for assessing exposure to TRAP in Windsor, Ontario. Settled house dust was collected from the homes of 28 study participants (10 -- 13 yrs). The dust was then analyzed for a suite of hopanes by gas chromatography-mass spectrometry. We calculated correlations between dust hopane concentrations and estimates of annual average NO2 concentrations derived from an existing LUR model. Hopanes were consistently present in detectable quantities in house dust. Annual average outdoor NO2 estimated was moderately correlated with hopanes in house dust (r = 0.46; pefficiency or the presence of an attached garage. Hopanes measured in settled house dust show promise as an indicator of long-term exposure to traffic-related air pollution. Keywords: hopane; air pollution; traffic; dust; exposure; TRAP.

  3. Technology Assessment of Dust Suppression Techniques Applied During Structural Demolition. Topical Report August1, 1995 - October 30, 1996

    International Nuclear Information System (INIS)

    Boudreaux, J.F.; Ebadian, M.A.; Williams, P.T.; Dua, S.K.

    1998-01-01

    Hanford, Fernald, Savannah River, and other sites are currently reviewing technologies that can be implemented to demolish buildings in a cost-effective manner. In order to demolish a structure properly and, at the same time, minimize the amount of dust generated from a given technology, an evaluation must be conducted to choose the most appropriate dust suppression technology given site-specific conditions. Thus, the purpose of this research, which was carried out at the Hemispheric Center for Environmental Technology (HCET) at Florida International University, was to conduct an experimental study of dust aerosol abatement (dust suppression) methods as applied to nuclear D and D. This experimental study targeted the problem of dust suppression during the demolition of nuclear facilities. The resulting data were employed to assist in the development of mathematical correlations that can be applied to predict dust generation during structural demolition

  4. Wood Dust

    Science.gov (United States)

    Learn about wood dust, which can raise the risk of cancers of the paranasal sinuses and nasal cavity. High amounts of wood dust are produced in sawmills, and in the furniture-making, cabinet-making, and carpentry industries.

  5. Inflammatory Biomarkers Predict Airflow Obstruction After Exposure to World Trade Center Dust

    Science.gov (United States)

    Nolan, Anna; Naveed, Bushra; Comfort, Ashley L.; Ferrier, Natalia; Hall, Charles B.; Kwon, Sophia; Kasturiarachchi, Kusali J.; Cohen, Hillel W.; Zeig-Owens, Rachel; Glaser, Michelle S.; Webber, Mayris P.; Aldrich, Thomas K.; Rom, William N.; Kelly, Kerry; Prezant, David J.

    2012-01-01

    Background: The World Trade Center (WTC) collapse on September 11, 2001, produced airflow obstruction in a majority of firefighters receiving subspecialty pulmonary evaluation (SPE) within 6.5 years post-September 11, 2001. Methods: In a cohort of 801 never smokers with normal pre-September 11, 2001, FEV1, we correlated inflammatory biomarkers and CBC counts at monitoring entry within 6 months of September 11, 2001, with a median FEV1 at SPE (34 months; interquartile range, 25-57). Cases of airflow obstruction had FEV1 less than the lower limit of normal (LLN) (100 of 801; 70 of 100 had serum), whereas control subjects had FEV1 greater than or equal to LLN (153 of 801; 124 of 153 had serum). Results: From monitoring entry to SPE years later, FEV1 declined 12% in cases and increased 3% in control subjects. Case subjects had elevated serum macrophage derived chemokine (MDC), granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor, and interferon inducible protein-10 levels. Elevated GM-CSF and MDC increased the risk for subsequent FEV1 less than LLN by 2.5-fold (95% CI, 1.2-5.3) and 3.0-fold (95% CI, 1.4-6.1) in a logistic model adjusted for exposure, BMI, age on September 11, 2001, and polymorphonuclear neutrophils. The model had sensitivity of 38% (95% CI, 27-51) and specificity of 88% (95% CI, 80-93). Conclusions: Inflammatory biomarkers can be risk factors for airflow obstruction following dust and smoke exposure. Elevated serum GM-CSF and MDC levels soon after WTC exposure were associated with increased risk of airflow obstruction in subsequent years. Biomarkers of inflammation may help identify pathways producing obstruction after irritant exposure. PMID:21998260

  6. African dust carries microbes across the ocean: are they affecting human and ecosystem health?

    Science.gov (United States)

    Kellogg, Christina A.; Griffin, Dale W.

    2003-01-01

    Atmospheric transport of dust from northwest Africa to the western Atlantic Ocean region may be responsible for a number of environmental hazards, including the demise of Caribbean corals; red tides; amphibian diseases; increased occurrence of asthma in humans; and oxygen depletion (eutrophication) in estuaries. Studies of satellite images suggest that hundreds of millions of tons of dust are trans-ported annually at relatively low altitudes across the Atlantic Ocean to the Caribbean Sea and southeastern United States. The dust emanates from the expanding Sahara/Sahel desert region in Africa and carries a wide variety of bacteria and fungi. The U.S. Geological Survey, in collaboration with the NASA/Goddard Spaceflight Center, is conducting a study to identify microbes--bacteria, fungi, viruses--transported across the Atlantic in African soil dust. Each year, millions of tons of desert dust blow off the west African coast and ride the trade winds across the ocean, affecting the entire Caribbean basin, as well as the southeastern United States. Of the dust reaching the U.S., Florida receives about 50 percent, while the rest may range as far north as Maine or as far west as Colorado. The dust storms can be tracked by satellite and take about one week to cross the Atlantic.

  7. A 20-year simulated climatology of global dust aerosol deposition.

    Science.gov (United States)

    Zheng, Yu; Zhao, Tianliang; Che, Huizheng; Liu, Yu; Han, Yongxiang; Liu, Chong; Xiong, Jie; Liu, Jianhui; Zhou, Yike

    2016-07-01

    Based on a 20-year (1991-2010) simulation of dust aerosol deposition with the global climate model CAM5.1 (Community Atmosphere Model, version 5.1), the spatial and temporal variations of dust aerosol deposition were analyzed using climate statistical methods. The results indicated that the annual amount of global dust aerosol deposition was approximately 1161±31Mt, with a decreasing trend, and its interannual variation range of 2.70% over 1991-2010. The 20-year average ratio of global dust dry to wet depositions was 1.12, with interannual variation of 2.24%, showing the quantity of dry deposition of dust aerosol was greater than dust wet deposition. High dry deposition was centered over continental deserts and surrounding regions, while wet deposition was a dominant deposition process over the North Atlantic, North Pacific and northern Indian Ocean. Furthermore, both dry and wet deposition presented a zonal distribution. To examine the regional changes of dust aerosol deposition on land and sea areas, we chose the North Atlantic, Eurasia, northern Indian Ocean, North Pacific and Australia to analyze the interannual and seasonal variations of dust deposition and dry-to-wet deposition ratio. The deposition amounts of each region showed interannual fluctuations with the largest variation range at around 26.96% in the northern Indian Ocean area, followed by the North Pacific (16.47%), Australia (9.76%), North Atlantic (9.43%) and Eurasia (6.03%). The northern Indian Ocean also had the greatest amplitude of interannual variation in dry-to-wet deposition ratio, at 22.41%, followed by the North Atlantic (9.69%), Australia (6.82%), North Pacific (6.31%) and Eurasia (4.36%). Dust aerosol presented a seasonal cycle, with typically strong deposition in spring and summer and weak deposition in autumn and winter. The dust deposition over the northern Indian Ocean exhibited the greatest seasonal change range at about 118.00%, while the North Atlantic showed the lowest seasonal

  8. Thirteen years of Aeolian dust dynamics in a desert region (Negev desert, Israel): analysis of horizontal and vertical dust flux, vertical dust distribution and dust grain size

    NARCIS (Netherlands)

    Offer, Z.Y.; Goossens, D.

    2004-01-01

    At Sede Boqer (northern Negev desert, Israel), aeolian dust dynamics have been measured during the period 1988–2000. This study focuses on temporal records of the vertical and horizontal dust flux, the vertical distribution of the dust particles in the atmosphere, and the grain size of the

  9. NUMERICAL SIMULATION OF DUST IN A COMETARY COMA: APPLICATION TO COMET 67P/CHURYUMOV-GERASIMENKO

    International Nuclear Information System (INIS)

    Tenishev, Valeriy; Combi, Michael R.; Rubin, Martin

    2011-01-01

    The Rosetta spacecraft is en route to comet 67P/Churyumov-Gerasimenko for a rendezvous, landing, and extensive orbital phase beginning in 2014. With a limited amount of available observational data, planning of the mission as well as the interpretation of measurements obtained by instruments on board the spacecraft requires modeling of the dusty/gas environment of the comet. During the mission, the collision regime in the inner coma will change starting from transitional to fully collisionless. As a result, a physically correct model has to be valid at conditions that are far from equilibrium and account for the kinetic nature of the processes occurring in the coma. A study of the multi-species coma of comet 67P/Churyumov-Gerasimenko is presented in our previous paper, where we describe our kinetic model and discuss the results of its application to cases that correspond to the different stages during the mission. In this work, we focus on numerical modeling of the dust phase in the coma of comet 67P/Churyumov-Gerasimenko and its interaction with the surrounding gas. The basic phenomena that govern the dynamics and energy balance of the dust grains are outlined. The effect of solar radiation pressure and the nucleus gravity in limiting the maximum liftable mass of the grains is discussed. The distribution of the terminal velocity of the dust grains as a function of subsolar angle is derived in the paper. We have found that in the regions with high gradients of the gas density, spike-like features can form in the dust flow. The obtained results represent the state of the coma in the vicinity of the nucleus for a series of stages throughout the Rosetta mission. The implications of the model results for future measurements by the GIADA instrument are discussed.

  10. Dynamical properties and acceleration of hierarchical dust in the vicinity of comet 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.

    2018-04-01

    A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as recent observation from the Rosetta mission revealed. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as: effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Second, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.

  11. FROM DUST TO PLANETESIMAL: THE SNOWBALL PHASE?

    International Nuclear Information System (INIS)

    Xie Jiwei; Zhou Jilin; Payne, Matthew J.; Ge Jian; Thebault, Philippe

    2010-01-01

    The standard model of planet formation considers an initial phase in which planetesimals form from a dust disk, followed by a phase of mutual planetesimal-planetesimal collisions, leading eventually to the formation of planetary embryos. However, there is a potential transition phase (which we call the 'snowball phase'), between the formation of the first planetesimals and the onset of mutual collisions amongst them, which has often been either ignored or underestimated in previous studies. In this snowball phase, isolated planetesimals move in Keplerian orbits and grow solely via the direct accretion of subcentimeter-sized dust entrained with the gas in the protoplanetary disk. Using a simplified model in which planetesimals are progressively produced from the dust, we consider the expected sizes to which the planetesimals can grow before mutual collisions commence and derive the dependence of this size on a number of critical parameters, including the degree of disk turbulence, the planetesimal size at birth, and the rate of planetesimal creation. For systems in which turbulence is weak and the planetesimals are created at a low rate and with relatively small birth size, we show that the snowball growth phase can be very important, allowing planetesimals to grow by a factor of 10 6 in mass before mutual collisions take over. In such cases, the snowball growth phase can be the dominant mode to transfer mass from the dust to planetesimals. Moreover, such growth can take place within the typical lifetime of a protoplanetary gas disk. A noteworthy result is that, for a wide range of physically reasonable parameters, mutual collisions between planetesimals become significant when they reach sizes ∼100 km, irrespective of their birth size. This could provide an alternative explanation for the turnover point in the size distribution of the present-day asteroid belt. For the specific case of close binaries such as α Centauri, the role of snowball growth could be even

  12. Interstellar matter in Shapley-Ames elliptical galaxies. IV. A diffusely distributed component of dust and its effect on colour gradients.

    Science.gov (United States)

    Goudfrooij, P.; de Jong, T.

    1995-06-01

    We have investigated IRAS far-infrared observations of a complete, blue magnitude limited sample of 56 elliptical galaxies selected from the Revised Shapley-Ames Catalog. Data from a homogeneous optical CCD imaging survey as well as published X-ray data from the EINSTEIN satellite are used to constrain the infrared data. Dust masses as determined from the IRAS flux densities are found to be roughly an order of magnitude higher than those determined from optical extinction values of dust lanes and patches, in strong contrast with the situation in spiral galaxies. This "mass discrepancy" is found to be independent of the (apparent) inclination of the dust lanes. To resolve this dilemma we postulate that the majority of the dust in elliptical galaxies exists as a diffusely distributed component of dust which is undetectable at optical wavelengths. Using observed radial optical surface brightness profiles, we have systematically investigated possible heating mechanisms for the dust within elliptical galaxies. We find that heating of the dust in elliptical galaxies by the interstellar radiation field is generally sufficient to account for the dust temperatures as indicated by the IRAS flux densities. Collisions of dust grains with hot electrons in elliptical galaxies which are embedded in a hot, X-ray-emitting gas is found to be another effective heating mechanism for the dust. Employing model calculations which involve the transfer of stellar radiation in a spherical distribution of stars mixed with a diffuse distribution of dust, we show that the observed infrared luminosities imply total dust optical depths of the postulated diffusely distributed dust component in the range 0.1<~τ_V_<~0.7 and radial colour gradients 0.03<~{DELTA}(B-I)/{DELTA}log r<~0.25. The observed IRAS flux densities can be reproduced within the 1σ uncertainties in virtually all ellipticals in this sample by this newly postulated dust component, diffusely distributed over the inner few kpc of

  13. House dust-mite allergen exposure is associated with serum specific IgE but not with respiratory outcomes.

    Science.gov (United States)

    Bakolis, I; Heinrich, J; Zock, J P; Norbäck, D; Svanes, C; Chen, C M; Accordini, S; Verlato, G; Olivieri, M; Jarvis, D

    2015-06-01

    Exposure to house dust has been associated with asthma in adults, and this is commonly interpreted as a direct immunologic response to dust-mite allergens in those who are IgE sensitized to house dust-mite. Mattress house dust-mite concentrations were measured in a population-based sample of 2890 adults aged between 27 and 56 years living in 22 centers in 10 countries. Generalized linear mixed models were employed to explore the association of respiratory symptoms with house dust-mite concentrations, adjusting for individual and household confounders. There was no overall association of respiratory outcomes with measured house dust-mite concentrations, even in those who reported they had symptoms on exposure to dust and those who had physician-diagnosed asthma. However, there was a positive association of high serum specific IgE levels to HDM (>3.5 kUA /l) with mattress house dust-mite concentrations and a negative association of sensitization to cat with increasing house dust-mite concentrations. In conclusion, there was no evidence that respiratory symptoms in adults were associated with exposure to house dust-mite allergen in the mattress, but an association of house mite with strong sensitization was observed. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Radio Interferometric Detection of TiO and TiO_2 in VY Canis Majoris: "seeds" of Inorganic Dust Formation

    Science.gov (United States)

    Brunken, S.; Muller, H. S. P.; Kaminski, T.; Menten, K. M.; Gott-Lieb, C. A.; Patel, N. A.; Young, K. H.; McCarthy, M. C.; Winters, J. M.; Decin, L.

    2013-06-01

    Circumstellar envelopes around late-type stars harbour a rich variety of molecular gas and copious amounts of dust, originating from the mass-loss of the central star during the asymptotic giant branch (AGB) or the red supergiant phase. The formation of dust in these objects, in particular the first nucleation stages out of gas phase molecules, is still poorly understood. Here we report the first detection of pure rotational transitions of the two simplest titanium oxides, TiO and TiO_2, towards the oxygen-rich red supergiant VY Canis Majoris (VY CMa). This actually represents the first secure identification of TiO_2 in space. Observations of several rotational emission lines of both species with the Submillimeter Array (SMA) in the 345 GHz-band and with the IRAM Plateau de Bure Interferometer (PdBI) around 220 GHz confirm the presence of these refractory species in the cool (<1000 K) circumstellar envelope in a region several times the size of the dust formation zone. The role of Ti oxides as "seeds" of inorganic dust formation in oxygen-rich circumstellar envelopes will be discussed in view of the present observations.

  15. A mysterious dust clump in a disk around an evolved binary star system.

    Science.gov (United States)

    Jura, M; Turner, J

    1998-09-10

    The discovery of planets in orbit around the pulsar PSR1257+12 shows that planets may form around post-main-sequence stars. Other evolved stars, such as HD44179 (an evolved star which is part of the binary system that has expelled the gas and dust that make the Red Rectangle nebula), possess gravitationally bound orbiting dust disks. It is possible that planets might form from gravitational collapse in such disks. Here we report high-angular-resolution observations at millimetre and submillimetre wavelengths of the dusk disk associated with the Red Rectangle. We find a dust clump with an estimated mass near that of Jupiter in the outer region of the disk. The clump is larger than our Solar System, and far beyond where planet formation would normally be expected, so its nature is at present unclear.

  16. Two-dimensional positive column structure with dust cloud: Experiment and nonlocal kinetic simulation

    Science.gov (United States)

    Zobnin, A. V.; Usachev, A. D.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Fink, M. A.

    2018-03-01

    The influence of a dust cloud on the structure of the positive column of a direct current gas discharge in a cylindrical glass tube under milligravity conditions has been studied both experimentally and numerically. The discharge was produced in neon at 60 Pa in a glass tube with a diameter of 30 mm at a discharge current 1 mA. Spherical monodisperse melamine formaldehyde dust particles with a diameter of 6.86 μm were injected into the positive column and formed there a uniform dust cloud with a maximum diameter of 14.4 mm. The shape of the cloud and the dust particle number density were measured. The cloud was stationary in the radial direction and slowly drifted in the axial direction. It was found that in the presence of the dust cloud, the intensity of the neon spectral line with a wavelength by 585.25 nm emitted by the discharge plasma increased by 2.3 times and 2 striations appeared on the anode side of the cloud. A numerical simulation of the discharge was performed using the 2D (quasi-3D) nonlocal self-consistent kinetic model of a longitudinally inhomogeneous axially symmetric positive column [Zobnin et al., Phys. Plasmas 21, 113503 (2014)], which was supplemented by a program module performing a self-consistent calculation of dust particle charges, the plasma recombination rate on dust particles, and ion scattering on dust particles. A new approach to the calculation of particle charges and the screening radius in dense dust clouds is proposed. The results of the simulation are presented, compared with experimental data and discussed. It is demonstrated that for the best agreement between simulated and experimental data, it is necessary to take into account the reflection of electrons from the dust particle surface in order to correctly describe the recombination rate in the cloud, its radial stability, and the dust particle charges.

  17. High excitation ISM and gas

    NARCIS (Netherlands)

    Peeters, E; Martinez-Hernandez, NL; Rodriguez-Fernandez, NJ; Tielens, [No Value

    An overview is given of ISO results on regions of high excitation ISM and gas, i.e. H II regions, the Galactic Centre and Supernova Remnants. IR emission due to fine-structure lines, molecular hydrogen, silicates, polycyclic aromatic hydrocarbons and dust are summarised, their diagnostic

  18. Effects of Interstellar Dust Scattering on the X-ray Eclipses of the LMXB AX J1745.6-2901 in the Galactic Center

    Science.gov (United States)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne

    2018-04-01

    AX J1745.6-2901 is an eclipsing low mass X-ray binary (LMXB) in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line-of-sight (LOS). The apparent dependence on the instruments is caused by different instrumental point-spread-functions. Our results can be used to assess the influence of dust scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disk in-between.

  19. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    International Nuclear Information System (INIS)

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos; Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva; Schruba, Andreas; Bigiel, Frank; Bolatto, Alberto; Brinks, Elias; De Blok, W. J. G.; Rosolowsky, Erik; Schuster, Karl-Friedrich; Usero, Antonio

    2013-01-01

    We compare molecular gas traced by 12 CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between Σ mol and Σ SFR but also find important second-order systematic variations in the apparent molecular gas depletion time, τ dep mol =Σ mol /Σ SFR . At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed α CO equivalent to the Milky Way value, our data yield a molecular gas depletion time, τ dep mol =Σ mol /Σ SFR ∼2.2 Gyr with 0.3 dex 1σ scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, Σ SFR ∝Σ mol N . We find N = 1 ± 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between τ dep mol and other local and global quantities. The strongest of these are a decreased τ dep mol in low-mass, low-metallicity galaxies and a correlation of the kpc-scale τ dep mol with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H 2 conversion factor (α CO ) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed τ dep mol trends. After applying a D/G-dependent α CO , some weak correlations between τ dep mol and local conditions persist. In particular, we observe lower τ dep mol and enhanced CO excitation associated with nuclear gas concentrations in a subset of our targets. These appear to reflect real enhancements in the

  20. Quantifying Anthropogenic Dust Emissions

    Science.gov (United States)

    Webb, Nicholas P.; Pierre, Caroline

    2018-02-01

    Anthropogenic land use and land cover change, including local environmental disturbances, moderate rates of wind-driven soil erosion and dust emission. These human-dust cycle interactions impact ecosystems and agricultural production, air quality, human health, biogeochemical cycles, and climate. While the impacts of land use activities and land management on aeolian processes can be profound, the interactions are often complex and assessments of anthropogenic dust loads at all scales remain highly uncertain. Here, we critically review the drivers of anthropogenic dust emission and current evaluation approaches. We then identify and describe opportunities to: (1) develop new conceptual frameworks and interdisciplinary approaches that draw on ecological state-and-transition models to improve the accuracy and relevance of assessments of anthropogenic dust emissions; (2) improve model fidelity and capacity for change detection to quantify anthropogenic impacts on aeolian processes; and (3) enhance field research and monitoring networks to support dust model applications to evaluate the impacts of disturbance processes on local to global-scale wind erosion and dust emissions.